| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/fs/buffer.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds |
| 6 | */ |
| 7 | |
| 8 | /* |
| 9 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 |
| 10 | * |
| 11 | * Removed a lot of unnecessary code and simplified things now that |
| 12 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 |
| 13 | * |
| 14 | * Speed up hash, lru, and free list operations. Use gfp() for allocating |
| 15 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM |
| 16 | * |
| 17 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK |
| 18 | * |
| 19 | * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> |
| 20 | */ |
| 21 | |
| 22 | #include <linux/kernel.h> |
| 23 | #include <linux/sched/signal.h> |
| 24 | #include <linux/syscalls.h> |
| 25 | #include <linux/fs.h> |
| 26 | #include <linux/iomap.h> |
| 27 | #include <linux/mm.h> |
| 28 | #include <linux/percpu.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/capability.h> |
| 31 | #include <linux/blkdev.h> |
| 32 | #include <linux/file.h> |
| 33 | #include <linux/quotaops.h> |
| 34 | #include <linux/highmem.h> |
| 35 | #include <linux/export.h> |
| 36 | #include <linux/backing-dev.h> |
| 37 | #include <linux/writeback.h> |
| 38 | #include <linux/hash.h> |
| 39 | #include <linux/suspend.h> |
| 40 | #include <linux/buffer_head.h> |
| 41 | #include <linux/task_io_accounting_ops.h> |
| 42 | #include <linux/bio.h> |
| 43 | #include <linux/cpu.h> |
| 44 | #include <linux/bitops.h> |
| 45 | #include <linux/mpage.h> |
| 46 | #include <linux/bit_spinlock.h> |
| 47 | #include <linux/pagevec.h> |
| 48 | #include <linux/sched/mm.h> |
| 49 | #include <trace/events/block.h> |
| 50 | #include <linux/fscrypt.h> |
| 51 | #include <linux/fsverity.h> |
| 52 | #include <linux/sched/isolation.h> |
| 53 | |
| 54 | #include "internal.h" |
| 55 | |
| 56 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); |
| 57 | static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, |
| 58 | enum rw_hint hint, struct writeback_control *wbc); |
| 59 | |
| 60 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) |
| 61 | |
| 62 | inline void touch_buffer(struct buffer_head *bh) |
| 63 | { |
| 64 | trace_block_touch_buffer(bh); |
| 65 | folio_mark_accessed(bh->b_folio); |
| 66 | } |
| 67 | EXPORT_SYMBOL(touch_buffer); |
| 68 | |
| 69 | void __lock_buffer(struct buffer_head *bh) |
| 70 | { |
| 71 | wait_on_bit_lock_io(word: &bh->b_state, bit: BH_Lock, TASK_UNINTERRUPTIBLE); |
| 72 | } |
| 73 | EXPORT_SYMBOL(__lock_buffer); |
| 74 | |
| 75 | void unlock_buffer(struct buffer_head *bh) |
| 76 | { |
| 77 | clear_bit_unlock(nr: BH_Lock, addr: &bh->b_state); |
| 78 | smp_mb__after_atomic(); |
| 79 | wake_up_bit(word: &bh->b_state, bit: BH_Lock); |
| 80 | } |
| 81 | EXPORT_SYMBOL(unlock_buffer); |
| 82 | |
| 83 | /* |
| 84 | * Returns if the folio has dirty or writeback buffers. If all the buffers |
| 85 | * are unlocked and clean then the folio_test_dirty information is stale. If |
| 86 | * any of the buffers are locked, it is assumed they are locked for IO. |
| 87 | */ |
| 88 | void buffer_check_dirty_writeback(struct folio *folio, |
| 89 | bool *dirty, bool *writeback) |
| 90 | { |
| 91 | struct buffer_head *head, *bh; |
| 92 | *dirty = false; |
| 93 | *writeback = false; |
| 94 | |
| 95 | BUG_ON(!folio_test_locked(folio)); |
| 96 | |
| 97 | head = folio_buffers(folio); |
| 98 | if (!head) |
| 99 | return; |
| 100 | |
| 101 | if (folio_test_writeback(folio)) |
| 102 | *writeback = true; |
| 103 | |
| 104 | bh = head; |
| 105 | do { |
| 106 | if (buffer_locked(bh)) |
| 107 | *writeback = true; |
| 108 | |
| 109 | if (buffer_dirty(bh)) |
| 110 | *dirty = true; |
| 111 | |
| 112 | bh = bh->b_this_page; |
| 113 | } while (bh != head); |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * Block until a buffer comes unlocked. This doesn't stop it |
| 118 | * from becoming locked again - you have to lock it yourself |
| 119 | * if you want to preserve its state. |
| 120 | */ |
| 121 | void __wait_on_buffer(struct buffer_head * bh) |
| 122 | { |
| 123 | wait_on_bit_io(word: &bh->b_state, bit: BH_Lock, TASK_UNINTERRUPTIBLE); |
| 124 | } |
| 125 | EXPORT_SYMBOL(__wait_on_buffer); |
| 126 | |
| 127 | static void buffer_io_error(struct buffer_head *bh, char *msg) |
| 128 | { |
| 129 | if (!test_bit(BH_Quiet, &bh->b_state)) |
| 130 | printk_ratelimited(KERN_ERR |
| 131 | "Buffer I/O error on dev %pg, logical block %llu%s\n" , |
| 132 | bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); |
| 133 | } |
| 134 | |
| 135 | /* |
| 136 | * End-of-IO handler helper function which does not touch the bh after |
| 137 | * unlocking it. |
| 138 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but |
| 139 | * a race there is benign: unlock_buffer() only use the bh's address for |
| 140 | * hashing after unlocking the buffer, so it doesn't actually touch the bh |
| 141 | * itself. |
| 142 | */ |
| 143 | static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) |
| 144 | { |
| 145 | if (uptodate) { |
| 146 | set_buffer_uptodate(bh); |
| 147 | } else { |
| 148 | /* This happens, due to failed read-ahead attempts. */ |
| 149 | clear_buffer_uptodate(bh); |
| 150 | } |
| 151 | unlock_buffer(bh); |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and |
| 156 | * unlock the buffer. |
| 157 | */ |
| 158 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) |
| 159 | { |
| 160 | put_bh(bh); |
| 161 | __end_buffer_read_notouch(bh, uptodate); |
| 162 | } |
| 163 | EXPORT_SYMBOL(end_buffer_read_sync); |
| 164 | |
| 165 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) |
| 166 | { |
| 167 | if (uptodate) { |
| 168 | set_buffer_uptodate(bh); |
| 169 | } else { |
| 170 | buffer_io_error(bh, msg: ", lost sync page write" ); |
| 171 | mark_buffer_write_io_error(bh); |
| 172 | clear_buffer_uptodate(bh); |
| 173 | } |
| 174 | unlock_buffer(bh); |
| 175 | put_bh(bh); |
| 176 | } |
| 177 | EXPORT_SYMBOL(end_buffer_write_sync); |
| 178 | |
| 179 | static struct buffer_head * |
| 180 | __find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic) |
| 181 | { |
| 182 | struct address_space *bd_mapping = bdev->bd_mapping; |
| 183 | const int blkbits = bd_mapping->host->i_blkbits; |
| 184 | struct buffer_head *ret = NULL; |
| 185 | pgoff_t index; |
| 186 | struct buffer_head *bh; |
| 187 | struct buffer_head *head; |
| 188 | struct folio *folio; |
| 189 | int all_mapped = 1; |
| 190 | static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); |
| 191 | |
| 192 | index = ((loff_t)block << blkbits) / PAGE_SIZE; |
| 193 | folio = __filemap_get_folio(mapping: bd_mapping, index, FGP_ACCESSED, gfp: 0); |
| 194 | if (IS_ERR(ptr: folio)) |
| 195 | goto out; |
| 196 | |
| 197 | /* |
| 198 | * Folio lock protects the buffers. Callers that cannot block |
| 199 | * will fallback to serializing vs try_to_free_buffers() via |
| 200 | * the i_private_lock. |
| 201 | */ |
| 202 | if (atomic) |
| 203 | spin_lock(lock: &bd_mapping->i_private_lock); |
| 204 | else |
| 205 | folio_lock(folio); |
| 206 | |
| 207 | head = folio_buffers(folio); |
| 208 | if (!head) |
| 209 | goto out_unlock; |
| 210 | /* |
| 211 | * Upon a noref migration, the folio lock serializes here; |
| 212 | * otherwise bail. |
| 213 | */ |
| 214 | if (test_bit_acquire(BH_Migrate, &head->b_state)) { |
| 215 | WARN_ON(!atomic); |
| 216 | goto out_unlock; |
| 217 | } |
| 218 | |
| 219 | bh = head; |
| 220 | do { |
| 221 | if (!buffer_mapped(bh)) |
| 222 | all_mapped = 0; |
| 223 | else if (bh->b_blocknr == block) { |
| 224 | ret = bh; |
| 225 | get_bh(bh); |
| 226 | goto out_unlock; |
| 227 | } |
| 228 | bh = bh->b_this_page; |
| 229 | } while (bh != head); |
| 230 | |
| 231 | /* we might be here because some of the buffers on this page are |
| 232 | * not mapped. This is due to various races between |
| 233 | * file io on the block device and getblk. It gets dealt with |
| 234 | * elsewhere, don't buffer_error if we had some unmapped buffers |
| 235 | */ |
| 236 | ratelimit_set_flags(rs: &last_warned, RATELIMIT_MSG_ON_RELEASE); |
| 237 | if (all_mapped && __ratelimit(&last_warned)) { |
| 238 | printk("__find_get_block_slow() failed. block=%llu, " |
| 239 | "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " |
| 240 | "device %pg blocksize: %d\n" , |
| 241 | (unsigned long long)block, |
| 242 | (unsigned long long)bh->b_blocknr, |
| 243 | bh->b_state, bh->b_size, bdev, |
| 244 | 1 << blkbits); |
| 245 | } |
| 246 | out_unlock: |
| 247 | if (atomic) |
| 248 | spin_unlock(lock: &bd_mapping->i_private_lock); |
| 249 | else |
| 250 | folio_unlock(folio); |
| 251 | folio_put(folio); |
| 252 | out: |
| 253 | return ret; |
| 254 | } |
| 255 | |
| 256 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) |
| 257 | { |
| 258 | unsigned long flags; |
| 259 | struct buffer_head *first; |
| 260 | struct buffer_head *tmp; |
| 261 | struct folio *folio; |
| 262 | int folio_uptodate = 1; |
| 263 | |
| 264 | BUG_ON(!buffer_async_read(bh)); |
| 265 | |
| 266 | folio = bh->b_folio; |
| 267 | if (uptodate) { |
| 268 | set_buffer_uptodate(bh); |
| 269 | } else { |
| 270 | clear_buffer_uptodate(bh); |
| 271 | buffer_io_error(bh, msg: ", async page read" ); |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * Be _very_ careful from here on. Bad things can happen if |
| 276 | * two buffer heads end IO at almost the same time and both |
| 277 | * decide that the page is now completely done. |
| 278 | */ |
| 279 | first = folio_buffers(folio); |
| 280 | spin_lock_irqsave(&first->b_uptodate_lock, flags); |
| 281 | clear_buffer_async_read(bh); |
| 282 | unlock_buffer(bh); |
| 283 | tmp = bh; |
| 284 | do { |
| 285 | if (!buffer_uptodate(bh: tmp)) |
| 286 | folio_uptodate = 0; |
| 287 | if (buffer_async_read(bh: tmp)) { |
| 288 | BUG_ON(!buffer_locked(tmp)); |
| 289 | goto still_busy; |
| 290 | } |
| 291 | tmp = tmp->b_this_page; |
| 292 | } while (tmp != bh); |
| 293 | spin_unlock_irqrestore(lock: &first->b_uptodate_lock, flags); |
| 294 | |
| 295 | folio_end_read(folio, success: folio_uptodate); |
| 296 | return; |
| 297 | |
| 298 | still_busy: |
| 299 | spin_unlock_irqrestore(lock: &first->b_uptodate_lock, flags); |
| 300 | } |
| 301 | |
| 302 | struct postprocess_bh_ctx { |
| 303 | struct work_struct work; |
| 304 | struct buffer_head *bh; |
| 305 | }; |
| 306 | |
| 307 | static void verify_bh(struct work_struct *work) |
| 308 | { |
| 309 | struct postprocess_bh_ctx *ctx = |
| 310 | container_of(work, struct postprocess_bh_ctx, work); |
| 311 | struct buffer_head *bh = ctx->bh; |
| 312 | bool valid; |
| 313 | |
| 314 | valid = fsverity_verify_blocks(folio: bh->b_folio, len: bh->b_size, offset: bh_offset(bh)); |
| 315 | end_buffer_async_read(bh, uptodate: valid); |
| 316 | kfree(objp: ctx); |
| 317 | } |
| 318 | |
| 319 | static bool need_fsverity(struct buffer_head *bh) |
| 320 | { |
| 321 | struct folio *folio = bh->b_folio; |
| 322 | struct inode *inode = folio->mapping->host; |
| 323 | |
| 324 | return fsverity_active(inode) && |
| 325 | /* needed by ext4 */ |
| 326 | folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); |
| 327 | } |
| 328 | |
| 329 | static void decrypt_bh(struct work_struct *work) |
| 330 | { |
| 331 | struct postprocess_bh_ctx *ctx = |
| 332 | container_of(work, struct postprocess_bh_ctx, work); |
| 333 | struct buffer_head *bh = ctx->bh; |
| 334 | int err; |
| 335 | |
| 336 | err = fscrypt_decrypt_pagecache_blocks(folio: bh->b_folio, len: bh->b_size, |
| 337 | offs: bh_offset(bh)); |
| 338 | if (err == 0 && need_fsverity(bh)) { |
| 339 | /* |
| 340 | * We use different work queues for decryption and for verity |
| 341 | * because verity may require reading metadata pages that need |
| 342 | * decryption, and we shouldn't recurse to the same workqueue. |
| 343 | */ |
| 344 | INIT_WORK(&ctx->work, verify_bh); |
| 345 | fsverity_enqueue_verify_work(work: &ctx->work); |
| 346 | return; |
| 347 | } |
| 348 | end_buffer_async_read(bh, uptodate: err == 0); |
| 349 | kfree(objp: ctx); |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * I/O completion handler for block_read_full_folio() - pages |
| 354 | * which come unlocked at the end of I/O. |
| 355 | */ |
| 356 | static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) |
| 357 | { |
| 358 | struct inode *inode = bh->b_folio->mapping->host; |
| 359 | bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); |
| 360 | bool verify = need_fsverity(bh); |
| 361 | |
| 362 | /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ |
| 363 | if (uptodate && (decrypt || verify)) { |
| 364 | struct postprocess_bh_ctx *ctx = |
| 365 | kmalloc(sizeof(*ctx), GFP_ATOMIC); |
| 366 | |
| 367 | if (ctx) { |
| 368 | ctx->bh = bh; |
| 369 | if (decrypt) { |
| 370 | INIT_WORK(&ctx->work, decrypt_bh); |
| 371 | fscrypt_enqueue_decrypt_work(work: &ctx->work); |
| 372 | } else { |
| 373 | INIT_WORK(&ctx->work, verify_bh); |
| 374 | fsverity_enqueue_verify_work(work: &ctx->work); |
| 375 | } |
| 376 | return; |
| 377 | } |
| 378 | uptodate = 0; |
| 379 | } |
| 380 | end_buffer_async_read(bh, uptodate); |
| 381 | } |
| 382 | |
| 383 | /* |
| 384 | * Completion handler for block_write_full_folio() - folios which are unlocked |
| 385 | * during I/O, and which have the writeback flag cleared upon I/O completion. |
| 386 | */ |
| 387 | static void end_buffer_async_write(struct buffer_head *bh, int uptodate) |
| 388 | { |
| 389 | unsigned long flags; |
| 390 | struct buffer_head *first; |
| 391 | struct buffer_head *tmp; |
| 392 | struct folio *folio; |
| 393 | |
| 394 | BUG_ON(!buffer_async_write(bh)); |
| 395 | |
| 396 | folio = bh->b_folio; |
| 397 | if (uptodate) { |
| 398 | set_buffer_uptodate(bh); |
| 399 | } else { |
| 400 | buffer_io_error(bh, msg: ", lost async page write" ); |
| 401 | mark_buffer_write_io_error(bh); |
| 402 | clear_buffer_uptodate(bh); |
| 403 | } |
| 404 | |
| 405 | first = folio_buffers(folio); |
| 406 | spin_lock_irqsave(&first->b_uptodate_lock, flags); |
| 407 | |
| 408 | clear_buffer_async_write(bh); |
| 409 | unlock_buffer(bh); |
| 410 | tmp = bh->b_this_page; |
| 411 | while (tmp != bh) { |
| 412 | if (buffer_async_write(bh: tmp)) { |
| 413 | BUG_ON(!buffer_locked(tmp)); |
| 414 | goto still_busy; |
| 415 | } |
| 416 | tmp = tmp->b_this_page; |
| 417 | } |
| 418 | spin_unlock_irqrestore(lock: &first->b_uptodate_lock, flags); |
| 419 | folio_end_writeback(folio); |
| 420 | return; |
| 421 | |
| 422 | still_busy: |
| 423 | spin_unlock_irqrestore(lock: &first->b_uptodate_lock, flags); |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * If a page's buffers are under async readin (end_buffer_async_read |
| 428 | * completion) then there is a possibility that another thread of |
| 429 | * control could lock one of the buffers after it has completed |
| 430 | * but while some of the other buffers have not completed. This |
| 431 | * locked buffer would confuse end_buffer_async_read() into not unlocking |
| 432 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() |
| 433 | * that this buffer is not under async I/O. |
| 434 | * |
| 435 | * The page comes unlocked when it has no locked buffer_async buffers |
| 436 | * left. |
| 437 | * |
| 438 | * PageLocked prevents anyone starting new async I/O reads any of |
| 439 | * the buffers. |
| 440 | * |
| 441 | * PageWriteback is used to prevent simultaneous writeout of the same |
| 442 | * page. |
| 443 | * |
| 444 | * PageLocked prevents anyone from starting writeback of a page which is |
| 445 | * under read I/O (PageWriteback is only ever set against a locked page). |
| 446 | */ |
| 447 | static void mark_buffer_async_read(struct buffer_head *bh) |
| 448 | { |
| 449 | bh->b_end_io = end_buffer_async_read_io; |
| 450 | set_buffer_async_read(bh); |
| 451 | } |
| 452 | |
| 453 | static void mark_buffer_async_write_endio(struct buffer_head *bh, |
| 454 | bh_end_io_t *handler) |
| 455 | { |
| 456 | bh->b_end_io = handler; |
| 457 | set_buffer_async_write(bh); |
| 458 | } |
| 459 | |
| 460 | void mark_buffer_async_write(struct buffer_head *bh) |
| 461 | { |
| 462 | mark_buffer_async_write_endio(bh, handler: end_buffer_async_write); |
| 463 | } |
| 464 | EXPORT_SYMBOL(mark_buffer_async_write); |
| 465 | |
| 466 | |
| 467 | /* |
| 468 | * fs/buffer.c contains helper functions for buffer-backed address space's |
| 469 | * fsync functions. A common requirement for buffer-based filesystems is |
| 470 | * that certain data from the backing blockdev needs to be written out for |
| 471 | * a successful fsync(). For example, ext2 indirect blocks need to be |
| 472 | * written back and waited upon before fsync() returns. |
| 473 | * |
| 474 | * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), |
| 475 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the |
| 476 | * management of a list of dependent buffers at ->i_mapping->i_private_list. |
| 477 | * |
| 478 | * Locking is a little subtle: try_to_free_buffers() will remove buffers |
| 479 | * from their controlling inode's queue when they are being freed. But |
| 480 | * try_to_free_buffers() will be operating against the *blockdev* mapping |
| 481 | * at the time, not against the S_ISREG file which depends on those buffers. |
| 482 | * So the locking for i_private_list is via the i_private_lock in the address_space |
| 483 | * which backs the buffers. Which is different from the address_space |
| 484 | * against which the buffers are listed. So for a particular address_space, |
| 485 | * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact, |
| 486 | * mapping->i_private_list will always be protected by the backing blockdev's |
| 487 | * ->i_private_lock. |
| 488 | * |
| 489 | * Which introduces a requirement: all buffers on an address_space's |
| 490 | * ->i_private_list must be from the same address_space: the blockdev's. |
| 491 | * |
| 492 | * address_spaces which do not place buffers at ->i_private_list via these |
| 493 | * utility functions are free to use i_private_lock and i_private_list for |
| 494 | * whatever they want. The only requirement is that list_empty(i_private_list) |
| 495 | * be true at clear_inode() time. |
| 496 | * |
| 497 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The |
| 498 | * filesystems should do that. invalidate_inode_buffers() should just go |
| 499 | * BUG_ON(!list_empty). |
| 500 | * |
| 501 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should |
| 502 | * take an address_space, not an inode. And it should be called |
| 503 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being |
| 504 | * queued up. |
| 505 | * |
| 506 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the |
| 507 | * list if it is already on a list. Because if the buffer is on a list, |
| 508 | * it *must* already be on the right one. If not, the filesystem is being |
| 509 | * silly. This will save a ton of locking. But first we have to ensure |
| 510 | * that buffers are taken *off* the old inode's list when they are freed |
| 511 | * (presumably in truncate). That requires careful auditing of all |
| 512 | * filesystems (do it inside bforget()). It could also be done by bringing |
| 513 | * b_inode back. |
| 514 | */ |
| 515 | |
| 516 | /* |
| 517 | * The buffer's backing address_space's i_private_lock must be held |
| 518 | */ |
| 519 | static void __remove_assoc_queue(struct buffer_head *bh) |
| 520 | { |
| 521 | list_del_init(entry: &bh->b_assoc_buffers); |
| 522 | WARN_ON(!bh->b_assoc_map); |
| 523 | bh->b_assoc_map = NULL; |
| 524 | } |
| 525 | |
| 526 | int inode_has_buffers(struct inode *inode) |
| 527 | { |
| 528 | return !list_empty(head: &inode->i_data.i_private_list); |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * osync is designed to support O_SYNC io. It waits synchronously for |
| 533 | * all already-submitted IO to complete, but does not queue any new |
| 534 | * writes to the disk. |
| 535 | * |
| 536 | * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer |
| 537 | * as you dirty the buffers, and then use osync_inode_buffers to wait for |
| 538 | * completion. Any other dirty buffers which are not yet queued for |
| 539 | * write will not be flushed to disk by the osync. |
| 540 | */ |
| 541 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) |
| 542 | { |
| 543 | struct buffer_head *bh; |
| 544 | struct list_head *p; |
| 545 | int err = 0; |
| 546 | |
| 547 | spin_lock(lock); |
| 548 | repeat: |
| 549 | list_for_each_prev(p, list) { |
| 550 | bh = BH_ENTRY(p); |
| 551 | if (buffer_locked(bh)) { |
| 552 | get_bh(bh); |
| 553 | spin_unlock(lock); |
| 554 | wait_on_buffer(bh); |
| 555 | if (!buffer_uptodate(bh)) |
| 556 | err = -EIO; |
| 557 | brelse(bh); |
| 558 | spin_lock(lock); |
| 559 | goto repeat; |
| 560 | } |
| 561 | } |
| 562 | spin_unlock(lock); |
| 563 | return err; |
| 564 | } |
| 565 | |
| 566 | /** |
| 567 | * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers |
| 568 | * @mapping: the mapping which wants those buffers written |
| 569 | * |
| 570 | * Starts I/O against the buffers at mapping->i_private_list, and waits upon |
| 571 | * that I/O. |
| 572 | * |
| 573 | * Basically, this is a convenience function for fsync(). |
| 574 | * @mapping is a file or directory which needs those buffers to be written for |
| 575 | * a successful fsync(). |
| 576 | */ |
| 577 | int sync_mapping_buffers(struct address_space *mapping) |
| 578 | { |
| 579 | struct address_space *buffer_mapping = mapping->i_private_data; |
| 580 | |
| 581 | if (buffer_mapping == NULL || list_empty(head: &mapping->i_private_list)) |
| 582 | return 0; |
| 583 | |
| 584 | return fsync_buffers_list(lock: &buffer_mapping->i_private_lock, |
| 585 | list: &mapping->i_private_list); |
| 586 | } |
| 587 | EXPORT_SYMBOL(sync_mapping_buffers); |
| 588 | |
| 589 | /** |
| 590 | * generic_buffers_fsync_noflush - generic buffer fsync implementation |
| 591 | * for simple filesystems with no inode lock |
| 592 | * |
| 593 | * @file: file to synchronize |
| 594 | * @start: start offset in bytes |
| 595 | * @end: end offset in bytes (inclusive) |
| 596 | * @datasync: only synchronize essential metadata if true |
| 597 | * |
| 598 | * This is a generic implementation of the fsync method for simple |
| 599 | * filesystems which track all non-inode metadata in the buffers list |
| 600 | * hanging off the address_space structure. |
| 601 | */ |
| 602 | int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, |
| 603 | bool datasync) |
| 604 | { |
| 605 | struct inode *inode = file->f_mapping->host; |
| 606 | int err; |
| 607 | int ret; |
| 608 | |
| 609 | err = file_write_and_wait_range(file, start, end); |
| 610 | if (err) |
| 611 | return err; |
| 612 | |
| 613 | ret = sync_mapping_buffers(inode->i_mapping); |
| 614 | if (!(inode->i_state & I_DIRTY_ALL)) |
| 615 | goto out; |
| 616 | if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) |
| 617 | goto out; |
| 618 | |
| 619 | err = sync_inode_metadata(inode, wait: 1); |
| 620 | if (ret == 0) |
| 621 | ret = err; |
| 622 | |
| 623 | out: |
| 624 | /* check and advance again to catch errors after syncing out buffers */ |
| 625 | err = file_check_and_advance_wb_err(file); |
| 626 | if (ret == 0) |
| 627 | ret = err; |
| 628 | return ret; |
| 629 | } |
| 630 | EXPORT_SYMBOL(generic_buffers_fsync_noflush); |
| 631 | |
| 632 | /** |
| 633 | * generic_buffers_fsync - generic buffer fsync implementation |
| 634 | * for simple filesystems with no inode lock |
| 635 | * |
| 636 | * @file: file to synchronize |
| 637 | * @start: start offset in bytes |
| 638 | * @end: end offset in bytes (inclusive) |
| 639 | * @datasync: only synchronize essential metadata if true |
| 640 | * |
| 641 | * This is a generic implementation of the fsync method for simple |
| 642 | * filesystems which track all non-inode metadata in the buffers list |
| 643 | * hanging off the address_space structure. This also makes sure that |
| 644 | * a device cache flush operation is called at the end. |
| 645 | */ |
| 646 | int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, |
| 647 | bool datasync) |
| 648 | { |
| 649 | struct inode *inode = file->f_mapping->host; |
| 650 | int ret; |
| 651 | |
| 652 | ret = generic_buffers_fsync_noflush(file, start, end, datasync); |
| 653 | if (!ret) |
| 654 | ret = blkdev_issue_flush(bdev: inode->i_sb->s_bdev); |
| 655 | return ret; |
| 656 | } |
| 657 | EXPORT_SYMBOL(generic_buffers_fsync); |
| 658 | |
| 659 | /* |
| 660 | * Called when we've recently written block `bblock', and it is known that |
| 661 | * `bblock' was for a buffer_boundary() buffer. This means that the block at |
| 662 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's |
| 663 | * dirty, schedule it for IO. So that indirects merge nicely with their data. |
| 664 | */ |
| 665 | void write_boundary_block(struct block_device *bdev, |
| 666 | sector_t bblock, unsigned blocksize) |
| 667 | { |
| 668 | struct buffer_head *bh; |
| 669 | |
| 670 | bh = __find_get_block_nonatomic(bdev, block: bblock + 1, size: blocksize); |
| 671 | if (bh) { |
| 672 | if (buffer_dirty(bh)) |
| 673 | write_dirty_buffer(bh, op_flags: 0); |
| 674 | put_bh(bh); |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) |
| 679 | { |
| 680 | struct address_space *mapping = inode->i_mapping; |
| 681 | struct address_space *buffer_mapping = bh->b_folio->mapping; |
| 682 | |
| 683 | mark_buffer_dirty(bh); |
| 684 | if (!mapping->i_private_data) { |
| 685 | mapping->i_private_data = buffer_mapping; |
| 686 | } else { |
| 687 | BUG_ON(mapping->i_private_data != buffer_mapping); |
| 688 | } |
| 689 | if (!bh->b_assoc_map) { |
| 690 | spin_lock(lock: &buffer_mapping->i_private_lock); |
| 691 | list_move_tail(list: &bh->b_assoc_buffers, |
| 692 | head: &mapping->i_private_list); |
| 693 | bh->b_assoc_map = mapping; |
| 694 | spin_unlock(lock: &buffer_mapping->i_private_lock); |
| 695 | } |
| 696 | } |
| 697 | EXPORT_SYMBOL(mark_buffer_dirty_inode); |
| 698 | |
| 699 | /** |
| 700 | * block_dirty_folio - Mark a folio as dirty. |
| 701 | * @mapping: The address space containing this folio. |
| 702 | * @folio: The folio to mark dirty. |
| 703 | * |
| 704 | * Filesystems which use buffer_heads can use this function as their |
| 705 | * ->dirty_folio implementation. Some filesystems need to do a little |
| 706 | * work before calling this function. Filesystems which do not use |
| 707 | * buffer_heads should call filemap_dirty_folio() instead. |
| 708 | * |
| 709 | * If the folio has buffers, the uptodate buffers are set dirty, to |
| 710 | * preserve dirty-state coherency between the folio and the buffers. |
| 711 | * Buffers added to a dirty folio are created dirty. |
| 712 | * |
| 713 | * The buffers are dirtied before the folio is dirtied. There's a small |
| 714 | * race window in which writeback may see the folio cleanness but not the |
| 715 | * buffer dirtiness. That's fine. If this code were to set the folio |
| 716 | * dirty before the buffers, writeback could clear the folio dirty flag, |
| 717 | * see a bunch of clean buffers and we'd end up with dirty buffers/clean |
| 718 | * folio on the dirty folio list. |
| 719 | * |
| 720 | * We use i_private_lock to lock against try_to_free_buffers() while |
| 721 | * using the folio's buffer list. This also prevents clean buffers |
| 722 | * being added to the folio after it was set dirty. |
| 723 | * |
| 724 | * Context: May only be called from process context. Does not sleep. |
| 725 | * Caller must ensure that @folio cannot be truncated during this call, |
| 726 | * typically by holding the folio lock or having a page in the folio |
| 727 | * mapped and holding the page table lock. |
| 728 | * |
| 729 | * Return: True if the folio was dirtied; false if it was already dirtied. |
| 730 | */ |
| 731 | bool block_dirty_folio(struct address_space *mapping, struct folio *folio) |
| 732 | { |
| 733 | struct buffer_head *head; |
| 734 | bool newly_dirty; |
| 735 | |
| 736 | spin_lock(lock: &mapping->i_private_lock); |
| 737 | head = folio_buffers(folio); |
| 738 | if (head) { |
| 739 | struct buffer_head *bh = head; |
| 740 | |
| 741 | do { |
| 742 | set_buffer_dirty(bh); |
| 743 | bh = bh->b_this_page; |
| 744 | } while (bh != head); |
| 745 | } |
| 746 | /* |
| 747 | * Lock out page's memcg migration to keep PageDirty |
| 748 | * synchronized with per-memcg dirty page counters. |
| 749 | */ |
| 750 | newly_dirty = !folio_test_set_dirty(folio); |
| 751 | spin_unlock(lock: &mapping->i_private_lock); |
| 752 | |
| 753 | if (newly_dirty) |
| 754 | __folio_mark_dirty(folio, mapping, warn: 1); |
| 755 | |
| 756 | if (newly_dirty) |
| 757 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
| 758 | |
| 759 | return newly_dirty; |
| 760 | } |
| 761 | EXPORT_SYMBOL(block_dirty_folio); |
| 762 | |
| 763 | /* |
| 764 | * Write out and wait upon a list of buffers. |
| 765 | * |
| 766 | * We have conflicting pressures: we want to make sure that all |
| 767 | * initially dirty buffers get waited on, but that any subsequently |
| 768 | * dirtied buffers don't. After all, we don't want fsync to last |
| 769 | * forever if somebody is actively writing to the file. |
| 770 | * |
| 771 | * Do this in two main stages: first we copy dirty buffers to a |
| 772 | * temporary inode list, queueing the writes as we go. Then we clean |
| 773 | * up, waiting for those writes to complete. |
| 774 | * |
| 775 | * During this second stage, any subsequent updates to the file may end |
| 776 | * up refiling the buffer on the original inode's dirty list again, so |
| 777 | * there is a chance we will end up with a buffer queued for write but |
| 778 | * not yet completed on that list. So, as a final cleanup we go through |
| 779 | * the osync code to catch these locked, dirty buffers without requeuing |
| 780 | * any newly dirty buffers for write. |
| 781 | */ |
| 782 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) |
| 783 | { |
| 784 | struct buffer_head *bh; |
| 785 | struct address_space *mapping; |
| 786 | int err = 0, err2; |
| 787 | struct blk_plug plug; |
| 788 | LIST_HEAD(tmp); |
| 789 | |
| 790 | blk_start_plug(&plug); |
| 791 | |
| 792 | spin_lock(lock); |
| 793 | while (!list_empty(head: list)) { |
| 794 | bh = BH_ENTRY(list->next); |
| 795 | mapping = bh->b_assoc_map; |
| 796 | __remove_assoc_queue(bh); |
| 797 | /* Avoid race with mark_buffer_dirty_inode() which does |
| 798 | * a lockless check and we rely on seeing the dirty bit */ |
| 799 | smp_mb(); |
| 800 | if (buffer_dirty(bh) || buffer_locked(bh)) { |
| 801 | list_add(new: &bh->b_assoc_buffers, head: &tmp); |
| 802 | bh->b_assoc_map = mapping; |
| 803 | if (buffer_dirty(bh)) { |
| 804 | get_bh(bh); |
| 805 | spin_unlock(lock); |
| 806 | /* |
| 807 | * Ensure any pending I/O completes so that |
| 808 | * write_dirty_buffer() actually writes the |
| 809 | * current contents - it is a noop if I/O is |
| 810 | * still in flight on potentially older |
| 811 | * contents. |
| 812 | */ |
| 813 | write_dirty_buffer(bh, REQ_SYNC); |
| 814 | |
| 815 | /* |
| 816 | * Kick off IO for the previous mapping. Note |
| 817 | * that we will not run the very last mapping, |
| 818 | * wait_on_buffer() will do that for us |
| 819 | * through sync_buffer(). |
| 820 | */ |
| 821 | brelse(bh); |
| 822 | spin_lock(lock); |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | spin_unlock(lock); |
| 828 | blk_finish_plug(&plug); |
| 829 | spin_lock(lock); |
| 830 | |
| 831 | while (!list_empty(head: &tmp)) { |
| 832 | bh = BH_ENTRY(tmp.prev); |
| 833 | get_bh(bh); |
| 834 | mapping = bh->b_assoc_map; |
| 835 | __remove_assoc_queue(bh); |
| 836 | /* Avoid race with mark_buffer_dirty_inode() which does |
| 837 | * a lockless check and we rely on seeing the dirty bit */ |
| 838 | smp_mb(); |
| 839 | if (buffer_dirty(bh)) { |
| 840 | list_add(new: &bh->b_assoc_buffers, |
| 841 | head: &mapping->i_private_list); |
| 842 | bh->b_assoc_map = mapping; |
| 843 | } |
| 844 | spin_unlock(lock); |
| 845 | wait_on_buffer(bh); |
| 846 | if (!buffer_uptodate(bh)) |
| 847 | err = -EIO; |
| 848 | brelse(bh); |
| 849 | spin_lock(lock); |
| 850 | } |
| 851 | |
| 852 | spin_unlock(lock); |
| 853 | err2 = osync_buffers_list(lock, list); |
| 854 | if (err) |
| 855 | return err; |
| 856 | else |
| 857 | return err2; |
| 858 | } |
| 859 | |
| 860 | /* |
| 861 | * Invalidate any and all dirty buffers on a given inode. We are |
| 862 | * probably unmounting the fs, but that doesn't mean we have already |
| 863 | * done a sync(). Just drop the buffers from the inode list. |
| 864 | * |
| 865 | * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which |
| 866 | * assumes that all the buffers are against the blockdev. |
| 867 | */ |
| 868 | void invalidate_inode_buffers(struct inode *inode) |
| 869 | { |
| 870 | if (inode_has_buffers(inode)) { |
| 871 | struct address_space *mapping = &inode->i_data; |
| 872 | struct list_head *list = &mapping->i_private_list; |
| 873 | struct address_space *buffer_mapping = mapping->i_private_data; |
| 874 | |
| 875 | spin_lock(lock: &buffer_mapping->i_private_lock); |
| 876 | while (!list_empty(head: list)) |
| 877 | __remove_assoc_queue(BH_ENTRY(list->next)); |
| 878 | spin_unlock(lock: &buffer_mapping->i_private_lock); |
| 879 | } |
| 880 | } |
| 881 | EXPORT_SYMBOL(invalidate_inode_buffers); |
| 882 | |
| 883 | /* |
| 884 | * Remove any clean buffers from the inode's buffer list. This is called |
| 885 | * when we're trying to free the inode itself. Those buffers can pin it. |
| 886 | * |
| 887 | * Returns true if all buffers were removed. |
| 888 | */ |
| 889 | int remove_inode_buffers(struct inode *inode) |
| 890 | { |
| 891 | int ret = 1; |
| 892 | |
| 893 | if (inode_has_buffers(inode)) { |
| 894 | struct address_space *mapping = &inode->i_data; |
| 895 | struct list_head *list = &mapping->i_private_list; |
| 896 | struct address_space *buffer_mapping = mapping->i_private_data; |
| 897 | |
| 898 | spin_lock(lock: &buffer_mapping->i_private_lock); |
| 899 | while (!list_empty(head: list)) { |
| 900 | struct buffer_head *bh = BH_ENTRY(list->next); |
| 901 | if (buffer_dirty(bh)) { |
| 902 | ret = 0; |
| 903 | break; |
| 904 | } |
| 905 | __remove_assoc_queue(bh); |
| 906 | } |
| 907 | spin_unlock(lock: &buffer_mapping->i_private_lock); |
| 908 | } |
| 909 | return ret; |
| 910 | } |
| 911 | |
| 912 | /* |
| 913 | * Create the appropriate buffers when given a folio for data area and |
| 914 | * the size of each buffer.. Use the bh->b_this_page linked list to |
| 915 | * follow the buffers created. Return NULL if unable to create more |
| 916 | * buffers. |
| 917 | * |
| 918 | * The retry flag is used to differentiate async IO (paging, swapping) |
| 919 | * which may not fail from ordinary buffer allocations. |
| 920 | */ |
| 921 | struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, |
| 922 | gfp_t gfp) |
| 923 | { |
| 924 | struct buffer_head *bh, *head; |
| 925 | long offset; |
| 926 | struct mem_cgroup *memcg, *old_memcg; |
| 927 | |
| 928 | /* The folio lock pins the memcg */ |
| 929 | memcg = folio_memcg(folio); |
| 930 | old_memcg = set_active_memcg(memcg); |
| 931 | |
| 932 | head = NULL; |
| 933 | offset = folio_size(folio); |
| 934 | while ((offset -= size) >= 0) { |
| 935 | bh = alloc_buffer_head(gfp_flags: gfp); |
| 936 | if (!bh) |
| 937 | goto no_grow; |
| 938 | |
| 939 | bh->b_this_page = head; |
| 940 | bh->b_blocknr = -1; |
| 941 | head = bh; |
| 942 | |
| 943 | bh->b_size = size; |
| 944 | |
| 945 | /* Link the buffer to its folio */ |
| 946 | folio_set_bh(bh, folio, offset); |
| 947 | } |
| 948 | out: |
| 949 | set_active_memcg(old_memcg); |
| 950 | return head; |
| 951 | /* |
| 952 | * In case anything failed, we just free everything we got. |
| 953 | */ |
| 954 | no_grow: |
| 955 | if (head) { |
| 956 | do { |
| 957 | bh = head; |
| 958 | head = head->b_this_page; |
| 959 | free_buffer_head(bh); |
| 960 | } while (head); |
| 961 | } |
| 962 | |
| 963 | goto out; |
| 964 | } |
| 965 | EXPORT_SYMBOL_GPL(folio_alloc_buffers); |
| 966 | |
| 967 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size) |
| 968 | { |
| 969 | gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; |
| 970 | |
| 971 | return folio_alloc_buffers(page_folio(page), size, gfp); |
| 972 | } |
| 973 | EXPORT_SYMBOL_GPL(alloc_page_buffers); |
| 974 | |
| 975 | static inline void link_dev_buffers(struct folio *folio, |
| 976 | struct buffer_head *head) |
| 977 | { |
| 978 | struct buffer_head *bh, *tail; |
| 979 | |
| 980 | bh = head; |
| 981 | do { |
| 982 | tail = bh; |
| 983 | bh = bh->b_this_page; |
| 984 | } while (bh); |
| 985 | tail->b_this_page = head; |
| 986 | folio_attach_private(folio, data: head); |
| 987 | } |
| 988 | |
| 989 | static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) |
| 990 | { |
| 991 | sector_t retval = ~((sector_t)0); |
| 992 | loff_t sz = bdev_nr_bytes(bdev); |
| 993 | |
| 994 | if (sz) { |
| 995 | unsigned int sizebits = blksize_bits(size); |
| 996 | retval = (sz >> sizebits); |
| 997 | } |
| 998 | return retval; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * Initialise the state of a blockdev folio's buffers. |
| 1003 | */ |
| 1004 | static sector_t folio_init_buffers(struct folio *folio, |
| 1005 | struct block_device *bdev, unsigned size) |
| 1006 | { |
| 1007 | struct buffer_head *head = folio_buffers(folio); |
| 1008 | struct buffer_head *bh = head; |
| 1009 | bool uptodate = folio_test_uptodate(folio); |
| 1010 | sector_t block = div_u64(dividend: folio_pos(folio), divisor: size); |
| 1011 | sector_t end_block = blkdev_max_block(bdev, size); |
| 1012 | |
| 1013 | do { |
| 1014 | if (!buffer_mapped(bh)) { |
| 1015 | bh->b_end_io = NULL; |
| 1016 | bh->b_private = NULL; |
| 1017 | bh->b_bdev = bdev; |
| 1018 | bh->b_blocknr = block; |
| 1019 | if (uptodate) |
| 1020 | set_buffer_uptodate(bh); |
| 1021 | if (block < end_block) |
| 1022 | set_buffer_mapped(bh); |
| 1023 | } |
| 1024 | block++; |
| 1025 | bh = bh->b_this_page; |
| 1026 | } while (bh != head); |
| 1027 | |
| 1028 | /* |
| 1029 | * Caller needs to validate requested block against end of device. |
| 1030 | */ |
| 1031 | return end_block; |
| 1032 | } |
| 1033 | |
| 1034 | /* |
| 1035 | * Create the page-cache folio that contains the requested block. |
| 1036 | * |
| 1037 | * This is used purely for blockdev mappings. |
| 1038 | * |
| 1039 | * Returns false if we have a failure which cannot be cured by retrying |
| 1040 | * without sleeping. Returns true if we succeeded, or the caller should retry. |
| 1041 | */ |
| 1042 | static bool grow_dev_folio(struct block_device *bdev, sector_t block, |
| 1043 | pgoff_t index, unsigned size, gfp_t gfp) |
| 1044 | { |
| 1045 | struct address_space *mapping = bdev->bd_mapping; |
| 1046 | struct folio *folio; |
| 1047 | struct buffer_head *bh; |
| 1048 | sector_t end_block = 0; |
| 1049 | |
| 1050 | folio = __filemap_get_folio(mapping, index, |
| 1051 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); |
| 1052 | if (IS_ERR(ptr: folio)) |
| 1053 | return false; |
| 1054 | |
| 1055 | bh = folio_buffers(folio); |
| 1056 | if (bh) { |
| 1057 | if (bh->b_size == size) { |
| 1058 | end_block = folio_init_buffers(folio, bdev, size); |
| 1059 | goto unlock; |
| 1060 | } |
| 1061 | |
| 1062 | /* |
| 1063 | * Retrying may succeed; for example the folio may finish |
| 1064 | * writeback, or buffers may be cleaned. This should not |
| 1065 | * happen very often; maybe we have old buffers attached to |
| 1066 | * this blockdev's page cache and we're trying to change |
| 1067 | * the block size? |
| 1068 | */ |
| 1069 | if (!try_to_free_buffers(folio)) { |
| 1070 | end_block = ~0ULL; |
| 1071 | goto unlock; |
| 1072 | } |
| 1073 | } |
| 1074 | |
| 1075 | bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); |
| 1076 | if (!bh) |
| 1077 | goto unlock; |
| 1078 | |
| 1079 | /* |
| 1080 | * Link the folio to the buffers and initialise them. Take the |
| 1081 | * lock to be atomic wrt __find_get_block(), which does not |
| 1082 | * run under the folio lock. |
| 1083 | */ |
| 1084 | spin_lock(lock: &mapping->i_private_lock); |
| 1085 | link_dev_buffers(folio, head: bh); |
| 1086 | end_block = folio_init_buffers(folio, bdev, size); |
| 1087 | spin_unlock(lock: &mapping->i_private_lock); |
| 1088 | unlock: |
| 1089 | folio_unlock(folio); |
| 1090 | folio_put(folio); |
| 1091 | return block < end_block; |
| 1092 | } |
| 1093 | |
| 1094 | /* |
| 1095 | * Create buffers for the specified block device block's folio. If |
| 1096 | * that folio was dirty, the buffers are set dirty also. Returns false |
| 1097 | * if we've hit a permanent error. |
| 1098 | */ |
| 1099 | static bool grow_buffers(struct block_device *bdev, sector_t block, |
| 1100 | unsigned size, gfp_t gfp) |
| 1101 | { |
| 1102 | loff_t pos; |
| 1103 | |
| 1104 | /* |
| 1105 | * Check for a block which lies outside our maximum possible |
| 1106 | * pagecache index. |
| 1107 | */ |
| 1108 | if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { |
| 1109 | printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n" , |
| 1110 | __func__, (unsigned long long)block, |
| 1111 | bdev); |
| 1112 | return false; |
| 1113 | } |
| 1114 | |
| 1115 | /* Create a folio with the proper size buffers */ |
| 1116 | return grow_dev_folio(bdev, block, index: pos / PAGE_SIZE, size, gfp); |
| 1117 | } |
| 1118 | |
| 1119 | static struct buffer_head * |
| 1120 | __getblk_slow(struct block_device *bdev, sector_t block, |
| 1121 | unsigned size, gfp_t gfp) |
| 1122 | { |
| 1123 | bool blocking = gfpflags_allow_blocking(gfp_flags: gfp); |
| 1124 | |
| 1125 | if (WARN_ON_ONCE(!IS_ALIGNED(size, bdev_logical_block_size(bdev)))) { |
| 1126 | printk(KERN_ERR "getblk(): block size %d not aligned to logical block size %d\n" , |
| 1127 | size, bdev_logical_block_size(bdev)); |
| 1128 | return NULL; |
| 1129 | } |
| 1130 | |
| 1131 | for (;;) { |
| 1132 | struct buffer_head *bh; |
| 1133 | |
| 1134 | if (!grow_buffers(bdev, block, size, gfp)) |
| 1135 | return NULL; |
| 1136 | |
| 1137 | if (blocking) |
| 1138 | bh = __find_get_block_nonatomic(bdev, block, size); |
| 1139 | else |
| 1140 | bh = __find_get_block(bdev, block, size); |
| 1141 | if (bh) |
| 1142 | return bh; |
| 1143 | } |
| 1144 | } |
| 1145 | |
| 1146 | /* |
| 1147 | * The relationship between dirty buffers and dirty pages: |
| 1148 | * |
| 1149 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and |
| 1150 | * the page is tagged dirty in the page cache. |
| 1151 | * |
| 1152 | * At all times, the dirtiness of the buffers represents the dirtiness of |
| 1153 | * subsections of the page. If the page has buffers, the page dirty bit is |
| 1154 | * merely a hint about the true dirty state. |
| 1155 | * |
| 1156 | * When a page is set dirty in its entirety, all its buffers are marked dirty |
| 1157 | * (if the page has buffers). |
| 1158 | * |
| 1159 | * When a buffer is marked dirty, its page is dirtied, but the page's other |
| 1160 | * buffers are not. |
| 1161 | * |
| 1162 | * Also. When blockdev buffers are explicitly read with bread(), they |
| 1163 | * individually become uptodate. But their backing page remains not |
| 1164 | * uptodate - even if all of its buffers are uptodate. A subsequent |
| 1165 | * block_read_full_folio() against that folio will discover all the uptodate |
| 1166 | * buffers, will set the folio uptodate and will perform no I/O. |
| 1167 | */ |
| 1168 | |
| 1169 | /** |
| 1170 | * mark_buffer_dirty - mark a buffer_head as needing writeout |
| 1171 | * @bh: the buffer_head to mark dirty |
| 1172 | * |
| 1173 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set |
| 1174 | * its backing page dirty, then tag the page as dirty in the page cache |
| 1175 | * and then attach the address_space's inode to its superblock's dirty |
| 1176 | * inode list. |
| 1177 | * |
| 1178 | * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock, |
| 1179 | * i_pages lock and mapping->host->i_lock. |
| 1180 | */ |
| 1181 | void mark_buffer_dirty(struct buffer_head *bh) |
| 1182 | { |
| 1183 | WARN_ON_ONCE(!buffer_uptodate(bh)); |
| 1184 | |
| 1185 | trace_block_dirty_buffer(bh); |
| 1186 | |
| 1187 | /* |
| 1188 | * Very *carefully* optimize the it-is-already-dirty case. |
| 1189 | * |
| 1190 | * Don't let the final "is it dirty" escape to before we |
| 1191 | * perhaps modified the buffer. |
| 1192 | */ |
| 1193 | if (buffer_dirty(bh)) { |
| 1194 | smp_mb(); |
| 1195 | if (buffer_dirty(bh)) |
| 1196 | return; |
| 1197 | } |
| 1198 | |
| 1199 | if (!test_set_buffer_dirty(bh)) { |
| 1200 | struct folio *folio = bh->b_folio; |
| 1201 | struct address_space *mapping = NULL; |
| 1202 | |
| 1203 | if (!folio_test_set_dirty(folio)) { |
| 1204 | mapping = folio->mapping; |
| 1205 | if (mapping) |
| 1206 | __folio_mark_dirty(folio, mapping, warn: 0); |
| 1207 | } |
| 1208 | if (mapping) |
| 1209 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
| 1210 | } |
| 1211 | } |
| 1212 | EXPORT_SYMBOL(mark_buffer_dirty); |
| 1213 | |
| 1214 | void mark_buffer_write_io_error(struct buffer_head *bh) |
| 1215 | { |
| 1216 | set_buffer_write_io_error(bh); |
| 1217 | /* FIXME: do we need to set this in both places? */ |
| 1218 | if (bh->b_folio && bh->b_folio->mapping) |
| 1219 | mapping_set_error(mapping: bh->b_folio->mapping, error: -EIO); |
| 1220 | if (bh->b_assoc_map) |
| 1221 | mapping_set_error(mapping: bh->b_assoc_map, error: -EIO); |
| 1222 | } |
| 1223 | EXPORT_SYMBOL(mark_buffer_write_io_error); |
| 1224 | |
| 1225 | /** |
| 1226 | * __brelse - Release a buffer. |
| 1227 | * @bh: The buffer to release. |
| 1228 | * |
| 1229 | * This variant of brelse() can be called if @bh is guaranteed to not be NULL. |
| 1230 | */ |
| 1231 | void __brelse(struct buffer_head *bh) |
| 1232 | { |
| 1233 | if (atomic_read(v: &bh->b_count)) { |
| 1234 | put_bh(bh); |
| 1235 | return; |
| 1236 | } |
| 1237 | WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n" ); |
| 1238 | } |
| 1239 | EXPORT_SYMBOL(__brelse); |
| 1240 | |
| 1241 | /** |
| 1242 | * __bforget - Discard any dirty data in a buffer. |
| 1243 | * @bh: The buffer to forget. |
| 1244 | * |
| 1245 | * This variant of bforget() can be called if @bh is guaranteed to not |
| 1246 | * be NULL. |
| 1247 | */ |
| 1248 | void __bforget(struct buffer_head *bh) |
| 1249 | { |
| 1250 | clear_buffer_dirty(bh); |
| 1251 | if (bh->b_assoc_map) { |
| 1252 | struct address_space *buffer_mapping = bh->b_folio->mapping; |
| 1253 | |
| 1254 | spin_lock(lock: &buffer_mapping->i_private_lock); |
| 1255 | list_del_init(entry: &bh->b_assoc_buffers); |
| 1256 | bh->b_assoc_map = NULL; |
| 1257 | spin_unlock(lock: &buffer_mapping->i_private_lock); |
| 1258 | } |
| 1259 | __brelse(bh); |
| 1260 | } |
| 1261 | EXPORT_SYMBOL(__bforget); |
| 1262 | |
| 1263 | static struct buffer_head *__bread_slow(struct buffer_head *bh) |
| 1264 | { |
| 1265 | lock_buffer(bh); |
| 1266 | if (buffer_uptodate(bh)) { |
| 1267 | unlock_buffer(bh); |
| 1268 | return bh; |
| 1269 | } else { |
| 1270 | get_bh(bh); |
| 1271 | bh->b_end_io = end_buffer_read_sync; |
| 1272 | submit_bh(REQ_OP_READ, bh); |
| 1273 | wait_on_buffer(bh); |
| 1274 | if (buffer_uptodate(bh)) |
| 1275 | return bh; |
| 1276 | } |
| 1277 | brelse(bh); |
| 1278 | return NULL; |
| 1279 | } |
| 1280 | |
| 1281 | /* |
| 1282 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). |
| 1283 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their |
| 1284 | * refcount elevated by one when they're in an LRU. A buffer can only appear |
| 1285 | * once in a particular CPU's LRU. A single buffer can be present in multiple |
| 1286 | * CPU's LRUs at the same time. |
| 1287 | * |
| 1288 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and |
| 1289 | * sb_find_get_block(). |
| 1290 | * |
| 1291 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use |
| 1292 | * a local interrupt disable for that. |
| 1293 | */ |
| 1294 | |
| 1295 | #define BH_LRU_SIZE 16 |
| 1296 | |
| 1297 | struct bh_lru { |
| 1298 | struct buffer_head *bhs[BH_LRU_SIZE]; |
| 1299 | }; |
| 1300 | |
| 1301 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; |
| 1302 | |
| 1303 | #ifdef CONFIG_SMP |
| 1304 | #define bh_lru_lock() local_irq_disable() |
| 1305 | #define bh_lru_unlock() local_irq_enable() |
| 1306 | #else |
| 1307 | #define bh_lru_lock() preempt_disable() |
| 1308 | #define bh_lru_unlock() preempt_enable() |
| 1309 | #endif |
| 1310 | |
| 1311 | static inline void check_irqs_on(void) |
| 1312 | { |
| 1313 | #ifdef irqs_disabled |
| 1314 | BUG_ON(irqs_disabled()); |
| 1315 | #endif |
| 1316 | } |
| 1317 | |
| 1318 | /* |
| 1319 | * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is |
| 1320 | * inserted at the front, and the buffer_head at the back if any is evicted. |
| 1321 | * Or, if already in the LRU it is moved to the front. |
| 1322 | */ |
| 1323 | static void bh_lru_install(struct buffer_head *bh) |
| 1324 | { |
| 1325 | struct buffer_head *evictee = bh; |
| 1326 | struct bh_lru *b; |
| 1327 | int i; |
| 1328 | |
| 1329 | check_irqs_on(); |
| 1330 | bh_lru_lock(); |
| 1331 | |
| 1332 | /* |
| 1333 | * the refcount of buffer_head in bh_lru prevents dropping the |
| 1334 | * attached page(i.e., try_to_free_buffers) so it could cause |
| 1335 | * failing page migration. |
| 1336 | * Skip putting upcoming bh into bh_lru until migration is done. |
| 1337 | */ |
| 1338 | if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { |
| 1339 | bh_lru_unlock(); |
| 1340 | return; |
| 1341 | } |
| 1342 | |
| 1343 | b = this_cpu_ptr(&bh_lrus); |
| 1344 | for (i = 0; i < BH_LRU_SIZE; i++) { |
| 1345 | swap(evictee, b->bhs[i]); |
| 1346 | if (evictee == bh) { |
| 1347 | bh_lru_unlock(); |
| 1348 | return; |
| 1349 | } |
| 1350 | } |
| 1351 | |
| 1352 | get_bh(bh); |
| 1353 | bh_lru_unlock(); |
| 1354 | brelse(bh: evictee); |
| 1355 | } |
| 1356 | |
| 1357 | /* |
| 1358 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. |
| 1359 | */ |
| 1360 | static struct buffer_head * |
| 1361 | lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) |
| 1362 | { |
| 1363 | struct buffer_head *ret = NULL; |
| 1364 | unsigned int i; |
| 1365 | |
| 1366 | check_irqs_on(); |
| 1367 | bh_lru_lock(); |
| 1368 | if (cpu_is_isolated(smp_processor_id())) { |
| 1369 | bh_lru_unlock(); |
| 1370 | return NULL; |
| 1371 | } |
| 1372 | for (i = 0; i < BH_LRU_SIZE; i++) { |
| 1373 | struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); |
| 1374 | |
| 1375 | if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && |
| 1376 | bh->b_size == size) { |
| 1377 | if (i) { |
| 1378 | while (i) { |
| 1379 | __this_cpu_write(bh_lrus.bhs[i], |
| 1380 | __this_cpu_read(bh_lrus.bhs[i - 1])); |
| 1381 | i--; |
| 1382 | } |
| 1383 | __this_cpu_write(bh_lrus.bhs[0], bh); |
| 1384 | } |
| 1385 | get_bh(bh); |
| 1386 | ret = bh; |
| 1387 | break; |
| 1388 | } |
| 1389 | } |
| 1390 | bh_lru_unlock(); |
| 1391 | return ret; |
| 1392 | } |
| 1393 | |
| 1394 | /* |
| 1395 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh |
| 1396 | * it in the LRU and mark it as accessed. If it is not present then return |
| 1397 | * NULL. Atomic context callers may also return NULL if the buffer is being |
| 1398 | * migrated; similarly the page is not marked accessed either. |
| 1399 | */ |
| 1400 | static struct buffer_head * |
| 1401 | find_get_block_common(struct block_device *bdev, sector_t block, |
| 1402 | unsigned size, bool atomic) |
| 1403 | { |
| 1404 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); |
| 1405 | |
| 1406 | if (bh == NULL) { |
| 1407 | /* __find_get_block_slow will mark the page accessed */ |
| 1408 | bh = __find_get_block_slow(bdev, block, atomic); |
| 1409 | if (bh) |
| 1410 | bh_lru_install(bh); |
| 1411 | } else |
| 1412 | touch_buffer(bh); |
| 1413 | |
| 1414 | return bh; |
| 1415 | } |
| 1416 | |
| 1417 | struct buffer_head * |
| 1418 | __find_get_block(struct block_device *bdev, sector_t block, unsigned size) |
| 1419 | { |
| 1420 | return find_get_block_common(bdev, block, size, atomic: true); |
| 1421 | } |
| 1422 | EXPORT_SYMBOL(__find_get_block); |
| 1423 | |
| 1424 | /* same as __find_get_block() but allows sleeping contexts */ |
| 1425 | struct buffer_head * |
| 1426 | __find_get_block_nonatomic(struct block_device *bdev, sector_t block, |
| 1427 | unsigned size) |
| 1428 | { |
| 1429 | return find_get_block_common(bdev, block, size, atomic: false); |
| 1430 | } |
| 1431 | EXPORT_SYMBOL(__find_get_block_nonatomic); |
| 1432 | |
| 1433 | /** |
| 1434 | * bdev_getblk - Get a buffer_head in a block device's buffer cache. |
| 1435 | * @bdev: The block device. |
| 1436 | * @block: The block number. |
| 1437 | * @size: The size of buffer_heads for this @bdev. |
| 1438 | * @gfp: The memory allocation flags to use. |
| 1439 | * |
| 1440 | * The returned buffer head has its reference count incremented, but is |
| 1441 | * not locked. The caller should call brelse() when it has finished |
| 1442 | * with the buffer. The buffer may not be uptodate. If needed, the |
| 1443 | * caller can bring it uptodate either by reading it or overwriting it. |
| 1444 | * |
| 1445 | * Return: The buffer head, or NULL if memory could not be allocated. |
| 1446 | */ |
| 1447 | struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, |
| 1448 | unsigned size, gfp_t gfp) |
| 1449 | { |
| 1450 | struct buffer_head *bh; |
| 1451 | |
| 1452 | if (gfpflags_allow_blocking(gfp_flags: gfp)) |
| 1453 | bh = __find_get_block_nonatomic(bdev, block, size); |
| 1454 | else |
| 1455 | bh = __find_get_block(bdev, block, size); |
| 1456 | |
| 1457 | might_alloc(gfp_mask: gfp); |
| 1458 | if (bh) |
| 1459 | return bh; |
| 1460 | |
| 1461 | return __getblk_slow(bdev, block, size, gfp); |
| 1462 | } |
| 1463 | EXPORT_SYMBOL(bdev_getblk); |
| 1464 | |
| 1465 | /* |
| 1466 | * Do async read-ahead on a buffer.. |
| 1467 | */ |
| 1468 | void __breadahead(struct block_device *bdev, sector_t block, unsigned size) |
| 1469 | { |
| 1470 | struct buffer_head *bh = bdev_getblk(bdev, block, size, |
| 1471 | GFP_NOWAIT | __GFP_MOVABLE); |
| 1472 | |
| 1473 | if (likely(bh)) { |
| 1474 | bh_readahead(bh, REQ_RAHEAD); |
| 1475 | brelse(bh); |
| 1476 | } |
| 1477 | } |
| 1478 | EXPORT_SYMBOL(__breadahead); |
| 1479 | |
| 1480 | /** |
| 1481 | * __bread_gfp() - Read a block. |
| 1482 | * @bdev: The block device to read from. |
| 1483 | * @block: Block number in units of block size. |
| 1484 | * @size: The block size of this device in bytes. |
| 1485 | * @gfp: Not page allocation flags; see below. |
| 1486 | * |
| 1487 | * You are not expected to call this function. You should use one of |
| 1488 | * sb_bread(), sb_bread_unmovable() or __bread(). |
| 1489 | * |
| 1490 | * Read a specified block, and return the buffer head that refers to it. |
| 1491 | * If @gfp is 0, the memory will be allocated using the block device's |
| 1492 | * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be |
| 1493 | * allocated from a movable area. Do not pass in a complete set of |
| 1494 | * GFP flags. |
| 1495 | * |
| 1496 | * The returned buffer head has its refcount increased. The caller should |
| 1497 | * call brelse() when it has finished with the buffer. |
| 1498 | * |
| 1499 | * Context: May sleep waiting for I/O. |
| 1500 | * Return: NULL if the block was unreadable. |
| 1501 | */ |
| 1502 | struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block, |
| 1503 | unsigned size, gfp_t gfp) |
| 1504 | { |
| 1505 | struct buffer_head *bh; |
| 1506 | |
| 1507 | gfp |= mapping_gfp_constraint(mapping: bdev->bd_mapping, gfp_mask: ~__GFP_FS); |
| 1508 | |
| 1509 | /* |
| 1510 | * Prefer looping in the allocator rather than here, at least that |
| 1511 | * code knows what it's doing. |
| 1512 | */ |
| 1513 | gfp |= __GFP_NOFAIL; |
| 1514 | |
| 1515 | bh = bdev_getblk(bdev, block, size, gfp); |
| 1516 | |
| 1517 | if (likely(bh) && !buffer_uptodate(bh)) |
| 1518 | bh = __bread_slow(bh); |
| 1519 | return bh; |
| 1520 | } |
| 1521 | EXPORT_SYMBOL(__bread_gfp); |
| 1522 | |
| 1523 | static void __invalidate_bh_lrus(struct bh_lru *b) |
| 1524 | { |
| 1525 | int i; |
| 1526 | |
| 1527 | for (i = 0; i < BH_LRU_SIZE; i++) { |
| 1528 | brelse(bh: b->bhs[i]); |
| 1529 | b->bhs[i] = NULL; |
| 1530 | } |
| 1531 | } |
| 1532 | /* |
| 1533 | * invalidate_bh_lrus() is called rarely - but not only at unmount. |
| 1534 | * This doesn't race because it runs in each cpu either in irq |
| 1535 | * or with preempt disabled. |
| 1536 | */ |
| 1537 | static void invalidate_bh_lru(void *arg) |
| 1538 | { |
| 1539 | struct bh_lru *b = &get_cpu_var(bh_lrus); |
| 1540 | |
| 1541 | __invalidate_bh_lrus(b); |
| 1542 | put_cpu_var(bh_lrus); |
| 1543 | } |
| 1544 | |
| 1545 | bool has_bh_in_lru(int cpu, void *dummy) |
| 1546 | { |
| 1547 | struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); |
| 1548 | int i; |
| 1549 | |
| 1550 | for (i = 0; i < BH_LRU_SIZE; i++) { |
| 1551 | if (b->bhs[i]) |
| 1552 | return true; |
| 1553 | } |
| 1554 | |
| 1555 | return false; |
| 1556 | } |
| 1557 | |
| 1558 | void invalidate_bh_lrus(void) |
| 1559 | { |
| 1560 | on_each_cpu_cond(cond_func: has_bh_in_lru, func: invalidate_bh_lru, NULL, wait: 1); |
| 1561 | } |
| 1562 | EXPORT_SYMBOL_GPL(invalidate_bh_lrus); |
| 1563 | |
| 1564 | /* |
| 1565 | * It's called from workqueue context so we need a bh_lru_lock to close |
| 1566 | * the race with preemption/irq. |
| 1567 | */ |
| 1568 | void invalidate_bh_lrus_cpu(void) |
| 1569 | { |
| 1570 | struct bh_lru *b; |
| 1571 | |
| 1572 | bh_lru_lock(); |
| 1573 | b = this_cpu_ptr(&bh_lrus); |
| 1574 | __invalidate_bh_lrus(b); |
| 1575 | bh_lru_unlock(); |
| 1576 | } |
| 1577 | |
| 1578 | void folio_set_bh(struct buffer_head *bh, struct folio *folio, |
| 1579 | unsigned long offset) |
| 1580 | { |
| 1581 | bh->b_folio = folio; |
| 1582 | BUG_ON(offset >= folio_size(folio)); |
| 1583 | if (folio_test_highmem(folio)) |
| 1584 | /* |
| 1585 | * This catches illegal uses and preserves the offset: |
| 1586 | */ |
| 1587 | bh->b_data = (char *)(0 + offset); |
| 1588 | else |
| 1589 | bh->b_data = folio_address(folio) + offset; |
| 1590 | } |
| 1591 | EXPORT_SYMBOL(folio_set_bh); |
| 1592 | |
| 1593 | /* |
| 1594 | * Called when truncating a buffer on a page completely. |
| 1595 | */ |
| 1596 | |
| 1597 | /* Bits that are cleared during an invalidate */ |
| 1598 | #define BUFFER_FLAGS_DISCARD \ |
| 1599 | (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ |
| 1600 | 1 << BH_Delay | 1 << BH_Unwritten) |
| 1601 | |
| 1602 | static void discard_buffer(struct buffer_head * bh) |
| 1603 | { |
| 1604 | unsigned long b_state; |
| 1605 | |
| 1606 | lock_buffer(bh); |
| 1607 | clear_buffer_dirty(bh); |
| 1608 | bh->b_bdev = NULL; |
| 1609 | b_state = READ_ONCE(bh->b_state); |
| 1610 | do { |
| 1611 | } while (!try_cmpxchg_relaxed(&bh->b_state, &b_state, |
| 1612 | b_state & ~BUFFER_FLAGS_DISCARD)); |
| 1613 | unlock_buffer(bh); |
| 1614 | } |
| 1615 | |
| 1616 | /** |
| 1617 | * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. |
| 1618 | * @folio: The folio which is affected. |
| 1619 | * @offset: start of the range to invalidate |
| 1620 | * @length: length of the range to invalidate |
| 1621 | * |
| 1622 | * block_invalidate_folio() is called when all or part of the folio has been |
| 1623 | * invalidated by a truncate operation. |
| 1624 | * |
| 1625 | * block_invalidate_folio() does not have to release all buffers, but it must |
| 1626 | * ensure that no dirty buffer is left outside @offset and that no I/O |
| 1627 | * is underway against any of the blocks which are outside the truncation |
| 1628 | * point. Because the caller is about to free (and possibly reuse) those |
| 1629 | * blocks on-disk. |
| 1630 | */ |
| 1631 | void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) |
| 1632 | { |
| 1633 | struct buffer_head *head, *bh, *next; |
| 1634 | size_t curr_off = 0; |
| 1635 | size_t stop = length + offset; |
| 1636 | |
| 1637 | BUG_ON(!folio_test_locked(folio)); |
| 1638 | |
| 1639 | /* |
| 1640 | * Check for overflow |
| 1641 | */ |
| 1642 | BUG_ON(stop > folio_size(folio) || stop < length); |
| 1643 | |
| 1644 | head = folio_buffers(folio); |
| 1645 | if (!head) |
| 1646 | return; |
| 1647 | |
| 1648 | bh = head; |
| 1649 | do { |
| 1650 | size_t next_off = curr_off + bh->b_size; |
| 1651 | next = bh->b_this_page; |
| 1652 | |
| 1653 | /* |
| 1654 | * Are we still fully in range ? |
| 1655 | */ |
| 1656 | if (next_off > stop) |
| 1657 | goto out; |
| 1658 | |
| 1659 | /* |
| 1660 | * is this block fully invalidated? |
| 1661 | */ |
| 1662 | if (offset <= curr_off) |
| 1663 | discard_buffer(bh); |
| 1664 | curr_off = next_off; |
| 1665 | bh = next; |
| 1666 | } while (bh != head); |
| 1667 | |
| 1668 | /* |
| 1669 | * We release buffers only if the entire folio is being invalidated. |
| 1670 | * The get_block cached value has been unconditionally invalidated, |
| 1671 | * so real IO is not possible anymore. |
| 1672 | */ |
| 1673 | if (length == folio_size(folio)) |
| 1674 | filemap_release_folio(folio, gfp: 0); |
| 1675 | out: |
| 1676 | folio_clear_mappedtodisk(folio); |
| 1677 | } |
| 1678 | EXPORT_SYMBOL(block_invalidate_folio); |
| 1679 | |
| 1680 | /* |
| 1681 | * We attach and possibly dirty the buffers atomically wrt |
| 1682 | * block_dirty_folio() via i_private_lock. try_to_free_buffers |
| 1683 | * is already excluded via the folio lock. |
| 1684 | */ |
| 1685 | struct buffer_head *create_empty_buffers(struct folio *folio, |
| 1686 | unsigned long blocksize, unsigned long b_state) |
| 1687 | { |
| 1688 | struct buffer_head *bh, *head, *tail; |
| 1689 | gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; |
| 1690 | |
| 1691 | head = folio_alloc_buffers(folio, blocksize, gfp); |
| 1692 | bh = head; |
| 1693 | do { |
| 1694 | bh->b_state |= b_state; |
| 1695 | tail = bh; |
| 1696 | bh = bh->b_this_page; |
| 1697 | } while (bh); |
| 1698 | tail->b_this_page = head; |
| 1699 | |
| 1700 | spin_lock(lock: &folio->mapping->i_private_lock); |
| 1701 | if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { |
| 1702 | bh = head; |
| 1703 | do { |
| 1704 | if (folio_test_dirty(folio)) |
| 1705 | set_buffer_dirty(bh); |
| 1706 | if (folio_test_uptodate(folio)) |
| 1707 | set_buffer_uptodate(bh); |
| 1708 | bh = bh->b_this_page; |
| 1709 | } while (bh != head); |
| 1710 | } |
| 1711 | folio_attach_private(folio, data: head); |
| 1712 | spin_unlock(lock: &folio->mapping->i_private_lock); |
| 1713 | |
| 1714 | return head; |
| 1715 | } |
| 1716 | EXPORT_SYMBOL(create_empty_buffers); |
| 1717 | |
| 1718 | /** |
| 1719 | * clean_bdev_aliases: clean a range of buffers in block device |
| 1720 | * @bdev: Block device to clean buffers in |
| 1721 | * @block: Start of a range of blocks to clean |
| 1722 | * @len: Number of blocks to clean |
| 1723 | * |
| 1724 | * We are taking a range of blocks for data and we don't want writeback of any |
| 1725 | * buffer-cache aliases starting from return from this function and until the |
| 1726 | * moment when something will explicitly mark the buffer dirty (hopefully that |
| 1727 | * will not happen until we will free that block ;-) We don't even need to mark |
| 1728 | * it not-uptodate - nobody can expect anything from a newly allocated buffer |
| 1729 | * anyway. We used to use unmap_buffer() for such invalidation, but that was |
| 1730 | * wrong. We definitely don't want to mark the alias unmapped, for example - it |
| 1731 | * would confuse anyone who might pick it with bread() afterwards... |
| 1732 | * |
| 1733 | * Also.. Note that bforget() doesn't lock the buffer. So there can be |
| 1734 | * writeout I/O going on against recently-freed buffers. We don't wait on that |
| 1735 | * I/O in bforget() - it's more efficient to wait on the I/O only if we really |
| 1736 | * need to. That happens here. |
| 1737 | */ |
| 1738 | void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) |
| 1739 | { |
| 1740 | struct address_space *bd_mapping = bdev->bd_mapping; |
| 1741 | const int blkbits = bd_mapping->host->i_blkbits; |
| 1742 | struct folio_batch fbatch; |
| 1743 | pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE; |
| 1744 | pgoff_t end; |
| 1745 | int i, count; |
| 1746 | struct buffer_head *bh; |
| 1747 | struct buffer_head *head; |
| 1748 | |
| 1749 | end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE; |
| 1750 | folio_batch_init(fbatch: &fbatch); |
| 1751 | while (filemap_get_folios(mapping: bd_mapping, start: &index, end, fbatch: &fbatch)) { |
| 1752 | count = folio_batch_count(fbatch: &fbatch); |
| 1753 | for (i = 0; i < count; i++) { |
| 1754 | struct folio *folio = fbatch.folios[i]; |
| 1755 | |
| 1756 | if (!folio_buffers(folio)) |
| 1757 | continue; |
| 1758 | /* |
| 1759 | * We use folio lock instead of bd_mapping->i_private_lock |
| 1760 | * to pin buffers here since we can afford to sleep and |
| 1761 | * it scales better than a global spinlock lock. |
| 1762 | */ |
| 1763 | folio_lock(folio); |
| 1764 | /* Recheck when the folio is locked which pins bhs */ |
| 1765 | head = folio_buffers(folio); |
| 1766 | if (!head) |
| 1767 | goto unlock_page; |
| 1768 | bh = head; |
| 1769 | do { |
| 1770 | if (!buffer_mapped(bh) || (bh->b_blocknr < block)) |
| 1771 | goto next; |
| 1772 | if (bh->b_blocknr >= block + len) |
| 1773 | break; |
| 1774 | clear_buffer_dirty(bh); |
| 1775 | wait_on_buffer(bh); |
| 1776 | clear_buffer_req(bh); |
| 1777 | next: |
| 1778 | bh = bh->b_this_page; |
| 1779 | } while (bh != head); |
| 1780 | unlock_page: |
| 1781 | folio_unlock(folio); |
| 1782 | } |
| 1783 | folio_batch_release(fbatch: &fbatch); |
| 1784 | cond_resched(); |
| 1785 | /* End of range already reached? */ |
| 1786 | if (index > end || !index) |
| 1787 | break; |
| 1788 | } |
| 1789 | } |
| 1790 | EXPORT_SYMBOL(clean_bdev_aliases); |
| 1791 | |
| 1792 | static struct buffer_head *folio_create_buffers(struct folio *folio, |
| 1793 | struct inode *inode, |
| 1794 | unsigned int b_state) |
| 1795 | { |
| 1796 | struct buffer_head *bh; |
| 1797 | |
| 1798 | BUG_ON(!folio_test_locked(folio)); |
| 1799 | |
| 1800 | bh = folio_buffers(folio); |
| 1801 | if (!bh) |
| 1802 | bh = create_empty_buffers(folio, |
| 1803 | 1 << READ_ONCE(inode->i_blkbits), b_state); |
| 1804 | return bh; |
| 1805 | } |
| 1806 | |
| 1807 | /* |
| 1808 | * NOTE! All mapped/uptodate combinations are valid: |
| 1809 | * |
| 1810 | * Mapped Uptodate Meaning |
| 1811 | * |
| 1812 | * No No "unknown" - must do get_block() |
| 1813 | * No Yes "hole" - zero-filled |
| 1814 | * Yes No "allocated" - allocated on disk, not read in |
| 1815 | * Yes Yes "valid" - allocated and up-to-date in memory. |
| 1816 | * |
| 1817 | * "Dirty" is valid only with the last case (mapped+uptodate). |
| 1818 | */ |
| 1819 | |
| 1820 | /* |
| 1821 | * While block_write_full_folio is writing back the dirty buffers under |
| 1822 | * the page lock, whoever dirtied the buffers may decide to clean them |
| 1823 | * again at any time. We handle that by only looking at the buffer |
| 1824 | * state inside lock_buffer(). |
| 1825 | * |
| 1826 | * If block_write_full_folio() is called for regular writeback |
| 1827 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a |
| 1828 | * locked buffer. This only can happen if someone has written the buffer |
| 1829 | * directly, with submit_bh(). At the address_space level PageWriteback |
| 1830 | * prevents this contention from occurring. |
| 1831 | * |
| 1832 | * If block_write_full_folio() is called with wbc->sync_mode == |
| 1833 | * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this |
| 1834 | * causes the writes to be flagged as synchronous writes. |
| 1835 | */ |
| 1836 | int __block_write_full_folio(struct inode *inode, struct folio *folio, |
| 1837 | get_block_t *get_block, struct writeback_control *wbc) |
| 1838 | { |
| 1839 | int err; |
| 1840 | sector_t block; |
| 1841 | sector_t last_block; |
| 1842 | struct buffer_head *bh, *head; |
| 1843 | size_t blocksize; |
| 1844 | int nr_underway = 0; |
| 1845 | blk_opf_t write_flags = wbc_to_write_flags(wbc); |
| 1846 | |
| 1847 | head = folio_create_buffers(folio, inode, |
| 1848 | b_state: (1 << BH_Dirty) | (1 << BH_Uptodate)); |
| 1849 | |
| 1850 | /* |
| 1851 | * Be very careful. We have no exclusion from block_dirty_folio |
| 1852 | * here, and the (potentially unmapped) buffers may become dirty at |
| 1853 | * any time. If a buffer becomes dirty here after we've inspected it |
| 1854 | * then we just miss that fact, and the folio stays dirty. |
| 1855 | * |
| 1856 | * Buffers outside i_size may be dirtied by block_dirty_folio; |
| 1857 | * handle that here by just cleaning them. |
| 1858 | */ |
| 1859 | |
| 1860 | bh = head; |
| 1861 | blocksize = bh->b_size; |
| 1862 | |
| 1863 | block = div_u64(dividend: folio_pos(folio), divisor: blocksize); |
| 1864 | last_block = div_u64(dividend: i_size_read(inode) - 1, divisor: blocksize); |
| 1865 | |
| 1866 | /* |
| 1867 | * Get all the dirty buffers mapped to disk addresses and |
| 1868 | * handle any aliases from the underlying blockdev's mapping. |
| 1869 | */ |
| 1870 | do { |
| 1871 | if (block > last_block) { |
| 1872 | /* |
| 1873 | * mapped buffers outside i_size will occur, because |
| 1874 | * this folio can be outside i_size when there is a |
| 1875 | * truncate in progress. |
| 1876 | */ |
| 1877 | /* |
| 1878 | * The buffer was zeroed by block_write_full_folio() |
| 1879 | */ |
| 1880 | clear_buffer_dirty(bh); |
| 1881 | set_buffer_uptodate(bh); |
| 1882 | } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && |
| 1883 | buffer_dirty(bh)) { |
| 1884 | WARN_ON(bh->b_size != blocksize); |
| 1885 | err = get_block(inode, block, bh, 1); |
| 1886 | if (err) |
| 1887 | goto recover; |
| 1888 | clear_buffer_delay(bh); |
| 1889 | if (buffer_new(bh)) { |
| 1890 | /* blockdev mappings never come here */ |
| 1891 | clear_buffer_new(bh); |
| 1892 | clean_bdev_bh_alias(bh); |
| 1893 | } |
| 1894 | } |
| 1895 | bh = bh->b_this_page; |
| 1896 | block++; |
| 1897 | } while (bh != head); |
| 1898 | |
| 1899 | do { |
| 1900 | if (!buffer_mapped(bh)) |
| 1901 | continue; |
| 1902 | /* |
| 1903 | * If it's a fully non-blocking write attempt and we cannot |
| 1904 | * lock the buffer then redirty the folio. Note that this can |
| 1905 | * potentially cause a busy-wait loop from writeback threads |
| 1906 | * and kswapd activity, but those code paths have their own |
| 1907 | * higher-level throttling. |
| 1908 | */ |
| 1909 | if (wbc->sync_mode != WB_SYNC_NONE) { |
| 1910 | lock_buffer(bh); |
| 1911 | } else if (!trylock_buffer(bh)) { |
| 1912 | folio_redirty_for_writepage(wbc, folio); |
| 1913 | continue; |
| 1914 | } |
| 1915 | if (test_clear_buffer_dirty(bh)) { |
| 1916 | mark_buffer_async_write_endio(bh, |
| 1917 | handler: end_buffer_async_write); |
| 1918 | } else { |
| 1919 | unlock_buffer(bh); |
| 1920 | } |
| 1921 | } while ((bh = bh->b_this_page) != head); |
| 1922 | |
| 1923 | /* |
| 1924 | * The folio and its buffers are protected by the writeback flag, |
| 1925 | * so we can drop the bh refcounts early. |
| 1926 | */ |
| 1927 | BUG_ON(folio_test_writeback(folio)); |
| 1928 | folio_start_writeback(folio); |
| 1929 | |
| 1930 | do { |
| 1931 | struct buffer_head *next = bh->b_this_page; |
| 1932 | if (buffer_async_write(bh)) { |
| 1933 | submit_bh_wbc(opf: REQ_OP_WRITE | write_flags, bh, |
| 1934 | hint: inode->i_write_hint, wbc); |
| 1935 | nr_underway++; |
| 1936 | } |
| 1937 | bh = next; |
| 1938 | } while (bh != head); |
| 1939 | folio_unlock(folio); |
| 1940 | |
| 1941 | err = 0; |
| 1942 | done: |
| 1943 | if (nr_underway == 0) { |
| 1944 | /* |
| 1945 | * The folio was marked dirty, but the buffers were |
| 1946 | * clean. Someone wrote them back by hand with |
| 1947 | * write_dirty_buffer/submit_bh. A rare case. |
| 1948 | */ |
| 1949 | folio_end_writeback(folio); |
| 1950 | |
| 1951 | /* |
| 1952 | * The folio and buffer_heads can be released at any time from |
| 1953 | * here on. |
| 1954 | */ |
| 1955 | } |
| 1956 | return err; |
| 1957 | |
| 1958 | recover: |
| 1959 | /* |
| 1960 | * ENOSPC, or some other error. We may already have added some |
| 1961 | * blocks to the file, so we need to write these out to avoid |
| 1962 | * exposing stale data. |
| 1963 | * The folio is currently locked and not marked for writeback |
| 1964 | */ |
| 1965 | bh = head; |
| 1966 | /* Recovery: lock and submit the mapped buffers */ |
| 1967 | do { |
| 1968 | if (buffer_mapped(bh) && buffer_dirty(bh) && |
| 1969 | !buffer_delay(bh)) { |
| 1970 | lock_buffer(bh); |
| 1971 | mark_buffer_async_write_endio(bh, |
| 1972 | handler: end_buffer_async_write); |
| 1973 | } else { |
| 1974 | /* |
| 1975 | * The buffer may have been set dirty during |
| 1976 | * attachment to a dirty folio. |
| 1977 | */ |
| 1978 | clear_buffer_dirty(bh); |
| 1979 | } |
| 1980 | } while ((bh = bh->b_this_page) != head); |
| 1981 | BUG_ON(folio_test_writeback(folio)); |
| 1982 | mapping_set_error(mapping: folio->mapping, error: err); |
| 1983 | folio_start_writeback(folio); |
| 1984 | do { |
| 1985 | struct buffer_head *next = bh->b_this_page; |
| 1986 | if (buffer_async_write(bh)) { |
| 1987 | clear_buffer_dirty(bh); |
| 1988 | submit_bh_wbc(opf: REQ_OP_WRITE | write_flags, bh, |
| 1989 | hint: inode->i_write_hint, wbc); |
| 1990 | nr_underway++; |
| 1991 | } |
| 1992 | bh = next; |
| 1993 | } while (bh != head); |
| 1994 | folio_unlock(folio); |
| 1995 | goto done; |
| 1996 | } |
| 1997 | EXPORT_SYMBOL(__block_write_full_folio); |
| 1998 | |
| 1999 | /* |
| 2000 | * If a folio has any new buffers, zero them out here, and mark them uptodate |
| 2001 | * and dirty so they'll be written out (in order to prevent uninitialised |
| 2002 | * block data from leaking). And clear the new bit. |
| 2003 | */ |
| 2004 | void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) |
| 2005 | { |
| 2006 | size_t block_start, block_end; |
| 2007 | struct buffer_head *head, *bh; |
| 2008 | |
| 2009 | BUG_ON(!folio_test_locked(folio)); |
| 2010 | head = folio_buffers(folio); |
| 2011 | if (!head) |
| 2012 | return; |
| 2013 | |
| 2014 | bh = head; |
| 2015 | block_start = 0; |
| 2016 | do { |
| 2017 | block_end = block_start + bh->b_size; |
| 2018 | |
| 2019 | if (buffer_new(bh)) { |
| 2020 | if (block_end > from && block_start < to) { |
| 2021 | if (!folio_test_uptodate(folio)) { |
| 2022 | size_t start, xend; |
| 2023 | |
| 2024 | start = max(from, block_start); |
| 2025 | xend = min(to, block_end); |
| 2026 | |
| 2027 | folio_zero_segment(folio, start, xend); |
| 2028 | set_buffer_uptodate(bh); |
| 2029 | } |
| 2030 | |
| 2031 | clear_buffer_new(bh); |
| 2032 | mark_buffer_dirty(bh); |
| 2033 | } |
| 2034 | } |
| 2035 | |
| 2036 | block_start = block_end; |
| 2037 | bh = bh->b_this_page; |
| 2038 | } while (bh != head); |
| 2039 | } |
| 2040 | EXPORT_SYMBOL(folio_zero_new_buffers); |
| 2041 | |
| 2042 | static int |
| 2043 | iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, |
| 2044 | const struct iomap *iomap) |
| 2045 | { |
| 2046 | loff_t offset = (loff_t)block << inode->i_blkbits; |
| 2047 | |
| 2048 | bh->b_bdev = iomap->bdev; |
| 2049 | |
| 2050 | /* |
| 2051 | * Block points to offset in file we need to map, iomap contains |
| 2052 | * the offset at which the map starts. If the map ends before the |
| 2053 | * current block, then do not map the buffer and let the caller |
| 2054 | * handle it. |
| 2055 | */ |
| 2056 | if (offset >= iomap->offset + iomap->length) |
| 2057 | return -EIO; |
| 2058 | |
| 2059 | switch (iomap->type) { |
| 2060 | case IOMAP_HOLE: |
| 2061 | /* |
| 2062 | * If the buffer is not up to date or beyond the current EOF, |
| 2063 | * we need to mark it as new to ensure sub-block zeroing is |
| 2064 | * executed if necessary. |
| 2065 | */ |
| 2066 | if (!buffer_uptodate(bh) || |
| 2067 | (offset >= i_size_read(inode))) |
| 2068 | set_buffer_new(bh); |
| 2069 | return 0; |
| 2070 | case IOMAP_DELALLOC: |
| 2071 | if (!buffer_uptodate(bh) || |
| 2072 | (offset >= i_size_read(inode))) |
| 2073 | set_buffer_new(bh); |
| 2074 | set_buffer_uptodate(bh); |
| 2075 | set_buffer_mapped(bh); |
| 2076 | set_buffer_delay(bh); |
| 2077 | return 0; |
| 2078 | case IOMAP_UNWRITTEN: |
| 2079 | /* |
| 2080 | * For unwritten regions, we always need to ensure that regions |
| 2081 | * in the block we are not writing to are zeroed. Mark the |
| 2082 | * buffer as new to ensure this. |
| 2083 | */ |
| 2084 | set_buffer_new(bh); |
| 2085 | set_buffer_unwritten(bh); |
| 2086 | fallthrough; |
| 2087 | case IOMAP_MAPPED: |
| 2088 | if ((iomap->flags & IOMAP_F_NEW) || |
| 2089 | offset >= i_size_read(inode)) { |
| 2090 | /* |
| 2091 | * This can happen if truncating the block device races |
| 2092 | * with the check in the caller as i_size updates on |
| 2093 | * block devices aren't synchronized by i_rwsem for |
| 2094 | * block devices. |
| 2095 | */ |
| 2096 | if (S_ISBLK(inode->i_mode)) |
| 2097 | return -EIO; |
| 2098 | set_buffer_new(bh); |
| 2099 | } |
| 2100 | bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> |
| 2101 | inode->i_blkbits; |
| 2102 | set_buffer_mapped(bh); |
| 2103 | return 0; |
| 2104 | default: |
| 2105 | WARN_ON_ONCE(1); |
| 2106 | return -EIO; |
| 2107 | } |
| 2108 | } |
| 2109 | |
| 2110 | int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, |
| 2111 | get_block_t *get_block, const struct iomap *iomap) |
| 2112 | { |
| 2113 | size_t from = offset_in_folio(folio, pos); |
| 2114 | size_t to = from + len; |
| 2115 | struct inode *inode = folio->mapping->host; |
| 2116 | size_t block_start, block_end; |
| 2117 | sector_t block; |
| 2118 | int err = 0; |
| 2119 | size_t blocksize; |
| 2120 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; |
| 2121 | |
| 2122 | BUG_ON(!folio_test_locked(folio)); |
| 2123 | BUG_ON(to > folio_size(folio)); |
| 2124 | BUG_ON(from > to); |
| 2125 | |
| 2126 | head = folio_create_buffers(folio, inode, b_state: 0); |
| 2127 | blocksize = head->b_size; |
| 2128 | block = div_u64(dividend: folio_pos(folio), divisor: blocksize); |
| 2129 | |
| 2130 | for (bh = head, block_start = 0; bh != head || !block_start; |
| 2131 | block++, block_start=block_end, bh = bh->b_this_page) { |
| 2132 | block_end = block_start + blocksize; |
| 2133 | if (block_end <= from || block_start >= to) { |
| 2134 | if (folio_test_uptodate(folio)) { |
| 2135 | if (!buffer_uptodate(bh)) |
| 2136 | set_buffer_uptodate(bh); |
| 2137 | } |
| 2138 | continue; |
| 2139 | } |
| 2140 | if (buffer_new(bh)) |
| 2141 | clear_buffer_new(bh); |
| 2142 | if (!buffer_mapped(bh)) { |
| 2143 | WARN_ON(bh->b_size != blocksize); |
| 2144 | if (get_block) |
| 2145 | err = get_block(inode, block, bh, 1); |
| 2146 | else |
| 2147 | err = iomap_to_bh(inode, block, bh, iomap); |
| 2148 | if (err) |
| 2149 | break; |
| 2150 | |
| 2151 | if (buffer_new(bh)) { |
| 2152 | clean_bdev_bh_alias(bh); |
| 2153 | if (folio_test_uptodate(folio)) { |
| 2154 | clear_buffer_new(bh); |
| 2155 | set_buffer_uptodate(bh); |
| 2156 | mark_buffer_dirty(bh); |
| 2157 | continue; |
| 2158 | } |
| 2159 | if (block_end > to || block_start < from) |
| 2160 | folio_zero_segments(folio, |
| 2161 | start1: to, xend1: block_end, |
| 2162 | start2: block_start, xend2: from); |
| 2163 | continue; |
| 2164 | } |
| 2165 | } |
| 2166 | if (folio_test_uptodate(folio)) { |
| 2167 | if (!buffer_uptodate(bh)) |
| 2168 | set_buffer_uptodate(bh); |
| 2169 | continue; |
| 2170 | } |
| 2171 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && |
| 2172 | !buffer_unwritten(bh) && |
| 2173 | (block_start < from || block_end > to)) { |
| 2174 | bh_read_nowait(bh, op_flags: 0); |
| 2175 | *wait_bh++=bh; |
| 2176 | } |
| 2177 | } |
| 2178 | /* |
| 2179 | * If we issued read requests - let them complete. |
| 2180 | */ |
| 2181 | while(wait_bh > wait) { |
| 2182 | wait_on_buffer(bh: *--wait_bh); |
| 2183 | if (!buffer_uptodate(bh: *wait_bh)) |
| 2184 | err = -EIO; |
| 2185 | } |
| 2186 | if (unlikely(err)) |
| 2187 | folio_zero_new_buffers(folio, from, to); |
| 2188 | return err; |
| 2189 | } |
| 2190 | |
| 2191 | int __block_write_begin(struct folio *folio, loff_t pos, unsigned len, |
| 2192 | get_block_t *get_block) |
| 2193 | { |
| 2194 | return __block_write_begin_int(folio, pos, len, get_block, NULL); |
| 2195 | } |
| 2196 | EXPORT_SYMBOL(__block_write_begin); |
| 2197 | |
| 2198 | void block_commit_write(struct folio *folio, size_t from, size_t to) |
| 2199 | { |
| 2200 | size_t block_start, block_end; |
| 2201 | bool partial = false; |
| 2202 | unsigned blocksize; |
| 2203 | struct buffer_head *bh, *head; |
| 2204 | |
| 2205 | bh = head = folio_buffers(folio); |
| 2206 | if (!bh) |
| 2207 | return; |
| 2208 | blocksize = bh->b_size; |
| 2209 | |
| 2210 | block_start = 0; |
| 2211 | do { |
| 2212 | block_end = block_start + blocksize; |
| 2213 | if (block_end <= from || block_start >= to) { |
| 2214 | if (!buffer_uptodate(bh)) |
| 2215 | partial = true; |
| 2216 | } else { |
| 2217 | set_buffer_uptodate(bh); |
| 2218 | mark_buffer_dirty(bh); |
| 2219 | } |
| 2220 | if (buffer_new(bh)) |
| 2221 | clear_buffer_new(bh); |
| 2222 | |
| 2223 | block_start = block_end; |
| 2224 | bh = bh->b_this_page; |
| 2225 | } while (bh != head); |
| 2226 | |
| 2227 | /* |
| 2228 | * If this is a partial write which happened to make all buffers |
| 2229 | * uptodate then we can optimize away a bogus read_folio() for |
| 2230 | * the next read(). Here we 'discover' whether the folio went |
| 2231 | * uptodate as a result of this (potentially partial) write. |
| 2232 | */ |
| 2233 | if (!partial) |
| 2234 | folio_mark_uptodate(folio); |
| 2235 | } |
| 2236 | EXPORT_SYMBOL(block_commit_write); |
| 2237 | |
| 2238 | /* |
| 2239 | * block_write_begin takes care of the basic task of block allocation and |
| 2240 | * bringing partial write blocks uptodate first. |
| 2241 | * |
| 2242 | * The filesystem needs to handle block truncation upon failure. |
| 2243 | */ |
| 2244 | int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, |
| 2245 | struct folio **foliop, get_block_t *get_block) |
| 2246 | { |
| 2247 | pgoff_t index = pos >> PAGE_SHIFT; |
| 2248 | struct folio *folio; |
| 2249 | int status; |
| 2250 | |
| 2251 | folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, |
| 2252 | gfp: mapping_gfp_mask(mapping)); |
| 2253 | if (IS_ERR(ptr: folio)) |
| 2254 | return PTR_ERR(ptr: folio); |
| 2255 | |
| 2256 | status = __block_write_begin_int(folio, pos, len, get_block, NULL); |
| 2257 | if (unlikely(status)) { |
| 2258 | folio_unlock(folio); |
| 2259 | folio_put(folio); |
| 2260 | folio = NULL; |
| 2261 | } |
| 2262 | |
| 2263 | *foliop = folio; |
| 2264 | return status; |
| 2265 | } |
| 2266 | EXPORT_SYMBOL(block_write_begin); |
| 2267 | |
| 2268 | int block_write_end(loff_t pos, unsigned len, unsigned copied, |
| 2269 | struct folio *folio) |
| 2270 | { |
| 2271 | size_t start = pos - folio_pos(folio); |
| 2272 | |
| 2273 | if (unlikely(copied < len)) { |
| 2274 | /* |
| 2275 | * The buffers that were written will now be uptodate, so |
| 2276 | * we don't have to worry about a read_folio reading them |
| 2277 | * and overwriting a partial write. However if we have |
| 2278 | * encountered a short write and only partially written |
| 2279 | * into a buffer, it will not be marked uptodate, so a |
| 2280 | * read_folio might come in and destroy our partial write. |
| 2281 | * |
| 2282 | * Do the simplest thing, and just treat any short write to a |
| 2283 | * non uptodate folio as a zero-length write, and force the |
| 2284 | * caller to redo the whole thing. |
| 2285 | */ |
| 2286 | if (!folio_test_uptodate(folio)) |
| 2287 | copied = 0; |
| 2288 | |
| 2289 | folio_zero_new_buffers(folio, start+copied, start+len); |
| 2290 | } |
| 2291 | flush_dcache_folio(folio); |
| 2292 | |
| 2293 | /* This could be a short (even 0-length) commit */ |
| 2294 | block_commit_write(folio, start, start + copied); |
| 2295 | |
| 2296 | return copied; |
| 2297 | } |
| 2298 | EXPORT_SYMBOL(block_write_end); |
| 2299 | |
| 2300 | int generic_write_end(const struct kiocb *iocb, struct address_space *mapping, |
| 2301 | loff_t pos, unsigned len, unsigned copied, |
| 2302 | struct folio *folio, void *fsdata) |
| 2303 | { |
| 2304 | struct inode *inode = mapping->host; |
| 2305 | loff_t old_size = inode->i_size; |
| 2306 | bool i_size_changed = false; |
| 2307 | |
| 2308 | copied = block_write_end(pos, len, copied, folio); |
| 2309 | |
| 2310 | /* |
| 2311 | * No need to use i_size_read() here, the i_size cannot change under us |
| 2312 | * because we hold i_rwsem. |
| 2313 | * |
| 2314 | * But it's important to update i_size while still holding folio lock: |
| 2315 | * page writeout could otherwise come in and zero beyond i_size. |
| 2316 | */ |
| 2317 | if (pos + copied > inode->i_size) { |
| 2318 | i_size_write(inode, i_size: pos + copied); |
| 2319 | i_size_changed = true; |
| 2320 | } |
| 2321 | |
| 2322 | folio_unlock(folio); |
| 2323 | folio_put(folio); |
| 2324 | |
| 2325 | if (old_size < pos) |
| 2326 | pagecache_isize_extended(inode, from: old_size, to: pos); |
| 2327 | /* |
| 2328 | * Don't mark the inode dirty under page lock. First, it unnecessarily |
| 2329 | * makes the holding time of page lock longer. Second, it forces lock |
| 2330 | * ordering of page lock and transaction start for journaling |
| 2331 | * filesystems. |
| 2332 | */ |
| 2333 | if (i_size_changed) |
| 2334 | mark_inode_dirty(inode); |
| 2335 | return copied; |
| 2336 | } |
| 2337 | EXPORT_SYMBOL(generic_write_end); |
| 2338 | |
| 2339 | /* |
| 2340 | * block_is_partially_uptodate checks whether buffers within a folio are |
| 2341 | * uptodate or not. |
| 2342 | * |
| 2343 | * Returns true if all buffers which correspond to the specified part |
| 2344 | * of the folio are uptodate. |
| 2345 | */ |
| 2346 | bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) |
| 2347 | { |
| 2348 | unsigned block_start, block_end, blocksize; |
| 2349 | unsigned to; |
| 2350 | struct buffer_head *bh, *head; |
| 2351 | bool ret = true; |
| 2352 | |
| 2353 | head = folio_buffers(folio); |
| 2354 | if (!head) |
| 2355 | return false; |
| 2356 | blocksize = head->b_size; |
| 2357 | to = min_t(unsigned, folio_size(folio) - from, count); |
| 2358 | to = from + to; |
| 2359 | if (from < blocksize && to > folio_size(folio) - blocksize) |
| 2360 | return false; |
| 2361 | |
| 2362 | bh = head; |
| 2363 | block_start = 0; |
| 2364 | do { |
| 2365 | block_end = block_start + blocksize; |
| 2366 | if (block_end > from && block_start < to) { |
| 2367 | if (!buffer_uptodate(bh)) { |
| 2368 | ret = false; |
| 2369 | break; |
| 2370 | } |
| 2371 | if (block_end >= to) |
| 2372 | break; |
| 2373 | } |
| 2374 | block_start = block_end; |
| 2375 | bh = bh->b_this_page; |
| 2376 | } while (bh != head); |
| 2377 | |
| 2378 | return ret; |
| 2379 | } |
| 2380 | EXPORT_SYMBOL(block_is_partially_uptodate); |
| 2381 | |
| 2382 | /* |
| 2383 | * Generic "read_folio" function for block devices that have the normal |
| 2384 | * get_block functionality. This is most of the block device filesystems. |
| 2385 | * Reads the folio asynchronously --- the unlock_buffer() and |
| 2386 | * set/clear_buffer_uptodate() functions propagate buffer state into the |
| 2387 | * folio once IO has completed. |
| 2388 | */ |
| 2389 | int block_read_full_folio(struct folio *folio, get_block_t *get_block) |
| 2390 | { |
| 2391 | struct inode *inode = folio->mapping->host; |
| 2392 | sector_t iblock, lblock; |
| 2393 | struct buffer_head *bh, *head, *prev = NULL; |
| 2394 | size_t blocksize; |
| 2395 | int fully_mapped = 1; |
| 2396 | bool page_error = false; |
| 2397 | loff_t limit = i_size_read(inode); |
| 2398 | |
| 2399 | /* This is needed for ext4. */ |
| 2400 | if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) |
| 2401 | limit = inode->i_sb->s_maxbytes; |
| 2402 | |
| 2403 | head = folio_create_buffers(folio, inode, b_state: 0); |
| 2404 | blocksize = head->b_size; |
| 2405 | |
| 2406 | iblock = div_u64(dividend: folio_pos(folio), divisor: blocksize); |
| 2407 | lblock = div_u64(dividend: limit + blocksize - 1, divisor: blocksize); |
| 2408 | bh = head; |
| 2409 | |
| 2410 | do { |
| 2411 | if (buffer_uptodate(bh)) |
| 2412 | continue; |
| 2413 | |
| 2414 | if (!buffer_mapped(bh)) { |
| 2415 | int err = 0; |
| 2416 | |
| 2417 | fully_mapped = 0; |
| 2418 | if (iblock < lblock) { |
| 2419 | WARN_ON(bh->b_size != blocksize); |
| 2420 | err = get_block(inode, iblock, bh, 0); |
| 2421 | if (err) |
| 2422 | page_error = true; |
| 2423 | } |
| 2424 | if (!buffer_mapped(bh)) { |
| 2425 | folio_zero_range(folio, start: bh_offset(bh), |
| 2426 | length: blocksize); |
| 2427 | if (!err) |
| 2428 | set_buffer_uptodate(bh); |
| 2429 | continue; |
| 2430 | } |
| 2431 | /* |
| 2432 | * get_block() might have updated the buffer |
| 2433 | * synchronously |
| 2434 | */ |
| 2435 | if (buffer_uptodate(bh)) |
| 2436 | continue; |
| 2437 | } |
| 2438 | |
| 2439 | lock_buffer(bh); |
| 2440 | if (buffer_uptodate(bh)) { |
| 2441 | unlock_buffer(bh); |
| 2442 | continue; |
| 2443 | } |
| 2444 | |
| 2445 | mark_buffer_async_read(bh); |
| 2446 | if (prev) |
| 2447 | submit_bh(REQ_OP_READ, prev); |
| 2448 | prev = bh; |
| 2449 | } while (iblock++, (bh = bh->b_this_page) != head); |
| 2450 | |
| 2451 | if (fully_mapped) |
| 2452 | folio_set_mappedtodisk(folio); |
| 2453 | |
| 2454 | /* |
| 2455 | * All buffers are uptodate or get_block() returned an error |
| 2456 | * when trying to map them - we must finish the read because |
| 2457 | * end_buffer_async_read() will never be called on any buffer |
| 2458 | * in this folio. |
| 2459 | */ |
| 2460 | if (prev) |
| 2461 | submit_bh(REQ_OP_READ, prev); |
| 2462 | else |
| 2463 | folio_end_read(folio, success: !page_error); |
| 2464 | |
| 2465 | return 0; |
| 2466 | } |
| 2467 | EXPORT_SYMBOL(block_read_full_folio); |
| 2468 | |
| 2469 | /* utility function for filesystems that need to do work on expanding |
| 2470 | * truncates. Uses filesystem pagecache writes to allow the filesystem to |
| 2471 | * deal with the hole. |
| 2472 | */ |
| 2473 | int generic_cont_expand_simple(struct inode *inode, loff_t size) |
| 2474 | { |
| 2475 | struct address_space *mapping = inode->i_mapping; |
| 2476 | const struct address_space_operations *aops = mapping->a_ops; |
| 2477 | struct folio *folio; |
| 2478 | void *fsdata = NULL; |
| 2479 | int err; |
| 2480 | |
| 2481 | err = inode_newsize_ok(inode, offset: size); |
| 2482 | if (err) |
| 2483 | goto out; |
| 2484 | |
| 2485 | err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata); |
| 2486 | if (err) |
| 2487 | goto out; |
| 2488 | |
| 2489 | err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata); |
| 2490 | BUG_ON(err > 0); |
| 2491 | |
| 2492 | out: |
| 2493 | return err; |
| 2494 | } |
| 2495 | EXPORT_SYMBOL(generic_cont_expand_simple); |
| 2496 | |
| 2497 | static int cont_expand_zero(const struct kiocb *iocb, |
| 2498 | struct address_space *mapping, |
| 2499 | loff_t pos, loff_t *bytes) |
| 2500 | { |
| 2501 | struct inode *inode = mapping->host; |
| 2502 | const struct address_space_operations *aops = mapping->a_ops; |
| 2503 | unsigned int blocksize = i_blocksize(node: inode); |
| 2504 | struct folio *folio; |
| 2505 | void *fsdata = NULL; |
| 2506 | pgoff_t index, curidx; |
| 2507 | loff_t curpos; |
| 2508 | unsigned zerofrom, offset, len; |
| 2509 | int err = 0; |
| 2510 | |
| 2511 | index = pos >> PAGE_SHIFT; |
| 2512 | offset = pos & ~PAGE_MASK; |
| 2513 | |
| 2514 | while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { |
| 2515 | zerofrom = curpos & ~PAGE_MASK; |
| 2516 | if (zerofrom & (blocksize-1)) { |
| 2517 | *bytes |= (blocksize-1); |
| 2518 | (*bytes)++; |
| 2519 | } |
| 2520 | len = PAGE_SIZE - zerofrom; |
| 2521 | |
| 2522 | err = aops->write_begin(iocb, mapping, curpos, len, |
| 2523 | &folio, &fsdata); |
| 2524 | if (err) |
| 2525 | goto out; |
| 2526 | folio_zero_range(folio, offset_in_folio(folio, curpos), length: len); |
| 2527 | err = aops->write_end(iocb, mapping, curpos, len, len, |
| 2528 | folio, fsdata); |
| 2529 | if (err < 0) |
| 2530 | goto out; |
| 2531 | BUG_ON(err != len); |
| 2532 | err = 0; |
| 2533 | |
| 2534 | balance_dirty_pages_ratelimited(mapping); |
| 2535 | |
| 2536 | if (fatal_signal_pending(current)) { |
| 2537 | err = -EINTR; |
| 2538 | goto out; |
| 2539 | } |
| 2540 | } |
| 2541 | |
| 2542 | /* page covers the boundary, find the boundary offset */ |
| 2543 | if (index == curidx) { |
| 2544 | zerofrom = curpos & ~PAGE_MASK; |
| 2545 | /* if we will expand the thing last block will be filled */ |
| 2546 | if (offset <= zerofrom) { |
| 2547 | goto out; |
| 2548 | } |
| 2549 | if (zerofrom & (blocksize-1)) { |
| 2550 | *bytes |= (blocksize-1); |
| 2551 | (*bytes)++; |
| 2552 | } |
| 2553 | len = offset - zerofrom; |
| 2554 | |
| 2555 | err = aops->write_begin(iocb, mapping, curpos, len, |
| 2556 | &folio, &fsdata); |
| 2557 | if (err) |
| 2558 | goto out; |
| 2559 | folio_zero_range(folio, offset_in_folio(folio, curpos), length: len); |
| 2560 | err = aops->write_end(iocb, mapping, curpos, len, len, |
| 2561 | folio, fsdata); |
| 2562 | if (err < 0) |
| 2563 | goto out; |
| 2564 | BUG_ON(err != len); |
| 2565 | err = 0; |
| 2566 | } |
| 2567 | out: |
| 2568 | return err; |
| 2569 | } |
| 2570 | |
| 2571 | /* |
| 2572 | * For moronic filesystems that do not allow holes in file. |
| 2573 | * We may have to extend the file. |
| 2574 | */ |
| 2575 | int cont_write_begin(const struct kiocb *iocb, struct address_space *mapping, |
| 2576 | loff_t pos, unsigned len, struct folio **foliop, |
| 2577 | void **fsdata, get_block_t *get_block, loff_t *bytes) |
| 2578 | { |
| 2579 | struct inode *inode = mapping->host; |
| 2580 | unsigned int blocksize = i_blocksize(node: inode); |
| 2581 | unsigned int zerofrom; |
| 2582 | int err; |
| 2583 | |
| 2584 | err = cont_expand_zero(iocb, mapping, pos, bytes); |
| 2585 | if (err) |
| 2586 | return err; |
| 2587 | |
| 2588 | zerofrom = *bytes & ~PAGE_MASK; |
| 2589 | if (pos+len > *bytes && zerofrom & (blocksize-1)) { |
| 2590 | *bytes |= (blocksize-1); |
| 2591 | (*bytes)++; |
| 2592 | } |
| 2593 | |
| 2594 | return block_write_begin(mapping, pos, len, foliop, get_block); |
| 2595 | } |
| 2596 | EXPORT_SYMBOL(cont_write_begin); |
| 2597 | |
| 2598 | /* |
| 2599 | * block_page_mkwrite() is not allowed to change the file size as it gets |
| 2600 | * called from a page fault handler when a page is first dirtied. Hence we must |
| 2601 | * be careful to check for EOF conditions here. We set the page up correctly |
| 2602 | * for a written page which means we get ENOSPC checking when writing into |
| 2603 | * holes and correct delalloc and unwritten extent mapping on filesystems that |
| 2604 | * support these features. |
| 2605 | * |
| 2606 | * We are not allowed to take the i_rwsem here so we have to play games to |
| 2607 | * protect against truncate races as the page could now be beyond EOF. Because |
| 2608 | * truncate writes the inode size before removing pages, once we have the |
| 2609 | * page lock we can determine safely if the page is beyond EOF. If it is not |
| 2610 | * beyond EOF, then the page is guaranteed safe against truncation until we |
| 2611 | * unlock the page. |
| 2612 | * |
| 2613 | * Direct callers of this function should protect against filesystem freezing |
| 2614 | * using sb_start_pagefault() - sb_end_pagefault() functions. |
| 2615 | */ |
| 2616 | int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, |
| 2617 | get_block_t get_block) |
| 2618 | { |
| 2619 | struct folio *folio = page_folio(vmf->page); |
| 2620 | struct inode *inode = file_inode(f: vma->vm_file); |
| 2621 | unsigned long end; |
| 2622 | loff_t size; |
| 2623 | int ret; |
| 2624 | |
| 2625 | folio_lock(folio); |
| 2626 | size = i_size_read(inode); |
| 2627 | if ((folio->mapping != inode->i_mapping) || |
| 2628 | (folio_pos(folio) >= size)) { |
| 2629 | /* We overload EFAULT to mean page got truncated */ |
| 2630 | ret = -EFAULT; |
| 2631 | goto out_unlock; |
| 2632 | } |
| 2633 | |
| 2634 | end = folio_size(folio); |
| 2635 | /* folio is wholly or partially inside EOF */ |
| 2636 | if (folio_pos(folio) + end > size) |
| 2637 | end = size - folio_pos(folio); |
| 2638 | |
| 2639 | ret = __block_write_begin_int(folio, pos: 0, len: end, get_block, NULL); |
| 2640 | if (unlikely(ret)) |
| 2641 | goto out_unlock; |
| 2642 | |
| 2643 | block_commit_write(folio, 0, end); |
| 2644 | |
| 2645 | folio_mark_dirty(folio); |
| 2646 | folio_wait_stable(folio); |
| 2647 | return 0; |
| 2648 | out_unlock: |
| 2649 | folio_unlock(folio); |
| 2650 | return ret; |
| 2651 | } |
| 2652 | EXPORT_SYMBOL(block_page_mkwrite); |
| 2653 | |
| 2654 | int block_truncate_page(struct address_space *mapping, |
| 2655 | loff_t from, get_block_t *get_block) |
| 2656 | { |
| 2657 | pgoff_t index = from >> PAGE_SHIFT; |
| 2658 | unsigned blocksize; |
| 2659 | sector_t iblock; |
| 2660 | size_t offset, length, pos; |
| 2661 | struct inode *inode = mapping->host; |
| 2662 | struct folio *folio; |
| 2663 | struct buffer_head *bh; |
| 2664 | int err = 0; |
| 2665 | |
| 2666 | blocksize = i_blocksize(node: inode); |
| 2667 | length = from & (blocksize - 1); |
| 2668 | |
| 2669 | /* Block boundary? Nothing to do */ |
| 2670 | if (!length) |
| 2671 | return 0; |
| 2672 | |
| 2673 | length = blocksize - length; |
| 2674 | iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; |
| 2675 | |
| 2676 | folio = filemap_grab_folio(mapping, index); |
| 2677 | if (IS_ERR(ptr: folio)) |
| 2678 | return PTR_ERR(ptr: folio); |
| 2679 | |
| 2680 | bh = folio_buffers(folio); |
| 2681 | if (!bh) |
| 2682 | bh = create_empty_buffers(folio, blocksize, 0); |
| 2683 | |
| 2684 | /* Find the buffer that contains "offset" */ |
| 2685 | offset = offset_in_folio(folio, from); |
| 2686 | pos = blocksize; |
| 2687 | while (offset >= pos) { |
| 2688 | bh = bh->b_this_page; |
| 2689 | iblock++; |
| 2690 | pos += blocksize; |
| 2691 | } |
| 2692 | |
| 2693 | if (!buffer_mapped(bh)) { |
| 2694 | WARN_ON(bh->b_size != blocksize); |
| 2695 | err = get_block(inode, iblock, bh, 0); |
| 2696 | if (err) |
| 2697 | goto unlock; |
| 2698 | /* unmapped? It's a hole - nothing to do */ |
| 2699 | if (!buffer_mapped(bh)) |
| 2700 | goto unlock; |
| 2701 | } |
| 2702 | |
| 2703 | /* Ok, it's mapped. Make sure it's up-to-date */ |
| 2704 | if (folio_test_uptodate(folio)) |
| 2705 | set_buffer_uptodate(bh); |
| 2706 | |
| 2707 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { |
| 2708 | err = bh_read(bh, op_flags: 0); |
| 2709 | /* Uhhuh. Read error. Complain and punt. */ |
| 2710 | if (err < 0) |
| 2711 | goto unlock; |
| 2712 | } |
| 2713 | |
| 2714 | folio_zero_range(folio, start: offset, length); |
| 2715 | mark_buffer_dirty(bh); |
| 2716 | |
| 2717 | unlock: |
| 2718 | folio_unlock(folio); |
| 2719 | folio_put(folio); |
| 2720 | |
| 2721 | return err; |
| 2722 | } |
| 2723 | EXPORT_SYMBOL(block_truncate_page); |
| 2724 | |
| 2725 | /* |
| 2726 | * The generic write folio function for buffer-backed address_spaces |
| 2727 | */ |
| 2728 | int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, |
| 2729 | void *get_block) |
| 2730 | { |
| 2731 | struct inode * const inode = folio->mapping->host; |
| 2732 | loff_t i_size = i_size_read(inode); |
| 2733 | |
| 2734 | /* Is the folio fully inside i_size? */ |
| 2735 | if (folio_pos(folio) + folio_size(folio) <= i_size) |
| 2736 | return __block_write_full_folio(inode, folio, get_block, wbc); |
| 2737 | |
| 2738 | /* Is the folio fully outside i_size? (truncate in progress) */ |
| 2739 | if (folio_pos(folio) >= i_size) { |
| 2740 | folio_unlock(folio); |
| 2741 | return 0; /* don't care */ |
| 2742 | } |
| 2743 | |
| 2744 | /* |
| 2745 | * The folio straddles i_size. It must be zeroed out on each and every |
| 2746 | * writeback invocation because it may be mmapped. "A file is mapped |
| 2747 | * in multiples of the page size. For a file that is not a multiple of |
| 2748 | * the page size, the remaining memory is zeroed when mapped, and |
| 2749 | * writes to that region are not written out to the file." |
| 2750 | */ |
| 2751 | folio_zero_segment(folio, offset_in_folio(folio, i_size), |
| 2752 | xend: folio_size(folio)); |
| 2753 | return __block_write_full_folio(inode, folio, get_block, wbc); |
| 2754 | } |
| 2755 | |
| 2756 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, |
| 2757 | get_block_t *get_block) |
| 2758 | { |
| 2759 | struct inode *inode = mapping->host; |
| 2760 | struct buffer_head tmp = { |
| 2761 | .b_size = i_blocksize(node: inode), |
| 2762 | }; |
| 2763 | |
| 2764 | get_block(inode, block, &tmp, 0); |
| 2765 | return tmp.b_blocknr; |
| 2766 | } |
| 2767 | EXPORT_SYMBOL(generic_block_bmap); |
| 2768 | |
| 2769 | static void end_bio_bh_io_sync(struct bio *bio) |
| 2770 | { |
| 2771 | struct buffer_head *bh = bio->bi_private; |
| 2772 | |
| 2773 | if (unlikely(bio_flagged(bio, BIO_QUIET))) |
| 2774 | set_bit(nr: BH_Quiet, addr: &bh->b_state); |
| 2775 | |
| 2776 | bh->b_end_io(bh, !bio->bi_status); |
| 2777 | bio_put(bio); |
| 2778 | } |
| 2779 | |
| 2780 | static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, |
| 2781 | enum rw_hint write_hint, |
| 2782 | struct writeback_control *wbc) |
| 2783 | { |
| 2784 | const enum req_op op = opf & REQ_OP_MASK; |
| 2785 | struct bio *bio; |
| 2786 | |
| 2787 | BUG_ON(!buffer_locked(bh)); |
| 2788 | BUG_ON(!buffer_mapped(bh)); |
| 2789 | BUG_ON(!bh->b_end_io); |
| 2790 | BUG_ON(buffer_delay(bh)); |
| 2791 | BUG_ON(buffer_unwritten(bh)); |
| 2792 | |
| 2793 | /* |
| 2794 | * Only clear out a write error when rewriting |
| 2795 | */ |
| 2796 | if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) |
| 2797 | clear_buffer_write_io_error(bh); |
| 2798 | |
| 2799 | if (buffer_meta(bh)) |
| 2800 | opf |= REQ_META; |
| 2801 | if (buffer_prio(bh)) |
| 2802 | opf |= REQ_PRIO; |
| 2803 | |
| 2804 | bio = bio_alloc(bdev: bh->b_bdev, nr_vecs: 1, opf, GFP_NOIO); |
| 2805 | |
| 2806 | fscrypt_set_bio_crypt_ctx_bh(bio, first_bh: bh, GFP_NOIO); |
| 2807 | |
| 2808 | bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); |
| 2809 | bio->bi_write_hint = write_hint; |
| 2810 | |
| 2811 | bio_add_folio_nofail(bio, folio: bh->b_folio, len: bh->b_size, off: bh_offset(bh)); |
| 2812 | |
| 2813 | bio->bi_end_io = end_bio_bh_io_sync; |
| 2814 | bio->bi_private = bh; |
| 2815 | |
| 2816 | /* Take care of bh's that straddle the end of the device */ |
| 2817 | guard_bio_eod(bio); |
| 2818 | |
| 2819 | if (wbc) { |
| 2820 | wbc_init_bio(wbc, bio); |
| 2821 | wbc_account_cgroup_owner(wbc, folio: bh->b_folio, bytes: bh->b_size); |
| 2822 | } |
| 2823 | |
| 2824 | submit_bio(bio); |
| 2825 | } |
| 2826 | |
| 2827 | void submit_bh(blk_opf_t opf, struct buffer_head *bh) |
| 2828 | { |
| 2829 | submit_bh_wbc(opf, bh, write_hint: WRITE_LIFE_NOT_SET, NULL); |
| 2830 | } |
| 2831 | EXPORT_SYMBOL(submit_bh); |
| 2832 | |
| 2833 | void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) |
| 2834 | { |
| 2835 | lock_buffer(bh); |
| 2836 | if (!test_clear_buffer_dirty(bh)) { |
| 2837 | unlock_buffer(bh); |
| 2838 | return; |
| 2839 | } |
| 2840 | bh->b_end_io = end_buffer_write_sync; |
| 2841 | get_bh(bh); |
| 2842 | submit_bh(REQ_OP_WRITE | op_flags, bh); |
| 2843 | } |
| 2844 | EXPORT_SYMBOL(write_dirty_buffer); |
| 2845 | |
| 2846 | /* |
| 2847 | * For a data-integrity writeout, we need to wait upon any in-progress I/O |
| 2848 | * and then start new I/O and then wait upon it. The caller must have a ref on |
| 2849 | * the buffer_head. |
| 2850 | */ |
| 2851 | int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) |
| 2852 | { |
| 2853 | WARN_ON(atomic_read(&bh->b_count) < 1); |
| 2854 | lock_buffer(bh); |
| 2855 | if (test_clear_buffer_dirty(bh)) { |
| 2856 | /* |
| 2857 | * The bh should be mapped, but it might not be if the |
| 2858 | * device was hot-removed. Not much we can do but fail the I/O. |
| 2859 | */ |
| 2860 | if (!buffer_mapped(bh)) { |
| 2861 | unlock_buffer(bh); |
| 2862 | return -EIO; |
| 2863 | } |
| 2864 | |
| 2865 | get_bh(bh); |
| 2866 | bh->b_end_io = end_buffer_write_sync; |
| 2867 | submit_bh(REQ_OP_WRITE | op_flags, bh); |
| 2868 | wait_on_buffer(bh); |
| 2869 | if (!buffer_uptodate(bh)) |
| 2870 | return -EIO; |
| 2871 | } else { |
| 2872 | unlock_buffer(bh); |
| 2873 | } |
| 2874 | return 0; |
| 2875 | } |
| 2876 | EXPORT_SYMBOL(__sync_dirty_buffer); |
| 2877 | |
| 2878 | int sync_dirty_buffer(struct buffer_head *bh) |
| 2879 | { |
| 2880 | return __sync_dirty_buffer(bh, REQ_SYNC); |
| 2881 | } |
| 2882 | EXPORT_SYMBOL(sync_dirty_buffer); |
| 2883 | |
| 2884 | static inline int buffer_busy(struct buffer_head *bh) |
| 2885 | { |
| 2886 | return atomic_read(v: &bh->b_count) | |
| 2887 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); |
| 2888 | } |
| 2889 | |
| 2890 | static bool |
| 2891 | drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) |
| 2892 | { |
| 2893 | struct buffer_head *head = folio_buffers(folio); |
| 2894 | struct buffer_head *bh; |
| 2895 | |
| 2896 | bh = head; |
| 2897 | do { |
| 2898 | if (buffer_busy(bh)) |
| 2899 | goto failed; |
| 2900 | bh = bh->b_this_page; |
| 2901 | } while (bh != head); |
| 2902 | |
| 2903 | do { |
| 2904 | struct buffer_head *next = bh->b_this_page; |
| 2905 | |
| 2906 | if (bh->b_assoc_map) |
| 2907 | __remove_assoc_queue(bh); |
| 2908 | bh = next; |
| 2909 | } while (bh != head); |
| 2910 | *buffers_to_free = head; |
| 2911 | folio_detach_private(folio); |
| 2912 | return true; |
| 2913 | failed: |
| 2914 | return false; |
| 2915 | } |
| 2916 | |
| 2917 | /** |
| 2918 | * try_to_free_buffers - Release buffers attached to this folio. |
| 2919 | * @folio: The folio. |
| 2920 | * |
| 2921 | * If any buffers are in use (dirty, under writeback, elevated refcount), |
| 2922 | * no buffers will be freed. |
| 2923 | * |
| 2924 | * If the folio is dirty but all the buffers are clean then we need to |
| 2925 | * be sure to mark the folio clean as well. This is because the folio |
| 2926 | * may be against a block device, and a later reattachment of buffers |
| 2927 | * to a dirty folio will set *all* buffers dirty. Which would corrupt |
| 2928 | * filesystem data on the same device. |
| 2929 | * |
| 2930 | * The same applies to regular filesystem folios: if all the buffers are |
| 2931 | * clean then we set the folio clean and proceed. To do that, we require |
| 2932 | * total exclusion from block_dirty_folio(). That is obtained with |
| 2933 | * i_private_lock. |
| 2934 | * |
| 2935 | * Exclusion against try_to_free_buffers may be obtained by either |
| 2936 | * locking the folio or by holding its mapping's i_private_lock. |
| 2937 | * |
| 2938 | * Context: Process context. @folio must be locked. Will not sleep. |
| 2939 | * Return: true if all buffers attached to this folio were freed. |
| 2940 | */ |
| 2941 | bool try_to_free_buffers(struct folio *folio) |
| 2942 | { |
| 2943 | struct address_space * const mapping = folio->mapping; |
| 2944 | struct buffer_head *buffers_to_free = NULL; |
| 2945 | bool ret = 0; |
| 2946 | |
| 2947 | BUG_ON(!folio_test_locked(folio)); |
| 2948 | if (folio_test_writeback(folio)) |
| 2949 | return false; |
| 2950 | |
| 2951 | if (mapping == NULL) { /* can this still happen? */ |
| 2952 | ret = drop_buffers(folio, buffers_to_free: &buffers_to_free); |
| 2953 | goto out; |
| 2954 | } |
| 2955 | |
| 2956 | spin_lock(lock: &mapping->i_private_lock); |
| 2957 | ret = drop_buffers(folio, buffers_to_free: &buffers_to_free); |
| 2958 | |
| 2959 | /* |
| 2960 | * If the filesystem writes its buffers by hand (eg ext3) |
| 2961 | * then we can have clean buffers against a dirty folio. We |
| 2962 | * clean the folio here; otherwise the VM will never notice |
| 2963 | * that the filesystem did any IO at all. |
| 2964 | * |
| 2965 | * Also, during truncate, discard_buffer will have marked all |
| 2966 | * the folio's buffers clean. We discover that here and clean |
| 2967 | * the folio also. |
| 2968 | * |
| 2969 | * i_private_lock must be held over this entire operation in order |
| 2970 | * to synchronise against block_dirty_folio and prevent the |
| 2971 | * dirty bit from being lost. |
| 2972 | */ |
| 2973 | if (ret) |
| 2974 | folio_cancel_dirty(folio); |
| 2975 | spin_unlock(lock: &mapping->i_private_lock); |
| 2976 | out: |
| 2977 | if (buffers_to_free) { |
| 2978 | struct buffer_head *bh = buffers_to_free; |
| 2979 | |
| 2980 | do { |
| 2981 | struct buffer_head *next = bh->b_this_page; |
| 2982 | free_buffer_head(bh); |
| 2983 | bh = next; |
| 2984 | } while (bh != buffers_to_free); |
| 2985 | } |
| 2986 | return ret; |
| 2987 | } |
| 2988 | EXPORT_SYMBOL(try_to_free_buffers); |
| 2989 | |
| 2990 | /* |
| 2991 | * Buffer-head allocation |
| 2992 | */ |
| 2993 | static struct kmem_cache *bh_cachep __ro_after_init; |
| 2994 | |
| 2995 | /* |
| 2996 | * Once the number of bh's in the machine exceeds this level, we start |
| 2997 | * stripping them in writeback. |
| 2998 | */ |
| 2999 | static unsigned long max_buffer_heads __ro_after_init; |
| 3000 | |
| 3001 | int buffer_heads_over_limit; |
| 3002 | |
| 3003 | struct bh_accounting { |
| 3004 | int nr; /* Number of live bh's */ |
| 3005 | int ratelimit; /* Limit cacheline bouncing */ |
| 3006 | }; |
| 3007 | |
| 3008 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; |
| 3009 | |
| 3010 | static void recalc_bh_state(void) |
| 3011 | { |
| 3012 | int i; |
| 3013 | int tot = 0; |
| 3014 | |
| 3015 | if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) |
| 3016 | return; |
| 3017 | __this_cpu_write(bh_accounting.ratelimit, 0); |
| 3018 | for_each_online_cpu(i) |
| 3019 | tot += per_cpu(bh_accounting, i).nr; |
| 3020 | buffer_heads_over_limit = (tot > max_buffer_heads); |
| 3021 | } |
| 3022 | |
| 3023 | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) |
| 3024 | { |
| 3025 | struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); |
| 3026 | if (ret) { |
| 3027 | INIT_LIST_HEAD(list: &ret->b_assoc_buffers); |
| 3028 | spin_lock_init(&ret->b_uptodate_lock); |
| 3029 | preempt_disable(); |
| 3030 | __this_cpu_inc(bh_accounting.nr); |
| 3031 | recalc_bh_state(); |
| 3032 | preempt_enable(); |
| 3033 | } |
| 3034 | return ret; |
| 3035 | } |
| 3036 | EXPORT_SYMBOL(alloc_buffer_head); |
| 3037 | |
| 3038 | void free_buffer_head(struct buffer_head *bh) |
| 3039 | { |
| 3040 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); |
| 3041 | kmem_cache_free(s: bh_cachep, objp: bh); |
| 3042 | preempt_disable(); |
| 3043 | __this_cpu_dec(bh_accounting.nr); |
| 3044 | recalc_bh_state(); |
| 3045 | preempt_enable(); |
| 3046 | } |
| 3047 | EXPORT_SYMBOL(free_buffer_head); |
| 3048 | |
| 3049 | static int buffer_exit_cpu_dead(unsigned int cpu) |
| 3050 | { |
| 3051 | int i; |
| 3052 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); |
| 3053 | |
| 3054 | for (i = 0; i < BH_LRU_SIZE; i++) { |
| 3055 | brelse(bh: b->bhs[i]); |
| 3056 | b->bhs[i] = NULL; |
| 3057 | } |
| 3058 | this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); |
| 3059 | per_cpu(bh_accounting, cpu).nr = 0; |
| 3060 | return 0; |
| 3061 | } |
| 3062 | |
| 3063 | /** |
| 3064 | * bh_uptodate_or_lock - Test whether the buffer is uptodate |
| 3065 | * @bh: struct buffer_head |
| 3066 | * |
| 3067 | * Return true if the buffer is up-to-date and false, |
| 3068 | * with the buffer locked, if not. |
| 3069 | */ |
| 3070 | int bh_uptodate_or_lock(struct buffer_head *bh) |
| 3071 | { |
| 3072 | if (!buffer_uptodate(bh)) { |
| 3073 | lock_buffer(bh); |
| 3074 | if (!buffer_uptodate(bh)) |
| 3075 | return 0; |
| 3076 | unlock_buffer(bh); |
| 3077 | } |
| 3078 | return 1; |
| 3079 | } |
| 3080 | EXPORT_SYMBOL(bh_uptodate_or_lock); |
| 3081 | |
| 3082 | /** |
| 3083 | * __bh_read - Submit read for a locked buffer |
| 3084 | * @bh: struct buffer_head |
| 3085 | * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ |
| 3086 | * @wait: wait until reading finish |
| 3087 | * |
| 3088 | * Returns zero on success or don't wait, and -EIO on error. |
| 3089 | */ |
| 3090 | int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) |
| 3091 | { |
| 3092 | int ret = 0; |
| 3093 | |
| 3094 | BUG_ON(!buffer_locked(bh)); |
| 3095 | |
| 3096 | get_bh(bh); |
| 3097 | bh->b_end_io = end_buffer_read_sync; |
| 3098 | submit_bh(REQ_OP_READ | op_flags, bh); |
| 3099 | if (wait) { |
| 3100 | wait_on_buffer(bh); |
| 3101 | if (!buffer_uptodate(bh)) |
| 3102 | ret = -EIO; |
| 3103 | } |
| 3104 | return ret; |
| 3105 | } |
| 3106 | EXPORT_SYMBOL(__bh_read); |
| 3107 | |
| 3108 | /** |
| 3109 | * __bh_read_batch - Submit read for a batch of unlocked buffers |
| 3110 | * @nr: entry number of the buffer batch |
| 3111 | * @bhs: a batch of struct buffer_head |
| 3112 | * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ |
| 3113 | * @force_lock: force to get a lock on the buffer if set, otherwise drops any |
| 3114 | * buffer that cannot lock. |
| 3115 | * |
| 3116 | * Returns zero on success or don't wait, and -EIO on error. |
| 3117 | */ |
| 3118 | void __bh_read_batch(int nr, struct buffer_head *bhs[], |
| 3119 | blk_opf_t op_flags, bool force_lock) |
| 3120 | { |
| 3121 | int i; |
| 3122 | |
| 3123 | for (i = 0; i < nr; i++) { |
| 3124 | struct buffer_head *bh = bhs[i]; |
| 3125 | |
| 3126 | if (buffer_uptodate(bh)) |
| 3127 | continue; |
| 3128 | |
| 3129 | if (force_lock) |
| 3130 | lock_buffer(bh); |
| 3131 | else |
| 3132 | if (!trylock_buffer(bh)) |
| 3133 | continue; |
| 3134 | |
| 3135 | if (buffer_uptodate(bh)) { |
| 3136 | unlock_buffer(bh); |
| 3137 | continue; |
| 3138 | } |
| 3139 | |
| 3140 | bh->b_end_io = end_buffer_read_sync; |
| 3141 | get_bh(bh); |
| 3142 | submit_bh(REQ_OP_READ | op_flags, bh); |
| 3143 | } |
| 3144 | } |
| 3145 | EXPORT_SYMBOL(__bh_read_batch); |
| 3146 | |
| 3147 | void __init buffer_init(void) |
| 3148 | { |
| 3149 | unsigned long nrpages; |
| 3150 | int ret; |
| 3151 | |
| 3152 | bh_cachep = KMEM_CACHE(buffer_head, |
| 3153 | SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); |
| 3154 | /* |
| 3155 | * Limit the bh occupancy to 10% of ZONE_NORMAL |
| 3156 | */ |
| 3157 | nrpages = (nr_free_buffer_pages() * 10) / 100; |
| 3158 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); |
| 3159 | ret = cpuhp_setup_state_nocalls(state: CPUHP_FS_BUFF_DEAD, name: "fs/buffer:dead" , |
| 3160 | NULL, teardown: buffer_exit_cpu_dead); |
| 3161 | WARN_ON(ret < 0); |
| 3162 | } |
| 3163 | |