| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | *  Kernel timekeeping code and accessor functions. Based on code from | 
|---|
| 4 | *  timer.c, moved in commit 8524070b7982. | 
|---|
| 5 | */ | 
|---|
| 6 | #include <linux/timekeeper_internal.h> | 
|---|
| 7 | #include <linux/module.h> | 
|---|
| 8 | #include <linux/interrupt.h> | 
|---|
| 9 | #include <linux/kobject.h> | 
|---|
| 10 | #include <linux/percpu.h> | 
|---|
| 11 | #include <linux/init.h> | 
|---|
| 12 | #include <linux/mm.h> | 
|---|
| 13 | #include <linux/nmi.h> | 
|---|
| 14 | #include <linux/sched.h> | 
|---|
| 15 | #include <linux/sched/loadavg.h> | 
|---|
| 16 | #include <linux/sched/clock.h> | 
|---|
| 17 | #include <linux/syscore_ops.h> | 
|---|
| 18 | #include <linux/clocksource.h> | 
|---|
| 19 | #include <linux/jiffies.h> | 
|---|
| 20 | #include <linux/time.h> | 
|---|
| 21 | #include <linux/timex.h> | 
|---|
| 22 | #include <linux/tick.h> | 
|---|
| 23 | #include <linux/stop_machine.h> | 
|---|
| 24 | #include <linux/pvclock_gtod.h> | 
|---|
| 25 | #include <linux/compiler.h> | 
|---|
| 26 | #include <linux/audit.h> | 
|---|
| 27 | #include <linux/random.h> | 
|---|
| 28 |  | 
|---|
| 29 | #include <vdso/auxclock.h> | 
|---|
| 30 |  | 
|---|
| 31 | #include "tick-internal.h" | 
|---|
| 32 | #include "ntp_internal.h" | 
|---|
| 33 | #include "timekeeping_internal.h" | 
|---|
| 34 |  | 
|---|
| 35 | #define TK_CLEAR_NTP		(1 << 0) | 
|---|
| 36 | #define TK_CLOCK_WAS_SET	(1 << 1) | 
|---|
| 37 |  | 
|---|
| 38 | #define TK_UPDATE_ALL		(TK_CLEAR_NTP | TK_CLOCK_WAS_SET) | 
|---|
| 39 |  | 
|---|
| 40 | enum timekeeping_adv_mode { | 
|---|
| 41 | /* Update timekeeper when a tick has passed */ | 
|---|
| 42 | TK_ADV_TICK, | 
|---|
| 43 |  | 
|---|
| 44 | /* Update timekeeper on a direct frequency change */ | 
|---|
| 45 | TK_ADV_FREQ | 
|---|
| 46 | }; | 
|---|
| 47 |  | 
|---|
| 48 | /* | 
|---|
| 49 | * The most important data for readout fits into a single 64 byte | 
|---|
| 50 | * cache line. | 
|---|
| 51 | */ | 
|---|
| 52 | struct tk_data { | 
|---|
| 53 | seqcount_raw_spinlock_t	seq; | 
|---|
| 54 | struct timekeeper	timekeeper; | 
|---|
| 55 | struct timekeeper	shadow_timekeeper; | 
|---|
| 56 | raw_spinlock_t		lock; | 
|---|
| 57 | } ____cacheline_aligned; | 
|---|
| 58 |  | 
|---|
| 59 | static struct tk_data timekeeper_data[TIMEKEEPERS_MAX]; | 
|---|
| 60 |  | 
|---|
| 61 | /* The core timekeeper */ | 
|---|
| 62 | #define tk_core		(timekeeper_data[TIMEKEEPER_CORE]) | 
|---|
| 63 |  | 
|---|
| 64 | #ifdef CONFIG_POSIX_AUX_CLOCKS | 
|---|
| 65 | static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts) | 
|---|
| 66 | { | 
|---|
| 67 | return ktime_get_aux_ts64(CLOCK_AUX + tkid - TIMEKEEPER_AUX_FIRST, ts); | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 | static inline bool tk_is_aux(const struct timekeeper *tk) | 
|---|
| 71 | { | 
|---|
| 72 | return tk->id >= TIMEKEEPER_AUX_FIRST && tk->id <= TIMEKEEPER_AUX_LAST; | 
|---|
| 73 | } | 
|---|
| 74 | #else | 
|---|
| 75 | static inline bool tk_get_aux_ts64(unsigned int tkid, struct timespec64 *ts) | 
|---|
| 76 | { | 
|---|
| 77 | return false; | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | static inline bool tk_is_aux(const struct timekeeper *tk) | 
|---|
| 81 | { | 
|---|
| 82 | return false; | 
|---|
| 83 | } | 
|---|
| 84 | #endif | 
|---|
| 85 |  | 
|---|
| 86 | static inline void tk_update_aux_offs(struct timekeeper *tk, ktime_t offs) | 
|---|
| 87 | { | 
|---|
| 88 | tk->offs_aux = offs; | 
|---|
| 89 | tk->monotonic_to_aux = ktime_to_timespec64(offs); | 
|---|
| 90 | } | 
|---|
| 91 |  | 
|---|
| 92 | /* flag for if timekeeping is suspended */ | 
|---|
| 93 | int __read_mostly timekeeping_suspended; | 
|---|
| 94 |  | 
|---|
| 95 | /** | 
|---|
| 96 | * struct tk_fast - NMI safe timekeeper | 
|---|
| 97 | * @seq:	Sequence counter for protecting updates. The lowest bit | 
|---|
| 98 | *		is the index for the tk_read_base array | 
|---|
| 99 | * @base:	tk_read_base array. Access is indexed by the lowest bit of | 
|---|
| 100 | *		@seq. | 
|---|
| 101 | * | 
|---|
| 102 | * See @update_fast_timekeeper() below. | 
|---|
| 103 | */ | 
|---|
| 104 | struct tk_fast { | 
|---|
| 105 | seqcount_latch_t	seq; | 
|---|
| 106 | struct tk_read_base	base[2]; | 
|---|
| 107 | }; | 
|---|
| 108 |  | 
|---|
| 109 | /* Suspend-time cycles value for halted fast timekeeper. */ | 
|---|
| 110 | static u64 cycles_at_suspend; | 
|---|
| 111 |  | 
|---|
| 112 | static u64 dummy_clock_read(struct clocksource *cs) | 
|---|
| 113 | { | 
|---|
| 114 | if (timekeeping_suspended) | 
|---|
| 115 | return cycles_at_suspend; | 
|---|
| 116 | return local_clock(); | 
|---|
| 117 | } | 
|---|
| 118 |  | 
|---|
| 119 | static struct clocksource dummy_clock = { | 
|---|
| 120 | .read = dummy_clock_read, | 
|---|
| 121 | }; | 
|---|
| 122 |  | 
|---|
| 123 | /* | 
|---|
| 124 | * Boot time initialization which allows local_clock() to be utilized | 
|---|
| 125 | * during early boot when clocksources are not available. local_clock() | 
|---|
| 126 | * returns nanoseconds already so no conversion is required, hence mult=1 | 
|---|
| 127 | * and shift=0. When the first proper clocksource is installed then | 
|---|
| 128 | * the fast time keepers are updated with the correct values. | 
|---|
| 129 | */ | 
|---|
| 130 | #define FAST_TK_INIT						\ | 
|---|
| 131 | {							\ | 
|---|
| 132 | .clock		= &dummy_clock,			\ | 
|---|
| 133 | .mask		= CLOCKSOURCE_MASK(64),		\ | 
|---|
| 134 | .mult		= 1,				\ | 
|---|
| 135 | .shift		= 0,				\ | 
|---|
| 136 | } | 
|---|
| 137 |  | 
|---|
| 138 | static struct tk_fast tk_fast_mono ____cacheline_aligned = { | 
|---|
| 139 | .seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), | 
|---|
| 140 | .base[0] = FAST_TK_INIT, | 
|---|
| 141 | .base[1] = FAST_TK_INIT, | 
|---|
| 142 | }; | 
|---|
| 143 |  | 
|---|
| 144 | static struct tk_fast tk_fast_raw  ____cacheline_aligned = { | 
|---|
| 145 | .seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), | 
|---|
| 146 | .base[0] = FAST_TK_INIT, | 
|---|
| 147 | .base[1] = FAST_TK_INIT, | 
|---|
| 148 | }; | 
|---|
| 149 |  | 
|---|
| 150 | #ifdef CONFIG_POSIX_AUX_CLOCKS | 
|---|
| 151 | static __init void tk_aux_setup(void); | 
|---|
| 152 | static void tk_aux_update_clocksource(void); | 
|---|
| 153 | static void tk_aux_advance(void); | 
|---|
| 154 | #else | 
|---|
| 155 | static inline void tk_aux_setup(void) { } | 
|---|
| 156 | static inline void tk_aux_update_clocksource(void) { } | 
|---|
| 157 | static inline void tk_aux_advance(void) { } | 
|---|
| 158 | #endif | 
|---|
| 159 |  | 
|---|
| 160 | unsigned long timekeeper_lock_irqsave(void) | 
|---|
| 161 | { | 
|---|
| 162 | unsigned long flags; | 
|---|
| 163 |  | 
|---|
| 164 | raw_spin_lock_irqsave(&tk_core.lock, flags); | 
|---|
| 165 | return flags; | 
|---|
| 166 | } | 
|---|
| 167 |  | 
|---|
| 168 | void timekeeper_unlock_irqrestore(unsigned long flags) | 
|---|
| 169 | { | 
|---|
| 170 | raw_spin_unlock_irqrestore(&tk_core.lock, flags); | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | /* | 
|---|
| 174 | * Multigrain timestamps require tracking the latest fine-grained timestamp | 
|---|
| 175 | * that has been issued, and never returning a coarse-grained timestamp that is | 
|---|
| 176 | * earlier than that value. | 
|---|
| 177 | * | 
|---|
| 178 | * mg_floor represents the latest fine-grained time that has been handed out as | 
|---|
| 179 | * a file timestamp on the system. This is tracked as a monotonic ktime_t, and | 
|---|
| 180 | * converted to a realtime clock value on an as-needed basis. | 
|---|
| 181 | * | 
|---|
| 182 | * Maintaining mg_floor ensures the multigrain interfaces never issue a | 
|---|
| 183 | * timestamp earlier than one that has been previously issued. | 
|---|
| 184 | * | 
|---|
| 185 | * The exception to this rule is when there is a backward realtime clock jump. If | 
|---|
| 186 | * such an event occurs, a timestamp can appear to be earlier than a previous one. | 
|---|
| 187 | */ | 
|---|
| 188 | static __cacheline_aligned_in_smp atomic64_t mg_floor; | 
|---|
| 189 |  | 
|---|
| 190 | static inline void tk_normalize_xtime(struct timekeeper *tk) | 
|---|
| 191 | { | 
|---|
| 192 | while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { | 
|---|
| 193 | tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; | 
|---|
| 194 | tk->xtime_sec++; | 
|---|
| 195 | } | 
|---|
| 196 | while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { | 
|---|
| 197 | tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; | 
|---|
| 198 | tk->raw_sec++; | 
|---|
| 199 | } | 
|---|
| 200 | } | 
|---|
| 201 |  | 
|---|
| 202 | static inline struct timespec64 tk_xtime(const struct timekeeper *tk) | 
|---|
| 203 | { | 
|---|
| 204 | struct timespec64 ts; | 
|---|
| 205 |  | 
|---|
| 206 | ts.tv_sec = tk->xtime_sec; | 
|---|
| 207 | ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); | 
|---|
| 208 | return ts; | 
|---|
| 209 | } | 
|---|
| 210 |  | 
|---|
| 211 | static inline struct timespec64 tk_xtime_coarse(const struct timekeeper *tk) | 
|---|
| 212 | { | 
|---|
| 213 | struct timespec64 ts; | 
|---|
| 214 |  | 
|---|
| 215 | ts.tv_sec = tk->xtime_sec; | 
|---|
| 216 | ts.tv_nsec = tk->coarse_nsec; | 
|---|
| 217 | return ts; | 
|---|
| 218 | } | 
|---|
| 219 |  | 
|---|
| 220 | /* | 
|---|
| 221 | * Update the nanoseconds part for the coarse time keepers. They can't rely | 
|---|
| 222 | * on xtime_nsec because xtime_nsec could be adjusted by a small negative | 
|---|
| 223 | * amount when the multiplication factor of the clock is adjusted, which | 
|---|
| 224 | * could cause the coarse clocks to go slightly backwards. See | 
|---|
| 225 | * timekeeping_apply_adjustment(). Thus we keep a separate copy for the coarse | 
|---|
| 226 | * clockids which only is updated when the clock has been set or  we have | 
|---|
| 227 | * accumulated time. | 
|---|
| 228 | */ | 
|---|
| 229 | static inline void tk_update_coarse_nsecs(struct timekeeper *tk) | 
|---|
| 230 | { | 
|---|
| 231 | tk->coarse_nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; | 
|---|
| 232 | } | 
|---|
| 233 |  | 
|---|
| 234 | static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) | 
|---|
| 235 | { | 
|---|
| 236 | tk->xtime_sec = ts->tv_sec; | 
|---|
| 237 | tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; | 
|---|
| 238 | tk_update_coarse_nsecs(tk); | 
|---|
| 239 | } | 
|---|
| 240 |  | 
|---|
| 241 | static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) | 
|---|
| 242 | { | 
|---|
| 243 | tk->xtime_sec += ts->tv_sec; | 
|---|
| 244 | tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; | 
|---|
| 245 | tk_normalize_xtime(tk); | 
|---|
| 246 | tk_update_coarse_nsecs(tk); | 
|---|
| 247 | } | 
|---|
| 248 |  | 
|---|
| 249 | static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) | 
|---|
| 250 | { | 
|---|
| 251 | struct timespec64 tmp; | 
|---|
| 252 |  | 
|---|
| 253 | /* | 
|---|
| 254 | * Verify consistency of: offset_real = -wall_to_monotonic | 
|---|
| 255 | * before modifying anything | 
|---|
| 256 | */ | 
|---|
| 257 | set_normalized_timespec64(ts: &tmp, sec: -tk->wall_to_monotonic.tv_sec, | 
|---|
| 258 | nsec: -tk->wall_to_monotonic.tv_nsec); | 
|---|
| 259 | WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); | 
|---|
| 260 | tk->wall_to_monotonic = wtm; | 
|---|
| 261 | set_normalized_timespec64(ts: &tmp, sec: -wtm.tv_sec, nsec: -wtm.tv_nsec); | 
|---|
| 262 | /* Paired with READ_ONCE() in ktime_mono_to_any() */ | 
|---|
| 263 | WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); | 
|---|
| 264 | WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); | 
|---|
| 265 | } | 
|---|
| 266 |  | 
|---|
| 267 | static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) | 
|---|
| 268 | { | 
|---|
| 269 | /* Paired with READ_ONCE() in ktime_mono_to_any() */ | 
|---|
| 270 | WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); | 
|---|
| 271 | /* | 
|---|
| 272 | * Timespec representation for VDSO update to avoid 64bit division | 
|---|
| 273 | * on every update. | 
|---|
| 274 | */ | 
|---|
| 275 | tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); | 
|---|
| 276 | } | 
|---|
| 277 |  | 
|---|
| 278 | /* | 
|---|
| 279 | * tk_clock_read - atomic clocksource read() helper | 
|---|
| 280 | * | 
|---|
| 281 | * This helper is necessary to use in the read paths because, while the | 
|---|
| 282 | * seqcount ensures we don't return a bad value while structures are updated, | 
|---|
| 283 | * it doesn't protect from potential crashes. There is the possibility that | 
|---|
| 284 | * the tkr's clocksource may change between the read reference, and the | 
|---|
| 285 | * clock reference passed to the read function.  This can cause crashes if | 
|---|
| 286 | * the wrong clocksource is passed to the wrong read function. | 
|---|
| 287 | * This isn't necessary to use when holding the tk_core.lock or doing | 
|---|
| 288 | * a read of the fast-timekeeper tkrs (which is protected by its own locking | 
|---|
| 289 | * and update logic). | 
|---|
| 290 | */ | 
|---|
| 291 | static inline u64 tk_clock_read(const struct tk_read_base *tkr) | 
|---|
| 292 | { | 
|---|
| 293 | struct clocksource *clock = READ_ONCE(tkr->clock); | 
|---|
| 294 |  | 
|---|
| 295 | return clock->read(clock); | 
|---|
| 296 | } | 
|---|
| 297 |  | 
|---|
| 298 | /** | 
|---|
| 299 | * tk_setup_internals - Set up internals to use clocksource clock. | 
|---|
| 300 | * | 
|---|
| 301 | * @tk:		The target timekeeper to setup. | 
|---|
| 302 | * @clock:		Pointer to clocksource. | 
|---|
| 303 | * | 
|---|
| 304 | * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment | 
|---|
| 305 | * pair and interval request. | 
|---|
| 306 | * | 
|---|
| 307 | * Unless you're the timekeeping code, you should not be using this! | 
|---|
| 308 | */ | 
|---|
| 309 | static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) | 
|---|
| 310 | { | 
|---|
| 311 | u64 interval; | 
|---|
| 312 | u64 tmp, ntpinterval; | 
|---|
| 313 | struct clocksource *old_clock; | 
|---|
| 314 |  | 
|---|
| 315 | ++tk->cs_was_changed_seq; | 
|---|
| 316 | old_clock = tk->tkr_mono.clock; | 
|---|
| 317 | tk->tkr_mono.clock = clock; | 
|---|
| 318 | tk->tkr_mono.mask = clock->mask; | 
|---|
| 319 | tk->tkr_mono.cycle_last = tk_clock_read(tkr: &tk->tkr_mono); | 
|---|
| 320 |  | 
|---|
| 321 | tk->tkr_raw.clock = clock; | 
|---|
| 322 | tk->tkr_raw.mask = clock->mask; | 
|---|
| 323 | tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; | 
|---|
| 324 |  | 
|---|
| 325 | /* Do the ns -> cycle conversion first, using original mult */ | 
|---|
| 326 | tmp = NTP_INTERVAL_LENGTH; | 
|---|
| 327 | tmp <<= clock->shift; | 
|---|
| 328 | ntpinterval = tmp; | 
|---|
| 329 | tmp += clock->mult/2; | 
|---|
| 330 | do_div(tmp, clock->mult); | 
|---|
| 331 | if (tmp == 0) | 
|---|
| 332 | tmp = 1; | 
|---|
| 333 |  | 
|---|
| 334 | interval = (u64) tmp; | 
|---|
| 335 | tk->cycle_interval = interval; | 
|---|
| 336 |  | 
|---|
| 337 | /* Go back from cycles -> shifted ns */ | 
|---|
| 338 | tk->xtime_interval = interval * clock->mult; | 
|---|
| 339 | tk->xtime_remainder = ntpinterval - tk->xtime_interval; | 
|---|
| 340 | tk->raw_interval = interval * clock->mult; | 
|---|
| 341 |  | 
|---|
| 342 | /* if changing clocks, convert xtime_nsec shift units */ | 
|---|
| 343 | if (old_clock) { | 
|---|
| 344 | int shift_change = clock->shift - old_clock->shift; | 
|---|
| 345 | if (shift_change < 0) { | 
|---|
| 346 | tk->tkr_mono.xtime_nsec >>= -shift_change; | 
|---|
| 347 | tk->tkr_raw.xtime_nsec >>= -shift_change; | 
|---|
| 348 | } else { | 
|---|
| 349 | tk->tkr_mono.xtime_nsec <<= shift_change; | 
|---|
| 350 | tk->tkr_raw.xtime_nsec <<= shift_change; | 
|---|
| 351 | } | 
|---|
| 352 | } | 
|---|
| 353 |  | 
|---|
| 354 | tk->tkr_mono.shift = clock->shift; | 
|---|
| 355 | tk->tkr_raw.shift = clock->shift; | 
|---|
| 356 |  | 
|---|
| 357 | tk->ntp_error = 0; | 
|---|
| 358 | tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; | 
|---|
| 359 | tk->ntp_tick = ntpinterval << tk->ntp_error_shift; | 
|---|
| 360 |  | 
|---|
| 361 | /* | 
|---|
| 362 | * The timekeeper keeps its own mult values for the currently | 
|---|
| 363 | * active clocksource. These value will be adjusted via NTP | 
|---|
| 364 | * to counteract clock drifting. | 
|---|
| 365 | */ | 
|---|
| 366 | tk->tkr_mono.mult = clock->mult; | 
|---|
| 367 | tk->tkr_raw.mult = clock->mult; | 
|---|
| 368 | tk->ntp_err_mult = 0; | 
|---|
| 369 | tk->skip_second_overflow = 0; | 
|---|
| 370 | } | 
|---|
| 371 |  | 
|---|
| 372 | /* Timekeeper helper functions. */ | 
|---|
| 373 | static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) | 
|---|
| 374 | { | 
|---|
| 375 | return mul_u64_u32_add_u64_shr(a: delta, mul: tkr->mult, b: tkr->xtime_nsec, shift: tkr->shift); | 
|---|
| 376 | } | 
|---|
| 377 |  | 
|---|
| 378 | static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) | 
|---|
| 379 | { | 
|---|
| 380 | /* Calculate the delta since the last update_wall_time() */ | 
|---|
| 381 | u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; | 
|---|
| 382 |  | 
|---|
| 383 | /* | 
|---|
| 384 | * This detects both negative motion and the case where the delta | 
|---|
| 385 | * overflows the multiplication with tkr->mult. | 
|---|
| 386 | */ | 
|---|
| 387 | if (unlikely(delta > tkr->clock->max_cycles)) { | 
|---|
| 388 | /* | 
|---|
| 389 | * Handle clocksource inconsistency between CPUs to prevent | 
|---|
| 390 | * time from going backwards by checking for the MSB of the | 
|---|
| 391 | * mask being set in the delta. | 
|---|
| 392 | */ | 
|---|
| 393 | if (delta & ~(mask >> 1)) | 
|---|
| 394 | return tkr->xtime_nsec >> tkr->shift; | 
|---|
| 395 |  | 
|---|
| 396 | return delta_to_ns_safe(tkr, delta); | 
|---|
| 397 | } | 
|---|
| 398 |  | 
|---|
| 399 | return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) | 
|---|
| 403 | { | 
|---|
| 404 | return timekeeping_cycles_to_ns(tkr, cycles: tk_clock_read(tkr)); | 
|---|
| 405 | } | 
|---|
| 406 |  | 
|---|
| 407 | /** | 
|---|
| 408 | * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. | 
|---|
| 409 | * @tkr: Timekeeping readout base from which we take the update | 
|---|
| 410 | * @tkf: Pointer to NMI safe timekeeper | 
|---|
| 411 | * | 
|---|
| 412 | * We want to use this from any context including NMI and tracing / | 
|---|
| 413 | * instrumenting the timekeeping code itself. | 
|---|
| 414 | * | 
|---|
| 415 | * Employ the latch technique; see @write_seqcount_latch. | 
|---|
| 416 | * | 
|---|
| 417 | * So if a NMI hits the update of base[0] then it will use base[1] | 
|---|
| 418 | * which is still consistent. In the worst case this can result is a | 
|---|
| 419 | * slightly wrong timestamp (a few nanoseconds). See | 
|---|
| 420 | * @ktime_get_mono_fast_ns. | 
|---|
| 421 | */ | 
|---|
| 422 | static void update_fast_timekeeper(const struct tk_read_base *tkr, | 
|---|
| 423 | struct tk_fast *tkf) | 
|---|
| 424 | { | 
|---|
| 425 | struct tk_read_base *base = tkf->base; | 
|---|
| 426 |  | 
|---|
| 427 | /* Force readers off to base[1] */ | 
|---|
| 428 | write_seqcount_latch_begin(s: &tkf->seq); | 
|---|
| 429 |  | 
|---|
| 430 | /* Update base[0] */ | 
|---|
| 431 | memcpy(to: base, from: tkr, len: sizeof(*base)); | 
|---|
| 432 |  | 
|---|
| 433 | /* Force readers back to base[0] */ | 
|---|
| 434 | write_seqcount_latch(s: &tkf->seq); | 
|---|
| 435 |  | 
|---|
| 436 | /* Update base[1] */ | 
|---|
| 437 | memcpy(to: base + 1, from: base, len: sizeof(*base)); | 
|---|
| 438 |  | 
|---|
| 439 | write_seqcount_latch_end(s: &tkf->seq); | 
|---|
| 440 | } | 
|---|
| 441 |  | 
|---|
| 442 | static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) | 
|---|
| 443 | { | 
|---|
| 444 | struct tk_read_base *tkr; | 
|---|
| 445 | unsigned int seq; | 
|---|
| 446 | u64 now; | 
|---|
| 447 |  | 
|---|
| 448 | do { | 
|---|
| 449 | seq = read_seqcount_latch(s: &tkf->seq); | 
|---|
| 450 | tkr = tkf->base + (seq & 0x01); | 
|---|
| 451 | now = ktime_to_ns(kt: tkr->base); | 
|---|
| 452 | now += timekeeping_get_ns(tkr); | 
|---|
| 453 | } while (read_seqcount_latch_retry(s: &tkf->seq, start: seq)); | 
|---|
| 454 |  | 
|---|
| 455 | return now; | 
|---|
| 456 | } | 
|---|
| 457 |  | 
|---|
| 458 | /** | 
|---|
| 459 | * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic | 
|---|
| 460 | * | 
|---|
| 461 | * This timestamp is not guaranteed to be monotonic across an update. | 
|---|
| 462 | * The timestamp is calculated by: | 
|---|
| 463 | * | 
|---|
| 464 | *	now = base_mono + clock_delta * slope | 
|---|
| 465 | * | 
|---|
| 466 | * So if the update lowers the slope, readers who are forced to the | 
|---|
| 467 | * not yet updated second array are still using the old steeper slope. | 
|---|
| 468 | * | 
|---|
| 469 | * tmono | 
|---|
| 470 | * ^ | 
|---|
| 471 | * |    o  n | 
|---|
| 472 | * |   o n | 
|---|
| 473 | * |  u | 
|---|
| 474 | * | o | 
|---|
| 475 | * |o | 
|---|
| 476 | * |12345678---> reader order | 
|---|
| 477 | * | 
|---|
| 478 | * o = old slope | 
|---|
| 479 | * u = update | 
|---|
| 480 | * n = new slope | 
|---|
| 481 | * | 
|---|
| 482 | * So reader 6 will observe time going backwards versus reader 5. | 
|---|
| 483 | * | 
|---|
| 484 | * While other CPUs are likely to be able to observe that, the only way | 
|---|
| 485 | * for a CPU local observation is when an NMI hits in the middle of | 
|---|
| 486 | * the update. Timestamps taken from that NMI context might be ahead | 
|---|
| 487 | * of the following timestamps. Callers need to be aware of that and | 
|---|
| 488 | * deal with it. | 
|---|
| 489 | */ | 
|---|
| 490 | u64 notrace ktime_get_mono_fast_ns(void) | 
|---|
| 491 | { | 
|---|
| 492 | return __ktime_get_fast_ns(tkf: &tk_fast_mono); | 
|---|
| 493 | } | 
|---|
| 494 | EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); | 
|---|
| 495 |  | 
|---|
| 496 | /** | 
|---|
| 497 | * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw | 
|---|
| 498 | * | 
|---|
| 499 | * Contrary to ktime_get_mono_fast_ns() this is always correct because the | 
|---|
| 500 | * conversion factor is not affected by NTP/PTP correction. | 
|---|
| 501 | */ | 
|---|
| 502 | u64 notrace ktime_get_raw_fast_ns(void) | 
|---|
| 503 | { | 
|---|
| 504 | return __ktime_get_fast_ns(tkf: &tk_fast_raw); | 
|---|
| 505 | } | 
|---|
| 506 | EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); | 
|---|
| 507 |  | 
|---|
| 508 | /** | 
|---|
| 509 | * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. | 
|---|
| 510 | * | 
|---|
| 511 | * To keep it NMI safe since we're accessing from tracing, we're not using a | 
|---|
| 512 | * separate timekeeper with updates to monotonic clock and boot offset | 
|---|
| 513 | * protected with seqcounts. This has the following minor side effects: | 
|---|
| 514 | * | 
|---|
| 515 | * (1) Its possible that a timestamp be taken after the boot offset is updated | 
|---|
| 516 | * but before the timekeeper is updated. If this happens, the new boot offset | 
|---|
| 517 | * is added to the old timekeeping making the clock appear to update slightly | 
|---|
| 518 | * earlier: | 
|---|
| 519 | *    CPU 0                                        CPU 1 | 
|---|
| 520 | *    timekeeping_inject_sleeptime64() | 
|---|
| 521 | *    __timekeeping_inject_sleeptime(tk, delta); | 
|---|
| 522 | *                                                 timestamp(); | 
|---|
| 523 | *    timekeeping_update_staged(tkd, TK_CLEAR_NTP...); | 
|---|
| 524 | * | 
|---|
| 525 | * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be | 
|---|
| 526 | * partially updated.  Since the tk->offs_boot update is a rare event, this | 
|---|
| 527 | * should be a rare occurrence which postprocessing should be able to handle. | 
|---|
| 528 | * | 
|---|
| 529 | * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() | 
|---|
| 530 | * apply as well. | 
|---|
| 531 | */ | 
|---|
| 532 | u64 notrace ktime_get_boot_fast_ns(void) | 
|---|
| 533 | { | 
|---|
| 534 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 535 |  | 
|---|
| 536 | return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); | 
|---|
| 537 | } | 
|---|
| 538 | EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); | 
|---|
| 539 |  | 
|---|
| 540 | /** | 
|---|
| 541 | * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. | 
|---|
| 542 | * | 
|---|
| 543 | * The same limitations as described for ktime_get_boot_fast_ns() apply. The | 
|---|
| 544 | * mono time and the TAI offset are not read atomically which may yield wrong | 
|---|
| 545 | * readouts. However, an update of the TAI offset is an rare event e.g., caused | 
|---|
| 546 | * by settime or adjtimex with an offset. The user of this function has to deal | 
|---|
| 547 | * with the possibility of wrong timestamps in post processing. | 
|---|
| 548 | */ | 
|---|
| 549 | u64 notrace ktime_get_tai_fast_ns(void) | 
|---|
| 550 | { | 
|---|
| 551 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 552 |  | 
|---|
| 553 | return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); | 
|---|
| 554 | } | 
|---|
| 555 | EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); | 
|---|
| 556 |  | 
|---|
| 557 | /** | 
|---|
| 558 | * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. | 
|---|
| 559 | * | 
|---|
| 560 | * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. | 
|---|
| 561 | */ | 
|---|
| 562 | u64 ktime_get_real_fast_ns(void) | 
|---|
| 563 | { | 
|---|
| 564 | struct tk_fast *tkf = &tk_fast_mono; | 
|---|
| 565 | struct tk_read_base *tkr; | 
|---|
| 566 | u64 baser, delta; | 
|---|
| 567 | unsigned int seq; | 
|---|
| 568 |  | 
|---|
| 569 | do { | 
|---|
| 570 | seq = raw_read_seqcount_latch(s: &tkf->seq); | 
|---|
| 571 | tkr = tkf->base + (seq & 0x01); | 
|---|
| 572 | baser = ktime_to_ns(kt: tkr->base_real); | 
|---|
| 573 | delta = timekeeping_get_ns(tkr); | 
|---|
| 574 | } while (raw_read_seqcount_latch_retry(s: &tkf->seq, start: seq)); | 
|---|
| 575 |  | 
|---|
| 576 | return baser + delta; | 
|---|
| 577 | } | 
|---|
| 578 | EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); | 
|---|
| 579 |  | 
|---|
| 580 | /** | 
|---|
| 581 | * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. | 
|---|
| 582 | * @tk: Timekeeper to snapshot. | 
|---|
| 583 | * | 
|---|
| 584 | * It generally is unsafe to access the clocksource after timekeeping has been | 
|---|
| 585 | * suspended, so take a snapshot of the readout base of @tk and use it as the | 
|---|
| 586 | * fast timekeeper's readout base while suspended.  It will return the same | 
|---|
| 587 | * number of cycles every time until timekeeping is resumed at which time the | 
|---|
| 588 | * proper readout base for the fast timekeeper will be restored automatically. | 
|---|
| 589 | */ | 
|---|
| 590 | static void halt_fast_timekeeper(const struct timekeeper *tk) | 
|---|
| 591 | { | 
|---|
| 592 | static struct tk_read_base tkr_dummy; | 
|---|
| 593 | const struct tk_read_base *tkr = &tk->tkr_mono; | 
|---|
| 594 |  | 
|---|
| 595 | memcpy(to: &tkr_dummy, from: tkr, len: sizeof(tkr_dummy)); | 
|---|
| 596 | cycles_at_suspend = tk_clock_read(tkr); | 
|---|
| 597 | tkr_dummy.clock = &dummy_clock; | 
|---|
| 598 | tkr_dummy.base_real = tkr->base + tk->offs_real; | 
|---|
| 599 | update_fast_timekeeper(tkr: &tkr_dummy, tkf: &tk_fast_mono); | 
|---|
| 600 |  | 
|---|
| 601 | tkr = &tk->tkr_raw; | 
|---|
| 602 | memcpy(to: &tkr_dummy, from: tkr, len: sizeof(tkr_dummy)); | 
|---|
| 603 | tkr_dummy.clock = &dummy_clock; | 
|---|
| 604 | update_fast_timekeeper(tkr: &tkr_dummy, tkf: &tk_fast_raw); | 
|---|
| 605 | } | 
|---|
| 606 |  | 
|---|
| 607 | static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); | 
|---|
| 608 |  | 
|---|
| 609 | static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) | 
|---|
| 610 | { | 
|---|
| 611 | raw_notifier_call_chain(nh: &pvclock_gtod_chain, val: was_set, v: tk); | 
|---|
| 612 | } | 
|---|
| 613 |  | 
|---|
| 614 | /** | 
|---|
| 615 | * pvclock_gtod_register_notifier - register a pvclock timedata update listener | 
|---|
| 616 | * @nb: Pointer to the notifier block to register | 
|---|
| 617 | */ | 
|---|
| 618 | int pvclock_gtod_register_notifier(struct notifier_block *nb) | 
|---|
| 619 | { | 
|---|
| 620 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 621 | int ret; | 
|---|
| 622 |  | 
|---|
| 623 | guard(raw_spinlock_irqsave)(l: &tk_core.lock); | 
|---|
| 624 | ret = raw_notifier_chain_register(nh: &pvclock_gtod_chain, nb); | 
|---|
| 625 | update_pvclock_gtod(tk, was_set: true); | 
|---|
| 626 |  | 
|---|
| 627 | return ret; | 
|---|
| 628 | } | 
|---|
| 629 | EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); | 
|---|
| 630 |  | 
|---|
| 631 | /** | 
|---|
| 632 | * pvclock_gtod_unregister_notifier - unregister a pvclock | 
|---|
| 633 | * timedata update listener | 
|---|
| 634 | * @nb: Pointer to the notifier block to unregister | 
|---|
| 635 | */ | 
|---|
| 636 | int pvclock_gtod_unregister_notifier(struct notifier_block *nb) | 
|---|
| 637 | { | 
|---|
| 638 | guard(raw_spinlock_irqsave)(l: &tk_core.lock); | 
|---|
| 639 | return raw_notifier_chain_unregister(nh: &pvclock_gtod_chain, nb); | 
|---|
| 640 | } | 
|---|
| 641 | EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); | 
|---|
| 642 |  | 
|---|
| 643 | /* | 
|---|
| 644 | * tk_update_leap_state - helper to update the next_leap_ktime | 
|---|
| 645 | */ | 
|---|
| 646 | static inline void tk_update_leap_state(struct timekeeper *tk) | 
|---|
| 647 | { | 
|---|
| 648 | tk->next_leap_ktime = ntp_get_next_leap(tkid: tk->id); | 
|---|
| 649 | if (tk->next_leap_ktime != KTIME_MAX) | 
|---|
| 650 | /* Convert to monotonic time */ | 
|---|
| 651 | tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); | 
|---|
| 652 | } | 
|---|
| 653 |  | 
|---|
| 654 | /* | 
|---|
| 655 | * Leap state update for both shadow and the real timekeeper | 
|---|
| 656 | * Separate to spare a full memcpy() of the timekeeper. | 
|---|
| 657 | */ | 
|---|
| 658 | static void tk_update_leap_state_all(struct tk_data *tkd) | 
|---|
| 659 | { | 
|---|
| 660 | write_seqcount_begin(&tkd->seq); | 
|---|
| 661 | tk_update_leap_state(tk: &tkd->shadow_timekeeper); | 
|---|
| 662 | tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; | 
|---|
| 663 | write_seqcount_end(&tkd->seq); | 
|---|
| 664 | } | 
|---|
| 665 |  | 
|---|
| 666 | /* | 
|---|
| 667 | * Update the ktime_t based scalar nsec members of the timekeeper | 
|---|
| 668 | */ | 
|---|
| 669 | static inline void tk_update_ktime_data(struct timekeeper *tk) | 
|---|
| 670 | { | 
|---|
| 671 | u64 seconds; | 
|---|
| 672 | u32 nsec; | 
|---|
| 673 |  | 
|---|
| 674 | /* | 
|---|
| 675 | * The xtime based monotonic readout is: | 
|---|
| 676 | *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); | 
|---|
| 677 | * The ktime based monotonic readout is: | 
|---|
| 678 | *	nsec = base_mono + now(); | 
|---|
| 679 | * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec | 
|---|
| 680 | */ | 
|---|
| 681 | seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); | 
|---|
| 682 | nsec = (u32) tk->wall_to_monotonic.tv_nsec; | 
|---|
| 683 | tk->tkr_mono.base = ns_to_ktime(ns: seconds * NSEC_PER_SEC + nsec); | 
|---|
| 684 |  | 
|---|
| 685 | /* | 
|---|
| 686 | * The sum of the nanoseconds portions of xtime and | 
|---|
| 687 | * wall_to_monotonic can be greater/equal one second. Take | 
|---|
| 688 | * this into account before updating tk->ktime_sec. | 
|---|
| 689 | */ | 
|---|
| 690 | nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); | 
|---|
| 691 | if (nsec >= NSEC_PER_SEC) | 
|---|
| 692 | seconds++; | 
|---|
| 693 | tk->ktime_sec = seconds; | 
|---|
| 694 |  | 
|---|
| 695 | /* Update the monotonic raw base */ | 
|---|
| 696 | tk->tkr_raw.base = ns_to_ktime(ns: tk->raw_sec * NSEC_PER_SEC); | 
|---|
| 697 | } | 
|---|
| 698 |  | 
|---|
| 699 | /* | 
|---|
| 700 | * Restore the shadow timekeeper from the real timekeeper. | 
|---|
| 701 | */ | 
|---|
| 702 | static void timekeeping_restore_shadow(struct tk_data *tkd) | 
|---|
| 703 | { | 
|---|
| 704 | lockdep_assert_held(&tkd->lock); | 
|---|
| 705 | memcpy(to: &tkd->shadow_timekeeper, from: &tkd->timekeeper, len: sizeof(tkd->timekeeper)); | 
|---|
| 706 | } | 
|---|
| 707 |  | 
|---|
| 708 | static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) | 
|---|
| 709 | { | 
|---|
| 710 | struct timekeeper *tk = &tkd->shadow_timekeeper; | 
|---|
| 711 |  | 
|---|
| 712 | lockdep_assert_held(&tkd->lock); | 
|---|
| 713 |  | 
|---|
| 714 | /* | 
|---|
| 715 | * Block out readers before running the updates below because that | 
|---|
| 716 | * updates VDSO and other time related infrastructure. Not blocking | 
|---|
| 717 | * the readers might let a reader see time going backwards when | 
|---|
| 718 | * reading from the VDSO after the VDSO update and then reading in | 
|---|
| 719 | * the kernel from the timekeeper before that got updated. | 
|---|
| 720 | */ | 
|---|
| 721 | write_seqcount_begin(&tkd->seq); | 
|---|
| 722 |  | 
|---|
| 723 | if (action & TK_CLEAR_NTP) { | 
|---|
| 724 | tk->ntp_error = 0; | 
|---|
| 725 | ntp_clear(tkid: tk->id); | 
|---|
| 726 | } | 
|---|
| 727 |  | 
|---|
| 728 | tk_update_leap_state(tk); | 
|---|
| 729 | tk_update_ktime_data(tk); | 
|---|
| 730 | tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; | 
|---|
| 731 |  | 
|---|
| 732 | if (tk->id == TIMEKEEPER_CORE) { | 
|---|
| 733 | update_vsyscall(tk); | 
|---|
| 734 | update_pvclock_gtod(tk, was_set: action & TK_CLOCK_WAS_SET); | 
|---|
| 735 |  | 
|---|
| 736 | update_fast_timekeeper(tkr: &tk->tkr_mono, tkf: &tk_fast_mono); | 
|---|
| 737 | update_fast_timekeeper(tkr: &tk->tkr_raw,  tkf: &tk_fast_raw); | 
|---|
| 738 | } else if (tk_is_aux(tk)) { | 
|---|
| 739 | vdso_time_update_aux(tk); | 
|---|
| 740 | } | 
|---|
| 741 |  | 
|---|
| 742 | if (action & TK_CLOCK_WAS_SET) | 
|---|
| 743 | tk->clock_was_set_seq++; | 
|---|
| 744 |  | 
|---|
| 745 | /* | 
|---|
| 746 | * Update the real timekeeper. | 
|---|
| 747 | * | 
|---|
| 748 | * We could avoid this memcpy() by switching pointers, but that has | 
|---|
| 749 | * the downside that the reader side does not longer benefit from | 
|---|
| 750 | * the cacheline optimized data layout of the timekeeper and requires | 
|---|
| 751 | * another indirection. | 
|---|
| 752 | */ | 
|---|
| 753 | memcpy(to: &tkd->timekeeper, from: tk, len: sizeof(*tk)); | 
|---|
| 754 | write_seqcount_end(&tkd->seq); | 
|---|
| 755 | } | 
|---|
| 756 |  | 
|---|
| 757 | /** | 
|---|
| 758 | * timekeeping_forward_now - update clock to the current time | 
|---|
| 759 | * @tk:		Pointer to the timekeeper to update | 
|---|
| 760 | * | 
|---|
| 761 | * Forward the current clock to update its state since the last call to | 
|---|
| 762 | * update_wall_time(). This is useful before significant clock changes, | 
|---|
| 763 | * as it avoids having to deal with this time offset explicitly. | 
|---|
| 764 | */ | 
|---|
| 765 | static void timekeeping_forward_now(struct timekeeper *tk) | 
|---|
| 766 | { | 
|---|
| 767 | u64 cycle_now, delta; | 
|---|
| 768 |  | 
|---|
| 769 | cycle_now = tk_clock_read(tkr: &tk->tkr_mono); | 
|---|
| 770 | delta = clocksource_delta(now: cycle_now, last: tk->tkr_mono.cycle_last, mask: tk->tkr_mono.mask, | 
|---|
| 771 | max_delta: tk->tkr_mono.clock->max_raw_delta); | 
|---|
| 772 | tk->tkr_mono.cycle_last = cycle_now; | 
|---|
| 773 | tk->tkr_raw.cycle_last  = cycle_now; | 
|---|
| 774 |  | 
|---|
| 775 | while (delta > 0) { | 
|---|
| 776 | u64 max = tk->tkr_mono.clock->max_cycles; | 
|---|
| 777 | u64 incr = delta < max ? delta : max; | 
|---|
| 778 |  | 
|---|
| 779 | tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; | 
|---|
| 780 | tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; | 
|---|
| 781 | tk_normalize_xtime(tk); | 
|---|
| 782 | delta -= incr; | 
|---|
| 783 | } | 
|---|
| 784 | tk_update_coarse_nsecs(tk); | 
|---|
| 785 | } | 
|---|
| 786 |  | 
|---|
| 787 | /** | 
|---|
| 788 | * ktime_get_real_ts64 - Returns the time of day in a timespec64. | 
|---|
| 789 | * @ts:		pointer to the timespec to be set | 
|---|
| 790 | * | 
|---|
| 791 | * Returns the time of day in a timespec64 (WARN if suspended). | 
|---|
| 792 | */ | 
|---|
| 793 | void ktime_get_real_ts64(struct timespec64 *ts) | 
|---|
| 794 | { | 
|---|
| 795 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 796 | unsigned int seq; | 
|---|
| 797 | u64 nsecs; | 
|---|
| 798 |  | 
|---|
| 799 | WARN_ON(timekeeping_suspended); | 
|---|
| 800 |  | 
|---|
| 801 | do { | 
|---|
| 802 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 803 |  | 
|---|
| 804 | ts->tv_sec = tk->xtime_sec; | 
|---|
| 805 | nsecs = timekeeping_get_ns(tkr: &tk->tkr_mono); | 
|---|
| 806 |  | 
|---|
| 807 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 808 |  | 
|---|
| 809 | ts->tv_nsec = 0; | 
|---|
| 810 | timespec64_add_ns(a: ts, ns: nsecs); | 
|---|
| 811 | } | 
|---|
| 812 | EXPORT_SYMBOL(ktime_get_real_ts64); | 
|---|
| 813 |  | 
|---|
| 814 | ktime_t ktime_get(void) | 
|---|
| 815 | { | 
|---|
| 816 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 817 | unsigned int seq; | 
|---|
| 818 | ktime_t base; | 
|---|
| 819 | u64 nsecs; | 
|---|
| 820 |  | 
|---|
| 821 | WARN_ON(timekeeping_suspended); | 
|---|
| 822 |  | 
|---|
| 823 | do { | 
|---|
| 824 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 825 | base = tk->tkr_mono.base; | 
|---|
| 826 | nsecs = timekeeping_get_ns(tkr: &tk->tkr_mono); | 
|---|
| 827 |  | 
|---|
| 828 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 829 |  | 
|---|
| 830 | return ktime_add_ns(base, nsecs); | 
|---|
| 831 | } | 
|---|
| 832 | EXPORT_SYMBOL_GPL(ktime_get); | 
|---|
| 833 |  | 
|---|
| 834 | u32 ktime_get_resolution_ns(void) | 
|---|
| 835 | { | 
|---|
| 836 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 837 | unsigned int seq; | 
|---|
| 838 | u32 nsecs; | 
|---|
| 839 |  | 
|---|
| 840 | WARN_ON(timekeeping_suspended); | 
|---|
| 841 |  | 
|---|
| 842 | do { | 
|---|
| 843 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 844 | nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; | 
|---|
| 845 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 846 |  | 
|---|
| 847 | return nsecs; | 
|---|
| 848 | } | 
|---|
| 849 | EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); | 
|---|
| 850 |  | 
|---|
| 851 | static ktime_t *offsets[TK_OFFS_MAX] = { | 
|---|
| 852 | [TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real, | 
|---|
| 853 | [TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot, | 
|---|
| 854 | [TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai, | 
|---|
| 855 | }; | 
|---|
| 856 |  | 
|---|
| 857 | ktime_t ktime_get_with_offset(enum tk_offsets offs) | 
|---|
| 858 | { | 
|---|
| 859 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 860 | unsigned int seq; | 
|---|
| 861 | ktime_t base, *offset = offsets[offs]; | 
|---|
| 862 | u64 nsecs; | 
|---|
| 863 |  | 
|---|
| 864 | WARN_ON(timekeeping_suspended); | 
|---|
| 865 |  | 
|---|
| 866 | do { | 
|---|
| 867 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 868 | base = ktime_add(tk->tkr_mono.base, *offset); | 
|---|
| 869 | nsecs = timekeeping_get_ns(tkr: &tk->tkr_mono); | 
|---|
| 870 |  | 
|---|
| 871 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 872 |  | 
|---|
| 873 | return ktime_add_ns(base, nsecs); | 
|---|
| 874 |  | 
|---|
| 875 | } | 
|---|
| 876 | EXPORT_SYMBOL_GPL(ktime_get_with_offset); | 
|---|
| 877 |  | 
|---|
| 878 | ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) | 
|---|
| 879 | { | 
|---|
| 880 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 881 | ktime_t base, *offset = offsets[offs]; | 
|---|
| 882 | unsigned int seq; | 
|---|
| 883 | u64 nsecs; | 
|---|
| 884 |  | 
|---|
| 885 | WARN_ON(timekeeping_suspended); | 
|---|
| 886 |  | 
|---|
| 887 | do { | 
|---|
| 888 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 889 | base = ktime_add(tk->tkr_mono.base, *offset); | 
|---|
| 890 | nsecs = tk->coarse_nsec; | 
|---|
| 891 |  | 
|---|
| 892 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 893 |  | 
|---|
| 894 | return ktime_add_ns(base, nsecs); | 
|---|
| 895 | } | 
|---|
| 896 | EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); | 
|---|
| 897 |  | 
|---|
| 898 | /** | 
|---|
| 899 | * ktime_mono_to_any() - convert monotonic time to any other time | 
|---|
| 900 | * @tmono:	time to convert. | 
|---|
| 901 | * @offs:	which offset to use | 
|---|
| 902 | */ | 
|---|
| 903 | ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) | 
|---|
| 904 | { | 
|---|
| 905 | ktime_t *offset = offsets[offs]; | 
|---|
| 906 | unsigned int seq; | 
|---|
| 907 | ktime_t tconv; | 
|---|
| 908 |  | 
|---|
| 909 | if (IS_ENABLED(CONFIG_64BIT)) { | 
|---|
| 910 | /* | 
|---|
| 911 | * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and | 
|---|
| 912 | * tk_update_sleep_time(). | 
|---|
| 913 | */ | 
|---|
| 914 | return ktime_add(tmono, READ_ONCE(*offset)); | 
|---|
| 915 | } | 
|---|
| 916 |  | 
|---|
| 917 | do { | 
|---|
| 918 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 919 | tconv = ktime_add(tmono, *offset); | 
|---|
| 920 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 921 |  | 
|---|
| 922 | return tconv; | 
|---|
| 923 | } | 
|---|
| 924 | EXPORT_SYMBOL_GPL(ktime_mono_to_any); | 
|---|
| 925 |  | 
|---|
| 926 | /** | 
|---|
| 927 | * ktime_get_raw - Returns the raw monotonic time in ktime_t format | 
|---|
| 928 | */ | 
|---|
| 929 | ktime_t ktime_get_raw(void) | 
|---|
| 930 | { | 
|---|
| 931 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 932 | unsigned int seq; | 
|---|
| 933 | ktime_t base; | 
|---|
| 934 | u64 nsecs; | 
|---|
| 935 |  | 
|---|
| 936 | do { | 
|---|
| 937 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 938 | base = tk->tkr_raw.base; | 
|---|
| 939 | nsecs = timekeeping_get_ns(tkr: &tk->tkr_raw); | 
|---|
| 940 |  | 
|---|
| 941 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 942 |  | 
|---|
| 943 | return ktime_add_ns(base, nsecs); | 
|---|
| 944 | } | 
|---|
| 945 | EXPORT_SYMBOL_GPL(ktime_get_raw); | 
|---|
| 946 |  | 
|---|
| 947 | /** | 
|---|
| 948 | * ktime_get_ts64 - get the monotonic clock in timespec64 format | 
|---|
| 949 | * @ts:		pointer to timespec variable | 
|---|
| 950 | * | 
|---|
| 951 | * The function calculates the monotonic clock from the realtime | 
|---|
| 952 | * clock and the wall_to_monotonic offset and stores the result | 
|---|
| 953 | * in normalized timespec64 format in the variable pointed to by @ts. | 
|---|
| 954 | */ | 
|---|
| 955 | void ktime_get_ts64(struct timespec64 *ts) | 
|---|
| 956 | { | 
|---|
| 957 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 958 | struct timespec64 tomono; | 
|---|
| 959 | unsigned int seq; | 
|---|
| 960 | u64 nsec; | 
|---|
| 961 |  | 
|---|
| 962 | WARN_ON(timekeeping_suspended); | 
|---|
| 963 |  | 
|---|
| 964 | do { | 
|---|
| 965 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 966 | ts->tv_sec = tk->xtime_sec; | 
|---|
| 967 | nsec = timekeeping_get_ns(tkr: &tk->tkr_mono); | 
|---|
| 968 | tomono = tk->wall_to_monotonic; | 
|---|
| 969 |  | 
|---|
| 970 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 971 |  | 
|---|
| 972 | ts->tv_sec += tomono.tv_sec; | 
|---|
| 973 | ts->tv_nsec = 0; | 
|---|
| 974 | timespec64_add_ns(a: ts, ns: nsec + tomono.tv_nsec); | 
|---|
| 975 | } | 
|---|
| 976 | EXPORT_SYMBOL_GPL(ktime_get_ts64); | 
|---|
| 977 |  | 
|---|
| 978 | /** | 
|---|
| 979 | * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC | 
|---|
| 980 | * | 
|---|
| 981 | * Returns the seconds portion of CLOCK_MONOTONIC with a single non | 
|---|
| 982 | * serialized read. tk->ktime_sec is of type 'unsigned long' so this | 
|---|
| 983 | * works on both 32 and 64 bit systems. On 32 bit systems the readout | 
|---|
| 984 | * covers ~136 years of uptime which should be enough to prevent | 
|---|
| 985 | * premature wrap arounds. | 
|---|
| 986 | */ | 
|---|
| 987 | time64_t ktime_get_seconds(void) | 
|---|
| 988 | { | 
|---|
| 989 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 990 |  | 
|---|
| 991 | WARN_ON(timekeeping_suspended); | 
|---|
| 992 | return tk->ktime_sec; | 
|---|
| 993 | } | 
|---|
| 994 | EXPORT_SYMBOL_GPL(ktime_get_seconds); | 
|---|
| 995 |  | 
|---|
| 996 | /** | 
|---|
| 997 | * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME | 
|---|
| 998 | * | 
|---|
| 999 | * Returns the wall clock seconds since 1970. | 
|---|
| 1000 | * | 
|---|
| 1001 | * For 64bit systems the fast access to tk->xtime_sec is preserved. On | 
|---|
| 1002 | * 32bit systems the access must be protected with the sequence | 
|---|
| 1003 | * counter to provide "atomic" access to the 64bit tk->xtime_sec | 
|---|
| 1004 | * value. | 
|---|
| 1005 | */ | 
|---|
| 1006 | time64_t ktime_get_real_seconds(void) | 
|---|
| 1007 | { | 
|---|
| 1008 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 1009 | time64_t seconds; | 
|---|
| 1010 | unsigned int seq; | 
|---|
| 1011 |  | 
|---|
| 1012 | if (IS_ENABLED(CONFIG_64BIT)) | 
|---|
| 1013 | return tk->xtime_sec; | 
|---|
| 1014 |  | 
|---|
| 1015 | do { | 
|---|
| 1016 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 1017 | seconds = tk->xtime_sec; | 
|---|
| 1018 |  | 
|---|
| 1019 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 1020 |  | 
|---|
| 1021 | return seconds; | 
|---|
| 1022 | } | 
|---|
| 1023 | EXPORT_SYMBOL_GPL(ktime_get_real_seconds); | 
|---|
| 1024 |  | 
|---|
| 1025 | /** | 
|---|
| 1026 | * __ktime_get_real_seconds - Unprotected access to CLOCK_REALTIME seconds | 
|---|
| 1027 | * | 
|---|
| 1028 | * The same as ktime_get_real_seconds() but without the sequence counter | 
|---|
| 1029 | * protection. This function is used in restricted contexts like the x86 MCE | 
|---|
| 1030 | * handler and in KGDB. It's unprotected on 32-bit vs. concurrent half | 
|---|
| 1031 | * completed modification and only to be used for such critical contexts. | 
|---|
| 1032 | * | 
|---|
| 1033 | * Returns: Racy snapshot of the CLOCK_REALTIME seconds value | 
|---|
| 1034 | */ | 
|---|
| 1035 | noinstr time64_t __ktime_get_real_seconds(void) | 
|---|
| 1036 | { | 
|---|
| 1037 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 1038 |  | 
|---|
| 1039 | return tk->xtime_sec; | 
|---|
| 1040 | } | 
|---|
| 1041 |  | 
|---|
| 1042 | /** | 
|---|
| 1043 | * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter | 
|---|
| 1044 | * @systime_snapshot:	pointer to struct receiving the system time snapshot | 
|---|
| 1045 | */ | 
|---|
| 1046 | void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) | 
|---|
| 1047 | { | 
|---|
| 1048 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 1049 | unsigned int seq; | 
|---|
| 1050 | ktime_t base_raw; | 
|---|
| 1051 | ktime_t base_real; | 
|---|
| 1052 | ktime_t base_boot; | 
|---|
| 1053 | u64 nsec_raw; | 
|---|
| 1054 | u64 nsec_real; | 
|---|
| 1055 | u64 now; | 
|---|
| 1056 |  | 
|---|
| 1057 | WARN_ON_ONCE(timekeeping_suspended); | 
|---|
| 1058 |  | 
|---|
| 1059 | do { | 
|---|
| 1060 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 1061 | now = tk_clock_read(tkr: &tk->tkr_mono); | 
|---|
| 1062 | systime_snapshot->cs_id = tk->tkr_mono.clock->id; | 
|---|
| 1063 | systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; | 
|---|
| 1064 | systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; | 
|---|
| 1065 | base_real = ktime_add(tk->tkr_mono.base, | 
|---|
| 1066 | tk_core.timekeeper.offs_real); | 
|---|
| 1067 | base_boot = ktime_add(tk->tkr_mono.base, | 
|---|
| 1068 | tk_core.timekeeper.offs_boot); | 
|---|
| 1069 | base_raw = tk->tkr_raw.base; | 
|---|
| 1070 | nsec_real = timekeeping_cycles_to_ns(tkr: &tk->tkr_mono, cycles: now); | 
|---|
| 1071 | nsec_raw  = timekeeping_cycles_to_ns(tkr: &tk->tkr_raw, cycles: now); | 
|---|
| 1072 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 1073 |  | 
|---|
| 1074 | systime_snapshot->cycles = now; | 
|---|
| 1075 | systime_snapshot->real = ktime_add_ns(base_real, nsec_real); | 
|---|
| 1076 | systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); | 
|---|
| 1077 | systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); | 
|---|
| 1078 | } | 
|---|
| 1079 | EXPORT_SYMBOL_GPL(ktime_get_snapshot); | 
|---|
| 1080 |  | 
|---|
| 1081 | /* Scale base by mult/div checking for overflow */ | 
|---|
| 1082 | static int scale64_check_overflow(u64 mult, u64 div, u64 *base) | 
|---|
| 1083 | { | 
|---|
| 1084 | u64 tmp, rem; | 
|---|
| 1085 |  | 
|---|
| 1086 | tmp = div64_u64_rem(dividend: *base, divisor: div, remainder: &rem); | 
|---|
| 1087 |  | 
|---|
| 1088 | if (((int)sizeof(u64)*8 - fls64(x: mult) < fls64(x: tmp)) || | 
|---|
| 1089 | ((int)sizeof(u64)*8 - fls64(x: mult) < fls64(x: rem))) | 
|---|
| 1090 | return -EOVERFLOW; | 
|---|
| 1091 | tmp *= mult; | 
|---|
| 1092 |  | 
|---|
| 1093 | rem = div64_u64(dividend: rem * mult, divisor: div); | 
|---|
| 1094 | *base = tmp + rem; | 
|---|
| 1095 | return 0; | 
|---|
| 1096 | } | 
|---|
| 1097 |  | 
|---|
| 1098 | /** | 
|---|
| 1099 | * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval | 
|---|
| 1100 | * @history:			Snapshot representing start of history | 
|---|
| 1101 | * @partial_history_cycles:	Cycle offset into history (fractional part) | 
|---|
| 1102 | * @total_history_cycles:	Total history length in cycles | 
|---|
| 1103 | * @discontinuity:		True indicates clock was set on history period | 
|---|
| 1104 | * @ts:				Cross timestamp that should be adjusted using | 
|---|
| 1105 | *	partial/total ratio | 
|---|
| 1106 | * | 
|---|
| 1107 | * Helper function used by get_device_system_crosststamp() to correct the | 
|---|
| 1108 | * crosstimestamp corresponding to the start of the current interval to the | 
|---|
| 1109 | * system counter value (timestamp point) provided by the driver. The | 
|---|
| 1110 | * total_history_* quantities are the total history starting at the provided | 
|---|
| 1111 | * reference point and ending at the start of the current interval. The cycle | 
|---|
| 1112 | * count between the driver timestamp point and the start of the current | 
|---|
| 1113 | * interval is partial_history_cycles. | 
|---|
| 1114 | */ | 
|---|
| 1115 | static int adjust_historical_crosststamp(struct system_time_snapshot *history, | 
|---|
| 1116 | u64 partial_history_cycles, | 
|---|
| 1117 | u64 total_history_cycles, | 
|---|
| 1118 | bool discontinuity, | 
|---|
| 1119 | struct system_device_crosststamp *ts) | 
|---|
| 1120 | { | 
|---|
| 1121 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 1122 | u64 corr_raw, corr_real; | 
|---|
| 1123 | bool interp_forward; | 
|---|
| 1124 | int ret; | 
|---|
| 1125 |  | 
|---|
| 1126 | if (total_history_cycles == 0 || partial_history_cycles == 0) | 
|---|
| 1127 | return 0; | 
|---|
| 1128 |  | 
|---|
| 1129 | /* Interpolate shortest distance from beginning or end of history */ | 
|---|
| 1130 | interp_forward = partial_history_cycles > total_history_cycles / 2; | 
|---|
| 1131 | partial_history_cycles = interp_forward ? | 
|---|
| 1132 | total_history_cycles - partial_history_cycles : | 
|---|
| 1133 | partial_history_cycles; | 
|---|
| 1134 |  | 
|---|
| 1135 | /* | 
|---|
| 1136 | * Scale the monotonic raw time delta by: | 
|---|
| 1137 | *	partial_history_cycles / total_history_cycles | 
|---|
| 1138 | */ | 
|---|
| 1139 | corr_raw = (u64)ktime_to_ns( | 
|---|
| 1140 | ktime_sub(ts->sys_monoraw, history->raw)); | 
|---|
| 1141 | ret = scale64_check_overflow(mult: partial_history_cycles, | 
|---|
| 1142 | div: total_history_cycles, base: &corr_raw); | 
|---|
| 1143 | if (ret) | 
|---|
| 1144 | return ret; | 
|---|
| 1145 |  | 
|---|
| 1146 | /* | 
|---|
| 1147 | * If there is a discontinuity in the history, scale monotonic raw | 
|---|
| 1148 | *	correction by: | 
|---|
| 1149 | *	mult(real)/mult(raw) yielding the realtime correction | 
|---|
| 1150 | * Otherwise, calculate the realtime correction similar to monotonic | 
|---|
| 1151 | *	raw calculation | 
|---|
| 1152 | */ | 
|---|
| 1153 | if (discontinuity) { | 
|---|
| 1154 | corr_real = mul_u64_u32_div | 
|---|
| 1155 | (a: corr_raw, mul: tk->tkr_mono.mult, div: tk->tkr_raw.mult); | 
|---|
| 1156 | } else { | 
|---|
| 1157 | corr_real = (u64)ktime_to_ns( | 
|---|
| 1158 | ktime_sub(ts->sys_realtime, history->real)); | 
|---|
| 1159 | ret = scale64_check_overflow(mult: partial_history_cycles, | 
|---|
| 1160 | div: total_history_cycles, base: &corr_real); | 
|---|
| 1161 | if (ret) | 
|---|
| 1162 | return ret; | 
|---|
| 1163 | } | 
|---|
| 1164 |  | 
|---|
| 1165 | /* Fixup monotonic raw and real time time values */ | 
|---|
| 1166 | if (interp_forward) { | 
|---|
| 1167 | ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); | 
|---|
| 1168 | ts->sys_realtime = ktime_add_ns(history->real, corr_real); | 
|---|
| 1169 | } else { | 
|---|
| 1170 | ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); | 
|---|
| 1171 | ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); | 
|---|
| 1172 | } | 
|---|
| 1173 |  | 
|---|
| 1174 | return 0; | 
|---|
| 1175 | } | 
|---|
| 1176 |  | 
|---|
| 1177 | /* | 
|---|
| 1178 | * timestamp_in_interval - true if ts is chronologically in [start, end] | 
|---|
| 1179 | * | 
|---|
| 1180 | * True if ts occurs chronologically at or after start, and before or at end. | 
|---|
| 1181 | */ | 
|---|
| 1182 | static bool timestamp_in_interval(u64 start, u64 end, u64 ts) | 
|---|
| 1183 | { | 
|---|
| 1184 | if (ts >= start && ts <= end) | 
|---|
| 1185 | return true; | 
|---|
| 1186 | if (start > end && (ts >= start || ts <= end)) | 
|---|
| 1187 | return true; | 
|---|
| 1188 | return false; | 
|---|
| 1189 | } | 
|---|
| 1190 |  | 
|---|
| 1191 | static bool convert_clock(u64 *val, u32 numerator, u32 denominator) | 
|---|
| 1192 | { | 
|---|
| 1193 | u64 rem, res; | 
|---|
| 1194 |  | 
|---|
| 1195 | if (!numerator || !denominator) | 
|---|
| 1196 | return false; | 
|---|
| 1197 |  | 
|---|
| 1198 | res = div64_u64_rem(dividend: *val, divisor: denominator, remainder: &rem) * numerator; | 
|---|
| 1199 | *val = res + div_u64(dividend: rem * numerator, divisor: denominator); | 
|---|
| 1200 | return true; | 
|---|
| 1201 | } | 
|---|
| 1202 |  | 
|---|
| 1203 | static bool convert_base_to_cs(struct system_counterval_t *scv) | 
|---|
| 1204 | { | 
|---|
| 1205 | struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; | 
|---|
| 1206 | struct clocksource_base *base; | 
|---|
| 1207 | u32 num, den; | 
|---|
| 1208 |  | 
|---|
| 1209 | /* The timestamp was taken from the time keeper clock source */ | 
|---|
| 1210 | if (cs->id == scv->cs_id) | 
|---|
| 1211 | return true; | 
|---|
| 1212 |  | 
|---|
| 1213 | /* | 
|---|
| 1214 | * Check whether cs_id matches the base clock. Prevent the compiler from | 
|---|
| 1215 | * re-evaluating @base as the clocksource might change concurrently. | 
|---|
| 1216 | */ | 
|---|
| 1217 | base = READ_ONCE(cs->base); | 
|---|
| 1218 | if (!base || base->id != scv->cs_id) | 
|---|
| 1219 | return false; | 
|---|
| 1220 |  | 
|---|
| 1221 | num = scv->use_nsecs ? cs->freq_khz : base->numerator; | 
|---|
| 1222 | den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; | 
|---|
| 1223 |  | 
|---|
| 1224 | if (!convert_clock(val: &scv->cycles, numerator: num, denominator: den)) | 
|---|
| 1225 | return false; | 
|---|
| 1226 |  | 
|---|
| 1227 | scv->cycles += base->offset; | 
|---|
| 1228 | return true; | 
|---|
| 1229 | } | 
|---|
| 1230 |  | 
|---|
| 1231 | static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) | 
|---|
| 1232 | { | 
|---|
| 1233 | struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; | 
|---|
| 1234 | struct clocksource_base *base; | 
|---|
| 1235 |  | 
|---|
| 1236 | /* | 
|---|
| 1237 | * Check whether base_id matches the base clock. Prevent the compiler from | 
|---|
| 1238 | * re-evaluating @base as the clocksource might change concurrently. | 
|---|
| 1239 | */ | 
|---|
| 1240 | base = READ_ONCE(cs->base); | 
|---|
| 1241 | if (!base || base->id != base_id) | 
|---|
| 1242 | return false; | 
|---|
| 1243 |  | 
|---|
| 1244 | *cycles -= base->offset; | 
|---|
| 1245 | if (!convert_clock(val: cycles, numerator: base->denominator, denominator: base->numerator)) | 
|---|
| 1246 | return false; | 
|---|
| 1247 | return true; | 
|---|
| 1248 | } | 
|---|
| 1249 |  | 
|---|
| 1250 | static bool convert_ns_to_cs(u64 *delta) | 
|---|
| 1251 | { | 
|---|
| 1252 | struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; | 
|---|
| 1253 |  | 
|---|
| 1254 | if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) | 
|---|
| 1255 | return false; | 
|---|
| 1256 |  | 
|---|
| 1257 | *delta = div_u64(dividend: (*delta << tkr->shift) - tkr->xtime_nsec, divisor: tkr->mult); | 
|---|
| 1258 | return true; | 
|---|
| 1259 | } | 
|---|
| 1260 |  | 
|---|
| 1261 | /** | 
|---|
| 1262 | * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp | 
|---|
| 1263 | * @treal:	CLOCK_REALTIME timestamp to convert | 
|---|
| 1264 | * @base_id:	base clocksource id | 
|---|
| 1265 | * @cycles:	pointer to store the converted base clock timestamp | 
|---|
| 1266 | * | 
|---|
| 1267 | * Converts a supplied, future realtime clock value to the corresponding base clock value. | 
|---|
| 1268 | * | 
|---|
| 1269 | * Return:  true if the conversion is successful, false otherwise. | 
|---|
| 1270 | */ | 
|---|
| 1271 | bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) | 
|---|
| 1272 | { | 
|---|
| 1273 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 1274 | unsigned int seq; | 
|---|
| 1275 | u64 delta; | 
|---|
| 1276 |  | 
|---|
| 1277 | do { | 
|---|
| 1278 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 1279 | if ((u64)treal < tk->tkr_mono.base_real) | 
|---|
| 1280 | return false; | 
|---|
| 1281 | delta = (u64)treal - tk->tkr_mono.base_real; | 
|---|
| 1282 | if (!convert_ns_to_cs(delta: &delta)) | 
|---|
| 1283 | return false; | 
|---|
| 1284 | *cycles = tk->tkr_mono.cycle_last + delta; | 
|---|
| 1285 | if (!convert_cs_to_base(cycles, base_id)) | 
|---|
| 1286 | return false; | 
|---|
| 1287 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 1288 |  | 
|---|
| 1289 | return true; | 
|---|
| 1290 | } | 
|---|
| 1291 | EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); | 
|---|
| 1292 |  | 
|---|
| 1293 | /** | 
|---|
| 1294 | * get_device_system_crosststamp - Synchronously capture system/device timestamp | 
|---|
| 1295 | * @get_time_fn:	Callback to get simultaneous device time and | 
|---|
| 1296 | *	system counter from the device driver | 
|---|
| 1297 | * @ctx:		Context passed to get_time_fn() | 
|---|
| 1298 | * @history_begin:	Historical reference point used to interpolate system | 
|---|
| 1299 | *	time when counter provided by the driver is before the current interval | 
|---|
| 1300 | * @xtstamp:		Receives simultaneously captured system and device time | 
|---|
| 1301 | * | 
|---|
| 1302 | * Reads a timestamp from a device and correlates it to system time | 
|---|
| 1303 | */ | 
|---|
| 1304 | int get_device_system_crosststamp(int (*get_time_fn) | 
|---|
| 1305 | (ktime_t *device_time, | 
|---|
| 1306 | struct system_counterval_t *sys_counterval, | 
|---|
| 1307 | void *ctx), | 
|---|
| 1308 | void *ctx, | 
|---|
| 1309 | struct system_time_snapshot *history_begin, | 
|---|
| 1310 | struct system_device_crosststamp *xtstamp) | 
|---|
| 1311 | { | 
|---|
| 1312 | struct system_counterval_t system_counterval = {}; | 
|---|
| 1313 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 1314 | u64 cycles, now, interval_start; | 
|---|
| 1315 | unsigned int clock_was_set_seq = 0; | 
|---|
| 1316 | ktime_t base_real, base_raw; | 
|---|
| 1317 | u64 nsec_real, nsec_raw; | 
|---|
| 1318 | u8 cs_was_changed_seq; | 
|---|
| 1319 | unsigned int seq; | 
|---|
| 1320 | bool do_interp; | 
|---|
| 1321 | int ret; | 
|---|
| 1322 |  | 
|---|
| 1323 | do { | 
|---|
| 1324 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 1325 | /* | 
|---|
| 1326 | * Try to synchronously capture device time and a system | 
|---|
| 1327 | * counter value calling back into the device driver | 
|---|
| 1328 | */ | 
|---|
| 1329 | ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); | 
|---|
| 1330 | if (ret) | 
|---|
| 1331 | return ret; | 
|---|
| 1332 |  | 
|---|
| 1333 | /* | 
|---|
| 1334 | * Verify that the clocksource ID associated with the captured | 
|---|
| 1335 | * system counter value is the same as for the currently | 
|---|
| 1336 | * installed timekeeper clocksource | 
|---|
| 1337 | */ | 
|---|
| 1338 | if (system_counterval.cs_id == CSID_GENERIC || | 
|---|
| 1339 | !convert_base_to_cs(scv: &system_counterval)) | 
|---|
| 1340 | return -ENODEV; | 
|---|
| 1341 | cycles = system_counterval.cycles; | 
|---|
| 1342 |  | 
|---|
| 1343 | /* | 
|---|
| 1344 | * Check whether the system counter value provided by the | 
|---|
| 1345 | * device driver is on the current timekeeping interval. | 
|---|
| 1346 | */ | 
|---|
| 1347 | now = tk_clock_read(tkr: &tk->tkr_mono); | 
|---|
| 1348 | interval_start = tk->tkr_mono.cycle_last; | 
|---|
| 1349 | if (!timestamp_in_interval(start: interval_start, end: now, ts: cycles)) { | 
|---|
| 1350 | clock_was_set_seq = tk->clock_was_set_seq; | 
|---|
| 1351 | cs_was_changed_seq = tk->cs_was_changed_seq; | 
|---|
| 1352 | cycles = interval_start; | 
|---|
| 1353 | do_interp = true; | 
|---|
| 1354 | } else { | 
|---|
| 1355 | do_interp = false; | 
|---|
| 1356 | } | 
|---|
| 1357 |  | 
|---|
| 1358 | base_real = ktime_add(tk->tkr_mono.base, | 
|---|
| 1359 | tk_core.timekeeper.offs_real); | 
|---|
| 1360 | base_raw = tk->tkr_raw.base; | 
|---|
| 1361 |  | 
|---|
| 1362 | nsec_real = timekeeping_cycles_to_ns(tkr: &tk->tkr_mono, cycles); | 
|---|
| 1363 | nsec_raw = timekeeping_cycles_to_ns(tkr: &tk->tkr_raw, cycles); | 
|---|
| 1364 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 1365 |  | 
|---|
| 1366 | xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); | 
|---|
| 1367 | xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); | 
|---|
| 1368 |  | 
|---|
| 1369 | /* | 
|---|
| 1370 | * Interpolate if necessary, adjusting back from the start of the | 
|---|
| 1371 | * current interval | 
|---|
| 1372 | */ | 
|---|
| 1373 | if (do_interp) { | 
|---|
| 1374 | u64 partial_history_cycles, total_history_cycles; | 
|---|
| 1375 | bool discontinuity; | 
|---|
| 1376 |  | 
|---|
| 1377 | /* | 
|---|
| 1378 | * Check that the counter value is not before the provided | 
|---|
| 1379 | * history reference and that the history doesn't cross a | 
|---|
| 1380 | * clocksource change | 
|---|
| 1381 | */ | 
|---|
| 1382 | if (!history_begin || | 
|---|
| 1383 | !timestamp_in_interval(start: history_begin->cycles, | 
|---|
| 1384 | end: cycles, ts: system_counterval.cycles) || | 
|---|
| 1385 | history_begin->cs_was_changed_seq != cs_was_changed_seq) | 
|---|
| 1386 | return -EINVAL; | 
|---|
| 1387 | partial_history_cycles = cycles - system_counterval.cycles; | 
|---|
| 1388 | total_history_cycles = cycles - history_begin->cycles; | 
|---|
| 1389 | discontinuity = | 
|---|
| 1390 | history_begin->clock_was_set_seq != clock_was_set_seq; | 
|---|
| 1391 |  | 
|---|
| 1392 | ret = adjust_historical_crosststamp(history: history_begin, | 
|---|
| 1393 | partial_history_cycles, | 
|---|
| 1394 | total_history_cycles, | 
|---|
| 1395 | discontinuity, ts: xtstamp); | 
|---|
| 1396 | if (ret) | 
|---|
| 1397 | return ret; | 
|---|
| 1398 | } | 
|---|
| 1399 |  | 
|---|
| 1400 | return 0; | 
|---|
| 1401 | } | 
|---|
| 1402 | EXPORT_SYMBOL_GPL(get_device_system_crosststamp); | 
|---|
| 1403 |  | 
|---|
| 1404 | /** | 
|---|
| 1405 | * timekeeping_clocksource_has_base - Check whether the current clocksource | 
|---|
| 1406 | *				      is based on given a base clock | 
|---|
| 1407 | * @id:		base clocksource ID | 
|---|
| 1408 | * | 
|---|
| 1409 | * Note:	The return value is a snapshot which can become invalid right | 
|---|
| 1410 | *		after the function returns. | 
|---|
| 1411 | * | 
|---|
| 1412 | * Return:	true if the timekeeper clocksource has a base clock with @id, | 
|---|
| 1413 | *		false otherwise | 
|---|
| 1414 | */ | 
|---|
| 1415 | bool timekeeping_clocksource_has_base(enum clocksource_ids id) | 
|---|
| 1416 | { | 
|---|
| 1417 | /* | 
|---|
| 1418 | * This is a snapshot, so no point in using the sequence | 
|---|
| 1419 | * count. Just prevent the compiler from re-evaluating @base as the | 
|---|
| 1420 | * clocksource might change concurrently. | 
|---|
| 1421 | */ | 
|---|
| 1422 | struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); | 
|---|
| 1423 |  | 
|---|
| 1424 | return base ? base->id == id : false; | 
|---|
| 1425 | } | 
|---|
| 1426 | EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); | 
|---|
| 1427 |  | 
|---|
| 1428 | /** | 
|---|
| 1429 | * do_settimeofday64 - Sets the time of day. | 
|---|
| 1430 | * @ts:     pointer to the timespec64 variable containing the new time | 
|---|
| 1431 | * | 
|---|
| 1432 | * Sets the time of day to the new time and update NTP and notify hrtimers | 
|---|
| 1433 | */ | 
|---|
| 1434 | int do_settimeofday64(const struct timespec64 *ts) | 
|---|
| 1435 | { | 
|---|
| 1436 | struct timespec64 ts_delta, xt; | 
|---|
| 1437 |  | 
|---|
| 1438 | if (!timespec64_valid_settod(ts)) | 
|---|
| 1439 | return -EINVAL; | 
|---|
| 1440 |  | 
|---|
| 1441 | scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { | 
|---|
| 1442 | struct timekeeper *tks = &tk_core.shadow_timekeeper; | 
|---|
| 1443 |  | 
|---|
| 1444 | timekeeping_forward_now(tk: tks); | 
|---|
| 1445 |  | 
|---|
| 1446 | xt = tk_xtime(tk: tks); | 
|---|
| 1447 | ts_delta = timespec64_sub(lhs: *ts, rhs: xt); | 
|---|
| 1448 |  | 
|---|
| 1449 | if (timespec64_compare(lhs: &tks->wall_to_monotonic, rhs: &ts_delta) > 0) { | 
|---|
| 1450 | timekeeping_restore_shadow(tkd: &tk_core); | 
|---|
| 1451 | return -EINVAL; | 
|---|
| 1452 | } | 
|---|
| 1453 |  | 
|---|
| 1454 | tk_set_wall_to_mono(tk: tks, wtm: timespec64_sub(lhs: tks->wall_to_monotonic, rhs: ts_delta)); | 
|---|
| 1455 | tk_set_xtime(tk: tks, ts); | 
|---|
| 1456 | timekeeping_update_from_shadow(tkd: &tk_core, TK_UPDATE_ALL); | 
|---|
| 1457 | } | 
|---|
| 1458 |  | 
|---|
| 1459 | /* Signal hrtimers about time change */ | 
|---|
| 1460 | clock_was_set(CLOCK_SET_WALL); | 
|---|
| 1461 |  | 
|---|
| 1462 | audit_tk_injoffset(offset: ts_delta); | 
|---|
| 1463 | add_device_randomness(buf: ts, len: sizeof(*ts)); | 
|---|
| 1464 | return 0; | 
|---|
| 1465 | } | 
|---|
| 1466 | EXPORT_SYMBOL(do_settimeofday64); | 
|---|
| 1467 |  | 
|---|
| 1468 | static inline bool timekeeper_is_core_tk(struct timekeeper *tk) | 
|---|
| 1469 | { | 
|---|
| 1470 | return !IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS) || tk->id == TIMEKEEPER_CORE; | 
|---|
| 1471 | } | 
|---|
| 1472 |  | 
|---|
| 1473 | /** | 
|---|
| 1474 | * __timekeeping_inject_offset - Adds or subtracts from the current time. | 
|---|
| 1475 | * @tkd:	Pointer to the timekeeper to modify | 
|---|
| 1476 | * @ts:		Pointer to the timespec variable containing the offset | 
|---|
| 1477 | * | 
|---|
| 1478 | * Adds or subtracts an offset value from the current time. | 
|---|
| 1479 | */ | 
|---|
| 1480 | static int __timekeeping_inject_offset(struct tk_data *tkd, const struct timespec64 *ts) | 
|---|
| 1481 | { | 
|---|
| 1482 | struct timekeeper *tks = &tkd->shadow_timekeeper; | 
|---|
| 1483 | struct timespec64 tmp; | 
|---|
| 1484 |  | 
|---|
| 1485 | if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) | 
|---|
| 1486 | return -EINVAL; | 
|---|
| 1487 |  | 
|---|
| 1488 | timekeeping_forward_now(tk: tks); | 
|---|
| 1489 |  | 
|---|
| 1490 | if (timekeeper_is_core_tk(tk: tks)) { | 
|---|
| 1491 | /* Make sure the proposed value is valid */ | 
|---|
| 1492 | tmp = timespec64_add(lhs: tk_xtime(tk: tks), rhs: *ts); | 
|---|
| 1493 | if (timespec64_compare(lhs: &tks->wall_to_monotonic, rhs: ts) > 0 || | 
|---|
| 1494 | !timespec64_valid_settod(ts: &tmp)) { | 
|---|
| 1495 | timekeeping_restore_shadow(tkd); | 
|---|
| 1496 | return -EINVAL; | 
|---|
| 1497 | } | 
|---|
| 1498 |  | 
|---|
| 1499 | tk_xtime_add(tk: tks, ts); | 
|---|
| 1500 | tk_set_wall_to_mono(tk: tks, wtm: timespec64_sub(lhs: tks->wall_to_monotonic, rhs: *ts)); | 
|---|
| 1501 | } else { | 
|---|
| 1502 | struct tk_read_base *tkr_mono = &tks->tkr_mono; | 
|---|
| 1503 | ktime_t now, offs; | 
|---|
| 1504 |  | 
|---|
| 1505 | /* Get the current time */ | 
|---|
| 1506 | now = ktime_add_ns(tkr_mono->base, timekeeping_get_ns(tkr_mono)); | 
|---|
| 1507 | /* Add the relative offset change */ | 
|---|
| 1508 | offs = ktime_add(tks->offs_aux, timespec64_to_ktime(*ts)); | 
|---|
| 1509 |  | 
|---|
| 1510 | /* Prevent that the resulting time becomes negative */ | 
|---|
| 1511 | if (ktime_add(now, offs) < 0) { | 
|---|
| 1512 | timekeeping_restore_shadow(tkd); | 
|---|
| 1513 | return -EINVAL; | 
|---|
| 1514 | } | 
|---|
| 1515 | tk_update_aux_offs(tk: tks, offs); | 
|---|
| 1516 | } | 
|---|
| 1517 |  | 
|---|
| 1518 | timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL); | 
|---|
| 1519 | return 0; | 
|---|
| 1520 | } | 
|---|
| 1521 |  | 
|---|
| 1522 | static int timekeeping_inject_offset(const struct timespec64 *ts) | 
|---|
| 1523 | { | 
|---|
| 1524 | int ret; | 
|---|
| 1525 |  | 
|---|
| 1526 | scoped_guard (raw_spinlock_irqsave, &tk_core.lock) | 
|---|
| 1527 | ret = __timekeeping_inject_offset(tkd: &tk_core, ts); | 
|---|
| 1528 |  | 
|---|
| 1529 | /* Signal hrtimers about time change */ | 
|---|
| 1530 | if (!ret) | 
|---|
| 1531 | clock_was_set(CLOCK_SET_WALL); | 
|---|
| 1532 | return ret; | 
|---|
| 1533 | } | 
|---|
| 1534 |  | 
|---|
| 1535 | /* | 
|---|
| 1536 | * Indicates if there is an offset between the system clock and the hardware | 
|---|
| 1537 | * clock/persistent clock/rtc. | 
|---|
| 1538 | */ | 
|---|
| 1539 | int persistent_clock_is_local; | 
|---|
| 1540 |  | 
|---|
| 1541 | /* | 
|---|
| 1542 | * Adjust the time obtained from the CMOS to be UTC time instead of | 
|---|
| 1543 | * local time. | 
|---|
| 1544 | * | 
|---|
| 1545 | * This is ugly, but preferable to the alternatives.  Otherwise we | 
|---|
| 1546 | * would either need to write a program to do it in /etc/rc (and risk | 
|---|
| 1547 | * confusion if the program gets run more than once; it would also be | 
|---|
| 1548 | * hard to make the program warp the clock precisely n hours)  or | 
|---|
| 1549 | * compile in the timezone information into the kernel.  Bad, bad.... | 
|---|
| 1550 | * | 
|---|
| 1551 | *						- TYT, 1992-01-01 | 
|---|
| 1552 | * | 
|---|
| 1553 | * The best thing to do is to keep the CMOS clock in universal time (UTC) | 
|---|
| 1554 | * as real UNIX machines always do it. This avoids all headaches about | 
|---|
| 1555 | * daylight saving times and warping kernel clocks. | 
|---|
| 1556 | */ | 
|---|
| 1557 | void timekeeping_warp_clock(void) | 
|---|
| 1558 | { | 
|---|
| 1559 | if (sys_tz.tz_minuteswest != 0) { | 
|---|
| 1560 | struct timespec64 adjust; | 
|---|
| 1561 |  | 
|---|
| 1562 | persistent_clock_is_local = 1; | 
|---|
| 1563 | adjust.tv_sec = sys_tz.tz_minuteswest * 60; | 
|---|
| 1564 | adjust.tv_nsec = 0; | 
|---|
| 1565 | timekeeping_inject_offset(ts: &adjust); | 
|---|
| 1566 | } | 
|---|
| 1567 | } | 
|---|
| 1568 |  | 
|---|
| 1569 | /* | 
|---|
| 1570 | * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic | 
|---|
| 1571 | */ | 
|---|
| 1572 | static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) | 
|---|
| 1573 | { | 
|---|
| 1574 | tk->tai_offset = tai_offset; | 
|---|
| 1575 | tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); | 
|---|
| 1576 | } | 
|---|
| 1577 |  | 
|---|
| 1578 | /* | 
|---|
| 1579 | * change_clocksource - Swaps clocksources if a new one is available | 
|---|
| 1580 | * | 
|---|
| 1581 | * Accumulates current time interval and initializes new clocksource | 
|---|
| 1582 | */ | 
|---|
| 1583 | static int change_clocksource(void *data) | 
|---|
| 1584 | { | 
|---|
| 1585 | struct clocksource *new = data, *old = NULL; | 
|---|
| 1586 |  | 
|---|
| 1587 | /* | 
|---|
| 1588 | * If the clocksource is in a module, get a module reference. | 
|---|
| 1589 | * Succeeds for built-in code (owner == NULL) as well. Abort if the | 
|---|
| 1590 | * reference can't be acquired. | 
|---|
| 1591 | */ | 
|---|
| 1592 | if (!try_module_get(module: new->owner)) | 
|---|
| 1593 | return 0; | 
|---|
| 1594 |  | 
|---|
| 1595 | /* Abort if the device can't be enabled */ | 
|---|
| 1596 | if (new->enable && new->enable(new) != 0) { | 
|---|
| 1597 | module_put(module: new->owner); | 
|---|
| 1598 | return 0; | 
|---|
| 1599 | } | 
|---|
| 1600 |  | 
|---|
| 1601 | scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { | 
|---|
| 1602 | struct timekeeper *tks = &tk_core.shadow_timekeeper; | 
|---|
| 1603 |  | 
|---|
| 1604 | timekeeping_forward_now(tk: tks); | 
|---|
| 1605 | old = tks->tkr_mono.clock; | 
|---|
| 1606 | tk_setup_internals(tk: tks, clock: new); | 
|---|
| 1607 | timekeeping_update_from_shadow(tkd: &tk_core, TK_UPDATE_ALL); | 
|---|
| 1608 | } | 
|---|
| 1609 |  | 
|---|
| 1610 | tk_aux_update_clocksource(); | 
|---|
| 1611 |  | 
|---|
| 1612 | if (old) { | 
|---|
| 1613 | if (old->disable) | 
|---|
| 1614 | old->disable(old); | 
|---|
| 1615 | module_put(module: old->owner); | 
|---|
| 1616 | } | 
|---|
| 1617 |  | 
|---|
| 1618 | return 0; | 
|---|
| 1619 | } | 
|---|
| 1620 |  | 
|---|
| 1621 | /** | 
|---|
| 1622 | * timekeeping_notify - Install a new clock source | 
|---|
| 1623 | * @clock:		pointer to the clock source | 
|---|
| 1624 | * | 
|---|
| 1625 | * This function is called from clocksource.c after a new, better clock | 
|---|
| 1626 | * source has been registered. The caller holds the clocksource_mutex. | 
|---|
| 1627 | */ | 
|---|
| 1628 | int timekeeping_notify(struct clocksource *clock) | 
|---|
| 1629 | { | 
|---|
| 1630 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 1631 |  | 
|---|
| 1632 | if (tk->tkr_mono.clock == clock) | 
|---|
| 1633 | return 0; | 
|---|
| 1634 | stop_machine(fn: change_clocksource, data: clock, NULL); | 
|---|
| 1635 | tick_clock_notify(); | 
|---|
| 1636 | return tk->tkr_mono.clock == clock ? 0 : -1; | 
|---|
| 1637 | } | 
|---|
| 1638 |  | 
|---|
| 1639 | /** | 
|---|
| 1640 | * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec | 
|---|
| 1641 | * @ts:		pointer to the timespec64 to be set | 
|---|
| 1642 | * | 
|---|
| 1643 | * Returns the raw monotonic time (completely un-modified by ntp) | 
|---|
| 1644 | */ | 
|---|
| 1645 | void ktime_get_raw_ts64(struct timespec64 *ts) | 
|---|
| 1646 | { | 
|---|
| 1647 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 1648 | unsigned int seq; | 
|---|
| 1649 | u64 nsecs; | 
|---|
| 1650 |  | 
|---|
| 1651 | do { | 
|---|
| 1652 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 1653 | ts->tv_sec = tk->raw_sec; | 
|---|
| 1654 | nsecs = timekeeping_get_ns(tkr: &tk->tkr_raw); | 
|---|
| 1655 |  | 
|---|
| 1656 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 1657 |  | 
|---|
| 1658 | ts->tv_nsec = 0; | 
|---|
| 1659 | timespec64_add_ns(a: ts, ns: nsecs); | 
|---|
| 1660 | } | 
|---|
| 1661 | EXPORT_SYMBOL(ktime_get_raw_ts64); | 
|---|
| 1662 |  | 
|---|
| 1663 | /** | 
|---|
| 1664 | * ktime_get_clock_ts64 - Returns time of a clock in a timespec | 
|---|
| 1665 | * @id:		POSIX clock ID of the clock to read | 
|---|
| 1666 | * @ts:		Pointer to the timespec64 to be set | 
|---|
| 1667 | * | 
|---|
| 1668 | * The timestamp is invalidated (@ts->sec is set to -1) if the | 
|---|
| 1669 | * clock @id is not available. | 
|---|
| 1670 | */ | 
|---|
| 1671 | void ktime_get_clock_ts64(clockid_t id, struct timespec64 *ts) | 
|---|
| 1672 | { | 
|---|
| 1673 | /* Invalidate time stamp */ | 
|---|
| 1674 | ts->tv_sec = -1; | 
|---|
| 1675 | ts->tv_nsec = 0; | 
|---|
| 1676 |  | 
|---|
| 1677 | switch (id) { | 
|---|
| 1678 | case CLOCK_REALTIME: | 
|---|
| 1679 | ktime_get_real_ts64(ts); | 
|---|
| 1680 | return; | 
|---|
| 1681 | case CLOCK_MONOTONIC: | 
|---|
| 1682 | ktime_get_ts64(ts); | 
|---|
| 1683 | return; | 
|---|
| 1684 | case CLOCK_MONOTONIC_RAW: | 
|---|
| 1685 | ktime_get_raw_ts64(ts); | 
|---|
| 1686 | return; | 
|---|
| 1687 | case CLOCK_AUX ... CLOCK_AUX_LAST: | 
|---|
| 1688 | if (IS_ENABLED(CONFIG_POSIX_AUX_CLOCKS)) | 
|---|
| 1689 | ktime_get_aux_ts64(id, kt: ts); | 
|---|
| 1690 | return; | 
|---|
| 1691 | default: | 
|---|
| 1692 | WARN_ON_ONCE(1); | 
|---|
| 1693 | } | 
|---|
| 1694 | } | 
|---|
| 1695 | EXPORT_SYMBOL_GPL(ktime_get_clock_ts64); | 
|---|
| 1696 |  | 
|---|
| 1697 | /** | 
|---|
| 1698 | * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres | 
|---|
| 1699 | */ | 
|---|
| 1700 | int timekeeping_valid_for_hres(void) | 
|---|
| 1701 | { | 
|---|
| 1702 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 1703 | unsigned int seq; | 
|---|
| 1704 | int ret; | 
|---|
| 1705 |  | 
|---|
| 1706 | do { | 
|---|
| 1707 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 1708 |  | 
|---|
| 1709 | ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; | 
|---|
| 1710 |  | 
|---|
| 1711 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 1712 |  | 
|---|
| 1713 | return ret; | 
|---|
| 1714 | } | 
|---|
| 1715 |  | 
|---|
| 1716 | /** | 
|---|
| 1717 | * timekeeping_max_deferment - Returns max time the clocksource can be deferred | 
|---|
| 1718 | */ | 
|---|
| 1719 | u64 timekeeping_max_deferment(void) | 
|---|
| 1720 | { | 
|---|
| 1721 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 1722 | unsigned int seq; | 
|---|
| 1723 | u64 ret; | 
|---|
| 1724 |  | 
|---|
| 1725 | do { | 
|---|
| 1726 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 1727 |  | 
|---|
| 1728 | ret = tk->tkr_mono.clock->max_idle_ns; | 
|---|
| 1729 |  | 
|---|
| 1730 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 1731 |  | 
|---|
| 1732 | return ret; | 
|---|
| 1733 | } | 
|---|
| 1734 |  | 
|---|
| 1735 | /** | 
|---|
| 1736 | * read_persistent_clock64 -  Return time from the persistent clock. | 
|---|
| 1737 | * @ts: Pointer to the storage for the readout value | 
|---|
| 1738 | * | 
|---|
| 1739 | * Weak dummy function for arches that do not yet support it. | 
|---|
| 1740 | * Reads the time from the battery backed persistent clock. | 
|---|
| 1741 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | 
|---|
| 1742 | * | 
|---|
| 1743 | *  XXX - Do be sure to remove it once all arches implement it. | 
|---|
| 1744 | */ | 
|---|
| 1745 | void __weak read_persistent_clock64(struct timespec64 *ts) | 
|---|
| 1746 | { | 
|---|
| 1747 | ts->tv_sec = 0; | 
|---|
| 1748 | ts->tv_nsec = 0; | 
|---|
| 1749 | } | 
|---|
| 1750 |  | 
|---|
| 1751 | /** | 
|---|
| 1752 | * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset | 
|---|
| 1753 | *                                        from the boot. | 
|---|
| 1754 | * @wall_time:	  current time as returned by persistent clock | 
|---|
| 1755 | * @boot_offset:  offset that is defined as wall_time - boot_time | 
|---|
| 1756 | * | 
|---|
| 1757 | * Weak dummy function for arches that do not yet support it. | 
|---|
| 1758 | * | 
|---|
| 1759 | * The default function calculates offset based on the current value of | 
|---|
| 1760 | * local_clock(). This way architectures that support sched_clock() but don't | 
|---|
| 1761 | * support dedicated boot time clock will provide the best estimate of the | 
|---|
| 1762 | * boot time. | 
|---|
| 1763 | */ | 
|---|
| 1764 | void __weak __init | 
|---|
| 1765 | read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, | 
|---|
| 1766 | struct timespec64 *boot_offset) | 
|---|
| 1767 | { | 
|---|
| 1768 | read_persistent_clock64(ts: wall_time); | 
|---|
| 1769 | *boot_offset = ns_to_timespec64(nsec: local_clock()); | 
|---|
| 1770 | } | 
|---|
| 1771 |  | 
|---|
| 1772 | static __init void tkd_basic_setup(struct tk_data *tkd, enum timekeeper_ids tk_id, bool valid) | 
|---|
| 1773 | { | 
|---|
| 1774 | raw_spin_lock_init(&tkd->lock); | 
|---|
| 1775 | seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); | 
|---|
| 1776 | tkd->timekeeper.id = tkd->shadow_timekeeper.id = tk_id; | 
|---|
| 1777 | tkd->timekeeper.clock_valid = tkd->shadow_timekeeper.clock_valid = valid; | 
|---|
| 1778 | } | 
|---|
| 1779 |  | 
|---|
| 1780 | /* | 
|---|
| 1781 | * Flag reflecting whether timekeeping_resume() has injected sleeptime. | 
|---|
| 1782 | * | 
|---|
| 1783 | * The flag starts of false and is only set when a suspend reaches | 
|---|
| 1784 | * timekeeping_suspend(), timekeeping_resume() sets it to false when the | 
|---|
| 1785 | * timekeeper clocksource is not stopping across suspend and has been | 
|---|
| 1786 | * used to update sleep time. If the timekeeper clocksource has stopped | 
|---|
| 1787 | * then the flag stays true and is used by the RTC resume code to decide | 
|---|
| 1788 | * whether sleeptime must be injected and if so the flag gets false then. | 
|---|
| 1789 | * | 
|---|
| 1790 | * If a suspend fails before reaching timekeeping_resume() then the flag | 
|---|
| 1791 | * stays false and prevents erroneous sleeptime injection. | 
|---|
| 1792 | */ | 
|---|
| 1793 | static bool suspend_timing_needed; | 
|---|
| 1794 |  | 
|---|
| 1795 | /* Flag for if there is a persistent clock on this platform */ | 
|---|
| 1796 | static bool persistent_clock_exists; | 
|---|
| 1797 |  | 
|---|
| 1798 | /* | 
|---|
| 1799 | * timekeeping_init - Initializes the clocksource and common timekeeping values | 
|---|
| 1800 | */ | 
|---|
| 1801 | void __init timekeeping_init(void) | 
|---|
| 1802 | { | 
|---|
| 1803 | struct timespec64 wall_time, boot_offset, wall_to_mono; | 
|---|
| 1804 | struct timekeeper *tks = &tk_core.shadow_timekeeper; | 
|---|
| 1805 | struct clocksource *clock; | 
|---|
| 1806 |  | 
|---|
| 1807 | tkd_basic_setup(tkd: &tk_core, tk_id: TIMEKEEPER_CORE, valid: true); | 
|---|
| 1808 | tk_aux_setup(); | 
|---|
| 1809 |  | 
|---|
| 1810 | read_persistent_wall_and_boot_offset(wall_time: &wall_time, boot_offset: &boot_offset); | 
|---|
| 1811 | if (timespec64_valid_settod(ts: &wall_time) && | 
|---|
| 1812 | timespec64_to_ns(ts: &wall_time) > 0) { | 
|---|
| 1813 | persistent_clock_exists = true; | 
|---|
| 1814 | } else if (timespec64_to_ns(ts: &wall_time) != 0) { | 
|---|
| 1815 | pr_warn( "Persistent clock returned invalid value"); | 
|---|
| 1816 | wall_time = (struct timespec64){0}; | 
|---|
| 1817 | } | 
|---|
| 1818 |  | 
|---|
| 1819 | if (timespec64_compare(&wall_time, &boot_offset) < 0) | 
|---|
| 1820 | boot_offset = (struct timespec64){0}; | 
|---|
| 1821 |  | 
|---|
| 1822 | /* | 
|---|
| 1823 | * We want set wall_to_mono, so the following is true: | 
|---|
| 1824 | * wall time + wall_to_mono = boot time | 
|---|
| 1825 | */ | 
|---|
| 1826 | wall_to_mono = timespec64_sub(boot_offset, wall_time); | 
|---|
| 1827 |  | 
|---|
| 1828 | guard(raw_spinlock_irqsave)(&tk_core.lock); | 
|---|
| 1829 |  | 
|---|
| 1830 | ntp_init(); | 
|---|
| 1831 |  | 
|---|
| 1832 | clock = clocksource_default_clock(); | 
|---|
| 1833 | if (clock->enable) | 
|---|
| 1834 | clock->enable(clock); | 
|---|
| 1835 | tk_setup_internals(tks, clock); | 
|---|
| 1836 |  | 
|---|
| 1837 | tk_set_xtime(tks, &wall_time); | 
|---|
| 1838 | tks->raw_sec = 0; | 
|---|
| 1839 |  | 
|---|
| 1840 | tk_set_wall_to_mono(tks, wall_to_mono); | 
|---|
| 1841 |  | 
|---|
| 1842 | timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); | 
|---|
| 1843 | } | 
|---|
| 1844 |  | 
|---|
| 1845 | /* time in seconds when suspend began for persistent clock */ | 
|---|
| 1846 | static struct timespec64 timekeeping_suspend_time; | 
|---|
| 1847 |  | 
|---|
| 1848 | /** | 
|---|
| 1849 | * __timekeeping_inject_sleeptime - Internal function to add sleep interval | 
|---|
| 1850 | * @tk:		Pointer to the timekeeper to be updated | 
|---|
| 1851 | * @delta:	Pointer to the delta value in timespec64 format | 
|---|
| 1852 | * | 
|---|
| 1853 | * Takes a timespec offset measuring a suspend interval and properly | 
|---|
| 1854 | * adds the sleep offset to the timekeeping variables. | 
|---|
| 1855 | */ | 
|---|
| 1856 | static void __timekeeping_inject_sleeptime(struct timekeeper *tk, | 
|---|
| 1857 | const struct timespec64 *delta) | 
|---|
| 1858 | { | 
|---|
| 1859 | if (!timespec64_valid_strict(ts: delta)) { | 
|---|
| 1860 | printk_deferred(KERN_WARNING | 
|---|
| 1861 | "__timekeeping_inject_sleeptime: Invalid " | 
|---|
| 1862 | "sleep delta value!\n"); | 
|---|
| 1863 | return; | 
|---|
| 1864 | } | 
|---|
| 1865 | tk_xtime_add(tk, ts: delta); | 
|---|
| 1866 | tk_set_wall_to_mono(tk, wtm: timespec64_sub(lhs: tk->wall_to_monotonic, rhs: *delta)); | 
|---|
| 1867 | tk_update_sleep_time(tk, delta: timespec64_to_ktime(ts: *delta)); | 
|---|
| 1868 | tk_debug_account_sleep_time(t: delta); | 
|---|
| 1869 | } | 
|---|
| 1870 |  | 
|---|
| 1871 | #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) | 
|---|
| 1872 | /* | 
|---|
| 1873 | * We have three kinds of time sources to use for sleep time | 
|---|
| 1874 | * injection, the preference order is: | 
|---|
| 1875 | * 1) non-stop clocksource | 
|---|
| 1876 | * 2) persistent clock (ie: RTC accessible when irqs are off) | 
|---|
| 1877 | * 3) RTC | 
|---|
| 1878 | * | 
|---|
| 1879 | * 1) and 2) are used by timekeeping, 3) by RTC subsystem. | 
|---|
| 1880 | * If system has neither 1) nor 2), 3) will be used finally. | 
|---|
| 1881 | * | 
|---|
| 1882 | * | 
|---|
| 1883 | * If timekeeping has injected sleeptime via either 1) or 2), | 
|---|
| 1884 | * 3) becomes needless, so in this case we don't need to call | 
|---|
| 1885 | * rtc_resume(), and this is what timekeeping_rtc_skipresume() | 
|---|
| 1886 | * means. | 
|---|
| 1887 | */ | 
|---|
| 1888 | bool timekeeping_rtc_skipresume(void) | 
|---|
| 1889 | { | 
|---|
| 1890 | return !suspend_timing_needed; | 
|---|
| 1891 | } | 
|---|
| 1892 |  | 
|---|
| 1893 | /* | 
|---|
| 1894 | * 1) can be determined whether to use or not only when doing | 
|---|
| 1895 | * timekeeping_resume() which is invoked after rtc_suspend(), | 
|---|
| 1896 | * so we can't skip rtc_suspend() surely if system has 1). | 
|---|
| 1897 | * | 
|---|
| 1898 | * But if system has 2), 2) will definitely be used, so in this | 
|---|
| 1899 | * case we don't need to call rtc_suspend(), and this is what | 
|---|
| 1900 | * timekeeping_rtc_skipsuspend() means. | 
|---|
| 1901 | */ | 
|---|
| 1902 | bool timekeeping_rtc_skipsuspend(void) | 
|---|
| 1903 | { | 
|---|
| 1904 | return persistent_clock_exists; | 
|---|
| 1905 | } | 
|---|
| 1906 |  | 
|---|
| 1907 | /** | 
|---|
| 1908 | * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values | 
|---|
| 1909 | * @delta: pointer to a timespec64 delta value | 
|---|
| 1910 | * | 
|---|
| 1911 | * This hook is for architectures that cannot support read_persistent_clock64 | 
|---|
| 1912 | * because their RTC/persistent clock is only accessible when irqs are enabled. | 
|---|
| 1913 | * and also don't have an effective nonstop clocksource. | 
|---|
| 1914 | * | 
|---|
| 1915 | * This function should only be called by rtc_resume(), and allows | 
|---|
| 1916 | * a suspend offset to be injected into the timekeeping values. | 
|---|
| 1917 | */ | 
|---|
| 1918 | void timekeeping_inject_sleeptime64(const struct timespec64 *delta) | 
|---|
| 1919 | { | 
|---|
| 1920 | scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { | 
|---|
| 1921 | struct timekeeper *tks = &tk_core.shadow_timekeeper; | 
|---|
| 1922 |  | 
|---|
| 1923 | suspend_timing_needed = false; | 
|---|
| 1924 | timekeeping_forward_now(tks); | 
|---|
| 1925 | __timekeeping_inject_sleeptime(tks, delta); | 
|---|
| 1926 | timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); | 
|---|
| 1927 | } | 
|---|
| 1928 |  | 
|---|
| 1929 | /* Signal hrtimers about time change */ | 
|---|
| 1930 | clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); | 
|---|
| 1931 | } | 
|---|
| 1932 | #endif | 
|---|
| 1933 |  | 
|---|
| 1934 | /** | 
|---|
| 1935 | * timekeeping_resume - Resumes the generic timekeeping subsystem. | 
|---|
| 1936 | */ | 
|---|
| 1937 | void timekeeping_resume(void) | 
|---|
| 1938 | { | 
|---|
| 1939 | struct timekeeper *tks = &tk_core.shadow_timekeeper; | 
|---|
| 1940 | struct clocksource *clock = tks->tkr_mono.clock; | 
|---|
| 1941 | struct timespec64 ts_new, ts_delta; | 
|---|
| 1942 | bool inject_sleeptime = false; | 
|---|
| 1943 | u64 cycle_now, nsec; | 
|---|
| 1944 | unsigned long flags; | 
|---|
| 1945 |  | 
|---|
| 1946 | read_persistent_clock64(ts: &ts_new); | 
|---|
| 1947 |  | 
|---|
| 1948 | clockevents_resume(); | 
|---|
| 1949 | clocksource_resume(); | 
|---|
| 1950 |  | 
|---|
| 1951 | raw_spin_lock_irqsave(&tk_core.lock, flags); | 
|---|
| 1952 |  | 
|---|
| 1953 | /* | 
|---|
| 1954 | * After system resumes, we need to calculate the suspended time and | 
|---|
| 1955 | * compensate it for the OS time. There are 3 sources that could be | 
|---|
| 1956 | * used: Nonstop clocksource during suspend, persistent clock and rtc | 
|---|
| 1957 | * device. | 
|---|
| 1958 | * | 
|---|
| 1959 | * One specific platform may have 1 or 2 or all of them, and the | 
|---|
| 1960 | * preference will be: | 
|---|
| 1961 | *	suspend-nonstop clocksource -> persistent clock -> rtc | 
|---|
| 1962 | * The less preferred source will only be tried if there is no better | 
|---|
| 1963 | * usable source. The rtc part is handled separately in rtc core code. | 
|---|
| 1964 | */ | 
|---|
| 1965 | cycle_now = tk_clock_read(tkr: &tks->tkr_mono); | 
|---|
| 1966 | nsec = clocksource_stop_suspend_timing(cs: clock, now: cycle_now); | 
|---|
| 1967 | if (nsec > 0) { | 
|---|
| 1968 | ts_delta = ns_to_timespec64(nsec); | 
|---|
| 1969 | inject_sleeptime = true; | 
|---|
| 1970 | } else if (timespec64_compare(lhs: &ts_new, rhs: &timekeeping_suspend_time) > 0) { | 
|---|
| 1971 | ts_delta = timespec64_sub(lhs: ts_new, rhs: timekeeping_suspend_time); | 
|---|
| 1972 | inject_sleeptime = true; | 
|---|
| 1973 | } | 
|---|
| 1974 |  | 
|---|
| 1975 | if (inject_sleeptime) { | 
|---|
| 1976 | suspend_timing_needed = false; | 
|---|
| 1977 | __timekeeping_inject_sleeptime(tk: tks, delta: &ts_delta); | 
|---|
| 1978 | } | 
|---|
| 1979 |  | 
|---|
| 1980 | /* Re-base the last cycle value */ | 
|---|
| 1981 | tks->tkr_mono.cycle_last = cycle_now; | 
|---|
| 1982 | tks->tkr_raw.cycle_last  = cycle_now; | 
|---|
| 1983 |  | 
|---|
| 1984 | tks->ntp_error = 0; | 
|---|
| 1985 | timekeeping_suspended = 0; | 
|---|
| 1986 | timekeeping_update_from_shadow(tkd: &tk_core, TK_CLOCK_WAS_SET); | 
|---|
| 1987 | raw_spin_unlock_irqrestore(&tk_core.lock, flags); | 
|---|
| 1988 |  | 
|---|
| 1989 | touch_softlockup_watchdog(); | 
|---|
| 1990 |  | 
|---|
| 1991 | /* Resume the clockevent device(s) and hrtimers */ | 
|---|
| 1992 | tick_resume(); | 
|---|
| 1993 | /* Notify timerfd as resume is equivalent to clock_was_set() */ | 
|---|
| 1994 | timerfd_resume(); | 
|---|
| 1995 | } | 
|---|
| 1996 |  | 
|---|
| 1997 | int timekeeping_suspend(void) | 
|---|
| 1998 | { | 
|---|
| 1999 | struct timekeeper *tks = &tk_core.shadow_timekeeper; | 
|---|
| 2000 | struct timespec64 delta, delta_delta; | 
|---|
| 2001 | static struct timespec64 old_delta; | 
|---|
| 2002 | struct clocksource *curr_clock; | 
|---|
| 2003 | unsigned long flags; | 
|---|
| 2004 | u64 cycle_now; | 
|---|
| 2005 |  | 
|---|
| 2006 | read_persistent_clock64(ts: &timekeeping_suspend_time); | 
|---|
| 2007 |  | 
|---|
| 2008 | /* | 
|---|
| 2009 | * On some systems the persistent_clock can not be detected at | 
|---|
| 2010 | * timekeeping_init by its return value, so if we see a valid | 
|---|
| 2011 | * value returned, update the persistent_clock_exists flag. | 
|---|
| 2012 | */ | 
|---|
| 2013 | if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) | 
|---|
| 2014 | persistent_clock_exists = true; | 
|---|
| 2015 |  | 
|---|
| 2016 | suspend_timing_needed = true; | 
|---|
| 2017 |  | 
|---|
| 2018 | raw_spin_lock_irqsave(&tk_core.lock, flags); | 
|---|
| 2019 | timekeeping_forward_now(tk: tks); | 
|---|
| 2020 | timekeeping_suspended = 1; | 
|---|
| 2021 |  | 
|---|
| 2022 | /* | 
|---|
| 2023 | * Since we've called forward_now, cycle_last stores the value | 
|---|
| 2024 | * just read from the current clocksource. Save this to potentially | 
|---|
| 2025 | * use in suspend timing. | 
|---|
| 2026 | */ | 
|---|
| 2027 | curr_clock = tks->tkr_mono.clock; | 
|---|
| 2028 | cycle_now = tks->tkr_mono.cycle_last; | 
|---|
| 2029 | clocksource_start_suspend_timing(cs: curr_clock, start_cycles: cycle_now); | 
|---|
| 2030 |  | 
|---|
| 2031 | if (persistent_clock_exists) { | 
|---|
| 2032 | /* | 
|---|
| 2033 | * To avoid drift caused by repeated suspend/resumes, | 
|---|
| 2034 | * which each can add ~1 second drift error, | 
|---|
| 2035 | * try to compensate so the difference in system time | 
|---|
| 2036 | * and persistent_clock time stays close to constant. | 
|---|
| 2037 | */ | 
|---|
| 2038 | delta = timespec64_sub(lhs: tk_xtime(tk: tks), rhs: timekeeping_suspend_time); | 
|---|
| 2039 | delta_delta = timespec64_sub(lhs: delta, rhs: old_delta); | 
|---|
| 2040 | if (abs(delta_delta.tv_sec) >= 2) { | 
|---|
| 2041 | /* | 
|---|
| 2042 | * if delta_delta is too large, assume time correction | 
|---|
| 2043 | * has occurred and set old_delta to the current delta. | 
|---|
| 2044 | */ | 
|---|
| 2045 | old_delta = delta; | 
|---|
| 2046 | } else { | 
|---|
| 2047 | /* Otherwise try to adjust old_system to compensate */ | 
|---|
| 2048 | timekeeping_suspend_time = | 
|---|
| 2049 | timespec64_add(lhs: timekeeping_suspend_time, rhs: delta_delta); | 
|---|
| 2050 | } | 
|---|
| 2051 | } | 
|---|
| 2052 |  | 
|---|
| 2053 | timekeeping_update_from_shadow(tkd: &tk_core, action: 0); | 
|---|
| 2054 | halt_fast_timekeeper(tk: tks); | 
|---|
| 2055 | raw_spin_unlock_irqrestore(&tk_core.lock, flags); | 
|---|
| 2056 |  | 
|---|
| 2057 | tick_suspend(); | 
|---|
| 2058 | clocksource_suspend(); | 
|---|
| 2059 | clockevents_suspend(); | 
|---|
| 2060 |  | 
|---|
| 2061 | return 0; | 
|---|
| 2062 | } | 
|---|
| 2063 |  | 
|---|
| 2064 | /* sysfs resume/suspend bits for timekeeping */ | 
|---|
| 2065 | static struct syscore_ops timekeeping_syscore_ops = { | 
|---|
| 2066 | .resume		= timekeeping_resume, | 
|---|
| 2067 | .suspend	= timekeeping_suspend, | 
|---|
| 2068 | }; | 
|---|
| 2069 |  | 
|---|
| 2070 | static int __init timekeeping_init_ops(void) | 
|---|
| 2071 | { | 
|---|
| 2072 | register_syscore_ops(ops: &timekeeping_syscore_ops); | 
|---|
| 2073 | return 0; | 
|---|
| 2074 | } | 
|---|
| 2075 | device_initcall(timekeeping_init_ops); | 
|---|
| 2076 |  | 
|---|
| 2077 | /* | 
|---|
| 2078 | * Apply a multiplier adjustment to the timekeeper | 
|---|
| 2079 | */ | 
|---|
| 2080 | static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, | 
|---|
| 2081 | s64 offset, | 
|---|
| 2082 | s32 mult_adj) | 
|---|
| 2083 | { | 
|---|
| 2084 | s64 interval = tk->cycle_interval; | 
|---|
| 2085 |  | 
|---|
| 2086 | if (mult_adj == 0) { | 
|---|
| 2087 | return; | 
|---|
| 2088 | } else if (mult_adj == -1) { | 
|---|
| 2089 | interval = -interval; | 
|---|
| 2090 | offset = -offset; | 
|---|
| 2091 | } else if (mult_adj != 1) { | 
|---|
| 2092 | interval *= mult_adj; | 
|---|
| 2093 | offset *= mult_adj; | 
|---|
| 2094 | } | 
|---|
| 2095 |  | 
|---|
| 2096 | /* | 
|---|
| 2097 | * So the following can be confusing. | 
|---|
| 2098 | * | 
|---|
| 2099 | * To keep things simple, lets assume mult_adj == 1 for now. | 
|---|
| 2100 | * | 
|---|
| 2101 | * When mult_adj != 1, remember that the interval and offset values | 
|---|
| 2102 | * have been appropriately scaled so the math is the same. | 
|---|
| 2103 | * | 
|---|
| 2104 | * The basic idea here is that we're increasing the multiplier | 
|---|
| 2105 | * by one, this causes the xtime_interval to be incremented by | 
|---|
| 2106 | * one cycle_interval. This is because: | 
|---|
| 2107 | *	xtime_interval = cycle_interval * mult | 
|---|
| 2108 | * So if mult is being incremented by one: | 
|---|
| 2109 | *	xtime_interval = cycle_interval * (mult + 1) | 
|---|
| 2110 | * Its the same as: | 
|---|
| 2111 | *	xtime_interval = (cycle_interval * mult) + cycle_interval | 
|---|
| 2112 | * Which can be shortened to: | 
|---|
| 2113 | *	xtime_interval += cycle_interval | 
|---|
| 2114 | * | 
|---|
| 2115 | * So offset stores the non-accumulated cycles. Thus the current | 
|---|
| 2116 | * time (in shifted nanoseconds) is: | 
|---|
| 2117 | *	now = (offset * adj) + xtime_nsec | 
|---|
| 2118 | * Now, even though we're adjusting the clock frequency, we have | 
|---|
| 2119 | * to keep time consistent. In other words, we can't jump back | 
|---|
| 2120 | * in time, and we also want to avoid jumping forward in time. | 
|---|
| 2121 | * | 
|---|
| 2122 | * So given the same offset value, we need the time to be the same | 
|---|
| 2123 | * both before and after the freq adjustment. | 
|---|
| 2124 | *	now = (offset * adj_1) + xtime_nsec_1 | 
|---|
| 2125 | *	now = (offset * adj_2) + xtime_nsec_2 | 
|---|
| 2126 | * So: | 
|---|
| 2127 | *	(offset * adj_1) + xtime_nsec_1 = | 
|---|
| 2128 | *		(offset * adj_2) + xtime_nsec_2 | 
|---|
| 2129 | * And we know: | 
|---|
| 2130 | *	adj_2 = adj_1 + 1 | 
|---|
| 2131 | * So: | 
|---|
| 2132 | *	(offset * adj_1) + xtime_nsec_1 = | 
|---|
| 2133 | *		(offset * (adj_1+1)) + xtime_nsec_2 | 
|---|
| 2134 | *	(offset * adj_1) + xtime_nsec_1 = | 
|---|
| 2135 | *		(offset * adj_1) + offset + xtime_nsec_2 | 
|---|
| 2136 | * Canceling the sides: | 
|---|
| 2137 | *	xtime_nsec_1 = offset + xtime_nsec_2 | 
|---|
| 2138 | * Which gives us: | 
|---|
| 2139 | *	xtime_nsec_2 = xtime_nsec_1 - offset | 
|---|
| 2140 | * Which simplifies to: | 
|---|
| 2141 | *	xtime_nsec -= offset | 
|---|
| 2142 | */ | 
|---|
| 2143 | if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { | 
|---|
| 2144 | /* NTP adjustment caused clocksource mult overflow */ | 
|---|
| 2145 | WARN_ON_ONCE(1); | 
|---|
| 2146 | return; | 
|---|
| 2147 | } | 
|---|
| 2148 |  | 
|---|
| 2149 | tk->tkr_mono.mult += mult_adj; | 
|---|
| 2150 | tk->xtime_interval += interval; | 
|---|
| 2151 | tk->tkr_mono.xtime_nsec -= offset; | 
|---|
| 2152 | } | 
|---|
| 2153 |  | 
|---|
| 2154 | /* | 
|---|
| 2155 | * Adjust the timekeeper's multiplier to the correct frequency | 
|---|
| 2156 | * and also to reduce the accumulated error value. | 
|---|
| 2157 | */ | 
|---|
| 2158 | static void timekeeping_adjust(struct timekeeper *tk, s64 offset) | 
|---|
| 2159 | { | 
|---|
| 2160 | u64 ntp_tl = ntp_tick_length(tkid: tk->id); | 
|---|
| 2161 | u32 mult; | 
|---|
| 2162 |  | 
|---|
| 2163 | /* | 
|---|
| 2164 | * Determine the multiplier from the current NTP tick length. | 
|---|
| 2165 | * Avoid expensive division when the tick length doesn't change. | 
|---|
| 2166 | */ | 
|---|
| 2167 | if (likely(tk->ntp_tick == ntp_tl)) { | 
|---|
| 2168 | mult = tk->tkr_mono.mult - tk->ntp_err_mult; | 
|---|
| 2169 | } else { | 
|---|
| 2170 | tk->ntp_tick = ntp_tl; | 
|---|
| 2171 | mult = div64_u64(dividend: (tk->ntp_tick >> tk->ntp_error_shift) - | 
|---|
| 2172 | tk->xtime_remainder, divisor: tk->cycle_interval); | 
|---|
| 2173 | } | 
|---|
| 2174 |  | 
|---|
| 2175 | /* | 
|---|
| 2176 | * If the clock is behind the NTP time, increase the multiplier by 1 | 
|---|
| 2177 | * to catch up with it. If it's ahead and there was a remainder in the | 
|---|
| 2178 | * tick division, the clock will slow down. Otherwise it will stay | 
|---|
| 2179 | * ahead until the tick length changes to a non-divisible value. | 
|---|
| 2180 | */ | 
|---|
| 2181 | tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; | 
|---|
| 2182 | mult += tk->ntp_err_mult; | 
|---|
| 2183 |  | 
|---|
| 2184 | timekeeping_apply_adjustment(tk, offset, mult_adj: mult - tk->tkr_mono.mult); | 
|---|
| 2185 |  | 
|---|
| 2186 | if (unlikely(tk->tkr_mono.clock->maxadj && | 
|---|
| 2187 | (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) | 
|---|
| 2188 | > tk->tkr_mono.clock->maxadj))) { | 
|---|
| 2189 | printk_once(KERN_WARNING | 
|---|
| 2190 | "Adjusting %s more than 11%% (%ld vs %ld)\n", | 
|---|
| 2191 | tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, | 
|---|
| 2192 | (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); | 
|---|
| 2193 | } | 
|---|
| 2194 |  | 
|---|
| 2195 | /* | 
|---|
| 2196 | * It may be possible that when we entered this function, xtime_nsec | 
|---|
| 2197 | * was very small.  Further, if we're slightly speeding the clocksource | 
|---|
| 2198 | * in the code above, its possible the required corrective factor to | 
|---|
| 2199 | * xtime_nsec could cause it to underflow. | 
|---|
| 2200 | * | 
|---|
| 2201 | * Now, since we have already accumulated the second and the NTP | 
|---|
| 2202 | * subsystem has been notified via second_overflow(), we need to skip | 
|---|
| 2203 | * the next update. | 
|---|
| 2204 | */ | 
|---|
| 2205 | if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { | 
|---|
| 2206 | tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << | 
|---|
| 2207 | tk->tkr_mono.shift; | 
|---|
| 2208 | tk->xtime_sec--; | 
|---|
| 2209 | tk->skip_second_overflow = 1; | 
|---|
| 2210 | } | 
|---|
| 2211 | } | 
|---|
| 2212 |  | 
|---|
| 2213 | /* | 
|---|
| 2214 | * accumulate_nsecs_to_secs - Accumulates nsecs into secs | 
|---|
| 2215 | * | 
|---|
| 2216 | * Helper function that accumulates the nsecs greater than a second | 
|---|
| 2217 | * from the xtime_nsec field to the xtime_secs field. | 
|---|
| 2218 | * It also calls into the NTP code to handle leapsecond processing. | 
|---|
| 2219 | */ | 
|---|
| 2220 | static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) | 
|---|
| 2221 | { | 
|---|
| 2222 | u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; | 
|---|
| 2223 | unsigned int clock_set = 0; | 
|---|
| 2224 |  | 
|---|
| 2225 | while (tk->tkr_mono.xtime_nsec >= nsecps) { | 
|---|
| 2226 | int leap; | 
|---|
| 2227 |  | 
|---|
| 2228 | tk->tkr_mono.xtime_nsec -= nsecps; | 
|---|
| 2229 | tk->xtime_sec++; | 
|---|
| 2230 |  | 
|---|
| 2231 | /* | 
|---|
| 2232 | * Skip NTP update if this second was accumulated before, | 
|---|
| 2233 | * i.e. xtime_nsec underflowed in timekeeping_adjust() | 
|---|
| 2234 | */ | 
|---|
| 2235 | if (unlikely(tk->skip_second_overflow)) { | 
|---|
| 2236 | tk->skip_second_overflow = 0; | 
|---|
| 2237 | continue; | 
|---|
| 2238 | } | 
|---|
| 2239 |  | 
|---|
| 2240 | /* Figure out if its a leap sec and apply if needed */ | 
|---|
| 2241 | leap = second_overflow(tkid: tk->id, secs: tk->xtime_sec); | 
|---|
| 2242 | if (unlikely(leap)) { | 
|---|
| 2243 | struct timespec64 ts; | 
|---|
| 2244 |  | 
|---|
| 2245 | tk->xtime_sec += leap; | 
|---|
| 2246 |  | 
|---|
| 2247 | ts.tv_sec = leap; | 
|---|
| 2248 | ts.tv_nsec = 0; | 
|---|
| 2249 | tk_set_wall_to_mono(tk, | 
|---|
| 2250 | wtm: timespec64_sub(lhs: tk->wall_to_monotonic, rhs: ts)); | 
|---|
| 2251 |  | 
|---|
| 2252 | __timekeeping_set_tai_offset(tk, tai_offset: tk->tai_offset - leap); | 
|---|
| 2253 |  | 
|---|
| 2254 | clock_set = TK_CLOCK_WAS_SET; | 
|---|
| 2255 | } | 
|---|
| 2256 | } | 
|---|
| 2257 | return clock_set; | 
|---|
| 2258 | } | 
|---|
| 2259 |  | 
|---|
| 2260 | /* | 
|---|
| 2261 | * logarithmic_accumulation - shifted accumulation of cycles | 
|---|
| 2262 | * | 
|---|
| 2263 | * This functions accumulates a shifted interval of cycles into | 
|---|
| 2264 | * a shifted interval nanoseconds. Allows for O(log) accumulation | 
|---|
| 2265 | * loop. | 
|---|
| 2266 | * | 
|---|
| 2267 | * Returns the unconsumed cycles. | 
|---|
| 2268 | */ | 
|---|
| 2269 | static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, | 
|---|
| 2270 | u32 shift, unsigned int *clock_set) | 
|---|
| 2271 | { | 
|---|
| 2272 | u64 interval = tk->cycle_interval << shift; | 
|---|
| 2273 | u64 snsec_per_sec; | 
|---|
| 2274 |  | 
|---|
| 2275 | /* If the offset is smaller than a shifted interval, do nothing */ | 
|---|
| 2276 | if (offset < interval) | 
|---|
| 2277 | return offset; | 
|---|
| 2278 |  | 
|---|
| 2279 | /* Accumulate one shifted interval */ | 
|---|
| 2280 | offset -= interval; | 
|---|
| 2281 | tk->tkr_mono.cycle_last += interval; | 
|---|
| 2282 | tk->tkr_raw.cycle_last  += interval; | 
|---|
| 2283 |  | 
|---|
| 2284 | tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; | 
|---|
| 2285 | *clock_set |= accumulate_nsecs_to_secs(tk); | 
|---|
| 2286 |  | 
|---|
| 2287 | /* Accumulate raw time */ | 
|---|
| 2288 | tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; | 
|---|
| 2289 | snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; | 
|---|
| 2290 | while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { | 
|---|
| 2291 | tk->tkr_raw.xtime_nsec -= snsec_per_sec; | 
|---|
| 2292 | tk->raw_sec++; | 
|---|
| 2293 | } | 
|---|
| 2294 |  | 
|---|
| 2295 | /* Accumulate error between NTP and clock interval */ | 
|---|
| 2296 | tk->ntp_error += tk->ntp_tick << shift; | 
|---|
| 2297 | tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << | 
|---|
| 2298 | (tk->ntp_error_shift + shift); | 
|---|
| 2299 |  | 
|---|
| 2300 | return offset; | 
|---|
| 2301 | } | 
|---|
| 2302 |  | 
|---|
| 2303 | /* | 
|---|
| 2304 | * timekeeping_advance - Updates the timekeeper to the current time and | 
|---|
| 2305 | * current NTP tick length | 
|---|
| 2306 | */ | 
|---|
| 2307 | static bool __timekeeping_advance(struct tk_data *tkd, enum timekeeping_adv_mode mode) | 
|---|
| 2308 | { | 
|---|
| 2309 | struct timekeeper *tk = &tkd->shadow_timekeeper; | 
|---|
| 2310 | struct timekeeper *real_tk = &tkd->timekeeper; | 
|---|
| 2311 | unsigned int clock_set = 0; | 
|---|
| 2312 | int shift = 0, maxshift; | 
|---|
| 2313 | u64 offset, orig_offset; | 
|---|
| 2314 |  | 
|---|
| 2315 | /* Make sure we're fully resumed: */ | 
|---|
| 2316 | if (unlikely(timekeeping_suspended)) | 
|---|
| 2317 | return false; | 
|---|
| 2318 |  | 
|---|
| 2319 | offset = clocksource_delta(now: tk_clock_read(tkr: &tk->tkr_mono), | 
|---|
| 2320 | last: tk->tkr_mono.cycle_last, mask: tk->tkr_mono.mask, | 
|---|
| 2321 | max_delta: tk->tkr_mono.clock->max_raw_delta); | 
|---|
| 2322 | orig_offset = offset; | 
|---|
| 2323 | /* Check if there's really nothing to do */ | 
|---|
| 2324 | if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) | 
|---|
| 2325 | return false; | 
|---|
| 2326 |  | 
|---|
| 2327 | /* | 
|---|
| 2328 | * With NO_HZ we may have to accumulate many cycle_intervals | 
|---|
| 2329 | * (think "ticks") worth of time at once. To do this efficiently, | 
|---|
| 2330 | * we calculate the largest doubling multiple of cycle_intervals | 
|---|
| 2331 | * that is smaller than the offset.  We then accumulate that | 
|---|
| 2332 | * chunk in one go, and then try to consume the next smaller | 
|---|
| 2333 | * doubled multiple. | 
|---|
| 2334 | */ | 
|---|
| 2335 | shift = ilog2(offset) - ilog2(tk->cycle_interval); | 
|---|
| 2336 | shift = max(0, shift); | 
|---|
| 2337 | /* Bound shift to one less than what overflows tick_length */ | 
|---|
| 2338 | maxshift = (64 - (ilog2(ntp_tick_length(tk->id)) + 1)) - 1; | 
|---|
| 2339 | shift = min(shift, maxshift); | 
|---|
| 2340 | while (offset >= tk->cycle_interval) { | 
|---|
| 2341 | offset = logarithmic_accumulation(tk, offset, shift, clock_set: &clock_set); | 
|---|
| 2342 | if (offset < tk->cycle_interval<<shift) | 
|---|
| 2343 | shift--; | 
|---|
| 2344 | } | 
|---|
| 2345 |  | 
|---|
| 2346 | /* Adjust the multiplier to correct NTP error */ | 
|---|
| 2347 | timekeeping_adjust(tk, offset); | 
|---|
| 2348 |  | 
|---|
| 2349 | /* | 
|---|
| 2350 | * Finally, make sure that after the rounding | 
|---|
| 2351 | * xtime_nsec isn't larger than NSEC_PER_SEC | 
|---|
| 2352 | */ | 
|---|
| 2353 | clock_set |= accumulate_nsecs_to_secs(tk); | 
|---|
| 2354 |  | 
|---|
| 2355 | /* | 
|---|
| 2356 | * To avoid inconsistencies caused adjtimex TK_ADV_FREQ calls | 
|---|
| 2357 | * making small negative adjustments to the base xtime_nsec | 
|---|
| 2358 | * value, only update the coarse clocks if we accumulated time | 
|---|
| 2359 | */ | 
|---|
| 2360 | if (orig_offset != offset) | 
|---|
| 2361 | tk_update_coarse_nsecs(tk); | 
|---|
| 2362 |  | 
|---|
| 2363 | timekeeping_update_from_shadow(tkd, action: clock_set); | 
|---|
| 2364 |  | 
|---|
| 2365 | return !!clock_set; | 
|---|
| 2366 | } | 
|---|
| 2367 |  | 
|---|
| 2368 | static bool timekeeping_advance(enum timekeeping_adv_mode mode) | 
|---|
| 2369 | { | 
|---|
| 2370 | guard(raw_spinlock_irqsave)(l: &tk_core.lock); | 
|---|
| 2371 | return __timekeeping_advance(tkd: &tk_core, mode); | 
|---|
| 2372 | } | 
|---|
| 2373 |  | 
|---|
| 2374 | /** | 
|---|
| 2375 | * update_wall_time - Uses the current clocksource to increment the wall time | 
|---|
| 2376 | * | 
|---|
| 2377 | * It also updates the enabled auxiliary clock timekeepers | 
|---|
| 2378 | */ | 
|---|
| 2379 | void update_wall_time(void) | 
|---|
| 2380 | { | 
|---|
| 2381 | if (timekeeping_advance(mode: TK_ADV_TICK)) | 
|---|
| 2382 | clock_was_set_delayed(); | 
|---|
| 2383 | tk_aux_advance(); | 
|---|
| 2384 | } | 
|---|
| 2385 |  | 
|---|
| 2386 | /** | 
|---|
| 2387 | * getboottime64 - Return the real time of system boot. | 
|---|
| 2388 | * @ts:		pointer to the timespec64 to be set | 
|---|
| 2389 | * | 
|---|
| 2390 | * Returns the wall-time of boot in a timespec64. | 
|---|
| 2391 | * | 
|---|
| 2392 | * This is based on the wall_to_monotonic offset and the total suspend | 
|---|
| 2393 | * time. Calls to settimeofday will affect the value returned (which | 
|---|
| 2394 | * basically means that however wrong your real time clock is at boot time, | 
|---|
| 2395 | * you get the right time here). | 
|---|
| 2396 | */ | 
|---|
| 2397 | void getboottime64(struct timespec64 *ts) | 
|---|
| 2398 | { | 
|---|
| 2399 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 2400 | ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); | 
|---|
| 2401 |  | 
|---|
| 2402 | *ts = ktime_to_timespec64(t); | 
|---|
| 2403 | } | 
|---|
| 2404 | EXPORT_SYMBOL_GPL(getboottime64); | 
|---|
| 2405 |  | 
|---|
| 2406 | void ktime_get_coarse_real_ts64(struct timespec64 *ts) | 
|---|
| 2407 | { | 
|---|
| 2408 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 2409 | unsigned int seq; | 
|---|
| 2410 |  | 
|---|
| 2411 | do { | 
|---|
| 2412 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 2413 |  | 
|---|
| 2414 | *ts = tk_xtime_coarse(tk); | 
|---|
| 2415 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 2416 | } | 
|---|
| 2417 | EXPORT_SYMBOL(ktime_get_coarse_real_ts64); | 
|---|
| 2418 |  | 
|---|
| 2419 | /** | 
|---|
| 2420 | * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor | 
|---|
| 2421 | * @ts:		timespec64 to be filled | 
|---|
| 2422 | * | 
|---|
| 2423 | * Fetch the global mg_floor value, convert it to realtime and compare it | 
|---|
| 2424 | * to the current coarse-grained time. Fill @ts with whichever is | 
|---|
| 2425 | * latest. Note that this is a filesystem-specific interface and should be | 
|---|
| 2426 | * avoided outside of that context. | 
|---|
| 2427 | */ | 
|---|
| 2428 | void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) | 
|---|
| 2429 | { | 
|---|
| 2430 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 2431 | u64 floor = atomic64_read(v: &mg_floor); | 
|---|
| 2432 | ktime_t f_real, offset, coarse; | 
|---|
| 2433 | unsigned int seq; | 
|---|
| 2434 |  | 
|---|
| 2435 | do { | 
|---|
| 2436 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 2437 | *ts = tk_xtime_coarse(tk); | 
|---|
| 2438 | offset = tk_core.timekeeper.offs_real; | 
|---|
| 2439 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 2440 |  | 
|---|
| 2441 | coarse = timespec64_to_ktime(ts: *ts); | 
|---|
| 2442 | f_real = ktime_add(floor, offset); | 
|---|
| 2443 | if (ktime_after(cmp1: f_real, cmp2: coarse)) | 
|---|
| 2444 | *ts = ktime_to_timespec64(f_real); | 
|---|
| 2445 | } | 
|---|
| 2446 |  | 
|---|
| 2447 | /** | 
|---|
| 2448 | * ktime_get_real_ts64_mg - attempt to update floor value and return result | 
|---|
| 2449 | * @ts:		pointer to the timespec to be set | 
|---|
| 2450 | * | 
|---|
| 2451 | * Get a monotonic fine-grained time value and attempt to swap it into | 
|---|
| 2452 | * mg_floor. If that succeeds then accept the new floor value. If it fails | 
|---|
| 2453 | * then another task raced in during the interim time and updated the | 
|---|
| 2454 | * floor.  Since any update to the floor must be later than the previous | 
|---|
| 2455 | * floor, either outcome is acceptable. | 
|---|
| 2456 | * | 
|---|
| 2457 | * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), | 
|---|
| 2458 | * and determining that the resulting coarse-grained timestamp did not effect | 
|---|
| 2459 | * a change in ctime. Any more recent floor value would effect a change to | 
|---|
| 2460 | * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. | 
|---|
| 2461 | * | 
|---|
| 2462 | * @ts will be filled with the latest floor value, regardless of the outcome of | 
|---|
| 2463 | * the cmpxchg. Note that this is a filesystem specific interface and should be | 
|---|
| 2464 | * avoided outside of that context. | 
|---|
| 2465 | */ | 
|---|
| 2466 | void ktime_get_real_ts64_mg(struct timespec64 *ts) | 
|---|
| 2467 | { | 
|---|
| 2468 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 2469 | ktime_t old = atomic64_read(v: &mg_floor); | 
|---|
| 2470 | ktime_t offset, mono; | 
|---|
| 2471 | unsigned int seq; | 
|---|
| 2472 | u64 nsecs; | 
|---|
| 2473 |  | 
|---|
| 2474 | do { | 
|---|
| 2475 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 2476 |  | 
|---|
| 2477 | ts->tv_sec = tk->xtime_sec; | 
|---|
| 2478 | mono = tk->tkr_mono.base; | 
|---|
| 2479 | nsecs = timekeeping_get_ns(tkr: &tk->tkr_mono); | 
|---|
| 2480 | offset = tk_core.timekeeper.offs_real; | 
|---|
| 2481 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 2482 |  | 
|---|
| 2483 | mono = ktime_add_ns(mono, nsecs); | 
|---|
| 2484 |  | 
|---|
| 2485 | /* | 
|---|
| 2486 | * Attempt to update the floor with the new time value. As any | 
|---|
| 2487 | * update must be later then the existing floor, and would effect | 
|---|
| 2488 | * a change to ctime from the perspective of the current task, | 
|---|
| 2489 | * accept the resulting floor value regardless of the outcome of | 
|---|
| 2490 | * the swap. | 
|---|
| 2491 | */ | 
|---|
| 2492 | if (atomic64_try_cmpxchg(v: &mg_floor, old: &old, new: mono)) { | 
|---|
| 2493 | ts->tv_nsec = 0; | 
|---|
| 2494 | timespec64_add_ns(a: ts, ns: nsecs); | 
|---|
| 2495 | timekeeping_inc_mg_floor_swaps(); | 
|---|
| 2496 | } else { | 
|---|
| 2497 | /* | 
|---|
| 2498 | * Another task changed mg_floor since "old" was fetched. | 
|---|
| 2499 | * "old" has been updated with the latest value of "mg_floor". | 
|---|
| 2500 | * That value is newer than the previous floor value, which | 
|---|
| 2501 | * is enough to effect a change to ctime. Accept it. | 
|---|
| 2502 | */ | 
|---|
| 2503 | *ts = ktime_to_timespec64(ktime_add(old, offset)); | 
|---|
| 2504 | } | 
|---|
| 2505 | } | 
|---|
| 2506 |  | 
|---|
| 2507 | void ktime_get_coarse_ts64(struct timespec64 *ts) | 
|---|
| 2508 | { | 
|---|
| 2509 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 2510 | struct timespec64 now, mono; | 
|---|
| 2511 | unsigned int seq; | 
|---|
| 2512 |  | 
|---|
| 2513 | do { | 
|---|
| 2514 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 2515 |  | 
|---|
| 2516 | now = tk_xtime_coarse(tk); | 
|---|
| 2517 | mono = tk->wall_to_monotonic; | 
|---|
| 2518 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 2519 |  | 
|---|
| 2520 | set_normalized_timespec64(ts, sec: now.tv_sec + mono.tv_sec, | 
|---|
| 2521 | nsec: now.tv_nsec + mono.tv_nsec); | 
|---|
| 2522 | } | 
|---|
| 2523 | EXPORT_SYMBOL(ktime_get_coarse_ts64); | 
|---|
| 2524 |  | 
|---|
| 2525 | /* | 
|---|
| 2526 | * Must hold jiffies_lock | 
|---|
| 2527 | */ | 
|---|
| 2528 | void do_timer(unsigned long ticks) | 
|---|
| 2529 | { | 
|---|
| 2530 | jiffies_64 += ticks; | 
|---|
| 2531 | calc_global_load(); | 
|---|
| 2532 | } | 
|---|
| 2533 |  | 
|---|
| 2534 | /** | 
|---|
| 2535 | * ktime_get_update_offsets_now - hrtimer helper | 
|---|
| 2536 | * @cwsseq:	pointer to check and store the clock was set sequence number | 
|---|
| 2537 | * @offs_real:	pointer to storage for monotonic -> realtime offset | 
|---|
| 2538 | * @offs_boot:	pointer to storage for monotonic -> boottime offset | 
|---|
| 2539 | * @offs_tai:	pointer to storage for monotonic -> clock tai offset | 
|---|
| 2540 | * | 
|---|
| 2541 | * Returns current monotonic time and updates the offsets if the | 
|---|
| 2542 | * sequence number in @cwsseq and timekeeper.clock_was_set_seq are | 
|---|
| 2543 | * different. | 
|---|
| 2544 | * | 
|---|
| 2545 | * Called from hrtimer_interrupt() or retrigger_next_event() | 
|---|
| 2546 | */ | 
|---|
| 2547 | ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, | 
|---|
| 2548 | ktime_t *offs_boot, ktime_t *offs_tai) | 
|---|
| 2549 | { | 
|---|
| 2550 | struct timekeeper *tk = &tk_core.timekeeper; | 
|---|
| 2551 | unsigned int seq; | 
|---|
| 2552 | ktime_t base; | 
|---|
| 2553 | u64 nsecs; | 
|---|
| 2554 |  | 
|---|
| 2555 | do { | 
|---|
| 2556 | seq = read_seqcount_begin(&tk_core.seq); | 
|---|
| 2557 |  | 
|---|
| 2558 | base = tk->tkr_mono.base; | 
|---|
| 2559 | nsecs = timekeeping_get_ns(tkr: &tk->tkr_mono); | 
|---|
| 2560 | base = ktime_add_ns(base, nsecs); | 
|---|
| 2561 |  | 
|---|
| 2562 | if (*cwsseq != tk->clock_was_set_seq) { | 
|---|
| 2563 | *cwsseq = tk->clock_was_set_seq; | 
|---|
| 2564 | *offs_real = tk->offs_real; | 
|---|
| 2565 | *offs_boot = tk->offs_boot; | 
|---|
| 2566 | *offs_tai = tk->offs_tai; | 
|---|
| 2567 | } | 
|---|
| 2568 |  | 
|---|
| 2569 | /* Handle leapsecond insertion adjustments */ | 
|---|
| 2570 | if (unlikely(base >= tk->next_leap_ktime)) | 
|---|
| 2571 | *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); | 
|---|
| 2572 |  | 
|---|
| 2573 | } while (read_seqcount_retry(&tk_core.seq, seq)); | 
|---|
| 2574 |  | 
|---|
| 2575 | return base; | 
|---|
| 2576 | } | 
|---|
| 2577 |  | 
|---|
| 2578 | /* | 
|---|
| 2579 | * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex | 
|---|
| 2580 | */ | 
|---|
| 2581 | static int timekeeping_validate_timex(const struct __kernel_timex *txc, bool aux_clock) | 
|---|
| 2582 | { | 
|---|
| 2583 | if (txc->modes & ADJ_ADJTIME) { | 
|---|
| 2584 | /* singleshot must not be used with any other mode bits */ | 
|---|
| 2585 | if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) | 
|---|
| 2586 | return -EINVAL; | 
|---|
| 2587 | if (!(txc->modes & ADJ_OFFSET_READONLY) && | 
|---|
| 2588 | !capable(CAP_SYS_TIME)) | 
|---|
| 2589 | return -EPERM; | 
|---|
| 2590 | } else { | 
|---|
| 2591 | /* In order to modify anything, you gotta be super-user! */ | 
|---|
| 2592 | if (txc->modes && !capable(CAP_SYS_TIME)) | 
|---|
| 2593 | return -EPERM; | 
|---|
| 2594 | /* | 
|---|
| 2595 | * if the quartz is off by more than 10% then | 
|---|
| 2596 | * something is VERY wrong! | 
|---|
| 2597 | */ | 
|---|
| 2598 | if (txc->modes & ADJ_TICK && | 
|---|
| 2599 | (txc->tick <  900000/USER_HZ || | 
|---|
| 2600 | txc->tick > 1100000/USER_HZ)) | 
|---|
| 2601 | return -EINVAL; | 
|---|
| 2602 | } | 
|---|
| 2603 |  | 
|---|
| 2604 | if (txc->modes & ADJ_SETOFFSET) { | 
|---|
| 2605 | /* In order to inject time, you gotta be super-user! */ | 
|---|
| 2606 | if (!capable(CAP_SYS_TIME)) | 
|---|
| 2607 | return -EPERM; | 
|---|
| 2608 |  | 
|---|
| 2609 | /* | 
|---|
| 2610 | * Validate if a timespec/timeval used to inject a time | 
|---|
| 2611 | * offset is valid.  Offsets can be positive or negative, so | 
|---|
| 2612 | * we don't check tv_sec. The value of the timeval/timespec | 
|---|
| 2613 | * is the sum of its fields,but *NOTE*: | 
|---|
| 2614 | * The field tv_usec/tv_nsec must always be non-negative and | 
|---|
| 2615 | * we can't have more nanoseconds/microseconds than a second. | 
|---|
| 2616 | */ | 
|---|
| 2617 | if (txc->time.tv_usec < 0) | 
|---|
| 2618 | return -EINVAL; | 
|---|
| 2619 |  | 
|---|
| 2620 | if (txc->modes & ADJ_NANO) { | 
|---|
| 2621 | if (txc->time.tv_usec >= NSEC_PER_SEC) | 
|---|
| 2622 | return -EINVAL; | 
|---|
| 2623 | } else { | 
|---|
| 2624 | if (txc->time.tv_usec >= USEC_PER_SEC) | 
|---|
| 2625 | return -EINVAL; | 
|---|
| 2626 | } | 
|---|
| 2627 | } | 
|---|
| 2628 |  | 
|---|
| 2629 | /* | 
|---|
| 2630 | * Check for potential multiplication overflows that can | 
|---|
| 2631 | * only happen on 64-bit systems: | 
|---|
| 2632 | */ | 
|---|
| 2633 | if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { | 
|---|
| 2634 | if (LLONG_MIN / PPM_SCALE > txc->freq) | 
|---|
| 2635 | return -EINVAL; | 
|---|
| 2636 | if (LLONG_MAX / PPM_SCALE < txc->freq) | 
|---|
| 2637 | return -EINVAL; | 
|---|
| 2638 | } | 
|---|
| 2639 |  | 
|---|
| 2640 | if (aux_clock) { | 
|---|
| 2641 | /* Auxiliary clocks are similar to TAI and do not have leap seconds */ | 
|---|
| 2642 | if (txc->status & (STA_INS | STA_DEL)) | 
|---|
| 2643 | return -EINVAL; | 
|---|
| 2644 |  | 
|---|
| 2645 | /* No TAI offset setting */ | 
|---|
| 2646 | if (txc->modes & ADJ_TAI) | 
|---|
| 2647 | return -EINVAL; | 
|---|
| 2648 |  | 
|---|
| 2649 | /* No PPS support either */ | 
|---|
| 2650 | if (txc->status & (STA_PPSFREQ | STA_PPSTIME)) | 
|---|
| 2651 | return -EINVAL; | 
|---|
| 2652 | } | 
|---|
| 2653 |  | 
|---|
| 2654 | return 0; | 
|---|
| 2655 | } | 
|---|
| 2656 |  | 
|---|
| 2657 | /** | 
|---|
| 2658 | * random_get_entropy_fallback - Returns the raw clock source value, | 
|---|
| 2659 | * used by random.c for platforms with no valid random_get_entropy(). | 
|---|
| 2660 | */ | 
|---|
| 2661 | unsigned long random_get_entropy_fallback(void) | 
|---|
| 2662 | { | 
|---|
| 2663 | struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; | 
|---|
| 2664 | struct clocksource *clock = READ_ONCE(tkr->clock); | 
|---|
| 2665 |  | 
|---|
| 2666 | if (unlikely(timekeeping_suspended || !clock)) | 
|---|
| 2667 | return 0; | 
|---|
| 2668 | return clock->read(clock); | 
|---|
| 2669 | } | 
|---|
| 2670 | EXPORT_SYMBOL_GPL(random_get_entropy_fallback); | 
|---|
| 2671 |  | 
|---|
| 2672 | struct adjtimex_result { | 
|---|
| 2673 | struct audit_ntp_data	ad; | 
|---|
| 2674 | struct timespec64	delta; | 
|---|
| 2675 | bool			clock_set; | 
|---|
| 2676 | }; | 
|---|
| 2677 |  | 
|---|
| 2678 | static int __do_adjtimex(struct tk_data *tkd, struct __kernel_timex *txc, | 
|---|
| 2679 | struct adjtimex_result *result) | 
|---|
| 2680 | { | 
|---|
| 2681 | struct timekeeper *tks = &tkd->shadow_timekeeper; | 
|---|
| 2682 | bool aux_clock = !timekeeper_is_core_tk(tk: tks); | 
|---|
| 2683 | struct timespec64 ts; | 
|---|
| 2684 | s32 orig_tai, tai; | 
|---|
| 2685 | int ret; | 
|---|
| 2686 |  | 
|---|
| 2687 | /* Validate the data before disabling interrupts */ | 
|---|
| 2688 | ret = timekeeping_validate_timex(txc, aux_clock); | 
|---|
| 2689 | if (ret) | 
|---|
| 2690 | return ret; | 
|---|
| 2691 | add_device_randomness(buf: txc, len: sizeof(*txc)); | 
|---|
| 2692 |  | 
|---|
| 2693 | if (!aux_clock) | 
|---|
| 2694 | ktime_get_real_ts64(&ts); | 
|---|
| 2695 | else | 
|---|
| 2696 | tk_get_aux_ts64(tkid: tkd->timekeeper.id, ts: &ts); | 
|---|
| 2697 |  | 
|---|
| 2698 | add_device_randomness(buf: &ts, len: sizeof(ts)); | 
|---|
| 2699 |  | 
|---|
| 2700 | guard(raw_spinlock_irqsave)(l: &tkd->lock); | 
|---|
| 2701 |  | 
|---|
| 2702 | if (!tks->clock_valid) | 
|---|
| 2703 | return -ENODEV; | 
|---|
| 2704 |  | 
|---|
| 2705 | if (txc->modes & ADJ_SETOFFSET) { | 
|---|
| 2706 | result->delta.tv_sec  = txc->time.tv_sec; | 
|---|
| 2707 | result->delta.tv_nsec = txc->time.tv_usec; | 
|---|
| 2708 | if (!(txc->modes & ADJ_NANO)) | 
|---|
| 2709 | result->delta.tv_nsec *= 1000; | 
|---|
| 2710 | ret = __timekeeping_inject_offset(tkd, ts: &result->delta); | 
|---|
| 2711 | if (ret) | 
|---|
| 2712 | return ret; | 
|---|
| 2713 | result->clock_set = true; | 
|---|
| 2714 | } | 
|---|
| 2715 |  | 
|---|
| 2716 | orig_tai = tai = tks->tai_offset; | 
|---|
| 2717 | ret = ntp_adjtimex(tkid: tks->id, txc, ts: &ts, time_tai: &tai, ad: &result->ad); | 
|---|
| 2718 |  | 
|---|
| 2719 | if (tai != orig_tai) { | 
|---|
| 2720 | __timekeeping_set_tai_offset(tk: tks, tai_offset: tai); | 
|---|
| 2721 | timekeeping_update_from_shadow(tkd, TK_CLOCK_WAS_SET); | 
|---|
| 2722 | result->clock_set = true; | 
|---|
| 2723 | } else { | 
|---|
| 2724 | tk_update_leap_state_all(tkd: &tk_core); | 
|---|
| 2725 | } | 
|---|
| 2726 |  | 
|---|
| 2727 | /* Update the multiplier immediately if frequency was set directly */ | 
|---|
| 2728 | if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) | 
|---|
| 2729 | result->clock_set |= __timekeeping_advance(tkd, mode: TK_ADV_FREQ); | 
|---|
| 2730 |  | 
|---|
| 2731 | return ret; | 
|---|
| 2732 | } | 
|---|
| 2733 |  | 
|---|
| 2734 | /** | 
|---|
| 2735 | * do_adjtimex() - Accessor function to NTP __do_adjtimex function | 
|---|
| 2736 | * @txc:	Pointer to kernel_timex structure containing NTP parameters | 
|---|
| 2737 | */ | 
|---|
| 2738 | int do_adjtimex(struct __kernel_timex *txc) | 
|---|
| 2739 | { | 
|---|
| 2740 | struct adjtimex_result result = { }; | 
|---|
| 2741 | int ret; | 
|---|
| 2742 |  | 
|---|
| 2743 | ret = __do_adjtimex(tkd: &tk_core, txc, result: &result); | 
|---|
| 2744 | if (ret < 0) | 
|---|
| 2745 | return ret; | 
|---|
| 2746 |  | 
|---|
| 2747 | if (txc->modes & ADJ_SETOFFSET) | 
|---|
| 2748 | audit_tk_injoffset(offset: result.delta); | 
|---|
| 2749 |  | 
|---|
| 2750 | audit_ntp_log(ad: &result.ad); | 
|---|
| 2751 |  | 
|---|
| 2752 | if (result.clock_set) | 
|---|
| 2753 | clock_was_set(CLOCK_SET_WALL); | 
|---|
| 2754 |  | 
|---|
| 2755 | ntp_notify_cmos_timer(offset_set: result.delta.tv_sec != 0); | 
|---|
| 2756 |  | 
|---|
| 2757 | return ret; | 
|---|
| 2758 | } | 
|---|
| 2759 |  | 
|---|
| 2760 | /* | 
|---|
| 2761 | * Invoked from NTP with the time keeper lock held, so lockless access is | 
|---|
| 2762 | * fine. | 
|---|
| 2763 | */ | 
|---|
| 2764 | long ktime_get_ntp_seconds(unsigned int id) | 
|---|
| 2765 | { | 
|---|
| 2766 | return timekeeper_data[id].timekeeper.xtime_sec; | 
|---|
| 2767 | } | 
|---|
| 2768 |  | 
|---|
| 2769 | #ifdef CONFIG_NTP_PPS | 
|---|
| 2770 | /** | 
|---|
| 2771 | * hardpps() - Accessor function to NTP __hardpps function | 
|---|
| 2772 | * @phase_ts:	Pointer to timespec64 structure representing phase timestamp | 
|---|
| 2773 | * @raw_ts:	Pointer to timespec64 structure representing raw timestamp | 
|---|
| 2774 | */ | 
|---|
| 2775 | void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) | 
|---|
| 2776 | { | 
|---|
| 2777 | guard(raw_spinlock_irqsave)(&tk_core.lock); | 
|---|
| 2778 | __hardpps(phase_ts, raw_ts); | 
|---|
| 2779 | } | 
|---|
| 2780 | EXPORT_SYMBOL(hardpps); | 
|---|
| 2781 | #endif /* CONFIG_NTP_PPS */ | 
|---|
| 2782 |  | 
|---|
| 2783 | #ifdef CONFIG_POSIX_AUX_CLOCKS | 
|---|
| 2784 | #include "posix-timers.h" | 
|---|
| 2785 |  | 
|---|
| 2786 | /* | 
|---|
| 2787 | * Bitmap for the activated auxiliary timekeepers to allow lockless quick | 
|---|
| 2788 | * checks in the hot paths without touching extra cache lines. If set, then | 
|---|
| 2789 | * the state of the corresponding timekeeper has to be re-checked under | 
|---|
| 2790 | * timekeeper::lock. | 
|---|
| 2791 | */ | 
|---|
| 2792 | static unsigned long aux_timekeepers; | 
|---|
| 2793 |  | 
|---|
| 2794 | static inline unsigned int clockid_to_tkid(unsigned int id) | 
|---|
| 2795 | { | 
|---|
| 2796 | return TIMEKEEPER_AUX_FIRST + id - CLOCK_AUX; | 
|---|
| 2797 | } | 
|---|
| 2798 |  | 
|---|
| 2799 | static inline struct tk_data *aux_get_tk_data(clockid_t id) | 
|---|
| 2800 | { | 
|---|
| 2801 | if (!clockid_aux_valid(id)) | 
|---|
| 2802 | return NULL; | 
|---|
| 2803 | return &timekeeper_data[clockid_to_tkid(id)]; | 
|---|
| 2804 | } | 
|---|
| 2805 |  | 
|---|
| 2806 | /* Invoked from timekeeping after a clocksource change */ | 
|---|
| 2807 | static void tk_aux_update_clocksource(void) | 
|---|
| 2808 | { | 
|---|
| 2809 | unsigned long active = READ_ONCE(aux_timekeepers); | 
|---|
| 2810 | unsigned int id; | 
|---|
| 2811 |  | 
|---|
| 2812 | for_each_set_bit(id, &active, BITS_PER_LONG) { | 
|---|
| 2813 | struct tk_data *tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST]; | 
|---|
| 2814 | struct timekeeper *tks = &tkd->shadow_timekeeper; | 
|---|
| 2815 |  | 
|---|
| 2816 | guard(raw_spinlock_irqsave)(&tkd->lock); | 
|---|
| 2817 | if (!tks->clock_valid) | 
|---|
| 2818 | continue; | 
|---|
| 2819 |  | 
|---|
| 2820 | timekeeping_forward_now(tks); | 
|---|
| 2821 | tk_setup_internals(tks, tk_core.timekeeper.tkr_mono.clock); | 
|---|
| 2822 | timekeeping_update_from_shadow(tkd, TK_UPDATE_ALL); | 
|---|
| 2823 | } | 
|---|
| 2824 | } | 
|---|
| 2825 |  | 
|---|
| 2826 | static void tk_aux_advance(void) | 
|---|
| 2827 | { | 
|---|
| 2828 | unsigned long active = READ_ONCE(aux_timekeepers); | 
|---|
| 2829 | unsigned int id; | 
|---|
| 2830 |  | 
|---|
| 2831 | /* Lockless quick check to avoid extra cache lines */ | 
|---|
| 2832 | for_each_set_bit(id, &active, BITS_PER_LONG) { | 
|---|
| 2833 | struct tk_data *aux_tkd = &timekeeper_data[id + TIMEKEEPER_AUX_FIRST]; | 
|---|
| 2834 |  | 
|---|
| 2835 | guard(raw_spinlock)(&aux_tkd->lock); | 
|---|
| 2836 | if (aux_tkd->shadow_timekeeper.clock_valid) | 
|---|
| 2837 | __timekeeping_advance(aux_tkd, TK_ADV_TICK); | 
|---|
| 2838 | } | 
|---|
| 2839 | } | 
|---|
| 2840 |  | 
|---|
| 2841 | /** | 
|---|
| 2842 | * ktime_get_aux - Get time for a AUX clock | 
|---|
| 2843 | * @id:	ID of the clock to read (CLOCK_AUX...) | 
|---|
| 2844 | * @kt:	Pointer to ktime_t to store the time stamp | 
|---|
| 2845 | * | 
|---|
| 2846 | * Returns: True if the timestamp is valid, false otherwise | 
|---|
| 2847 | */ | 
|---|
| 2848 | bool ktime_get_aux(clockid_t id, ktime_t *kt) | 
|---|
| 2849 | { | 
|---|
| 2850 | struct tk_data *aux_tkd = aux_get_tk_data(id); | 
|---|
| 2851 | struct timekeeper *aux_tk; | 
|---|
| 2852 | unsigned int seq; | 
|---|
| 2853 | ktime_t base; | 
|---|
| 2854 | u64 nsecs; | 
|---|
| 2855 |  | 
|---|
| 2856 | WARN_ON(timekeeping_suspended); | 
|---|
| 2857 |  | 
|---|
| 2858 | if (!aux_tkd) | 
|---|
| 2859 | return false; | 
|---|
| 2860 |  | 
|---|
| 2861 | aux_tk = &aux_tkd->timekeeper; | 
|---|
| 2862 | do { | 
|---|
| 2863 | seq = read_seqcount_begin(&aux_tkd->seq); | 
|---|
| 2864 | if (!aux_tk->clock_valid) | 
|---|
| 2865 | return false; | 
|---|
| 2866 |  | 
|---|
| 2867 | base = ktime_add(aux_tk->tkr_mono.base, aux_tk->offs_aux); | 
|---|
| 2868 | nsecs = timekeeping_get_ns(&aux_tk->tkr_mono); | 
|---|
| 2869 | } while (read_seqcount_retry(&aux_tkd->seq, seq)); | 
|---|
| 2870 |  | 
|---|
| 2871 | *kt = ktime_add_ns(base, nsecs); | 
|---|
| 2872 | return true; | 
|---|
| 2873 | } | 
|---|
| 2874 | EXPORT_SYMBOL_GPL(ktime_get_aux); | 
|---|
| 2875 |  | 
|---|
| 2876 | /** | 
|---|
| 2877 | * ktime_get_aux_ts64 - Get time for a AUX clock | 
|---|
| 2878 | * @id:	ID of the clock to read (CLOCK_AUX...) | 
|---|
| 2879 | * @ts:	Pointer to timespec64 to store the time stamp | 
|---|
| 2880 | * | 
|---|
| 2881 | * Returns: True if the timestamp is valid, false otherwise | 
|---|
| 2882 | */ | 
|---|
| 2883 | bool ktime_get_aux_ts64(clockid_t id, struct timespec64 *ts) | 
|---|
| 2884 | { | 
|---|
| 2885 | ktime_t now; | 
|---|
| 2886 |  | 
|---|
| 2887 | if (!ktime_get_aux(id, &now)) | 
|---|
| 2888 | return false; | 
|---|
| 2889 | *ts = ktime_to_timespec64(now); | 
|---|
| 2890 | return true; | 
|---|
| 2891 | } | 
|---|
| 2892 | EXPORT_SYMBOL_GPL(ktime_get_aux_ts64); | 
|---|
| 2893 |  | 
|---|
| 2894 | static int aux_get_res(clockid_t id, struct timespec64 *tp) | 
|---|
| 2895 | { | 
|---|
| 2896 | if (!clockid_aux_valid(id)) | 
|---|
| 2897 | return -ENODEV; | 
|---|
| 2898 |  | 
|---|
| 2899 | tp->tv_sec = aux_clock_resolution_ns() / NSEC_PER_SEC; | 
|---|
| 2900 | tp->tv_nsec = aux_clock_resolution_ns() % NSEC_PER_SEC; | 
|---|
| 2901 | return 0; | 
|---|
| 2902 | } | 
|---|
| 2903 |  | 
|---|
| 2904 | static int aux_get_timespec(clockid_t id, struct timespec64 *tp) | 
|---|
| 2905 | { | 
|---|
| 2906 | return ktime_get_aux_ts64(id, tp) ? 0 : -ENODEV; | 
|---|
| 2907 | } | 
|---|
| 2908 |  | 
|---|
| 2909 | static int aux_clock_set(const clockid_t id, const struct timespec64 *tnew) | 
|---|
| 2910 | { | 
|---|
| 2911 | struct tk_data *aux_tkd = aux_get_tk_data(id); | 
|---|
| 2912 | struct timekeeper *aux_tks; | 
|---|
| 2913 | ktime_t tnow, nsecs; | 
|---|
| 2914 |  | 
|---|
| 2915 | if (!timespec64_valid_settod(tnew)) | 
|---|
| 2916 | return -EINVAL; | 
|---|
| 2917 | if (!aux_tkd) | 
|---|
| 2918 | return -ENODEV; | 
|---|
| 2919 |  | 
|---|
| 2920 | aux_tks = &aux_tkd->shadow_timekeeper; | 
|---|
| 2921 |  | 
|---|
| 2922 | guard(raw_spinlock_irq)(&aux_tkd->lock); | 
|---|
| 2923 | if (!aux_tks->clock_valid) | 
|---|
| 2924 | return -ENODEV; | 
|---|
| 2925 |  | 
|---|
| 2926 | /* Forward the timekeeper base time */ | 
|---|
| 2927 | timekeeping_forward_now(aux_tks); | 
|---|
| 2928 | /* | 
|---|
| 2929 | * Get the updated base time. tkr_mono.base has not been | 
|---|
| 2930 | * updated yet, so do that first. That makes the update | 
|---|
| 2931 | * in timekeeping_update_from_shadow() redundant, but | 
|---|
| 2932 | * that's harmless. After that @tnow can be calculated | 
|---|
| 2933 | * by using tkr_mono::cycle_last, which has been set | 
|---|
| 2934 | * by timekeeping_forward_now(). | 
|---|
| 2935 | */ | 
|---|
| 2936 | tk_update_ktime_data(aux_tks); | 
|---|
| 2937 | nsecs = timekeeping_cycles_to_ns(&aux_tks->tkr_mono, aux_tks->tkr_mono.cycle_last); | 
|---|
| 2938 | tnow = ktime_add(aux_tks->tkr_mono.base, nsecs); | 
|---|
| 2939 |  | 
|---|
| 2940 | /* | 
|---|
| 2941 | * Calculate the new AUX offset as delta to @tnow ("monotonic"). | 
|---|
| 2942 | * That avoids all the tk::xtime back and forth conversions as | 
|---|
| 2943 | * xtime ("realtime") is not applicable for auxiliary clocks and | 
|---|
| 2944 | * kept in sync with "monotonic". | 
|---|
| 2945 | */ | 
|---|
| 2946 | tk_update_aux_offs(aux_tks, ktime_sub(timespec64_to_ktime(*tnew), tnow)); | 
|---|
| 2947 |  | 
|---|
| 2948 | timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL); | 
|---|
| 2949 | return 0; | 
|---|
| 2950 | } | 
|---|
| 2951 |  | 
|---|
| 2952 | static int aux_clock_adj(const clockid_t id, struct __kernel_timex *txc) | 
|---|
| 2953 | { | 
|---|
| 2954 | struct tk_data *aux_tkd = aux_get_tk_data(id); | 
|---|
| 2955 | struct adjtimex_result result = { }; | 
|---|
| 2956 |  | 
|---|
| 2957 | if (!aux_tkd) | 
|---|
| 2958 | return -ENODEV; | 
|---|
| 2959 |  | 
|---|
| 2960 | /* | 
|---|
| 2961 | * @result is ignored for now as there are neither hrtimers nor a | 
|---|
| 2962 | * RTC related to auxiliary clocks for now. | 
|---|
| 2963 | */ | 
|---|
| 2964 | return __do_adjtimex(aux_tkd, txc, &result); | 
|---|
| 2965 | } | 
|---|
| 2966 |  | 
|---|
| 2967 | const struct k_clock clock_aux = { | 
|---|
| 2968 | .clock_getres		= aux_get_res, | 
|---|
| 2969 | .clock_get_timespec	= aux_get_timespec, | 
|---|
| 2970 | .clock_set		= aux_clock_set, | 
|---|
| 2971 | .clock_adj		= aux_clock_adj, | 
|---|
| 2972 | }; | 
|---|
| 2973 |  | 
|---|
| 2974 | static void aux_clock_enable(clockid_t id) | 
|---|
| 2975 | { | 
|---|
| 2976 | struct tk_read_base *tkr_raw = &tk_core.timekeeper.tkr_raw; | 
|---|
| 2977 | struct tk_data *aux_tkd = aux_get_tk_data(id); | 
|---|
| 2978 | struct timekeeper *aux_tks = &aux_tkd->shadow_timekeeper; | 
|---|
| 2979 |  | 
|---|
| 2980 | /* Prevent the core timekeeper from changing. */ | 
|---|
| 2981 | guard(raw_spinlock_irq)(&tk_core.lock); | 
|---|
| 2982 |  | 
|---|
| 2983 | /* | 
|---|
| 2984 | * Setup the auxiliary clock assuming that the raw core timekeeper | 
|---|
| 2985 | * clock frequency conversion is close enough. Userspace has to | 
|---|
| 2986 | * adjust for the deviation via clock_adjtime(2). | 
|---|
| 2987 | */ | 
|---|
| 2988 | guard(raw_spinlock_nested)(&aux_tkd->lock); | 
|---|
| 2989 |  | 
|---|
| 2990 | /* Remove leftovers of a previous registration */ | 
|---|
| 2991 | memset(aux_tks, 0, sizeof(*aux_tks)); | 
|---|
| 2992 | /* Restore the timekeeper id */ | 
|---|
| 2993 | aux_tks->id = aux_tkd->timekeeper.id; | 
|---|
| 2994 | /* Setup the timekeeper based on the current system clocksource */ | 
|---|
| 2995 | tk_setup_internals(aux_tks, tkr_raw->clock); | 
|---|
| 2996 |  | 
|---|
| 2997 | /* Mark it valid and set it live */ | 
|---|
| 2998 | aux_tks->clock_valid = true; | 
|---|
| 2999 | timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL); | 
|---|
| 3000 | } | 
|---|
| 3001 |  | 
|---|
| 3002 | static void aux_clock_disable(clockid_t id) | 
|---|
| 3003 | { | 
|---|
| 3004 | struct tk_data *aux_tkd = aux_get_tk_data(id); | 
|---|
| 3005 |  | 
|---|
| 3006 | guard(raw_spinlock_irq)(&aux_tkd->lock); | 
|---|
| 3007 | aux_tkd->shadow_timekeeper.clock_valid = false; | 
|---|
| 3008 | timekeeping_update_from_shadow(aux_tkd, TK_UPDATE_ALL); | 
|---|
| 3009 | } | 
|---|
| 3010 |  | 
|---|
| 3011 | static DEFINE_MUTEX(aux_clock_mutex); | 
|---|
| 3012 |  | 
|---|
| 3013 | static ssize_t aux_clock_enable_store(struct kobject *kobj, struct kobj_attribute *attr, | 
|---|
| 3014 | const char *buf, size_t count) | 
|---|
| 3015 | { | 
|---|
| 3016 | /* Lazy atoi() as name is "0..7" */ | 
|---|
| 3017 | int id = kobj->name[0] & 0x7; | 
|---|
| 3018 | bool enable; | 
|---|
| 3019 |  | 
|---|
| 3020 | if (!capable(CAP_SYS_TIME)) | 
|---|
| 3021 | return -EPERM; | 
|---|
| 3022 |  | 
|---|
| 3023 | if (kstrtobool(buf, &enable) < 0) | 
|---|
| 3024 | return -EINVAL; | 
|---|
| 3025 |  | 
|---|
| 3026 | guard(mutex)(&aux_clock_mutex); | 
|---|
| 3027 | if (enable == test_bit(id, &aux_timekeepers)) | 
|---|
| 3028 | return count; | 
|---|
| 3029 |  | 
|---|
| 3030 | if (enable) { | 
|---|
| 3031 | aux_clock_enable(CLOCK_AUX + id); | 
|---|
| 3032 | set_bit(id, &aux_timekeepers); | 
|---|
| 3033 | } else { | 
|---|
| 3034 | aux_clock_disable(CLOCK_AUX + id); | 
|---|
| 3035 | clear_bit(id, &aux_timekeepers); | 
|---|
| 3036 | } | 
|---|
| 3037 | return count; | 
|---|
| 3038 | } | 
|---|
| 3039 |  | 
|---|
| 3040 | static ssize_t aux_clock_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) | 
|---|
| 3041 | { | 
|---|
| 3042 | unsigned long active = READ_ONCE(aux_timekeepers); | 
|---|
| 3043 | /* Lazy atoi() as name is "0..7" */ | 
|---|
| 3044 | int id = kobj->name[0] & 0x7; | 
|---|
| 3045 |  | 
|---|
| 3046 | return sysfs_emit(buf, "%d\n", test_bit(id, &active)); | 
|---|
| 3047 | } | 
|---|
| 3048 |  | 
|---|
| 3049 | static struct kobj_attribute aux_clock_enable_attr = __ATTR_RW(aux_clock_enable); | 
|---|
| 3050 |  | 
|---|
| 3051 | static struct attribute *aux_clock_enable_attrs[] = { | 
|---|
| 3052 | &aux_clock_enable_attr.attr, | 
|---|
| 3053 | NULL | 
|---|
| 3054 | }; | 
|---|
| 3055 |  | 
|---|
| 3056 | static const struct attribute_group aux_clock_enable_attr_group = { | 
|---|
| 3057 | .attrs = aux_clock_enable_attrs, | 
|---|
| 3058 | }; | 
|---|
| 3059 |  | 
|---|
| 3060 | static int __init tk_aux_sysfs_init(void) | 
|---|
| 3061 | { | 
|---|
| 3062 | struct kobject *auxo, *tko = kobject_create_and_add( "time", kernel_kobj); | 
|---|
| 3063 |  | 
|---|
| 3064 | if (!tko) | 
|---|
| 3065 | return -ENOMEM; | 
|---|
| 3066 |  | 
|---|
| 3067 | auxo = kobject_create_and_add( "aux_clocks", tko); | 
|---|
| 3068 | if (!auxo) { | 
|---|
| 3069 | kobject_put(tko); | 
|---|
| 3070 | return -ENOMEM; | 
|---|
| 3071 | } | 
|---|
| 3072 |  | 
|---|
| 3073 | for (int i = 0; i <= MAX_AUX_CLOCKS; i++) { | 
|---|
| 3074 | char id[2] = { [0] = '0' + i, }; | 
|---|
| 3075 | struct kobject *clk = kobject_create_and_add(id, auxo); | 
|---|
| 3076 |  | 
|---|
| 3077 | if (!clk) | 
|---|
| 3078 | return -ENOMEM; | 
|---|
| 3079 |  | 
|---|
| 3080 | int ret = sysfs_create_group(clk, &aux_clock_enable_attr_group); | 
|---|
| 3081 |  | 
|---|
| 3082 | if (ret) | 
|---|
| 3083 | return ret; | 
|---|
| 3084 | } | 
|---|
| 3085 | return 0; | 
|---|
| 3086 | } | 
|---|
| 3087 | late_initcall(tk_aux_sysfs_init); | 
|---|
| 3088 |  | 
|---|
| 3089 | static __init void tk_aux_setup(void) | 
|---|
| 3090 | { | 
|---|
| 3091 | for (int i = TIMEKEEPER_AUX_FIRST; i <= TIMEKEEPER_AUX_LAST; i++) | 
|---|
| 3092 | tkd_basic_setup(&timekeeper_data[i], i, false); | 
|---|
| 3093 | } | 
|---|
| 3094 | #endif /* CONFIG_POSIX_AUX_CLOCKS */ | 
|---|
| 3095 |  | 
|---|