| 1 | /* SPDX-License-Identifier: GPL-2.0 */ | 
|---|
| 2 | #ifndef _LINUX_HELPER_MACROS_H_ | 
|---|
| 3 | #define _LINUX_HELPER_MACROS_H_ | 
|---|
| 4 |  | 
|---|
| 5 | #include <linux/compiler_attributes.h> | 
|---|
| 6 | #include <linux/math.h> | 
|---|
| 7 | #include <linux/typecheck.h> | 
|---|
| 8 | #include <linux/stddef.h> | 
|---|
| 9 |  | 
|---|
| 10 | /** | 
|---|
| 11 | * for_each_if - helper for handling conditionals in various for_each macros | 
|---|
| 12 | * @condition: The condition to check | 
|---|
| 13 | * | 
|---|
| 14 | * Typical use:: | 
|---|
| 15 | * | 
|---|
| 16 | *	#define for_each_foo_bar(x, y) \' | 
|---|
| 17 | *		list_for_each_entry(x, y->list, head) \' | 
|---|
| 18 | *			for_each_if(x->something == SOMETHING) | 
|---|
| 19 | * | 
|---|
| 20 | * The for_each_if() macro makes the use of for_each_foo_bar() less error | 
|---|
| 21 | * prone. | 
|---|
| 22 | */ | 
|---|
| 23 | #define for_each_if(condition) if (!(condition)) {} else | 
|---|
| 24 |  | 
|---|
| 25 | /** | 
|---|
| 26 | * find_closest - locate the closest element in a sorted array | 
|---|
| 27 | * @x: The reference value. | 
|---|
| 28 | * @a: The array in which to look for the closest element. Must be sorted | 
|---|
| 29 | *  in ascending order. | 
|---|
| 30 | * @as: Size of 'a'. | 
|---|
| 31 | * | 
|---|
| 32 | * Returns the index of the element closest to 'x'. | 
|---|
| 33 | * Note: If using an array of negative numbers (or mixed positive numbers), | 
|---|
| 34 | *       then be sure that 'x' is of a signed-type to get good results. | 
|---|
| 35 | */ | 
|---|
| 36 | #define find_closest(x, a, as)						\ | 
|---|
| 37 | ({									\ | 
|---|
| 38 | typeof(as) __fc_i, __fc_as = (as) - 1;				\ | 
|---|
| 39 | long __fc_mid_x, __fc_x = (x);					\ | 
|---|
| 40 | long __fc_left, __fc_right;					\ | 
|---|
| 41 | typeof(*a) const *__fc_a = (a);					\ | 
|---|
| 42 | for (__fc_i = 0; __fc_i < __fc_as; __fc_i++) {			\ | 
|---|
| 43 | __fc_mid_x = (__fc_a[__fc_i] + __fc_a[__fc_i + 1]) / 2;	\ | 
|---|
| 44 | if (__fc_x <= __fc_mid_x) {				\ | 
|---|
| 45 | __fc_left = __fc_x - __fc_a[__fc_i];		\ | 
|---|
| 46 | __fc_right = __fc_a[__fc_i + 1] - __fc_x;	\ | 
|---|
| 47 | if (__fc_right < __fc_left)			\ | 
|---|
| 48 | __fc_i++;				\ | 
|---|
| 49 | break;						\ | 
|---|
| 50 | }							\ | 
|---|
| 51 | }								\ | 
|---|
| 52 | (__fc_i);							\ | 
|---|
| 53 | }) | 
|---|
| 54 |  | 
|---|
| 55 | /** | 
|---|
| 56 | * find_closest_descending - locate the closest element in a sorted array | 
|---|
| 57 | * @x: The reference value. | 
|---|
| 58 | * @a: The array in which to look for the closest element. Must be sorted | 
|---|
| 59 | *  in descending order. | 
|---|
| 60 | * @as: Size of 'a'. | 
|---|
| 61 | * | 
|---|
| 62 | * Similar to find_closest() but 'a' is expected to be sorted in descending | 
|---|
| 63 | * order. The iteration is done in reverse order, so that the comparison | 
|---|
| 64 | * of '__fc_right' & '__fc_left' also works for unsigned numbers. | 
|---|
| 65 | */ | 
|---|
| 66 | #define find_closest_descending(x, a, as)				\ | 
|---|
| 67 | ({									\ | 
|---|
| 68 | typeof(as) __fc_i, __fc_as = (as) - 1;				\ | 
|---|
| 69 | long __fc_mid_x, __fc_x = (x);					\ | 
|---|
| 70 | long __fc_left, __fc_right;					\ | 
|---|
| 71 | typeof(*a) const *__fc_a = (a);					\ | 
|---|
| 72 | for (__fc_i = __fc_as; __fc_i >= 1; __fc_i--) {			\ | 
|---|
| 73 | __fc_mid_x = (__fc_a[__fc_i] + __fc_a[__fc_i - 1]) / 2;	\ | 
|---|
| 74 | if (__fc_x <= __fc_mid_x) {				\ | 
|---|
| 75 | __fc_left = __fc_x - __fc_a[__fc_i];		\ | 
|---|
| 76 | __fc_right = __fc_a[__fc_i - 1] - __fc_x;	\ | 
|---|
| 77 | if (__fc_right < __fc_left)			\ | 
|---|
| 78 | __fc_i--;				\ | 
|---|
| 79 | break;						\ | 
|---|
| 80 | }							\ | 
|---|
| 81 | }								\ | 
|---|
| 82 | (__fc_i);							\ | 
|---|
| 83 | }) | 
|---|
| 84 |  | 
|---|
| 85 | /** | 
|---|
| 86 | * PTR_IF - evaluate to @ptr if @cond is true, or to NULL otherwise. | 
|---|
| 87 | * @cond: A conditional, usually in a form of IS_ENABLED(CONFIG_FOO) | 
|---|
| 88 | * @ptr: A pointer to assign if @cond is true. | 
|---|
| 89 | * | 
|---|
| 90 | * PTR_IF(IS_ENABLED(CONFIG_FOO), ptr) evaluates to @ptr if CONFIG_FOO is set | 
|---|
| 91 | * to 'y' or 'm', or to NULL otherwise. The @ptr argument must be a pointer. | 
|---|
| 92 | * | 
|---|
| 93 | * The macro can be very useful to help compiler dropping dead code. | 
|---|
| 94 | * | 
|---|
| 95 | * For instance, consider the following:: | 
|---|
| 96 | * | 
|---|
| 97 | *     #ifdef CONFIG_FOO_SUSPEND | 
|---|
| 98 | *     static int foo_suspend(struct device *dev) | 
|---|
| 99 | *     { | 
|---|
| 100 | *        ... | 
|---|
| 101 | *     } | 
|---|
| 102 | *     #endif | 
|---|
| 103 | * | 
|---|
| 104 | *     static struct pm_ops foo_ops = { | 
|---|
| 105 | *     #ifdef CONFIG_FOO_SUSPEND | 
|---|
| 106 | *         .suspend = foo_suspend, | 
|---|
| 107 | *     #endif | 
|---|
| 108 | *     }; | 
|---|
| 109 | * | 
|---|
| 110 | * While this works, the foo_suspend() macro is compiled conditionally, | 
|---|
| 111 | * only when CONFIG_FOO_SUSPEND is set. This is problematic, as there could | 
|---|
| 112 | * be a build bug in this function, we wouldn't have a way to know unless | 
|---|
| 113 | * the configuration option is set. | 
|---|
| 114 | * | 
|---|
| 115 | * An alternative is to declare foo_suspend() always, but mark it | 
|---|
| 116 | * as __maybe_unused. This works, but the __maybe_unused attribute | 
|---|
| 117 | * is required to instruct the compiler that the function may not | 
|---|
| 118 | * be referenced anywhere, and is safe to remove without making | 
|---|
| 119 | * a fuss about it. This makes the programmer responsible for tagging | 
|---|
| 120 | * the functions that can be garbage-collected. | 
|---|
| 121 | * | 
|---|
| 122 | * With the macro it is possible to write the following: | 
|---|
| 123 | * | 
|---|
| 124 | *     static int foo_suspend(struct device *dev) | 
|---|
| 125 | *     { | 
|---|
| 126 | *        ... | 
|---|
| 127 | *     } | 
|---|
| 128 | * | 
|---|
| 129 | *     static struct pm_ops foo_ops = { | 
|---|
| 130 | *         .suspend = PTR_IF(IS_ENABLED(CONFIG_FOO_SUSPEND), foo_suspend), | 
|---|
| 131 | *     }; | 
|---|
| 132 | * | 
|---|
| 133 | * The foo_suspend() function will now be automatically dropped by the | 
|---|
| 134 | * compiler, and it does not require any specific attribute. | 
|---|
| 135 | */ | 
|---|
| 136 | #define PTR_IF(cond, ptr)	((cond) ? (ptr) : NULL) | 
|---|
| 137 |  | 
|---|
| 138 | /** | 
|---|
| 139 | * to_user_ptr - cast a pointer passed as u64 from user space to void __user * | 
|---|
| 140 | * @x: The u64 value from user space, usually via IOCTL | 
|---|
| 141 | * | 
|---|
| 142 | * to_user_ptr() simply casts a pointer passed as u64 from user space to void | 
|---|
| 143 | * __user * correctly. Using this lets us get rid of all the tiresome casts. | 
|---|
| 144 | */ | 
|---|
| 145 | #define u64_to_user_ptr(x)		\ | 
|---|
| 146 | ({					\ | 
|---|
| 147 | typecheck(u64, (x));		\ | 
|---|
| 148 | (void __user *)(uintptr_t)(x);	\ | 
|---|
| 149 | }) | 
|---|
| 150 |  | 
|---|
| 151 | /** | 
|---|
| 152 | * is_insidevar - check if the @ptr points inside the @var memory range. | 
|---|
| 153 | * @ptr:	the pointer to a memory address. | 
|---|
| 154 | * @var:	the variable which address and size identify the memory range. | 
|---|
| 155 | * | 
|---|
| 156 | * Evaluates to true if the address in @ptr lies within the memory | 
|---|
| 157 | * range allocated to @var. | 
|---|
| 158 | */ | 
|---|
| 159 | #define is_insidevar(ptr, var)						\ | 
|---|
| 160 | ((uintptr_t)(ptr) >= (uintptr_t)(var) &&			\ | 
|---|
| 161 | (uintptr_t)(ptr) <  (uintptr_t)(var) + sizeof(var)) | 
|---|
| 162 |  | 
|---|
| 163 | #endif | 
|---|
| 164 |  | 
|---|