| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * fs/libfs.c |
| 4 | * Library for filesystems writers. |
| 5 | */ |
| 6 | |
| 7 | #include <linux/blkdev.h> |
| 8 | #include <linux/export.h> |
| 9 | #include <linux/pagemap.h> |
| 10 | #include <linux/slab.h> |
| 11 | #include <linux/cred.h> |
| 12 | #include <linux/mount.h> |
| 13 | #include <linux/vfs.h> |
| 14 | #include <linux/quotaops.h> |
| 15 | #include <linux/mutex.h> |
| 16 | #include <linux/namei.h> |
| 17 | #include <linux/exportfs.h> |
| 18 | #include <linux/iversion.h> |
| 19 | #include <linux/writeback.h> |
| 20 | #include <linux/buffer_head.h> /* sync_mapping_buffers */ |
| 21 | #include <linux/fs_context.h> |
| 22 | #include <linux/pseudo_fs.h> |
| 23 | #include <linux/fsnotify.h> |
| 24 | #include <linux/unicode.h> |
| 25 | #include <linux/fscrypt.h> |
| 26 | #include <linux/pidfs.h> |
| 27 | |
| 28 | #include <linux/uaccess.h> |
| 29 | |
| 30 | #include "internal.h" |
| 31 | |
| 32 | int simple_getattr(struct mnt_idmap *idmap, const struct path *path, |
| 33 | struct kstat *stat, u32 request_mask, |
| 34 | unsigned int query_flags) |
| 35 | { |
| 36 | struct inode *inode = d_inode(dentry: path->dentry); |
| 37 | generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); |
| 38 | stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); |
| 39 | return 0; |
| 40 | } |
| 41 | EXPORT_SYMBOL(simple_getattr); |
| 42 | |
| 43 | int simple_statfs(struct dentry *dentry, struct kstatfs *buf) |
| 44 | { |
| 45 | u64 id = huge_encode_dev(dev: dentry->d_sb->s_dev); |
| 46 | |
| 47 | buf->f_fsid = u64_to_fsid(v: id); |
| 48 | buf->f_type = dentry->d_sb->s_magic; |
| 49 | buf->f_bsize = PAGE_SIZE; |
| 50 | buf->f_namelen = NAME_MAX; |
| 51 | return 0; |
| 52 | } |
| 53 | EXPORT_SYMBOL(simple_statfs); |
| 54 | |
| 55 | /* |
| 56 | * Retaining negative dentries for an in-memory filesystem just wastes |
| 57 | * memory and lookup time: arrange for them to be deleted immediately. |
| 58 | */ |
| 59 | int always_delete_dentry(const struct dentry *dentry) |
| 60 | { |
| 61 | return 1; |
| 62 | } |
| 63 | EXPORT_SYMBOL(always_delete_dentry); |
| 64 | |
| 65 | /* |
| 66 | * Lookup the data. This is trivial - if the dentry didn't already |
| 67 | * exist, we know it is negative. Set d_op to delete negative dentries. |
| 68 | */ |
| 69 | struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) |
| 70 | { |
| 71 | if (dentry->d_name.len > NAME_MAX) |
| 72 | return ERR_PTR(error: -ENAMETOOLONG); |
| 73 | if (!dentry->d_op && !(dentry->d_flags & DCACHE_DONTCACHE)) { |
| 74 | spin_lock(lock: &dentry->d_lock); |
| 75 | dentry->d_flags |= DCACHE_DONTCACHE; |
| 76 | spin_unlock(lock: &dentry->d_lock); |
| 77 | } |
| 78 | if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) |
| 79 | return NULL; |
| 80 | |
| 81 | d_add(dentry, NULL); |
| 82 | return NULL; |
| 83 | } |
| 84 | EXPORT_SYMBOL(simple_lookup); |
| 85 | |
| 86 | int dcache_dir_open(struct inode *inode, struct file *file) |
| 87 | { |
| 88 | file->private_data = d_alloc_cursor(file->f_path.dentry); |
| 89 | |
| 90 | return file->private_data ? 0 : -ENOMEM; |
| 91 | } |
| 92 | EXPORT_SYMBOL(dcache_dir_open); |
| 93 | |
| 94 | int dcache_dir_close(struct inode *inode, struct file *file) |
| 95 | { |
| 96 | dput(file->private_data); |
| 97 | return 0; |
| 98 | } |
| 99 | EXPORT_SYMBOL(dcache_dir_close); |
| 100 | |
| 101 | /* parent is locked at least shared */ |
| 102 | /* |
| 103 | * Returns an element of siblings' list. |
| 104 | * We are looking for <count>th positive after <p>; if |
| 105 | * found, dentry is grabbed and returned to caller. |
| 106 | * If no such element exists, NULL is returned. |
| 107 | */ |
| 108 | static struct dentry *scan_positives(struct dentry *cursor, |
| 109 | struct hlist_node **p, |
| 110 | loff_t count, |
| 111 | struct dentry *last) |
| 112 | { |
| 113 | struct dentry *dentry = cursor->d_parent, *found = NULL; |
| 114 | |
| 115 | spin_lock(lock: &dentry->d_lock); |
| 116 | while (*p) { |
| 117 | struct dentry *d = hlist_entry(*p, struct dentry, d_sib); |
| 118 | p = &d->d_sib.next; |
| 119 | // we must at least skip cursors, to avoid livelocks |
| 120 | if (d->d_flags & DCACHE_DENTRY_CURSOR) |
| 121 | continue; |
| 122 | if (simple_positive(dentry: d) && !--count) { |
| 123 | spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); |
| 124 | if (simple_positive(dentry: d)) |
| 125 | found = dget_dlock(dentry: d); |
| 126 | spin_unlock(lock: &d->d_lock); |
| 127 | if (likely(found)) |
| 128 | break; |
| 129 | count = 1; |
| 130 | } |
| 131 | if (need_resched()) { |
| 132 | if (!hlist_unhashed(h: &cursor->d_sib)) |
| 133 | __hlist_del(n: &cursor->d_sib); |
| 134 | hlist_add_behind(n: &cursor->d_sib, prev: &d->d_sib); |
| 135 | p = &cursor->d_sib.next; |
| 136 | spin_unlock(lock: &dentry->d_lock); |
| 137 | cond_resched(); |
| 138 | spin_lock(lock: &dentry->d_lock); |
| 139 | } |
| 140 | } |
| 141 | spin_unlock(lock: &dentry->d_lock); |
| 142 | dput(last); |
| 143 | return found; |
| 144 | } |
| 145 | |
| 146 | loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) |
| 147 | { |
| 148 | struct dentry *dentry = file->f_path.dentry; |
| 149 | switch (whence) { |
| 150 | case 1: |
| 151 | offset += file->f_pos; |
| 152 | fallthrough; |
| 153 | case 0: |
| 154 | if (offset >= 0) |
| 155 | break; |
| 156 | fallthrough; |
| 157 | default: |
| 158 | return -EINVAL; |
| 159 | } |
| 160 | if (offset != file->f_pos) { |
| 161 | struct dentry *cursor = file->private_data; |
| 162 | struct dentry *to = NULL; |
| 163 | |
| 164 | inode_lock_shared(inode: dentry->d_inode); |
| 165 | |
| 166 | if (offset > 2) |
| 167 | to = scan_positives(cursor, p: &dentry->d_children.first, |
| 168 | count: offset - 2, NULL); |
| 169 | spin_lock(lock: &dentry->d_lock); |
| 170 | hlist_del_init(n: &cursor->d_sib); |
| 171 | if (to) |
| 172 | hlist_add_behind(n: &cursor->d_sib, prev: &to->d_sib); |
| 173 | spin_unlock(lock: &dentry->d_lock); |
| 174 | dput(to); |
| 175 | |
| 176 | file->f_pos = offset; |
| 177 | |
| 178 | inode_unlock_shared(inode: dentry->d_inode); |
| 179 | } |
| 180 | return offset; |
| 181 | } |
| 182 | EXPORT_SYMBOL(dcache_dir_lseek); |
| 183 | |
| 184 | /* |
| 185 | * Directory is locked and all positive dentries in it are safe, since |
| 186 | * for ramfs-type trees they can't go away without unlink() or rmdir(), |
| 187 | * both impossible due to the lock on directory. |
| 188 | */ |
| 189 | |
| 190 | int dcache_readdir(struct file *file, struct dir_context *ctx) |
| 191 | { |
| 192 | struct dentry *dentry = file->f_path.dentry; |
| 193 | struct dentry *cursor = file->private_data; |
| 194 | struct dentry *next = NULL; |
| 195 | struct hlist_node **p; |
| 196 | |
| 197 | if (!dir_emit_dots(file, ctx)) |
| 198 | return 0; |
| 199 | |
| 200 | if (ctx->pos == 2) |
| 201 | p = &dentry->d_children.first; |
| 202 | else |
| 203 | p = &cursor->d_sib.next; |
| 204 | |
| 205 | while ((next = scan_positives(cursor, p, count: 1, last: next)) != NULL) { |
| 206 | if (!dir_emit(ctx, name: next->d_name.name, namelen: next->d_name.len, |
| 207 | ino: d_inode(dentry: next)->i_ino, |
| 208 | type: fs_umode_to_dtype(mode: d_inode(dentry: next)->i_mode))) |
| 209 | break; |
| 210 | ctx->pos++; |
| 211 | p = &next->d_sib.next; |
| 212 | } |
| 213 | spin_lock(lock: &dentry->d_lock); |
| 214 | hlist_del_init(n: &cursor->d_sib); |
| 215 | if (next) |
| 216 | hlist_add_before(n: &cursor->d_sib, next: &next->d_sib); |
| 217 | spin_unlock(lock: &dentry->d_lock); |
| 218 | dput(next); |
| 219 | |
| 220 | return 0; |
| 221 | } |
| 222 | EXPORT_SYMBOL(dcache_readdir); |
| 223 | |
| 224 | ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) |
| 225 | { |
| 226 | return -EISDIR; |
| 227 | } |
| 228 | EXPORT_SYMBOL(generic_read_dir); |
| 229 | |
| 230 | const struct file_operations simple_dir_operations = { |
| 231 | .open = dcache_dir_open, |
| 232 | .release = dcache_dir_close, |
| 233 | .llseek = dcache_dir_lseek, |
| 234 | .read = generic_read_dir, |
| 235 | .iterate_shared = dcache_readdir, |
| 236 | .fsync = noop_fsync, |
| 237 | }; |
| 238 | EXPORT_SYMBOL(simple_dir_operations); |
| 239 | |
| 240 | const struct inode_operations simple_dir_inode_operations = { |
| 241 | .lookup = simple_lookup, |
| 242 | }; |
| 243 | EXPORT_SYMBOL(simple_dir_inode_operations); |
| 244 | |
| 245 | /* simple_offset_add() never assigns these to a dentry */ |
| 246 | enum { |
| 247 | DIR_OFFSET_FIRST = 2, /* Find first real entry */ |
| 248 | DIR_OFFSET_EOD = S32_MAX, |
| 249 | }; |
| 250 | |
| 251 | /* simple_offset_add() allocation range */ |
| 252 | enum { |
| 253 | DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1, |
| 254 | DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1, |
| 255 | }; |
| 256 | |
| 257 | static void offset_set(struct dentry *dentry, long offset) |
| 258 | { |
| 259 | dentry->d_fsdata = (void *)offset; |
| 260 | } |
| 261 | |
| 262 | static long dentry2offset(struct dentry *dentry) |
| 263 | { |
| 264 | return (long)dentry->d_fsdata; |
| 265 | } |
| 266 | |
| 267 | static struct lock_class_key simple_offset_lock_class; |
| 268 | |
| 269 | /** |
| 270 | * simple_offset_init - initialize an offset_ctx |
| 271 | * @octx: directory offset map to be initialized |
| 272 | * |
| 273 | */ |
| 274 | void simple_offset_init(struct offset_ctx *octx) |
| 275 | { |
| 276 | mt_init_flags(mt: &octx->mt, MT_FLAGS_ALLOC_RANGE); |
| 277 | lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class); |
| 278 | octx->next_offset = DIR_OFFSET_MIN; |
| 279 | } |
| 280 | |
| 281 | /** |
| 282 | * simple_offset_add - Add an entry to a directory's offset map |
| 283 | * @octx: directory offset ctx to be updated |
| 284 | * @dentry: new dentry being added |
| 285 | * |
| 286 | * Returns zero on success. @octx and the dentry's offset are updated. |
| 287 | * Otherwise, a negative errno value is returned. |
| 288 | */ |
| 289 | int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) |
| 290 | { |
| 291 | unsigned long offset; |
| 292 | int ret; |
| 293 | |
| 294 | if (dentry2offset(dentry) != 0) |
| 295 | return -EBUSY; |
| 296 | |
| 297 | ret = mtree_alloc_cyclic(mt: &octx->mt, startp: &offset, entry: dentry, range_lo: DIR_OFFSET_MIN, |
| 298 | range_hi: DIR_OFFSET_MAX, next: &octx->next_offset, |
| 299 | GFP_KERNEL); |
| 300 | if (unlikely(ret < 0)) |
| 301 | return ret == -EBUSY ? -ENOSPC : ret; |
| 302 | |
| 303 | offset_set(dentry, offset); |
| 304 | return 0; |
| 305 | } |
| 306 | |
| 307 | static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry, |
| 308 | long offset) |
| 309 | { |
| 310 | int ret; |
| 311 | |
| 312 | ret = mtree_store(mt: &octx->mt, index: offset, entry: dentry, GFP_KERNEL); |
| 313 | if (ret) |
| 314 | return ret; |
| 315 | offset_set(dentry, offset); |
| 316 | return 0; |
| 317 | } |
| 318 | |
| 319 | /** |
| 320 | * simple_offset_remove - Remove an entry to a directory's offset map |
| 321 | * @octx: directory offset ctx to be updated |
| 322 | * @dentry: dentry being removed |
| 323 | * |
| 324 | */ |
| 325 | void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) |
| 326 | { |
| 327 | long offset; |
| 328 | |
| 329 | offset = dentry2offset(dentry); |
| 330 | if (offset == 0) |
| 331 | return; |
| 332 | |
| 333 | mtree_erase(mt: &octx->mt, index: offset); |
| 334 | offset_set(dentry, offset: 0); |
| 335 | } |
| 336 | |
| 337 | /** |
| 338 | * simple_offset_rename - handle directory offsets for rename |
| 339 | * @old_dir: parent directory of source entry |
| 340 | * @old_dentry: dentry of source entry |
| 341 | * @new_dir: parent_directory of destination entry |
| 342 | * @new_dentry: dentry of destination |
| 343 | * |
| 344 | * Caller provides appropriate serialization. |
| 345 | * |
| 346 | * User space expects the directory offset value of the replaced |
| 347 | * (new) directory entry to be unchanged after a rename. |
| 348 | * |
| 349 | * Returns zero on success, a negative errno value on failure. |
| 350 | */ |
| 351 | int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, |
| 352 | struct inode *new_dir, struct dentry *new_dentry) |
| 353 | { |
| 354 | struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); |
| 355 | struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); |
| 356 | long new_offset = dentry2offset(dentry: new_dentry); |
| 357 | |
| 358 | simple_offset_remove(octx: old_ctx, dentry: old_dentry); |
| 359 | |
| 360 | if (new_offset) { |
| 361 | offset_set(dentry: new_dentry, offset: 0); |
| 362 | return simple_offset_replace(octx: new_ctx, dentry: old_dentry, offset: new_offset); |
| 363 | } |
| 364 | return simple_offset_add(octx: new_ctx, dentry: old_dentry); |
| 365 | } |
| 366 | |
| 367 | /** |
| 368 | * simple_offset_rename_exchange - exchange rename with directory offsets |
| 369 | * @old_dir: parent of dentry being moved |
| 370 | * @old_dentry: dentry being moved |
| 371 | * @new_dir: destination parent |
| 372 | * @new_dentry: destination dentry |
| 373 | * |
| 374 | * This API preserves the directory offset values. Caller provides |
| 375 | * appropriate serialization. |
| 376 | * |
| 377 | * Returns zero on success. Otherwise a negative errno is returned and the |
| 378 | * rename is rolled back. |
| 379 | */ |
| 380 | int simple_offset_rename_exchange(struct inode *old_dir, |
| 381 | struct dentry *old_dentry, |
| 382 | struct inode *new_dir, |
| 383 | struct dentry *new_dentry) |
| 384 | { |
| 385 | struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); |
| 386 | struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); |
| 387 | long old_index = dentry2offset(dentry: old_dentry); |
| 388 | long new_index = dentry2offset(dentry: new_dentry); |
| 389 | int ret; |
| 390 | |
| 391 | simple_offset_remove(octx: old_ctx, dentry: old_dentry); |
| 392 | simple_offset_remove(octx: new_ctx, dentry: new_dentry); |
| 393 | |
| 394 | ret = simple_offset_replace(octx: new_ctx, dentry: old_dentry, offset: new_index); |
| 395 | if (ret) |
| 396 | goto out_restore; |
| 397 | |
| 398 | ret = simple_offset_replace(octx: old_ctx, dentry: new_dentry, offset: old_index); |
| 399 | if (ret) { |
| 400 | simple_offset_remove(octx: new_ctx, dentry: old_dentry); |
| 401 | goto out_restore; |
| 402 | } |
| 403 | |
| 404 | ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); |
| 405 | if (ret) { |
| 406 | simple_offset_remove(octx: new_ctx, dentry: old_dentry); |
| 407 | simple_offset_remove(octx: old_ctx, dentry: new_dentry); |
| 408 | goto out_restore; |
| 409 | } |
| 410 | return 0; |
| 411 | |
| 412 | out_restore: |
| 413 | (void)simple_offset_replace(octx: old_ctx, dentry: old_dentry, offset: old_index); |
| 414 | (void)simple_offset_replace(octx: new_ctx, dentry: new_dentry, offset: new_index); |
| 415 | return ret; |
| 416 | } |
| 417 | |
| 418 | /** |
| 419 | * simple_offset_destroy - Release offset map |
| 420 | * @octx: directory offset ctx that is about to be destroyed |
| 421 | * |
| 422 | * During fs teardown (eg. umount), a directory's offset map might still |
| 423 | * contain entries. xa_destroy() cleans out anything that remains. |
| 424 | */ |
| 425 | void simple_offset_destroy(struct offset_ctx *octx) |
| 426 | { |
| 427 | mtree_destroy(mt: &octx->mt); |
| 428 | } |
| 429 | |
| 430 | /** |
| 431 | * offset_dir_llseek - Advance the read position of a directory descriptor |
| 432 | * @file: an open directory whose position is to be updated |
| 433 | * @offset: a byte offset |
| 434 | * @whence: enumerator describing the starting position for this update |
| 435 | * |
| 436 | * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. |
| 437 | * |
| 438 | * Returns the updated read position if successful; otherwise a |
| 439 | * negative errno is returned and the read position remains unchanged. |
| 440 | */ |
| 441 | static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) |
| 442 | { |
| 443 | switch (whence) { |
| 444 | case SEEK_CUR: |
| 445 | offset += file->f_pos; |
| 446 | fallthrough; |
| 447 | case SEEK_SET: |
| 448 | if (offset >= 0) |
| 449 | break; |
| 450 | fallthrough; |
| 451 | default: |
| 452 | return -EINVAL; |
| 453 | } |
| 454 | |
| 455 | return vfs_setpos(file, offset, LONG_MAX); |
| 456 | } |
| 457 | |
| 458 | static struct dentry *find_positive_dentry(struct dentry *parent, |
| 459 | struct dentry *dentry, |
| 460 | bool next) |
| 461 | { |
| 462 | struct dentry *found = NULL; |
| 463 | |
| 464 | spin_lock(lock: &parent->d_lock); |
| 465 | if (next) |
| 466 | dentry = d_next_sibling(dentry); |
| 467 | else if (!dentry) |
| 468 | dentry = d_first_child(dentry: parent); |
| 469 | hlist_for_each_entry_from(dentry, d_sib) { |
| 470 | if (!simple_positive(dentry)) |
| 471 | continue; |
| 472 | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); |
| 473 | if (simple_positive(dentry)) |
| 474 | found = dget_dlock(dentry); |
| 475 | spin_unlock(lock: &dentry->d_lock); |
| 476 | if (likely(found)) |
| 477 | break; |
| 478 | } |
| 479 | spin_unlock(lock: &parent->d_lock); |
| 480 | return found; |
| 481 | } |
| 482 | |
| 483 | static noinline_for_stack struct dentry * |
| 484 | offset_dir_lookup(struct dentry *parent, loff_t offset) |
| 485 | { |
| 486 | struct inode *inode = d_inode(dentry: parent); |
| 487 | struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode); |
| 488 | struct dentry *child, *found = NULL; |
| 489 | |
| 490 | MA_STATE(mas, &octx->mt, offset, offset); |
| 491 | |
| 492 | if (offset == DIR_OFFSET_FIRST) |
| 493 | found = find_positive_dentry(parent, NULL, next: false); |
| 494 | else { |
| 495 | rcu_read_lock(); |
| 496 | child = mas_find_rev(mas: &mas, min: DIR_OFFSET_MIN); |
| 497 | found = find_positive_dentry(parent, dentry: child, next: false); |
| 498 | rcu_read_unlock(); |
| 499 | } |
| 500 | return found; |
| 501 | } |
| 502 | |
| 503 | static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) |
| 504 | { |
| 505 | struct inode *inode = d_inode(dentry); |
| 506 | |
| 507 | return dir_emit(ctx, name: dentry->d_name.name, namelen: dentry->d_name.len, |
| 508 | ino: inode->i_ino, type: fs_umode_to_dtype(mode: inode->i_mode)); |
| 509 | } |
| 510 | |
| 511 | static void offset_iterate_dir(struct file *file, struct dir_context *ctx) |
| 512 | { |
| 513 | struct dentry *dir = file->f_path.dentry; |
| 514 | struct dentry *dentry; |
| 515 | |
| 516 | dentry = offset_dir_lookup(parent: dir, offset: ctx->pos); |
| 517 | if (!dentry) |
| 518 | goto out_eod; |
| 519 | while (true) { |
| 520 | struct dentry *next; |
| 521 | |
| 522 | ctx->pos = dentry2offset(dentry); |
| 523 | if (!offset_dir_emit(ctx, dentry)) |
| 524 | break; |
| 525 | |
| 526 | next = find_positive_dentry(parent: dir, dentry, next: true); |
| 527 | dput(dentry); |
| 528 | |
| 529 | if (!next) |
| 530 | goto out_eod; |
| 531 | dentry = next; |
| 532 | } |
| 533 | dput(dentry); |
| 534 | return; |
| 535 | |
| 536 | out_eod: |
| 537 | ctx->pos = DIR_OFFSET_EOD; |
| 538 | } |
| 539 | |
| 540 | /** |
| 541 | * offset_readdir - Emit entries starting at offset @ctx->pos |
| 542 | * @file: an open directory to iterate over |
| 543 | * @ctx: directory iteration context |
| 544 | * |
| 545 | * Caller must hold @file's i_rwsem to prevent insertion or removal of |
| 546 | * entries during this call. |
| 547 | * |
| 548 | * On entry, @ctx->pos contains an offset that represents the first entry |
| 549 | * to be read from the directory. |
| 550 | * |
| 551 | * The operation continues until there are no more entries to read, or |
| 552 | * until the ctx->actor indicates there is no more space in the caller's |
| 553 | * output buffer. |
| 554 | * |
| 555 | * On return, @ctx->pos contains an offset that will read the next entry |
| 556 | * in this directory when offset_readdir() is called again with @ctx. |
| 557 | * Caller places this value in the d_off field of the last entry in the |
| 558 | * user's buffer. |
| 559 | * |
| 560 | * Return values: |
| 561 | * %0 - Complete |
| 562 | */ |
| 563 | static int offset_readdir(struct file *file, struct dir_context *ctx) |
| 564 | { |
| 565 | struct dentry *dir = file->f_path.dentry; |
| 566 | |
| 567 | lockdep_assert_held(&d_inode(dir)->i_rwsem); |
| 568 | |
| 569 | if (!dir_emit_dots(file, ctx)) |
| 570 | return 0; |
| 571 | if (ctx->pos != DIR_OFFSET_EOD) |
| 572 | offset_iterate_dir(file, ctx); |
| 573 | return 0; |
| 574 | } |
| 575 | |
| 576 | const struct file_operations simple_offset_dir_operations = { |
| 577 | .llseek = offset_dir_llseek, |
| 578 | .iterate_shared = offset_readdir, |
| 579 | .read = generic_read_dir, |
| 580 | .fsync = noop_fsync, |
| 581 | }; |
| 582 | |
| 583 | struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) |
| 584 | { |
| 585 | struct dentry *child = NULL, *d; |
| 586 | |
| 587 | spin_lock(lock: &parent->d_lock); |
| 588 | d = prev ? d_next_sibling(dentry: prev) : d_first_child(dentry: parent); |
| 589 | hlist_for_each_entry_from(d, d_sib) { |
| 590 | if (simple_positive(dentry: d)) { |
| 591 | spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); |
| 592 | if (simple_positive(dentry: d)) |
| 593 | child = dget_dlock(dentry: d); |
| 594 | spin_unlock(lock: &d->d_lock); |
| 595 | if (likely(child)) |
| 596 | break; |
| 597 | } |
| 598 | } |
| 599 | spin_unlock(lock: &parent->d_lock); |
| 600 | dput(prev); |
| 601 | return child; |
| 602 | } |
| 603 | EXPORT_SYMBOL(find_next_child); |
| 604 | |
| 605 | static void __simple_recursive_removal(struct dentry *dentry, |
| 606 | void (*callback)(struct dentry *), |
| 607 | bool locked) |
| 608 | { |
| 609 | struct dentry *this = dget(dentry); |
| 610 | while (true) { |
| 611 | struct dentry *victim = NULL, *child; |
| 612 | struct inode *inode = this->d_inode; |
| 613 | |
| 614 | inode_lock_nested(inode, subclass: I_MUTEX_CHILD); |
| 615 | if (d_is_dir(dentry: this)) |
| 616 | inode->i_flags |= S_DEAD; |
| 617 | while ((child = find_next_child(this, victim)) == NULL) { |
| 618 | // kill and ascend |
| 619 | // update metadata while it's still locked |
| 620 | inode_set_ctime_current(inode); |
| 621 | clear_nlink(inode); |
| 622 | inode_unlock(inode); |
| 623 | victim = this; |
| 624 | this = this->d_parent; |
| 625 | inode = this->d_inode; |
| 626 | if (!locked || victim != dentry) |
| 627 | inode_lock_nested(inode, subclass: I_MUTEX_CHILD); |
| 628 | if (simple_positive(dentry: victim)) { |
| 629 | d_invalidate(victim); // avoid lost mounts |
| 630 | if (callback) |
| 631 | callback(victim); |
| 632 | fsnotify_delete(dir: inode, inode: d_inode(dentry: victim), dentry: victim); |
| 633 | dput(victim); // unpin it |
| 634 | } |
| 635 | if (victim == dentry) { |
| 636 | inode_set_mtime_to_ts(inode, |
| 637 | ts: inode_set_ctime_current(inode)); |
| 638 | if (d_is_dir(dentry)) |
| 639 | drop_nlink(inode); |
| 640 | if (!locked) |
| 641 | inode_unlock(inode); |
| 642 | dput(dentry); |
| 643 | return; |
| 644 | } |
| 645 | } |
| 646 | inode_unlock(inode); |
| 647 | this = child; |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | void simple_recursive_removal(struct dentry *dentry, |
| 652 | void (*callback)(struct dentry *)) |
| 653 | { |
| 654 | return __simple_recursive_removal(dentry, callback, locked: false); |
| 655 | } |
| 656 | EXPORT_SYMBOL(simple_recursive_removal); |
| 657 | |
| 658 | /* caller holds parent directory with I_MUTEX_PARENT */ |
| 659 | void locked_recursive_removal(struct dentry *dentry, |
| 660 | void (*callback)(struct dentry *)) |
| 661 | { |
| 662 | return __simple_recursive_removal(dentry, callback, locked: true); |
| 663 | } |
| 664 | EXPORT_SYMBOL(locked_recursive_removal); |
| 665 | |
| 666 | static const struct super_operations simple_super_operations = { |
| 667 | .statfs = simple_statfs, |
| 668 | }; |
| 669 | |
| 670 | static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) |
| 671 | { |
| 672 | struct pseudo_fs_context *ctx = fc->fs_private; |
| 673 | struct inode *root; |
| 674 | |
| 675 | s->s_maxbytes = MAX_LFS_FILESIZE; |
| 676 | s->s_blocksize = PAGE_SIZE; |
| 677 | s->s_blocksize_bits = PAGE_SHIFT; |
| 678 | s->s_magic = ctx->magic; |
| 679 | s->s_op = ctx->ops ?: &simple_super_operations; |
| 680 | s->s_export_op = ctx->eops; |
| 681 | s->s_xattr = ctx->xattr; |
| 682 | s->s_time_gran = 1; |
| 683 | root = new_inode(sb: s); |
| 684 | if (!root) |
| 685 | return -ENOMEM; |
| 686 | |
| 687 | /* |
| 688 | * since this is the first inode, make it number 1. New inodes created |
| 689 | * after this must take care not to collide with it (by passing |
| 690 | * max_reserved of 1 to iunique). |
| 691 | */ |
| 692 | root->i_ino = 1; |
| 693 | root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; |
| 694 | simple_inode_init_ts(inode: root); |
| 695 | s->s_root = d_make_root(root); |
| 696 | if (!s->s_root) |
| 697 | return -ENOMEM; |
| 698 | set_default_d_op(s, ctx->dops); |
| 699 | return 0; |
| 700 | } |
| 701 | |
| 702 | static int pseudo_fs_get_tree(struct fs_context *fc) |
| 703 | { |
| 704 | return get_tree_nodev(fc, fill_super: pseudo_fs_fill_super); |
| 705 | } |
| 706 | |
| 707 | static void pseudo_fs_free(struct fs_context *fc) |
| 708 | { |
| 709 | kfree(objp: fc->fs_private); |
| 710 | } |
| 711 | |
| 712 | static const struct fs_context_operations pseudo_fs_context_ops = { |
| 713 | .free = pseudo_fs_free, |
| 714 | .get_tree = pseudo_fs_get_tree, |
| 715 | }; |
| 716 | |
| 717 | /* |
| 718 | * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that |
| 719 | * will never be mountable) |
| 720 | */ |
| 721 | struct pseudo_fs_context *init_pseudo(struct fs_context *fc, |
| 722 | unsigned long magic) |
| 723 | { |
| 724 | struct pseudo_fs_context *ctx; |
| 725 | |
| 726 | ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); |
| 727 | if (likely(ctx)) { |
| 728 | ctx->magic = magic; |
| 729 | fc->fs_private = ctx; |
| 730 | fc->ops = &pseudo_fs_context_ops; |
| 731 | fc->sb_flags |= SB_NOUSER; |
| 732 | fc->global = true; |
| 733 | } |
| 734 | return ctx; |
| 735 | } |
| 736 | EXPORT_SYMBOL(init_pseudo); |
| 737 | |
| 738 | int simple_open(struct inode *inode, struct file *file) |
| 739 | { |
| 740 | if (inode->i_private) |
| 741 | file->private_data = inode->i_private; |
| 742 | return 0; |
| 743 | } |
| 744 | EXPORT_SYMBOL(simple_open); |
| 745 | |
| 746 | int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) |
| 747 | { |
| 748 | struct inode *inode = d_inode(dentry: old_dentry); |
| 749 | |
| 750 | inode_set_mtime_to_ts(inode: dir, |
| 751 | ts: inode_set_ctime_to_ts(inode: dir, ts: inode_set_ctime_current(inode))); |
| 752 | inc_nlink(inode); |
| 753 | ihold(inode); |
| 754 | dget(dentry); |
| 755 | d_instantiate(dentry, inode); |
| 756 | return 0; |
| 757 | } |
| 758 | EXPORT_SYMBOL(simple_link); |
| 759 | |
| 760 | int simple_empty(struct dentry *dentry) |
| 761 | { |
| 762 | struct dentry *child; |
| 763 | int ret = 0; |
| 764 | |
| 765 | spin_lock(lock: &dentry->d_lock); |
| 766 | hlist_for_each_entry(child, &dentry->d_children, d_sib) { |
| 767 | spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); |
| 768 | if (simple_positive(dentry: child)) { |
| 769 | spin_unlock(lock: &child->d_lock); |
| 770 | goto out; |
| 771 | } |
| 772 | spin_unlock(lock: &child->d_lock); |
| 773 | } |
| 774 | ret = 1; |
| 775 | out: |
| 776 | spin_unlock(lock: &dentry->d_lock); |
| 777 | return ret; |
| 778 | } |
| 779 | EXPORT_SYMBOL(simple_empty); |
| 780 | |
| 781 | int simple_unlink(struct inode *dir, struct dentry *dentry) |
| 782 | { |
| 783 | struct inode *inode = d_inode(dentry); |
| 784 | |
| 785 | inode_set_mtime_to_ts(inode: dir, |
| 786 | ts: inode_set_ctime_to_ts(inode: dir, ts: inode_set_ctime_current(inode))); |
| 787 | drop_nlink(inode); |
| 788 | dput(dentry); |
| 789 | return 0; |
| 790 | } |
| 791 | EXPORT_SYMBOL(simple_unlink); |
| 792 | |
| 793 | int simple_rmdir(struct inode *dir, struct dentry *dentry) |
| 794 | { |
| 795 | if (!simple_empty(dentry)) |
| 796 | return -ENOTEMPTY; |
| 797 | |
| 798 | drop_nlink(inode: d_inode(dentry)); |
| 799 | simple_unlink(dir, dentry); |
| 800 | drop_nlink(inode: dir); |
| 801 | return 0; |
| 802 | } |
| 803 | EXPORT_SYMBOL(simple_rmdir); |
| 804 | |
| 805 | /** |
| 806 | * simple_rename_timestamp - update the various inode timestamps for rename |
| 807 | * @old_dir: old parent directory |
| 808 | * @old_dentry: dentry that is being renamed |
| 809 | * @new_dir: new parent directory |
| 810 | * @new_dentry: target for rename |
| 811 | * |
| 812 | * POSIX mandates that the old and new parent directories have their ctime and |
| 813 | * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have |
| 814 | * their ctime updated. |
| 815 | */ |
| 816 | void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, |
| 817 | struct inode *new_dir, struct dentry *new_dentry) |
| 818 | { |
| 819 | struct inode *newino = d_inode(dentry: new_dentry); |
| 820 | |
| 821 | inode_set_mtime_to_ts(inode: old_dir, ts: inode_set_ctime_current(inode: old_dir)); |
| 822 | if (new_dir != old_dir) |
| 823 | inode_set_mtime_to_ts(inode: new_dir, |
| 824 | ts: inode_set_ctime_current(inode: new_dir)); |
| 825 | inode_set_ctime_current(inode: d_inode(dentry: old_dentry)); |
| 826 | if (newino) |
| 827 | inode_set_ctime_current(inode: newino); |
| 828 | } |
| 829 | EXPORT_SYMBOL_GPL(simple_rename_timestamp); |
| 830 | |
| 831 | int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, |
| 832 | struct inode *new_dir, struct dentry *new_dentry) |
| 833 | { |
| 834 | bool old_is_dir = d_is_dir(dentry: old_dentry); |
| 835 | bool new_is_dir = d_is_dir(dentry: new_dentry); |
| 836 | |
| 837 | if (old_dir != new_dir && old_is_dir != new_is_dir) { |
| 838 | if (old_is_dir) { |
| 839 | drop_nlink(inode: old_dir); |
| 840 | inc_nlink(inode: new_dir); |
| 841 | } else { |
| 842 | drop_nlink(inode: new_dir); |
| 843 | inc_nlink(inode: old_dir); |
| 844 | } |
| 845 | } |
| 846 | simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); |
| 847 | return 0; |
| 848 | } |
| 849 | EXPORT_SYMBOL_GPL(simple_rename_exchange); |
| 850 | |
| 851 | int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, |
| 852 | struct dentry *old_dentry, struct inode *new_dir, |
| 853 | struct dentry *new_dentry, unsigned int flags) |
| 854 | { |
| 855 | int they_are_dirs = d_is_dir(dentry: old_dentry); |
| 856 | |
| 857 | if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) |
| 858 | return -EINVAL; |
| 859 | |
| 860 | if (flags & RENAME_EXCHANGE) |
| 861 | return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); |
| 862 | |
| 863 | if (!simple_empty(new_dentry)) |
| 864 | return -ENOTEMPTY; |
| 865 | |
| 866 | if (d_really_is_positive(dentry: new_dentry)) { |
| 867 | simple_unlink(new_dir, new_dentry); |
| 868 | if (they_are_dirs) { |
| 869 | drop_nlink(inode: d_inode(dentry: new_dentry)); |
| 870 | drop_nlink(inode: old_dir); |
| 871 | } |
| 872 | } else if (they_are_dirs) { |
| 873 | drop_nlink(inode: old_dir); |
| 874 | inc_nlink(inode: new_dir); |
| 875 | } |
| 876 | |
| 877 | simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); |
| 878 | return 0; |
| 879 | } |
| 880 | EXPORT_SYMBOL(simple_rename); |
| 881 | |
| 882 | /** |
| 883 | * simple_setattr - setattr for simple filesystem |
| 884 | * @idmap: idmap of the target mount |
| 885 | * @dentry: dentry |
| 886 | * @iattr: iattr structure |
| 887 | * |
| 888 | * Returns 0 on success, -error on failure. |
| 889 | * |
| 890 | * simple_setattr is a simple ->setattr implementation without a proper |
| 891 | * implementation of size changes. |
| 892 | * |
| 893 | * It can either be used for in-memory filesystems or special files |
| 894 | * on simple regular filesystems. Anything that needs to change on-disk |
| 895 | * or wire state on size changes needs its own setattr method. |
| 896 | */ |
| 897 | int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, |
| 898 | struct iattr *iattr) |
| 899 | { |
| 900 | struct inode *inode = d_inode(dentry); |
| 901 | int error; |
| 902 | |
| 903 | error = setattr_prepare(idmap, dentry, iattr); |
| 904 | if (error) |
| 905 | return error; |
| 906 | |
| 907 | if (iattr->ia_valid & ATTR_SIZE) |
| 908 | truncate_setsize(inode, newsize: iattr->ia_size); |
| 909 | setattr_copy(idmap, inode, attr: iattr); |
| 910 | mark_inode_dirty(inode); |
| 911 | return 0; |
| 912 | } |
| 913 | EXPORT_SYMBOL(simple_setattr); |
| 914 | |
| 915 | static int simple_read_folio(struct file *file, struct folio *folio) |
| 916 | { |
| 917 | folio_zero_range(folio, start: 0, length: folio_size(folio)); |
| 918 | flush_dcache_folio(folio); |
| 919 | folio_mark_uptodate(folio); |
| 920 | folio_unlock(folio); |
| 921 | return 0; |
| 922 | } |
| 923 | |
| 924 | int simple_write_begin(const struct kiocb *iocb, struct address_space *mapping, |
| 925 | loff_t pos, unsigned len, |
| 926 | struct folio **foliop, void **fsdata) |
| 927 | { |
| 928 | struct folio *folio; |
| 929 | |
| 930 | folio = __filemap_get_folio(mapping, index: pos / PAGE_SIZE, FGP_WRITEBEGIN, |
| 931 | gfp: mapping_gfp_mask(mapping)); |
| 932 | if (IS_ERR(ptr: folio)) |
| 933 | return PTR_ERR(ptr: folio); |
| 934 | |
| 935 | *foliop = folio; |
| 936 | |
| 937 | if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { |
| 938 | size_t from = offset_in_folio(folio, pos); |
| 939 | |
| 940 | folio_zero_segments(folio, start1: 0, xend1: from, |
| 941 | start2: from + len, xend2: folio_size(folio)); |
| 942 | } |
| 943 | return 0; |
| 944 | } |
| 945 | EXPORT_SYMBOL(simple_write_begin); |
| 946 | |
| 947 | /** |
| 948 | * simple_write_end - .write_end helper for non-block-device FSes |
| 949 | * @iocb: kernel I/O control block |
| 950 | * @mapping: " |
| 951 | * @pos: " |
| 952 | * @len: " |
| 953 | * @copied: " |
| 954 | * @folio: " |
| 955 | * @fsdata: " |
| 956 | * |
| 957 | * simple_write_end does the minimum needed for updating a folio after |
| 958 | * writing is done. It has the same API signature as the .write_end of |
| 959 | * address_space_operations vector. So it can just be set onto .write_end for |
| 960 | * FSes that don't need any other processing. i_rwsem is assumed to be held |
| 961 | * exclusively. |
| 962 | * Block based filesystems should use generic_write_end(). |
| 963 | * NOTE: Even though i_size might get updated by this function, mark_inode_dirty |
| 964 | * is not called, so a filesystem that actually does store data in .write_inode |
| 965 | * should extend on what's done here with a call to mark_inode_dirty() in the |
| 966 | * case that i_size has changed. |
| 967 | * |
| 968 | * Use *ONLY* with simple_read_folio() |
| 969 | */ |
| 970 | static int simple_write_end(const struct kiocb *iocb, |
| 971 | struct address_space *mapping, |
| 972 | loff_t pos, unsigned len, unsigned copied, |
| 973 | struct folio *folio, void *fsdata) |
| 974 | { |
| 975 | struct inode *inode = folio->mapping->host; |
| 976 | loff_t last_pos = pos + copied; |
| 977 | |
| 978 | /* zero the stale part of the folio if we did a short copy */ |
| 979 | if (!folio_test_uptodate(folio)) { |
| 980 | if (copied < len) { |
| 981 | size_t from = offset_in_folio(folio, pos); |
| 982 | |
| 983 | folio_zero_range(folio, start: from + copied, length: len - copied); |
| 984 | } |
| 985 | folio_mark_uptodate(folio); |
| 986 | } |
| 987 | /* |
| 988 | * No need to use i_size_read() here, the i_size |
| 989 | * cannot change under us because we hold the i_rwsem. |
| 990 | */ |
| 991 | if (last_pos > inode->i_size) |
| 992 | i_size_write(inode, i_size: last_pos); |
| 993 | |
| 994 | folio_mark_dirty(folio); |
| 995 | folio_unlock(folio); |
| 996 | folio_put(folio); |
| 997 | |
| 998 | return copied; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * Provides ramfs-style behavior: data in the pagecache, but no writeback. |
| 1003 | */ |
| 1004 | const struct address_space_operations ram_aops = { |
| 1005 | .read_folio = simple_read_folio, |
| 1006 | .write_begin = simple_write_begin, |
| 1007 | .write_end = simple_write_end, |
| 1008 | .dirty_folio = noop_dirty_folio, |
| 1009 | }; |
| 1010 | EXPORT_SYMBOL(ram_aops); |
| 1011 | |
| 1012 | /* |
| 1013 | * the inodes created here are not hashed. If you use iunique to generate |
| 1014 | * unique inode values later for this filesystem, then you must take care |
| 1015 | * to pass it an appropriate max_reserved value to avoid collisions. |
| 1016 | */ |
| 1017 | int simple_fill_super(struct super_block *s, unsigned long magic, |
| 1018 | const struct tree_descr *files) |
| 1019 | { |
| 1020 | struct inode *inode; |
| 1021 | struct dentry *dentry; |
| 1022 | int i; |
| 1023 | |
| 1024 | s->s_blocksize = PAGE_SIZE; |
| 1025 | s->s_blocksize_bits = PAGE_SHIFT; |
| 1026 | s->s_magic = magic; |
| 1027 | s->s_op = &simple_super_operations; |
| 1028 | s->s_time_gran = 1; |
| 1029 | |
| 1030 | inode = new_inode(sb: s); |
| 1031 | if (!inode) |
| 1032 | return -ENOMEM; |
| 1033 | /* |
| 1034 | * because the root inode is 1, the files array must not contain an |
| 1035 | * entry at index 1 |
| 1036 | */ |
| 1037 | inode->i_ino = 1; |
| 1038 | inode->i_mode = S_IFDIR | 0755; |
| 1039 | simple_inode_init_ts(inode); |
| 1040 | inode->i_op = &simple_dir_inode_operations; |
| 1041 | inode->i_fop = &simple_dir_operations; |
| 1042 | set_nlink(inode, nlink: 2); |
| 1043 | s->s_root = d_make_root(inode); |
| 1044 | if (!s->s_root) |
| 1045 | return -ENOMEM; |
| 1046 | for (i = 0; !files->name || files->name[0]; i++, files++) { |
| 1047 | if (!files->name) |
| 1048 | continue; |
| 1049 | |
| 1050 | /* warn if it tries to conflict with the root inode */ |
| 1051 | if (unlikely(i == 1)) |
| 1052 | printk(KERN_WARNING "%s: %s passed in a files array" |
| 1053 | "with an index of 1!\n" , __func__, |
| 1054 | s->s_type->name); |
| 1055 | |
| 1056 | dentry = d_alloc_name(s->s_root, files->name); |
| 1057 | if (!dentry) |
| 1058 | return -ENOMEM; |
| 1059 | inode = new_inode(sb: s); |
| 1060 | if (!inode) { |
| 1061 | dput(dentry); |
| 1062 | return -ENOMEM; |
| 1063 | } |
| 1064 | inode->i_mode = S_IFREG | files->mode; |
| 1065 | simple_inode_init_ts(inode); |
| 1066 | inode->i_fop = files->ops; |
| 1067 | inode->i_ino = i; |
| 1068 | d_add(dentry, inode); |
| 1069 | } |
| 1070 | return 0; |
| 1071 | } |
| 1072 | EXPORT_SYMBOL(simple_fill_super); |
| 1073 | |
| 1074 | static DEFINE_SPINLOCK(pin_fs_lock); |
| 1075 | |
| 1076 | int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) |
| 1077 | { |
| 1078 | struct vfsmount *mnt = NULL; |
| 1079 | spin_lock(lock: &pin_fs_lock); |
| 1080 | if (unlikely(!*mount)) { |
| 1081 | spin_unlock(lock: &pin_fs_lock); |
| 1082 | mnt = vfs_kern_mount(type, SB_KERNMOUNT, name: type->name, NULL); |
| 1083 | if (IS_ERR(ptr: mnt)) |
| 1084 | return PTR_ERR(ptr: mnt); |
| 1085 | spin_lock(lock: &pin_fs_lock); |
| 1086 | if (!*mount) |
| 1087 | *mount = mnt; |
| 1088 | } |
| 1089 | mntget(mnt: *mount); |
| 1090 | ++*count; |
| 1091 | spin_unlock(lock: &pin_fs_lock); |
| 1092 | mntput(mnt); |
| 1093 | return 0; |
| 1094 | } |
| 1095 | EXPORT_SYMBOL(simple_pin_fs); |
| 1096 | |
| 1097 | void simple_release_fs(struct vfsmount **mount, int *count) |
| 1098 | { |
| 1099 | struct vfsmount *mnt; |
| 1100 | spin_lock(lock: &pin_fs_lock); |
| 1101 | mnt = *mount; |
| 1102 | if (!--*count) |
| 1103 | *mount = NULL; |
| 1104 | spin_unlock(lock: &pin_fs_lock); |
| 1105 | mntput(mnt); |
| 1106 | } |
| 1107 | EXPORT_SYMBOL(simple_release_fs); |
| 1108 | |
| 1109 | /** |
| 1110 | * simple_read_from_buffer - copy data from the buffer to user space |
| 1111 | * @to: the user space buffer to read to |
| 1112 | * @count: the maximum number of bytes to read |
| 1113 | * @ppos: the current position in the buffer |
| 1114 | * @from: the buffer to read from |
| 1115 | * @available: the size of the buffer |
| 1116 | * |
| 1117 | * The simple_read_from_buffer() function reads up to @count bytes from the |
| 1118 | * buffer @from at offset @ppos into the user space address starting at @to. |
| 1119 | * |
| 1120 | * On success, the number of bytes read is returned and the offset @ppos is |
| 1121 | * advanced by this number, or negative value is returned on error. |
| 1122 | **/ |
| 1123 | ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, |
| 1124 | const void *from, size_t available) |
| 1125 | { |
| 1126 | loff_t pos = *ppos; |
| 1127 | size_t ret; |
| 1128 | |
| 1129 | if (pos < 0) |
| 1130 | return -EINVAL; |
| 1131 | if (pos >= available || !count) |
| 1132 | return 0; |
| 1133 | if (count > available - pos) |
| 1134 | count = available - pos; |
| 1135 | ret = copy_to_user(to, from: from + pos, n: count); |
| 1136 | if (ret == count) |
| 1137 | return -EFAULT; |
| 1138 | count -= ret; |
| 1139 | *ppos = pos + count; |
| 1140 | return count; |
| 1141 | } |
| 1142 | EXPORT_SYMBOL(simple_read_from_buffer); |
| 1143 | |
| 1144 | /** |
| 1145 | * simple_write_to_buffer - copy data from user space to the buffer |
| 1146 | * @to: the buffer to write to |
| 1147 | * @available: the size of the buffer |
| 1148 | * @ppos: the current position in the buffer |
| 1149 | * @from: the user space buffer to read from |
| 1150 | * @count: the maximum number of bytes to read |
| 1151 | * |
| 1152 | * The simple_write_to_buffer() function reads up to @count bytes from the user |
| 1153 | * space address starting at @from into the buffer @to at offset @ppos. |
| 1154 | * |
| 1155 | * On success, the number of bytes written is returned and the offset @ppos is |
| 1156 | * advanced by this number, or negative value is returned on error. |
| 1157 | **/ |
| 1158 | ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, |
| 1159 | const void __user *from, size_t count) |
| 1160 | { |
| 1161 | loff_t pos = *ppos; |
| 1162 | size_t res; |
| 1163 | |
| 1164 | if (pos < 0) |
| 1165 | return -EINVAL; |
| 1166 | if (pos >= available || !count) |
| 1167 | return 0; |
| 1168 | if (count > available - pos) |
| 1169 | count = available - pos; |
| 1170 | res = copy_from_user(to: to + pos, from, n: count); |
| 1171 | if (res == count) |
| 1172 | return -EFAULT; |
| 1173 | count -= res; |
| 1174 | *ppos = pos + count; |
| 1175 | return count; |
| 1176 | } |
| 1177 | EXPORT_SYMBOL(simple_write_to_buffer); |
| 1178 | |
| 1179 | /** |
| 1180 | * memory_read_from_buffer - copy data from the buffer |
| 1181 | * @to: the kernel space buffer to read to |
| 1182 | * @count: the maximum number of bytes to read |
| 1183 | * @ppos: the current position in the buffer |
| 1184 | * @from: the buffer to read from |
| 1185 | * @available: the size of the buffer |
| 1186 | * |
| 1187 | * The memory_read_from_buffer() function reads up to @count bytes from the |
| 1188 | * buffer @from at offset @ppos into the kernel space address starting at @to. |
| 1189 | * |
| 1190 | * On success, the number of bytes read is returned and the offset @ppos is |
| 1191 | * advanced by this number, or negative value is returned on error. |
| 1192 | **/ |
| 1193 | ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, |
| 1194 | const void *from, size_t available) |
| 1195 | { |
| 1196 | loff_t pos = *ppos; |
| 1197 | |
| 1198 | if (pos < 0) |
| 1199 | return -EINVAL; |
| 1200 | if (pos >= available) |
| 1201 | return 0; |
| 1202 | if (count > available - pos) |
| 1203 | count = available - pos; |
| 1204 | memcpy(to, from: from + pos, len: count); |
| 1205 | *ppos = pos + count; |
| 1206 | |
| 1207 | return count; |
| 1208 | } |
| 1209 | EXPORT_SYMBOL(memory_read_from_buffer); |
| 1210 | |
| 1211 | /* |
| 1212 | * Transaction based IO. |
| 1213 | * The file expects a single write which triggers the transaction, and then |
| 1214 | * possibly a read which collects the result - which is stored in a |
| 1215 | * file-local buffer. |
| 1216 | */ |
| 1217 | |
| 1218 | void simple_transaction_set(struct file *file, size_t n) |
| 1219 | { |
| 1220 | struct simple_transaction_argresp *ar = file->private_data; |
| 1221 | |
| 1222 | BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); |
| 1223 | |
| 1224 | /* |
| 1225 | * The barrier ensures that ar->size will really remain zero until |
| 1226 | * ar->data is ready for reading. |
| 1227 | */ |
| 1228 | smp_mb(); |
| 1229 | ar->size = n; |
| 1230 | } |
| 1231 | EXPORT_SYMBOL(simple_transaction_set); |
| 1232 | |
| 1233 | char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) |
| 1234 | { |
| 1235 | struct simple_transaction_argresp *ar; |
| 1236 | static DEFINE_SPINLOCK(simple_transaction_lock); |
| 1237 | |
| 1238 | if (size > SIMPLE_TRANSACTION_LIMIT - 1) |
| 1239 | return ERR_PTR(error: -EFBIG); |
| 1240 | |
| 1241 | ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); |
| 1242 | if (!ar) |
| 1243 | return ERR_PTR(error: -ENOMEM); |
| 1244 | |
| 1245 | spin_lock(lock: &simple_transaction_lock); |
| 1246 | |
| 1247 | /* only one write allowed per open */ |
| 1248 | if (file->private_data) { |
| 1249 | spin_unlock(lock: &simple_transaction_lock); |
| 1250 | free_page((unsigned long)ar); |
| 1251 | return ERR_PTR(error: -EBUSY); |
| 1252 | } |
| 1253 | |
| 1254 | file->private_data = ar; |
| 1255 | |
| 1256 | spin_unlock(lock: &simple_transaction_lock); |
| 1257 | |
| 1258 | if (copy_from_user(to: ar->data, from: buf, n: size)) |
| 1259 | return ERR_PTR(error: -EFAULT); |
| 1260 | |
| 1261 | return ar->data; |
| 1262 | } |
| 1263 | EXPORT_SYMBOL(simple_transaction_get); |
| 1264 | |
| 1265 | ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) |
| 1266 | { |
| 1267 | struct simple_transaction_argresp *ar = file->private_data; |
| 1268 | |
| 1269 | if (!ar) |
| 1270 | return 0; |
| 1271 | return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); |
| 1272 | } |
| 1273 | EXPORT_SYMBOL(simple_transaction_read); |
| 1274 | |
| 1275 | int simple_transaction_release(struct inode *inode, struct file *file) |
| 1276 | { |
| 1277 | free_page((unsigned long)file->private_data); |
| 1278 | return 0; |
| 1279 | } |
| 1280 | EXPORT_SYMBOL(simple_transaction_release); |
| 1281 | |
| 1282 | /* Simple attribute files */ |
| 1283 | |
| 1284 | struct simple_attr { |
| 1285 | int (*get)(void *, u64 *); |
| 1286 | int (*set)(void *, u64); |
| 1287 | char get_buf[24]; /* enough to store a u64 and "\n\0" */ |
| 1288 | char set_buf[24]; |
| 1289 | void *data; |
| 1290 | const char *fmt; /* format for read operation */ |
| 1291 | struct mutex mutex; /* protects access to these buffers */ |
| 1292 | }; |
| 1293 | |
| 1294 | /* simple_attr_open is called by an actual attribute open file operation |
| 1295 | * to set the attribute specific access operations. */ |
| 1296 | int simple_attr_open(struct inode *inode, struct file *file, |
| 1297 | int (*get)(void *, u64 *), int (*set)(void *, u64), |
| 1298 | const char *fmt) |
| 1299 | { |
| 1300 | struct simple_attr *attr; |
| 1301 | |
| 1302 | attr = kzalloc(sizeof(*attr), GFP_KERNEL); |
| 1303 | if (!attr) |
| 1304 | return -ENOMEM; |
| 1305 | |
| 1306 | attr->get = get; |
| 1307 | attr->set = set; |
| 1308 | attr->data = inode->i_private; |
| 1309 | attr->fmt = fmt; |
| 1310 | mutex_init(&attr->mutex); |
| 1311 | |
| 1312 | file->private_data = attr; |
| 1313 | |
| 1314 | return nonseekable_open(inode, filp: file); |
| 1315 | } |
| 1316 | EXPORT_SYMBOL_GPL(simple_attr_open); |
| 1317 | |
| 1318 | int simple_attr_release(struct inode *inode, struct file *file) |
| 1319 | { |
| 1320 | kfree(objp: file->private_data); |
| 1321 | return 0; |
| 1322 | } |
| 1323 | EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ |
| 1324 | |
| 1325 | /* read from the buffer that is filled with the get function */ |
| 1326 | ssize_t simple_attr_read(struct file *file, char __user *buf, |
| 1327 | size_t len, loff_t *ppos) |
| 1328 | { |
| 1329 | struct simple_attr *attr; |
| 1330 | size_t size; |
| 1331 | ssize_t ret; |
| 1332 | |
| 1333 | attr = file->private_data; |
| 1334 | |
| 1335 | if (!attr->get) |
| 1336 | return -EACCES; |
| 1337 | |
| 1338 | ret = mutex_lock_interruptible(lock: &attr->mutex); |
| 1339 | if (ret) |
| 1340 | return ret; |
| 1341 | |
| 1342 | if (*ppos && attr->get_buf[0]) { |
| 1343 | /* continued read */ |
| 1344 | size = strlen(attr->get_buf); |
| 1345 | } else { |
| 1346 | /* first read */ |
| 1347 | u64 val; |
| 1348 | ret = attr->get(attr->data, &val); |
| 1349 | if (ret) |
| 1350 | goto out; |
| 1351 | |
| 1352 | size = scnprintf(buf: attr->get_buf, size: sizeof(attr->get_buf), |
| 1353 | fmt: attr->fmt, (unsigned long long)val); |
| 1354 | } |
| 1355 | |
| 1356 | ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); |
| 1357 | out: |
| 1358 | mutex_unlock(lock: &attr->mutex); |
| 1359 | return ret; |
| 1360 | } |
| 1361 | EXPORT_SYMBOL_GPL(simple_attr_read); |
| 1362 | |
| 1363 | /* interpret the buffer as a number to call the set function with */ |
| 1364 | static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, |
| 1365 | size_t len, loff_t *ppos, bool is_signed) |
| 1366 | { |
| 1367 | struct simple_attr *attr; |
| 1368 | unsigned long long val; |
| 1369 | size_t size; |
| 1370 | ssize_t ret; |
| 1371 | |
| 1372 | attr = file->private_data; |
| 1373 | if (!attr->set) |
| 1374 | return -EACCES; |
| 1375 | |
| 1376 | ret = mutex_lock_interruptible(lock: &attr->mutex); |
| 1377 | if (ret) |
| 1378 | return ret; |
| 1379 | |
| 1380 | ret = -EFAULT; |
| 1381 | size = min(sizeof(attr->set_buf) - 1, len); |
| 1382 | if (copy_from_user(to: attr->set_buf, from: buf, n: size)) |
| 1383 | goto out; |
| 1384 | |
| 1385 | attr->set_buf[size] = '\0'; |
| 1386 | if (is_signed) |
| 1387 | ret = kstrtoll(s: attr->set_buf, base: 0, res: &val); |
| 1388 | else |
| 1389 | ret = kstrtoull(s: attr->set_buf, base: 0, res: &val); |
| 1390 | if (ret) |
| 1391 | goto out; |
| 1392 | ret = attr->set(attr->data, val); |
| 1393 | if (ret == 0) |
| 1394 | ret = len; /* on success, claim we got the whole input */ |
| 1395 | out: |
| 1396 | mutex_unlock(lock: &attr->mutex); |
| 1397 | return ret; |
| 1398 | } |
| 1399 | |
| 1400 | ssize_t simple_attr_write(struct file *file, const char __user *buf, |
| 1401 | size_t len, loff_t *ppos) |
| 1402 | { |
| 1403 | return simple_attr_write_xsigned(file, buf, len, ppos, is_signed: false); |
| 1404 | } |
| 1405 | EXPORT_SYMBOL_GPL(simple_attr_write); |
| 1406 | |
| 1407 | ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, |
| 1408 | size_t len, loff_t *ppos) |
| 1409 | { |
| 1410 | return simple_attr_write_xsigned(file, buf, len, ppos, is_signed: true); |
| 1411 | } |
| 1412 | EXPORT_SYMBOL_GPL(simple_attr_write_signed); |
| 1413 | |
| 1414 | /** |
| 1415 | * generic_encode_ino32_fh - generic export_operations->encode_fh function |
| 1416 | * @inode: the object to encode |
| 1417 | * @fh: where to store the file handle fragment |
| 1418 | * @max_len: maximum length to store there (in 4 byte units) |
| 1419 | * @parent: parent directory inode, if wanted |
| 1420 | * |
| 1421 | * This generic encode_fh function assumes that the 32 inode number |
| 1422 | * is suitable for locating an inode, and that the generation number |
| 1423 | * can be used to check that it is still valid. It places them in the |
| 1424 | * filehandle fragment where export_decode_fh expects to find them. |
| 1425 | */ |
| 1426 | int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, |
| 1427 | struct inode *parent) |
| 1428 | { |
| 1429 | struct fid *fid = (void *)fh; |
| 1430 | int len = *max_len; |
| 1431 | int type = FILEID_INO32_GEN; |
| 1432 | |
| 1433 | if (parent && (len < 4)) { |
| 1434 | *max_len = 4; |
| 1435 | return FILEID_INVALID; |
| 1436 | } else if (len < 2) { |
| 1437 | *max_len = 2; |
| 1438 | return FILEID_INVALID; |
| 1439 | } |
| 1440 | |
| 1441 | len = 2; |
| 1442 | fid->i32.ino = inode->i_ino; |
| 1443 | fid->i32.gen = inode->i_generation; |
| 1444 | if (parent) { |
| 1445 | fid->i32.parent_ino = parent->i_ino; |
| 1446 | fid->i32.parent_gen = parent->i_generation; |
| 1447 | len = 4; |
| 1448 | type = FILEID_INO32_GEN_PARENT; |
| 1449 | } |
| 1450 | *max_len = len; |
| 1451 | return type; |
| 1452 | } |
| 1453 | EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); |
| 1454 | |
| 1455 | /** |
| 1456 | * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation |
| 1457 | * @sb: filesystem to do the file handle conversion on |
| 1458 | * @fid: file handle to convert |
| 1459 | * @fh_len: length of the file handle in bytes |
| 1460 | * @fh_type: type of file handle |
| 1461 | * @get_inode: filesystem callback to retrieve inode |
| 1462 | * |
| 1463 | * This function decodes @fid as long as it has one of the well-known |
| 1464 | * Linux filehandle types and calls @get_inode on it to retrieve the |
| 1465 | * inode for the object specified in the file handle. |
| 1466 | */ |
| 1467 | struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, |
| 1468 | int fh_len, int fh_type, struct inode *(*get_inode) |
| 1469 | (struct super_block *sb, u64 ino, u32 gen)) |
| 1470 | { |
| 1471 | struct inode *inode = NULL; |
| 1472 | |
| 1473 | if (fh_len < 2) |
| 1474 | return NULL; |
| 1475 | |
| 1476 | switch (fh_type) { |
| 1477 | case FILEID_INO32_GEN: |
| 1478 | case FILEID_INO32_GEN_PARENT: |
| 1479 | inode = get_inode(sb, fid->i32.ino, fid->i32.gen); |
| 1480 | break; |
| 1481 | } |
| 1482 | |
| 1483 | return d_obtain_alias(inode); |
| 1484 | } |
| 1485 | EXPORT_SYMBOL_GPL(generic_fh_to_dentry); |
| 1486 | |
| 1487 | /** |
| 1488 | * generic_fh_to_parent - generic helper for the fh_to_parent export operation |
| 1489 | * @sb: filesystem to do the file handle conversion on |
| 1490 | * @fid: file handle to convert |
| 1491 | * @fh_len: length of the file handle in bytes |
| 1492 | * @fh_type: type of file handle |
| 1493 | * @get_inode: filesystem callback to retrieve inode |
| 1494 | * |
| 1495 | * This function decodes @fid as long as it has one of the well-known |
| 1496 | * Linux filehandle types and calls @get_inode on it to retrieve the |
| 1497 | * inode for the _parent_ object specified in the file handle if it |
| 1498 | * is specified in the file handle, or NULL otherwise. |
| 1499 | */ |
| 1500 | struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, |
| 1501 | int fh_len, int fh_type, struct inode *(*get_inode) |
| 1502 | (struct super_block *sb, u64 ino, u32 gen)) |
| 1503 | { |
| 1504 | struct inode *inode = NULL; |
| 1505 | |
| 1506 | if (fh_len <= 2) |
| 1507 | return NULL; |
| 1508 | |
| 1509 | switch (fh_type) { |
| 1510 | case FILEID_INO32_GEN_PARENT: |
| 1511 | inode = get_inode(sb, fid->i32.parent_ino, |
| 1512 | (fh_len > 3 ? fid->i32.parent_gen : 0)); |
| 1513 | break; |
| 1514 | } |
| 1515 | |
| 1516 | return d_obtain_alias(inode); |
| 1517 | } |
| 1518 | EXPORT_SYMBOL_GPL(generic_fh_to_parent); |
| 1519 | |
| 1520 | /** |
| 1521 | * __generic_file_fsync - generic fsync implementation for simple filesystems |
| 1522 | * |
| 1523 | * @file: file to synchronize |
| 1524 | * @start: start offset in bytes |
| 1525 | * @end: end offset in bytes (inclusive) |
| 1526 | * @datasync: only synchronize essential metadata if true |
| 1527 | * |
| 1528 | * This is a generic implementation of the fsync method for simple |
| 1529 | * filesystems which track all non-inode metadata in the buffers list |
| 1530 | * hanging off the address_space structure. |
| 1531 | */ |
| 1532 | int __generic_file_fsync(struct file *file, loff_t start, loff_t end, |
| 1533 | int datasync) |
| 1534 | { |
| 1535 | struct inode *inode = file->f_mapping->host; |
| 1536 | int err; |
| 1537 | int ret; |
| 1538 | |
| 1539 | err = file_write_and_wait_range(file, start, end); |
| 1540 | if (err) |
| 1541 | return err; |
| 1542 | |
| 1543 | inode_lock(inode); |
| 1544 | ret = sync_mapping_buffers(mapping: inode->i_mapping); |
| 1545 | if (!(inode->i_state & I_DIRTY_ALL)) |
| 1546 | goto out; |
| 1547 | if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) |
| 1548 | goto out; |
| 1549 | |
| 1550 | err = sync_inode_metadata(inode, wait: 1); |
| 1551 | if (ret == 0) |
| 1552 | ret = err; |
| 1553 | |
| 1554 | out: |
| 1555 | inode_unlock(inode); |
| 1556 | /* check and advance again to catch errors after syncing out buffers */ |
| 1557 | err = file_check_and_advance_wb_err(file); |
| 1558 | if (ret == 0) |
| 1559 | ret = err; |
| 1560 | return ret; |
| 1561 | } |
| 1562 | EXPORT_SYMBOL(__generic_file_fsync); |
| 1563 | |
| 1564 | /** |
| 1565 | * generic_file_fsync - generic fsync implementation for simple filesystems |
| 1566 | * with flush |
| 1567 | * @file: file to synchronize |
| 1568 | * @start: start offset in bytes |
| 1569 | * @end: end offset in bytes (inclusive) |
| 1570 | * @datasync: only synchronize essential metadata if true |
| 1571 | * |
| 1572 | */ |
| 1573 | |
| 1574 | int generic_file_fsync(struct file *file, loff_t start, loff_t end, |
| 1575 | int datasync) |
| 1576 | { |
| 1577 | struct inode *inode = file->f_mapping->host; |
| 1578 | int err; |
| 1579 | |
| 1580 | err = __generic_file_fsync(file, start, end, datasync); |
| 1581 | if (err) |
| 1582 | return err; |
| 1583 | return blkdev_issue_flush(bdev: inode->i_sb->s_bdev); |
| 1584 | } |
| 1585 | EXPORT_SYMBOL(generic_file_fsync); |
| 1586 | |
| 1587 | /** |
| 1588 | * generic_check_addressable - Check addressability of file system |
| 1589 | * @blocksize_bits: log of file system block size |
| 1590 | * @num_blocks: number of blocks in file system |
| 1591 | * |
| 1592 | * Determine whether a file system with @num_blocks blocks (and a |
| 1593 | * block size of 2**@blocksize_bits) is addressable by the sector_t |
| 1594 | * and page cache of the system. Return 0 if so and -EFBIG otherwise. |
| 1595 | */ |
| 1596 | int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) |
| 1597 | { |
| 1598 | u64 last_fs_block = num_blocks - 1; |
| 1599 | u64 last_fs_page, max_bytes; |
| 1600 | |
| 1601 | if (check_shl_overflow(num_blocks, blocksize_bits, &max_bytes)) |
| 1602 | return -EFBIG; |
| 1603 | |
| 1604 | last_fs_page = (max_bytes >> PAGE_SHIFT) - 1; |
| 1605 | |
| 1606 | if (unlikely(num_blocks == 0)) |
| 1607 | return 0; |
| 1608 | |
| 1609 | if (blocksize_bits < 9) |
| 1610 | return -EINVAL; |
| 1611 | |
| 1612 | if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || |
| 1613 | (last_fs_page > (pgoff_t)(~0ULL))) { |
| 1614 | return -EFBIG; |
| 1615 | } |
| 1616 | return 0; |
| 1617 | } |
| 1618 | EXPORT_SYMBOL(generic_check_addressable); |
| 1619 | |
| 1620 | /* |
| 1621 | * No-op implementation of ->fsync for in-memory filesystems. |
| 1622 | */ |
| 1623 | int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) |
| 1624 | { |
| 1625 | return 0; |
| 1626 | } |
| 1627 | EXPORT_SYMBOL(noop_fsync); |
| 1628 | |
| 1629 | ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) |
| 1630 | { |
| 1631 | /* |
| 1632 | * iomap based filesystems support direct I/O without need for |
| 1633 | * this callback. However, it still needs to be set in |
| 1634 | * inode->a_ops so that open/fcntl know that direct I/O is |
| 1635 | * generally supported. |
| 1636 | */ |
| 1637 | return -EINVAL; |
| 1638 | } |
| 1639 | EXPORT_SYMBOL_GPL(noop_direct_IO); |
| 1640 | |
| 1641 | /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ |
| 1642 | void kfree_link(void *p) |
| 1643 | { |
| 1644 | kfree(objp: p); |
| 1645 | } |
| 1646 | EXPORT_SYMBOL(kfree_link); |
| 1647 | |
| 1648 | struct inode *alloc_anon_inode(struct super_block *s) |
| 1649 | { |
| 1650 | static const struct address_space_operations anon_aops = { |
| 1651 | .dirty_folio = noop_dirty_folio, |
| 1652 | }; |
| 1653 | struct inode *inode = new_inode_pseudo(sb: s); |
| 1654 | |
| 1655 | if (!inode) |
| 1656 | return ERR_PTR(error: -ENOMEM); |
| 1657 | |
| 1658 | inode->i_ino = get_next_ino(); |
| 1659 | inode->i_mapping->a_ops = &anon_aops; |
| 1660 | |
| 1661 | /* |
| 1662 | * Mark the inode dirty from the very beginning, |
| 1663 | * that way it will never be moved to the dirty |
| 1664 | * list because mark_inode_dirty() will think |
| 1665 | * that it already _is_ on the dirty list. |
| 1666 | */ |
| 1667 | inode->i_state = I_DIRTY; |
| 1668 | /* |
| 1669 | * Historically anonymous inodes don't have a type at all and |
| 1670 | * userspace has come to rely on this. |
| 1671 | */ |
| 1672 | inode->i_mode = S_IRUSR | S_IWUSR; |
| 1673 | inode->i_uid = current_fsuid(); |
| 1674 | inode->i_gid = current_fsgid(); |
| 1675 | inode->i_flags |= S_PRIVATE | S_ANON_INODE; |
| 1676 | simple_inode_init_ts(inode); |
| 1677 | return inode; |
| 1678 | } |
| 1679 | EXPORT_SYMBOL(alloc_anon_inode); |
| 1680 | |
| 1681 | /** |
| 1682 | * simple_nosetlease - generic helper for prohibiting leases |
| 1683 | * @filp: file pointer |
| 1684 | * @arg: type of lease to obtain |
| 1685 | * @flp: new lease supplied for insertion |
| 1686 | * @priv: private data for lm_setup operation |
| 1687 | * |
| 1688 | * Generic helper for filesystems that do not wish to allow leases to be set. |
| 1689 | * All arguments are ignored and it just returns -EINVAL. |
| 1690 | */ |
| 1691 | int |
| 1692 | simple_nosetlease(struct file *filp, int arg, struct file_lease **flp, |
| 1693 | void **priv) |
| 1694 | { |
| 1695 | return -EINVAL; |
| 1696 | } |
| 1697 | EXPORT_SYMBOL(simple_nosetlease); |
| 1698 | |
| 1699 | /** |
| 1700 | * simple_get_link - generic helper to get the target of "fast" symlinks |
| 1701 | * @dentry: not used here |
| 1702 | * @inode: the symlink inode |
| 1703 | * @done: not used here |
| 1704 | * |
| 1705 | * Generic helper for filesystems to use for symlink inodes where a pointer to |
| 1706 | * the symlink target is stored in ->i_link. NOTE: this isn't normally called, |
| 1707 | * since as an optimization the path lookup code uses any non-NULL ->i_link |
| 1708 | * directly, without calling ->get_link(). But ->get_link() still must be set, |
| 1709 | * to mark the inode_operations as being for a symlink. |
| 1710 | * |
| 1711 | * Return: the symlink target |
| 1712 | */ |
| 1713 | const char *simple_get_link(struct dentry *dentry, struct inode *inode, |
| 1714 | struct delayed_call *done) |
| 1715 | { |
| 1716 | return inode->i_link; |
| 1717 | } |
| 1718 | EXPORT_SYMBOL(simple_get_link); |
| 1719 | |
| 1720 | const struct inode_operations simple_symlink_inode_operations = { |
| 1721 | .get_link = simple_get_link, |
| 1722 | }; |
| 1723 | EXPORT_SYMBOL(simple_symlink_inode_operations); |
| 1724 | |
| 1725 | /* |
| 1726 | * Operations for a permanently empty directory. |
| 1727 | */ |
| 1728 | static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) |
| 1729 | { |
| 1730 | return ERR_PTR(error: -ENOENT); |
| 1731 | } |
| 1732 | |
| 1733 | static int empty_dir_setattr(struct mnt_idmap *idmap, |
| 1734 | struct dentry *dentry, struct iattr *attr) |
| 1735 | { |
| 1736 | return -EPERM; |
| 1737 | } |
| 1738 | |
| 1739 | static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) |
| 1740 | { |
| 1741 | return -EOPNOTSUPP; |
| 1742 | } |
| 1743 | |
| 1744 | static const struct inode_operations empty_dir_inode_operations = { |
| 1745 | .lookup = empty_dir_lookup, |
| 1746 | .setattr = empty_dir_setattr, |
| 1747 | .listxattr = empty_dir_listxattr, |
| 1748 | }; |
| 1749 | |
| 1750 | static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) |
| 1751 | { |
| 1752 | /* An empty directory has two entries . and .. at offsets 0 and 1 */ |
| 1753 | return generic_file_llseek_size(file, offset, whence, maxsize: 2, eof: 2); |
| 1754 | } |
| 1755 | |
| 1756 | static int empty_dir_readdir(struct file *file, struct dir_context *ctx) |
| 1757 | { |
| 1758 | dir_emit_dots(file, ctx); |
| 1759 | return 0; |
| 1760 | } |
| 1761 | |
| 1762 | static const struct file_operations empty_dir_operations = { |
| 1763 | .llseek = empty_dir_llseek, |
| 1764 | .read = generic_read_dir, |
| 1765 | .iterate_shared = empty_dir_readdir, |
| 1766 | .fsync = noop_fsync, |
| 1767 | }; |
| 1768 | |
| 1769 | |
| 1770 | void make_empty_dir_inode(struct inode *inode) |
| 1771 | { |
| 1772 | set_nlink(inode, nlink: 2); |
| 1773 | inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; |
| 1774 | inode->i_uid = GLOBAL_ROOT_UID; |
| 1775 | inode->i_gid = GLOBAL_ROOT_GID; |
| 1776 | inode->i_rdev = 0; |
| 1777 | inode->i_size = 0; |
| 1778 | inode->i_blkbits = PAGE_SHIFT; |
| 1779 | inode->i_blocks = 0; |
| 1780 | |
| 1781 | inode->i_op = &empty_dir_inode_operations; |
| 1782 | inode->i_opflags &= ~IOP_XATTR; |
| 1783 | inode->i_fop = &empty_dir_operations; |
| 1784 | } |
| 1785 | |
| 1786 | bool is_empty_dir_inode(struct inode *inode) |
| 1787 | { |
| 1788 | return (inode->i_fop == &empty_dir_operations) && |
| 1789 | (inode->i_op == &empty_dir_inode_operations); |
| 1790 | } |
| 1791 | |
| 1792 | #if IS_ENABLED(CONFIG_UNICODE) |
| 1793 | /** |
| 1794 | * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems |
| 1795 | * @dentry: dentry whose name we are checking against |
| 1796 | * @len: len of name of dentry |
| 1797 | * @str: str pointer to name of dentry |
| 1798 | * @name: Name to compare against |
| 1799 | * |
| 1800 | * Return: 0 if names match, 1 if mismatch, or -ERRNO |
| 1801 | */ |
| 1802 | int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, |
| 1803 | const char *str, const struct qstr *name) |
| 1804 | { |
| 1805 | const struct dentry *parent; |
| 1806 | const struct inode *dir; |
| 1807 | union shortname_store strbuf; |
| 1808 | struct qstr qstr; |
| 1809 | |
| 1810 | /* |
| 1811 | * Attempt a case-sensitive match first. It is cheaper and |
| 1812 | * should cover most lookups, including all the sane |
| 1813 | * applications that expect a case-sensitive filesystem. |
| 1814 | * |
| 1815 | * This comparison is safe under RCU because the caller |
| 1816 | * guarantees the consistency between str and len. See |
| 1817 | * __d_lookup_rcu_op_compare() for details. |
| 1818 | */ |
| 1819 | if (len == name->len && !memcmp(str, name->name, len)) |
| 1820 | return 0; |
| 1821 | |
| 1822 | parent = READ_ONCE(dentry->d_parent); |
| 1823 | dir = READ_ONCE(parent->d_inode); |
| 1824 | if (!dir || !IS_CASEFOLDED(dir)) |
| 1825 | return 1; |
| 1826 | |
| 1827 | qstr.len = len; |
| 1828 | qstr.name = str; |
| 1829 | /* |
| 1830 | * If the dentry name is stored in-line, then it may be concurrently |
| 1831 | * modified by a rename. If this happens, the VFS will eventually retry |
| 1832 | * the lookup, so it doesn't matter what ->d_compare() returns. |
| 1833 | * However, it's unsafe to call utf8_strncasecmp() with an unstable |
| 1834 | * string. Therefore, we have to copy the name into a temporary buffer. |
| 1835 | * As above, len is guaranteed to match str, so the shortname case |
| 1836 | * is exactly when str points to ->d_shortname. |
| 1837 | */ |
| 1838 | if (qstr.name == dentry->d_shortname.string) { |
| 1839 | strbuf = dentry->d_shortname; // NUL is guaranteed to be in there |
| 1840 | qstr.name = strbuf.string; |
| 1841 | /* prevent compiler from optimizing out the temporary buffer */ |
| 1842 | barrier(); |
| 1843 | } |
| 1844 | |
| 1845 | return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr); |
| 1846 | } |
| 1847 | EXPORT_SYMBOL(generic_ci_d_compare); |
| 1848 | |
| 1849 | /** |
| 1850 | * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems |
| 1851 | * @dentry: dentry of the parent directory |
| 1852 | * @str: qstr of name whose hash we should fill in |
| 1853 | * |
| 1854 | * Return: 0 if hash was successful or unchanged, and -EINVAL on error |
| 1855 | */ |
| 1856 | int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) |
| 1857 | { |
| 1858 | const struct inode *dir = READ_ONCE(dentry->d_inode); |
| 1859 | struct super_block *sb = dentry->d_sb; |
| 1860 | const struct unicode_map *um = sb->s_encoding; |
| 1861 | int ret; |
| 1862 | |
| 1863 | if (!dir || !IS_CASEFOLDED(dir)) |
| 1864 | return 0; |
| 1865 | |
| 1866 | ret = utf8_casefold_hash(um, dentry, str); |
| 1867 | if (ret < 0 && sb_has_strict_encoding(sb)) |
| 1868 | return -EINVAL; |
| 1869 | return 0; |
| 1870 | } |
| 1871 | EXPORT_SYMBOL(generic_ci_d_hash); |
| 1872 | |
| 1873 | static const struct dentry_operations generic_ci_dentry_ops = { |
| 1874 | .d_hash = generic_ci_d_hash, |
| 1875 | .d_compare = generic_ci_d_compare, |
| 1876 | #ifdef CONFIG_FS_ENCRYPTION |
| 1877 | .d_revalidate = fscrypt_d_revalidate, |
| 1878 | #endif |
| 1879 | }; |
| 1880 | |
| 1881 | /** |
| 1882 | * generic_ci_match() - Match a name (case-insensitively) with a dirent. |
| 1883 | * This is a filesystem helper for comparison with directory entries. |
| 1884 | * generic_ci_d_compare should be used in VFS' ->d_compare instead. |
| 1885 | * |
| 1886 | * @parent: Inode of the parent of the dirent under comparison |
| 1887 | * @name: name under lookup. |
| 1888 | * @folded_name: Optional pre-folded name under lookup |
| 1889 | * @de_name: Dirent name. |
| 1890 | * @de_name_len: dirent name length. |
| 1891 | * |
| 1892 | * Test whether a case-insensitive directory entry matches the filename |
| 1893 | * being searched. If @folded_name is provided, it is used instead of |
| 1894 | * recalculating the casefold of @name. |
| 1895 | * |
| 1896 | * Return: > 0 if the directory entry matches, 0 if it doesn't match, or |
| 1897 | * < 0 on error. |
| 1898 | */ |
| 1899 | int generic_ci_match(const struct inode *parent, |
| 1900 | const struct qstr *name, |
| 1901 | const struct qstr *folded_name, |
| 1902 | const u8 *de_name, u32 de_name_len) |
| 1903 | { |
| 1904 | const struct super_block *sb = parent->i_sb; |
| 1905 | const struct unicode_map *um = sb->s_encoding; |
| 1906 | struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len); |
| 1907 | struct qstr dirent = QSTR_INIT(de_name, de_name_len); |
| 1908 | int res = 0; |
| 1909 | |
| 1910 | if (IS_ENCRYPTED(parent)) { |
| 1911 | const struct fscrypt_str encrypted_name = |
| 1912 | FSTR_INIT((u8 *) de_name, de_name_len); |
| 1913 | |
| 1914 | if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent))) |
| 1915 | return -EINVAL; |
| 1916 | |
| 1917 | decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL); |
| 1918 | if (!decrypted_name.name) |
| 1919 | return -ENOMEM; |
| 1920 | res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name, |
| 1921 | &decrypted_name); |
| 1922 | if (res < 0) { |
| 1923 | kfree(decrypted_name.name); |
| 1924 | return res; |
| 1925 | } |
| 1926 | dirent.name = decrypted_name.name; |
| 1927 | dirent.len = decrypted_name.len; |
| 1928 | } |
| 1929 | |
| 1930 | /* |
| 1931 | * Attempt a case-sensitive match first. It is cheaper and |
| 1932 | * should cover most lookups, including all the sane |
| 1933 | * applications that expect a case-sensitive filesystem. |
| 1934 | */ |
| 1935 | |
| 1936 | if (dirent.len == name->len && |
| 1937 | !memcmp(name->name, dirent.name, dirent.len)) |
| 1938 | goto out; |
| 1939 | |
| 1940 | if (folded_name->name) |
| 1941 | res = utf8_strncasecmp_folded(um, folded_name, &dirent); |
| 1942 | else |
| 1943 | res = utf8_strncasecmp(um, name, &dirent); |
| 1944 | |
| 1945 | out: |
| 1946 | kfree(decrypted_name.name); |
| 1947 | if (res < 0 && sb_has_strict_encoding(sb)) { |
| 1948 | pr_err_ratelimited("Directory contains filename that is invalid UTF-8" ); |
| 1949 | return 0; |
| 1950 | } |
| 1951 | return !res; |
| 1952 | } |
| 1953 | EXPORT_SYMBOL(generic_ci_match); |
| 1954 | #endif |
| 1955 | |
| 1956 | #ifdef CONFIG_FS_ENCRYPTION |
| 1957 | static const struct dentry_operations generic_encrypted_dentry_ops = { |
| 1958 | .d_revalidate = fscrypt_d_revalidate, |
| 1959 | }; |
| 1960 | #endif |
| 1961 | |
| 1962 | /** |
| 1963 | * generic_set_sb_d_ops - helper for choosing the set of |
| 1964 | * filesystem-wide dentry operations for the enabled features |
| 1965 | * @sb: superblock to be configured |
| 1966 | * |
| 1967 | * Filesystems supporting casefolding and/or fscrypt can call this |
| 1968 | * helper at mount-time to configure default dentry_operations to the |
| 1969 | * best set of dentry operations required for the enabled features. |
| 1970 | * The helper must be called after these have been configured, but |
| 1971 | * before the root dentry is created. |
| 1972 | */ |
| 1973 | void generic_set_sb_d_ops(struct super_block *sb) |
| 1974 | { |
| 1975 | #if IS_ENABLED(CONFIG_UNICODE) |
| 1976 | if (sb->s_encoding) { |
| 1977 | set_default_d_op(sb, &generic_ci_dentry_ops); |
| 1978 | return; |
| 1979 | } |
| 1980 | #endif |
| 1981 | #ifdef CONFIG_FS_ENCRYPTION |
| 1982 | if (sb->s_cop) { |
| 1983 | set_default_d_op(sb, &generic_encrypted_dentry_ops); |
| 1984 | return; |
| 1985 | } |
| 1986 | #endif |
| 1987 | } |
| 1988 | EXPORT_SYMBOL(generic_set_sb_d_ops); |
| 1989 | |
| 1990 | /** |
| 1991 | * inode_maybe_inc_iversion - increments i_version |
| 1992 | * @inode: inode with the i_version that should be updated |
| 1993 | * @force: increment the counter even if it's not necessary? |
| 1994 | * |
| 1995 | * Every time the inode is modified, the i_version field must be seen to have |
| 1996 | * changed by any observer. |
| 1997 | * |
| 1998 | * If "force" is set or the QUERIED flag is set, then ensure that we increment |
| 1999 | * the value, and clear the queried flag. |
| 2000 | * |
| 2001 | * In the common case where neither is set, then we can return "false" without |
| 2002 | * updating i_version. |
| 2003 | * |
| 2004 | * If this function returns false, and no other metadata has changed, then we |
| 2005 | * can avoid logging the metadata. |
| 2006 | */ |
| 2007 | bool inode_maybe_inc_iversion(struct inode *inode, bool force) |
| 2008 | { |
| 2009 | u64 cur, new; |
| 2010 | |
| 2011 | /* |
| 2012 | * The i_version field is not strictly ordered with any other inode |
| 2013 | * information, but the legacy inode_inc_iversion code used a spinlock |
| 2014 | * to serialize increments. |
| 2015 | * |
| 2016 | * We add a full memory barrier to ensure that any de facto ordering |
| 2017 | * with other state is preserved (either implicitly coming from cmpxchg |
| 2018 | * or explicitly from smp_mb if we don't know upfront if we will execute |
| 2019 | * the former). |
| 2020 | * |
| 2021 | * These barriers pair with inode_query_iversion(). |
| 2022 | */ |
| 2023 | cur = inode_peek_iversion_raw(inode); |
| 2024 | if (!force && !(cur & I_VERSION_QUERIED)) { |
| 2025 | smp_mb(); |
| 2026 | cur = inode_peek_iversion_raw(inode); |
| 2027 | } |
| 2028 | |
| 2029 | do { |
| 2030 | /* If flag is clear then we needn't do anything */ |
| 2031 | if (!force && !(cur & I_VERSION_QUERIED)) |
| 2032 | return false; |
| 2033 | |
| 2034 | /* Since lowest bit is flag, add 2 to avoid it */ |
| 2035 | new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; |
| 2036 | } while (!atomic64_try_cmpxchg(v: &inode->i_version, old: &cur, new)); |
| 2037 | return true; |
| 2038 | } |
| 2039 | EXPORT_SYMBOL(inode_maybe_inc_iversion); |
| 2040 | |
| 2041 | /** |
| 2042 | * inode_query_iversion - read i_version for later use |
| 2043 | * @inode: inode from which i_version should be read |
| 2044 | * |
| 2045 | * Read the inode i_version counter. This should be used by callers that wish |
| 2046 | * to store the returned i_version for later comparison. This will guarantee |
| 2047 | * that a later query of the i_version will result in a different value if |
| 2048 | * anything has changed. |
| 2049 | * |
| 2050 | * In this implementation, we fetch the current value, set the QUERIED flag and |
| 2051 | * then try to swap it into place with a cmpxchg, if it wasn't already set. If |
| 2052 | * that fails, we try again with the newly fetched value from the cmpxchg. |
| 2053 | */ |
| 2054 | u64 inode_query_iversion(struct inode *inode) |
| 2055 | { |
| 2056 | u64 cur, new; |
| 2057 | bool fenced = false; |
| 2058 | |
| 2059 | /* |
| 2060 | * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with |
| 2061 | * inode_maybe_inc_iversion(), see that routine for more details. |
| 2062 | */ |
| 2063 | cur = inode_peek_iversion_raw(inode); |
| 2064 | do { |
| 2065 | /* If flag is already set, then no need to swap */ |
| 2066 | if (cur & I_VERSION_QUERIED) { |
| 2067 | if (!fenced) |
| 2068 | smp_mb(); |
| 2069 | break; |
| 2070 | } |
| 2071 | |
| 2072 | fenced = true; |
| 2073 | new = cur | I_VERSION_QUERIED; |
| 2074 | } while (!atomic64_try_cmpxchg(v: &inode->i_version, old: &cur, new)); |
| 2075 | return cur >> I_VERSION_QUERIED_SHIFT; |
| 2076 | } |
| 2077 | EXPORT_SYMBOL(inode_query_iversion); |
| 2078 | |
| 2079 | ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, |
| 2080 | ssize_t direct_written, ssize_t buffered_written) |
| 2081 | { |
| 2082 | struct address_space *mapping = iocb->ki_filp->f_mapping; |
| 2083 | loff_t pos = iocb->ki_pos - buffered_written; |
| 2084 | loff_t end = iocb->ki_pos - 1; |
| 2085 | int err; |
| 2086 | |
| 2087 | /* |
| 2088 | * If the buffered write fallback returned an error, we want to return |
| 2089 | * the number of bytes which were written by direct I/O, or the error |
| 2090 | * code if that was zero. |
| 2091 | * |
| 2092 | * Note that this differs from normal direct-io semantics, which will |
| 2093 | * return -EFOO even if some bytes were written. |
| 2094 | */ |
| 2095 | if (unlikely(buffered_written < 0)) { |
| 2096 | if (direct_written) |
| 2097 | return direct_written; |
| 2098 | return buffered_written; |
| 2099 | } |
| 2100 | |
| 2101 | /* |
| 2102 | * We need to ensure that the page cache pages are written to disk and |
| 2103 | * invalidated to preserve the expected O_DIRECT semantics. |
| 2104 | */ |
| 2105 | err = filemap_write_and_wait_range(mapping, lstart: pos, lend: end); |
| 2106 | if (err < 0) { |
| 2107 | /* |
| 2108 | * We don't know how much we wrote, so just return the number of |
| 2109 | * bytes which were direct-written |
| 2110 | */ |
| 2111 | iocb->ki_pos -= buffered_written; |
| 2112 | if (direct_written) |
| 2113 | return direct_written; |
| 2114 | return err; |
| 2115 | } |
| 2116 | invalidate_mapping_pages(mapping, start: pos >> PAGE_SHIFT, end: end >> PAGE_SHIFT); |
| 2117 | return direct_written + buffered_written; |
| 2118 | } |
| 2119 | EXPORT_SYMBOL_GPL(direct_write_fallback); |
| 2120 | |
| 2121 | /** |
| 2122 | * simple_inode_init_ts - initialize the timestamps for a new inode |
| 2123 | * @inode: inode to be initialized |
| 2124 | * |
| 2125 | * When a new inode is created, most filesystems set the timestamps to the |
| 2126 | * current time. Add a helper to do this. |
| 2127 | */ |
| 2128 | struct timespec64 simple_inode_init_ts(struct inode *inode) |
| 2129 | { |
| 2130 | struct timespec64 ts = inode_set_ctime_current(inode); |
| 2131 | |
| 2132 | inode_set_atime_to_ts(inode, ts); |
| 2133 | inode_set_mtime_to_ts(inode, ts); |
| 2134 | return ts; |
| 2135 | } |
| 2136 | EXPORT_SYMBOL(simple_inode_init_ts); |
| 2137 | |
| 2138 | struct dentry *stashed_dentry_get(struct dentry **stashed) |
| 2139 | { |
| 2140 | struct dentry *dentry; |
| 2141 | |
| 2142 | guard(rcu)(); |
| 2143 | dentry = rcu_dereference(*stashed); |
| 2144 | if (!dentry) |
| 2145 | return NULL; |
| 2146 | if (IS_ERR(ptr: dentry)) |
| 2147 | return dentry; |
| 2148 | if (!lockref_get_not_dead(lockref: &dentry->d_lockref)) |
| 2149 | return NULL; |
| 2150 | return dentry; |
| 2151 | } |
| 2152 | |
| 2153 | static struct dentry *prepare_anon_dentry(struct dentry **stashed, |
| 2154 | struct super_block *sb, |
| 2155 | void *data) |
| 2156 | { |
| 2157 | struct dentry *dentry; |
| 2158 | struct inode *inode; |
| 2159 | const struct stashed_operations *sops = sb->s_fs_info; |
| 2160 | int ret; |
| 2161 | |
| 2162 | inode = new_inode_pseudo(sb); |
| 2163 | if (!inode) { |
| 2164 | sops->put_data(data); |
| 2165 | return ERR_PTR(error: -ENOMEM); |
| 2166 | } |
| 2167 | |
| 2168 | inode->i_flags |= S_IMMUTABLE; |
| 2169 | inode->i_mode = S_IFREG; |
| 2170 | simple_inode_init_ts(inode); |
| 2171 | |
| 2172 | ret = sops->init_inode(inode, data); |
| 2173 | if (ret < 0) { |
| 2174 | iput(inode); |
| 2175 | return ERR_PTR(error: ret); |
| 2176 | } |
| 2177 | |
| 2178 | /* Notice when this is changed. */ |
| 2179 | WARN_ON_ONCE(!S_ISREG(inode->i_mode)); |
| 2180 | |
| 2181 | dentry = d_alloc_anon(sb); |
| 2182 | if (!dentry) { |
| 2183 | iput(inode); |
| 2184 | return ERR_PTR(error: -ENOMEM); |
| 2185 | } |
| 2186 | |
| 2187 | /* Store address of location where dentry's supposed to be stashed. */ |
| 2188 | dentry->d_fsdata = stashed; |
| 2189 | |
| 2190 | /* @data is now owned by the fs */ |
| 2191 | d_instantiate(dentry, inode); |
| 2192 | return dentry; |
| 2193 | } |
| 2194 | |
| 2195 | struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry) |
| 2196 | { |
| 2197 | guard(rcu)(); |
| 2198 | for (;;) { |
| 2199 | struct dentry *old; |
| 2200 | |
| 2201 | /* Assume any old dentry was cleared out. */ |
| 2202 | old = cmpxchg(stashed, NULL, dentry); |
| 2203 | if (likely(!old)) |
| 2204 | return dentry; |
| 2205 | |
| 2206 | /* Check if somebody else installed a reusable dentry. */ |
| 2207 | if (lockref_get_not_dead(lockref: &old->d_lockref)) |
| 2208 | return old; |
| 2209 | |
| 2210 | /* There's an old dead dentry there, try to take it over. */ |
| 2211 | if (likely(try_cmpxchg(stashed, &old, dentry))) |
| 2212 | return dentry; |
| 2213 | } |
| 2214 | } |
| 2215 | |
| 2216 | /** |
| 2217 | * path_from_stashed - create path from stashed or new dentry |
| 2218 | * @stashed: where to retrieve or stash dentry |
| 2219 | * @mnt: mnt of the filesystems to use |
| 2220 | * @data: data to store in inode->i_private |
| 2221 | * @path: path to create |
| 2222 | * |
| 2223 | * The function tries to retrieve a stashed dentry from @stashed. If the dentry |
| 2224 | * is still valid then it will be reused. If the dentry isn't able the function |
| 2225 | * will allocate a new dentry and inode. It will then check again whether it |
| 2226 | * can reuse an existing dentry in case one has been added in the meantime or |
| 2227 | * update @stashed with the newly added dentry. |
| 2228 | * |
| 2229 | * Special-purpose helper for nsfs and pidfs. |
| 2230 | * |
| 2231 | * Return: On success zero and on failure a negative error is returned. |
| 2232 | */ |
| 2233 | int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data, |
| 2234 | struct path *path) |
| 2235 | { |
| 2236 | struct dentry *dentry, *res; |
| 2237 | const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info; |
| 2238 | |
| 2239 | /* See if dentry can be reused. */ |
| 2240 | res = stashed_dentry_get(stashed); |
| 2241 | if (IS_ERR(ptr: res)) |
| 2242 | return PTR_ERR(ptr: res); |
| 2243 | if (res) { |
| 2244 | sops->put_data(data); |
| 2245 | goto make_path; |
| 2246 | } |
| 2247 | |
| 2248 | /* Allocate a new dentry. */ |
| 2249 | dentry = prepare_anon_dentry(stashed, sb: mnt->mnt_sb, data); |
| 2250 | if (IS_ERR(ptr: dentry)) |
| 2251 | return PTR_ERR(ptr: dentry); |
| 2252 | |
| 2253 | /* Added a new dentry. @data is now owned by the filesystem. */ |
| 2254 | if (sops->stash_dentry) |
| 2255 | res = sops->stash_dentry(stashed, dentry); |
| 2256 | else |
| 2257 | res = stash_dentry(stashed, dentry); |
| 2258 | if (IS_ERR(ptr: res)) { |
| 2259 | dput(dentry); |
| 2260 | return PTR_ERR(ptr: res); |
| 2261 | } |
| 2262 | if (res != dentry) |
| 2263 | dput(dentry); |
| 2264 | |
| 2265 | make_path: |
| 2266 | path->dentry = res; |
| 2267 | path->mnt = mntget(mnt); |
| 2268 | VFS_WARN_ON_ONCE(path->dentry->d_fsdata != stashed); |
| 2269 | VFS_WARN_ON_ONCE(d_inode(path->dentry)->i_private != data); |
| 2270 | return 0; |
| 2271 | } |
| 2272 | |
| 2273 | void stashed_dentry_prune(struct dentry *dentry) |
| 2274 | { |
| 2275 | struct dentry **stashed = dentry->d_fsdata; |
| 2276 | struct inode *inode = d_inode(dentry); |
| 2277 | |
| 2278 | if (WARN_ON_ONCE(!stashed)) |
| 2279 | return; |
| 2280 | |
| 2281 | if (!inode) |
| 2282 | return; |
| 2283 | |
| 2284 | /* |
| 2285 | * Only replace our own @dentry as someone else might've |
| 2286 | * already cleared out @dentry and stashed their own |
| 2287 | * dentry in there. |
| 2288 | */ |
| 2289 | cmpxchg(stashed, dentry, NULL); |
| 2290 | } |
| 2291 | |
| 2292 | /* parent must be held exclusive */ |
| 2293 | struct dentry *simple_start_creating(struct dentry *parent, const char *name) |
| 2294 | { |
| 2295 | struct dentry *dentry; |
| 2296 | struct inode *dir = d_inode(dentry: parent); |
| 2297 | |
| 2298 | inode_lock(inode: dir); |
| 2299 | if (unlikely(IS_DEADDIR(dir))) { |
| 2300 | inode_unlock(inode: dir); |
| 2301 | return ERR_PTR(error: -ENOENT); |
| 2302 | } |
| 2303 | dentry = lookup_noperm(&QSTR(name), parent); |
| 2304 | if (IS_ERR(ptr: dentry)) { |
| 2305 | inode_unlock(inode: dir); |
| 2306 | return dentry; |
| 2307 | } |
| 2308 | if (dentry->d_inode) { |
| 2309 | dput(dentry); |
| 2310 | inode_unlock(inode: dir); |
| 2311 | return ERR_PTR(error: -EEXIST); |
| 2312 | } |
| 2313 | return dentry; |
| 2314 | } |
| 2315 | EXPORT_SYMBOL(simple_start_creating); |
| 2316 | |