| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include <linux/anon_inodes.h> |
| 3 | #include <linux/exportfs.h> |
| 4 | #include <linux/file.h> |
| 5 | #include <linux/fs.h> |
| 6 | #include <linux/cgroup.h> |
| 7 | #include <linux/magic.h> |
| 8 | #include <linux/mount.h> |
| 9 | #include <linux/pid.h> |
| 10 | #include <linux/pidfs.h> |
| 11 | #include <linux/pid_namespace.h> |
| 12 | #include <linux/poll.h> |
| 13 | #include <linux/proc_fs.h> |
| 14 | #include <linux/proc_ns.h> |
| 15 | #include <linux/pseudo_fs.h> |
| 16 | #include <linux/ptrace.h> |
| 17 | #include <linux/seq_file.h> |
| 18 | #include <uapi/linux/pidfd.h> |
| 19 | #include <linux/ipc_namespace.h> |
| 20 | #include <linux/time_namespace.h> |
| 21 | #include <linux/utsname.h> |
| 22 | #include <net/net_namespace.h> |
| 23 | #include <linux/coredump.h> |
| 24 | #include <linux/xattr.h> |
| 25 | |
| 26 | #include "internal.h" |
| 27 | #include "mount.h" |
| 28 | |
| 29 | #define PIDFS_PID_DEAD ERR_PTR(-ESRCH) |
| 30 | |
| 31 | static struct kmem_cache *pidfs_attr_cachep __ro_after_init; |
| 32 | static struct kmem_cache *pidfs_xattr_cachep __ro_after_init; |
| 33 | |
| 34 | static struct path pidfs_root_path = {}; |
| 35 | |
| 36 | void pidfs_get_root(struct path *path) |
| 37 | { |
| 38 | *path = pidfs_root_path; |
| 39 | path_get(path); |
| 40 | } |
| 41 | |
| 42 | /* |
| 43 | * Stashes information that userspace needs to access even after the |
| 44 | * process has been reaped. |
| 45 | */ |
| 46 | struct pidfs_exit_info { |
| 47 | __u64 cgroupid; |
| 48 | __s32 exit_code; |
| 49 | __u32 coredump_mask; |
| 50 | }; |
| 51 | |
| 52 | struct pidfs_attr { |
| 53 | struct simple_xattrs *xattrs; |
| 54 | struct pidfs_exit_info __pei; |
| 55 | struct pidfs_exit_info *exit_info; |
| 56 | }; |
| 57 | |
| 58 | static struct rb_root pidfs_ino_tree = RB_ROOT; |
| 59 | |
| 60 | #if BITS_PER_LONG == 32 |
| 61 | static inline unsigned long pidfs_ino(u64 ino) |
| 62 | { |
| 63 | return lower_32_bits(ino); |
| 64 | } |
| 65 | |
| 66 | /* On 32 bit the generation number are the upper 32 bits. */ |
| 67 | static inline u32 pidfs_gen(u64 ino) |
| 68 | { |
| 69 | return upper_32_bits(ino); |
| 70 | } |
| 71 | |
| 72 | #else |
| 73 | |
| 74 | /* On 64 bit simply return ino. */ |
| 75 | static inline unsigned long pidfs_ino(u64 ino) |
| 76 | { |
| 77 | return ino; |
| 78 | } |
| 79 | |
| 80 | /* On 64 bit the generation number is 0. */ |
| 81 | static inline u32 pidfs_gen(u64 ino) |
| 82 | { |
| 83 | return 0; |
| 84 | } |
| 85 | #endif |
| 86 | |
| 87 | static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b) |
| 88 | { |
| 89 | struct pid *pid_a = rb_entry(a, struct pid, pidfs_node); |
| 90 | struct pid *pid_b = rb_entry(b, struct pid, pidfs_node); |
| 91 | u64 pid_ino_a = pid_a->ino; |
| 92 | u64 pid_ino_b = pid_b->ino; |
| 93 | |
| 94 | if (pid_ino_a < pid_ino_b) |
| 95 | return -1; |
| 96 | if (pid_ino_a > pid_ino_b) |
| 97 | return 1; |
| 98 | return 0; |
| 99 | } |
| 100 | |
| 101 | void pidfs_add_pid(struct pid *pid) |
| 102 | { |
| 103 | static u64 pidfs_ino_nr = 2; |
| 104 | |
| 105 | /* |
| 106 | * On 64 bit nothing special happens. The 64bit number assigned |
| 107 | * to struct pid is the inode number. |
| 108 | * |
| 109 | * On 32 bit the 64 bit number assigned to struct pid is split |
| 110 | * into two 32 bit numbers. The lower 32 bits are used as the |
| 111 | * inode number and the upper 32 bits are used as the inode |
| 112 | * generation number. |
| 113 | * |
| 114 | * On 32 bit pidfs_ino() will return the lower 32 bit. When |
| 115 | * pidfs_ino() returns zero a wrap around happened. When a |
| 116 | * wraparound happens the 64 bit number will be incremented by 2 |
| 117 | * so inode numbering starts at 2 again. |
| 118 | * |
| 119 | * On 64 bit comparing two pidfds is as simple as comparing |
| 120 | * inode numbers. |
| 121 | * |
| 122 | * When a wraparound happens on 32 bit multiple pidfds with the |
| 123 | * same inode number are likely to exist (This isn't a problem |
| 124 | * since before pidfs pidfds used the anonymous inode meaning |
| 125 | * all pidfds had the same inode number.). Userspace can |
| 126 | * reconstruct the 64 bit identifier by retrieving both the |
| 127 | * inode number and the inode generation number to compare or |
| 128 | * use file handles. |
| 129 | */ |
| 130 | if (pidfs_ino(ino: pidfs_ino_nr) == 0) |
| 131 | pidfs_ino_nr += 2; |
| 132 | |
| 133 | pid->ino = pidfs_ino_nr; |
| 134 | pid->stashed = NULL; |
| 135 | pid->attr = NULL; |
| 136 | pidfs_ino_nr++; |
| 137 | |
| 138 | write_seqcount_begin(&pidmap_lock_seq); |
| 139 | rb_find_add_rcu(node: &pid->pidfs_node, tree: &pidfs_ino_tree, cmp: pidfs_ino_cmp); |
| 140 | write_seqcount_end(&pidmap_lock_seq); |
| 141 | } |
| 142 | |
| 143 | void pidfs_remove_pid(struct pid *pid) |
| 144 | { |
| 145 | write_seqcount_begin(&pidmap_lock_seq); |
| 146 | rb_erase(&pid->pidfs_node, &pidfs_ino_tree); |
| 147 | write_seqcount_end(&pidmap_lock_seq); |
| 148 | } |
| 149 | |
| 150 | void pidfs_free_pid(struct pid *pid) |
| 151 | { |
| 152 | struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr); |
| 153 | struct simple_xattrs *xattrs __free(kfree) = NULL; |
| 154 | |
| 155 | /* |
| 156 | * Any dentry must've been wiped from the pid by now. |
| 157 | * Otherwise there's a reference count bug. |
| 158 | */ |
| 159 | VFS_WARN_ON_ONCE(pid->stashed); |
| 160 | |
| 161 | /* |
| 162 | * This if an error occurred during e.g., task creation that |
| 163 | * causes us to never go through the exit path. |
| 164 | */ |
| 165 | if (unlikely(!attr)) |
| 166 | return; |
| 167 | |
| 168 | /* This never had a pidfd created. */ |
| 169 | if (IS_ERR(ptr: attr)) |
| 170 | return; |
| 171 | |
| 172 | xattrs = no_free_ptr(attr->xattrs); |
| 173 | if (xattrs) |
| 174 | simple_xattrs_free(xattrs, NULL); |
| 175 | } |
| 176 | |
| 177 | #ifdef CONFIG_PROC_FS |
| 178 | /** |
| 179 | * pidfd_show_fdinfo - print information about a pidfd |
| 180 | * @m: proc fdinfo file |
| 181 | * @f: file referencing a pidfd |
| 182 | * |
| 183 | * Pid: |
| 184 | * This function will print the pid that a given pidfd refers to in the |
| 185 | * pid namespace of the procfs instance. |
| 186 | * If the pid namespace of the process is not a descendant of the pid |
| 187 | * namespace of the procfs instance 0 will be shown as its pid. This is |
| 188 | * similar to calling getppid() on a process whose parent is outside of |
| 189 | * its pid namespace. |
| 190 | * |
| 191 | * NSpid: |
| 192 | * If pid namespaces are supported then this function will also print |
| 193 | * the pid of a given pidfd refers to for all descendant pid namespaces |
| 194 | * starting from the current pid namespace of the instance, i.e. the |
| 195 | * Pid field and the first entry in the NSpid field will be identical. |
| 196 | * If the pid namespace of the process is not a descendant of the pid |
| 197 | * namespace of the procfs instance 0 will be shown as its first NSpid |
| 198 | * entry and no others will be shown. |
| 199 | * Note that this differs from the Pid and NSpid fields in |
| 200 | * /proc/<pid>/status where Pid and NSpid are always shown relative to |
| 201 | * the pid namespace of the procfs instance. The difference becomes |
| 202 | * obvious when sending around a pidfd between pid namespaces from a |
| 203 | * different branch of the tree, i.e. where no ancestral relation is |
| 204 | * present between the pid namespaces: |
| 205 | * - create two new pid namespaces ns1 and ns2 in the initial pid |
| 206 | * namespace (also take care to create new mount namespaces in the |
| 207 | * new pid namespace and mount procfs) |
| 208 | * - create a process with a pidfd in ns1 |
| 209 | * - send pidfd from ns1 to ns2 |
| 210 | * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid |
| 211 | * have exactly one entry, which is 0 |
| 212 | */ |
| 213 | static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) |
| 214 | { |
| 215 | struct pid *pid = pidfd_pid(file: f); |
| 216 | struct pid_namespace *ns; |
| 217 | pid_t nr = -1; |
| 218 | |
| 219 | if (likely(pid_has_task(pid, PIDTYPE_PID))) { |
| 220 | ns = proc_pid_ns(sb: file_inode(f: m->file)->i_sb); |
| 221 | nr = pid_nr_ns(pid, ns); |
| 222 | } |
| 223 | |
| 224 | seq_put_decimal_ll(m, delimiter: "Pid:\t" , num: nr); |
| 225 | |
| 226 | #ifdef CONFIG_PID_NS |
| 227 | seq_put_decimal_ll(m, delimiter: "\nNSpid:\t" , num: nr); |
| 228 | if (nr > 0) { |
| 229 | int i; |
| 230 | |
| 231 | /* If nr is non-zero it means that 'pid' is valid and that |
| 232 | * ns, i.e. the pid namespace associated with the procfs |
| 233 | * instance, is in the pid namespace hierarchy of pid. |
| 234 | * Start at one below the already printed level. |
| 235 | */ |
| 236 | for (i = ns->level + 1; i <= pid->level; i++) |
| 237 | seq_put_decimal_ll(m, delimiter: "\t" , num: pid->numbers[i].nr); |
| 238 | } |
| 239 | #endif |
| 240 | seq_putc(m, c: '\n'); |
| 241 | } |
| 242 | #endif |
| 243 | |
| 244 | /* |
| 245 | * Poll support for process exit notification. |
| 246 | */ |
| 247 | static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) |
| 248 | { |
| 249 | struct pid *pid = pidfd_pid(file); |
| 250 | struct task_struct *task; |
| 251 | __poll_t poll_flags = 0; |
| 252 | |
| 253 | poll_wait(filp: file, wait_address: &pid->wait_pidfd, p: pts); |
| 254 | /* |
| 255 | * Don't wake waiters if the thread-group leader exited |
| 256 | * prematurely. They either get notified when the last subthread |
| 257 | * exits or not at all if one of the remaining subthreads execs |
| 258 | * and assumes the struct pid of the old thread-group leader. |
| 259 | */ |
| 260 | guard(rcu)(); |
| 261 | task = pid_task(pid, PIDTYPE_PID); |
| 262 | if (!task) |
| 263 | poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP; |
| 264 | else if (task->exit_state && !delay_group_leader(task)) |
| 265 | poll_flags = EPOLLIN | EPOLLRDNORM; |
| 266 | |
| 267 | return poll_flags; |
| 268 | } |
| 269 | |
| 270 | static inline bool pid_in_current_pidns(const struct pid *pid) |
| 271 | { |
| 272 | const struct pid_namespace *ns = task_active_pid_ns(current); |
| 273 | |
| 274 | if (ns->level <= pid->level) |
| 275 | return pid->numbers[ns->level].ns == ns; |
| 276 | |
| 277 | return false; |
| 278 | } |
| 279 | |
| 280 | static __u32 pidfs_coredump_mask(unsigned long mm_flags) |
| 281 | { |
| 282 | switch (__get_dumpable(mm_flags)) { |
| 283 | case SUID_DUMP_USER: |
| 284 | return PIDFD_COREDUMP_USER; |
| 285 | case SUID_DUMP_ROOT: |
| 286 | return PIDFD_COREDUMP_ROOT; |
| 287 | case SUID_DUMP_DISABLE: |
| 288 | return PIDFD_COREDUMP_SKIP; |
| 289 | default: |
| 290 | WARN_ON_ONCE(true); |
| 291 | } |
| 292 | |
| 293 | return 0; |
| 294 | } |
| 295 | |
| 296 | static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg) |
| 297 | { |
| 298 | struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg; |
| 299 | struct task_struct *task __free(put_task) = NULL; |
| 300 | struct pid *pid = pidfd_pid(file); |
| 301 | size_t usize = _IOC_SIZE(cmd); |
| 302 | struct pidfd_info kinfo = {}; |
| 303 | struct pidfs_exit_info *exit_info; |
| 304 | struct user_namespace *user_ns; |
| 305 | struct pidfs_attr *attr; |
| 306 | const struct cred *c; |
| 307 | __u64 mask; |
| 308 | |
| 309 | if (!uinfo) |
| 310 | return -EINVAL; |
| 311 | if (usize < PIDFD_INFO_SIZE_VER0) |
| 312 | return -EINVAL; /* First version, no smaller struct possible */ |
| 313 | |
| 314 | if (copy_from_user(to: &mask, from: &uinfo->mask, n: sizeof(mask))) |
| 315 | return -EFAULT; |
| 316 | |
| 317 | /* |
| 318 | * Restrict information retrieval to tasks within the caller's pid |
| 319 | * namespace hierarchy. |
| 320 | */ |
| 321 | if (!pid_in_current_pidns(pid)) |
| 322 | return -ESRCH; |
| 323 | |
| 324 | attr = READ_ONCE(pid->attr); |
| 325 | if (mask & PIDFD_INFO_EXIT) { |
| 326 | exit_info = READ_ONCE(attr->exit_info); |
| 327 | if (exit_info) { |
| 328 | kinfo.mask |= PIDFD_INFO_EXIT; |
| 329 | #ifdef CONFIG_CGROUPS |
| 330 | kinfo.cgroupid = exit_info->cgroupid; |
| 331 | kinfo.mask |= PIDFD_INFO_CGROUPID; |
| 332 | #endif |
| 333 | kinfo.exit_code = exit_info->exit_code; |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | if (mask & PIDFD_INFO_COREDUMP) { |
| 338 | kinfo.mask |= PIDFD_INFO_COREDUMP; |
| 339 | kinfo.coredump_mask = READ_ONCE(attr->__pei.coredump_mask); |
| 340 | } |
| 341 | |
| 342 | task = get_pid_task(pid, PIDTYPE_PID); |
| 343 | if (!task) { |
| 344 | /* |
| 345 | * If the task has already been reaped, only exit |
| 346 | * information is available |
| 347 | */ |
| 348 | if (!(mask & PIDFD_INFO_EXIT)) |
| 349 | return -ESRCH; |
| 350 | |
| 351 | goto copy_out; |
| 352 | } |
| 353 | |
| 354 | c = get_task_cred(task); |
| 355 | if (!c) |
| 356 | return -ESRCH; |
| 357 | |
| 358 | if ((kinfo.mask & PIDFD_INFO_COREDUMP) && !(kinfo.coredump_mask)) { |
| 359 | task_lock(p: task); |
| 360 | if (task->mm) { |
| 361 | unsigned long flags = __mm_flags_get_dumpable(mm: task->mm); |
| 362 | |
| 363 | kinfo.coredump_mask = pidfs_coredump_mask(mm_flags: flags); |
| 364 | } |
| 365 | task_unlock(p: task); |
| 366 | } |
| 367 | |
| 368 | /* Unconditionally return identifiers and credentials, the rest only on request */ |
| 369 | |
| 370 | user_ns = current_user_ns(); |
| 371 | kinfo.ruid = from_kuid_munged(to: user_ns, kuid: c->uid); |
| 372 | kinfo.rgid = from_kgid_munged(to: user_ns, kgid: c->gid); |
| 373 | kinfo.euid = from_kuid_munged(to: user_ns, kuid: c->euid); |
| 374 | kinfo.egid = from_kgid_munged(to: user_ns, kgid: c->egid); |
| 375 | kinfo.suid = from_kuid_munged(to: user_ns, kuid: c->suid); |
| 376 | kinfo.sgid = from_kgid_munged(to: user_ns, kgid: c->sgid); |
| 377 | kinfo.fsuid = from_kuid_munged(to: user_ns, kuid: c->fsuid); |
| 378 | kinfo.fsgid = from_kgid_munged(to: user_ns, kgid: c->fsgid); |
| 379 | kinfo.mask |= PIDFD_INFO_CREDS; |
| 380 | put_cred(cred: c); |
| 381 | |
| 382 | #ifdef CONFIG_CGROUPS |
| 383 | if (!kinfo.cgroupid) { |
| 384 | struct cgroup *cgrp; |
| 385 | |
| 386 | rcu_read_lock(); |
| 387 | cgrp = task_dfl_cgroup(task); |
| 388 | kinfo.cgroupid = cgroup_id(cgrp); |
| 389 | kinfo.mask |= PIDFD_INFO_CGROUPID; |
| 390 | rcu_read_unlock(); |
| 391 | } |
| 392 | #endif |
| 393 | |
| 394 | /* |
| 395 | * Copy pid/tgid last, to reduce the chances the information might be |
| 396 | * stale. Note that it is not possible to ensure it will be valid as the |
| 397 | * task might return as soon as the copy_to_user finishes, but that's ok |
| 398 | * and userspace expects that might happen and can act accordingly, so |
| 399 | * this is just best-effort. What we can do however is checking that all |
| 400 | * the fields are set correctly, or return ESRCH to avoid providing |
| 401 | * incomplete information. */ |
| 402 | |
| 403 | kinfo.ppid = task_ppid_nr_ns(tsk: task, NULL); |
| 404 | kinfo.tgid = task_tgid_vnr(tsk: task); |
| 405 | kinfo.pid = task_pid_vnr(tsk: task); |
| 406 | kinfo.mask |= PIDFD_INFO_PID; |
| 407 | |
| 408 | if (kinfo.pid == 0 || kinfo.tgid == 0) |
| 409 | return -ESRCH; |
| 410 | |
| 411 | copy_out: |
| 412 | /* |
| 413 | * If userspace and the kernel have the same struct size it can just |
| 414 | * be copied. If userspace provides an older struct, only the bits that |
| 415 | * userspace knows about will be copied. If userspace provides a new |
| 416 | * struct, only the bits that the kernel knows about will be copied. |
| 417 | */ |
| 418 | return copy_struct_to_user(dst: uinfo, usize, src: &kinfo, ksize: sizeof(kinfo), NULL); |
| 419 | } |
| 420 | |
| 421 | static bool pidfs_ioctl_valid(unsigned int cmd) |
| 422 | { |
| 423 | switch (cmd) { |
| 424 | case FS_IOC_GETVERSION: |
| 425 | case PIDFD_GET_CGROUP_NAMESPACE: |
| 426 | case PIDFD_GET_IPC_NAMESPACE: |
| 427 | case PIDFD_GET_MNT_NAMESPACE: |
| 428 | case PIDFD_GET_NET_NAMESPACE: |
| 429 | case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE: |
| 430 | case PIDFD_GET_TIME_NAMESPACE: |
| 431 | case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE: |
| 432 | case PIDFD_GET_UTS_NAMESPACE: |
| 433 | case PIDFD_GET_USER_NAMESPACE: |
| 434 | case PIDFD_GET_PID_NAMESPACE: |
| 435 | return true; |
| 436 | } |
| 437 | |
| 438 | /* Extensible ioctls require some more careful checks. */ |
| 439 | switch (_IOC_NR(cmd)) { |
| 440 | case _IOC_NR(PIDFD_GET_INFO): |
| 441 | /* |
| 442 | * Try to prevent performing a pidfd ioctl when someone |
| 443 | * erronously mistook the file descriptor for a pidfd. |
| 444 | * This is not perfect but will catch most cases. |
| 445 | */ |
| 446 | return extensible_ioctl_valid(cmd_a: cmd, PIDFD_GET_INFO, PIDFD_INFO_SIZE_VER0); |
| 447 | } |
| 448 | |
| 449 | return false; |
| 450 | } |
| 451 | |
| 452 | static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| 453 | { |
| 454 | struct task_struct *task __free(put_task) = NULL; |
| 455 | struct nsproxy *nsp __free(put_nsproxy) = NULL; |
| 456 | struct ns_common *ns_common = NULL; |
| 457 | struct pid_namespace *pid_ns; |
| 458 | |
| 459 | if (!pidfs_ioctl_valid(cmd)) |
| 460 | return -ENOIOCTLCMD; |
| 461 | |
| 462 | if (cmd == FS_IOC_GETVERSION) { |
| 463 | if (!arg) |
| 464 | return -EINVAL; |
| 465 | |
| 466 | __u32 __user *argp = (__u32 __user *)arg; |
| 467 | return put_user(file_inode(file)->i_generation, argp); |
| 468 | } |
| 469 | |
| 470 | /* Extensible IOCTL that does not open namespace FDs, take a shortcut */ |
| 471 | if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO)) |
| 472 | return pidfd_info(file, cmd, arg); |
| 473 | |
| 474 | task = get_pid_task(pid: pidfd_pid(file), PIDTYPE_PID); |
| 475 | if (!task) |
| 476 | return -ESRCH; |
| 477 | |
| 478 | if (arg) |
| 479 | return -EINVAL; |
| 480 | |
| 481 | scoped_guard(task_lock, task) { |
| 482 | nsp = task->nsproxy; |
| 483 | if (nsp) |
| 484 | get_nsproxy(ns: nsp); |
| 485 | } |
| 486 | if (!nsp) |
| 487 | return -ESRCH; /* just pretend it didn't exist */ |
| 488 | |
| 489 | /* |
| 490 | * We're trying to open a file descriptor to the namespace so perform a |
| 491 | * filesystem cred ptrace check. Also, we mirror nsfs behavior. |
| 492 | */ |
| 493 | if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) |
| 494 | return -EACCES; |
| 495 | |
| 496 | switch (cmd) { |
| 497 | /* Namespaces that hang of nsproxy. */ |
| 498 | case PIDFD_GET_CGROUP_NAMESPACE: |
| 499 | if (IS_ENABLED(CONFIG_CGROUPS)) { |
| 500 | get_cgroup_ns(ns: nsp->cgroup_ns); |
| 501 | ns_common = to_ns_common(nsp->cgroup_ns); |
| 502 | } |
| 503 | break; |
| 504 | case PIDFD_GET_IPC_NAMESPACE: |
| 505 | if (IS_ENABLED(CONFIG_IPC_NS)) { |
| 506 | get_ipc_ns(ns: nsp->ipc_ns); |
| 507 | ns_common = to_ns_common(nsp->ipc_ns); |
| 508 | } |
| 509 | break; |
| 510 | case PIDFD_GET_MNT_NAMESPACE: |
| 511 | get_mnt_ns(ns: nsp->mnt_ns); |
| 512 | ns_common = to_ns_common(nsp->mnt_ns); |
| 513 | break; |
| 514 | case PIDFD_GET_NET_NAMESPACE: |
| 515 | if (IS_ENABLED(CONFIG_NET_NS)) { |
| 516 | ns_common = to_ns_common(nsp->net_ns); |
| 517 | get_net_ns(ns: ns_common); |
| 518 | } |
| 519 | break; |
| 520 | case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE: |
| 521 | if (IS_ENABLED(CONFIG_PID_NS)) { |
| 522 | get_pid_ns(ns: nsp->pid_ns_for_children); |
| 523 | ns_common = to_ns_common(nsp->pid_ns_for_children); |
| 524 | } |
| 525 | break; |
| 526 | case PIDFD_GET_TIME_NAMESPACE: |
| 527 | if (IS_ENABLED(CONFIG_TIME_NS)) { |
| 528 | get_time_ns(ns: nsp->time_ns); |
| 529 | ns_common = to_ns_common(nsp->time_ns); |
| 530 | } |
| 531 | break; |
| 532 | case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE: |
| 533 | if (IS_ENABLED(CONFIG_TIME_NS)) { |
| 534 | get_time_ns(ns: nsp->time_ns_for_children); |
| 535 | ns_common = to_ns_common(nsp->time_ns_for_children); |
| 536 | } |
| 537 | break; |
| 538 | case PIDFD_GET_UTS_NAMESPACE: |
| 539 | if (IS_ENABLED(CONFIG_UTS_NS)) { |
| 540 | get_uts_ns(ns: nsp->uts_ns); |
| 541 | ns_common = to_ns_common(nsp->uts_ns); |
| 542 | } |
| 543 | break; |
| 544 | /* Namespaces that don't hang of nsproxy. */ |
| 545 | case PIDFD_GET_USER_NAMESPACE: |
| 546 | if (IS_ENABLED(CONFIG_USER_NS)) { |
| 547 | rcu_read_lock(); |
| 548 | ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns))); |
| 549 | rcu_read_unlock(); |
| 550 | } |
| 551 | break; |
| 552 | case PIDFD_GET_PID_NAMESPACE: |
| 553 | if (IS_ENABLED(CONFIG_PID_NS)) { |
| 554 | rcu_read_lock(); |
| 555 | pid_ns = task_active_pid_ns(tsk: task); |
| 556 | if (pid_ns) |
| 557 | ns_common = to_ns_common(get_pid_ns(pid_ns)); |
| 558 | rcu_read_unlock(); |
| 559 | } |
| 560 | break; |
| 561 | default: |
| 562 | return -ENOIOCTLCMD; |
| 563 | } |
| 564 | |
| 565 | if (!ns_common) |
| 566 | return -EOPNOTSUPP; |
| 567 | |
| 568 | /* open_namespace() unconditionally consumes the reference */ |
| 569 | return open_namespace(ns: ns_common); |
| 570 | } |
| 571 | |
| 572 | static const struct file_operations pidfs_file_operations = { |
| 573 | .poll = pidfd_poll, |
| 574 | #ifdef CONFIG_PROC_FS |
| 575 | .show_fdinfo = pidfd_show_fdinfo, |
| 576 | #endif |
| 577 | .unlocked_ioctl = pidfd_ioctl, |
| 578 | .compat_ioctl = compat_ptr_ioctl, |
| 579 | }; |
| 580 | |
| 581 | struct pid *pidfd_pid(const struct file *file) |
| 582 | { |
| 583 | if (file->f_op != &pidfs_file_operations) |
| 584 | return ERR_PTR(error: -EBADF); |
| 585 | return file_inode(f: file)->i_private; |
| 586 | } |
| 587 | |
| 588 | /* |
| 589 | * We're called from release_task(). We know there's at least one |
| 590 | * reference to struct pid being held that won't be released until the |
| 591 | * task has been reaped which cannot happen until we're out of |
| 592 | * release_task(). |
| 593 | * |
| 594 | * If this struct pid has at least once been referred to by a pidfd then |
| 595 | * pid->attr will be allocated. If not we mark the struct pid as dead so |
| 596 | * anyone who is trying to register it with pidfs will fail to do so. |
| 597 | * Otherwise we would hand out pidfs for reaped tasks without having |
| 598 | * exit information available. |
| 599 | * |
| 600 | * Worst case is that we've filled in the info and the pid gets freed |
| 601 | * right away in free_pid() when no one holds a pidfd anymore. Since |
| 602 | * pidfs_exit() currently is placed after exit_task_work() we know that |
| 603 | * it cannot be us aka the exiting task holding a pidfd to itself. |
| 604 | */ |
| 605 | void pidfs_exit(struct task_struct *tsk) |
| 606 | { |
| 607 | struct pid *pid = task_pid(task: tsk); |
| 608 | struct pidfs_attr *attr; |
| 609 | struct pidfs_exit_info *exit_info; |
| 610 | #ifdef CONFIG_CGROUPS |
| 611 | struct cgroup *cgrp; |
| 612 | #endif |
| 613 | |
| 614 | might_sleep(); |
| 615 | |
| 616 | guard(spinlock_irq)(l: &pid->wait_pidfd.lock); |
| 617 | attr = pid->attr; |
| 618 | if (!attr) { |
| 619 | /* |
| 620 | * No one ever held a pidfd for this struct pid. |
| 621 | * Mark it as dead so no one can add a pidfs |
| 622 | * entry anymore. We're about to be reaped and |
| 623 | * so no exit information would be available. |
| 624 | */ |
| 625 | pid->attr = PIDFS_PID_DEAD; |
| 626 | return; |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * If @pid->attr is set someone might still legitimately hold a |
| 631 | * pidfd to @pid or someone might concurrently still be getting |
| 632 | * a reference to an already stashed dentry from @pid->stashed. |
| 633 | * So defer cleaning @pid->attr until the last reference to @pid |
| 634 | * is put |
| 635 | */ |
| 636 | |
| 637 | exit_info = &attr->__pei; |
| 638 | |
| 639 | #ifdef CONFIG_CGROUPS |
| 640 | rcu_read_lock(); |
| 641 | cgrp = task_dfl_cgroup(task: tsk); |
| 642 | exit_info->cgroupid = cgroup_id(cgrp); |
| 643 | rcu_read_unlock(); |
| 644 | #endif |
| 645 | exit_info->exit_code = tsk->exit_code; |
| 646 | |
| 647 | /* Ensure that PIDFD_GET_INFO sees either all or nothing. */ |
| 648 | smp_store_release(&attr->exit_info, &attr->__pei); |
| 649 | } |
| 650 | |
| 651 | #ifdef CONFIG_COREDUMP |
| 652 | void pidfs_coredump(const struct coredump_params *cprm) |
| 653 | { |
| 654 | struct pid *pid = cprm->pid; |
| 655 | struct pidfs_exit_info *exit_info; |
| 656 | struct pidfs_attr *attr; |
| 657 | __u32 coredump_mask = 0; |
| 658 | |
| 659 | attr = READ_ONCE(pid->attr); |
| 660 | |
| 661 | VFS_WARN_ON_ONCE(!attr); |
| 662 | VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD); |
| 663 | |
| 664 | exit_info = &attr->__pei; |
| 665 | /* Note how we were coredumped. */ |
| 666 | coredump_mask = pidfs_coredump_mask(mm_flags: cprm->mm_flags); |
| 667 | /* Note that we actually did coredump. */ |
| 668 | coredump_mask |= PIDFD_COREDUMPED; |
| 669 | /* If coredumping is set to skip we should never end up here. */ |
| 670 | VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP); |
| 671 | smp_store_release(&exit_info->coredump_mask, coredump_mask); |
| 672 | } |
| 673 | #endif |
| 674 | |
| 675 | static struct vfsmount *pidfs_mnt __ro_after_init; |
| 676 | |
| 677 | /* |
| 678 | * The vfs falls back to simple_setattr() if i_op->setattr() isn't |
| 679 | * implemented. Let's reject it completely until we have a clean |
| 680 | * permission concept for pidfds. |
| 681 | */ |
| 682 | static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, |
| 683 | struct iattr *attr) |
| 684 | { |
| 685 | return anon_inode_setattr(idmap, dentry, attr); |
| 686 | } |
| 687 | |
| 688 | static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path, |
| 689 | struct kstat *stat, u32 request_mask, |
| 690 | unsigned int query_flags) |
| 691 | { |
| 692 | return anon_inode_getattr(idmap, path, stat, request_mask, query_flags); |
| 693 | } |
| 694 | |
| 695 | static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size) |
| 696 | { |
| 697 | struct inode *inode = d_inode(dentry); |
| 698 | struct pid *pid = inode->i_private; |
| 699 | struct pidfs_attr *attr = pid->attr; |
| 700 | struct simple_xattrs *xattrs; |
| 701 | |
| 702 | xattrs = READ_ONCE(attr->xattrs); |
| 703 | if (!xattrs) |
| 704 | return 0; |
| 705 | |
| 706 | return simple_xattr_list(inode, xattrs, buffer: buf, size); |
| 707 | } |
| 708 | |
| 709 | static const struct inode_operations pidfs_inode_operations = { |
| 710 | .getattr = pidfs_getattr, |
| 711 | .setattr = pidfs_setattr, |
| 712 | .listxattr = pidfs_listxattr, |
| 713 | }; |
| 714 | |
| 715 | static void pidfs_evict_inode(struct inode *inode) |
| 716 | { |
| 717 | struct pid *pid = inode->i_private; |
| 718 | |
| 719 | clear_inode(inode); |
| 720 | put_pid(pid); |
| 721 | } |
| 722 | |
| 723 | static const struct super_operations pidfs_sops = { |
| 724 | .drop_inode = inode_just_drop, |
| 725 | .evict_inode = pidfs_evict_inode, |
| 726 | .statfs = simple_statfs, |
| 727 | }; |
| 728 | |
| 729 | /* |
| 730 | * 'lsof' has knowledge of out historical anon_inode use, and expects |
| 731 | * the pidfs dentry name to start with 'anon_inode'. |
| 732 | */ |
| 733 | static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen) |
| 734 | { |
| 735 | return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]" ); |
| 736 | } |
| 737 | |
| 738 | const struct dentry_operations pidfs_dentry_operations = { |
| 739 | .d_dname = pidfs_dname, |
| 740 | .d_prune = stashed_dentry_prune, |
| 741 | }; |
| 742 | |
| 743 | static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len, |
| 744 | struct inode *parent) |
| 745 | { |
| 746 | const struct pid *pid = inode->i_private; |
| 747 | |
| 748 | if (*max_len < 2) { |
| 749 | *max_len = 2; |
| 750 | return FILEID_INVALID; |
| 751 | } |
| 752 | |
| 753 | *max_len = 2; |
| 754 | *(u64 *)fh = pid->ino; |
| 755 | return FILEID_KERNFS; |
| 756 | } |
| 757 | |
| 758 | static int pidfs_ino_find(const void *key, const struct rb_node *node) |
| 759 | { |
| 760 | const u64 pid_ino = *(u64 *)key; |
| 761 | const struct pid *pid = rb_entry(node, struct pid, pidfs_node); |
| 762 | |
| 763 | if (pid_ino < pid->ino) |
| 764 | return -1; |
| 765 | if (pid_ino > pid->ino) |
| 766 | return 1; |
| 767 | return 0; |
| 768 | } |
| 769 | |
| 770 | /* Find a struct pid based on the inode number. */ |
| 771 | static struct pid *pidfs_ino_get_pid(u64 ino) |
| 772 | { |
| 773 | struct pid *pid; |
| 774 | struct rb_node *node; |
| 775 | unsigned int seq; |
| 776 | |
| 777 | guard(rcu)(); |
| 778 | do { |
| 779 | seq = read_seqcount_begin(&pidmap_lock_seq); |
| 780 | node = rb_find_rcu(key: &ino, tree: &pidfs_ino_tree, cmp: pidfs_ino_find); |
| 781 | if (node) |
| 782 | break; |
| 783 | } while (read_seqcount_retry(&pidmap_lock_seq, seq)); |
| 784 | |
| 785 | if (!node) |
| 786 | return NULL; |
| 787 | |
| 788 | pid = rb_entry(node, struct pid, pidfs_node); |
| 789 | |
| 790 | /* Within our pid namespace hierarchy? */ |
| 791 | if (pid_vnr(pid) == 0) |
| 792 | return NULL; |
| 793 | |
| 794 | return get_pid(pid); |
| 795 | } |
| 796 | |
| 797 | static struct dentry *pidfs_fh_to_dentry(struct super_block *sb, |
| 798 | struct fid *fid, int fh_len, |
| 799 | int fh_type) |
| 800 | { |
| 801 | int ret; |
| 802 | u64 pid_ino; |
| 803 | struct path path; |
| 804 | struct pid *pid; |
| 805 | |
| 806 | if (fh_len < 2) |
| 807 | return NULL; |
| 808 | |
| 809 | switch (fh_type) { |
| 810 | case FILEID_KERNFS: |
| 811 | pid_ino = *(u64 *)fid; |
| 812 | break; |
| 813 | default: |
| 814 | return NULL; |
| 815 | } |
| 816 | |
| 817 | pid = pidfs_ino_get_pid(ino: pid_ino); |
| 818 | if (!pid) |
| 819 | return NULL; |
| 820 | |
| 821 | ret = path_from_stashed(stashed: &pid->stashed, mnt: pidfs_mnt, data: pid, path: &path); |
| 822 | if (ret < 0) |
| 823 | return ERR_PTR(error: ret); |
| 824 | |
| 825 | VFS_WARN_ON_ONCE(!pid->attr); |
| 826 | |
| 827 | mntput(mnt: path.mnt); |
| 828 | return path.dentry; |
| 829 | } |
| 830 | |
| 831 | /* |
| 832 | * Make sure that we reject any nonsensical flags that users pass via |
| 833 | * open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and |
| 834 | * PIDFD_NONBLOCK as O_NONBLOCK. |
| 835 | */ |
| 836 | #define VALID_FILE_HANDLE_OPEN_FLAGS \ |
| 837 | (O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL) |
| 838 | |
| 839 | static int pidfs_export_permission(struct handle_to_path_ctx *ctx, |
| 840 | unsigned int oflags) |
| 841 | { |
| 842 | if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE)) |
| 843 | return -EINVAL; |
| 844 | |
| 845 | /* |
| 846 | * pidfd_ino_get_pid() will verify that the struct pid is part |
| 847 | * of the caller's pid namespace hierarchy. No further |
| 848 | * permission checks are needed. |
| 849 | */ |
| 850 | return 0; |
| 851 | } |
| 852 | |
| 853 | static struct file *pidfs_export_open(const struct path *path, unsigned int oflags) |
| 854 | { |
| 855 | /* |
| 856 | * Clear O_LARGEFILE as open_by_handle_at() forces it and raise |
| 857 | * O_RDWR as pidfds always are. |
| 858 | */ |
| 859 | oflags &= ~O_LARGEFILE; |
| 860 | return dentry_open(path, flags: oflags | O_RDWR, current_cred()); |
| 861 | } |
| 862 | |
| 863 | static const struct export_operations pidfs_export_operations = { |
| 864 | .encode_fh = pidfs_encode_fh, |
| 865 | .fh_to_dentry = pidfs_fh_to_dentry, |
| 866 | .open = pidfs_export_open, |
| 867 | .permission = pidfs_export_permission, |
| 868 | }; |
| 869 | |
| 870 | static int pidfs_init_inode(struct inode *inode, void *data) |
| 871 | { |
| 872 | const struct pid *pid = data; |
| 873 | |
| 874 | inode->i_private = data; |
| 875 | inode->i_flags |= S_PRIVATE | S_ANON_INODE; |
| 876 | /* We allow to set xattrs. */ |
| 877 | inode->i_flags &= ~S_IMMUTABLE; |
| 878 | inode->i_mode |= S_IRWXU; |
| 879 | inode->i_op = &pidfs_inode_operations; |
| 880 | inode->i_fop = &pidfs_file_operations; |
| 881 | inode->i_ino = pidfs_ino(ino: pid->ino); |
| 882 | inode->i_generation = pidfs_gen(ino: pid->ino); |
| 883 | return 0; |
| 884 | } |
| 885 | |
| 886 | static void pidfs_put_data(void *data) |
| 887 | { |
| 888 | struct pid *pid = data; |
| 889 | put_pid(pid); |
| 890 | } |
| 891 | |
| 892 | /** |
| 893 | * pidfs_register_pid - register a struct pid in pidfs |
| 894 | * @pid: pid to pin |
| 895 | * |
| 896 | * Register a struct pid in pidfs. |
| 897 | * |
| 898 | * Return: On success zero, on error a negative error code is returned. |
| 899 | */ |
| 900 | int pidfs_register_pid(struct pid *pid) |
| 901 | { |
| 902 | struct pidfs_attr *new_attr __free(kfree) = NULL; |
| 903 | struct pidfs_attr *attr; |
| 904 | |
| 905 | might_sleep(); |
| 906 | |
| 907 | if (!pid) |
| 908 | return 0; |
| 909 | |
| 910 | attr = READ_ONCE(pid->attr); |
| 911 | if (unlikely(attr == PIDFS_PID_DEAD)) |
| 912 | return PTR_ERR(PIDFS_PID_DEAD); |
| 913 | if (attr) |
| 914 | return 0; |
| 915 | |
| 916 | new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL); |
| 917 | if (!new_attr) |
| 918 | return -ENOMEM; |
| 919 | |
| 920 | /* Synchronize with pidfs_exit(). */ |
| 921 | guard(spinlock_irq)(l: &pid->wait_pidfd.lock); |
| 922 | |
| 923 | attr = pid->attr; |
| 924 | if (unlikely(attr == PIDFS_PID_DEAD)) |
| 925 | return PTR_ERR(PIDFS_PID_DEAD); |
| 926 | if (unlikely(attr)) |
| 927 | return 0; |
| 928 | |
| 929 | pid->attr = no_free_ptr(new_attr); |
| 930 | return 0; |
| 931 | } |
| 932 | |
| 933 | static struct dentry *pidfs_stash_dentry(struct dentry **stashed, |
| 934 | struct dentry *dentry) |
| 935 | { |
| 936 | int ret; |
| 937 | struct pid *pid = d_inode(dentry)->i_private; |
| 938 | |
| 939 | VFS_WARN_ON_ONCE(stashed != &pid->stashed); |
| 940 | |
| 941 | ret = pidfs_register_pid(pid); |
| 942 | if (ret) |
| 943 | return ERR_PTR(error: ret); |
| 944 | |
| 945 | return stash_dentry(stashed, dentry); |
| 946 | } |
| 947 | |
| 948 | static const struct stashed_operations pidfs_stashed_ops = { |
| 949 | .stash_dentry = pidfs_stash_dentry, |
| 950 | .init_inode = pidfs_init_inode, |
| 951 | .put_data = pidfs_put_data, |
| 952 | }; |
| 953 | |
| 954 | static int pidfs_xattr_get(const struct xattr_handler *handler, |
| 955 | struct dentry *unused, struct inode *inode, |
| 956 | const char *suffix, void *value, size_t size) |
| 957 | { |
| 958 | struct pid *pid = inode->i_private; |
| 959 | struct pidfs_attr *attr = pid->attr; |
| 960 | const char *name; |
| 961 | struct simple_xattrs *xattrs; |
| 962 | |
| 963 | xattrs = READ_ONCE(attr->xattrs); |
| 964 | if (!xattrs) |
| 965 | return 0; |
| 966 | |
| 967 | name = xattr_full_name(handler, suffix); |
| 968 | return simple_xattr_get(xattrs, name, buffer: value, size); |
| 969 | } |
| 970 | |
| 971 | static int pidfs_xattr_set(const struct xattr_handler *handler, |
| 972 | struct mnt_idmap *idmap, struct dentry *unused, |
| 973 | struct inode *inode, const char *suffix, |
| 974 | const void *value, size_t size, int flags) |
| 975 | { |
| 976 | struct pid *pid = inode->i_private; |
| 977 | struct pidfs_attr *attr = pid->attr; |
| 978 | const char *name; |
| 979 | struct simple_xattrs *xattrs; |
| 980 | struct simple_xattr *old_xattr; |
| 981 | |
| 982 | /* Ensure we're the only one to set @attr->xattrs. */ |
| 983 | WARN_ON_ONCE(!inode_is_locked(inode)); |
| 984 | |
| 985 | xattrs = READ_ONCE(attr->xattrs); |
| 986 | if (!xattrs) { |
| 987 | xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL); |
| 988 | if (!xattrs) |
| 989 | return -ENOMEM; |
| 990 | |
| 991 | simple_xattrs_init(xattrs); |
| 992 | smp_store_release(&pid->attr->xattrs, xattrs); |
| 993 | } |
| 994 | |
| 995 | name = xattr_full_name(handler, suffix); |
| 996 | old_xattr = simple_xattr_set(xattrs, name, value, size, flags); |
| 997 | if (IS_ERR(ptr: old_xattr)) |
| 998 | return PTR_ERR(ptr: old_xattr); |
| 999 | |
| 1000 | simple_xattr_free(xattr: old_xattr); |
| 1001 | return 0; |
| 1002 | } |
| 1003 | |
| 1004 | static const struct xattr_handler pidfs_trusted_xattr_handler = { |
| 1005 | .prefix = XATTR_TRUSTED_PREFIX, |
| 1006 | .get = pidfs_xattr_get, |
| 1007 | .set = pidfs_xattr_set, |
| 1008 | }; |
| 1009 | |
| 1010 | static const struct xattr_handler *const pidfs_xattr_handlers[] = { |
| 1011 | &pidfs_trusted_xattr_handler, |
| 1012 | NULL |
| 1013 | }; |
| 1014 | |
| 1015 | static int pidfs_init_fs_context(struct fs_context *fc) |
| 1016 | { |
| 1017 | struct pseudo_fs_context *ctx; |
| 1018 | |
| 1019 | ctx = init_pseudo(fc, PID_FS_MAGIC); |
| 1020 | if (!ctx) |
| 1021 | return -ENOMEM; |
| 1022 | |
| 1023 | fc->s_iflags |= SB_I_NOEXEC; |
| 1024 | fc->s_iflags |= SB_I_NODEV; |
| 1025 | ctx->ops = &pidfs_sops; |
| 1026 | ctx->eops = &pidfs_export_operations; |
| 1027 | ctx->dops = &pidfs_dentry_operations; |
| 1028 | ctx->xattr = pidfs_xattr_handlers; |
| 1029 | fc->s_fs_info = (void *)&pidfs_stashed_ops; |
| 1030 | return 0; |
| 1031 | } |
| 1032 | |
| 1033 | static struct file_system_type pidfs_type = { |
| 1034 | .name = "pidfs" , |
| 1035 | .init_fs_context = pidfs_init_fs_context, |
| 1036 | .kill_sb = kill_anon_super, |
| 1037 | }; |
| 1038 | |
| 1039 | struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags) |
| 1040 | { |
| 1041 | struct file *pidfd_file; |
| 1042 | struct path path __free(path_put) = {}; |
| 1043 | int ret; |
| 1044 | |
| 1045 | /* |
| 1046 | * Ensure that PIDFD_STALE can be passed as a flag without |
| 1047 | * overloading other uapi pidfd flags. |
| 1048 | */ |
| 1049 | BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD); |
| 1050 | BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK); |
| 1051 | |
| 1052 | ret = path_from_stashed(stashed: &pid->stashed, mnt: pidfs_mnt, data: get_pid(pid), path: &path); |
| 1053 | if (ret < 0) |
| 1054 | return ERR_PTR(error: ret); |
| 1055 | |
| 1056 | VFS_WARN_ON_ONCE(!pid->attr); |
| 1057 | |
| 1058 | flags &= ~PIDFD_STALE; |
| 1059 | flags |= O_RDWR; |
| 1060 | pidfd_file = dentry_open(path: &path, flags, current_cred()); |
| 1061 | /* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */ |
| 1062 | if (!IS_ERR(ptr: pidfd_file)) |
| 1063 | pidfd_file->f_flags |= (flags & PIDFD_THREAD); |
| 1064 | |
| 1065 | return pidfd_file; |
| 1066 | } |
| 1067 | |
| 1068 | void __init pidfs_init(void) |
| 1069 | { |
| 1070 | pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache" , sizeof(struct pidfs_attr), 0, |
| 1071 | (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | |
| 1072 | SLAB_ACCOUNT | SLAB_PANIC), NULL); |
| 1073 | |
| 1074 | pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache" , |
| 1075 | sizeof(struct simple_xattrs), 0, |
| 1076 | (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | |
| 1077 | SLAB_ACCOUNT | SLAB_PANIC), NULL); |
| 1078 | |
| 1079 | pidfs_mnt = kern_mount(&pidfs_type); |
| 1080 | if (IS_ERR(ptr: pidfs_mnt)) |
| 1081 | panic(fmt: "Failed to mount pidfs pseudo filesystem" ); |
| 1082 | |
| 1083 | pidfs_root_path.mnt = pidfs_mnt; |
| 1084 | pidfs_root_path.dentry = pidfs_mnt->mnt_root; |
| 1085 | } |
| 1086 | |