| 1 | // SPDX-License-Identifier: MIT |
| 2 | /* |
| 3 | * Copyright © 2016-2019 Intel Corporation |
| 4 | */ |
| 5 | |
| 6 | #include <linux/types.h> |
| 7 | |
| 8 | #include "gt/intel_gt.h" |
| 9 | #include "gt/intel_rps.h" |
| 10 | #include "intel_guc_reg.h" |
| 11 | #include "intel_huc.h" |
| 12 | #include "intel_huc_print.h" |
| 13 | #include "i915_drv.h" |
| 14 | #include "i915_reg.h" |
| 15 | #include "pxp/intel_pxp_cmd_interface_43.h" |
| 16 | |
| 17 | #include <linux/device/bus.h> |
| 18 | #include <linux/mei_aux.h> |
| 19 | |
| 20 | /** |
| 21 | * DOC: HuC |
| 22 | * |
| 23 | * The HuC is a dedicated microcontroller for usage in media HEVC (High |
| 24 | * Efficiency Video Coding) operations. Userspace can directly use the firmware |
| 25 | * capabilities by adding HuC specific commands to batch buffers. |
| 26 | * |
| 27 | * The kernel driver is only responsible for loading the HuC firmware and |
| 28 | * triggering its security authentication. This is done differently depending |
| 29 | * on the platform: |
| 30 | * |
| 31 | * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA |
| 32 | * and the authentication via GuC |
| 33 | * - DG2: load and authentication are both performed via GSC. |
| 34 | * - MTL and newer platforms: the load is performed via DMA (same as with |
| 35 | * not-DG2 older platforms), while the authentication is done in 2-steps, |
| 36 | * a first auth for clear-media workloads via GuC and a second one for all |
| 37 | * workloads via GSC. |
| 38 | * |
| 39 | * On platforms where the GuC does the authentication, to correctly do so the |
| 40 | * HuC binary must be loaded before the GuC one. |
| 41 | * Loading the HuC is optional; however, not using the HuC might negatively |
| 42 | * impact power usage and/or performance of media workloads, depending on the |
| 43 | * use-cases. |
| 44 | * HuC must be reloaded on events that cause the WOPCM to lose its contents |
| 45 | * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT |
| 46 | * reset, while on newer ones it will survive that. |
| 47 | * |
| 48 | * See https://github.com/intel/media-driver for the latest details on HuC |
| 49 | * functionality. |
| 50 | */ |
| 51 | |
| 52 | /** |
| 53 | * DOC: HuC Memory Management |
| 54 | * |
| 55 | * Similarly to the GuC, the HuC can't do any memory allocations on its own, |
| 56 | * with the difference being that the allocations for HuC usage are handled by |
| 57 | * the userspace driver instead of the kernel one. The HuC accesses the memory |
| 58 | * via the PPGTT belonging to the context loaded on the VCS executing the |
| 59 | * HuC-specific commands. |
| 60 | */ |
| 61 | |
| 62 | /* |
| 63 | * MEI-GSC load is an async process. The probing of the exposed aux device |
| 64 | * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending |
| 65 | * on when the kernel schedules it. Unless something goes terribly wrong, we're |
| 66 | * guaranteed for this to happen during boot, so the big timeout is a safety net |
| 67 | * that we never expect to need. |
| 68 | * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed |
| 69 | * and/or reset, this can take longer. Note that the kernel might schedule |
| 70 | * other work between the i915 init/resume and the MEI one, which can add to |
| 71 | * the delay. |
| 72 | */ |
| 73 | #define GSC_INIT_TIMEOUT_MS 10000 |
| 74 | #define PXP_INIT_TIMEOUT_MS 5000 |
| 75 | |
| 76 | static int sw_fence_dummy_notify(struct i915_sw_fence *sf, |
| 77 | enum i915_sw_fence_notify state) |
| 78 | { |
| 79 | return NOTIFY_DONE; |
| 80 | } |
| 81 | |
| 82 | static void __delayed_huc_load_complete(struct intel_huc *huc) |
| 83 | { |
| 84 | if (!i915_sw_fence_done(fence: &huc->delayed_load.fence)) |
| 85 | i915_sw_fence_complete(fence: &huc->delayed_load.fence); |
| 86 | } |
| 87 | |
| 88 | static void delayed_huc_load_complete(struct intel_huc *huc) |
| 89 | { |
| 90 | hrtimer_cancel(timer: &huc->delayed_load.timer); |
| 91 | __delayed_huc_load_complete(huc); |
| 92 | } |
| 93 | |
| 94 | static void __gsc_init_error(struct intel_huc *huc) |
| 95 | { |
| 96 | huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR; |
| 97 | __delayed_huc_load_complete(huc); |
| 98 | } |
| 99 | |
| 100 | static void gsc_init_error(struct intel_huc *huc) |
| 101 | { |
| 102 | hrtimer_cancel(timer: &huc->delayed_load.timer); |
| 103 | __gsc_init_error(huc); |
| 104 | } |
| 105 | |
| 106 | static void gsc_init_done(struct intel_huc *huc) |
| 107 | { |
| 108 | hrtimer_cancel(timer: &huc->delayed_load.timer); |
| 109 | |
| 110 | /* MEI-GSC init is done, now we wait for MEI-PXP to bind */ |
| 111 | huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP; |
| 112 | if (!i915_sw_fence_done(fence: &huc->delayed_load.fence)) |
| 113 | hrtimer_start(timer: &huc->delayed_load.timer, |
| 114 | tim: ms_to_ktime(PXP_INIT_TIMEOUT_MS), |
| 115 | mode: HRTIMER_MODE_REL); |
| 116 | } |
| 117 | |
| 118 | static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer) |
| 119 | { |
| 120 | struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer); |
| 121 | |
| 122 | if (!intel_huc_is_authenticated(huc, type: INTEL_HUC_AUTH_BY_GSC)) { |
| 123 | if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC) |
| 124 | huc_notice(huc, "timed out waiting for MEI GSC\n" ); |
| 125 | else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP) |
| 126 | huc_notice(huc, "timed out waiting for MEI PXP\n" ); |
| 127 | else |
| 128 | MISSING_CASE(huc->delayed_load.status); |
| 129 | |
| 130 | __gsc_init_error(huc); |
| 131 | } |
| 132 | |
| 133 | return HRTIMER_NORESTART; |
| 134 | } |
| 135 | |
| 136 | static void huc_delayed_load_start(struct intel_huc *huc) |
| 137 | { |
| 138 | ktime_t delay; |
| 139 | |
| 140 | GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)); |
| 141 | |
| 142 | /* |
| 143 | * On resume we don't have to wait for MEI-GSC to be re-probed, but we |
| 144 | * do need to wait for MEI-PXP to reset & re-bind |
| 145 | */ |
| 146 | switch (huc->delayed_load.status) { |
| 147 | case INTEL_HUC_WAITING_ON_GSC: |
| 148 | delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS); |
| 149 | break; |
| 150 | case INTEL_HUC_WAITING_ON_PXP: |
| 151 | delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS); |
| 152 | break; |
| 153 | default: |
| 154 | gsc_init_error(huc); |
| 155 | return; |
| 156 | } |
| 157 | |
| 158 | /* |
| 159 | * This fence is always complete unless we're waiting for the |
| 160 | * GSC device to come up to load the HuC. We arm the fence here |
| 161 | * and complete it when we confirm that the HuC is loaded from |
| 162 | * the PXP bind callback. |
| 163 | */ |
| 164 | GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence)); |
| 165 | i915_sw_fence_fini(fence: &huc->delayed_load.fence); |
| 166 | i915_sw_fence_reinit(fence: &huc->delayed_load.fence); |
| 167 | i915_sw_fence_await(fence: &huc->delayed_load.fence); |
| 168 | i915_sw_fence_commit(fence: &huc->delayed_load.fence); |
| 169 | |
| 170 | hrtimer_start(timer: &huc->delayed_load.timer, tim: delay, mode: HRTIMER_MODE_REL); |
| 171 | } |
| 172 | |
| 173 | static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data) |
| 174 | { |
| 175 | struct device *dev = data; |
| 176 | struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb); |
| 177 | struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0]; |
| 178 | |
| 179 | if (!intf->adev || &intf->adev->aux_dev.dev != dev) |
| 180 | return 0; |
| 181 | |
| 182 | switch (action) { |
| 183 | case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */ |
| 184 | gsc_init_done(huc); |
| 185 | break; |
| 186 | |
| 187 | case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */ |
| 188 | case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */ |
| 189 | huc_info(huc, "MEI driver not bound, disabling load\n" ); |
| 190 | gsc_init_error(huc); |
| 191 | break; |
| 192 | } |
| 193 | |
| 194 | return 0; |
| 195 | } |
| 196 | |
| 197 | void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) |
| 198 | { |
| 199 | int ret; |
| 200 | |
| 201 | if (!intel_huc_is_loaded_by_gsc(huc)) |
| 202 | return; |
| 203 | |
| 204 | huc->delayed_load.nb.notifier_call = gsc_notifier; |
| 205 | ret = bus_register_notifier(bus, nb: &huc->delayed_load.nb); |
| 206 | if (ret) { |
| 207 | huc_err(huc, "failed to register GSC notifier %pe\n" , ERR_PTR(ret)); |
| 208 | huc->delayed_load.nb.notifier_call = NULL; |
| 209 | gsc_init_error(huc); |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) |
| 214 | { |
| 215 | if (!huc->delayed_load.nb.notifier_call) |
| 216 | return; |
| 217 | |
| 218 | delayed_huc_load_complete(huc); |
| 219 | |
| 220 | bus_unregister_notifier(bus, nb: &huc->delayed_load.nb); |
| 221 | huc->delayed_load.nb.notifier_call = NULL; |
| 222 | } |
| 223 | |
| 224 | static void delayed_huc_load_init(struct intel_huc *huc) |
| 225 | { |
| 226 | /* |
| 227 | * Initialize fence to be complete as this is expected to be complete |
| 228 | * unless there is a delayed HuC load in progress. |
| 229 | */ |
| 230 | i915_sw_fence_init(&huc->delayed_load.fence, |
| 231 | sw_fence_dummy_notify); |
| 232 | i915_sw_fence_commit(fence: &huc->delayed_load.fence); |
| 233 | |
| 234 | hrtimer_setup(timer: &huc->delayed_load.timer, function: huc_delayed_load_timer_callback, CLOCK_MONOTONIC, |
| 235 | mode: HRTIMER_MODE_REL); |
| 236 | } |
| 237 | |
| 238 | static void delayed_huc_load_fini(struct intel_huc *huc) |
| 239 | { |
| 240 | /* |
| 241 | * the fence is initialized in init_early, so we need to clean it up |
| 242 | * even if HuC loading is off. |
| 243 | */ |
| 244 | delayed_huc_load_complete(huc); |
| 245 | i915_sw_fence_fini(fence: &huc->delayed_load.fence); |
| 246 | } |
| 247 | |
| 248 | int intel_huc_sanitize(struct intel_huc *huc) |
| 249 | { |
| 250 | delayed_huc_load_complete(huc); |
| 251 | intel_uc_fw_sanitize(uc_fw: &huc->fw); |
| 252 | return 0; |
| 253 | } |
| 254 | |
| 255 | static bool vcs_supported(struct intel_gt *gt) |
| 256 | { |
| 257 | intel_engine_mask_t mask = gt->info.engine_mask; |
| 258 | |
| 259 | /* |
| 260 | * We reach here from i915_driver_early_probe for the primary GT before |
| 261 | * its engine mask is set, so we use the device info engine mask for it; |
| 262 | * this means we're not taking VCS fusing into account, but if the |
| 263 | * primary GT supports VCS engines we expect at least one of them to |
| 264 | * remain unfused so we're fine. |
| 265 | * For other GTs we expect the GT-specific mask to be set before we |
| 266 | * call this function. |
| 267 | */ |
| 268 | GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask); |
| 269 | |
| 270 | if (gt_is_root(gt)) |
| 271 | mask = INTEL_INFO(gt->i915)->platform_engine_mask; |
| 272 | else |
| 273 | mask = gt->info.engine_mask; |
| 274 | |
| 275 | return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS); |
| 276 | } |
| 277 | |
| 278 | void intel_huc_init_early(struct intel_huc *huc) |
| 279 | { |
| 280 | struct drm_i915_private *i915 = huc_to_gt(huc)->i915; |
| 281 | struct intel_gt *gt = huc_to_gt(huc); |
| 282 | |
| 283 | intel_uc_fw_init_early(uc_fw: &huc->fw, type: INTEL_UC_FW_TYPE_HUC, needs_ggtt_mapping: true); |
| 284 | |
| 285 | /* |
| 286 | * we always init the fence as already completed, even if HuC is not |
| 287 | * supported. This way we don't have to distinguish between HuC not |
| 288 | * supported/disabled or already loaded, and can focus on if the load |
| 289 | * is currently in progress (fence not complete) or not, which is what |
| 290 | * we care about for stalling userspace submissions. |
| 291 | */ |
| 292 | delayed_huc_load_init(huc); |
| 293 | |
| 294 | if (!vcs_supported(gt)) { |
| 295 | intel_uc_fw_change_status(uc_fw: &huc->fw, status: INTEL_UC_FIRMWARE_NOT_SUPPORTED); |
| 296 | return; |
| 297 | } |
| 298 | |
| 299 | if (GRAPHICS_VER(i915) >= 11) { |
| 300 | huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO; |
| 301 | huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL; |
| 302 | huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL; |
| 303 | } else { |
| 304 | huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2; |
| 305 | huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED; |
| 306 | huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED; |
| 307 | } |
| 308 | |
| 309 | if (IS_DG2(i915)) { |
| 310 | huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO; |
| 311 | huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL; |
| 312 | huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL; |
| 313 | } else { |
| 314 | huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5); |
| 315 | huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE; |
| 316 | huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE; |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | void intel_huc_fini_late(struct intel_huc *huc) |
| 321 | { |
| 322 | delayed_huc_load_fini(huc); |
| 323 | } |
| 324 | |
| 325 | #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy") |
| 326 | static int check_huc_loading_mode(struct intel_huc *huc) |
| 327 | { |
| 328 | struct intel_gt *gt = huc_to_gt(huc); |
| 329 | bool gsc_enabled = huc->fw.has_gsc_headers; |
| 330 | |
| 331 | /* |
| 332 | * The fuse for HuC load via GSC is only valid on platforms that have |
| 333 | * GuC deprivilege. |
| 334 | */ |
| 335 | if (HAS_GUC_DEPRIVILEGE(gt->i915)) |
| 336 | huc->loaded_via_gsc = intel_uncore_read(uncore: gt->uncore, GUC_SHIM_CONTROL2) & |
| 337 | GSC_LOADS_HUC; |
| 338 | |
| 339 | if (huc->loaded_via_gsc && !gsc_enabled) { |
| 340 | huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n" ); |
| 341 | return -ENOEXEC; |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * On newer platforms we have GSC-enabled binaries but we load the HuC |
| 346 | * via DMA. To do so we need to find the location of the legacy-style |
| 347 | * binary inside the GSC-enabled one, which we do at fetch time. Make |
| 348 | * sure that we were able to do so if the fuse says we need to load via |
| 349 | * DMA and the binary is GSC-enabled. |
| 350 | */ |
| 351 | if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) { |
| 352 | huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n" ); |
| 353 | return -ENOEXEC; |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | * If the HuC is loaded via GSC, we need to be able to access the GSC. |
| 358 | * On DG2 this is done via the mei components, while on newer platforms |
| 359 | * it is done via the GSCCS, |
| 360 | */ |
| 361 | if (huc->loaded_via_gsc) { |
| 362 | if (IS_DG2(gt->i915)) { |
| 363 | if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) || |
| 364 | !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) { |
| 365 | huc_info(huc, "can't load due to missing mei modules\n" ); |
| 366 | return -EIO; |
| 367 | } |
| 368 | } else { |
| 369 | if (!HAS_ENGINE(gt, GSC0)) { |
| 370 | huc_info(huc, "can't load due to missing GSCCS\n" ); |
| 371 | return -EIO; |
| 372 | } |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | huc_dbg(huc, "loaded by GSC = %s\n" , str_yes_no(huc->loaded_via_gsc)); |
| 377 | |
| 378 | return 0; |
| 379 | } |
| 380 | |
| 381 | int intel_huc_init(struct intel_huc *huc) |
| 382 | { |
| 383 | struct intel_gt *gt = huc_to_gt(huc); |
| 384 | int err; |
| 385 | |
| 386 | err = check_huc_loading_mode(huc); |
| 387 | if (err) |
| 388 | goto out; |
| 389 | |
| 390 | if (HAS_ENGINE(gt, GSC0)) { |
| 391 | struct i915_vma *vma; |
| 392 | |
| 393 | vma = intel_guc_allocate_vma(guc: gt_to_guc(gt), PXP43_HUC_AUTH_INOUT_SIZE * 2); |
| 394 | if (IS_ERR(ptr: vma)) { |
| 395 | err = PTR_ERR(ptr: vma); |
| 396 | huc_info(huc, "Failed to allocate heci pkt\n" ); |
| 397 | goto out; |
| 398 | } |
| 399 | |
| 400 | huc->heci_pkt = vma; |
| 401 | } |
| 402 | |
| 403 | err = intel_uc_fw_init(uc_fw: &huc->fw); |
| 404 | if (err) |
| 405 | goto out_pkt; |
| 406 | |
| 407 | intel_uc_fw_change_status(uc_fw: &huc->fw, status: INTEL_UC_FIRMWARE_LOADABLE); |
| 408 | |
| 409 | return 0; |
| 410 | |
| 411 | out_pkt: |
| 412 | if (huc->heci_pkt) |
| 413 | i915_vma_unpin_and_release(p_vma: &huc->heci_pkt, flags: 0); |
| 414 | out: |
| 415 | intel_uc_fw_change_status(uc_fw: &huc->fw, status: INTEL_UC_FIRMWARE_INIT_FAIL); |
| 416 | huc_info(huc, "initialization failed %pe\n" , ERR_PTR(err)); |
| 417 | return err; |
| 418 | } |
| 419 | |
| 420 | void intel_huc_fini(struct intel_huc *huc) |
| 421 | { |
| 422 | if (huc->heci_pkt) |
| 423 | i915_vma_unpin_and_release(p_vma: &huc->heci_pkt, flags: 0); |
| 424 | |
| 425 | if (intel_uc_fw_is_loadable(uc_fw: &huc->fw)) |
| 426 | intel_uc_fw_fini(uc_fw: &huc->fw); |
| 427 | } |
| 428 | |
| 429 | static const char *auth_mode_string(struct intel_huc *huc, |
| 430 | enum intel_huc_authentication_type type) |
| 431 | { |
| 432 | bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC; |
| 433 | |
| 434 | return partial ? "clear media" : "all workloads" ; |
| 435 | } |
| 436 | |
| 437 | /* |
| 438 | * Use a longer timeout for debug builds so that problems can be detected |
| 439 | * and analysed. But a shorter timeout for releases so that user's don't |
| 440 | * wait forever to find out there is a problem. Note that the only reason |
| 441 | * an end user should hit the timeout is in case of extreme thermal throttling. |
| 442 | * And a system that is that hot during boot is probably dead anyway! |
| 443 | */ |
| 444 | #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) |
| 445 | #define HUC_LOAD_RETRY_LIMIT 20 |
| 446 | #else |
| 447 | #define HUC_LOAD_RETRY_LIMIT 3 |
| 448 | #endif |
| 449 | |
| 450 | int intel_huc_wait_for_auth_complete(struct intel_huc *huc, |
| 451 | enum intel_huc_authentication_type type) |
| 452 | { |
| 453 | struct intel_gt *gt = huc_to_gt(huc); |
| 454 | struct intel_uncore *uncore = gt->uncore; |
| 455 | ktime_t before, after, delta; |
| 456 | int ret, count; |
| 457 | u64 delta_ms; |
| 458 | u32 before_freq; |
| 459 | |
| 460 | /* |
| 461 | * The KMD requests maximum frequency during driver load, however thermal |
| 462 | * throttling can force the frequency down to minimum (although the board |
| 463 | * really should never get that hot in real life!). IFWI issues have been |
| 464 | * seen to cause sporadic failures to grant the higher frequency. And at |
| 465 | * minimum frequency, the authentication time can be in the seconds range. |
| 466 | * Note that there is a limit on how long an individual wait_for() can wait. |
| 467 | * So wrap it in a loop. |
| 468 | */ |
| 469 | before_freq = intel_rps_read_actual_frequency(rps: >->rps); |
| 470 | before = ktime_get(); |
| 471 | for (count = 0; count < HUC_LOAD_RETRY_LIMIT; count++) { |
| 472 | ret = __intel_wait_for_register(uncore: gt->uncore, |
| 473 | reg: huc->status[type].reg, |
| 474 | mask: huc->status[type].mask, |
| 475 | value: huc->status[type].value, |
| 476 | fast_timeout_us: 2, slow_timeout_ms: 1000, NULL); |
| 477 | if (!ret) |
| 478 | break; |
| 479 | |
| 480 | huc_dbg(huc, "auth still in progress, count = %d, freq = %dMHz, status = 0x%08X\n" , |
| 481 | count, intel_rps_read_actual_frequency(>->rps), |
| 482 | huc->status[type].reg.reg); |
| 483 | } |
| 484 | after = ktime_get(); |
| 485 | delta = ktime_sub(after, before); |
| 486 | delta_ms = ktime_to_ms(kt: delta); |
| 487 | |
| 488 | if (delta_ms > 50) { |
| 489 | huc_warn(huc, "excessive auth time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n" , |
| 490 | delta_ms, huc->status[type].reg.reg, count, ret); |
| 491 | huc_warn(huc, "excessive auth time: [freq = %dMHz -> %dMHz vs %dMHz, perf_limit_reasons = 0x%08X]\n" , |
| 492 | before_freq, intel_rps_read_actual_frequency(>->rps), |
| 493 | intel_rps_get_requested_frequency(>->rps), |
| 494 | intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt))); |
| 495 | } else { |
| 496 | huc_dbg(huc, "auth took %lldms, freq = %dMHz -> %dMHz vs %dMHz, status = 0x%08X, count = %d, ret = %d\n" , |
| 497 | delta_ms, before_freq, intel_rps_read_actual_frequency(>->rps), |
| 498 | intel_rps_get_requested_frequency(>->rps), |
| 499 | huc->status[type].reg.reg, count, ret); |
| 500 | } |
| 501 | |
| 502 | /* mark the load process as complete even if the wait failed */ |
| 503 | delayed_huc_load_complete(huc); |
| 504 | |
| 505 | if (ret) { |
| 506 | huc_err(huc, "firmware not verified for %s: %pe\n" , |
| 507 | auth_mode_string(huc, type), ERR_PTR(ret)); |
| 508 | intel_uc_fw_change_status(uc_fw: &huc->fw, status: INTEL_UC_FIRMWARE_LOAD_FAIL); |
| 509 | return ret; |
| 510 | } |
| 511 | |
| 512 | intel_uc_fw_change_status(uc_fw: &huc->fw, status: INTEL_UC_FIRMWARE_RUNNING); |
| 513 | huc_info(huc, "authenticated for %s\n" , auth_mode_string(huc, type)); |
| 514 | return 0; |
| 515 | } |
| 516 | |
| 517 | /** |
| 518 | * intel_huc_auth() - Authenticate HuC uCode |
| 519 | * @huc: intel_huc structure |
| 520 | * @type: authentication type (via GuC or via GSC) |
| 521 | * |
| 522 | * Called after HuC and GuC firmware loading during intel_uc_init_hw(). |
| 523 | * |
| 524 | * This function invokes the GuC action to authenticate the HuC firmware, |
| 525 | * passing the offset of the RSA signature to intel_guc_auth_huc(). It then |
| 526 | * waits for up to 50ms for firmware verification ACK. |
| 527 | */ |
| 528 | int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type) |
| 529 | { |
| 530 | struct intel_gt *gt = huc_to_gt(huc); |
| 531 | struct intel_guc *guc = gt_to_guc(gt); |
| 532 | int ret; |
| 533 | |
| 534 | if (!intel_uc_fw_is_loaded(uc_fw: &huc->fw)) |
| 535 | return -ENOEXEC; |
| 536 | |
| 537 | /* GSC will do the auth with the load */ |
| 538 | if (intel_huc_is_loaded_by_gsc(huc)) |
| 539 | return -ENODEV; |
| 540 | |
| 541 | if (intel_huc_is_authenticated(huc, type)) |
| 542 | return -EEXIST; |
| 543 | |
| 544 | ret = i915_inject_probe_error(gt->i915, -ENXIO); |
| 545 | if (ret) |
| 546 | goto fail; |
| 547 | |
| 548 | switch (type) { |
| 549 | case INTEL_HUC_AUTH_BY_GUC: |
| 550 | ret = intel_guc_auth_huc(guc, rsa_offset: intel_guc_ggtt_offset(guc, vma: huc->fw.rsa_data)); |
| 551 | break; |
| 552 | case INTEL_HUC_AUTH_BY_GSC: |
| 553 | ret = intel_huc_fw_auth_via_gsccs(huc); |
| 554 | break; |
| 555 | default: |
| 556 | MISSING_CASE(type); |
| 557 | ret = -EINVAL; |
| 558 | } |
| 559 | if (ret) |
| 560 | goto fail; |
| 561 | |
| 562 | /* Check authentication status, it should be done by now */ |
| 563 | ret = intel_huc_wait_for_auth_complete(huc, type); |
| 564 | if (ret) |
| 565 | goto fail; |
| 566 | |
| 567 | return 0; |
| 568 | |
| 569 | fail: |
| 570 | huc_probe_error(huc, "%s authentication failed %pe\n" , |
| 571 | auth_mode_string(huc, type), ERR_PTR(ret)); |
| 572 | return ret; |
| 573 | } |
| 574 | |
| 575 | bool intel_huc_is_authenticated(struct intel_huc *huc, |
| 576 | enum intel_huc_authentication_type type) |
| 577 | { |
| 578 | struct intel_gt *gt = huc_to_gt(huc); |
| 579 | intel_wakeref_t wakeref; |
| 580 | u32 status = 0; |
| 581 | |
| 582 | with_intel_runtime_pm(gt->uncore->rpm, wakeref) |
| 583 | status = intel_uncore_read(uncore: gt->uncore, reg: huc->status[type].reg); |
| 584 | |
| 585 | return (status & huc->status[type].mask) == huc->status[type].value; |
| 586 | } |
| 587 | |
| 588 | static bool huc_is_fully_authenticated(struct intel_huc *huc) |
| 589 | { |
| 590 | struct intel_uc_fw *huc_fw = &huc->fw; |
| 591 | |
| 592 | if (!huc_fw->has_gsc_headers) |
| 593 | return intel_huc_is_authenticated(huc, type: INTEL_HUC_AUTH_BY_GUC); |
| 594 | else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0)) |
| 595 | return intel_huc_is_authenticated(huc, type: INTEL_HUC_AUTH_BY_GSC); |
| 596 | else |
| 597 | return false; |
| 598 | } |
| 599 | |
| 600 | /** |
| 601 | * intel_huc_check_status() - check HuC status |
| 602 | * @huc: intel_huc structure |
| 603 | * |
| 604 | * This function reads status register to verify if HuC |
| 605 | * firmware was successfully loaded. |
| 606 | * |
| 607 | * The return values match what is expected for the I915_PARAM_HUC_STATUS |
| 608 | * getparam. |
| 609 | */ |
| 610 | int intel_huc_check_status(struct intel_huc *huc) |
| 611 | { |
| 612 | struct intel_uc_fw *huc_fw = &huc->fw; |
| 613 | |
| 614 | switch (__intel_uc_fw_status(uc_fw: huc_fw)) { |
| 615 | case INTEL_UC_FIRMWARE_NOT_SUPPORTED: |
| 616 | return -ENODEV; |
| 617 | case INTEL_UC_FIRMWARE_DISABLED: |
| 618 | return -EOPNOTSUPP; |
| 619 | case INTEL_UC_FIRMWARE_MISSING: |
| 620 | return -ENOPKG; |
| 621 | case INTEL_UC_FIRMWARE_ERROR: |
| 622 | return -ENOEXEC; |
| 623 | case INTEL_UC_FIRMWARE_INIT_FAIL: |
| 624 | return -ENOMEM; |
| 625 | case INTEL_UC_FIRMWARE_LOAD_FAIL: |
| 626 | return -EIO; |
| 627 | default: |
| 628 | break; |
| 629 | } |
| 630 | |
| 631 | /* |
| 632 | * GSC-enabled binaries loaded via DMA are first partially |
| 633 | * authenticated by GuC and then fully authenticated by GSC |
| 634 | */ |
| 635 | if (huc_is_fully_authenticated(huc)) |
| 636 | return 1; /* full auth */ |
| 637 | else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) && |
| 638 | intel_huc_is_authenticated(huc, type: INTEL_HUC_AUTH_BY_GUC)) |
| 639 | return 2; /* clear media only */ |
| 640 | else |
| 641 | return 0; |
| 642 | } |
| 643 | |
| 644 | static bool huc_has_delayed_load(struct intel_huc *huc) |
| 645 | { |
| 646 | return intel_huc_is_loaded_by_gsc(huc) && |
| 647 | (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR); |
| 648 | } |
| 649 | |
| 650 | void intel_huc_update_auth_status(struct intel_huc *huc) |
| 651 | { |
| 652 | if (!intel_uc_fw_is_loadable(uc_fw: &huc->fw)) |
| 653 | return; |
| 654 | |
| 655 | if (!huc->fw.has_gsc_headers) |
| 656 | return; |
| 657 | |
| 658 | if (huc_is_fully_authenticated(huc)) |
| 659 | intel_uc_fw_change_status(uc_fw: &huc->fw, |
| 660 | status: INTEL_UC_FIRMWARE_RUNNING); |
| 661 | else if (huc_has_delayed_load(huc)) |
| 662 | huc_delayed_load_start(huc); |
| 663 | } |
| 664 | |
| 665 | /** |
| 666 | * intel_huc_load_status - dump information about HuC load status |
| 667 | * @huc: the HuC |
| 668 | * @p: the &drm_printer |
| 669 | * |
| 670 | * Pretty printer for HuC load status. |
| 671 | */ |
| 672 | void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p) |
| 673 | { |
| 674 | struct intel_gt *gt = huc_to_gt(huc); |
| 675 | intel_wakeref_t wakeref; |
| 676 | |
| 677 | if (!intel_huc_is_supported(huc)) { |
| 678 | drm_printf(p, f: "HuC not supported\n" ); |
| 679 | return; |
| 680 | } |
| 681 | |
| 682 | if (!intel_huc_is_wanted(huc)) { |
| 683 | drm_printf(p, f: "HuC disabled\n" ); |
| 684 | return; |
| 685 | } |
| 686 | |
| 687 | intel_uc_fw_dump(uc_fw: &huc->fw, p); |
| 688 | |
| 689 | with_intel_runtime_pm(gt->uncore->rpm, wakeref) |
| 690 | drm_printf(p, f: "HuC status: 0x%08x\n" , |
| 691 | intel_uncore_read(uncore: gt->uncore, reg: huc->status[INTEL_HUC_AUTH_BY_GUC].reg)); |
| 692 | } |
| 693 | |