1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Linux Socket Filter Data Structures
4 */
5#ifndef __LINUX_FILTER_H__
6#define __LINUX_FILTER_H__
7
8#include <linux/atomic.h>
9#include <linux/bpf.h>
10#include <linux/refcount.h>
11#include <linux/compat.h>
12#include <linux/skbuff.h>
13#include <linux/linkage.h>
14#include <linux/printk.h>
15#include <linux/workqueue.h>
16#include <linux/sched.h>
17#include <linux/sched/clock.h>
18#include <linux/capability.h>
19#include <linux/set_memory.h>
20#include <linux/kallsyms.h>
21#include <linux/if_vlan.h>
22#include <linux/vmalloc.h>
23#include <linux/sockptr.h>
24#include <crypto/sha1.h>
25#include <linux/u64_stats_sync.h>
26
27#include <net/sch_generic.h>
28
29#include <asm/byteorder.h>
30#include <uapi/linux/filter.h>
31
32struct sk_buff;
33struct sock;
34struct seccomp_data;
35struct bpf_prog_aux;
36struct xdp_rxq_info;
37struct xdp_buff;
38struct sock_reuseport;
39struct ctl_table;
40struct ctl_table_header;
41
42/* ArgX, context and stack frame pointer register positions. Note,
43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44 * calls in BPF_CALL instruction.
45 */
46#define BPF_REG_ARG1 BPF_REG_1
47#define BPF_REG_ARG2 BPF_REG_2
48#define BPF_REG_ARG3 BPF_REG_3
49#define BPF_REG_ARG4 BPF_REG_4
50#define BPF_REG_ARG5 BPF_REG_5
51#define BPF_REG_CTX BPF_REG_6
52#define BPF_REG_FP BPF_REG_10
53
54/* Additional register mappings for converted user programs. */
55#define BPF_REG_A BPF_REG_0
56#define BPF_REG_X BPF_REG_7
57#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
58#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
59#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
60
61/* Kernel hidden auxiliary/helper register. */
62#define BPF_REG_AX MAX_BPF_REG
63#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
64#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
65
66/* unused opcode to mark special call to bpf_tail_call() helper */
67#define BPF_TAIL_CALL 0xf0
68
69/* unused opcode to mark special load instruction. Same as BPF_ABS */
70#define BPF_PROBE_MEM 0x20
71
72/* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73#define BPF_PROBE_MEMSX 0x40
74
75/* unused opcode to mark special load instruction. Same as BPF_MSH */
76#define BPF_PROBE_MEM32 0xa0
77
78/* unused opcode to mark special atomic instruction */
79#define BPF_PROBE_ATOMIC 0xe0
80
81/* unused opcode to mark special ldsx instruction. Same as BPF_NOSPEC */
82#define BPF_PROBE_MEM32SX 0xc0
83
84/* unused opcode to mark call to interpreter with arguments */
85#define BPF_CALL_ARGS 0xe0
86
87/* unused opcode to mark speculation barrier for mitigating
88 * Spectre v1 and v4
89 */
90#define BPF_NOSPEC 0xc0
91
92/* As per nm, we expose JITed images as text (code) section for
93 * kallsyms. That way, tools like perf can find it to match
94 * addresses.
95 */
96#define BPF_SYM_ELF_TYPE 't'
97
98/* BPF program can access up to 512 bytes of stack space. */
99#define MAX_BPF_STACK 512
100
101/* Helper macros for filter block array initializers. */
102
103/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
104
105#define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \
106 ((struct bpf_insn) { \
107 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
108 .dst_reg = DST, \
109 .src_reg = SRC, \
110 .off = OFF, \
111 .imm = 0 })
112
113#define BPF_ALU64_REG(OP, DST, SRC) \
114 BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
115
116#define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \
117 ((struct bpf_insn) { \
118 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
119 .dst_reg = DST, \
120 .src_reg = SRC, \
121 .off = OFF, \
122 .imm = 0 })
123
124#define BPF_ALU32_REG(OP, DST, SRC) \
125 BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
126
127/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
128
129#define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \
130 ((struct bpf_insn) { \
131 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
132 .dst_reg = DST, \
133 .src_reg = 0, \
134 .off = OFF, \
135 .imm = IMM })
136#define BPF_ALU64_IMM(OP, DST, IMM) \
137 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
138
139#define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \
140 ((struct bpf_insn) { \
141 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
142 .dst_reg = DST, \
143 .src_reg = 0, \
144 .off = OFF, \
145 .imm = IMM })
146#define BPF_ALU32_IMM(OP, DST, IMM) \
147 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
148
149/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
150
151#define BPF_ENDIAN(TYPE, DST, LEN) \
152 ((struct bpf_insn) { \
153 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
154 .dst_reg = DST, \
155 .src_reg = 0, \
156 .off = 0, \
157 .imm = LEN })
158
159/* Byte Swap, bswap16/32/64 */
160
161#define BPF_BSWAP(DST, LEN) \
162 ((struct bpf_insn) { \
163 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \
164 .dst_reg = DST, \
165 .src_reg = 0, \
166 .off = 0, \
167 .imm = LEN })
168
169/* Short form of mov, dst_reg = src_reg */
170
171#define BPF_MOV64_REG(DST, SRC) \
172 ((struct bpf_insn) { \
173 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
174 .dst_reg = DST, \
175 .src_reg = SRC, \
176 .off = 0, \
177 .imm = 0 })
178
179#define BPF_MOV32_REG(DST, SRC) \
180 ((struct bpf_insn) { \
181 .code = BPF_ALU | BPF_MOV | BPF_X, \
182 .dst_reg = DST, \
183 .src_reg = SRC, \
184 .off = 0, \
185 .imm = 0 })
186
187/* Special (internal-only) form of mov, used to resolve per-CPU addrs:
188 * dst_reg = src_reg + <percpu_base_off>
189 * BPF_ADDR_PERCPU is used as a special insn->off value.
190 */
191#define BPF_ADDR_PERCPU (-1)
192
193#define BPF_MOV64_PERCPU_REG(DST, SRC) \
194 ((struct bpf_insn) { \
195 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
196 .dst_reg = DST, \
197 .src_reg = SRC, \
198 .off = BPF_ADDR_PERCPU, \
199 .imm = 0 })
200
201static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
202{
203 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
204}
205
206/* Short form of mov, dst_reg = imm32 */
207
208#define BPF_MOV64_IMM(DST, IMM) \
209 ((struct bpf_insn) { \
210 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
211 .dst_reg = DST, \
212 .src_reg = 0, \
213 .off = 0, \
214 .imm = IMM })
215
216#define BPF_MOV32_IMM(DST, IMM) \
217 ((struct bpf_insn) { \
218 .code = BPF_ALU | BPF_MOV | BPF_K, \
219 .dst_reg = DST, \
220 .src_reg = 0, \
221 .off = 0, \
222 .imm = IMM })
223
224/* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
225
226#define BPF_MOVSX64_REG(DST, SRC, OFF) \
227 ((struct bpf_insn) { \
228 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
229 .dst_reg = DST, \
230 .src_reg = SRC, \
231 .off = OFF, \
232 .imm = 0 })
233
234#define BPF_MOVSX32_REG(DST, SRC, OFF) \
235 ((struct bpf_insn) { \
236 .code = BPF_ALU | BPF_MOV | BPF_X, \
237 .dst_reg = DST, \
238 .src_reg = SRC, \
239 .off = OFF, \
240 .imm = 0 })
241
242/* Special form of mov32, used for doing explicit zero extension on dst. */
243#define BPF_ZEXT_REG(DST) \
244 ((struct bpf_insn) { \
245 .code = BPF_ALU | BPF_MOV | BPF_X, \
246 .dst_reg = DST, \
247 .src_reg = DST, \
248 .off = 0, \
249 .imm = 1 })
250
251static inline bool insn_is_zext(const struct bpf_insn *insn)
252{
253 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
254}
255
256/* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
257 * to pointers in user vma.
258 */
259static inline bool insn_is_cast_user(const struct bpf_insn *insn)
260{
261 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
262 insn->off == BPF_ADDR_SPACE_CAST &&
263 insn->imm == 1U << 16;
264}
265
266/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
267#define BPF_LD_IMM64(DST, IMM) \
268 BPF_LD_IMM64_RAW(DST, 0, IMM)
269
270#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
271 ((struct bpf_insn) { \
272 .code = BPF_LD | BPF_DW | BPF_IMM, \
273 .dst_reg = DST, \
274 .src_reg = SRC, \
275 .off = 0, \
276 .imm = (__u32) (IMM) }), \
277 ((struct bpf_insn) { \
278 .code = 0, /* zero is reserved opcode */ \
279 .dst_reg = 0, \
280 .src_reg = 0, \
281 .off = 0, \
282 .imm = ((__u64) (IMM)) >> 32 })
283
284/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
285#define BPF_LD_MAP_FD(DST, MAP_FD) \
286 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
287
288/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
289
290#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
291 ((struct bpf_insn) { \
292 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
293 .dst_reg = DST, \
294 .src_reg = SRC, \
295 .off = 0, \
296 .imm = IMM })
297
298#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
299 ((struct bpf_insn) { \
300 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
301 .dst_reg = DST, \
302 .src_reg = SRC, \
303 .off = 0, \
304 .imm = IMM })
305
306/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
307
308#define BPF_LD_ABS(SIZE, IMM) \
309 ((struct bpf_insn) { \
310 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
311 .dst_reg = 0, \
312 .src_reg = 0, \
313 .off = 0, \
314 .imm = IMM })
315
316/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
317
318#define BPF_LD_IND(SIZE, SRC, IMM) \
319 ((struct bpf_insn) { \
320 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
321 .dst_reg = 0, \
322 .src_reg = SRC, \
323 .off = 0, \
324 .imm = IMM })
325
326/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
327
328#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
329 ((struct bpf_insn) { \
330 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
331 .dst_reg = DST, \
332 .src_reg = SRC, \
333 .off = OFF, \
334 .imm = 0 })
335
336/* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
337
338#define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \
339 ((struct bpf_insn) { \
340 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \
341 .dst_reg = DST, \
342 .src_reg = SRC, \
343 .off = OFF, \
344 .imm = 0 })
345
346/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
347
348#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
349 ((struct bpf_insn) { \
350 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
351 .dst_reg = DST, \
352 .src_reg = SRC, \
353 .off = OFF, \
354 .imm = 0 })
355
356
357/*
358 * Atomic operations:
359 *
360 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg
361 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg
362 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg
363 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg
364 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
365 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
366 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
367 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
368 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg)
369 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
370 * BPF_LOAD_ACQ dst_reg = smp_load_acquire(src_reg + off16)
371 * BPF_STORE_REL smp_store_release(dst_reg + off16, src_reg)
372 */
373
374#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \
375 ((struct bpf_insn) { \
376 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
377 .dst_reg = DST, \
378 .src_reg = SRC, \
379 .off = OFF, \
380 .imm = OP })
381
382/* Legacy alias */
383#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
384
385/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
386
387#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
388 ((struct bpf_insn) { \
389 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
390 .dst_reg = DST, \
391 .src_reg = 0, \
392 .off = OFF, \
393 .imm = IMM })
394
395/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
396
397#define BPF_JMP_REG(OP, DST, SRC, OFF) \
398 ((struct bpf_insn) { \
399 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
400 .dst_reg = DST, \
401 .src_reg = SRC, \
402 .off = OFF, \
403 .imm = 0 })
404
405/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
406
407#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
408 ((struct bpf_insn) { \
409 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
410 .dst_reg = DST, \
411 .src_reg = 0, \
412 .off = OFF, \
413 .imm = IMM })
414
415/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
416
417#define BPF_JMP32_REG(OP, DST, SRC, OFF) \
418 ((struct bpf_insn) { \
419 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
420 .dst_reg = DST, \
421 .src_reg = SRC, \
422 .off = OFF, \
423 .imm = 0 })
424
425/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
426
427#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
428 ((struct bpf_insn) { \
429 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
430 .dst_reg = DST, \
431 .src_reg = 0, \
432 .off = OFF, \
433 .imm = IMM })
434
435/* Unconditional jumps, goto pc + off16 */
436
437#define BPF_JMP_A(OFF) \
438 ((struct bpf_insn) { \
439 .code = BPF_JMP | BPF_JA, \
440 .dst_reg = 0, \
441 .src_reg = 0, \
442 .off = OFF, \
443 .imm = 0 })
444
445/* Unconditional jumps, gotol pc + imm32 */
446
447#define BPF_JMP32_A(IMM) \
448 ((struct bpf_insn) { \
449 .code = BPF_JMP32 | BPF_JA, \
450 .dst_reg = 0, \
451 .src_reg = 0, \
452 .off = 0, \
453 .imm = IMM })
454
455/* Relative call */
456
457#define BPF_CALL_REL(TGT) \
458 ((struct bpf_insn) { \
459 .code = BPF_JMP | BPF_CALL, \
460 .dst_reg = 0, \
461 .src_reg = BPF_PSEUDO_CALL, \
462 .off = 0, \
463 .imm = TGT })
464
465/* Convert function address to BPF immediate */
466
467#define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
468
469#define BPF_EMIT_CALL(FUNC) \
470 ((struct bpf_insn) { \
471 .code = BPF_JMP | BPF_CALL, \
472 .dst_reg = 0, \
473 .src_reg = 0, \
474 .off = 0, \
475 .imm = BPF_CALL_IMM(FUNC) })
476
477/* Kfunc call */
478
479#define BPF_CALL_KFUNC(OFF, IMM) \
480 ((struct bpf_insn) { \
481 .code = BPF_JMP | BPF_CALL, \
482 .dst_reg = 0, \
483 .src_reg = BPF_PSEUDO_KFUNC_CALL, \
484 .off = OFF, \
485 .imm = IMM })
486
487/* Raw code statement block */
488
489#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
490 ((struct bpf_insn) { \
491 .code = CODE, \
492 .dst_reg = DST, \
493 .src_reg = SRC, \
494 .off = OFF, \
495 .imm = IMM })
496
497/* Program exit */
498
499#define BPF_EXIT_INSN() \
500 ((struct bpf_insn) { \
501 .code = BPF_JMP | BPF_EXIT, \
502 .dst_reg = 0, \
503 .src_reg = 0, \
504 .off = 0, \
505 .imm = 0 })
506
507/* Speculation barrier */
508
509#define BPF_ST_NOSPEC() \
510 ((struct bpf_insn) { \
511 .code = BPF_ST | BPF_NOSPEC, \
512 .dst_reg = 0, \
513 .src_reg = 0, \
514 .off = 0, \
515 .imm = 0 })
516
517/* Internal classic blocks for direct assignment */
518
519#define __BPF_STMT(CODE, K) \
520 ((struct sock_filter) BPF_STMT(CODE, K))
521
522#define __BPF_JUMP(CODE, K, JT, JF) \
523 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
524
525#define bytes_to_bpf_size(bytes) \
526({ \
527 int bpf_size = -EINVAL; \
528 \
529 if (bytes == sizeof(u8)) \
530 bpf_size = BPF_B; \
531 else if (bytes == sizeof(u16)) \
532 bpf_size = BPF_H; \
533 else if (bytes == sizeof(u32)) \
534 bpf_size = BPF_W; \
535 else if (bytes == sizeof(u64)) \
536 bpf_size = BPF_DW; \
537 \
538 bpf_size; \
539})
540
541#define bpf_size_to_bytes(bpf_size) \
542({ \
543 int bytes = -EINVAL; \
544 \
545 if (bpf_size == BPF_B) \
546 bytes = sizeof(u8); \
547 else if (bpf_size == BPF_H) \
548 bytes = sizeof(u16); \
549 else if (bpf_size == BPF_W) \
550 bytes = sizeof(u32); \
551 else if (bpf_size == BPF_DW) \
552 bytes = sizeof(u64); \
553 \
554 bytes; \
555})
556
557#define BPF_SIZEOF(type) \
558 ({ \
559 const int __size = bytes_to_bpf_size(sizeof(type)); \
560 BUILD_BUG_ON(__size < 0); \
561 __size; \
562 })
563
564#define BPF_FIELD_SIZEOF(type, field) \
565 ({ \
566 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
567 BUILD_BUG_ON(__size < 0); \
568 __size; \
569 })
570
571#define BPF_LDST_BYTES(insn) \
572 ({ \
573 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
574 WARN_ON(__size < 0); \
575 __size; \
576 })
577
578#define __BPF_MAP_0(m, v, ...) v
579#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
580#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
581#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
582#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
583#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
584
585#define __BPF_REG_0(...) __BPF_PAD(5)
586#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
587#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
588#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
589#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
590#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
591
592#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
593#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
594
595#define __BPF_CAST(t, a) \
596 (__force t) \
597 (__force \
598 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
599 (unsigned long)0, (t)0))) a
600#define __BPF_V void
601#define __BPF_N
602
603#define __BPF_DECL_ARGS(t, a) t a
604#define __BPF_DECL_REGS(t, a) u64 a
605
606#define __BPF_PAD(n) \
607 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
608 u64, __ur_3, u64, __ur_4, u64, __ur_5)
609
610#define BPF_CALL_x(x, attr, name, ...) \
611 static __always_inline \
612 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
613 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
614 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
615 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
616 { \
617 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
618 } \
619 static __always_inline \
620 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
621
622#define __NOATTR
623#define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
624#define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
625#define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
626#define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
627#define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
628#define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
629
630#define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__)
631
632#define bpf_ctx_range(TYPE, MEMBER) \
633 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
634#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
635 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
636#if BITS_PER_LONG == 64
637# define bpf_ctx_range_ptr(TYPE, MEMBER) \
638 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
639#else
640# define bpf_ctx_range_ptr(TYPE, MEMBER) \
641 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
642#endif /* BITS_PER_LONG == 64 */
643
644#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
645 ({ \
646 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \
647 *(PTR_SIZE) = (SIZE); \
648 offsetof(TYPE, MEMBER); \
649 })
650
651/* A struct sock_filter is architecture independent. */
652struct compat_sock_fprog {
653 u16 len;
654 compat_uptr_t filter; /* struct sock_filter * */
655};
656
657struct sock_fprog_kern {
658 u16 len;
659 struct sock_filter *filter;
660};
661
662/* Some arches need doubleword alignment for their instructions and/or data */
663#define BPF_IMAGE_ALIGNMENT 8
664
665struct bpf_binary_header {
666 u32 size;
667 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
668};
669
670struct bpf_prog_stats {
671 u64_stats_t cnt;
672 u64_stats_t nsecs;
673 u64_stats_t misses;
674 struct u64_stats_sync syncp;
675} __aligned(2 * sizeof(u64));
676
677struct bpf_timed_may_goto {
678 u64 count;
679 u64 timestamp;
680};
681
682struct sk_filter {
683 refcount_t refcnt;
684 struct rcu_head rcu;
685 struct bpf_prog *prog;
686};
687
688DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
689
690extern struct mutex nf_conn_btf_access_lock;
691extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
692 const struct bpf_reg_state *reg,
693 int off, int size);
694
695typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
696 const struct bpf_insn *insnsi,
697 unsigned int (*bpf_func)(const void *,
698 const struct bpf_insn *));
699
700static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
701 const void *ctx,
702 bpf_dispatcher_fn dfunc)
703{
704 u32 ret;
705
706 cant_migrate();
707 if (static_branch_unlikely(&bpf_stats_enabled_key)) {
708 struct bpf_prog_stats *stats;
709 u64 duration, start = sched_clock();
710 unsigned long flags;
711
712 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
713
714 duration = sched_clock() - start;
715 stats = this_cpu_ptr(prog->stats);
716 flags = u64_stats_update_begin_irqsave(syncp: &stats->syncp);
717 u64_stats_inc(p: &stats->cnt);
718 u64_stats_add(p: &stats->nsecs, val: duration);
719 u64_stats_update_end_irqrestore(syncp: &stats->syncp, flags);
720 } else {
721 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
722 }
723 return ret;
724}
725
726static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
727{
728 return __bpf_prog_run(prog, ctx, dfunc: bpf_dispatcher_nop_func);
729}
730
731/*
732 * Use in preemptible and therefore migratable context to make sure that
733 * the execution of the BPF program runs on one CPU.
734 *
735 * This uses migrate_disable/enable() explicitly to document that the
736 * invocation of a BPF program does not require reentrancy protection
737 * against a BPF program which is invoked from a preempting task.
738 */
739static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
740 const void *ctx)
741{
742 u32 ret;
743
744 migrate_disable();
745 ret = bpf_prog_run(prog, ctx);
746 migrate_enable();
747 return ret;
748}
749
750#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
751
752struct bpf_skb_data_end {
753 struct qdisc_skb_cb qdisc_cb;
754 void *data_meta;
755 void *data_end;
756};
757
758struct bpf_nh_params {
759 u32 nh_family;
760 union {
761 u32 ipv4_nh;
762 struct in6_addr ipv6_nh;
763 };
764};
765
766/* flags for bpf_redirect_info kern_flags */
767#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
768#define BPF_RI_F_RI_INIT BIT(1)
769#define BPF_RI_F_CPU_MAP_INIT BIT(2)
770#define BPF_RI_F_DEV_MAP_INIT BIT(3)
771#define BPF_RI_F_XSK_MAP_INIT BIT(4)
772
773struct bpf_redirect_info {
774 u64 tgt_index;
775 void *tgt_value;
776 struct bpf_map *map;
777 u32 flags;
778 u32 map_id;
779 enum bpf_map_type map_type;
780 struct bpf_nh_params nh;
781 u32 kern_flags;
782};
783
784struct bpf_net_context {
785 struct bpf_redirect_info ri;
786 struct list_head cpu_map_flush_list;
787 struct list_head dev_map_flush_list;
788 struct list_head xskmap_map_flush_list;
789};
790
791static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx)
792{
793 struct task_struct *tsk = current;
794
795 if (tsk->bpf_net_context != NULL)
796 return NULL;
797 bpf_net_ctx->ri.kern_flags = 0;
798
799 tsk->bpf_net_context = bpf_net_ctx;
800 return bpf_net_ctx;
801}
802
803static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx)
804{
805 if (bpf_net_ctx)
806 current->bpf_net_context = NULL;
807}
808
809static inline struct bpf_net_context *bpf_net_ctx_get(void)
810{
811 return current->bpf_net_context;
812}
813
814static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void)
815{
816 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
817
818 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) {
819 memset(s: &bpf_net_ctx->ri, c: 0, offsetof(struct bpf_net_context, ri.nh));
820 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT;
821 }
822
823 return &bpf_net_ctx->ri;
824}
825
826static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void)
827{
828 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
829
830 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) {
831 INIT_LIST_HEAD(list: &bpf_net_ctx->cpu_map_flush_list);
832 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT;
833 }
834
835 return &bpf_net_ctx->cpu_map_flush_list;
836}
837
838static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void)
839{
840 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
841
842 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) {
843 INIT_LIST_HEAD(list: &bpf_net_ctx->dev_map_flush_list);
844 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT;
845 }
846
847 return &bpf_net_ctx->dev_map_flush_list;
848}
849
850static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void)
851{
852 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
853
854 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) {
855 INIT_LIST_HEAD(list: &bpf_net_ctx->xskmap_map_flush_list);
856 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT;
857 }
858
859 return &bpf_net_ctx->xskmap_map_flush_list;
860}
861
862static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map,
863 struct list_head **lh_dev,
864 struct list_head **lh_xsk)
865{
866 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
867 u32 kern_flags = bpf_net_ctx->ri.kern_flags;
868 struct list_head *lh;
869
870 *lh_map = *lh_dev = *lh_xsk = NULL;
871
872 if (!IS_ENABLED(CONFIG_BPF_SYSCALL))
873 return;
874
875 lh = &bpf_net_ctx->dev_map_flush_list;
876 if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(head: lh))
877 *lh_dev = lh;
878
879 lh = &bpf_net_ctx->cpu_map_flush_list;
880 if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(head: lh))
881 *lh_map = lh;
882
883 lh = &bpf_net_ctx->xskmap_map_flush_list;
884 if (IS_ENABLED(CONFIG_XDP_SOCKETS) &&
885 kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(head: lh))
886 *lh_xsk = lh;
887}
888
889/* Compute the linear packet data range [data, data_end) which
890 * will be accessed by various program types (cls_bpf, act_bpf,
891 * lwt, ...). Subsystems allowing direct data access must (!)
892 * ensure that cb[] area can be written to when BPF program is
893 * invoked (otherwise cb[] save/restore is necessary).
894 */
895static inline void bpf_compute_data_pointers(struct sk_buff *skb)
896{
897 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
898
899 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
900 cb->data_meta = skb->data - skb_metadata_len(skb);
901 cb->data_end = skb->data + skb_headlen(skb);
902}
903
904/* Similar to bpf_compute_data_pointers(), except that save orginal
905 * data in cb->data and cb->meta_data for restore.
906 */
907static inline void bpf_compute_and_save_data_end(
908 struct sk_buff *skb, void **saved_data_end)
909{
910 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
911
912 *saved_data_end = cb->data_end;
913 cb->data_end = skb->data + skb_headlen(skb);
914}
915
916/* Restore data saved by bpf_compute_and_save_data_end(). */
917static inline void bpf_restore_data_end(
918 struct sk_buff *skb, void *saved_data_end)
919{
920 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
921
922 cb->data_end = saved_data_end;
923}
924
925static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
926{
927 /* eBPF programs may read/write skb->cb[] area to transfer meta
928 * data between tail calls. Since this also needs to work with
929 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
930 *
931 * In some socket filter cases, the cb unfortunately needs to be
932 * saved/restored so that protocol specific skb->cb[] data won't
933 * be lost. In any case, due to unpriviledged eBPF programs
934 * attached to sockets, we need to clear the bpf_skb_cb() area
935 * to not leak previous contents to user space.
936 */
937 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
938 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
939 sizeof_field(struct qdisc_skb_cb, data));
940
941 return qdisc_skb_cb(skb)->data;
942}
943
944/* Must be invoked with migration disabled */
945static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
946 const void *ctx)
947{
948 const struct sk_buff *skb = ctx;
949 u8 *cb_data = bpf_skb_cb(skb);
950 u8 cb_saved[BPF_SKB_CB_LEN];
951 u32 res;
952
953 if (unlikely(prog->cb_access)) {
954 memcpy(to: cb_saved, from: cb_data, len: sizeof(cb_saved));
955 memset(s: cb_data, c: 0, n: sizeof(cb_saved));
956 }
957
958 res = bpf_prog_run(prog, ctx: skb);
959
960 if (unlikely(prog->cb_access))
961 memcpy(to: cb_data, from: cb_saved, len: sizeof(cb_saved));
962
963 return res;
964}
965
966static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
967 struct sk_buff *skb)
968{
969 u32 res;
970
971 migrate_disable();
972 res = __bpf_prog_run_save_cb(prog, ctx: skb);
973 migrate_enable();
974 return res;
975}
976
977static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
978 struct sk_buff *skb)
979{
980 u8 *cb_data = bpf_skb_cb(skb);
981 u32 res;
982
983 if (unlikely(prog->cb_access))
984 memset(s: cb_data, c: 0, BPF_SKB_CB_LEN);
985
986 res = bpf_prog_run_pin_on_cpu(prog, ctx: skb);
987 return res;
988}
989
990DECLARE_BPF_DISPATCHER(xdp)
991
992DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
993
994u32 xdp_master_redirect(struct xdp_buff *xdp);
995
996void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
997
998static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
999{
1000 return prog->len * sizeof(struct bpf_insn);
1001}
1002
1003static inline unsigned int bpf_prog_size(unsigned int proglen)
1004{
1005 return max(sizeof(struct bpf_prog),
1006 offsetof(struct bpf_prog, insns[proglen]));
1007}
1008
1009static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
1010{
1011 /* When classic BPF programs have been loaded and the arch
1012 * does not have a classic BPF JIT (anymore), they have been
1013 * converted via bpf_migrate_filter() to eBPF and thus always
1014 * have an unspec program type.
1015 */
1016 return prog->type == BPF_PROG_TYPE_UNSPEC;
1017}
1018
1019static inline u32 bpf_ctx_off_adjust_machine(u32 size)
1020{
1021 const u32 size_machine = sizeof(unsigned long);
1022
1023 if (size > size_machine && size % size_machine == 0)
1024 size = size_machine;
1025
1026 return size;
1027}
1028
1029static inline bool
1030bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
1031{
1032 return size <= size_default && (size & (size - 1)) == 0;
1033}
1034
1035static inline u8
1036bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
1037{
1038 u8 access_off = off & (size_default - 1);
1039
1040#ifdef __LITTLE_ENDIAN
1041 return access_off;
1042#else
1043 return size_default - (access_off + size);
1044#endif
1045}
1046
1047#define bpf_ctx_wide_access_ok(off, size, type, field) \
1048 (size == sizeof(__u64) && \
1049 off >= offsetof(type, field) && \
1050 off + sizeof(__u64) <= offsetofend(type, field) && \
1051 off % sizeof(__u64) == 0)
1052
1053#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
1054
1055static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
1056{
1057#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1058 if (!fp->jited) {
1059 set_vm_flush_reset_perms(fp);
1060 return set_memory_ro(addr: (unsigned long)fp, numpages: fp->pages);
1061 }
1062#endif
1063 return 0;
1064}
1065
1066static inline int __must_check
1067bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
1068{
1069 set_vm_flush_reset_perms(hdr);
1070 return set_memory_rox(addr: (unsigned long)hdr, numpages: hdr->size >> PAGE_SHIFT);
1071}
1072
1073int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap,
1074 enum skb_drop_reason *reason);
1075
1076static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
1077{
1078 enum skb_drop_reason ignore_reason;
1079
1080 return sk_filter_trim_cap(sk, skb, cap: 1, reason: &ignore_reason);
1081}
1082
1083static inline int sk_filter_reason(struct sock *sk, struct sk_buff *skb,
1084 enum skb_drop_reason *reason)
1085{
1086 return sk_filter_trim_cap(sk, skb, cap: 1, reason);
1087}
1088
1089struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
1090void bpf_prog_free(struct bpf_prog *fp);
1091
1092bool bpf_opcode_in_insntable(u8 code);
1093
1094void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
1095 const u32 *insn_to_jit_off);
1096int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
1097void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
1098
1099struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
1100struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
1101struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
1102 gfp_t gfp_extra_flags);
1103void __bpf_prog_free(struct bpf_prog *fp);
1104
1105static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
1106{
1107 __bpf_prog_free(fp);
1108}
1109
1110typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
1111 unsigned int flen);
1112
1113int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
1114int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1115 bpf_aux_classic_check_t trans, bool save_orig);
1116void bpf_prog_destroy(struct bpf_prog *fp);
1117
1118int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1119int sk_attach_bpf(u32 ufd, struct sock *sk);
1120int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1121int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
1122void sk_reuseport_prog_free(struct bpf_prog *prog);
1123int sk_detach_filter(struct sock *sk);
1124int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
1125
1126bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
1127void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
1128
1129u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
1130#define __bpf_call_base_args \
1131 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
1132 (void *)__bpf_call_base)
1133
1134struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
1135void bpf_jit_compile(struct bpf_prog *prog);
1136bool bpf_jit_needs_zext(void);
1137bool bpf_jit_inlines_helper_call(s32 imm);
1138bool bpf_jit_supports_subprog_tailcalls(void);
1139bool bpf_jit_supports_percpu_insn(void);
1140bool bpf_jit_supports_kfunc_call(void);
1141bool bpf_jit_supports_far_kfunc_call(void);
1142bool bpf_jit_supports_exceptions(void);
1143bool bpf_jit_supports_ptr_xchg(void);
1144bool bpf_jit_supports_arena(void);
1145bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
1146bool bpf_jit_supports_private_stack(void);
1147bool bpf_jit_supports_timed_may_goto(void);
1148u64 bpf_arch_uaddress_limit(void);
1149void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
1150u64 arch_bpf_timed_may_goto(void);
1151u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *);
1152bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id);
1153
1154static inline bool bpf_dump_raw_ok(const struct cred *cred)
1155{
1156 /* Reconstruction of call-sites is dependent on kallsyms,
1157 * thus make dump the same restriction.
1158 */
1159 return kallsyms_show_value(cred);
1160}
1161
1162struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
1163 const struct bpf_insn *patch, u32 len);
1164int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
1165
1166static inline bool xdp_return_frame_no_direct(void)
1167{
1168 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1169
1170 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1171}
1172
1173static inline void xdp_set_return_frame_no_direct(void)
1174{
1175 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1176
1177 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1178}
1179
1180static inline void xdp_clear_return_frame_no_direct(void)
1181{
1182 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1183
1184 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1185}
1186
1187static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1188 unsigned int pktlen)
1189{
1190 unsigned int len;
1191
1192 if (unlikely(!(fwd->flags & IFF_UP)))
1193 return -ENETDOWN;
1194
1195 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1196 if (pktlen > len)
1197 return -EMSGSIZE;
1198
1199 return 0;
1200}
1201
1202/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1203 * same cpu context. Further for best results no more than a single map
1204 * for the do_redirect/do_flush pair should be used. This limitation is
1205 * because we only track one map and force a flush when the map changes.
1206 * This does not appear to be a real limitation for existing software.
1207 */
1208int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1209 struct xdp_buff *xdp, const struct bpf_prog *prog);
1210int xdp_do_redirect(struct net_device *dev,
1211 struct xdp_buff *xdp,
1212 const struct bpf_prog *prog);
1213int xdp_do_redirect_frame(struct net_device *dev,
1214 struct xdp_buff *xdp,
1215 struct xdp_frame *xdpf,
1216 const struct bpf_prog *prog);
1217void xdp_do_flush(void);
1218
1219void bpf_warn_invalid_xdp_action(const struct net_device *dev,
1220 const struct bpf_prog *prog, u32 act);
1221
1222#ifdef CONFIG_INET
1223struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1224 struct bpf_prog *prog, struct sk_buff *skb,
1225 struct sock *migrating_sk,
1226 u32 hash);
1227#else
1228static inline struct sock *
1229bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1230 struct bpf_prog *prog, struct sk_buff *skb,
1231 struct sock *migrating_sk,
1232 u32 hash)
1233{
1234 return NULL;
1235}
1236#endif
1237
1238#ifdef CONFIG_BPF_JIT
1239extern int bpf_jit_enable;
1240extern int bpf_jit_harden;
1241extern int bpf_jit_kallsyms;
1242extern long bpf_jit_limit;
1243extern long bpf_jit_limit_max;
1244
1245typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1246
1247void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1248
1249struct bpf_binary_header *
1250bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1251 unsigned int alignment,
1252 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1253void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1254u64 bpf_jit_alloc_exec_limit(void);
1255void *bpf_jit_alloc_exec(unsigned long size);
1256void bpf_jit_free_exec(void *addr);
1257void bpf_jit_free(struct bpf_prog *fp);
1258struct bpf_binary_header *
1259bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1260
1261void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1262void bpf_prog_pack_free(void *ptr, u32 size);
1263
1264static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1265{
1266 return list_empty(&fp->aux->ksym.lnode) ||
1267 fp->aux->ksym.lnode.prev == LIST_POISON2;
1268}
1269
1270struct bpf_binary_header *
1271bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1272 unsigned int alignment,
1273 struct bpf_binary_header **rw_hdr,
1274 u8 **rw_image,
1275 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1276int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1277 struct bpf_binary_header *rw_header);
1278void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1279 struct bpf_binary_header *rw_header);
1280
1281int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1282 struct bpf_jit_poke_descriptor *poke);
1283
1284int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1285 const struct bpf_insn *insn, bool extra_pass,
1286 u64 *func_addr, bool *func_addr_fixed);
1287
1288const char *bpf_jit_get_prog_name(struct bpf_prog *prog);
1289
1290struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1291void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1292
1293static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1294 u32 pass, void *image)
1295{
1296 pr_err("flen=%u proglen=%u pass=%u image=%p from=%s pid=%d\n", flen,
1297 proglen, pass, image, current->comm, task_pid_nr(current));
1298
1299 if (image)
1300 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1301 16, 1, image, proglen, false);
1302}
1303
1304static inline bool bpf_jit_is_ebpf(void)
1305{
1306# ifdef CONFIG_HAVE_EBPF_JIT
1307 return true;
1308# else
1309 return false;
1310# endif
1311}
1312
1313static inline bool ebpf_jit_enabled(void)
1314{
1315 return bpf_jit_enable && bpf_jit_is_ebpf();
1316}
1317
1318static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1319{
1320 return fp->jited && bpf_jit_is_ebpf();
1321}
1322
1323static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1324{
1325 /* These are the prerequisites, should someone ever have the
1326 * idea to call blinding outside of them, we make sure to
1327 * bail out.
1328 */
1329 if (!bpf_jit_is_ebpf())
1330 return false;
1331 if (!prog->jit_requested)
1332 return false;
1333 if (!bpf_jit_harden)
1334 return false;
1335 if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1336 return false;
1337
1338 return true;
1339}
1340
1341static inline bool bpf_jit_kallsyms_enabled(void)
1342{
1343 /* There are a couple of corner cases where kallsyms should
1344 * not be enabled f.e. on hardening.
1345 */
1346 if (bpf_jit_harden)
1347 return false;
1348 if (!bpf_jit_kallsyms)
1349 return false;
1350 if (bpf_jit_kallsyms == 1)
1351 return true;
1352
1353 return false;
1354}
1355
1356int __bpf_address_lookup(unsigned long addr, unsigned long *size,
1357 unsigned long *off, char *sym);
1358bool is_bpf_text_address(unsigned long addr);
1359int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1360 char *sym);
1361struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1362
1363static inline int
1364bpf_address_lookup(unsigned long addr, unsigned long *size,
1365 unsigned long *off, char **modname, char *sym)
1366{
1367 int ret = __bpf_address_lookup(addr, size, off, sym);
1368
1369 if (ret && modname)
1370 *modname = NULL;
1371 return ret;
1372}
1373
1374void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1375void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1376
1377#else /* CONFIG_BPF_JIT */
1378
1379static inline bool ebpf_jit_enabled(void)
1380{
1381 return false;
1382}
1383
1384static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1385{
1386 return false;
1387}
1388
1389static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1390{
1391 return false;
1392}
1393
1394static inline int
1395bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1396 struct bpf_jit_poke_descriptor *poke)
1397{
1398 return -ENOTSUPP;
1399}
1400
1401static inline void bpf_jit_free(struct bpf_prog *fp)
1402{
1403 bpf_prog_unlock_free(fp);
1404}
1405
1406static inline bool bpf_jit_kallsyms_enabled(void)
1407{
1408 return false;
1409}
1410
1411static inline int
1412__bpf_address_lookup(unsigned long addr, unsigned long *size,
1413 unsigned long *off, char *sym)
1414{
1415 return 0;
1416}
1417
1418static inline bool is_bpf_text_address(unsigned long addr)
1419{
1420 return false;
1421}
1422
1423static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1424 char *type, char *sym)
1425{
1426 return -ERANGE;
1427}
1428
1429static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1430{
1431 return NULL;
1432}
1433
1434static inline int
1435bpf_address_lookup(unsigned long addr, unsigned long *size,
1436 unsigned long *off, char **modname, char *sym)
1437{
1438 return 0;
1439}
1440
1441static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1442{
1443}
1444
1445static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1446{
1447}
1448
1449#endif /* CONFIG_BPF_JIT */
1450
1451void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1452
1453#define BPF_ANC BIT(15)
1454
1455static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1456{
1457 switch (first->code) {
1458 case BPF_RET | BPF_K:
1459 case BPF_LD | BPF_W | BPF_LEN:
1460 return false;
1461
1462 case BPF_LD | BPF_W | BPF_ABS:
1463 case BPF_LD | BPF_H | BPF_ABS:
1464 case BPF_LD | BPF_B | BPF_ABS:
1465 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1466 return true;
1467 return false;
1468
1469 default:
1470 return true;
1471 }
1472}
1473
1474static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1475{
1476 BUG_ON(ftest->code & BPF_ANC);
1477
1478 switch (ftest->code) {
1479 case BPF_LD | BPF_W | BPF_ABS:
1480 case BPF_LD | BPF_H | BPF_ABS:
1481 case BPF_LD | BPF_B | BPF_ABS:
1482#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1483 return BPF_ANC | SKF_AD_##CODE
1484 switch (ftest->k) {
1485 BPF_ANCILLARY(PROTOCOL);
1486 BPF_ANCILLARY(PKTTYPE);
1487 BPF_ANCILLARY(IFINDEX);
1488 BPF_ANCILLARY(NLATTR);
1489 BPF_ANCILLARY(NLATTR_NEST);
1490 BPF_ANCILLARY(MARK);
1491 BPF_ANCILLARY(QUEUE);
1492 BPF_ANCILLARY(HATYPE);
1493 BPF_ANCILLARY(RXHASH);
1494 BPF_ANCILLARY(CPU);
1495 BPF_ANCILLARY(ALU_XOR_X);
1496 BPF_ANCILLARY(VLAN_TAG);
1497 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1498 BPF_ANCILLARY(PAY_OFFSET);
1499 BPF_ANCILLARY(RANDOM);
1500 BPF_ANCILLARY(VLAN_TPID);
1501 }
1502 fallthrough;
1503 default:
1504 return ftest->code;
1505 }
1506}
1507
1508void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1509 int k, unsigned int size);
1510
1511static inline int bpf_tell_extensions(void)
1512{
1513 return SKF_AD_MAX;
1514}
1515
1516struct bpf_sock_addr_kern {
1517 struct sock *sk;
1518 struct sockaddr *uaddr;
1519 /* Temporary "register" to make indirect stores to nested structures
1520 * defined above. We need three registers to make such a store, but
1521 * only two (src and dst) are available at convert_ctx_access time
1522 */
1523 u64 tmp_reg;
1524 void *t_ctx; /* Attach type specific context. */
1525 u32 uaddrlen;
1526};
1527
1528struct bpf_sock_ops_kern {
1529 struct sock *sk;
1530 union {
1531 u32 args[4];
1532 u32 reply;
1533 u32 replylong[4];
1534 };
1535 struct sk_buff *syn_skb;
1536 struct sk_buff *skb;
1537 void *skb_data_end;
1538 u8 op;
1539 u8 is_fullsock;
1540 u8 is_locked_tcp_sock;
1541 u8 remaining_opt_len;
1542 u64 temp; /* temp and everything after is not
1543 * initialized to 0 before calling
1544 * the BPF program. New fields that
1545 * should be initialized to 0 should
1546 * be inserted before temp.
1547 * temp is scratch storage used by
1548 * sock_ops_convert_ctx_access
1549 * as temporary storage of a register.
1550 */
1551};
1552
1553struct bpf_sysctl_kern {
1554 struct ctl_table_header *head;
1555 const struct ctl_table *table;
1556 void *cur_val;
1557 size_t cur_len;
1558 void *new_val;
1559 size_t new_len;
1560 int new_updated;
1561 int write;
1562 loff_t *ppos;
1563 /* Temporary "register" for indirect stores to ppos. */
1564 u64 tmp_reg;
1565};
1566
1567#define BPF_SOCKOPT_KERN_BUF_SIZE 32
1568struct bpf_sockopt_buf {
1569 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE];
1570};
1571
1572struct bpf_sockopt_kern {
1573 struct sock *sk;
1574 u8 *optval;
1575 u8 *optval_end;
1576 s32 level;
1577 s32 optname;
1578 s32 optlen;
1579 /* for retval in struct bpf_cg_run_ctx */
1580 struct task_struct *current_task;
1581 /* Temporary "register" for indirect stores to ppos. */
1582 u64 tmp_reg;
1583};
1584
1585int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1586
1587struct bpf_sk_lookup_kern {
1588 u16 family;
1589 u16 protocol;
1590 __be16 sport;
1591 u16 dport;
1592 struct {
1593 __be32 saddr;
1594 __be32 daddr;
1595 } v4;
1596 struct {
1597 const struct in6_addr *saddr;
1598 const struct in6_addr *daddr;
1599 } v6;
1600 struct sock *selected_sk;
1601 u32 ingress_ifindex;
1602 bool no_reuseport;
1603};
1604
1605extern struct static_key_false bpf_sk_lookup_enabled;
1606
1607/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1608 *
1609 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1610 * SK_DROP. Their meaning is as follows:
1611 *
1612 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1613 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1614 * SK_DROP : terminate lookup with -ECONNREFUSED
1615 *
1616 * This macro aggregates return values and selected sockets from
1617 * multiple BPF programs according to following rules in order:
1618 *
1619 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1620 * macro result is SK_PASS and last ctx.selected_sk is used.
1621 * 2. If any program returned SK_DROP return value,
1622 * macro result is SK_DROP.
1623 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1624 *
1625 * Caller must ensure that the prog array is non-NULL, and that the
1626 * array as well as the programs it contains remain valid.
1627 */
1628#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \
1629 ({ \
1630 struct bpf_sk_lookup_kern *_ctx = &(ctx); \
1631 struct bpf_prog_array_item *_item; \
1632 struct sock *_selected_sk = NULL; \
1633 bool _no_reuseport = false; \
1634 struct bpf_prog *_prog; \
1635 bool _all_pass = true; \
1636 u32 _ret; \
1637 \
1638 migrate_disable(); \
1639 _item = &(array)->items[0]; \
1640 while ((_prog = READ_ONCE(_item->prog))) { \
1641 /* restore most recent selection */ \
1642 _ctx->selected_sk = _selected_sk; \
1643 _ctx->no_reuseport = _no_reuseport; \
1644 \
1645 _ret = func(_prog, _ctx); \
1646 if (_ret == SK_PASS && _ctx->selected_sk) { \
1647 /* remember last non-NULL socket */ \
1648 _selected_sk = _ctx->selected_sk; \
1649 _no_reuseport = _ctx->no_reuseport; \
1650 } else if (_ret == SK_DROP && _all_pass) { \
1651 _all_pass = false; \
1652 } \
1653 _item++; \
1654 } \
1655 _ctx->selected_sk = _selected_sk; \
1656 _ctx->no_reuseport = _no_reuseport; \
1657 migrate_enable(); \
1658 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \
1659 })
1660
1661static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol,
1662 const __be32 saddr, const __be16 sport,
1663 const __be32 daddr, const u16 dport,
1664 const int ifindex, struct sock **psk)
1665{
1666 struct bpf_prog_array *run_array;
1667 struct sock *selected_sk = NULL;
1668 bool no_reuseport = false;
1669
1670 rcu_read_lock();
1671 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1672 if (run_array) {
1673 struct bpf_sk_lookup_kern ctx = {
1674 .family = AF_INET,
1675 .protocol = protocol,
1676 .v4.saddr = saddr,
1677 .v4.daddr = daddr,
1678 .sport = sport,
1679 .dport = dport,
1680 .ingress_ifindex = ifindex,
1681 };
1682 u32 act;
1683
1684 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1685 if (act == SK_PASS) {
1686 selected_sk = ctx.selected_sk;
1687 no_reuseport = ctx.no_reuseport;
1688 } else {
1689 selected_sk = ERR_PTR(error: -ECONNREFUSED);
1690 }
1691 }
1692 rcu_read_unlock();
1693 *psk = selected_sk;
1694 return no_reuseport;
1695}
1696
1697#if IS_ENABLED(CONFIG_IPV6)
1698static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol,
1699 const struct in6_addr *saddr,
1700 const __be16 sport,
1701 const struct in6_addr *daddr,
1702 const u16 dport,
1703 const int ifindex, struct sock **psk)
1704{
1705 struct bpf_prog_array *run_array;
1706 struct sock *selected_sk = NULL;
1707 bool no_reuseport = false;
1708
1709 rcu_read_lock();
1710 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1711 if (run_array) {
1712 struct bpf_sk_lookup_kern ctx = {
1713 .family = AF_INET6,
1714 .protocol = protocol,
1715 .v6.saddr = saddr,
1716 .v6.daddr = daddr,
1717 .sport = sport,
1718 .dport = dport,
1719 .ingress_ifindex = ifindex,
1720 };
1721 u32 act;
1722
1723 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1724 if (act == SK_PASS) {
1725 selected_sk = ctx.selected_sk;
1726 no_reuseport = ctx.no_reuseport;
1727 } else {
1728 selected_sk = ERR_PTR(error: -ECONNREFUSED);
1729 }
1730 }
1731 rcu_read_unlock();
1732 *psk = selected_sk;
1733 return no_reuseport;
1734}
1735#endif /* IS_ENABLED(CONFIG_IPV6) */
1736
1737static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1738 u64 flags, const u64 flag_mask,
1739 void *lookup_elem(struct bpf_map *map, u32 key))
1740{
1741 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1742 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1743
1744 /* Lower bits of the flags are used as return code on lookup failure */
1745 if (unlikely(flags & ~(action_mask | flag_mask)))
1746 return XDP_ABORTED;
1747
1748 ri->tgt_value = lookup_elem(map, index);
1749 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1750 /* If the lookup fails we want to clear out the state in the
1751 * redirect_info struct completely, so that if an eBPF program
1752 * performs multiple lookups, the last one always takes
1753 * precedence.
1754 */
1755 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1756 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1757 return flags & action_mask;
1758 }
1759
1760 ri->tgt_index = index;
1761 ri->map_id = map->id;
1762 ri->map_type = map->map_type;
1763
1764 if (flags & BPF_F_BROADCAST) {
1765 WRITE_ONCE(ri->map, map);
1766 ri->flags = flags;
1767 } else {
1768 WRITE_ONCE(ri->map, NULL);
1769 ri->flags = 0;
1770 }
1771
1772 return XDP_REDIRECT;
1773}
1774
1775#ifdef CONFIG_NET
1776int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1777int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1778 u32 len, u64 flags);
1779int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1780int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1781void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1782void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1783 void *buf, unsigned long len, bool flush);
1784void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset);
1785#else /* CONFIG_NET */
1786static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1787 void *to, u32 len)
1788{
1789 return -EOPNOTSUPP;
1790}
1791
1792static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1793 const void *from, u32 len, u64 flags)
1794{
1795 return -EOPNOTSUPP;
1796}
1797
1798static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1799 void *buf, u32 len)
1800{
1801 return -EOPNOTSUPP;
1802}
1803
1804static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1805 void *buf, u32 len)
1806{
1807 return -EOPNOTSUPP;
1808}
1809
1810static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1811{
1812 return NULL;
1813}
1814
1815static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1816 unsigned long len, bool flush)
1817{
1818}
1819
1820static inline void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset)
1821{
1822 return ERR_PTR(-EOPNOTSUPP);
1823}
1824#endif /* CONFIG_NET */
1825
1826#endif /* __LINUX_FILTER_H__ */
1827