| 1 | /* | 
|---|
| 2 | * Copyright © 2008-2015 Intel Corporation | 
|---|
| 3 | * | 
|---|
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a | 
|---|
| 5 | * copy of this software and associated documentation files (the "Software"), | 
|---|
| 6 | * to deal in the Software without restriction, including without limitation | 
|---|
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|---|
| 8 | * and/or sell copies of the Software, and to permit persons to whom the | 
|---|
| 9 | * Software is furnished to do so, subject to the following conditions: | 
|---|
| 10 | * | 
|---|
| 11 | * The above copyright notice and this permission notice (including the next | 
|---|
| 12 | * paragraph) shall be included in all copies or substantial portions of the | 
|---|
| 13 | * Software. | 
|---|
| 14 | * | 
|---|
| 15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|---|
| 16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|---|
| 17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
|---|
| 18 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|---|
| 19 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
|---|
| 20 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | 
|---|
| 21 | * IN THE SOFTWARE. | 
|---|
| 22 | * | 
|---|
| 23 | */ | 
|---|
| 24 |  | 
|---|
| 25 | #include <linux/dma-fence-array.h> | 
|---|
| 26 | #include <linux/dma-fence-chain.h> | 
|---|
| 27 | #include <linux/irq_work.h> | 
|---|
| 28 | #include <linux/prefetch.h> | 
|---|
| 29 | #include <linux/sched.h> | 
|---|
| 30 | #include <linux/sched/clock.h> | 
|---|
| 31 | #include <linux/sched/signal.h> | 
|---|
| 32 | #include <linux/sched/mm.h> | 
|---|
| 33 |  | 
|---|
| 34 | #include "gem/i915_gem_context.h" | 
|---|
| 35 | #include "gt/intel_breadcrumbs.h" | 
|---|
| 36 | #include "gt/intel_context.h" | 
|---|
| 37 | #include "gt/intel_engine.h" | 
|---|
| 38 | #include "gt/intel_engine_heartbeat.h" | 
|---|
| 39 | #include "gt/intel_engine_regs.h" | 
|---|
| 40 | #include "gt/intel_gpu_commands.h" | 
|---|
| 41 | #include "gt/intel_reset.h" | 
|---|
| 42 | #include "gt/intel_ring.h" | 
|---|
| 43 | #include "gt/intel_rps.h" | 
|---|
| 44 |  | 
|---|
| 45 | #include "i915_active.h" | 
|---|
| 46 | #include "i915_config.h" | 
|---|
| 47 | #include "i915_deps.h" | 
|---|
| 48 | #include "i915_driver.h" | 
|---|
| 49 | #include "i915_drv.h" | 
|---|
| 50 | #include "i915_trace.h" | 
|---|
| 51 |  | 
|---|
| 52 | struct execute_cb { | 
|---|
| 53 | struct irq_work work; | 
|---|
| 54 | struct i915_sw_fence *fence; | 
|---|
| 55 | }; | 
|---|
| 56 |  | 
|---|
| 57 | static struct kmem_cache *slab_requests; | 
|---|
| 58 | static struct kmem_cache *slab_execute_cbs; | 
|---|
| 59 |  | 
|---|
| 60 | static const char *i915_fence_get_driver_name(struct dma_fence *fence) | 
|---|
| 61 | { | 
|---|
| 62 | return dev_name(dev: to_request(fence)->i915->drm.dev); | 
|---|
| 63 | } | 
|---|
| 64 |  | 
|---|
| 65 | static const char *i915_fence_get_timeline_name(struct dma_fence *fence) | 
|---|
| 66 | { | 
|---|
| 67 | const struct i915_gem_context *ctx; | 
|---|
| 68 |  | 
|---|
| 69 | /* | 
|---|
| 70 | * The timeline struct (as part of the ppgtt underneath a context) | 
|---|
| 71 | * may be freed when the request is no longer in use by the GPU. | 
|---|
| 72 | * We could extend the life of a context to beyond that of all | 
|---|
| 73 | * fences, possibly keeping the hw resource around indefinitely, | 
|---|
| 74 | * or we just give them a false name. Since | 
|---|
| 75 | * dma_fence_ops.get_timeline_name is a debug feature, the occasional | 
|---|
| 76 | * lie seems justifiable. | 
|---|
| 77 | */ | 
|---|
| 78 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) | 
|---|
| 79 | return "signaled"; | 
|---|
| 80 |  | 
|---|
| 81 | ctx = i915_request_gem_context(rq: to_request(fence)); | 
|---|
| 82 | if (!ctx) | 
|---|
| 83 | return "["DRIVER_NAME "]"; | 
|---|
| 84 |  | 
|---|
| 85 | return ctx->name; | 
|---|
| 86 | } | 
|---|
| 87 |  | 
|---|
| 88 | static bool i915_fence_signaled(struct dma_fence *fence) | 
|---|
| 89 | { | 
|---|
| 90 | return i915_request_completed(rq: to_request(fence)); | 
|---|
| 91 | } | 
|---|
| 92 |  | 
|---|
| 93 | static bool i915_fence_enable_signaling(struct dma_fence *fence) | 
|---|
| 94 | { | 
|---|
| 95 | return i915_request_enable_breadcrumb(request: to_request(fence)); | 
|---|
| 96 | } | 
|---|
| 97 |  | 
|---|
| 98 | static signed long i915_fence_wait(struct dma_fence *fence, | 
|---|
| 99 | bool interruptible, | 
|---|
| 100 | signed long timeout) | 
|---|
| 101 | { | 
|---|
| 102 | return i915_request_wait_timeout(rq: to_request(fence), | 
|---|
| 103 | flags: interruptible | I915_WAIT_PRIORITY, | 
|---|
| 104 | timeout); | 
|---|
| 105 | } | 
|---|
| 106 |  | 
|---|
| 107 | struct kmem_cache *i915_request_slab_cache(void) | 
|---|
| 108 | { | 
|---|
| 109 | return slab_requests; | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 | static void i915_fence_release(struct dma_fence *fence) | 
|---|
| 113 | { | 
|---|
| 114 | struct i915_request *rq = to_request(fence); | 
|---|
| 115 |  | 
|---|
| 116 | GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && | 
|---|
| 117 | rq->guc_prio != GUC_PRIO_FINI); | 
|---|
| 118 |  | 
|---|
| 119 | i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); | 
|---|
| 120 | if (rq->batch_res) { | 
|---|
| 121 | i915_vma_resource_put(vma_res: rq->batch_res); | 
|---|
| 122 | rq->batch_res = NULL; | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | /* | 
|---|
| 126 | * The request is put onto a RCU freelist (i.e. the address | 
|---|
| 127 | * is immediately reused), mark the fences as being freed now. | 
|---|
| 128 | * Otherwise the debugobjects for the fences are only marked as | 
|---|
| 129 | * freed when the slab cache itself is freed, and so we would get | 
|---|
| 130 | * caught trying to reuse dead objects. | 
|---|
| 131 | */ | 
|---|
| 132 | i915_sw_fence_fini(fence: &rq->submit); | 
|---|
| 133 | i915_sw_fence_fini(fence: &rq->semaphore); | 
|---|
| 134 |  | 
|---|
| 135 | /* | 
|---|
| 136 | * Keep one request on each engine for reserved use under mempressure. | 
|---|
| 137 | * | 
|---|
| 138 | * We do not hold a reference to the engine here and so have to be | 
|---|
| 139 | * very careful in what rq->engine we poke. The virtual engine is | 
|---|
| 140 | * referenced via the rq->context and we released that ref during | 
|---|
| 141 | * i915_request_retire(), ergo we must not dereference a virtual | 
|---|
| 142 | * engine here. Not that we would want to, as the only consumer of | 
|---|
| 143 | * the reserved engine->request_pool is the power management parking, | 
|---|
| 144 | * which must-not-fail, and that is only run on the physical engines. | 
|---|
| 145 | * | 
|---|
| 146 | * Since the request must have been executed to be have completed, | 
|---|
| 147 | * we know that it will have been processed by the HW and will | 
|---|
| 148 | * not be unsubmitted again, so rq->engine and rq->execution_mask | 
|---|
| 149 | * at this point is stable. rq->execution_mask will be a single | 
|---|
| 150 | * bit if the last and _only_ engine it could execution on was a | 
|---|
| 151 | * physical engine, if it's multiple bits then it started on and | 
|---|
| 152 | * could still be on a virtual engine. Thus if the mask is not a | 
|---|
| 153 | * power-of-two we assume that rq->engine may still be a virtual | 
|---|
| 154 | * engine and so a dangling invalid pointer that we cannot dereference | 
|---|
| 155 | * | 
|---|
| 156 | * For example, consider the flow of a bonded request through a virtual | 
|---|
| 157 | * engine. The request is created with a wide engine mask (all engines | 
|---|
| 158 | * that we might execute on). On processing the bond, the request mask | 
|---|
| 159 | * is reduced to one or more engines. If the request is subsequently | 
|---|
| 160 | * bound to a single engine, it will then be constrained to only | 
|---|
| 161 | * execute on that engine and never returned to the virtual engine | 
|---|
| 162 | * after timeslicing away, see __unwind_incomplete_requests(). Thus we | 
|---|
| 163 | * know that if the rq->execution_mask is a single bit, rq->engine | 
|---|
| 164 | * can be a physical engine with the exact corresponding mask. | 
|---|
| 165 | */ | 
|---|
| 166 | if (is_power_of_2(n: rq->execution_mask) && | 
|---|
| 167 | !cmpxchg(&rq->engine->request_pool, NULL, rq)) | 
|---|
| 168 | return; | 
|---|
| 169 |  | 
|---|
| 170 | kmem_cache_free(s: slab_requests, objp: rq); | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | const struct dma_fence_ops i915_fence_ops = { | 
|---|
| 174 | .get_driver_name = i915_fence_get_driver_name, | 
|---|
| 175 | .get_timeline_name = i915_fence_get_timeline_name, | 
|---|
| 176 | .enable_signaling = i915_fence_enable_signaling, | 
|---|
| 177 | .signaled = i915_fence_signaled, | 
|---|
| 178 | .wait = i915_fence_wait, | 
|---|
| 179 | .release = i915_fence_release, | 
|---|
| 180 | }; | 
|---|
| 181 |  | 
|---|
| 182 | static void irq_execute_cb(struct irq_work *wrk) | 
|---|
| 183 | { | 
|---|
| 184 | struct execute_cb *cb = container_of(wrk, typeof(*cb), work); | 
|---|
| 185 |  | 
|---|
| 186 | i915_sw_fence_complete(fence: cb->fence); | 
|---|
| 187 | kmem_cache_free(s: slab_execute_cbs, objp: cb); | 
|---|
| 188 | } | 
|---|
| 189 |  | 
|---|
| 190 | static __always_inline void | 
|---|
| 191 | __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) | 
|---|
| 192 | { | 
|---|
| 193 | struct execute_cb *cb, *cn; | 
|---|
| 194 |  | 
|---|
| 195 | if (llist_empty(head: &rq->execute_cb)) | 
|---|
| 196 | return; | 
|---|
| 197 |  | 
|---|
| 198 | llist_for_each_entry_safe(cb, cn, | 
|---|
| 199 | llist_del_all(&rq->execute_cb), | 
|---|
| 200 | work.node.llist) | 
|---|
| 201 | fn(&cb->work); | 
|---|
| 202 | } | 
|---|
| 203 |  | 
|---|
| 204 | static void __notify_execute_cb_irq(struct i915_request *rq) | 
|---|
| 205 | { | 
|---|
| 206 | __notify_execute_cb(rq, fn: irq_work_queue); | 
|---|
| 207 | } | 
|---|
| 208 |  | 
|---|
| 209 | static bool irq_work_imm(struct irq_work *wrk) | 
|---|
| 210 | { | 
|---|
| 211 | wrk->func(wrk); | 
|---|
| 212 | return false; | 
|---|
| 213 | } | 
|---|
| 214 |  | 
|---|
| 215 | void i915_request_notify_execute_cb_imm(struct i915_request *rq) | 
|---|
| 216 | { | 
|---|
| 217 | __notify_execute_cb(rq, fn: irq_work_imm); | 
|---|
| 218 | } | 
|---|
| 219 |  | 
|---|
| 220 | static void __i915_request_fill(struct i915_request *rq, u8 val) | 
|---|
| 221 | { | 
|---|
| 222 | void *vaddr = rq->ring->vaddr; | 
|---|
| 223 | u32 head; | 
|---|
| 224 |  | 
|---|
| 225 | head = rq->infix; | 
|---|
| 226 | if (rq->postfix < head) { | 
|---|
| 227 | memset(s: vaddr + head, c: val, n: rq->ring->size - head); | 
|---|
| 228 | head = 0; | 
|---|
| 229 | } | 
|---|
| 230 | memset(s: vaddr + head, c: val, n: rq->postfix - head); | 
|---|
| 231 | } | 
|---|
| 232 |  | 
|---|
| 233 | /** | 
|---|
| 234 | * i915_request_active_engine | 
|---|
| 235 | * @rq: request to inspect | 
|---|
| 236 | * @active: pointer in which to return the active engine | 
|---|
| 237 | * | 
|---|
| 238 | * Fills the currently active engine to the @active pointer if the request | 
|---|
| 239 | * is active and still not completed. | 
|---|
| 240 | * | 
|---|
| 241 | * Returns true if request was active or false otherwise. | 
|---|
| 242 | */ | 
|---|
| 243 | bool | 
|---|
| 244 | i915_request_active_engine(struct i915_request *rq, | 
|---|
| 245 | struct intel_engine_cs **active) | 
|---|
| 246 | { | 
|---|
| 247 | struct intel_engine_cs *engine, *locked; | 
|---|
| 248 | bool ret = false; | 
|---|
| 249 |  | 
|---|
| 250 | /* | 
|---|
| 251 | * Serialise with __i915_request_submit() so that it sees | 
|---|
| 252 | * is-banned?, or we know the request is already inflight. | 
|---|
| 253 | * | 
|---|
| 254 | * Note that rq->engine is unstable, and so we double | 
|---|
| 255 | * check that we have acquired the lock on the final engine. | 
|---|
| 256 | */ | 
|---|
| 257 | locked = READ_ONCE(rq->engine); | 
|---|
| 258 | spin_lock_irq(lock: &locked->sched_engine->lock); | 
|---|
| 259 | while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { | 
|---|
| 260 | spin_unlock(lock: &locked->sched_engine->lock); | 
|---|
| 261 | locked = engine; | 
|---|
| 262 | spin_lock(lock: &locked->sched_engine->lock); | 
|---|
| 263 | } | 
|---|
| 264 |  | 
|---|
| 265 | if (i915_request_is_active(rq)) { | 
|---|
| 266 | if (!__i915_request_is_complete(rq)) | 
|---|
| 267 | *active = locked; | 
|---|
| 268 | ret = true; | 
|---|
| 269 | } | 
|---|
| 270 |  | 
|---|
| 271 | spin_unlock_irq(lock: &locked->sched_engine->lock); | 
|---|
| 272 |  | 
|---|
| 273 | return ret; | 
|---|
| 274 | } | 
|---|
| 275 |  | 
|---|
| 276 | static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) | 
|---|
| 277 | { | 
|---|
| 278 | struct i915_request *rq = | 
|---|
| 279 | container_of(hrtimer, struct i915_request, watchdog.timer); | 
|---|
| 280 | struct intel_gt *gt = rq->engine->gt; | 
|---|
| 281 |  | 
|---|
| 282 | if (!i915_request_completed(rq)) { | 
|---|
| 283 | if (llist_add(new: &rq->watchdog.link, head: >->watchdog.list)) | 
|---|
| 284 | queue_work(wq: gt->i915->unordered_wq, work: >->watchdog.work); | 
|---|
| 285 | } else { | 
|---|
| 286 | i915_request_put(rq); | 
|---|
| 287 | } | 
|---|
| 288 |  | 
|---|
| 289 | return HRTIMER_NORESTART; | 
|---|
| 290 | } | 
|---|
| 291 |  | 
|---|
| 292 | static void __rq_init_watchdog(struct i915_request *rq) | 
|---|
| 293 | { | 
|---|
| 294 | struct i915_request_watchdog *wdg = &rq->watchdog; | 
|---|
| 295 |  | 
|---|
| 296 | hrtimer_setup(timer: &wdg->timer, function: __rq_watchdog_expired, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL); | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 | static void __rq_arm_watchdog(struct i915_request *rq) | 
|---|
| 300 | { | 
|---|
| 301 | struct i915_request_watchdog *wdg = &rq->watchdog; | 
|---|
| 302 | struct intel_context *ce = rq->context; | 
|---|
| 303 |  | 
|---|
| 304 | if (!ce->watchdog.timeout_us) | 
|---|
| 305 | return; | 
|---|
| 306 |  | 
|---|
| 307 | i915_request_get(rq); | 
|---|
| 308 |  | 
|---|
| 309 | hrtimer_start_range_ns(timer: &wdg->timer, | 
|---|
| 310 | tim: ns_to_ktime(ns: ce->watchdog.timeout_us * | 
|---|
| 311 | NSEC_PER_USEC), | 
|---|
| 312 | NSEC_PER_MSEC, | 
|---|
| 313 | mode: HRTIMER_MODE_REL); | 
|---|
| 314 | } | 
|---|
| 315 |  | 
|---|
| 316 | static void __rq_cancel_watchdog(struct i915_request *rq) | 
|---|
| 317 | { | 
|---|
| 318 | struct i915_request_watchdog *wdg = &rq->watchdog; | 
|---|
| 319 |  | 
|---|
| 320 | if (hrtimer_try_to_cancel(timer: &wdg->timer) > 0) | 
|---|
| 321 | i915_request_put(rq); | 
|---|
| 322 | } | 
|---|
| 323 |  | 
|---|
| 324 | #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) | 
|---|
| 325 |  | 
|---|
| 326 | /** | 
|---|
| 327 | * i915_request_free_capture_list - Free a capture list | 
|---|
| 328 | * @capture: Pointer to the first list item or NULL | 
|---|
| 329 | * | 
|---|
| 330 | */ | 
|---|
| 331 | void i915_request_free_capture_list(struct i915_capture_list *capture) | 
|---|
| 332 | { | 
|---|
| 333 | while (capture) { | 
|---|
| 334 | struct i915_capture_list *next = capture->next; | 
|---|
| 335 |  | 
|---|
| 336 | i915_vma_resource_put(vma_res: capture->vma_res); | 
|---|
| 337 | kfree(objp: capture); | 
|---|
| 338 | capture = next; | 
|---|
| 339 | } | 
|---|
| 340 | } | 
|---|
| 341 |  | 
|---|
| 342 | #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) | 
|---|
| 343 |  | 
|---|
| 344 | #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) | 
|---|
| 345 |  | 
|---|
| 346 | #else | 
|---|
| 347 |  | 
|---|
| 348 | #define i915_request_free_capture_list(_a) do {} while (0) | 
|---|
| 349 |  | 
|---|
| 350 | #define assert_capture_list_is_null(_a) do {} while (0) | 
|---|
| 351 |  | 
|---|
| 352 | #define clear_capture_list(_rq) do {} while (0) | 
|---|
| 353 |  | 
|---|
| 354 | #endif | 
|---|
| 355 |  | 
|---|
| 356 | bool i915_request_retire(struct i915_request *rq) | 
|---|
| 357 | { | 
|---|
| 358 | if (!__i915_request_is_complete(rq)) | 
|---|
| 359 | return false; | 
|---|
| 360 |  | 
|---|
| 361 | RQ_TRACE(rq, "\n"); | 
|---|
| 362 |  | 
|---|
| 363 | GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); | 
|---|
| 364 | trace_i915_request_retire(rq); | 
|---|
| 365 | i915_request_mark_complete(rq); | 
|---|
| 366 |  | 
|---|
| 367 | __rq_cancel_watchdog(rq); | 
|---|
| 368 |  | 
|---|
| 369 | /* | 
|---|
| 370 | * We know the GPU must have read the request to have | 
|---|
| 371 | * sent us the seqno + interrupt, so use the position | 
|---|
| 372 | * of tail of the request to update the last known position | 
|---|
| 373 | * of the GPU head. | 
|---|
| 374 | * | 
|---|
| 375 | * Note this requires that we are always called in request | 
|---|
| 376 | * completion order. | 
|---|
| 377 | */ | 
|---|
| 378 | GEM_BUG_ON(!list_is_first(&rq->link, | 
|---|
| 379 | &i915_request_timeline(rq)->requests)); | 
|---|
| 380 | if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) | 
|---|
| 381 | /* Poison before we release our space in the ring */ | 
|---|
| 382 | __i915_request_fill(rq, POISON_FREE); | 
|---|
| 383 | rq->ring->head = rq->postfix; | 
|---|
| 384 |  | 
|---|
| 385 | if (!i915_request_signaled(rq)) { | 
|---|
| 386 | spin_lock_irq(lock: &rq->lock); | 
|---|
| 387 | dma_fence_signal_locked(fence: &rq->fence); | 
|---|
| 388 | spin_unlock_irq(lock: &rq->lock); | 
|---|
| 389 | } | 
|---|
| 390 |  | 
|---|
| 391 | if (test_and_set_bit(nr: I915_FENCE_FLAG_BOOST, addr: &rq->fence.flags)) | 
|---|
| 392 | intel_rps_dec_waiters(rps: &rq->engine->gt->rps); | 
|---|
| 393 |  | 
|---|
| 394 | /* | 
|---|
| 395 | * We only loosely track inflight requests across preemption, | 
|---|
| 396 | * and so we may find ourselves attempting to retire a _completed_ | 
|---|
| 397 | * request that we have removed from the HW and put back on a run | 
|---|
| 398 | * queue. | 
|---|
| 399 | * | 
|---|
| 400 | * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be | 
|---|
| 401 | * after removing the breadcrumb and signaling it, so that we do not | 
|---|
| 402 | * inadvertently attach the breadcrumb to a completed request. | 
|---|
| 403 | */ | 
|---|
| 404 | rq->engine->remove_active_request(rq); | 
|---|
| 405 | GEM_BUG_ON(!llist_empty(&rq->execute_cb)); | 
|---|
| 406 |  | 
|---|
| 407 | __list_del_entry(entry: &rq->link); /* poison neither prev/next (RCU walks) */ | 
|---|
| 408 |  | 
|---|
| 409 | intel_context_exit(ce: rq->context); | 
|---|
| 410 | intel_context_unpin(ce: rq->context); | 
|---|
| 411 |  | 
|---|
| 412 | i915_sched_node_fini(node: &rq->sched); | 
|---|
| 413 | i915_request_put(rq); | 
|---|
| 414 |  | 
|---|
| 415 | return true; | 
|---|
| 416 | } | 
|---|
| 417 |  | 
|---|
| 418 | void i915_request_retire_upto(struct i915_request *rq) | 
|---|
| 419 | { | 
|---|
| 420 | struct intel_timeline * const tl = i915_request_timeline(rq); | 
|---|
| 421 | struct i915_request *tmp; | 
|---|
| 422 |  | 
|---|
| 423 | RQ_TRACE(rq, "\n"); | 
|---|
| 424 | GEM_BUG_ON(!__i915_request_is_complete(rq)); | 
|---|
| 425 |  | 
|---|
| 426 | do { | 
|---|
| 427 | tmp = list_first_entry(&tl->requests, typeof(*tmp), link); | 
|---|
| 428 | GEM_BUG_ON(!i915_request_completed(tmp)); | 
|---|
| 429 | } while (i915_request_retire(rq: tmp) && tmp != rq); | 
|---|
| 430 | } | 
|---|
| 431 |  | 
|---|
| 432 | static struct i915_request * const * | 
|---|
| 433 | __engine_active(struct intel_engine_cs *engine) | 
|---|
| 434 | { | 
|---|
| 435 | return READ_ONCE(engine->execlists.active); | 
|---|
| 436 | } | 
|---|
| 437 |  | 
|---|
| 438 | static bool __request_in_flight(const struct i915_request *signal) | 
|---|
| 439 | { | 
|---|
| 440 | struct i915_request * const *port, *rq; | 
|---|
| 441 | bool inflight = false; | 
|---|
| 442 |  | 
|---|
| 443 | if (!i915_request_is_ready(rq: signal)) | 
|---|
| 444 | return false; | 
|---|
| 445 |  | 
|---|
| 446 | /* | 
|---|
| 447 | * Even if we have unwound the request, it may still be on | 
|---|
| 448 | * the GPU (preempt-to-busy). If that request is inside an | 
|---|
| 449 | * unpreemptible critical section, it will not be removed. Some | 
|---|
| 450 | * GPU functions may even be stuck waiting for the paired request | 
|---|
| 451 | * (__await_execution) to be submitted and cannot be preempted | 
|---|
| 452 | * until the bond is executing. | 
|---|
| 453 | * | 
|---|
| 454 | * As we know that there are always preemption points between | 
|---|
| 455 | * requests, we know that only the currently executing request | 
|---|
| 456 | * may be still active even though we have cleared the flag. | 
|---|
| 457 | * However, we can't rely on our tracking of ELSP[0] to know | 
|---|
| 458 | * which request is currently active and so maybe stuck, as | 
|---|
| 459 | * the tracking maybe an event behind. Instead assume that | 
|---|
| 460 | * if the context is still inflight, then it is still active | 
|---|
| 461 | * even if the active flag has been cleared. | 
|---|
| 462 | * | 
|---|
| 463 | * To further complicate matters, if there a pending promotion, the HW | 
|---|
| 464 | * may either perform a context switch to the second inflight execlists, | 
|---|
| 465 | * or it may switch to the pending set of execlists. In the case of the | 
|---|
| 466 | * latter, it may send the ACK and we process the event copying the | 
|---|
| 467 | * pending[] over top of inflight[], _overwriting_ our *active. Since | 
|---|
| 468 | * this implies the HW is arbitrating and not struck in *active, we do | 
|---|
| 469 | * not worry about complete accuracy, but we do require no read/write | 
|---|
| 470 | * tearing of the pointer [the read of the pointer must be valid, even | 
|---|
| 471 | * as the array is being overwritten, for which we require the writes | 
|---|
| 472 | * to avoid tearing.] | 
|---|
| 473 | * | 
|---|
| 474 | * Note that the read of *execlists->active may race with the promotion | 
|---|
| 475 | * of execlists->pending[] to execlists->inflight[], overwriting | 
|---|
| 476 | * the value at *execlists->active. This is fine. The promotion implies | 
|---|
| 477 | * that we received an ACK from the HW, and so the context is not | 
|---|
| 478 | * stuck -- if we do not see ourselves in *active, the inflight status | 
|---|
| 479 | * is valid. If instead we see ourselves being copied into *active, | 
|---|
| 480 | * we are inflight and may signal the callback. | 
|---|
| 481 | */ | 
|---|
| 482 | if (!intel_context_inflight(signal->context)) | 
|---|
| 483 | return false; | 
|---|
| 484 |  | 
|---|
| 485 | rcu_read_lock(); | 
|---|
| 486 | for (port = __engine_active(engine: signal->engine); | 
|---|
| 487 | (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ | 
|---|
| 488 | port++) { | 
|---|
| 489 | if (rq->context == signal->context) { | 
|---|
| 490 | inflight = i915_seqno_passed(seq1: rq->fence.seqno, | 
|---|
| 491 | seq2: signal->fence.seqno); | 
|---|
| 492 | break; | 
|---|
| 493 | } | 
|---|
| 494 | } | 
|---|
| 495 | rcu_read_unlock(); | 
|---|
| 496 |  | 
|---|
| 497 | return inflight; | 
|---|
| 498 | } | 
|---|
| 499 |  | 
|---|
| 500 | static int | 
|---|
| 501 | __await_execution(struct i915_request *rq, | 
|---|
| 502 | struct i915_request *signal, | 
|---|
| 503 | gfp_t gfp) | 
|---|
| 504 | { | 
|---|
| 505 | struct execute_cb *cb; | 
|---|
| 506 |  | 
|---|
| 507 | if (i915_request_is_active(rq: signal)) | 
|---|
| 508 | return 0; | 
|---|
| 509 |  | 
|---|
| 510 | cb = kmem_cache_alloc(slab_execute_cbs, gfp); | 
|---|
| 511 | if (!cb) | 
|---|
| 512 | return -ENOMEM; | 
|---|
| 513 |  | 
|---|
| 514 | cb->fence = &rq->submit; | 
|---|
| 515 | i915_sw_fence_await(fence: cb->fence); | 
|---|
| 516 | init_irq_work(work: &cb->work, func: irq_execute_cb); | 
|---|
| 517 |  | 
|---|
| 518 | /* | 
|---|
| 519 | * Register the callback first, then see if the signaler is already | 
|---|
| 520 | * active. This ensures that if we race with the | 
|---|
| 521 | * __notify_execute_cb from i915_request_submit() and we are not | 
|---|
| 522 | * included in that list, we get a second bite of the cherry and | 
|---|
| 523 | * execute it ourselves. After this point, a future | 
|---|
| 524 | * i915_request_submit() will notify us. | 
|---|
| 525 | * | 
|---|
| 526 | * In i915_request_retire() we set the ACTIVE bit on a completed | 
|---|
| 527 | * request (then flush the execute_cb). So by registering the | 
|---|
| 528 | * callback first, then checking the ACTIVE bit, we serialise with | 
|---|
| 529 | * the completed/retired request. | 
|---|
| 530 | */ | 
|---|
| 531 | if (llist_add(new: &cb->work.node.llist, head: &signal->execute_cb)) { | 
|---|
| 532 | if (i915_request_is_active(rq: signal) || | 
|---|
| 533 | __request_in_flight(signal)) | 
|---|
| 534 | i915_request_notify_execute_cb_imm(rq: signal); | 
|---|
| 535 | } | 
|---|
| 536 |  | 
|---|
| 537 | return 0; | 
|---|
| 538 | } | 
|---|
| 539 |  | 
|---|
| 540 | static bool fatal_error(int error) | 
|---|
| 541 | { | 
|---|
| 542 | switch (error) { | 
|---|
| 543 | case 0: /* not an error! */ | 
|---|
| 544 | case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ | 
|---|
| 545 | case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ | 
|---|
| 546 | return false; | 
|---|
| 547 | default: | 
|---|
| 548 | return true; | 
|---|
| 549 | } | 
|---|
| 550 | } | 
|---|
| 551 |  | 
|---|
| 552 | void __i915_request_skip(struct i915_request *rq) | 
|---|
| 553 | { | 
|---|
| 554 | GEM_BUG_ON(!fatal_error(rq->fence.error)); | 
|---|
| 555 |  | 
|---|
| 556 | if (rq->infix == rq->postfix) | 
|---|
| 557 | return; | 
|---|
| 558 |  | 
|---|
| 559 | RQ_TRACE(rq, "error: %d\n", rq->fence.error); | 
|---|
| 560 |  | 
|---|
| 561 | /* | 
|---|
| 562 | * As this request likely depends on state from the lost | 
|---|
| 563 | * context, clear out all the user operations leaving the | 
|---|
| 564 | * breadcrumb at the end (so we get the fence notifications). | 
|---|
| 565 | */ | 
|---|
| 566 | __i915_request_fill(rq, val: 0); | 
|---|
| 567 | rq->infix = rq->postfix; | 
|---|
| 568 | } | 
|---|
| 569 |  | 
|---|
| 570 | bool i915_request_set_error_once(struct i915_request *rq, int error) | 
|---|
| 571 | { | 
|---|
| 572 | int old; | 
|---|
| 573 |  | 
|---|
| 574 | GEM_BUG_ON(!IS_ERR_VALUE((long)error)); | 
|---|
| 575 |  | 
|---|
| 576 | if (i915_request_signaled(rq)) | 
|---|
| 577 | return false; | 
|---|
| 578 |  | 
|---|
| 579 | old = READ_ONCE(rq->fence.error); | 
|---|
| 580 | do { | 
|---|
| 581 | if (fatal_error(error: old)) | 
|---|
| 582 | return false; | 
|---|
| 583 | } while (!try_cmpxchg(&rq->fence.error, &old, error)); | 
|---|
| 584 |  | 
|---|
| 585 | return true; | 
|---|
| 586 | } | 
|---|
| 587 |  | 
|---|
| 588 | struct i915_request *i915_request_mark_eio(struct i915_request *rq) | 
|---|
| 589 | { | 
|---|
| 590 | if (__i915_request_is_complete(rq)) | 
|---|
| 591 | return NULL; | 
|---|
| 592 |  | 
|---|
| 593 | GEM_BUG_ON(i915_request_signaled(rq)); | 
|---|
| 594 |  | 
|---|
| 595 | /* As soon as the request is completed, it may be retired */ | 
|---|
| 596 | rq = i915_request_get(rq); | 
|---|
| 597 |  | 
|---|
| 598 | i915_request_set_error_once(rq, error: -EIO); | 
|---|
| 599 | i915_request_mark_complete(rq); | 
|---|
| 600 |  | 
|---|
| 601 | return rq; | 
|---|
| 602 | } | 
|---|
| 603 |  | 
|---|
| 604 | bool __i915_request_submit(struct i915_request *request) | 
|---|
| 605 | { | 
|---|
| 606 | struct intel_engine_cs *engine = request->engine; | 
|---|
| 607 | bool result = false; | 
|---|
| 608 |  | 
|---|
| 609 | RQ_TRACE(request, "\n"); | 
|---|
| 610 |  | 
|---|
| 611 | GEM_BUG_ON(!irqs_disabled()); | 
|---|
| 612 | lockdep_assert_held(&engine->sched_engine->lock); | 
|---|
| 613 |  | 
|---|
| 614 | /* | 
|---|
| 615 | * With the advent of preempt-to-busy, we frequently encounter | 
|---|
| 616 | * requests that we have unsubmitted from HW, but left running | 
|---|
| 617 | * until the next ack and so have completed in the meantime. On | 
|---|
| 618 | * resubmission of that completed request, we can skip | 
|---|
| 619 | * updating the payload, and execlists can even skip submitting | 
|---|
| 620 | * the request. | 
|---|
| 621 | * | 
|---|
| 622 | * We must remove the request from the caller's priority queue, | 
|---|
| 623 | * and the caller must only call us when the request is in their | 
|---|
| 624 | * priority queue, under the sched_engine->lock. This ensures that the | 
|---|
| 625 | * request has *not* yet been retired and we can safely move | 
|---|
| 626 | * the request into the engine->active.list where it will be | 
|---|
| 627 | * dropped upon retiring. (Otherwise if resubmit a *retired* | 
|---|
| 628 | * request, this would be a horrible use-after-free.) | 
|---|
| 629 | */ | 
|---|
| 630 | if (__i915_request_is_complete(rq: request)) { | 
|---|
| 631 | list_del_init(entry: &request->sched.link); | 
|---|
| 632 | goto active; | 
|---|
| 633 | } | 
|---|
| 634 |  | 
|---|
| 635 | if (unlikely(!intel_context_is_schedulable(request->context))) | 
|---|
| 636 | i915_request_set_error_once(rq: request, error: -EIO); | 
|---|
| 637 |  | 
|---|
| 638 | if (unlikely(fatal_error(request->fence.error))) | 
|---|
| 639 | __i915_request_skip(rq: request); | 
|---|
| 640 |  | 
|---|
| 641 | /* | 
|---|
| 642 | * Are we using semaphores when the gpu is already saturated? | 
|---|
| 643 | * | 
|---|
| 644 | * Using semaphores incurs a cost in having the GPU poll a | 
|---|
| 645 | * memory location, busywaiting for it to change. The continual | 
|---|
| 646 | * memory reads can have a noticeable impact on the rest of the | 
|---|
| 647 | * system with the extra bus traffic, stalling the cpu as it too | 
|---|
| 648 | * tries to access memory across the bus (perf stat -e bus-cycles). | 
|---|
| 649 | * | 
|---|
| 650 | * If we installed a semaphore on this request and we only submit | 
|---|
| 651 | * the request after the signaler completed, that indicates the | 
|---|
| 652 | * system is overloaded and using semaphores at this time only | 
|---|
| 653 | * increases the amount of work we are doing. If so, we disable | 
|---|
| 654 | * further use of semaphores until we are idle again, whence we | 
|---|
| 655 | * optimistically try again. | 
|---|
| 656 | */ | 
|---|
| 657 | if (request->sched.semaphores && | 
|---|
| 658 | i915_sw_fence_signaled(fence: &request->semaphore)) | 
|---|
| 659 | engine->saturated |= request->sched.semaphores; | 
|---|
| 660 |  | 
|---|
| 661 | engine->emit_fini_breadcrumb(request, | 
|---|
| 662 | request->ring->vaddr + request->postfix); | 
|---|
| 663 |  | 
|---|
| 664 | trace_i915_request_execute(rq: request); | 
|---|
| 665 | if (engine->bump_serial) | 
|---|
| 666 | engine->bump_serial(engine); | 
|---|
| 667 | else | 
|---|
| 668 | engine->serial++; | 
|---|
| 669 |  | 
|---|
| 670 | result = true; | 
|---|
| 671 |  | 
|---|
| 672 | GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); | 
|---|
| 673 | engine->add_active_request(request); | 
|---|
| 674 | active: | 
|---|
| 675 | clear_bit(nr: I915_FENCE_FLAG_PQUEUE, addr: &request->fence.flags); | 
|---|
| 676 | set_bit(nr: I915_FENCE_FLAG_ACTIVE, addr: &request->fence.flags); | 
|---|
| 677 |  | 
|---|
| 678 | /* | 
|---|
| 679 | * XXX Rollback bonded-execution on __i915_request_unsubmit()? | 
|---|
| 680 | * | 
|---|
| 681 | * In the future, perhaps when we have an active time-slicing scheduler, | 
|---|
| 682 | * it will be interesting to unsubmit parallel execution and remove | 
|---|
| 683 | * busywaits from the GPU until their master is restarted. This is | 
|---|
| 684 | * quite hairy, we have to carefully rollback the fence and do a | 
|---|
| 685 | * preempt-to-idle cycle on the target engine, all the while the | 
|---|
| 686 | * master execute_cb may refire. | 
|---|
| 687 | */ | 
|---|
| 688 | __notify_execute_cb_irq(rq: request); | 
|---|
| 689 |  | 
|---|
| 690 | /* We may be recursing from the signal callback of another i915 fence */ | 
|---|
| 691 | if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) | 
|---|
| 692 | i915_request_enable_breadcrumb(request); | 
|---|
| 693 |  | 
|---|
| 694 | return result; | 
|---|
| 695 | } | 
|---|
| 696 |  | 
|---|
| 697 | void i915_request_submit(struct i915_request *request) | 
|---|
| 698 | { | 
|---|
| 699 | struct intel_engine_cs *engine = request->engine; | 
|---|
| 700 | unsigned long flags; | 
|---|
| 701 |  | 
|---|
| 702 | /* Will be called from irq-context when using foreign fences. */ | 
|---|
| 703 | spin_lock_irqsave(&engine->sched_engine->lock, flags); | 
|---|
| 704 |  | 
|---|
| 705 | __i915_request_submit(request); | 
|---|
| 706 |  | 
|---|
| 707 | spin_unlock_irqrestore(lock: &engine->sched_engine->lock, flags); | 
|---|
| 708 | } | 
|---|
| 709 |  | 
|---|
| 710 | void __i915_request_unsubmit(struct i915_request *request) | 
|---|
| 711 | { | 
|---|
| 712 | struct intel_engine_cs *engine = request->engine; | 
|---|
| 713 |  | 
|---|
| 714 | /* | 
|---|
| 715 | * Only unwind in reverse order, required so that the per-context list | 
|---|
| 716 | * is kept in seqno/ring order. | 
|---|
| 717 | */ | 
|---|
| 718 | RQ_TRACE(request, "\n"); | 
|---|
| 719 |  | 
|---|
| 720 | GEM_BUG_ON(!irqs_disabled()); | 
|---|
| 721 | lockdep_assert_held(&engine->sched_engine->lock); | 
|---|
| 722 |  | 
|---|
| 723 | /* | 
|---|
| 724 | * Before we remove this breadcrumb from the signal list, we have | 
|---|
| 725 | * to ensure that a concurrent dma_fence_enable_signaling() does not | 
|---|
| 726 | * attach itself. We first mark the request as no longer active and | 
|---|
| 727 | * make sure that is visible to other cores, and then remove the | 
|---|
| 728 | * breadcrumb if attached. | 
|---|
| 729 | */ | 
|---|
| 730 | GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); | 
|---|
| 731 | clear_bit_unlock(nr: I915_FENCE_FLAG_ACTIVE, addr: &request->fence.flags); | 
|---|
| 732 | if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) | 
|---|
| 733 | i915_request_cancel_breadcrumb(request); | 
|---|
| 734 |  | 
|---|
| 735 | /* We've already spun, don't charge on resubmitting. */ | 
|---|
| 736 | if (request->sched.semaphores && __i915_request_has_started(rq: request)) | 
|---|
| 737 | request->sched.semaphores = 0; | 
|---|
| 738 |  | 
|---|
| 739 | /* | 
|---|
| 740 | * We don't need to wake_up any waiters on request->execute, they | 
|---|
| 741 | * will get woken by any other event or us re-adding this request | 
|---|
| 742 | * to the engine timeline (__i915_request_submit()). The waiters | 
|---|
| 743 | * should be quite adapt at finding that the request now has a new | 
|---|
| 744 | * global_seqno to the one they went to sleep on. | 
|---|
| 745 | */ | 
|---|
| 746 | } | 
|---|
| 747 |  | 
|---|
| 748 | void i915_request_unsubmit(struct i915_request *request) | 
|---|
| 749 | { | 
|---|
| 750 | struct intel_engine_cs *engine = request->engine; | 
|---|
| 751 | unsigned long flags; | 
|---|
| 752 |  | 
|---|
| 753 | /* Will be called from irq-context when using foreign fences. */ | 
|---|
| 754 | spin_lock_irqsave(&engine->sched_engine->lock, flags); | 
|---|
| 755 |  | 
|---|
| 756 | __i915_request_unsubmit(request); | 
|---|
| 757 |  | 
|---|
| 758 | spin_unlock_irqrestore(lock: &engine->sched_engine->lock, flags); | 
|---|
| 759 | } | 
|---|
| 760 |  | 
|---|
| 761 | void i915_request_cancel(struct i915_request *rq, int error) | 
|---|
| 762 | { | 
|---|
| 763 | if (!i915_request_set_error_once(rq, error)) | 
|---|
| 764 | return; | 
|---|
| 765 |  | 
|---|
| 766 | set_bit(nr: I915_FENCE_FLAG_SENTINEL, addr: &rq->fence.flags); | 
|---|
| 767 |  | 
|---|
| 768 | intel_context_cancel_request(ce: rq->context, rq); | 
|---|
| 769 | } | 
|---|
| 770 |  | 
|---|
| 771 | static int | 
|---|
| 772 | submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) | 
|---|
| 773 | { | 
|---|
| 774 | struct i915_request *request = | 
|---|
| 775 | container_of(fence, typeof(*request), submit); | 
|---|
| 776 |  | 
|---|
| 777 | switch (state) { | 
|---|
| 778 | case FENCE_COMPLETE: | 
|---|
| 779 | trace_i915_request_submit(rq: request); | 
|---|
| 780 |  | 
|---|
| 781 | if (unlikely(fence->error)) | 
|---|
| 782 | i915_request_set_error_once(rq: request, error: fence->error); | 
|---|
| 783 | else | 
|---|
| 784 | __rq_arm_watchdog(rq: request); | 
|---|
| 785 |  | 
|---|
| 786 | /* | 
|---|
| 787 | * We need to serialize use of the submit_request() callback | 
|---|
| 788 | * with its hotplugging performed during an emergency | 
|---|
| 789 | * i915_gem_set_wedged().  We use the RCU mechanism to mark the | 
|---|
| 790 | * critical section in order to force i915_gem_set_wedged() to | 
|---|
| 791 | * wait until the submit_request() is completed before | 
|---|
| 792 | * proceeding. | 
|---|
| 793 | */ | 
|---|
| 794 | rcu_read_lock(); | 
|---|
| 795 | request->engine->submit_request(request); | 
|---|
| 796 | rcu_read_unlock(); | 
|---|
| 797 | break; | 
|---|
| 798 |  | 
|---|
| 799 | case FENCE_FREE: | 
|---|
| 800 | i915_request_put(rq: request); | 
|---|
| 801 | break; | 
|---|
| 802 | } | 
|---|
| 803 |  | 
|---|
| 804 | return NOTIFY_DONE; | 
|---|
| 805 | } | 
|---|
| 806 |  | 
|---|
| 807 | static int | 
|---|
| 808 | semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) | 
|---|
| 809 | { | 
|---|
| 810 | struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); | 
|---|
| 811 |  | 
|---|
| 812 | switch (state) { | 
|---|
| 813 | case FENCE_COMPLETE: | 
|---|
| 814 | break; | 
|---|
| 815 |  | 
|---|
| 816 | case FENCE_FREE: | 
|---|
| 817 | i915_request_put(rq); | 
|---|
| 818 | break; | 
|---|
| 819 | } | 
|---|
| 820 |  | 
|---|
| 821 | return NOTIFY_DONE; | 
|---|
| 822 | } | 
|---|
| 823 |  | 
|---|
| 824 | static void retire_requests(struct intel_timeline *tl) | 
|---|
| 825 | { | 
|---|
| 826 | struct i915_request *rq, *rn; | 
|---|
| 827 |  | 
|---|
| 828 | list_for_each_entry_safe(rq, rn, &tl->requests, link) | 
|---|
| 829 | if (!i915_request_retire(rq)) | 
|---|
| 830 | break; | 
|---|
| 831 | } | 
|---|
| 832 |  | 
|---|
| 833 | static noinline struct i915_request * | 
|---|
| 834 | request_alloc_slow(struct intel_timeline *tl, | 
|---|
| 835 | struct i915_request **rsvd, | 
|---|
| 836 | gfp_t gfp) | 
|---|
| 837 | { | 
|---|
| 838 | struct i915_request *rq; | 
|---|
| 839 |  | 
|---|
| 840 | /* If we cannot wait, dip into our reserves */ | 
|---|
| 841 | if (!gfpflags_allow_blocking(gfp_flags: gfp)) { | 
|---|
| 842 | rq = xchg(rsvd, NULL); | 
|---|
| 843 | if (!rq) /* Use the normal failure path for one final WARN */ | 
|---|
| 844 | goto out; | 
|---|
| 845 |  | 
|---|
| 846 | return rq; | 
|---|
| 847 | } | 
|---|
| 848 |  | 
|---|
| 849 | if (list_empty(head: &tl->requests)) | 
|---|
| 850 | goto out; | 
|---|
| 851 |  | 
|---|
| 852 | /* Move our oldest request to the slab-cache (if not in use!) */ | 
|---|
| 853 | rq = list_first_entry(&tl->requests, typeof(*rq), link); | 
|---|
| 854 | i915_request_retire(rq); | 
|---|
| 855 |  | 
|---|
| 856 | rq = kmem_cache_alloc(slab_requests, | 
|---|
| 857 | gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); | 
|---|
| 858 | if (rq) | 
|---|
| 859 | return rq; | 
|---|
| 860 |  | 
|---|
| 861 | /* Ratelimit ourselves to prevent oom from malicious clients */ | 
|---|
| 862 | rq = list_last_entry(&tl->requests, typeof(*rq), link); | 
|---|
| 863 | cond_synchronize_rcu(oldstate: rq->rcustate); | 
|---|
| 864 |  | 
|---|
| 865 | /* Retire our old requests in the hope that we free some */ | 
|---|
| 866 | retire_requests(tl); | 
|---|
| 867 |  | 
|---|
| 868 | out: | 
|---|
| 869 | return kmem_cache_alloc(slab_requests, gfp); | 
|---|
| 870 | } | 
|---|
| 871 |  | 
|---|
| 872 | static void __i915_request_ctor(void *arg) | 
|---|
| 873 | { | 
|---|
| 874 | struct i915_request *rq = arg; | 
|---|
| 875 |  | 
|---|
| 876 | spin_lock_init(&rq->lock); | 
|---|
| 877 | i915_sched_node_init(node: &rq->sched); | 
|---|
| 878 | i915_sw_fence_init(&rq->submit, submit_notify); | 
|---|
| 879 | i915_sw_fence_init(&rq->semaphore, semaphore_notify); | 
|---|
| 880 |  | 
|---|
| 881 | clear_capture_list(rq); | 
|---|
| 882 | rq->batch_res = NULL; | 
|---|
| 883 |  | 
|---|
| 884 | init_llist_head(list: &rq->execute_cb); | 
|---|
| 885 | } | 
|---|
| 886 |  | 
|---|
| 887 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) | 
|---|
| 888 | #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) | 
|---|
| 889 | #else | 
|---|
| 890 | #define clear_batch_ptr(_a) do {} while (0) | 
|---|
| 891 | #endif | 
|---|
| 892 |  | 
|---|
| 893 | struct i915_request * | 
|---|
| 894 | __i915_request_create(struct intel_context *ce, gfp_t gfp) | 
|---|
| 895 | { | 
|---|
| 896 | struct intel_timeline *tl = ce->timeline; | 
|---|
| 897 | struct i915_request *rq; | 
|---|
| 898 | u32 seqno; | 
|---|
| 899 | int ret; | 
|---|
| 900 |  | 
|---|
| 901 | might_alloc(gfp_mask: gfp); | 
|---|
| 902 |  | 
|---|
| 903 | /* Check that the caller provided an already pinned context */ | 
|---|
| 904 | __intel_context_pin(ce); | 
|---|
| 905 |  | 
|---|
| 906 | /* | 
|---|
| 907 | * Beware: Dragons be flying overhead. | 
|---|
| 908 | * | 
|---|
| 909 | * We use RCU to look up requests in flight. The lookups may | 
|---|
| 910 | * race with the request being allocated from the slab freelist. | 
|---|
| 911 | * That is the request we are writing to here, may be in the process | 
|---|
| 912 | * of being read by __i915_active_request_get_rcu(). As such, | 
|---|
| 913 | * we have to be very careful when overwriting the contents. During | 
|---|
| 914 | * the RCU lookup, we change chase the request->engine pointer, | 
|---|
| 915 | * read the request->global_seqno and increment the reference count. | 
|---|
| 916 | * | 
|---|
| 917 | * The reference count is incremented atomically. If it is zero, | 
|---|
| 918 | * the lookup knows the request is unallocated and complete. Otherwise, | 
|---|
| 919 | * it is either still in use, or has been reallocated and reset | 
|---|
| 920 | * with dma_fence_init(). This increment is safe for release as we | 
|---|
| 921 | * check that the request we have a reference to and matches the active | 
|---|
| 922 | * request. | 
|---|
| 923 | * | 
|---|
| 924 | * Before we increment the refcount, we chase the request->engine | 
|---|
| 925 | * pointer. We must not call kmem_cache_zalloc() or else we set | 
|---|
| 926 | * that pointer to NULL and cause a crash during the lookup. If | 
|---|
| 927 | * we see the request is completed (based on the value of the | 
|---|
| 928 | * old engine and seqno), the lookup is complete and reports NULL. | 
|---|
| 929 | * If we decide the request is not completed (new engine or seqno), | 
|---|
| 930 | * then we grab a reference and double check that it is still the | 
|---|
| 931 | * active request - which it won't be and restart the lookup. | 
|---|
| 932 | * | 
|---|
| 933 | * Do not use kmem_cache_zalloc() here! | 
|---|
| 934 | */ | 
|---|
| 935 | rq = kmem_cache_alloc(slab_requests, | 
|---|
| 936 | gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); | 
|---|
| 937 | if (unlikely(!rq)) { | 
|---|
| 938 | rq = request_alloc_slow(tl, rsvd: &ce->engine->request_pool, gfp); | 
|---|
| 939 | if (!rq) { | 
|---|
| 940 | ret = -ENOMEM; | 
|---|
| 941 | goto err_unreserve; | 
|---|
| 942 | } | 
|---|
| 943 | } | 
|---|
| 944 |  | 
|---|
| 945 | rq->context = ce; | 
|---|
| 946 | rq->engine = ce->engine; | 
|---|
| 947 | rq->ring = ce->ring; | 
|---|
| 948 | rq->execution_mask = ce->engine->mask; | 
|---|
| 949 | rq->i915 = ce->engine->i915; | 
|---|
| 950 |  | 
|---|
| 951 | ret = intel_timeline_get_seqno(tl, rq, seqno: &seqno); | 
|---|
| 952 | if (ret) | 
|---|
| 953 | goto err_free; | 
|---|
| 954 |  | 
|---|
| 955 | dma_fence_init(fence: &rq->fence, ops: &i915_fence_ops, lock: &rq->lock, | 
|---|
| 956 | context: tl->fence_context, seqno); | 
|---|
| 957 |  | 
|---|
| 958 | RCU_INIT_POINTER(rq->timeline, tl); | 
|---|
| 959 | rq->hwsp_seqno = tl->hwsp_seqno; | 
|---|
| 960 | GEM_BUG_ON(__i915_request_is_complete(rq)); | 
|---|
| 961 |  | 
|---|
| 962 | rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ | 
|---|
| 963 |  | 
|---|
| 964 | rq->guc_prio = GUC_PRIO_INIT; | 
|---|
| 965 |  | 
|---|
| 966 | /* We bump the ref for the fence chain */ | 
|---|
| 967 | i915_sw_fence_reinit(fence: &i915_request_get(rq)->submit); | 
|---|
| 968 | i915_sw_fence_reinit(fence: &i915_request_get(rq)->semaphore); | 
|---|
| 969 |  | 
|---|
| 970 | i915_sched_node_reinit(node: &rq->sched); | 
|---|
| 971 |  | 
|---|
| 972 | /* No zalloc, everything must be cleared after use */ | 
|---|
| 973 | clear_batch_ptr(rq); | 
|---|
| 974 | __rq_init_watchdog(rq); | 
|---|
| 975 | assert_capture_list_is_null(rq); | 
|---|
| 976 | GEM_BUG_ON(!llist_empty(&rq->execute_cb)); | 
|---|
| 977 | GEM_BUG_ON(rq->batch_res); | 
|---|
| 978 |  | 
|---|
| 979 | /* | 
|---|
| 980 | * Reserve space in the ring buffer for all the commands required to | 
|---|
| 981 | * eventually emit this request. This is to guarantee that the | 
|---|
| 982 | * i915_request_add() call can't fail. Note that the reserve may need | 
|---|
| 983 | * to be redone if the request is not actually submitted straight | 
|---|
| 984 | * away, e.g. because a GPU scheduler has deferred it. | 
|---|
| 985 | * | 
|---|
| 986 | * Note that due to how we add reserved_space to intel_ring_begin() | 
|---|
| 987 | * we need to double our request to ensure that if we need to wrap | 
|---|
| 988 | * around inside i915_request_add() there is sufficient space at | 
|---|
| 989 | * the beginning of the ring as well. | 
|---|
| 990 | */ | 
|---|
| 991 | rq->reserved_space = | 
|---|
| 992 | 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); | 
|---|
| 993 |  | 
|---|
| 994 | /* | 
|---|
| 995 | * Record the position of the start of the request so that | 
|---|
| 996 | * should we detect the updated seqno part-way through the | 
|---|
| 997 | * GPU processing the request, we never over-estimate the | 
|---|
| 998 | * position of the head. | 
|---|
| 999 | */ | 
|---|
| 1000 | rq->head = rq->ring->emit; | 
|---|
| 1001 |  | 
|---|
| 1002 | ret = rq->engine->request_alloc(rq); | 
|---|
| 1003 | if (ret) | 
|---|
| 1004 | goto err_unwind; | 
|---|
| 1005 |  | 
|---|
| 1006 | rq->infix = rq->ring->emit; /* end of header; start of user payload */ | 
|---|
| 1007 |  | 
|---|
| 1008 | intel_context_mark_active(ce); | 
|---|
| 1009 | list_add_tail_rcu(new: &rq->link, head: &tl->requests); | 
|---|
| 1010 |  | 
|---|
| 1011 | return rq; | 
|---|
| 1012 |  | 
|---|
| 1013 | err_unwind: | 
|---|
| 1014 | ce->ring->emit = rq->head; | 
|---|
| 1015 |  | 
|---|
| 1016 | /* Make sure we didn't add ourselves to external state before freeing */ | 
|---|
| 1017 | GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); | 
|---|
| 1018 | GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); | 
|---|
| 1019 |  | 
|---|
| 1020 | err_free: | 
|---|
| 1021 | kmem_cache_free(s: slab_requests, objp: rq); | 
|---|
| 1022 | err_unreserve: | 
|---|
| 1023 | intel_context_unpin(ce); | 
|---|
| 1024 | return ERR_PTR(error: ret); | 
|---|
| 1025 | } | 
|---|
| 1026 |  | 
|---|
| 1027 | struct i915_request * | 
|---|
| 1028 | i915_request_create(struct intel_context *ce) | 
|---|
| 1029 | { | 
|---|
| 1030 | struct i915_request *rq; | 
|---|
| 1031 | struct intel_timeline *tl; | 
|---|
| 1032 |  | 
|---|
| 1033 | tl = intel_context_timeline_lock(ce); | 
|---|
| 1034 | if (IS_ERR(ptr: tl)) | 
|---|
| 1035 | return ERR_CAST(ptr: tl); | 
|---|
| 1036 |  | 
|---|
| 1037 | /* Move our oldest request to the slab-cache (if not in use!) */ | 
|---|
| 1038 | rq = list_first_entry(&tl->requests, typeof(*rq), link); | 
|---|
| 1039 | if (!list_is_last(list: &rq->link, head: &tl->requests)) | 
|---|
| 1040 | i915_request_retire(rq); | 
|---|
| 1041 |  | 
|---|
| 1042 | intel_context_enter(ce); | 
|---|
| 1043 | rq = __i915_request_create(ce, GFP_KERNEL); | 
|---|
| 1044 | intel_context_exit(ce); /* active reference transferred to request */ | 
|---|
| 1045 | if (IS_ERR(ptr: rq)) | 
|---|
| 1046 | goto err_unlock; | 
|---|
| 1047 |  | 
|---|
| 1048 | /* Check that we do not interrupt ourselves with a new request */ | 
|---|
| 1049 | rq->cookie = lockdep_pin_lock(&tl->mutex); | 
|---|
| 1050 |  | 
|---|
| 1051 | return rq; | 
|---|
| 1052 |  | 
|---|
| 1053 | err_unlock: | 
|---|
| 1054 | intel_context_timeline_unlock(tl); | 
|---|
| 1055 | return rq; | 
|---|
| 1056 | } | 
|---|
| 1057 |  | 
|---|
| 1058 | static int | 
|---|
| 1059 | i915_request_await_start(struct i915_request *rq, struct i915_request *signal) | 
|---|
| 1060 | { | 
|---|
| 1061 | struct dma_fence *fence; | 
|---|
| 1062 | int err; | 
|---|
| 1063 |  | 
|---|
| 1064 | if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) | 
|---|
| 1065 | return 0; | 
|---|
| 1066 |  | 
|---|
| 1067 | if (i915_request_started(rq: signal)) | 
|---|
| 1068 | return 0; | 
|---|
| 1069 |  | 
|---|
| 1070 | /* | 
|---|
| 1071 | * The caller holds a reference on @signal, but we do not serialise | 
|---|
| 1072 | * against it being retired and removed from the lists. | 
|---|
| 1073 | * | 
|---|
| 1074 | * We do not hold a reference to the request before @signal, and | 
|---|
| 1075 | * so must be very careful to ensure that it is not _recycled_ as | 
|---|
| 1076 | * we follow the link backwards. | 
|---|
| 1077 | */ | 
|---|
| 1078 | fence = NULL; | 
|---|
| 1079 | rcu_read_lock(); | 
|---|
| 1080 | do { | 
|---|
| 1081 | struct list_head *pos = READ_ONCE(signal->link.prev); | 
|---|
| 1082 | struct i915_request *prev; | 
|---|
| 1083 |  | 
|---|
| 1084 | /* Confirm signal has not been retired, the link is valid */ | 
|---|
| 1085 | if (unlikely(__i915_request_has_started(signal))) | 
|---|
| 1086 | break; | 
|---|
| 1087 |  | 
|---|
| 1088 | /* Is signal the earliest request on its timeline? */ | 
|---|
| 1089 | if (pos == &rcu_dereference(signal->timeline)->requests) | 
|---|
| 1090 | break; | 
|---|
| 1091 |  | 
|---|
| 1092 | /* | 
|---|
| 1093 | * Peek at the request before us in the timeline. That | 
|---|
| 1094 | * request will only be valid before it is retired, so | 
|---|
| 1095 | * after acquiring a reference to it, confirm that it is | 
|---|
| 1096 | * still part of the signaler's timeline. | 
|---|
| 1097 | */ | 
|---|
| 1098 | prev = list_entry(pos, typeof(*prev), link); | 
|---|
| 1099 | if (!i915_request_get_rcu(rq: prev)) | 
|---|
| 1100 | break; | 
|---|
| 1101 |  | 
|---|
| 1102 | /* After the strong barrier, confirm prev is still attached */ | 
|---|
| 1103 | if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { | 
|---|
| 1104 | i915_request_put(rq: prev); | 
|---|
| 1105 | break; | 
|---|
| 1106 | } | 
|---|
| 1107 |  | 
|---|
| 1108 | fence = &prev->fence; | 
|---|
| 1109 | } while (0); | 
|---|
| 1110 | rcu_read_unlock(); | 
|---|
| 1111 | if (!fence) | 
|---|
| 1112 | return 0; | 
|---|
| 1113 |  | 
|---|
| 1114 | err = 0; | 
|---|
| 1115 | if (!intel_timeline_sync_is_later(tl: i915_request_timeline(rq), fence)) | 
|---|
| 1116 | err = i915_sw_fence_await_dma_fence(fence: &rq->submit, | 
|---|
| 1117 | dma: fence, timeout: 0, | 
|---|
| 1118 | I915_FENCE_GFP); | 
|---|
| 1119 | dma_fence_put(fence); | 
|---|
| 1120 |  | 
|---|
| 1121 | return err; | 
|---|
| 1122 | } | 
|---|
| 1123 |  | 
|---|
| 1124 | static intel_engine_mask_t | 
|---|
| 1125 | already_busywaiting(struct i915_request *rq) | 
|---|
| 1126 | { | 
|---|
| 1127 | /* | 
|---|
| 1128 | * Polling a semaphore causes bus traffic, delaying other users of | 
|---|
| 1129 | * both the GPU and CPU. We want to limit the impact on others, | 
|---|
| 1130 | * while taking advantage of early submission to reduce GPU | 
|---|
| 1131 | * latency. Therefore we restrict ourselves to not using more | 
|---|
| 1132 | * than one semaphore from each source, and not using a semaphore | 
|---|
| 1133 | * if we have detected the engine is saturated (i.e. would not be | 
|---|
| 1134 | * submitted early and cause bus traffic reading an already passed | 
|---|
| 1135 | * semaphore). | 
|---|
| 1136 | * | 
|---|
| 1137 | * See the are-we-too-late? check in __i915_request_submit(). | 
|---|
| 1138 | */ | 
|---|
| 1139 | return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); | 
|---|
| 1140 | } | 
|---|
| 1141 |  | 
|---|
| 1142 | static int | 
|---|
| 1143 | __emit_semaphore_wait(struct i915_request *to, | 
|---|
| 1144 | struct i915_request *from, | 
|---|
| 1145 | u32 seqno) | 
|---|
| 1146 | { | 
|---|
| 1147 | const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; | 
|---|
| 1148 | u32 hwsp_offset; | 
|---|
| 1149 | int len, err; | 
|---|
| 1150 | u32 *cs; | 
|---|
| 1151 |  | 
|---|
| 1152 | GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); | 
|---|
| 1153 | GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); | 
|---|
| 1154 |  | 
|---|
| 1155 | /* We need to pin the signaler's HWSP until we are finished reading. */ | 
|---|
| 1156 | err = intel_timeline_read_hwsp(from, until: to, hwsp_offset: &hwsp_offset); | 
|---|
| 1157 | if (err) | 
|---|
| 1158 | return err; | 
|---|
| 1159 |  | 
|---|
| 1160 | len = 4; | 
|---|
| 1161 | if (has_token) | 
|---|
| 1162 | len += 2; | 
|---|
| 1163 |  | 
|---|
| 1164 | cs = intel_ring_begin(rq: to, num_dwords: len); | 
|---|
| 1165 | if (IS_ERR(ptr: cs)) | 
|---|
| 1166 | return PTR_ERR(ptr: cs); | 
|---|
| 1167 |  | 
|---|
| 1168 | /* | 
|---|
| 1169 | * Using greater-than-or-equal here means we have to worry | 
|---|
| 1170 | * about seqno wraparound. To side step that issue, we swap | 
|---|
| 1171 | * the timeline HWSP upon wrapping, so that everyone listening | 
|---|
| 1172 | * for the old (pre-wrap) values do not see the much smaller | 
|---|
| 1173 | * (post-wrap) values than they were expecting (and so wait | 
|---|
| 1174 | * forever). | 
|---|
| 1175 | */ | 
|---|
| 1176 | *cs++ = (MI_SEMAPHORE_WAIT | | 
|---|
| 1177 | MI_SEMAPHORE_GLOBAL_GTT | | 
|---|
| 1178 | MI_SEMAPHORE_POLL | | 
|---|
| 1179 | MI_SEMAPHORE_SAD_GTE_SDD) + | 
|---|
| 1180 | has_token; | 
|---|
| 1181 | *cs++ = seqno; | 
|---|
| 1182 | *cs++ = hwsp_offset; | 
|---|
| 1183 | *cs++ = 0; | 
|---|
| 1184 | if (has_token) { | 
|---|
| 1185 | *cs++ = 0; | 
|---|
| 1186 | *cs++ = MI_NOOP; | 
|---|
| 1187 | } | 
|---|
| 1188 |  | 
|---|
| 1189 | intel_ring_advance(rq: to, cs); | 
|---|
| 1190 | return 0; | 
|---|
| 1191 | } | 
|---|
| 1192 |  | 
|---|
| 1193 | static bool | 
|---|
| 1194 | can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) | 
|---|
| 1195 | { | 
|---|
| 1196 | return to->engine->gt->ggtt == from->engine->gt->ggtt; | 
|---|
| 1197 | } | 
|---|
| 1198 |  | 
|---|
| 1199 | static int | 
|---|
| 1200 | emit_semaphore_wait(struct i915_request *to, | 
|---|
| 1201 | struct i915_request *from, | 
|---|
| 1202 | gfp_t gfp) | 
|---|
| 1203 | { | 
|---|
| 1204 | const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; | 
|---|
| 1205 | struct i915_sw_fence *wait = &to->submit; | 
|---|
| 1206 |  | 
|---|
| 1207 | if (!can_use_semaphore_wait(to, from)) | 
|---|
| 1208 | goto await_fence; | 
|---|
| 1209 |  | 
|---|
| 1210 | if (!intel_context_use_semaphores(ce: to->context)) | 
|---|
| 1211 | goto await_fence; | 
|---|
| 1212 |  | 
|---|
| 1213 | if (i915_request_has_initial_breadcrumb(rq: to)) | 
|---|
| 1214 | goto await_fence; | 
|---|
| 1215 |  | 
|---|
| 1216 | /* | 
|---|
| 1217 | * If this or its dependents are waiting on an external fence | 
|---|
| 1218 | * that may fail catastrophically, then we want to avoid using | 
|---|
| 1219 | * semaphores as they bypass the fence signaling metadata, and we | 
|---|
| 1220 | * lose the fence->error propagation. | 
|---|
| 1221 | */ | 
|---|
| 1222 | if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) | 
|---|
| 1223 | goto await_fence; | 
|---|
| 1224 |  | 
|---|
| 1225 | /* Just emit the first semaphore we see as request space is limited. */ | 
|---|
| 1226 | if (already_busywaiting(rq: to) & mask) | 
|---|
| 1227 | goto await_fence; | 
|---|
| 1228 |  | 
|---|
| 1229 | if (i915_request_await_start(rq: to, signal: from) < 0) | 
|---|
| 1230 | goto await_fence; | 
|---|
| 1231 |  | 
|---|
| 1232 | /* Only submit our spinner after the signaler is running! */ | 
|---|
| 1233 | if (__await_execution(rq: to, signal: from, gfp)) | 
|---|
| 1234 | goto await_fence; | 
|---|
| 1235 |  | 
|---|
| 1236 | if (__emit_semaphore_wait(to, from, seqno: from->fence.seqno)) | 
|---|
| 1237 | goto await_fence; | 
|---|
| 1238 |  | 
|---|
| 1239 | to->sched.semaphores |= mask; | 
|---|
| 1240 | wait = &to->semaphore; | 
|---|
| 1241 |  | 
|---|
| 1242 | await_fence: | 
|---|
| 1243 | return i915_sw_fence_await_dma_fence(fence: wait, | 
|---|
| 1244 | dma: &from->fence, timeout: 0, | 
|---|
| 1245 | I915_FENCE_GFP); | 
|---|
| 1246 | } | 
|---|
| 1247 |  | 
|---|
| 1248 | static bool intel_timeline_sync_has_start(struct intel_timeline *tl, | 
|---|
| 1249 | struct dma_fence *fence) | 
|---|
| 1250 | { | 
|---|
| 1251 | return __intel_timeline_sync_is_later(tl, | 
|---|
| 1252 | context: fence->context, | 
|---|
| 1253 | seqno: fence->seqno - 1); | 
|---|
| 1254 | } | 
|---|
| 1255 |  | 
|---|
| 1256 | static int intel_timeline_sync_set_start(struct intel_timeline *tl, | 
|---|
| 1257 | const struct dma_fence *fence) | 
|---|
| 1258 | { | 
|---|
| 1259 | return __intel_timeline_sync_set(tl, context: fence->context, seqno: fence->seqno - 1); | 
|---|
| 1260 | } | 
|---|
| 1261 |  | 
|---|
| 1262 | static int | 
|---|
| 1263 | __i915_request_await_execution(struct i915_request *to, | 
|---|
| 1264 | struct i915_request *from) | 
|---|
| 1265 | { | 
|---|
| 1266 | int err; | 
|---|
| 1267 |  | 
|---|
| 1268 | GEM_BUG_ON(intel_context_is_barrier(from->context)); | 
|---|
| 1269 |  | 
|---|
| 1270 | /* Submit both requests at the same time */ | 
|---|
| 1271 | err = __await_execution(rq: to, signal: from, I915_FENCE_GFP); | 
|---|
| 1272 | if (err) | 
|---|
| 1273 | return err; | 
|---|
| 1274 |  | 
|---|
| 1275 | /* Squash repeated depenendices to the same timelines */ | 
|---|
| 1276 | if (intel_timeline_sync_has_start(tl: i915_request_timeline(rq: to), | 
|---|
| 1277 | fence: &from->fence)) | 
|---|
| 1278 | return 0; | 
|---|
| 1279 |  | 
|---|
| 1280 | /* | 
|---|
| 1281 | * Wait until the start of this request. | 
|---|
| 1282 | * | 
|---|
| 1283 | * The execution cb fires when we submit the request to HW. But in | 
|---|
| 1284 | * many cases this may be long before the request itself is ready to | 
|---|
| 1285 | * run (consider that we submit 2 requests for the same context, where | 
|---|
| 1286 | * the request of interest is behind an indefinite spinner). So we hook | 
|---|
| 1287 | * up to both to reduce our queues and keep the execution lag minimised | 
|---|
| 1288 | * in the worst case, though we hope that the await_start is elided. | 
|---|
| 1289 | */ | 
|---|
| 1290 | err = i915_request_await_start(rq: to, signal: from); | 
|---|
| 1291 | if (err < 0) | 
|---|
| 1292 | return err; | 
|---|
| 1293 |  | 
|---|
| 1294 | /* | 
|---|
| 1295 | * Ensure both start together [after all semaphores in signal] | 
|---|
| 1296 | * | 
|---|
| 1297 | * Now that we are queued to the HW at roughly the same time (thanks | 
|---|
| 1298 | * to the execute cb) and are ready to run at roughly the same time | 
|---|
| 1299 | * (thanks to the await start), our signaler may still be indefinitely | 
|---|
| 1300 | * delayed by waiting on a semaphore from a remote engine. If our | 
|---|
| 1301 | * signaler depends on a semaphore, so indirectly do we, and we do not | 
|---|
| 1302 | * want to start our payload until our signaler also starts theirs. | 
|---|
| 1303 | * So we wait. | 
|---|
| 1304 | * | 
|---|
| 1305 | * However, there is also a second condition for which we need to wait | 
|---|
| 1306 | * for the precise start of the signaler. Consider that the signaler | 
|---|
| 1307 | * was submitted in a chain of requests following another context | 
|---|
| 1308 | * (with just an ordinary intra-engine fence dependency between the | 
|---|
| 1309 | * two). In this case the signaler is queued to HW, but not for | 
|---|
| 1310 | * immediate execution, and so we must wait until it reaches the | 
|---|
| 1311 | * active slot. | 
|---|
| 1312 | */ | 
|---|
| 1313 | if (can_use_semaphore_wait(to, from) && | 
|---|
| 1314 | intel_engine_has_semaphores(engine: to->engine) && | 
|---|
| 1315 | !i915_request_has_initial_breadcrumb(rq: to)) { | 
|---|
| 1316 | err = __emit_semaphore_wait(to, from, seqno: from->fence.seqno - 1); | 
|---|
| 1317 | if (err < 0) | 
|---|
| 1318 | return err; | 
|---|
| 1319 | } | 
|---|
| 1320 |  | 
|---|
| 1321 | /* Couple the dependency tree for PI on this exposed to->fence */ | 
|---|
| 1322 | if (to->engine->sched_engine->schedule) { | 
|---|
| 1323 | err = i915_sched_node_add_dependency(node: &to->sched, | 
|---|
| 1324 | signal: &from->sched, | 
|---|
| 1325 | I915_DEPENDENCY_WEAK); | 
|---|
| 1326 | if (err < 0) | 
|---|
| 1327 | return err; | 
|---|
| 1328 | } | 
|---|
| 1329 |  | 
|---|
| 1330 | return intel_timeline_sync_set_start(tl: i915_request_timeline(rq: to), | 
|---|
| 1331 | fence: &from->fence); | 
|---|
| 1332 | } | 
|---|
| 1333 |  | 
|---|
| 1334 | static void mark_external(struct i915_request *rq) | 
|---|
| 1335 | { | 
|---|
| 1336 | /* | 
|---|
| 1337 | * The downside of using semaphores is that we lose metadata passing | 
|---|
| 1338 | * along the signaling chain. This is particularly nasty when we | 
|---|
| 1339 | * need to pass along a fatal error such as EFAULT or EDEADLK. For | 
|---|
| 1340 | * fatal errors we want to scrub the request before it is executed, | 
|---|
| 1341 | * which means that we cannot preload the request onto HW and have | 
|---|
| 1342 | * it wait upon a semaphore. | 
|---|
| 1343 | */ | 
|---|
| 1344 | rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; | 
|---|
| 1345 | } | 
|---|
| 1346 |  | 
|---|
| 1347 | static int | 
|---|
| 1348 | __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) | 
|---|
| 1349 | { | 
|---|
| 1350 | mark_external(rq); | 
|---|
| 1351 | return i915_sw_fence_await_dma_fence(fence: &rq->submit, dma: fence, | 
|---|
| 1352 | timeout: i915_fence_context_timeout(i915: rq->i915, | 
|---|
| 1353 | context: fence->context), | 
|---|
| 1354 | I915_FENCE_GFP); | 
|---|
| 1355 | } | 
|---|
| 1356 |  | 
|---|
| 1357 | static int | 
|---|
| 1358 | i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) | 
|---|
| 1359 | { | 
|---|
| 1360 | struct dma_fence *iter; | 
|---|
| 1361 | int err = 0; | 
|---|
| 1362 |  | 
|---|
| 1363 | if (!to_dma_fence_chain(fence)) | 
|---|
| 1364 | return __i915_request_await_external(rq, fence); | 
|---|
| 1365 |  | 
|---|
| 1366 | dma_fence_chain_for_each(iter, fence) { | 
|---|
| 1367 | struct dma_fence_chain *chain = to_dma_fence_chain(fence: iter); | 
|---|
| 1368 |  | 
|---|
| 1369 | if (!dma_fence_is_i915(fence: chain->fence)) { | 
|---|
| 1370 | err = __i915_request_await_external(rq, fence: iter); | 
|---|
| 1371 | break; | 
|---|
| 1372 | } | 
|---|
| 1373 |  | 
|---|
| 1374 | err = i915_request_await_dma_fence(rq, fence: chain->fence); | 
|---|
| 1375 | if (err < 0) | 
|---|
| 1376 | break; | 
|---|
| 1377 | } | 
|---|
| 1378 |  | 
|---|
| 1379 | dma_fence_put(fence: iter); | 
|---|
| 1380 | return err; | 
|---|
| 1381 | } | 
|---|
| 1382 |  | 
|---|
| 1383 | static inline bool is_parallel_rq(struct i915_request *rq) | 
|---|
| 1384 | { | 
|---|
| 1385 | return intel_context_is_parallel(ce: rq->context); | 
|---|
| 1386 | } | 
|---|
| 1387 |  | 
|---|
| 1388 | static inline struct intel_context *request_to_parent(struct i915_request *rq) | 
|---|
| 1389 | { | 
|---|
| 1390 | return intel_context_to_parent(ce: rq->context); | 
|---|
| 1391 | } | 
|---|
| 1392 |  | 
|---|
| 1393 | static bool is_same_parallel_context(struct i915_request *to, | 
|---|
| 1394 | struct i915_request *from) | 
|---|
| 1395 | { | 
|---|
| 1396 | if (is_parallel_rq(rq: to)) | 
|---|
| 1397 | return request_to_parent(rq: to) == request_to_parent(rq: from); | 
|---|
| 1398 |  | 
|---|
| 1399 | return false; | 
|---|
| 1400 | } | 
|---|
| 1401 |  | 
|---|
| 1402 | int | 
|---|
| 1403 | i915_request_await_execution(struct i915_request *rq, | 
|---|
| 1404 | struct dma_fence *fence) | 
|---|
| 1405 | { | 
|---|
| 1406 | struct dma_fence **child = &fence; | 
|---|
| 1407 | unsigned int nchild = 1; | 
|---|
| 1408 | int ret; | 
|---|
| 1409 |  | 
|---|
| 1410 | if (dma_fence_is_array(fence)) { | 
|---|
| 1411 | struct dma_fence_array *array = to_dma_fence_array(fence); | 
|---|
| 1412 |  | 
|---|
| 1413 | /* XXX Error for signal-on-any fence arrays */ | 
|---|
| 1414 |  | 
|---|
| 1415 | child = array->fences; | 
|---|
| 1416 | nchild = array->num_fences; | 
|---|
| 1417 | GEM_BUG_ON(!nchild); | 
|---|
| 1418 | } | 
|---|
| 1419 |  | 
|---|
| 1420 | do { | 
|---|
| 1421 | fence = *child++; | 
|---|
| 1422 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) | 
|---|
| 1423 | continue; | 
|---|
| 1424 |  | 
|---|
| 1425 | if (fence->context == rq->fence.context) | 
|---|
| 1426 | continue; | 
|---|
| 1427 |  | 
|---|
| 1428 | /* | 
|---|
| 1429 | * We don't squash repeated fence dependencies here as we | 
|---|
| 1430 | * want to run our callback in all cases. | 
|---|
| 1431 | */ | 
|---|
| 1432 |  | 
|---|
| 1433 | if (dma_fence_is_i915(fence)) { | 
|---|
| 1434 | if (is_same_parallel_context(to: rq, from: to_request(fence))) | 
|---|
| 1435 | continue; | 
|---|
| 1436 | ret = __i915_request_await_execution(to: rq, | 
|---|
| 1437 | from: to_request(fence)); | 
|---|
| 1438 | } else { | 
|---|
| 1439 | ret = i915_request_await_external(rq, fence); | 
|---|
| 1440 | } | 
|---|
| 1441 | if (ret < 0) | 
|---|
| 1442 | return ret; | 
|---|
| 1443 | } while (--nchild); | 
|---|
| 1444 |  | 
|---|
| 1445 | return 0; | 
|---|
| 1446 | } | 
|---|
| 1447 |  | 
|---|
| 1448 | static int | 
|---|
| 1449 | await_request_submit(struct i915_request *to, struct i915_request *from) | 
|---|
| 1450 | { | 
|---|
| 1451 | /* | 
|---|
| 1452 | * If we are waiting on a virtual engine, then it may be | 
|---|
| 1453 | * constrained to execute on a single engine *prior* to submission. | 
|---|
| 1454 | * When it is submitted, it will be first submitted to the virtual | 
|---|
| 1455 | * engine and then passed to the physical engine. We cannot allow | 
|---|
| 1456 | * the waiter to be submitted immediately to the physical engine | 
|---|
| 1457 | * as it may then bypass the virtual request. | 
|---|
| 1458 | */ | 
|---|
| 1459 | if (to->engine == READ_ONCE(from->engine)) | 
|---|
| 1460 | return i915_sw_fence_await_sw_fence_gfp(fence: &to->submit, | 
|---|
| 1461 | after: &from->submit, | 
|---|
| 1462 | I915_FENCE_GFP); | 
|---|
| 1463 | else | 
|---|
| 1464 | return __i915_request_await_execution(to, from); | 
|---|
| 1465 | } | 
|---|
| 1466 |  | 
|---|
| 1467 | static int | 
|---|
| 1468 | i915_request_await_request(struct i915_request *to, struct i915_request *from) | 
|---|
| 1469 | { | 
|---|
| 1470 | int ret; | 
|---|
| 1471 |  | 
|---|
| 1472 | GEM_BUG_ON(to == from); | 
|---|
| 1473 | GEM_BUG_ON(to->timeline == from->timeline); | 
|---|
| 1474 |  | 
|---|
| 1475 | if (i915_request_completed(rq: from)) { | 
|---|
| 1476 | i915_sw_fence_set_error_once(fence: &to->submit, error: from->fence.error); | 
|---|
| 1477 | return 0; | 
|---|
| 1478 | } | 
|---|
| 1479 |  | 
|---|
| 1480 | if (to->engine->sched_engine->schedule) { | 
|---|
| 1481 | ret = i915_sched_node_add_dependency(node: &to->sched, | 
|---|
| 1482 | signal: &from->sched, | 
|---|
| 1483 | I915_DEPENDENCY_EXTERNAL); | 
|---|
| 1484 | if (ret < 0) | 
|---|
| 1485 | return ret; | 
|---|
| 1486 | } | 
|---|
| 1487 |  | 
|---|
| 1488 | if (!intel_engine_uses_guc(engine: to->engine) && | 
|---|
| 1489 | is_power_of_2(n: to->execution_mask | READ_ONCE(from->execution_mask))) | 
|---|
| 1490 | ret = await_request_submit(to, from); | 
|---|
| 1491 | else | 
|---|
| 1492 | ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); | 
|---|
| 1493 | if (ret < 0) | 
|---|
| 1494 | return ret; | 
|---|
| 1495 |  | 
|---|
| 1496 | return 0; | 
|---|
| 1497 | } | 
|---|
| 1498 |  | 
|---|
| 1499 | int | 
|---|
| 1500 | i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) | 
|---|
| 1501 | { | 
|---|
| 1502 | struct dma_fence **child = &fence; | 
|---|
| 1503 | unsigned int nchild = 1; | 
|---|
| 1504 | int ret; | 
|---|
| 1505 |  | 
|---|
| 1506 | /* | 
|---|
| 1507 | * Note that if the fence-array was created in signal-on-any mode, | 
|---|
| 1508 | * we should *not* decompose it into its individual fences. However, | 
|---|
| 1509 | * we don't currently store which mode the fence-array is operating | 
|---|
| 1510 | * in. Fortunately, the only user of signal-on-any is private to | 
|---|
| 1511 | * amdgpu and we should not see any incoming fence-array from | 
|---|
| 1512 | * sync-file being in signal-on-any mode. | 
|---|
| 1513 | */ | 
|---|
| 1514 | if (dma_fence_is_array(fence)) { | 
|---|
| 1515 | struct dma_fence_array *array = to_dma_fence_array(fence); | 
|---|
| 1516 |  | 
|---|
| 1517 | child = array->fences; | 
|---|
| 1518 | nchild = array->num_fences; | 
|---|
| 1519 | GEM_BUG_ON(!nchild); | 
|---|
| 1520 | } | 
|---|
| 1521 |  | 
|---|
| 1522 | do { | 
|---|
| 1523 | fence = *child++; | 
|---|
| 1524 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) | 
|---|
| 1525 | continue; | 
|---|
| 1526 |  | 
|---|
| 1527 | /* | 
|---|
| 1528 | * Requests on the same timeline are explicitly ordered, along | 
|---|
| 1529 | * with their dependencies, by i915_request_add() which ensures | 
|---|
| 1530 | * that requests are submitted in-order through each ring. | 
|---|
| 1531 | */ | 
|---|
| 1532 | if (fence->context == rq->fence.context) | 
|---|
| 1533 | continue; | 
|---|
| 1534 |  | 
|---|
| 1535 | /* Squash repeated waits to the same timelines */ | 
|---|
| 1536 | if (fence->context && | 
|---|
| 1537 | intel_timeline_sync_is_later(tl: i915_request_timeline(rq), | 
|---|
| 1538 | fence)) | 
|---|
| 1539 | continue; | 
|---|
| 1540 |  | 
|---|
| 1541 | if (dma_fence_is_i915(fence)) { | 
|---|
| 1542 | if (is_same_parallel_context(to: rq, from: to_request(fence))) | 
|---|
| 1543 | continue; | 
|---|
| 1544 | ret = i915_request_await_request(to: rq, from: to_request(fence)); | 
|---|
| 1545 | } else { | 
|---|
| 1546 | ret = i915_request_await_external(rq, fence); | 
|---|
| 1547 | } | 
|---|
| 1548 | if (ret < 0) | 
|---|
| 1549 | return ret; | 
|---|
| 1550 |  | 
|---|
| 1551 | /* Record the latest fence used against each timeline */ | 
|---|
| 1552 | if (fence->context) | 
|---|
| 1553 | intel_timeline_sync_set(tl: i915_request_timeline(rq), | 
|---|
| 1554 | fence); | 
|---|
| 1555 | } while (--nchild); | 
|---|
| 1556 |  | 
|---|
| 1557 | return 0; | 
|---|
| 1558 | } | 
|---|
| 1559 |  | 
|---|
| 1560 | /** | 
|---|
| 1561 | * i915_request_await_deps - set this request to (async) wait upon a struct | 
|---|
| 1562 | * i915_deps dma_fence collection | 
|---|
| 1563 | * @rq: request we are wishing to use | 
|---|
| 1564 | * @deps: The struct i915_deps containing the dependencies. | 
|---|
| 1565 | * | 
|---|
| 1566 | * Returns 0 if successful, negative error code on error. | 
|---|
| 1567 | */ | 
|---|
| 1568 | int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) | 
|---|
| 1569 | { | 
|---|
| 1570 | int i, err; | 
|---|
| 1571 |  | 
|---|
| 1572 | for (i = 0; i < deps->num_deps; ++i) { | 
|---|
| 1573 | err = i915_request_await_dma_fence(rq, fence: deps->fences[i]); | 
|---|
| 1574 | if (err) | 
|---|
| 1575 | return err; | 
|---|
| 1576 | } | 
|---|
| 1577 |  | 
|---|
| 1578 | return 0; | 
|---|
| 1579 | } | 
|---|
| 1580 |  | 
|---|
| 1581 | /** | 
|---|
| 1582 | * i915_request_await_object - set this request to (async) wait upon a bo | 
|---|
| 1583 | * @to: request we are wishing to use | 
|---|
| 1584 | * @obj: object which may be in use on another ring. | 
|---|
| 1585 | * @write: whether the wait is on behalf of a writer | 
|---|
| 1586 | * | 
|---|
| 1587 | * This code is meant to abstract object synchronization with the GPU. | 
|---|
| 1588 | * Conceptually we serialise writes between engines inside the GPU. | 
|---|
| 1589 | * We only allow one engine to write into a buffer at any time, but | 
|---|
| 1590 | * multiple readers. To ensure each has a coherent view of memory, we must: | 
|---|
| 1591 | * | 
|---|
| 1592 | * - If there is an outstanding write request to the object, the new | 
|---|
| 1593 | *   request must wait for it to complete (either CPU or in hw, requests | 
|---|
| 1594 | *   on the same ring will be naturally ordered). | 
|---|
| 1595 | * | 
|---|
| 1596 | * - If we are a write request (pending_write_domain is set), the new | 
|---|
| 1597 | *   request must wait for outstanding read requests to complete. | 
|---|
| 1598 | * | 
|---|
| 1599 | * Returns 0 if successful, else propagates up the lower layer error. | 
|---|
| 1600 | */ | 
|---|
| 1601 | int | 
|---|
| 1602 | i915_request_await_object(struct i915_request *to, | 
|---|
| 1603 | struct drm_i915_gem_object *obj, | 
|---|
| 1604 | bool write) | 
|---|
| 1605 | { | 
|---|
| 1606 | struct dma_resv_iter cursor; | 
|---|
| 1607 | struct dma_fence *fence; | 
|---|
| 1608 | int ret = 0; | 
|---|
| 1609 |  | 
|---|
| 1610 | dma_resv_for_each_fence(&cursor, obj->base.resv, | 
|---|
| 1611 | dma_resv_usage_rw(write), fence) { | 
|---|
| 1612 | ret = i915_request_await_dma_fence(rq: to, fence); | 
|---|
| 1613 | if (ret) | 
|---|
| 1614 | break; | 
|---|
| 1615 | } | 
|---|
| 1616 |  | 
|---|
| 1617 | return ret; | 
|---|
| 1618 | } | 
|---|
| 1619 |  | 
|---|
| 1620 | static void i915_request_await_huc(struct i915_request *rq) | 
|---|
| 1621 | { | 
|---|
| 1622 | struct intel_huc *huc = &rq->context->engine->gt->uc.huc; | 
|---|
| 1623 |  | 
|---|
| 1624 | /* don't stall kernel submissions! */ | 
|---|
| 1625 | if (!rcu_access_pointer(rq->context->gem_context)) | 
|---|
| 1626 | return; | 
|---|
| 1627 |  | 
|---|
| 1628 | if (intel_huc_wait_required(huc)) | 
|---|
| 1629 | i915_sw_fence_await_sw_fence(fence: &rq->submit, | 
|---|
| 1630 | after: &huc->delayed_load.fence, | 
|---|
| 1631 | wq: &rq->hucq); | 
|---|
| 1632 | } | 
|---|
| 1633 |  | 
|---|
| 1634 | static struct i915_request * | 
|---|
| 1635 | __i915_request_ensure_parallel_ordering(struct i915_request *rq, | 
|---|
| 1636 | struct intel_timeline *timeline) | 
|---|
| 1637 | { | 
|---|
| 1638 | struct i915_request *prev; | 
|---|
| 1639 |  | 
|---|
| 1640 | GEM_BUG_ON(!is_parallel_rq(rq)); | 
|---|
| 1641 |  | 
|---|
| 1642 | prev = request_to_parent(rq)->parallel.last_rq; | 
|---|
| 1643 | if (prev) { | 
|---|
| 1644 | if (!__i915_request_is_complete(rq: prev)) { | 
|---|
| 1645 | i915_sw_fence_await_sw_fence(fence: &rq->submit, | 
|---|
| 1646 | after: &prev->submit, | 
|---|
| 1647 | wq: &rq->submitq); | 
|---|
| 1648 |  | 
|---|
| 1649 | if (rq->engine->sched_engine->schedule) | 
|---|
| 1650 | __i915_sched_node_add_dependency(node: &rq->sched, | 
|---|
| 1651 | signal: &prev->sched, | 
|---|
| 1652 | dep: &rq->dep, | 
|---|
| 1653 | flags: 0); | 
|---|
| 1654 | } | 
|---|
| 1655 | i915_request_put(rq: prev); | 
|---|
| 1656 | } | 
|---|
| 1657 |  | 
|---|
| 1658 | request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); | 
|---|
| 1659 |  | 
|---|
| 1660 | /* | 
|---|
| 1661 | * Users have to put a reference potentially got by | 
|---|
| 1662 | * __i915_active_fence_set() to the returned request | 
|---|
| 1663 | * when no longer needed | 
|---|
| 1664 | */ | 
|---|
| 1665 | return to_request(fence: __i915_active_fence_set(active: &timeline->last_request, | 
|---|
| 1666 | fence: &rq->fence)); | 
|---|
| 1667 | } | 
|---|
| 1668 |  | 
|---|
| 1669 | static struct i915_request * | 
|---|
| 1670 | __i915_request_ensure_ordering(struct i915_request *rq, | 
|---|
| 1671 | struct intel_timeline *timeline) | 
|---|
| 1672 | { | 
|---|
| 1673 | struct i915_request *prev; | 
|---|
| 1674 |  | 
|---|
| 1675 | GEM_BUG_ON(is_parallel_rq(rq)); | 
|---|
| 1676 |  | 
|---|
| 1677 | prev = to_request(fence: __i915_active_fence_set(active: &timeline->last_request, | 
|---|
| 1678 | fence: &rq->fence)); | 
|---|
| 1679 |  | 
|---|
| 1680 | if (prev && !__i915_request_is_complete(rq: prev)) { | 
|---|
| 1681 | bool uses_guc = intel_engine_uses_guc(engine: rq->engine); | 
|---|
| 1682 | bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | | 
|---|
| 1683 | rq->engine->mask); | 
|---|
| 1684 | bool same_context = prev->context == rq->context; | 
|---|
| 1685 |  | 
|---|
| 1686 | /* | 
|---|
| 1687 | * The requests are supposed to be kept in order. However, | 
|---|
| 1688 | * we need to be wary in case the timeline->last_request | 
|---|
| 1689 | * is used as a barrier for external modification to this | 
|---|
| 1690 | * context. | 
|---|
| 1691 | */ | 
|---|
| 1692 | GEM_BUG_ON(same_context && | 
|---|
| 1693 | i915_seqno_passed(prev->fence.seqno, | 
|---|
| 1694 | rq->fence.seqno)); | 
|---|
| 1695 |  | 
|---|
| 1696 | if ((same_context && uses_guc) || (!uses_guc && pow2)) | 
|---|
| 1697 | i915_sw_fence_await_sw_fence(fence: &rq->submit, | 
|---|
| 1698 | after: &prev->submit, | 
|---|
| 1699 | wq: &rq->submitq); | 
|---|
| 1700 | else | 
|---|
| 1701 | __i915_sw_fence_await_dma_fence(fence: &rq->submit, | 
|---|
| 1702 | dma: &prev->fence, | 
|---|
| 1703 | cb: &rq->dmaq); | 
|---|
| 1704 | if (rq->engine->sched_engine->schedule) | 
|---|
| 1705 | __i915_sched_node_add_dependency(node: &rq->sched, | 
|---|
| 1706 | signal: &prev->sched, | 
|---|
| 1707 | dep: &rq->dep, | 
|---|
| 1708 | flags: 0); | 
|---|
| 1709 | } | 
|---|
| 1710 |  | 
|---|
| 1711 | /* | 
|---|
| 1712 | * Users have to put the reference to prev potentially got | 
|---|
| 1713 | * by __i915_active_fence_set() when no longer needed | 
|---|
| 1714 | */ | 
|---|
| 1715 | return prev; | 
|---|
| 1716 | } | 
|---|
| 1717 |  | 
|---|
| 1718 | static struct i915_request * | 
|---|
| 1719 | __i915_request_add_to_timeline(struct i915_request *rq) | 
|---|
| 1720 | { | 
|---|
| 1721 | struct intel_timeline *timeline = i915_request_timeline(rq); | 
|---|
| 1722 | struct i915_request *prev; | 
|---|
| 1723 |  | 
|---|
| 1724 | /* | 
|---|
| 1725 | * Media workloads may require HuC, so stall them until HuC loading is | 
|---|
| 1726 | * complete. Note that HuC not being loaded when a user submission | 
|---|
| 1727 | * arrives can only happen when HuC is loaded via GSC and in that case | 
|---|
| 1728 | * we still expect the window between us starting to accept submissions | 
|---|
| 1729 | * and HuC loading completion to be small (a few hundred ms). | 
|---|
| 1730 | */ | 
|---|
| 1731 | if (rq->engine->class == VIDEO_DECODE_CLASS) | 
|---|
| 1732 | i915_request_await_huc(rq); | 
|---|
| 1733 |  | 
|---|
| 1734 | /* | 
|---|
| 1735 | * Dependency tracking and request ordering along the timeline | 
|---|
| 1736 | * is special cased so that we can eliminate redundant ordering | 
|---|
| 1737 | * operations while building the request (we know that the timeline | 
|---|
| 1738 | * itself is ordered, and here we guarantee it). | 
|---|
| 1739 | * | 
|---|
| 1740 | * As we know we will need to emit tracking along the timeline, | 
|---|
| 1741 | * we embed the hooks into our request struct -- at the cost of | 
|---|
| 1742 | * having to have specialised no-allocation interfaces (which will | 
|---|
| 1743 | * be beneficial elsewhere). | 
|---|
| 1744 | * | 
|---|
| 1745 | * A second benefit to open-coding i915_request_await_request is | 
|---|
| 1746 | * that we can apply a slight variant of the rules specialised | 
|---|
| 1747 | * for timelines that jump between engines (such as virtual engines). | 
|---|
| 1748 | * If we consider the case of virtual engine, we must emit a dma-fence | 
|---|
| 1749 | * to prevent scheduling of the second request until the first is | 
|---|
| 1750 | * complete (to maximise our greedy late load balancing) and this | 
|---|
| 1751 | * precludes optimising to use semaphores serialisation of a single | 
|---|
| 1752 | * timeline across engines. | 
|---|
| 1753 | * | 
|---|
| 1754 | * We do not order parallel submission requests on the timeline as each | 
|---|
| 1755 | * parallel submission context has its own timeline and the ordering | 
|---|
| 1756 | * rules for parallel requests are that they must be submitted in the | 
|---|
| 1757 | * order received from the execbuf IOCTL. So rather than using the | 
|---|
| 1758 | * timeline we store a pointer to last request submitted in the | 
|---|
| 1759 | * relationship in the gem context and insert a submission fence | 
|---|
| 1760 | * between that request and request passed into this function or | 
|---|
| 1761 | * alternatively we use completion fence if gem context has a single | 
|---|
| 1762 | * timeline and this is the first submission of an execbuf IOCTL. | 
|---|
| 1763 | */ | 
|---|
| 1764 | if (likely(!is_parallel_rq(rq))) | 
|---|
| 1765 | prev = __i915_request_ensure_ordering(rq, timeline); | 
|---|
| 1766 | else | 
|---|
| 1767 | prev = __i915_request_ensure_parallel_ordering(rq, timeline); | 
|---|
| 1768 | if (prev) | 
|---|
| 1769 | i915_request_put(rq: prev); | 
|---|
| 1770 |  | 
|---|
| 1771 | /* | 
|---|
| 1772 | * Make sure that no request gazumped us - if it was allocated after | 
|---|
| 1773 | * our i915_request_alloc() and called __i915_request_add() before | 
|---|
| 1774 | * us, the timeline will hold its seqno which is later than ours. | 
|---|
| 1775 | */ | 
|---|
| 1776 | GEM_BUG_ON(timeline->seqno != rq->fence.seqno); | 
|---|
| 1777 |  | 
|---|
| 1778 | return prev; | 
|---|
| 1779 | } | 
|---|
| 1780 |  | 
|---|
| 1781 | /* | 
|---|
| 1782 | * NB: This function is not allowed to fail. Doing so would mean the the | 
|---|
| 1783 | * request is not being tracked for completion but the work itself is | 
|---|
| 1784 | * going to happen on the hardware. This would be a Bad Thing(tm). | 
|---|
| 1785 | */ | 
|---|
| 1786 | struct i915_request *__i915_request_commit(struct i915_request *rq) | 
|---|
| 1787 | { | 
|---|
| 1788 | struct intel_engine_cs *engine = rq->engine; | 
|---|
| 1789 | struct intel_ring *ring = rq->ring; | 
|---|
| 1790 | u32 *cs; | 
|---|
| 1791 |  | 
|---|
| 1792 | RQ_TRACE(rq, "\n"); | 
|---|
| 1793 |  | 
|---|
| 1794 | /* | 
|---|
| 1795 | * To ensure that this call will not fail, space for its emissions | 
|---|
| 1796 | * should already have been reserved in the ring buffer. Let the ring | 
|---|
| 1797 | * know that it is time to use that space up. | 
|---|
| 1798 | */ | 
|---|
| 1799 | GEM_BUG_ON(rq->reserved_space > ring->space); | 
|---|
| 1800 | rq->reserved_space = 0; | 
|---|
| 1801 | rq->emitted_jiffies = jiffies; | 
|---|
| 1802 |  | 
|---|
| 1803 | /* | 
|---|
| 1804 | * Record the position of the start of the breadcrumb so that | 
|---|
| 1805 | * should we detect the updated seqno part-way through the | 
|---|
| 1806 | * GPU processing the request, we never over-estimate the | 
|---|
| 1807 | * position of the ring's HEAD. | 
|---|
| 1808 | */ | 
|---|
| 1809 | cs = intel_ring_begin(rq, num_dwords: engine->emit_fini_breadcrumb_dw); | 
|---|
| 1810 | GEM_BUG_ON(IS_ERR(cs)); | 
|---|
| 1811 | rq->postfix = intel_ring_offset(rq, addr: cs); | 
|---|
| 1812 |  | 
|---|
| 1813 | return __i915_request_add_to_timeline(rq); | 
|---|
| 1814 | } | 
|---|
| 1815 |  | 
|---|
| 1816 | void __i915_request_queue_bh(struct i915_request *rq) | 
|---|
| 1817 | { | 
|---|
| 1818 | i915_sw_fence_commit(fence: &rq->semaphore); | 
|---|
| 1819 | i915_sw_fence_commit(fence: &rq->submit); | 
|---|
| 1820 | } | 
|---|
| 1821 |  | 
|---|
| 1822 | void __i915_request_queue(struct i915_request *rq, | 
|---|
| 1823 | const struct i915_sched_attr *attr) | 
|---|
| 1824 | { | 
|---|
| 1825 | /* | 
|---|
| 1826 | * Let the backend know a new request has arrived that may need | 
|---|
| 1827 | * to adjust the existing execution schedule due to a high priority | 
|---|
| 1828 | * request - i.e. we may want to preempt the current request in order | 
|---|
| 1829 | * to run a high priority dependency chain *before* we can execute this | 
|---|
| 1830 | * request. | 
|---|
| 1831 | * | 
|---|
| 1832 | * This is called before the request is ready to run so that we can | 
|---|
| 1833 | * decide whether to preempt the entire chain so that it is ready to | 
|---|
| 1834 | * run at the earliest possible convenience. | 
|---|
| 1835 | */ | 
|---|
| 1836 | if (attr && rq->engine->sched_engine->schedule) | 
|---|
| 1837 | rq->engine->sched_engine->schedule(rq, attr); | 
|---|
| 1838 |  | 
|---|
| 1839 | local_bh_disable(); | 
|---|
| 1840 | __i915_request_queue_bh(rq); | 
|---|
| 1841 | local_bh_enable(); /* kick tasklets */ | 
|---|
| 1842 | } | 
|---|
| 1843 |  | 
|---|
| 1844 | void i915_request_add(struct i915_request *rq) | 
|---|
| 1845 | { | 
|---|
| 1846 | struct intel_timeline * const tl = i915_request_timeline(rq); | 
|---|
| 1847 | struct i915_sched_attr attr = {}; | 
|---|
| 1848 | struct i915_gem_context *ctx; | 
|---|
| 1849 |  | 
|---|
| 1850 | lockdep_assert_held(&tl->mutex); | 
|---|
| 1851 | lockdep_unpin_lock(&tl->mutex, rq->cookie); | 
|---|
| 1852 |  | 
|---|
| 1853 | trace_i915_request_add(rq); | 
|---|
| 1854 | __i915_request_commit(rq); | 
|---|
| 1855 |  | 
|---|
| 1856 | /* XXX placeholder for selftests */ | 
|---|
| 1857 | rcu_read_lock(); | 
|---|
| 1858 | ctx = rcu_dereference(rq->context->gem_context); | 
|---|
| 1859 | if (ctx) | 
|---|
| 1860 | attr = ctx->sched; | 
|---|
| 1861 | rcu_read_unlock(); | 
|---|
| 1862 |  | 
|---|
| 1863 | __i915_request_queue(rq, attr: &attr); | 
|---|
| 1864 |  | 
|---|
| 1865 | mutex_unlock(lock: &tl->mutex); | 
|---|
| 1866 | } | 
|---|
| 1867 |  | 
|---|
| 1868 | static unsigned long local_clock_ns(unsigned int *cpu) | 
|---|
| 1869 | { | 
|---|
| 1870 | unsigned long t; | 
|---|
| 1871 |  | 
|---|
| 1872 | /* | 
|---|
| 1873 | * Cheaply and approximately convert from nanoseconds to microseconds. | 
|---|
| 1874 | * The result and subsequent calculations are also defined in the same | 
|---|
| 1875 | * approximate microseconds units. The principal source of timing | 
|---|
| 1876 | * error here is from the simple truncation. | 
|---|
| 1877 | * | 
|---|
| 1878 | * Note that local_clock() is only defined wrt to the current CPU; | 
|---|
| 1879 | * the comparisons are no longer valid if we switch CPUs. Instead of | 
|---|
| 1880 | * blocking preemption for the entire busywait, we can detect the CPU | 
|---|
| 1881 | * switch and use that as indicator of system load and a reason to | 
|---|
| 1882 | * stop busywaiting, see busywait_stop(). | 
|---|
| 1883 | */ | 
|---|
| 1884 | *cpu = get_cpu(); | 
|---|
| 1885 | t = local_clock(); | 
|---|
| 1886 | put_cpu(); | 
|---|
| 1887 |  | 
|---|
| 1888 | return t; | 
|---|
| 1889 | } | 
|---|
| 1890 |  | 
|---|
| 1891 | static bool busywait_stop(unsigned long timeout, unsigned int cpu) | 
|---|
| 1892 | { | 
|---|
| 1893 | unsigned int this_cpu; | 
|---|
| 1894 |  | 
|---|
| 1895 | if (time_after(local_clock_ns(&this_cpu), timeout)) | 
|---|
| 1896 | return true; | 
|---|
| 1897 |  | 
|---|
| 1898 | return this_cpu != cpu; | 
|---|
| 1899 | } | 
|---|
| 1900 |  | 
|---|
| 1901 | static bool __i915_spin_request(struct i915_request * const rq, int state) | 
|---|
| 1902 | { | 
|---|
| 1903 | unsigned long timeout_ns; | 
|---|
| 1904 | unsigned int cpu; | 
|---|
| 1905 |  | 
|---|
| 1906 | /* | 
|---|
| 1907 | * Only wait for the request if we know it is likely to complete. | 
|---|
| 1908 | * | 
|---|
| 1909 | * We don't track the timestamps around requests, nor the average | 
|---|
| 1910 | * request length, so we do not have a good indicator that this | 
|---|
| 1911 | * request will complete within the timeout. What we do know is the | 
|---|
| 1912 | * order in which requests are executed by the context and so we can | 
|---|
| 1913 | * tell if the request has been started. If the request is not even | 
|---|
| 1914 | * running yet, it is a fair assumption that it will not complete | 
|---|
| 1915 | * within our relatively short timeout. | 
|---|
| 1916 | */ | 
|---|
| 1917 | if (!i915_request_is_running(rq)) | 
|---|
| 1918 | return false; | 
|---|
| 1919 |  | 
|---|
| 1920 | /* | 
|---|
| 1921 | * When waiting for high frequency requests, e.g. during synchronous | 
|---|
| 1922 | * rendering split between the CPU and GPU, the finite amount of time | 
|---|
| 1923 | * required to set up the irq and wait upon it limits the response | 
|---|
| 1924 | * rate. By busywaiting on the request completion for a short while we | 
|---|
| 1925 | * can service the high frequency waits as quick as possible. However, | 
|---|
| 1926 | * if it is a slow request, we want to sleep as quickly as possible. | 
|---|
| 1927 | * The tradeoff between waiting and sleeping is roughly the time it | 
|---|
| 1928 | * takes to sleep on a request, on the order of a microsecond. | 
|---|
| 1929 | */ | 
|---|
| 1930 |  | 
|---|
| 1931 | timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); | 
|---|
| 1932 | timeout_ns += local_clock_ns(cpu: &cpu); | 
|---|
| 1933 | do { | 
|---|
| 1934 | if (dma_fence_is_signaled(fence: &rq->fence)) | 
|---|
| 1935 | return true; | 
|---|
| 1936 |  | 
|---|
| 1937 | if (signal_pending_state(state, current)) | 
|---|
| 1938 | break; | 
|---|
| 1939 |  | 
|---|
| 1940 | if (busywait_stop(timeout: timeout_ns, cpu)) | 
|---|
| 1941 | break; | 
|---|
| 1942 |  | 
|---|
| 1943 | cpu_relax(); | 
|---|
| 1944 | } while (!need_resched()); | 
|---|
| 1945 |  | 
|---|
| 1946 | return false; | 
|---|
| 1947 | } | 
|---|
| 1948 |  | 
|---|
| 1949 | struct request_wait { | 
|---|
| 1950 | struct dma_fence_cb cb; | 
|---|
| 1951 | struct task_struct *tsk; | 
|---|
| 1952 | }; | 
|---|
| 1953 |  | 
|---|
| 1954 | static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) | 
|---|
| 1955 | { | 
|---|
| 1956 | struct request_wait *wait = container_of(cb, typeof(*wait), cb); | 
|---|
| 1957 |  | 
|---|
| 1958 | wake_up_process(fetch_and_zero(&wait->tsk)); | 
|---|
| 1959 | } | 
|---|
| 1960 |  | 
|---|
| 1961 | /** | 
|---|
| 1962 | * i915_request_wait_timeout - wait until execution of request has finished | 
|---|
| 1963 | * @rq: the request to wait upon | 
|---|
| 1964 | * @flags: how to wait | 
|---|
| 1965 | * @timeout: how long to wait in jiffies | 
|---|
| 1966 | * | 
|---|
| 1967 | * i915_request_wait_timeout() waits for the request to be completed, for a | 
|---|
| 1968 | * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an | 
|---|
| 1969 | * unbounded wait). | 
|---|
| 1970 | * | 
|---|
| 1971 | * Returns the remaining time (in jiffies) if the request completed, which may | 
|---|
| 1972 | * be zero if the request is unfinished after the timeout expires. | 
|---|
| 1973 | * If the timeout is 0, it will return 1 if the fence is signaled. | 
|---|
| 1974 | * | 
|---|
| 1975 | * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is | 
|---|
| 1976 | * pending before the request completes. | 
|---|
| 1977 | * | 
|---|
| 1978 | * NOTE: This function has the same wait semantics as dma-fence. | 
|---|
| 1979 | */ | 
|---|
| 1980 | long i915_request_wait_timeout(struct i915_request *rq, | 
|---|
| 1981 | unsigned int flags, | 
|---|
| 1982 | long timeout) | 
|---|
| 1983 | { | 
|---|
| 1984 | const int state = flags & I915_WAIT_INTERRUPTIBLE ? | 
|---|
| 1985 | TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; | 
|---|
| 1986 | struct request_wait wait; | 
|---|
| 1987 |  | 
|---|
| 1988 | might_sleep(); | 
|---|
| 1989 | GEM_BUG_ON(timeout < 0); | 
|---|
| 1990 |  | 
|---|
| 1991 | if (dma_fence_is_signaled(fence: &rq->fence)) | 
|---|
| 1992 | return timeout ?: 1; | 
|---|
| 1993 |  | 
|---|
| 1994 | if (!timeout) | 
|---|
| 1995 | return -ETIME; | 
|---|
| 1996 |  | 
|---|
| 1997 | trace_i915_request_wait_begin(rq, flags); | 
|---|
| 1998 |  | 
|---|
| 1999 | /* | 
|---|
| 2000 | * We must never wait on the GPU while holding a lock as we | 
|---|
| 2001 | * may need to perform a GPU reset. So while we don't need to | 
|---|
| 2002 | * serialise wait/reset with an explicit lock, we do want | 
|---|
| 2003 | * lockdep to detect potential dependency cycles. | 
|---|
| 2004 | */ | 
|---|
| 2005 | mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); | 
|---|
| 2006 |  | 
|---|
| 2007 | /* | 
|---|
| 2008 | * Optimistic spin before touching IRQs. | 
|---|
| 2009 | * | 
|---|
| 2010 | * We may use a rather large value here to offset the penalty of | 
|---|
| 2011 | * switching away from the active task. Frequently, the client will | 
|---|
| 2012 | * wait upon an old swapbuffer to throttle itself to remain within a | 
|---|
| 2013 | * frame of the gpu. If the client is running in lockstep with the gpu, | 
|---|
| 2014 | * then it should not be waiting long at all, and a sleep now will incur | 
|---|
| 2015 | * extra scheduler latency in producing the next frame. To try to | 
|---|
| 2016 | * avoid adding the cost of enabling/disabling the interrupt to the | 
|---|
| 2017 | * short wait, we first spin to see if the request would have completed | 
|---|
| 2018 | * in the time taken to setup the interrupt. | 
|---|
| 2019 | * | 
|---|
| 2020 | * We need upto 5us to enable the irq, and upto 20us to hide the | 
|---|
| 2021 | * scheduler latency of a context switch, ignoring the secondary | 
|---|
| 2022 | * impacts from a context switch such as cache eviction. | 
|---|
| 2023 | * | 
|---|
| 2024 | * The scheme used for low-latency IO is called "hybrid interrupt | 
|---|
| 2025 | * polling". The suggestion there is to sleep until just before you | 
|---|
| 2026 | * expect to be woken by the device interrupt and then poll for its | 
|---|
| 2027 | * completion. That requires having a good predictor for the request | 
|---|
| 2028 | * duration, which we currently lack. | 
|---|
| 2029 | */ | 
|---|
| 2030 | if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && | 
|---|
| 2031 | __i915_spin_request(rq, state)) | 
|---|
| 2032 | goto out; | 
|---|
| 2033 |  | 
|---|
| 2034 | /* | 
|---|
| 2035 | * This client is about to stall waiting for the GPU. In many cases | 
|---|
| 2036 | * this is undesirable and limits the throughput of the system, as | 
|---|
| 2037 | * many clients cannot continue processing user input/output whilst | 
|---|
| 2038 | * blocked. RPS autotuning may take tens of milliseconds to respond | 
|---|
| 2039 | * to the GPU load and thus incurs additional latency for the client. | 
|---|
| 2040 | * We can circumvent that by promoting the GPU frequency to maximum | 
|---|
| 2041 | * before we sleep. This makes the GPU throttle up much more quickly | 
|---|
| 2042 | * (good for benchmarks and user experience, e.g. window animations), | 
|---|
| 2043 | * but at a cost of spending more power processing the workload | 
|---|
| 2044 | * (bad for battery). | 
|---|
| 2045 | */ | 
|---|
| 2046 | if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) | 
|---|
| 2047 | intel_rps_boost(rq); | 
|---|
| 2048 |  | 
|---|
| 2049 | wait.tsk = current; | 
|---|
| 2050 | if (dma_fence_add_callback(fence: &rq->fence, cb: &wait.cb, func: request_wait_wake)) | 
|---|
| 2051 | goto out; | 
|---|
| 2052 |  | 
|---|
| 2053 | /* | 
|---|
| 2054 | * Flush the submission tasklet, but only if it may help this request. | 
|---|
| 2055 | * | 
|---|
| 2056 | * We sometimes experience some latency between the HW interrupts and | 
|---|
| 2057 | * tasklet execution (mostly due to ksoftirqd latency, but it can also | 
|---|
| 2058 | * be due to lazy CS events), so lets run the tasklet manually if there | 
|---|
| 2059 | * is a chance it may submit this request. If the request is not ready | 
|---|
| 2060 | * to run, as it is waiting for other fences to be signaled, flushing | 
|---|
| 2061 | * the tasklet is busy work without any advantage for this client. | 
|---|
| 2062 | * | 
|---|
| 2063 | * If the HW is being lazy, this is the last chance before we go to | 
|---|
| 2064 | * sleep to catch any pending events. We will check periodically in | 
|---|
| 2065 | * the heartbeat to flush the submission tasklets as a last resort | 
|---|
| 2066 | * for unhappy HW. | 
|---|
| 2067 | */ | 
|---|
| 2068 | if (i915_request_is_ready(rq)) | 
|---|
| 2069 | __intel_engine_flush_submission(engine: rq->engine, sync: false); | 
|---|
| 2070 |  | 
|---|
| 2071 | for (;;) { | 
|---|
| 2072 | set_current_state(state); | 
|---|
| 2073 |  | 
|---|
| 2074 | if (dma_fence_is_signaled(fence: &rq->fence)) | 
|---|
| 2075 | break; | 
|---|
| 2076 |  | 
|---|
| 2077 | if (signal_pending_state(state, current)) { | 
|---|
| 2078 | timeout = -ERESTARTSYS; | 
|---|
| 2079 | break; | 
|---|
| 2080 | } | 
|---|
| 2081 |  | 
|---|
| 2082 | if (!timeout) { | 
|---|
| 2083 | timeout = -ETIME; | 
|---|
| 2084 | break; | 
|---|
| 2085 | } | 
|---|
| 2086 |  | 
|---|
| 2087 | timeout = io_schedule_timeout(timeout); | 
|---|
| 2088 | } | 
|---|
| 2089 | __set_current_state(TASK_RUNNING); | 
|---|
| 2090 |  | 
|---|
| 2091 | if (READ_ONCE(wait.tsk)) | 
|---|
| 2092 | dma_fence_remove_callback(fence: &rq->fence, cb: &wait.cb); | 
|---|
| 2093 | GEM_BUG_ON(!list_empty(&wait.cb.node)); | 
|---|
| 2094 |  | 
|---|
| 2095 | out: | 
|---|
| 2096 | mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); | 
|---|
| 2097 | trace_i915_request_wait_end(rq); | 
|---|
| 2098 | return timeout; | 
|---|
| 2099 | } | 
|---|
| 2100 |  | 
|---|
| 2101 | /** | 
|---|
| 2102 | * i915_request_wait - wait until execution of request has finished | 
|---|
| 2103 | * @rq: the request to wait upon | 
|---|
| 2104 | * @flags: how to wait | 
|---|
| 2105 | * @timeout: how long to wait in jiffies | 
|---|
| 2106 | * | 
|---|
| 2107 | * i915_request_wait() waits for the request to be completed, for a | 
|---|
| 2108 | * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an | 
|---|
| 2109 | * unbounded wait). | 
|---|
| 2110 | * | 
|---|
| 2111 | * Returns the remaining time (in jiffies) if the request completed, which may | 
|---|
| 2112 | * be zero or -ETIME if the request is unfinished after the timeout expires. | 
|---|
| 2113 | * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is | 
|---|
| 2114 | * pending before the request completes. | 
|---|
| 2115 | * | 
|---|
| 2116 | * NOTE: This function behaves differently from dma-fence wait semantics for | 
|---|
| 2117 | * timeout = 0. It returns 0 on success, and -ETIME if not signaled. | 
|---|
| 2118 | */ | 
|---|
| 2119 | long i915_request_wait(struct i915_request *rq, | 
|---|
| 2120 | unsigned int flags, | 
|---|
| 2121 | long timeout) | 
|---|
| 2122 | { | 
|---|
| 2123 | long ret = i915_request_wait_timeout(rq, flags, timeout); | 
|---|
| 2124 |  | 
|---|
| 2125 | if (!ret) | 
|---|
| 2126 | return -ETIME; | 
|---|
| 2127 |  | 
|---|
| 2128 | if (ret > 0 && !timeout) | 
|---|
| 2129 | return 0; | 
|---|
| 2130 |  | 
|---|
| 2131 | return ret; | 
|---|
| 2132 | } | 
|---|
| 2133 |  | 
|---|
| 2134 | static int print_sched_attr(const struct i915_sched_attr *attr, | 
|---|
| 2135 | char *buf, int x, int len) | 
|---|
| 2136 | { | 
|---|
| 2137 | if (attr->priority == I915_PRIORITY_INVALID) | 
|---|
| 2138 | return x; | 
|---|
| 2139 |  | 
|---|
| 2140 | x += snprintf(buf: buf + x, size: len - x, | 
|---|
| 2141 | fmt: " prio=%d", attr->priority); | 
|---|
| 2142 |  | 
|---|
| 2143 | return x; | 
|---|
| 2144 | } | 
|---|
| 2145 |  | 
|---|
| 2146 | static char queue_status(const struct i915_request *rq) | 
|---|
| 2147 | { | 
|---|
| 2148 | if (i915_request_is_active(rq)) | 
|---|
| 2149 | return 'E'; | 
|---|
| 2150 |  | 
|---|
| 2151 | if (i915_request_is_ready(rq)) | 
|---|
| 2152 | return intel_engine_is_virtual(engine: rq->engine) ? 'V' : 'R'; | 
|---|
| 2153 |  | 
|---|
| 2154 | return 'U'; | 
|---|
| 2155 | } | 
|---|
| 2156 |  | 
|---|
| 2157 | static const char *run_status(const struct i915_request *rq) | 
|---|
| 2158 | { | 
|---|
| 2159 | if (__i915_request_is_complete(rq)) | 
|---|
| 2160 | return "!"; | 
|---|
| 2161 |  | 
|---|
| 2162 | if (__i915_request_has_started(rq)) | 
|---|
| 2163 | return "*"; | 
|---|
| 2164 |  | 
|---|
| 2165 | if (!i915_sw_fence_signaled(fence: &rq->semaphore)) | 
|---|
| 2166 | return "&"; | 
|---|
| 2167 |  | 
|---|
| 2168 | return ""; | 
|---|
| 2169 | } | 
|---|
| 2170 |  | 
|---|
| 2171 | static const char *fence_status(const struct i915_request *rq) | 
|---|
| 2172 | { | 
|---|
| 2173 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) | 
|---|
| 2174 | return "+"; | 
|---|
| 2175 |  | 
|---|
| 2176 | if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) | 
|---|
| 2177 | return "-"; | 
|---|
| 2178 |  | 
|---|
| 2179 | return ""; | 
|---|
| 2180 | } | 
|---|
| 2181 |  | 
|---|
| 2182 | void i915_request_show(struct drm_printer *m, | 
|---|
| 2183 | const struct i915_request *rq, | 
|---|
| 2184 | const char *prefix, | 
|---|
| 2185 | int indent) | 
|---|
| 2186 | { | 
|---|
| 2187 | const char __rcu *timeline; | 
|---|
| 2188 | char buf[80] = ""; | 
|---|
| 2189 | int x = 0; | 
|---|
| 2190 |  | 
|---|
| 2191 | /* | 
|---|
| 2192 | * The prefix is used to show the queue status, for which we use | 
|---|
| 2193 | * the following flags: | 
|---|
| 2194 | * | 
|---|
| 2195 | *  U [Unready] | 
|---|
| 2196 | *    - initial status upon being submitted by the user | 
|---|
| 2197 | * | 
|---|
| 2198 | *    - the request is not ready for execution as it is waiting | 
|---|
| 2199 | *      for external fences | 
|---|
| 2200 | * | 
|---|
| 2201 | *  R [Ready] | 
|---|
| 2202 | *    - all fences the request was waiting on have been signaled, | 
|---|
| 2203 | *      and the request is now ready for execution and will be | 
|---|
| 2204 | *      in a backend queue | 
|---|
| 2205 | * | 
|---|
| 2206 | *    - a ready request may still need to wait on semaphores | 
|---|
| 2207 | *      [internal fences] | 
|---|
| 2208 | * | 
|---|
| 2209 | *  V [Ready/virtual] | 
|---|
| 2210 | *    - same as ready, but queued over multiple backends | 
|---|
| 2211 | * | 
|---|
| 2212 | *  E [Executing] | 
|---|
| 2213 | *    - the request has been transferred from the backend queue and | 
|---|
| 2214 | *      submitted for execution on HW | 
|---|
| 2215 | * | 
|---|
| 2216 | *    - a completed request may still be regarded as executing, its | 
|---|
| 2217 | *      status may not be updated until it is retired and removed | 
|---|
| 2218 | *      from the lists | 
|---|
| 2219 | */ | 
|---|
| 2220 |  | 
|---|
| 2221 | x = print_sched_attr(attr: &rq->sched.attr, buf, x, len: sizeof(buf)); | 
|---|
| 2222 |  | 
|---|
| 2223 | rcu_read_lock(); | 
|---|
| 2224 | timeline = dma_fence_timeline_name(fence: (struct dma_fence *)&rq->fence); | 
|---|
| 2225 | drm_printf(p: m, f: "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", | 
|---|
| 2226 | prefix, indent, "                ", | 
|---|
| 2227 | queue_status(rq), | 
|---|
| 2228 | rq->fence.context, rq->fence.seqno, | 
|---|
| 2229 | run_status(rq), | 
|---|
| 2230 | fence_status(rq), | 
|---|
| 2231 | buf, | 
|---|
| 2232 | jiffies_to_msecs(j: jiffies - rq->emitted_jiffies), | 
|---|
| 2233 | rcu_dereference(timeline)); | 
|---|
| 2234 | rcu_read_unlock(); | 
|---|
| 2235 | } | 
|---|
| 2236 |  | 
|---|
| 2237 | static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) | 
|---|
| 2238 | { | 
|---|
| 2239 | u32 ring = ENGINE_READ(engine, RING_START); | 
|---|
| 2240 |  | 
|---|
| 2241 | return ring == i915_ggtt_offset(vma: rq->ring->vma); | 
|---|
| 2242 | } | 
|---|
| 2243 |  | 
|---|
| 2244 | static bool match_ring(struct i915_request *rq) | 
|---|
| 2245 | { | 
|---|
| 2246 | struct intel_engine_cs *engine; | 
|---|
| 2247 | bool found; | 
|---|
| 2248 | int i; | 
|---|
| 2249 |  | 
|---|
| 2250 | if (!intel_engine_is_virtual(engine: rq->engine)) | 
|---|
| 2251 | return engine_match_ring(engine: rq->engine, rq); | 
|---|
| 2252 |  | 
|---|
| 2253 | found = false; | 
|---|
| 2254 | i = 0; | 
|---|
| 2255 | while ((engine = intel_engine_get_sibling(engine: rq->engine, sibling: i++))) { | 
|---|
| 2256 | found = engine_match_ring(engine, rq); | 
|---|
| 2257 | if (found) | 
|---|
| 2258 | break; | 
|---|
| 2259 | } | 
|---|
| 2260 |  | 
|---|
| 2261 | return found; | 
|---|
| 2262 | } | 
|---|
| 2263 |  | 
|---|
| 2264 | enum i915_request_state i915_test_request_state(struct i915_request *rq) | 
|---|
| 2265 | { | 
|---|
| 2266 | if (i915_request_completed(rq)) | 
|---|
| 2267 | return I915_REQUEST_COMPLETE; | 
|---|
| 2268 |  | 
|---|
| 2269 | if (!i915_request_started(rq)) | 
|---|
| 2270 | return I915_REQUEST_PENDING; | 
|---|
| 2271 |  | 
|---|
| 2272 | if (match_ring(rq)) | 
|---|
| 2273 | return I915_REQUEST_ACTIVE; | 
|---|
| 2274 |  | 
|---|
| 2275 | return I915_REQUEST_QUEUED; | 
|---|
| 2276 | } | 
|---|
| 2277 |  | 
|---|
| 2278 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) | 
|---|
| 2279 | #include "selftests/mock_request.c" | 
|---|
| 2280 | #include "selftests/i915_request.c" | 
|---|
| 2281 | #endif | 
|---|
| 2282 |  | 
|---|
| 2283 | void i915_request_module_exit(void) | 
|---|
| 2284 | { | 
|---|
| 2285 | kmem_cache_destroy(s: slab_execute_cbs); | 
|---|
| 2286 | kmem_cache_destroy(s: slab_requests); | 
|---|
| 2287 | } | 
|---|
| 2288 |  | 
|---|
| 2289 | int __init i915_request_module_init(void) | 
|---|
| 2290 | { | 
|---|
| 2291 | slab_requests = | 
|---|
| 2292 | kmem_cache_create( "i915_request", | 
|---|
| 2293 | sizeof(struct i915_request), | 
|---|
| 2294 | __alignof__(struct i915_request), | 
|---|
| 2295 | SLAB_HWCACHE_ALIGN | | 
|---|
| 2296 | SLAB_RECLAIM_ACCOUNT | | 
|---|
| 2297 | SLAB_TYPESAFE_BY_RCU, | 
|---|
| 2298 | __i915_request_ctor); | 
|---|
| 2299 | if (!slab_requests) | 
|---|
| 2300 | return -ENOMEM; | 
|---|
| 2301 |  | 
|---|
| 2302 | slab_execute_cbs = KMEM_CACHE(execute_cb, | 
|---|
| 2303 | SLAB_HWCACHE_ALIGN | | 
|---|
| 2304 | SLAB_RECLAIM_ACCOUNT | | 
|---|
| 2305 | SLAB_TYPESAFE_BY_RCU); | 
|---|
| 2306 | if (!slab_execute_cbs) | 
|---|
| 2307 | goto err_requests; | 
|---|
| 2308 |  | 
|---|
| 2309 | return 0; | 
|---|
| 2310 |  | 
|---|
| 2311 | err_requests: | 
|---|
| 2312 | kmem_cache_destroy(s: slab_requests); | 
|---|
| 2313 | return -ENOMEM; | 
|---|
| 2314 | } | 
|---|
| 2315 |  | 
|---|