| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include <linux/slab.h> |
| 3 | #include <linux/file.h> |
| 4 | #include <linux/fdtable.h> |
| 5 | #include <linux/freezer.h> |
| 6 | #include <linux/mm.h> |
| 7 | #include <linux/stat.h> |
| 8 | #include <linux/fcntl.h> |
| 9 | #include <linux/swap.h> |
| 10 | #include <linux/ctype.h> |
| 11 | #include <linux/string.h> |
| 12 | #include <linux/init.h> |
| 13 | #include <linux/pagemap.h> |
| 14 | #include <linux/perf_event.h> |
| 15 | #include <linux/highmem.h> |
| 16 | #include <linux/spinlock.h> |
| 17 | #include <linux/key.h> |
| 18 | #include <linux/personality.h> |
| 19 | #include <linux/binfmts.h> |
| 20 | #include <linux/coredump.h> |
| 21 | #include <linux/sort.h> |
| 22 | #include <linux/sched/coredump.h> |
| 23 | #include <linux/sched/signal.h> |
| 24 | #include <linux/sched/task_stack.h> |
| 25 | #include <linux/utsname.h> |
| 26 | #include <linux/pid_namespace.h> |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/namei.h> |
| 29 | #include <linux/mount.h> |
| 30 | #include <linux/security.h> |
| 31 | #include <linux/syscalls.h> |
| 32 | #include <linux/tsacct_kern.h> |
| 33 | #include <linux/cn_proc.h> |
| 34 | #include <linux/audit.h> |
| 35 | #include <linux/kmod.h> |
| 36 | #include <linux/fsnotify.h> |
| 37 | #include <linux/fs_struct.h> |
| 38 | #include <linux/pipe_fs_i.h> |
| 39 | #include <linux/oom.h> |
| 40 | #include <linux/compat.h> |
| 41 | #include <linux/fs.h> |
| 42 | #include <linux/path.h> |
| 43 | #include <linux/timekeeping.h> |
| 44 | #include <linux/sysctl.h> |
| 45 | #include <linux/elf.h> |
| 46 | #include <linux/pidfs.h> |
| 47 | #include <linux/net.h> |
| 48 | #include <linux/socket.h> |
| 49 | #include <net/af_unix.h> |
| 50 | #include <net/net_namespace.h> |
| 51 | #include <net/sock.h> |
| 52 | #include <uapi/linux/pidfd.h> |
| 53 | #include <uapi/linux/un.h> |
| 54 | #include <uapi/linux/coredump.h> |
| 55 | |
| 56 | #include <linux/uaccess.h> |
| 57 | #include <asm/mmu_context.h> |
| 58 | #include <asm/tlb.h> |
| 59 | #include <asm/exec.h> |
| 60 | |
| 61 | #include <trace/events/task.h> |
| 62 | #include "internal.h" |
| 63 | |
| 64 | #include <trace/events/sched.h> |
| 65 | |
| 66 | static bool dump_vma_snapshot(struct coredump_params *cprm); |
| 67 | static void free_vma_snapshot(struct coredump_params *cprm); |
| 68 | |
| 69 | #define CORE_FILE_NOTE_SIZE_DEFAULT (4*1024*1024) |
| 70 | /* Define a reasonable max cap */ |
| 71 | #define CORE_FILE_NOTE_SIZE_MAX (16*1024*1024) |
| 72 | /* |
| 73 | * File descriptor number for the pidfd for the thread-group leader of |
| 74 | * the coredumping task installed into the usermode helper's file |
| 75 | * descriptor table. |
| 76 | */ |
| 77 | #define COREDUMP_PIDFD_NUMBER 3 |
| 78 | |
| 79 | static int core_uses_pid; |
| 80 | static unsigned int core_pipe_limit; |
| 81 | static unsigned int core_sort_vma; |
| 82 | static char core_pattern[CORENAME_MAX_SIZE] = "core" ; |
| 83 | static int core_name_size = CORENAME_MAX_SIZE; |
| 84 | unsigned int core_file_note_size_limit = CORE_FILE_NOTE_SIZE_DEFAULT; |
| 85 | static atomic_t core_pipe_count = ATOMIC_INIT(0); |
| 86 | |
| 87 | enum coredump_type_t { |
| 88 | COREDUMP_FILE = 1, |
| 89 | COREDUMP_PIPE = 2, |
| 90 | COREDUMP_SOCK = 3, |
| 91 | COREDUMP_SOCK_REQ = 4, |
| 92 | }; |
| 93 | |
| 94 | struct core_name { |
| 95 | char *corename; |
| 96 | int used, size; |
| 97 | unsigned int core_pipe_limit; |
| 98 | bool core_dumped; |
| 99 | enum coredump_type_t core_type; |
| 100 | u64 mask; |
| 101 | }; |
| 102 | |
| 103 | static int expand_corename(struct core_name *cn, int size) |
| 104 | { |
| 105 | char *corename; |
| 106 | |
| 107 | size = kmalloc_size_roundup(size); |
| 108 | corename = krealloc(cn->corename, size, GFP_KERNEL); |
| 109 | |
| 110 | if (!corename) |
| 111 | return -ENOMEM; |
| 112 | |
| 113 | if (size > core_name_size) /* racy but harmless */ |
| 114 | core_name_size = size; |
| 115 | |
| 116 | cn->size = size; |
| 117 | cn->corename = corename; |
| 118 | return 0; |
| 119 | } |
| 120 | |
| 121 | static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, |
| 122 | va_list arg) |
| 123 | { |
| 124 | int free, need; |
| 125 | va_list arg_copy; |
| 126 | |
| 127 | again: |
| 128 | free = cn->size - cn->used; |
| 129 | |
| 130 | va_copy(arg_copy, arg); |
| 131 | need = vsnprintf(buf: cn->corename + cn->used, size: free, fmt, args: arg_copy); |
| 132 | va_end(arg_copy); |
| 133 | |
| 134 | if (need < free) { |
| 135 | cn->used += need; |
| 136 | return 0; |
| 137 | } |
| 138 | |
| 139 | if (!expand_corename(cn, size: cn->size + need - free + 1)) |
| 140 | goto again; |
| 141 | |
| 142 | return -ENOMEM; |
| 143 | } |
| 144 | |
| 145 | static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) |
| 146 | { |
| 147 | va_list arg; |
| 148 | int ret; |
| 149 | |
| 150 | va_start(arg, fmt); |
| 151 | ret = cn_vprintf(cn, fmt, arg); |
| 152 | va_end(arg); |
| 153 | |
| 154 | return ret; |
| 155 | } |
| 156 | |
| 157 | static __printf(2, 3) |
| 158 | int cn_esc_printf(struct core_name *cn, const char *fmt, ...) |
| 159 | { |
| 160 | int cur = cn->used; |
| 161 | va_list arg; |
| 162 | int ret; |
| 163 | |
| 164 | va_start(arg, fmt); |
| 165 | ret = cn_vprintf(cn, fmt, arg); |
| 166 | va_end(arg); |
| 167 | |
| 168 | if (ret == 0) { |
| 169 | /* |
| 170 | * Ensure that this coredump name component can't cause the |
| 171 | * resulting corefile path to consist of a ".." or ".". |
| 172 | */ |
| 173 | if ((cn->used - cur == 1 && cn->corename[cur] == '.') || |
| 174 | (cn->used - cur == 2 && cn->corename[cur] == '.' |
| 175 | && cn->corename[cur+1] == '.')) |
| 176 | cn->corename[cur] = '!'; |
| 177 | |
| 178 | /* |
| 179 | * Empty names are fishy and could be used to create a "//" in a |
| 180 | * corefile name, causing the coredump to happen one directory |
| 181 | * level too high. Enforce that all components of the core |
| 182 | * pattern are at least one character long. |
| 183 | */ |
| 184 | if (cn->used == cur) |
| 185 | ret = cn_printf(cn, fmt: "!" ); |
| 186 | } |
| 187 | |
| 188 | for (; cur < cn->used; ++cur) { |
| 189 | if (cn->corename[cur] == '/') |
| 190 | cn->corename[cur] = '!'; |
| 191 | } |
| 192 | return ret; |
| 193 | } |
| 194 | |
| 195 | static int cn_print_exe_file(struct core_name *cn, bool name_only) |
| 196 | { |
| 197 | struct file *exe_file; |
| 198 | char *pathbuf, *path, *ptr; |
| 199 | int ret; |
| 200 | |
| 201 | exe_file = get_mm_exe_file(current->mm); |
| 202 | if (!exe_file) |
| 203 | return cn_esc_printf(cn, fmt: "%s (path unknown)" , current->comm); |
| 204 | |
| 205 | pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); |
| 206 | if (!pathbuf) { |
| 207 | ret = -ENOMEM; |
| 208 | goto put_exe_file; |
| 209 | } |
| 210 | |
| 211 | path = file_path(exe_file, pathbuf, PATH_MAX); |
| 212 | if (IS_ERR(ptr: path)) { |
| 213 | ret = PTR_ERR(ptr: path); |
| 214 | goto free_buf; |
| 215 | } |
| 216 | |
| 217 | if (name_only) { |
| 218 | ptr = strrchr(path, '/'); |
| 219 | if (ptr) |
| 220 | path = ptr + 1; |
| 221 | } |
| 222 | ret = cn_esc_printf(cn, fmt: "%s" , path); |
| 223 | |
| 224 | free_buf: |
| 225 | kfree(objp: pathbuf); |
| 226 | put_exe_file: |
| 227 | fput(exe_file); |
| 228 | return ret; |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | * coredump_parse will inspect the pattern parameter, and output a name |
| 233 | * into corename, which must have space for at least CORENAME_MAX_SIZE |
| 234 | * bytes plus one byte for the zero terminator. |
| 235 | */ |
| 236 | static bool coredump_parse(struct core_name *cn, struct coredump_params *cprm, |
| 237 | size_t **argv, int *argc) |
| 238 | { |
| 239 | const struct cred *cred = current_cred(); |
| 240 | const char *pat_ptr = core_pattern; |
| 241 | bool was_space = false; |
| 242 | int pid_in_pattern = 0; |
| 243 | int err = 0; |
| 244 | |
| 245 | cn->mask = COREDUMP_KERNEL; |
| 246 | if (core_pipe_limit) |
| 247 | cn->mask |= COREDUMP_WAIT; |
| 248 | cn->used = 0; |
| 249 | cn->corename = NULL; |
| 250 | cn->core_pipe_limit = 0; |
| 251 | cn->core_dumped = false; |
| 252 | if (*pat_ptr == '|') |
| 253 | cn->core_type = COREDUMP_PIPE; |
| 254 | else if (*pat_ptr == '@') |
| 255 | cn->core_type = COREDUMP_SOCK; |
| 256 | else |
| 257 | cn->core_type = COREDUMP_FILE; |
| 258 | if (expand_corename(cn, size: core_name_size)) |
| 259 | return false; |
| 260 | cn->corename[0] = '\0'; |
| 261 | |
| 262 | switch (cn->core_type) { |
| 263 | case COREDUMP_PIPE: { |
| 264 | int argvs = sizeof(core_pattern) / 2; |
| 265 | (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL); |
| 266 | if (!(*argv)) |
| 267 | return false; |
| 268 | (*argv)[(*argc)++] = 0; |
| 269 | ++pat_ptr; |
| 270 | if (!(*pat_ptr)) |
| 271 | return false; |
| 272 | break; |
| 273 | } |
| 274 | case COREDUMP_SOCK: { |
| 275 | /* skip the @ */ |
| 276 | pat_ptr++; |
| 277 | if (!(*pat_ptr)) |
| 278 | return false; |
| 279 | if (*pat_ptr == '@') { |
| 280 | pat_ptr++; |
| 281 | if (!(*pat_ptr)) |
| 282 | return false; |
| 283 | |
| 284 | cn->core_type = COREDUMP_SOCK_REQ; |
| 285 | } |
| 286 | |
| 287 | err = cn_printf(cn, fmt: "%s" , pat_ptr); |
| 288 | if (err) |
| 289 | return false; |
| 290 | |
| 291 | /* Require absolute paths. */ |
| 292 | if (cn->corename[0] != '/') |
| 293 | return false; |
| 294 | |
| 295 | /* |
| 296 | * Ensure we can uses spaces to indicate additional |
| 297 | * parameters in the future. |
| 298 | */ |
| 299 | if (strchr(cn->corename, ' ')) { |
| 300 | coredump_report_failure("Coredump socket may not %s contain spaces" , cn->corename); |
| 301 | return false; |
| 302 | } |
| 303 | |
| 304 | /* Must not contain ".." in the path. */ |
| 305 | if (name_contains_dotdot(name: cn->corename)) { |
| 306 | coredump_report_failure("Coredump socket may not %s contain '..' spaces" , cn->corename); |
| 307 | return false; |
| 308 | } |
| 309 | |
| 310 | if (strlen(cn->corename) >= UNIX_PATH_MAX) { |
| 311 | coredump_report_failure("Coredump socket path %s too long" , cn->corename); |
| 312 | return false; |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * Currently no need to parse any other options. |
| 317 | * Relevant information can be retrieved from the peer |
| 318 | * pidfd retrievable via SO_PEERPIDFD by the receiver or |
| 319 | * via /proc/<pid>, using the SO_PEERPIDFD to guard |
| 320 | * against pid recycling when opening /proc/<pid>. |
| 321 | */ |
| 322 | return true; |
| 323 | } |
| 324 | case COREDUMP_FILE: |
| 325 | break; |
| 326 | default: |
| 327 | WARN_ON_ONCE(true); |
| 328 | return false; |
| 329 | } |
| 330 | |
| 331 | /* Repeat as long as we have more pattern to process and more output |
| 332 | space */ |
| 333 | while (*pat_ptr) { |
| 334 | /* |
| 335 | * Split on spaces before doing template expansion so that |
| 336 | * %e and %E don't get split if they have spaces in them |
| 337 | */ |
| 338 | if (cn->core_type == COREDUMP_PIPE) { |
| 339 | if (isspace(*pat_ptr)) { |
| 340 | if (cn->used != 0) |
| 341 | was_space = true; |
| 342 | pat_ptr++; |
| 343 | continue; |
| 344 | } else if (was_space) { |
| 345 | was_space = false; |
| 346 | err = cn_printf(cn, fmt: "%c" , '\0'); |
| 347 | if (err) |
| 348 | return false; |
| 349 | (*argv)[(*argc)++] = cn->used; |
| 350 | } |
| 351 | } |
| 352 | if (*pat_ptr != '%') { |
| 353 | err = cn_printf(cn, fmt: "%c" , *pat_ptr++); |
| 354 | } else { |
| 355 | switch (*++pat_ptr) { |
| 356 | /* single % at the end, drop that */ |
| 357 | case 0: |
| 358 | goto out; |
| 359 | /* Double percent, output one percent */ |
| 360 | case '%': |
| 361 | err = cn_printf(cn, fmt: "%c" , '%'); |
| 362 | break; |
| 363 | /* pid */ |
| 364 | case 'p': |
| 365 | pid_in_pattern = 1; |
| 366 | err = cn_printf(cn, fmt: "%d" , |
| 367 | task_tgid_vnr(current)); |
| 368 | break; |
| 369 | /* global pid */ |
| 370 | case 'P': |
| 371 | err = cn_printf(cn, fmt: "%d" , |
| 372 | task_tgid_nr(current)); |
| 373 | break; |
| 374 | case 'i': |
| 375 | err = cn_printf(cn, fmt: "%d" , |
| 376 | task_pid_vnr(current)); |
| 377 | break; |
| 378 | case 'I': |
| 379 | err = cn_printf(cn, fmt: "%d" , |
| 380 | task_pid_nr(current)); |
| 381 | break; |
| 382 | /* uid */ |
| 383 | case 'u': |
| 384 | err = cn_printf(cn, fmt: "%u" , |
| 385 | from_kuid(to: &init_user_ns, |
| 386 | kuid: cred->uid)); |
| 387 | break; |
| 388 | /* gid */ |
| 389 | case 'g': |
| 390 | err = cn_printf(cn, fmt: "%u" , |
| 391 | from_kgid(to: &init_user_ns, |
| 392 | kgid: cred->gid)); |
| 393 | break; |
| 394 | case 'd': |
| 395 | err = cn_printf(cn, fmt: "%d" , |
| 396 | __get_dumpable(mm_flags: cprm->mm_flags)); |
| 397 | break; |
| 398 | /* signal that caused the coredump */ |
| 399 | case 's': |
| 400 | err = cn_printf(cn, fmt: "%d" , |
| 401 | cprm->siginfo->si_signo); |
| 402 | break; |
| 403 | /* UNIX time of coredump */ |
| 404 | case 't': { |
| 405 | time64_t time; |
| 406 | |
| 407 | time = ktime_get_real_seconds(); |
| 408 | err = cn_printf(cn, fmt: "%lld" , time); |
| 409 | break; |
| 410 | } |
| 411 | /* hostname */ |
| 412 | case 'h': |
| 413 | down_read(sem: &uts_sem); |
| 414 | err = cn_esc_printf(cn, fmt: "%s" , |
| 415 | utsname()->nodename); |
| 416 | up_read(sem: &uts_sem); |
| 417 | break; |
| 418 | /* executable, could be changed by prctl PR_SET_NAME etc */ |
| 419 | case 'e': |
| 420 | err = cn_esc_printf(cn, fmt: "%s" , current->comm); |
| 421 | break; |
| 422 | /* file name of executable */ |
| 423 | case 'f': |
| 424 | err = cn_print_exe_file(cn, name_only: true); |
| 425 | break; |
| 426 | case 'E': |
| 427 | err = cn_print_exe_file(cn, name_only: false); |
| 428 | break; |
| 429 | /* core limit size */ |
| 430 | case 'c': |
| 431 | err = cn_printf(cn, fmt: "%lu" , |
| 432 | rlimit(RLIMIT_CORE)); |
| 433 | break; |
| 434 | /* CPU the task ran on */ |
| 435 | case 'C': |
| 436 | err = cn_printf(cn, fmt: "%d" , cprm->cpu); |
| 437 | break; |
| 438 | /* pidfd number */ |
| 439 | case 'F': { |
| 440 | /* |
| 441 | * Installing a pidfd only makes sense if |
| 442 | * we actually spawn a usermode helper. |
| 443 | */ |
| 444 | if (cn->core_type != COREDUMP_PIPE) |
| 445 | break; |
| 446 | |
| 447 | /* |
| 448 | * Note that we'll install a pidfd for the |
| 449 | * thread-group leader. We know that task |
| 450 | * linkage hasn't been removed yet and even if |
| 451 | * this @current isn't the actual thread-group |
| 452 | * leader we know that the thread-group leader |
| 453 | * cannot be reaped until @current has exited. |
| 454 | */ |
| 455 | cprm->pid = task_tgid(current); |
| 456 | err = cn_printf(cn, fmt: "%d" , COREDUMP_PIDFD_NUMBER); |
| 457 | break; |
| 458 | } |
| 459 | default: |
| 460 | break; |
| 461 | } |
| 462 | ++pat_ptr; |
| 463 | } |
| 464 | |
| 465 | if (err) |
| 466 | return false; |
| 467 | } |
| 468 | |
| 469 | out: |
| 470 | /* Backward compatibility with core_uses_pid: |
| 471 | * |
| 472 | * If core_pattern does not include a %p (as is the default) |
| 473 | * and core_uses_pid is set, then .%pid will be appended to |
| 474 | * the filename. Do not do this for piped commands. */ |
| 475 | if (cn->core_type == COREDUMP_FILE && !pid_in_pattern && core_uses_pid) |
| 476 | return cn_printf(cn, fmt: ".%d" , task_tgid_vnr(current)) == 0; |
| 477 | |
| 478 | return true; |
| 479 | } |
| 480 | |
| 481 | static int zap_process(struct signal_struct *signal, int exit_code) |
| 482 | { |
| 483 | struct task_struct *t; |
| 484 | int nr = 0; |
| 485 | |
| 486 | signal->flags = SIGNAL_GROUP_EXIT; |
| 487 | signal->group_exit_code = exit_code; |
| 488 | signal->group_stop_count = 0; |
| 489 | |
| 490 | __for_each_thread(signal, t) { |
| 491 | task_clear_jobctl_pending(task: t, JOBCTL_PENDING_MASK); |
| 492 | if (t != current && !(t->flags & PF_POSTCOREDUMP)) { |
| 493 | sigaddset(set: &t->pending.signal, SIGKILL); |
| 494 | signal_wake_up(t, fatal: 1); |
| 495 | nr++; |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | return nr; |
| 500 | } |
| 501 | |
| 502 | static int zap_threads(struct task_struct *tsk, |
| 503 | struct core_state *core_state, int exit_code) |
| 504 | { |
| 505 | struct signal_struct *signal = tsk->signal; |
| 506 | int nr = -EAGAIN; |
| 507 | |
| 508 | spin_lock_irq(lock: &tsk->sighand->siglock); |
| 509 | if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) { |
| 510 | /* Allow SIGKILL, see prepare_signal() */ |
| 511 | signal->core_state = core_state; |
| 512 | nr = zap_process(signal, exit_code); |
| 513 | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); |
| 514 | tsk->flags |= PF_DUMPCORE; |
| 515 | atomic_set(v: &core_state->nr_threads, i: nr); |
| 516 | } |
| 517 | spin_unlock_irq(lock: &tsk->sighand->siglock); |
| 518 | return nr; |
| 519 | } |
| 520 | |
| 521 | static int coredump_wait(int exit_code, struct core_state *core_state) |
| 522 | { |
| 523 | struct task_struct *tsk = current; |
| 524 | int core_waiters = -EBUSY; |
| 525 | |
| 526 | init_completion(x: &core_state->startup); |
| 527 | core_state->dumper.task = tsk; |
| 528 | core_state->dumper.next = NULL; |
| 529 | |
| 530 | core_waiters = zap_threads(tsk, core_state, exit_code); |
| 531 | if (core_waiters > 0) { |
| 532 | struct core_thread *ptr; |
| 533 | |
| 534 | wait_for_completion_state(x: &core_state->startup, |
| 535 | TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); |
| 536 | /* |
| 537 | * Wait for all the threads to become inactive, so that |
| 538 | * all the thread context (extended register state, like |
| 539 | * fpu etc) gets copied to the memory. |
| 540 | */ |
| 541 | ptr = core_state->dumper.next; |
| 542 | while (ptr != NULL) { |
| 543 | wait_task_inactive(ptr->task, TASK_ANY); |
| 544 | ptr = ptr->next; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | return core_waiters; |
| 549 | } |
| 550 | |
| 551 | static void coredump_finish(bool core_dumped) |
| 552 | { |
| 553 | struct core_thread *curr, *next; |
| 554 | struct task_struct *task; |
| 555 | |
| 556 | spin_lock_irq(lock: ¤t->sighand->siglock); |
| 557 | if (core_dumped && !__fatal_signal_pending(current)) |
| 558 | current->signal->group_exit_code |= 0x80; |
| 559 | next = current->signal->core_state->dumper.next; |
| 560 | current->signal->core_state = NULL; |
| 561 | spin_unlock_irq(lock: ¤t->sighand->siglock); |
| 562 | |
| 563 | while ((curr = next) != NULL) { |
| 564 | next = curr->next; |
| 565 | task = curr->task; |
| 566 | /* |
| 567 | * see coredump_task_exit(), curr->task must not see |
| 568 | * ->task == NULL before we read ->next. |
| 569 | */ |
| 570 | smp_mb(); |
| 571 | curr->task = NULL; |
| 572 | wake_up_process(tsk: task); |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | static bool dump_interrupted(void) |
| 577 | { |
| 578 | /* |
| 579 | * SIGKILL or freezing() interrupt the coredumping. Perhaps we |
| 580 | * can do try_to_freeze() and check __fatal_signal_pending(), |
| 581 | * but then we need to teach dump_write() to restart and clear |
| 582 | * TIF_SIGPENDING. |
| 583 | */ |
| 584 | return fatal_signal_pending(current) || freezing(current); |
| 585 | } |
| 586 | |
| 587 | static void wait_for_dump_helpers(struct file *file) |
| 588 | { |
| 589 | struct pipe_inode_info *pipe = file->private_data; |
| 590 | |
| 591 | pipe_lock(pipe); |
| 592 | pipe->readers++; |
| 593 | pipe->writers--; |
| 594 | wake_up_interruptible_sync(&pipe->rd_wait); |
| 595 | kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| 596 | pipe_unlock(pipe); |
| 597 | |
| 598 | /* |
| 599 | * We actually want wait_event_freezable() but then we need |
| 600 | * to clear TIF_SIGPENDING and improve dump_interrupted(). |
| 601 | */ |
| 602 | wait_event_interruptible(pipe->rd_wait, pipe->readers == 1); |
| 603 | |
| 604 | pipe_lock(pipe); |
| 605 | pipe->readers--; |
| 606 | pipe->writers++; |
| 607 | pipe_unlock(pipe); |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * umh_coredump_setup |
| 612 | * helper function to customize the process used |
| 613 | * to collect the core in userspace. Specifically |
| 614 | * it sets up a pipe and installs it as fd 0 (stdin) |
| 615 | * for the process. Returns 0 on success, or |
| 616 | * PTR_ERR on failure. |
| 617 | * Note that it also sets the core limit to 1. This |
| 618 | * is a special value that we use to trap recursive |
| 619 | * core dumps |
| 620 | */ |
| 621 | static int umh_coredump_setup(struct subprocess_info *info, struct cred *new) |
| 622 | { |
| 623 | struct file *files[2]; |
| 624 | struct coredump_params *cp = (struct coredump_params *)info->data; |
| 625 | int err; |
| 626 | |
| 627 | if (cp->pid) { |
| 628 | struct file *pidfs_file __free(fput) = NULL; |
| 629 | |
| 630 | pidfs_file = pidfs_alloc_file(pid: cp->pid, flags: 0); |
| 631 | if (IS_ERR(ptr: pidfs_file)) |
| 632 | return PTR_ERR(ptr: pidfs_file); |
| 633 | |
| 634 | pidfs_coredump(cprm: cp); |
| 635 | |
| 636 | /* |
| 637 | * Usermode helpers are childen of either |
| 638 | * system_dfl_wq or of kthreadd. So we know that |
| 639 | * we're starting off with a clean file descriptor |
| 640 | * table. So we should always be able to use |
| 641 | * COREDUMP_PIDFD_NUMBER as our file descriptor value. |
| 642 | */ |
| 643 | err = replace_fd(COREDUMP_PIDFD_NUMBER, file: pidfs_file, flags: 0); |
| 644 | if (err < 0) |
| 645 | return err; |
| 646 | } |
| 647 | |
| 648 | err = create_pipe_files(files, 0); |
| 649 | if (err) |
| 650 | return err; |
| 651 | |
| 652 | cp->file = files[1]; |
| 653 | |
| 654 | err = replace_fd(fd: 0, file: files[0], flags: 0); |
| 655 | fput(files[0]); |
| 656 | if (err < 0) |
| 657 | return err; |
| 658 | |
| 659 | /* and disallow core files too */ |
| 660 | current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; |
| 661 | |
| 662 | return 0; |
| 663 | } |
| 664 | |
| 665 | #ifdef CONFIG_UNIX |
| 666 | static bool coredump_sock_connect(struct core_name *cn, struct coredump_params *cprm) |
| 667 | { |
| 668 | struct file *file __free(fput) = NULL; |
| 669 | struct sockaddr_un addr = { |
| 670 | .sun_family = AF_UNIX, |
| 671 | }; |
| 672 | ssize_t addr_len; |
| 673 | int retval; |
| 674 | struct socket *socket; |
| 675 | |
| 676 | addr_len = strscpy(addr.sun_path, cn->corename); |
| 677 | if (addr_len < 0) |
| 678 | return false; |
| 679 | addr_len += offsetof(struct sockaddr_un, sun_path) + 1; |
| 680 | |
| 681 | /* |
| 682 | * It is possible that the userspace process which is supposed |
| 683 | * to handle the coredump and is listening on the AF_UNIX socket |
| 684 | * coredumps. Userspace should just mark itself non dumpable. |
| 685 | */ |
| 686 | |
| 687 | retval = sock_create_kern(net: &init_net, AF_UNIX, type: SOCK_STREAM, proto: 0, res: &socket); |
| 688 | if (retval < 0) |
| 689 | return false; |
| 690 | |
| 691 | file = sock_alloc_file(sock: socket, flags: 0, NULL); |
| 692 | if (IS_ERR(ptr: file)) |
| 693 | return false; |
| 694 | |
| 695 | /* |
| 696 | * Set the thread-group leader pid which is used for the peer |
| 697 | * credentials during connect() below. Then immediately register |
| 698 | * it in pidfs... |
| 699 | */ |
| 700 | cprm->pid = task_tgid(current); |
| 701 | retval = pidfs_register_pid(pid: cprm->pid); |
| 702 | if (retval) |
| 703 | return false; |
| 704 | |
| 705 | /* |
| 706 | * ... and set the coredump information so userspace has it |
| 707 | * available after connect()... |
| 708 | */ |
| 709 | pidfs_coredump(cprm); |
| 710 | |
| 711 | retval = kernel_connect(sock: socket, addr: (struct sockaddr *)(&addr), addrlen: addr_len, |
| 712 | O_NONBLOCK | SOCK_COREDUMP); |
| 713 | |
| 714 | if (retval) { |
| 715 | if (retval == -EAGAIN) |
| 716 | coredump_report_failure("Coredump socket %s receive queue full" , addr.sun_path); |
| 717 | else |
| 718 | coredump_report_failure("Coredump socket connection %s failed %d" , addr.sun_path, retval); |
| 719 | return false; |
| 720 | } |
| 721 | |
| 722 | /* ... and validate that @sk_peer_pid matches @cprm.pid. */ |
| 723 | if (WARN_ON_ONCE(unix_peer(socket->sk)->sk_peer_pid != cprm->pid)) |
| 724 | return false; |
| 725 | |
| 726 | cprm->limit = RLIM_INFINITY; |
| 727 | cprm->file = no_free_ptr(file); |
| 728 | |
| 729 | return true; |
| 730 | } |
| 731 | |
| 732 | static inline bool coredump_sock_recv(struct file *file, struct coredump_ack *ack, size_t size, int flags) |
| 733 | { |
| 734 | struct msghdr msg = {}; |
| 735 | struct kvec iov = { .iov_base = ack, .iov_len = size }; |
| 736 | ssize_t ret; |
| 737 | |
| 738 | memset(s: ack, c: 0, n: size); |
| 739 | ret = kernel_recvmsg(sock: sock_from_file(file), msg: &msg, vec: &iov, num: 1, len: size, flags); |
| 740 | return ret == size; |
| 741 | } |
| 742 | |
| 743 | static inline bool coredump_sock_send(struct file *file, struct coredump_req *req) |
| 744 | { |
| 745 | struct msghdr msg = { .msg_flags = MSG_NOSIGNAL }; |
| 746 | struct kvec iov = { .iov_base = req, .iov_len = sizeof(*req) }; |
| 747 | ssize_t ret; |
| 748 | |
| 749 | ret = kernel_sendmsg(sock: sock_from_file(file), msg: &msg, vec: &iov, num: 1, len: sizeof(*req)); |
| 750 | return ret == sizeof(*req); |
| 751 | } |
| 752 | |
| 753 | static_assert(sizeof(enum coredump_mark) == sizeof(__u32)); |
| 754 | |
| 755 | static inline bool coredump_sock_mark(struct file *file, enum coredump_mark mark) |
| 756 | { |
| 757 | struct msghdr msg = { .msg_flags = MSG_NOSIGNAL }; |
| 758 | struct kvec iov = { .iov_base = &mark, .iov_len = sizeof(mark) }; |
| 759 | ssize_t ret; |
| 760 | |
| 761 | ret = kernel_sendmsg(sock: sock_from_file(file), msg: &msg, vec: &iov, num: 1, len: sizeof(mark)); |
| 762 | return ret == sizeof(mark); |
| 763 | } |
| 764 | |
| 765 | static inline void coredump_sock_wait(struct file *file) |
| 766 | { |
| 767 | ssize_t n; |
| 768 | |
| 769 | /* |
| 770 | * We use a simple read to wait for the coredump processing to |
| 771 | * finish. Either the socket is closed or we get sent unexpected |
| 772 | * data. In both cases, we're done. |
| 773 | */ |
| 774 | n = __kernel_read(file, buf: &(char){ 0 }, count: 1, NULL); |
| 775 | if (n > 0) |
| 776 | coredump_report_failure("Coredump socket had unexpected data" ); |
| 777 | else if (n < 0) |
| 778 | coredump_report_failure("Coredump socket failed" ); |
| 779 | } |
| 780 | |
| 781 | static inline void coredump_sock_shutdown(struct file *file) |
| 782 | { |
| 783 | struct socket *socket; |
| 784 | |
| 785 | socket = sock_from_file(file); |
| 786 | if (!socket) |
| 787 | return; |
| 788 | |
| 789 | /* Let userspace know we're done processing the coredump. */ |
| 790 | kernel_sock_shutdown(sock: socket, how: SHUT_WR); |
| 791 | } |
| 792 | |
| 793 | static bool coredump_sock_request(struct core_name *cn, struct coredump_params *cprm) |
| 794 | { |
| 795 | struct coredump_req req = { |
| 796 | .size = sizeof(struct coredump_req), |
| 797 | .mask = COREDUMP_KERNEL | COREDUMP_USERSPACE | |
| 798 | COREDUMP_REJECT | COREDUMP_WAIT, |
| 799 | .size_ack = sizeof(struct coredump_ack), |
| 800 | }; |
| 801 | struct coredump_ack ack = {}; |
| 802 | ssize_t usize; |
| 803 | |
| 804 | if (cn->core_type != COREDUMP_SOCK_REQ) |
| 805 | return true; |
| 806 | |
| 807 | /* Let userspace know what we support. */ |
| 808 | if (!coredump_sock_send(file: cprm->file, req: &req)) |
| 809 | return false; |
| 810 | |
| 811 | /* Peek the size of the coredump_ack. */ |
| 812 | if (!coredump_sock_recv(file: cprm->file, ack: &ack, size: sizeof(ack.size), |
| 813 | MSG_PEEK | MSG_WAITALL)) |
| 814 | return false; |
| 815 | |
| 816 | /* Refuse unknown coredump_ack sizes. */ |
| 817 | usize = ack.size; |
| 818 | if (usize < COREDUMP_ACK_SIZE_VER0) { |
| 819 | coredump_sock_mark(file: cprm->file, mark: COREDUMP_MARK_MINSIZE); |
| 820 | return false; |
| 821 | } |
| 822 | |
| 823 | if (usize > sizeof(ack)) { |
| 824 | coredump_sock_mark(file: cprm->file, mark: COREDUMP_MARK_MAXSIZE); |
| 825 | return false; |
| 826 | } |
| 827 | |
| 828 | /* Now retrieve the coredump_ack. */ |
| 829 | if (!coredump_sock_recv(file: cprm->file, ack: &ack, size: usize, MSG_WAITALL)) |
| 830 | return false; |
| 831 | if (ack.size != usize) |
| 832 | return false; |
| 833 | |
| 834 | /* Refuse unknown coredump_ack flags. */ |
| 835 | if (ack.mask & ~req.mask) { |
| 836 | coredump_sock_mark(file: cprm->file, mark: COREDUMP_MARK_UNSUPPORTED); |
| 837 | return false; |
| 838 | } |
| 839 | |
| 840 | /* Refuse mutually exclusive options. */ |
| 841 | if (hweight64(ack.mask & (COREDUMP_USERSPACE | COREDUMP_KERNEL | |
| 842 | COREDUMP_REJECT)) != 1) { |
| 843 | coredump_sock_mark(file: cprm->file, mark: COREDUMP_MARK_CONFLICTING); |
| 844 | return false; |
| 845 | } |
| 846 | |
| 847 | if (ack.spare) { |
| 848 | coredump_sock_mark(file: cprm->file, mark: COREDUMP_MARK_UNSUPPORTED); |
| 849 | return false; |
| 850 | } |
| 851 | |
| 852 | cn->mask = ack.mask; |
| 853 | return coredump_sock_mark(file: cprm->file, mark: COREDUMP_MARK_REQACK); |
| 854 | } |
| 855 | |
| 856 | static bool coredump_socket(struct core_name *cn, struct coredump_params *cprm) |
| 857 | { |
| 858 | if (!coredump_sock_connect(cn, cprm)) |
| 859 | return false; |
| 860 | |
| 861 | return coredump_sock_request(cn, cprm); |
| 862 | } |
| 863 | #else |
| 864 | static inline void coredump_sock_wait(struct file *file) { } |
| 865 | static inline void coredump_sock_shutdown(struct file *file) { } |
| 866 | static inline bool coredump_socket(struct core_name *cn, struct coredump_params *cprm) { return false; } |
| 867 | #endif |
| 868 | |
| 869 | /* cprm->mm_flags contains a stable snapshot of dumpability flags. */ |
| 870 | static inline bool coredump_force_suid_safe(const struct coredump_params *cprm) |
| 871 | { |
| 872 | /* Require nonrelative corefile path and be extra careful. */ |
| 873 | return __get_dumpable(mm_flags: cprm->mm_flags) == SUID_DUMP_ROOT; |
| 874 | } |
| 875 | |
| 876 | static bool coredump_file(struct core_name *cn, struct coredump_params *cprm, |
| 877 | const struct linux_binfmt *binfmt) |
| 878 | { |
| 879 | struct mnt_idmap *idmap; |
| 880 | struct inode *inode; |
| 881 | struct file *file __free(fput) = NULL; |
| 882 | int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW | O_LARGEFILE | O_EXCL; |
| 883 | |
| 884 | if (cprm->limit < binfmt->min_coredump) |
| 885 | return false; |
| 886 | |
| 887 | if (coredump_force_suid_safe(cprm) && cn->corename[0] != '/') { |
| 888 | coredump_report_failure("this process can only dump core to a fully qualified path, skipping core dump" ); |
| 889 | return false; |
| 890 | } |
| 891 | |
| 892 | /* |
| 893 | * Unlink the file if it exists unless this is a SUID |
| 894 | * binary - in that case, we're running around with root |
| 895 | * privs and don't want to unlink another user's coredump. |
| 896 | */ |
| 897 | if (!coredump_force_suid_safe(cprm)) { |
| 898 | /* |
| 899 | * If it doesn't exist, that's fine. If there's some |
| 900 | * other problem, we'll catch it at the filp_open(). |
| 901 | */ |
| 902 | do_unlinkat(AT_FDCWD, name: getname_kernel(cn->corename)); |
| 903 | } |
| 904 | |
| 905 | /* |
| 906 | * There is a race between unlinking and creating the |
| 907 | * file, but if that causes an EEXIST here, that's |
| 908 | * fine - another process raced with us while creating |
| 909 | * the corefile, and the other process won. To userspace, |
| 910 | * what matters is that at least one of the two processes |
| 911 | * writes its coredump successfully, not which one. |
| 912 | */ |
| 913 | if (coredump_force_suid_safe(cprm)) { |
| 914 | /* |
| 915 | * Using user namespaces, normal user tasks can change |
| 916 | * their current->fs->root to point to arbitrary |
| 917 | * directories. Since the intention of the "only dump |
| 918 | * with a fully qualified path" rule is to control where |
| 919 | * coredumps may be placed using root privileges, |
| 920 | * current->fs->root must not be used. Instead, use the |
| 921 | * root directory of init_task. |
| 922 | */ |
| 923 | struct path root; |
| 924 | |
| 925 | task_lock(p: &init_task); |
| 926 | get_fs_root(fs: init_task.fs, root: &root); |
| 927 | task_unlock(p: &init_task); |
| 928 | file = file_open_root(&root, cn->corename, open_flags, 0600); |
| 929 | path_put(&root); |
| 930 | } else { |
| 931 | file = filp_open(cn->corename, open_flags, 0600); |
| 932 | } |
| 933 | if (IS_ERR(ptr: file)) |
| 934 | return false; |
| 935 | |
| 936 | inode = file_inode(f: file); |
| 937 | if (inode->i_nlink > 1) |
| 938 | return false; |
| 939 | if (d_unhashed(dentry: file->f_path.dentry)) |
| 940 | return false; |
| 941 | /* |
| 942 | * AK: actually i see no reason to not allow this for named |
| 943 | * pipes etc, but keep the previous behaviour for now. |
| 944 | */ |
| 945 | if (!S_ISREG(inode->i_mode)) |
| 946 | return false; |
| 947 | /* |
| 948 | * Don't dump core if the filesystem changed owner or mode |
| 949 | * of the file during file creation. This is an issue when |
| 950 | * a process dumps core while its cwd is e.g. on a vfat |
| 951 | * filesystem. |
| 952 | */ |
| 953 | idmap = file_mnt_idmap(file); |
| 954 | if (!vfsuid_eq_kuid(vfsuid: i_uid_into_vfsuid(idmap, inode), current_fsuid())) { |
| 955 | coredump_report_failure("Core dump to %s aborted: cannot preserve file owner" , cn->corename); |
| 956 | return false; |
| 957 | } |
| 958 | if ((inode->i_mode & 0677) != 0600) { |
| 959 | coredump_report_failure("Core dump to %s aborted: cannot preserve file permissions" , cn->corename); |
| 960 | return false; |
| 961 | } |
| 962 | if (!(file->f_mode & FMODE_CAN_WRITE)) |
| 963 | return false; |
| 964 | if (do_truncate(idmap, file->f_path.dentry, start: 0, time_attrs: 0, filp: file)) |
| 965 | return false; |
| 966 | |
| 967 | cprm->file = no_free_ptr(file); |
| 968 | return true; |
| 969 | } |
| 970 | |
| 971 | static bool coredump_pipe(struct core_name *cn, struct coredump_params *cprm, |
| 972 | size_t *argv, int argc) |
| 973 | { |
| 974 | int argi; |
| 975 | char **helper_argv __free(kfree) = NULL; |
| 976 | struct subprocess_info *sub_info; |
| 977 | |
| 978 | if (cprm->limit == 1) { |
| 979 | /* See umh_coredump_setup() which sets RLIMIT_CORE = 1. |
| 980 | * |
| 981 | * Normally core limits are irrelevant to pipes, since |
| 982 | * we're not writing to the file system, but we use |
| 983 | * cprm.limit of 1 here as a special value, this is a |
| 984 | * consistent way to catch recursive crashes. |
| 985 | * We can still crash if the core_pattern binary sets |
| 986 | * RLIM_CORE = !1, but it runs as root, and can do |
| 987 | * lots of stupid things. |
| 988 | * |
| 989 | * Note that we use task_tgid_vnr here to grab the pid |
| 990 | * of the process group leader. That way we get the |
| 991 | * right pid if a thread in a multi-threaded |
| 992 | * core_pattern process dies. |
| 993 | */ |
| 994 | coredump_report_failure("RLIMIT_CORE is set to 1, aborting core" ); |
| 995 | return false; |
| 996 | } |
| 997 | cprm->limit = RLIM_INFINITY; |
| 998 | |
| 999 | cn->core_pipe_limit = atomic_inc_return(v: &core_pipe_count); |
| 1000 | if (core_pipe_limit && (core_pipe_limit < cn->core_pipe_limit)) { |
| 1001 | coredump_report_failure("over core_pipe_limit, skipping core dump" ); |
| 1002 | return false; |
| 1003 | } |
| 1004 | |
| 1005 | helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv), GFP_KERNEL); |
| 1006 | if (!helper_argv) { |
| 1007 | coredump_report_failure("%s failed to allocate memory" , __func__); |
| 1008 | return false; |
| 1009 | } |
| 1010 | for (argi = 0; argi < argc; argi++) |
| 1011 | helper_argv[argi] = cn->corename + argv[argi]; |
| 1012 | helper_argv[argi] = NULL; |
| 1013 | |
| 1014 | sub_info = call_usermodehelper_setup(path: helper_argv[0], argv: helper_argv, NULL, |
| 1015 | GFP_KERNEL, init: umh_coredump_setup, |
| 1016 | NULL, data: cprm); |
| 1017 | if (!sub_info) |
| 1018 | return false; |
| 1019 | |
| 1020 | if (call_usermodehelper_exec(info: sub_info, UMH_WAIT_EXEC)) { |
| 1021 | coredump_report_failure("|%s pipe failed" , cn->corename); |
| 1022 | return false; |
| 1023 | } |
| 1024 | |
| 1025 | /* |
| 1026 | * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would |
| 1027 | * have this set to NULL. |
| 1028 | */ |
| 1029 | if (!cprm->file) { |
| 1030 | coredump_report_failure("Core dump to |%s disabled" , cn->corename); |
| 1031 | return false; |
| 1032 | } |
| 1033 | |
| 1034 | return true; |
| 1035 | } |
| 1036 | |
| 1037 | static bool coredump_write(struct core_name *cn, |
| 1038 | struct coredump_params *cprm, |
| 1039 | struct linux_binfmt *binfmt) |
| 1040 | { |
| 1041 | |
| 1042 | if (dump_interrupted()) |
| 1043 | return true; |
| 1044 | |
| 1045 | if (!dump_vma_snapshot(cprm)) |
| 1046 | return false; |
| 1047 | |
| 1048 | file_start_write(file: cprm->file); |
| 1049 | cn->core_dumped = binfmt->core_dump(cprm); |
| 1050 | /* |
| 1051 | * Ensures that file size is big enough to contain the current |
| 1052 | * file postion. This prevents gdb from complaining about |
| 1053 | * a truncated file if the last "write" to the file was |
| 1054 | * dump_skip. |
| 1055 | */ |
| 1056 | if (cprm->to_skip) { |
| 1057 | cprm->to_skip--; |
| 1058 | dump_emit(cprm, addr: "" , nr: 1); |
| 1059 | } |
| 1060 | file_end_write(file: cprm->file); |
| 1061 | free_vma_snapshot(cprm); |
| 1062 | return true; |
| 1063 | } |
| 1064 | |
| 1065 | static void coredump_cleanup(struct core_name *cn, struct coredump_params *cprm) |
| 1066 | { |
| 1067 | if (cprm->file) |
| 1068 | filp_close(cprm->file, NULL); |
| 1069 | if (cn->core_pipe_limit) { |
| 1070 | VFS_WARN_ON_ONCE(cn->core_type != COREDUMP_PIPE); |
| 1071 | atomic_dec(v: &core_pipe_count); |
| 1072 | } |
| 1073 | kfree(objp: cn->corename); |
| 1074 | coredump_finish(core_dumped: cn->core_dumped); |
| 1075 | } |
| 1076 | |
| 1077 | static inline bool coredump_skip(const struct coredump_params *cprm, |
| 1078 | const struct linux_binfmt *binfmt) |
| 1079 | { |
| 1080 | if (!binfmt) |
| 1081 | return true; |
| 1082 | if (!binfmt->core_dump) |
| 1083 | return true; |
| 1084 | if (!__get_dumpable(mm_flags: cprm->mm_flags)) |
| 1085 | return true; |
| 1086 | return false; |
| 1087 | } |
| 1088 | |
| 1089 | void vfs_coredump(const kernel_siginfo_t *siginfo) |
| 1090 | { |
| 1091 | struct cred *cred __free(put_cred) = NULL; |
| 1092 | size_t *argv __free(kfree) = NULL; |
| 1093 | struct core_state core_state; |
| 1094 | struct core_name cn; |
| 1095 | struct mm_struct *mm = current->mm; |
| 1096 | struct linux_binfmt *binfmt = mm->binfmt; |
| 1097 | const struct cred *old_cred; |
| 1098 | int argc = 0; |
| 1099 | struct coredump_params cprm = { |
| 1100 | .siginfo = siginfo, |
| 1101 | .limit = rlimit(RLIMIT_CORE), |
| 1102 | /* |
| 1103 | * We must use the same mm->flags while dumping core to avoid |
| 1104 | * inconsistency of bit flags, since this flag is not protected |
| 1105 | * by any locks. |
| 1106 | * |
| 1107 | * Note that we only care about MMF_DUMP* flags. |
| 1108 | */ |
| 1109 | .mm_flags = __mm_flags_get_dumpable(mm), |
| 1110 | .vma_meta = NULL, |
| 1111 | .cpu = raw_smp_processor_id(), |
| 1112 | }; |
| 1113 | |
| 1114 | audit_core_dumps(signr: siginfo->si_signo); |
| 1115 | |
| 1116 | if (coredump_skip(cprm: &cprm, binfmt)) |
| 1117 | return; |
| 1118 | |
| 1119 | cred = prepare_creds(); |
| 1120 | if (!cred) |
| 1121 | return; |
| 1122 | /* |
| 1123 | * We cannot trust fsuid as being the "true" uid of the process |
| 1124 | * nor do we know its entire history. We only know it was tainted |
| 1125 | * so we dump it as root in mode 2, and only into a controlled |
| 1126 | * environment (pipe handler or fully qualified path). |
| 1127 | */ |
| 1128 | if (coredump_force_suid_safe(cprm: &cprm)) |
| 1129 | cred->fsuid = GLOBAL_ROOT_UID; |
| 1130 | |
| 1131 | if (coredump_wait(siginfo->si_signo, &core_state) < 0) |
| 1132 | return; |
| 1133 | |
| 1134 | old_cred = override_creds(cred); |
| 1135 | |
| 1136 | if (!coredump_parse(&cn, &cprm, &argv, &argc)) { |
| 1137 | coredump_report_failure("format_corename failed, aborting core" ); |
| 1138 | goto close_fail; |
| 1139 | } |
| 1140 | |
| 1141 | switch (cn.core_type) { |
| 1142 | case COREDUMP_FILE: |
| 1143 | if (!coredump_file(&cn, &cprm, binfmt)) |
| 1144 | goto close_fail; |
| 1145 | break; |
| 1146 | case COREDUMP_PIPE: |
| 1147 | if (!coredump_pipe(&cn, &cprm, argv, argc)) |
| 1148 | goto close_fail; |
| 1149 | break; |
| 1150 | case COREDUMP_SOCK_REQ: |
| 1151 | fallthrough; |
| 1152 | case COREDUMP_SOCK: |
| 1153 | if (!coredump_socket(&cn, &cprm)) |
| 1154 | goto close_fail; |
| 1155 | break; |
| 1156 | default: |
| 1157 | WARN_ON_ONCE(true); |
| 1158 | goto close_fail; |
| 1159 | } |
| 1160 | |
| 1161 | /* Don't even generate the coredump. */ |
| 1162 | if (cn.mask & COREDUMP_REJECT) |
| 1163 | goto close_fail; |
| 1164 | |
| 1165 | /* get us an unshared descriptor table; almost always a no-op */ |
| 1166 | /* The cell spufs coredump code reads the file descriptor tables */ |
| 1167 | if (unshare_files()) |
| 1168 | goto close_fail; |
| 1169 | |
| 1170 | if ((cn.mask & COREDUMP_KERNEL) && !coredump_write(&cn, &cprm, binfmt)) |
| 1171 | goto close_fail; |
| 1172 | |
| 1173 | coredump_sock_shutdown(cprm.file); |
| 1174 | |
| 1175 | /* Let the parent know that a coredump was generated. */ |
| 1176 | if (cn.mask & COREDUMP_USERSPACE) |
| 1177 | cn.core_dumped = true; |
| 1178 | |
| 1179 | /* |
| 1180 | * When core_pipe_limit is set we wait for the coredump server |
| 1181 | * or usermodehelper to finish before exiting so it can e.g., |
| 1182 | * inspect /proc/<pid>. |
| 1183 | */ |
| 1184 | if (cn.mask & COREDUMP_WAIT) { |
| 1185 | switch (cn.core_type) { |
| 1186 | case COREDUMP_PIPE: |
| 1187 | wait_for_dump_helpers(cprm.file); |
| 1188 | break; |
| 1189 | case COREDUMP_SOCK_REQ: |
| 1190 | fallthrough; |
| 1191 | case COREDUMP_SOCK: |
| 1192 | coredump_sock_wait(cprm.file); |
| 1193 | break; |
| 1194 | default: |
| 1195 | break; |
| 1196 | } |
| 1197 | } |
| 1198 | |
| 1199 | close_fail: |
| 1200 | coredump_cleanup(&cn, &cprm); |
| 1201 | revert_creds(old_cred); |
| 1202 | return; |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * Core dumping helper functions. These are the only things you should |
| 1207 | * do on a core-file: use only these functions to write out all the |
| 1208 | * necessary info. |
| 1209 | */ |
| 1210 | static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr) |
| 1211 | { |
| 1212 | struct file *file = cprm->file; |
| 1213 | loff_t pos = file->f_pos; |
| 1214 | ssize_t n; |
| 1215 | |
| 1216 | if (cprm->written + nr > cprm->limit) |
| 1217 | return 0; |
| 1218 | if (dump_interrupted()) |
| 1219 | return 0; |
| 1220 | n = __kernel_write(file, addr, nr, &pos); |
| 1221 | if (n != nr) |
| 1222 | return 0; |
| 1223 | file->f_pos = pos; |
| 1224 | cprm->written += n; |
| 1225 | cprm->pos += n; |
| 1226 | |
| 1227 | return 1; |
| 1228 | } |
| 1229 | |
| 1230 | static int __dump_skip(struct coredump_params *cprm, size_t nr) |
| 1231 | { |
| 1232 | static char zeroes[PAGE_SIZE]; |
| 1233 | struct file *file = cprm->file; |
| 1234 | |
| 1235 | if (file->f_mode & FMODE_LSEEK) { |
| 1236 | if (dump_interrupted() || vfs_llseek(file, offset: nr, SEEK_CUR) < 0) |
| 1237 | return 0; |
| 1238 | cprm->pos += nr; |
| 1239 | return 1; |
| 1240 | } |
| 1241 | |
| 1242 | while (nr > PAGE_SIZE) { |
| 1243 | if (!__dump_emit(cprm, addr: zeroes, PAGE_SIZE)) |
| 1244 | return 0; |
| 1245 | nr -= PAGE_SIZE; |
| 1246 | } |
| 1247 | |
| 1248 | return __dump_emit(cprm, addr: zeroes, nr); |
| 1249 | } |
| 1250 | |
| 1251 | int dump_emit(struct coredump_params *cprm, const void *addr, int nr) |
| 1252 | { |
| 1253 | if (cprm->to_skip) { |
| 1254 | if (!__dump_skip(cprm, nr: cprm->to_skip)) |
| 1255 | return 0; |
| 1256 | cprm->to_skip = 0; |
| 1257 | } |
| 1258 | return __dump_emit(cprm, addr, nr); |
| 1259 | } |
| 1260 | EXPORT_SYMBOL(dump_emit); |
| 1261 | |
| 1262 | void dump_skip_to(struct coredump_params *cprm, unsigned long pos) |
| 1263 | { |
| 1264 | cprm->to_skip = pos - cprm->pos; |
| 1265 | } |
| 1266 | EXPORT_SYMBOL(dump_skip_to); |
| 1267 | |
| 1268 | void dump_skip(struct coredump_params *cprm, size_t nr) |
| 1269 | { |
| 1270 | cprm->to_skip += nr; |
| 1271 | } |
| 1272 | EXPORT_SYMBOL(dump_skip); |
| 1273 | |
| 1274 | #ifdef CONFIG_ELF_CORE |
| 1275 | static int dump_emit_page(struct coredump_params *cprm, struct page *page) |
| 1276 | { |
| 1277 | struct bio_vec bvec; |
| 1278 | struct iov_iter iter; |
| 1279 | struct file *file = cprm->file; |
| 1280 | loff_t pos; |
| 1281 | ssize_t n; |
| 1282 | |
| 1283 | if (!page) |
| 1284 | return 0; |
| 1285 | |
| 1286 | if (cprm->to_skip) { |
| 1287 | if (!__dump_skip(cprm, nr: cprm->to_skip)) |
| 1288 | return 0; |
| 1289 | cprm->to_skip = 0; |
| 1290 | } |
| 1291 | if (cprm->written + PAGE_SIZE > cprm->limit) |
| 1292 | return 0; |
| 1293 | if (dump_interrupted()) |
| 1294 | return 0; |
| 1295 | pos = file->f_pos; |
| 1296 | bvec_set_page(bv: &bvec, page, PAGE_SIZE, offset: 0); |
| 1297 | iov_iter_bvec(i: &iter, ITER_SOURCE, bvec: &bvec, nr_segs: 1, PAGE_SIZE); |
| 1298 | n = __kernel_write_iter(file: cprm->file, from: &iter, pos: &pos); |
| 1299 | if (n != PAGE_SIZE) |
| 1300 | return 0; |
| 1301 | file->f_pos = pos; |
| 1302 | cprm->written += PAGE_SIZE; |
| 1303 | cprm->pos += PAGE_SIZE; |
| 1304 | |
| 1305 | return 1; |
| 1306 | } |
| 1307 | |
| 1308 | /* |
| 1309 | * If we might get machine checks from kernel accesses during the |
| 1310 | * core dump, let's get those errors early rather than during the |
| 1311 | * IO. This is not performance-critical enough to warrant having |
| 1312 | * all the machine check logic in the iovec paths. |
| 1313 | */ |
| 1314 | #ifdef copy_mc_to_kernel |
| 1315 | |
| 1316 | #define dump_page_alloc() alloc_page(GFP_KERNEL) |
| 1317 | #define dump_page_free(x) __free_page(x) |
| 1318 | static struct page *dump_page_copy(struct page *src, struct page *dst) |
| 1319 | { |
| 1320 | void *buf = kmap_local_page(page: src); |
| 1321 | size_t left = copy_mc_to_kernel(page_address(dst), from: buf, PAGE_SIZE); |
| 1322 | kunmap_local(buf); |
| 1323 | return left ? NULL : dst; |
| 1324 | } |
| 1325 | |
| 1326 | #else |
| 1327 | |
| 1328 | /* We just want to return non-NULL; it's never used. */ |
| 1329 | #define dump_page_alloc() ERR_PTR(-EINVAL) |
| 1330 | #define dump_page_free(x) ((void)(x)) |
| 1331 | static inline struct page *dump_page_copy(struct page *src, struct page *dst) |
| 1332 | { |
| 1333 | return src; |
| 1334 | } |
| 1335 | #endif |
| 1336 | |
| 1337 | int dump_user_range(struct coredump_params *cprm, unsigned long start, |
| 1338 | unsigned long len) |
| 1339 | { |
| 1340 | unsigned long addr; |
| 1341 | struct page *dump_page; |
| 1342 | int locked, ret; |
| 1343 | |
| 1344 | dump_page = dump_page_alloc(); |
| 1345 | if (!dump_page) |
| 1346 | return 0; |
| 1347 | |
| 1348 | ret = 0; |
| 1349 | locked = 0; |
| 1350 | for (addr = start; addr < start + len; addr += PAGE_SIZE) { |
| 1351 | struct page *page; |
| 1352 | |
| 1353 | if (!locked) { |
| 1354 | if (mmap_read_lock_killable(current->mm)) |
| 1355 | goto out; |
| 1356 | locked = 1; |
| 1357 | } |
| 1358 | |
| 1359 | /* |
| 1360 | * To avoid having to allocate page tables for virtual address |
| 1361 | * ranges that have never been used yet, and also to make it |
| 1362 | * easy to generate sparse core files, use a helper that returns |
| 1363 | * NULL when encountering an empty page table entry that would |
| 1364 | * otherwise have been filled with the zero page. |
| 1365 | */ |
| 1366 | page = get_dump_page(addr, locked: &locked); |
| 1367 | if (page) { |
| 1368 | if (locked) { |
| 1369 | mmap_read_unlock(current->mm); |
| 1370 | locked = 0; |
| 1371 | } |
| 1372 | int stop = !dump_emit_page(cprm, page: dump_page_copy(src: page, dst: dump_page)); |
| 1373 | put_page(page); |
| 1374 | if (stop) |
| 1375 | goto out; |
| 1376 | } else { |
| 1377 | dump_skip(cprm, PAGE_SIZE); |
| 1378 | } |
| 1379 | |
| 1380 | if (dump_interrupted()) |
| 1381 | goto out; |
| 1382 | |
| 1383 | if (!need_resched()) |
| 1384 | continue; |
| 1385 | if (locked) { |
| 1386 | mmap_read_unlock(current->mm); |
| 1387 | locked = 0; |
| 1388 | } |
| 1389 | cond_resched(); |
| 1390 | } |
| 1391 | ret = 1; |
| 1392 | out: |
| 1393 | if (locked) |
| 1394 | mmap_read_unlock(current->mm); |
| 1395 | |
| 1396 | dump_page_free(dump_page); |
| 1397 | return ret; |
| 1398 | } |
| 1399 | #endif |
| 1400 | |
| 1401 | int dump_align(struct coredump_params *cprm, int align) |
| 1402 | { |
| 1403 | unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1); |
| 1404 | if (align & (align - 1)) |
| 1405 | return 0; |
| 1406 | if (mod) |
| 1407 | cprm->to_skip += align - mod; |
| 1408 | return 1; |
| 1409 | } |
| 1410 | EXPORT_SYMBOL(dump_align); |
| 1411 | |
| 1412 | #ifdef CONFIG_SYSCTL |
| 1413 | |
| 1414 | void validate_coredump_safety(void) |
| 1415 | { |
| 1416 | if (suid_dumpable == SUID_DUMP_ROOT && |
| 1417 | core_pattern[0] != '/' && core_pattern[0] != '|' && core_pattern[0] != '@') { |
| 1418 | |
| 1419 | coredump_report_failure("Unsafe core_pattern used with fs.suid_dumpable=2: " |
| 1420 | "pipe handler or fully qualified core dump path required. " |
| 1421 | "Set kernel.core_pattern before fs.suid_dumpable." ); |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | static inline bool check_coredump_socket(void) |
| 1426 | { |
| 1427 | const char *p; |
| 1428 | |
| 1429 | if (core_pattern[0] != '@') |
| 1430 | return true; |
| 1431 | |
| 1432 | /* |
| 1433 | * Coredump socket must be located in the initial mount |
| 1434 | * namespace. Don't give the impression that anything else is |
| 1435 | * supported right now. |
| 1436 | */ |
| 1437 | if (current->nsproxy->mnt_ns != init_task.nsproxy->mnt_ns) |
| 1438 | return false; |
| 1439 | |
| 1440 | /* Must be an absolute path... */ |
| 1441 | if (core_pattern[1] != '/') { |
| 1442 | /* ... or the socket request protocol... */ |
| 1443 | if (core_pattern[1] != '@') |
| 1444 | return false; |
| 1445 | /* ... and if so must be an absolute path. */ |
| 1446 | if (core_pattern[2] != '/') |
| 1447 | return false; |
| 1448 | p = &core_pattern[2]; |
| 1449 | } else { |
| 1450 | p = &core_pattern[1]; |
| 1451 | } |
| 1452 | |
| 1453 | /* The path obviously cannot exceed UNIX_PATH_MAX. */ |
| 1454 | if (strlen(p) >= UNIX_PATH_MAX) |
| 1455 | return false; |
| 1456 | |
| 1457 | /* Must not contain ".." in the path. */ |
| 1458 | if (name_contains_dotdot(name: core_pattern)) |
| 1459 | return false; |
| 1460 | |
| 1461 | return true; |
| 1462 | } |
| 1463 | |
| 1464 | static int proc_dostring_coredump(const struct ctl_table *table, int write, |
| 1465 | void *buffer, size_t *lenp, loff_t *ppos) |
| 1466 | { |
| 1467 | int error; |
| 1468 | ssize_t retval; |
| 1469 | char old_core_pattern[CORENAME_MAX_SIZE]; |
| 1470 | |
| 1471 | if (write) |
| 1472 | return proc_dostring(table, write, buffer, lenp, ppos); |
| 1473 | |
| 1474 | retval = strscpy(old_core_pattern, core_pattern, CORENAME_MAX_SIZE); |
| 1475 | |
| 1476 | error = proc_dostring(table, write, buffer, lenp, ppos); |
| 1477 | if (error) |
| 1478 | return error; |
| 1479 | |
| 1480 | if (!check_coredump_socket()) { |
| 1481 | strscpy(core_pattern, old_core_pattern, retval + 1); |
| 1482 | return -EINVAL; |
| 1483 | } |
| 1484 | |
| 1485 | validate_coredump_safety(); |
| 1486 | return error; |
| 1487 | } |
| 1488 | |
| 1489 | static const unsigned int core_file_note_size_min = CORE_FILE_NOTE_SIZE_DEFAULT; |
| 1490 | static const unsigned int core_file_note_size_max = CORE_FILE_NOTE_SIZE_MAX; |
| 1491 | static char core_modes[] = { |
| 1492 | "file\npipe" |
| 1493 | #ifdef CONFIG_UNIX |
| 1494 | "\nsocket" |
| 1495 | #endif |
| 1496 | }; |
| 1497 | |
| 1498 | static const struct ctl_table coredump_sysctls[] = { |
| 1499 | { |
| 1500 | .procname = "core_uses_pid" , |
| 1501 | .data = &core_uses_pid, |
| 1502 | .maxlen = sizeof(int), |
| 1503 | .mode = 0644, |
| 1504 | .proc_handler = proc_dointvec, |
| 1505 | }, |
| 1506 | { |
| 1507 | .procname = "core_pattern" , |
| 1508 | .data = core_pattern, |
| 1509 | .maxlen = CORENAME_MAX_SIZE, |
| 1510 | .mode = 0644, |
| 1511 | .proc_handler = proc_dostring_coredump, |
| 1512 | }, |
| 1513 | { |
| 1514 | .procname = "core_pipe_limit" , |
| 1515 | .data = &core_pipe_limit, |
| 1516 | .maxlen = sizeof(unsigned int), |
| 1517 | .mode = 0644, |
| 1518 | .proc_handler = proc_dointvec_minmax, |
| 1519 | .extra1 = SYSCTL_ZERO, |
| 1520 | .extra2 = SYSCTL_INT_MAX, |
| 1521 | }, |
| 1522 | { |
| 1523 | .procname = "core_file_note_size_limit" , |
| 1524 | .data = &core_file_note_size_limit, |
| 1525 | .maxlen = sizeof(unsigned int), |
| 1526 | .mode = 0644, |
| 1527 | .proc_handler = proc_douintvec_minmax, |
| 1528 | .extra1 = (unsigned int *)&core_file_note_size_min, |
| 1529 | .extra2 = (unsigned int *)&core_file_note_size_max, |
| 1530 | }, |
| 1531 | { |
| 1532 | .procname = "core_sort_vma" , |
| 1533 | .data = &core_sort_vma, |
| 1534 | .maxlen = sizeof(int), |
| 1535 | .mode = 0644, |
| 1536 | .proc_handler = proc_douintvec_minmax, |
| 1537 | .extra1 = SYSCTL_ZERO, |
| 1538 | .extra2 = SYSCTL_ONE, |
| 1539 | }, |
| 1540 | { |
| 1541 | .procname = "core_modes" , |
| 1542 | .data = core_modes, |
| 1543 | .maxlen = sizeof(core_modes) - 1, |
| 1544 | .mode = 0444, |
| 1545 | .proc_handler = proc_dostring, |
| 1546 | }, |
| 1547 | }; |
| 1548 | |
| 1549 | static int __init init_fs_coredump_sysctls(void) |
| 1550 | { |
| 1551 | register_sysctl_init("kernel" , coredump_sysctls); |
| 1552 | return 0; |
| 1553 | } |
| 1554 | fs_initcall(init_fs_coredump_sysctls); |
| 1555 | #endif /* CONFIG_SYSCTL */ |
| 1556 | |
| 1557 | /* |
| 1558 | * The purpose of always_dump_vma() is to make sure that special kernel mappings |
| 1559 | * that are useful for post-mortem analysis are included in every core dump. |
| 1560 | * In that way we ensure that the core dump is fully interpretable later |
| 1561 | * without matching up the same kernel and hardware config to see what PC values |
| 1562 | * meant. These special mappings include - vDSO, vsyscall, and other |
| 1563 | * architecture specific mappings |
| 1564 | */ |
| 1565 | static bool always_dump_vma(struct vm_area_struct *vma) |
| 1566 | { |
| 1567 | /* Any vsyscall mappings? */ |
| 1568 | if (vma == get_gate_vma(mm: vma->vm_mm)) |
| 1569 | return true; |
| 1570 | |
| 1571 | /* |
| 1572 | * Assume that all vmas with a .name op should always be dumped. |
| 1573 | * If this changes, a new vm_ops field can easily be added. |
| 1574 | */ |
| 1575 | if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) |
| 1576 | return true; |
| 1577 | |
| 1578 | /* |
| 1579 | * arch_vma_name() returns non-NULL for special architecture mappings, |
| 1580 | * such as vDSO sections. |
| 1581 | */ |
| 1582 | if (arch_vma_name(vma)) |
| 1583 | return true; |
| 1584 | |
| 1585 | return false; |
| 1586 | } |
| 1587 | |
| 1588 | #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1 |
| 1589 | |
| 1590 | /* |
| 1591 | * Decide how much of @vma's contents should be included in a core dump. |
| 1592 | */ |
| 1593 | static unsigned long vma_dump_size(struct vm_area_struct *vma, |
| 1594 | unsigned long mm_flags) |
| 1595 | { |
| 1596 | #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) |
| 1597 | |
| 1598 | /* always dump the vdso and vsyscall sections */ |
| 1599 | if (always_dump_vma(vma)) |
| 1600 | goto whole; |
| 1601 | |
| 1602 | if (vma->vm_flags & VM_DONTDUMP) |
| 1603 | return 0; |
| 1604 | |
| 1605 | /* support for DAX */ |
| 1606 | if (vma_is_dax(vma)) { |
| 1607 | if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) |
| 1608 | goto whole; |
| 1609 | if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) |
| 1610 | goto whole; |
| 1611 | return 0; |
| 1612 | } |
| 1613 | |
| 1614 | /* Hugetlb memory check */ |
| 1615 | if (is_vm_hugetlb_page(vma)) { |
| 1616 | if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) |
| 1617 | goto whole; |
| 1618 | if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) |
| 1619 | goto whole; |
| 1620 | return 0; |
| 1621 | } |
| 1622 | |
| 1623 | /* Do not dump I/O mapped devices or special mappings */ |
| 1624 | if (vma->vm_flags & VM_IO) |
| 1625 | return 0; |
| 1626 | |
| 1627 | /* By default, dump shared memory if mapped from an anonymous file. */ |
| 1628 | if (vma->vm_flags & VM_SHARED) { |
| 1629 | if (file_inode(f: vma->vm_file)->i_nlink == 0 ? |
| 1630 | FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) |
| 1631 | goto whole; |
| 1632 | return 0; |
| 1633 | } |
| 1634 | |
| 1635 | /* Dump segments that have been written to. */ |
| 1636 | if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE)) |
| 1637 | goto whole; |
| 1638 | if (vma->vm_file == NULL) |
| 1639 | return 0; |
| 1640 | |
| 1641 | if (FILTER(MAPPED_PRIVATE)) |
| 1642 | goto whole; |
| 1643 | |
| 1644 | /* |
| 1645 | * If this is the beginning of an executable file mapping, |
| 1646 | * dump the first page to aid in determining what was mapped here. |
| 1647 | */ |
| 1648 | if (FILTER(ELF_HEADERS) && |
| 1649 | vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { |
| 1650 | if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0) |
| 1651 | return PAGE_SIZE; |
| 1652 | |
| 1653 | /* |
| 1654 | * ELF libraries aren't always executable. |
| 1655 | * We'll want to check whether the mapping starts with the ELF |
| 1656 | * magic, but not now - we're holding the mmap lock, |
| 1657 | * so copy_from_user() doesn't work here. |
| 1658 | * Use a placeholder instead, and fix it up later in |
| 1659 | * dump_vma_snapshot(). |
| 1660 | */ |
| 1661 | return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER; |
| 1662 | } |
| 1663 | |
| 1664 | #undef FILTER |
| 1665 | |
| 1666 | return 0; |
| 1667 | |
| 1668 | whole: |
| 1669 | return vma->vm_end - vma->vm_start; |
| 1670 | } |
| 1671 | |
| 1672 | /* |
| 1673 | * Helper function for iterating across a vma list. It ensures that the caller |
| 1674 | * will visit `gate_vma' prior to terminating the search. |
| 1675 | */ |
| 1676 | static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi, |
| 1677 | struct vm_area_struct *vma, |
| 1678 | struct vm_area_struct *gate_vma) |
| 1679 | { |
| 1680 | if (gate_vma && (vma == gate_vma)) |
| 1681 | return NULL; |
| 1682 | |
| 1683 | vma = vma_next(vmi); |
| 1684 | if (vma) |
| 1685 | return vma; |
| 1686 | return gate_vma; |
| 1687 | } |
| 1688 | |
| 1689 | static void free_vma_snapshot(struct coredump_params *cprm) |
| 1690 | { |
| 1691 | if (cprm->vma_meta) { |
| 1692 | int i; |
| 1693 | for (i = 0; i < cprm->vma_count; i++) { |
| 1694 | struct file *file = cprm->vma_meta[i].file; |
| 1695 | if (file) |
| 1696 | fput(file); |
| 1697 | } |
| 1698 | kvfree(addr: cprm->vma_meta); |
| 1699 | cprm->vma_meta = NULL; |
| 1700 | } |
| 1701 | } |
| 1702 | |
| 1703 | static int cmp_vma_size(const void *vma_meta_lhs_ptr, const void *vma_meta_rhs_ptr) |
| 1704 | { |
| 1705 | const struct core_vma_metadata *vma_meta_lhs = vma_meta_lhs_ptr; |
| 1706 | const struct core_vma_metadata *vma_meta_rhs = vma_meta_rhs_ptr; |
| 1707 | |
| 1708 | if (vma_meta_lhs->dump_size < vma_meta_rhs->dump_size) |
| 1709 | return -1; |
| 1710 | if (vma_meta_lhs->dump_size > vma_meta_rhs->dump_size) |
| 1711 | return 1; |
| 1712 | return 0; |
| 1713 | } |
| 1714 | |
| 1715 | /* |
| 1716 | * Under the mmap_lock, take a snapshot of relevant information about the task's |
| 1717 | * VMAs. |
| 1718 | */ |
| 1719 | static bool dump_vma_snapshot(struct coredump_params *cprm) |
| 1720 | { |
| 1721 | struct vm_area_struct *gate_vma, *vma = NULL; |
| 1722 | struct mm_struct *mm = current->mm; |
| 1723 | VMA_ITERATOR(vmi, mm, 0); |
| 1724 | int i = 0; |
| 1725 | |
| 1726 | /* |
| 1727 | * Once the stack expansion code is fixed to not change VMA bounds |
| 1728 | * under mmap_lock in read mode, this can be changed to take the |
| 1729 | * mmap_lock in read mode. |
| 1730 | */ |
| 1731 | if (mmap_write_lock_killable(mm)) |
| 1732 | return false; |
| 1733 | |
| 1734 | cprm->vma_data_size = 0; |
| 1735 | gate_vma = get_gate_vma(mm); |
| 1736 | cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0); |
| 1737 | |
| 1738 | cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL); |
| 1739 | if (!cprm->vma_meta) { |
| 1740 | mmap_write_unlock(mm); |
| 1741 | return false; |
| 1742 | } |
| 1743 | |
| 1744 | while ((vma = coredump_next_vma(vmi: &vmi, vma, gate_vma)) != NULL) { |
| 1745 | struct core_vma_metadata *m = cprm->vma_meta + i; |
| 1746 | |
| 1747 | m->start = vma->vm_start; |
| 1748 | m->end = vma->vm_end; |
| 1749 | m->flags = vma->vm_flags; |
| 1750 | m->dump_size = vma_dump_size(vma, mm_flags: cprm->mm_flags); |
| 1751 | m->pgoff = vma->vm_pgoff; |
| 1752 | m->file = vma->vm_file; |
| 1753 | if (m->file) |
| 1754 | get_file(f: m->file); |
| 1755 | i++; |
| 1756 | } |
| 1757 | |
| 1758 | mmap_write_unlock(mm); |
| 1759 | |
| 1760 | for (i = 0; i < cprm->vma_count; i++) { |
| 1761 | struct core_vma_metadata *m = cprm->vma_meta + i; |
| 1762 | |
| 1763 | if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) { |
| 1764 | char elfmag[SELFMAG]; |
| 1765 | |
| 1766 | if (copy_from_user(to: elfmag, from: (void __user *)m->start, SELFMAG) || |
| 1767 | memcmp(elfmag, ELFMAG, SELFMAG) != 0) { |
| 1768 | m->dump_size = 0; |
| 1769 | } else { |
| 1770 | m->dump_size = PAGE_SIZE; |
| 1771 | } |
| 1772 | } |
| 1773 | |
| 1774 | cprm->vma_data_size += m->dump_size; |
| 1775 | } |
| 1776 | |
| 1777 | if (core_sort_vma) |
| 1778 | sort(base: cprm->vma_meta, num: cprm->vma_count, size: sizeof(*cprm->vma_meta), |
| 1779 | cmp_func: cmp_vma_size, NULL); |
| 1780 | |
| 1781 | return true; |
| 1782 | } |
| 1783 | |