| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * kernel/workqueue.c - generic async execution with shared worker pool |
| 4 | * |
| 5 | * Copyright (C) 2002 Ingo Molnar |
| 6 | * |
| 7 | * Derived from the taskqueue/keventd code by: |
| 8 | * David Woodhouse <dwmw2@infradead.org> |
| 9 | * Andrew Morton |
| 10 | * Kai Petzke <wpp@marie.physik.tu-berlin.de> |
| 11 | * Theodore Ts'o <tytso@mit.edu> |
| 12 | * |
| 13 | * Made to use alloc_percpu by Christoph Lameter. |
| 14 | * |
| 15 | * Copyright (C) 2010 SUSE Linux Products GmbH |
| 16 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> |
| 17 | * |
| 18 | * This is the generic async execution mechanism. Work items as are |
| 19 | * executed in process context. The worker pool is shared and |
| 20 | * automatically managed. There are two worker pools for each CPU (one for |
| 21 | * normal work items and the other for high priority ones) and some extra |
| 22 | * pools for workqueues which are not bound to any specific CPU - the |
| 23 | * number of these backing pools is dynamic. |
| 24 | * |
| 25 | * Please read Documentation/core-api/workqueue.rst for details. |
| 26 | */ |
| 27 | |
| 28 | #include <linux/export.h> |
| 29 | #include <linux/kernel.h> |
| 30 | #include <linux/sched.h> |
| 31 | #include <linux/init.h> |
| 32 | #include <linux/interrupt.h> |
| 33 | #include <linux/signal.h> |
| 34 | #include <linux/completion.h> |
| 35 | #include <linux/workqueue.h> |
| 36 | #include <linux/slab.h> |
| 37 | #include <linux/cpu.h> |
| 38 | #include <linux/notifier.h> |
| 39 | #include <linux/kthread.h> |
| 40 | #include <linux/hardirq.h> |
| 41 | #include <linux/mempolicy.h> |
| 42 | #include <linux/freezer.h> |
| 43 | #include <linux/debug_locks.h> |
| 44 | #include <linux/lockdep.h> |
| 45 | #include <linux/idr.h> |
| 46 | #include <linux/jhash.h> |
| 47 | #include <linux/hashtable.h> |
| 48 | #include <linux/rculist.h> |
| 49 | #include <linux/nodemask.h> |
| 50 | #include <linux/moduleparam.h> |
| 51 | #include <linux/uaccess.h> |
| 52 | #include <linux/sched/isolation.h> |
| 53 | #include <linux/sched/debug.h> |
| 54 | #include <linux/nmi.h> |
| 55 | #include <linux/kvm_para.h> |
| 56 | #include <linux/delay.h> |
| 57 | #include <linux/irq_work.h> |
| 58 | |
| 59 | #include "workqueue_internal.h" |
| 60 | |
| 61 | enum worker_pool_flags { |
| 62 | /* |
| 63 | * worker_pool flags |
| 64 | * |
| 65 | * A bound pool is either associated or disassociated with its CPU. |
| 66 | * While associated (!DISASSOCIATED), all workers are bound to the |
| 67 | * CPU and none has %WORKER_UNBOUND set and concurrency management |
| 68 | * is in effect. |
| 69 | * |
| 70 | * While DISASSOCIATED, the cpu may be offline and all workers have |
| 71 | * %WORKER_UNBOUND set and concurrency management disabled, and may |
| 72 | * be executing on any CPU. The pool behaves as an unbound one. |
| 73 | * |
| 74 | * Note that DISASSOCIATED should be flipped only while holding |
| 75 | * wq_pool_attach_mutex to avoid changing binding state while |
| 76 | * worker_attach_to_pool() is in progress. |
| 77 | * |
| 78 | * As there can only be one concurrent BH execution context per CPU, a |
| 79 | * BH pool is per-CPU and always DISASSOCIATED. |
| 80 | */ |
| 81 | POOL_BH = 1 << 0, /* is a BH pool */ |
| 82 | POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ |
| 83 | POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ |
| 84 | POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ |
| 85 | }; |
| 86 | |
| 87 | enum worker_flags { |
| 88 | /* worker flags */ |
| 89 | WORKER_DIE = 1 << 1, /* die die die */ |
| 90 | WORKER_IDLE = 1 << 2, /* is idle */ |
| 91 | WORKER_PREP = 1 << 3, /* preparing to run works */ |
| 92 | WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ |
| 93 | WORKER_UNBOUND = 1 << 7, /* worker is unbound */ |
| 94 | WORKER_REBOUND = 1 << 8, /* worker was rebound */ |
| 95 | |
| 96 | WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | |
| 97 | WORKER_UNBOUND | WORKER_REBOUND, |
| 98 | }; |
| 99 | |
| 100 | enum work_cancel_flags { |
| 101 | WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ |
| 102 | WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ |
| 103 | }; |
| 104 | |
| 105 | enum wq_internal_consts { |
| 106 | NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ |
| 107 | |
| 108 | UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ |
| 109 | BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ |
| 110 | |
| 111 | MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ |
| 112 | IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ |
| 113 | |
| 114 | MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, |
| 115 | /* call for help after 10ms |
| 116 | (min two ticks) */ |
| 117 | MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ |
| 118 | CREATE_COOLDOWN = HZ, /* time to breath after fail */ |
| 119 | |
| 120 | /* |
| 121 | * Rescue workers are used only on emergencies and shared by |
| 122 | * all cpus. Give MIN_NICE. |
| 123 | */ |
| 124 | RESCUER_NICE_LEVEL = MIN_NICE, |
| 125 | HIGHPRI_NICE_LEVEL = MIN_NICE, |
| 126 | |
| 127 | WQ_NAME_LEN = 32, |
| 128 | WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */ |
| 129 | }; |
| 130 | |
| 131 | /* |
| 132 | * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and |
| 133 | * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because |
| 134 | * msecs_to_jiffies() can't be an initializer. |
| 135 | */ |
| 136 | #define BH_WORKER_JIFFIES msecs_to_jiffies(2) |
| 137 | #define BH_WORKER_RESTARTS 10 |
| 138 | |
| 139 | /* |
| 140 | * Structure fields follow one of the following exclusion rules. |
| 141 | * |
| 142 | * I: Modifiable by initialization/destruction paths and read-only for |
| 143 | * everyone else. |
| 144 | * |
| 145 | * P: Preemption protected. Disabling preemption is enough and should |
| 146 | * only be modified and accessed from the local cpu. |
| 147 | * |
| 148 | * L: pool->lock protected. Access with pool->lock held. |
| 149 | * |
| 150 | * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for |
| 151 | * reads. |
| 152 | * |
| 153 | * K: Only modified by worker while holding pool->lock. Can be safely read by |
| 154 | * self, while holding pool->lock or from IRQ context if %current is the |
| 155 | * kworker. |
| 156 | * |
| 157 | * S: Only modified by worker self. |
| 158 | * |
| 159 | * A: wq_pool_attach_mutex protected. |
| 160 | * |
| 161 | * PL: wq_pool_mutex protected. |
| 162 | * |
| 163 | * PR: wq_pool_mutex protected for writes. RCU protected for reads. |
| 164 | * |
| 165 | * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. |
| 166 | * |
| 167 | * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or |
| 168 | * RCU for reads. |
| 169 | * |
| 170 | * WQ: wq->mutex protected. |
| 171 | * |
| 172 | * WR: wq->mutex protected for writes. RCU protected for reads. |
| 173 | * |
| 174 | * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read |
| 175 | * with READ_ONCE() without locking. |
| 176 | * |
| 177 | * MD: wq_mayday_lock protected. |
| 178 | * |
| 179 | * WD: Used internally by the watchdog. |
| 180 | */ |
| 181 | |
| 182 | /* struct worker is defined in workqueue_internal.h */ |
| 183 | |
| 184 | struct worker_pool { |
| 185 | raw_spinlock_t lock; /* the pool lock */ |
| 186 | int cpu; /* I: the associated cpu */ |
| 187 | int node; /* I: the associated node ID */ |
| 188 | int id; /* I: pool ID */ |
| 189 | unsigned int flags; /* L: flags */ |
| 190 | |
| 191 | unsigned long watchdog_ts; /* L: watchdog timestamp */ |
| 192 | bool cpu_stall; /* WD: stalled cpu bound pool */ |
| 193 | |
| 194 | /* |
| 195 | * The counter is incremented in a process context on the associated CPU |
| 196 | * w/ preemption disabled, and decremented or reset in the same context |
| 197 | * but w/ pool->lock held. The readers grab pool->lock and are |
| 198 | * guaranteed to see if the counter reached zero. |
| 199 | */ |
| 200 | int nr_running; |
| 201 | |
| 202 | struct list_head worklist; /* L: list of pending works */ |
| 203 | |
| 204 | int nr_workers; /* L: total number of workers */ |
| 205 | int nr_idle; /* L: currently idle workers */ |
| 206 | |
| 207 | struct list_head idle_list; /* L: list of idle workers */ |
| 208 | struct timer_list idle_timer; /* L: worker idle timeout */ |
| 209 | struct work_struct idle_cull_work; /* L: worker idle cleanup */ |
| 210 | |
| 211 | struct timer_list mayday_timer; /* L: SOS timer for workers */ |
| 212 | |
| 213 | /* a workers is either on busy_hash or idle_list, or the manager */ |
| 214 | DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); |
| 215 | /* L: hash of busy workers */ |
| 216 | |
| 217 | struct worker *manager; /* L: purely informational */ |
| 218 | struct list_head workers; /* A: attached workers */ |
| 219 | |
| 220 | struct ida worker_ida; /* worker IDs for task name */ |
| 221 | |
| 222 | struct workqueue_attrs *attrs; /* I: worker attributes */ |
| 223 | struct hlist_node hash_node; /* PL: unbound_pool_hash node */ |
| 224 | int refcnt; /* PL: refcnt for unbound pools */ |
| 225 | #ifdef CONFIG_PREEMPT_RT |
| 226 | spinlock_t cb_lock; /* BH worker cancel lock */ |
| 227 | #endif |
| 228 | /* |
| 229 | * Destruction of pool is RCU protected to allow dereferences |
| 230 | * from get_work_pool(). |
| 231 | */ |
| 232 | struct rcu_head rcu; |
| 233 | }; |
| 234 | |
| 235 | /* |
| 236 | * Per-pool_workqueue statistics. These can be monitored using |
| 237 | * tools/workqueue/wq_monitor.py. |
| 238 | */ |
| 239 | enum pool_workqueue_stats { |
| 240 | PWQ_STAT_STARTED, /* work items started execution */ |
| 241 | PWQ_STAT_COMPLETED, /* work items completed execution */ |
| 242 | PWQ_STAT_CPU_TIME, /* total CPU time consumed */ |
| 243 | PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ |
| 244 | PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ |
| 245 | PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ |
| 246 | PWQ_STAT_MAYDAY, /* maydays to rescuer */ |
| 247 | PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ |
| 248 | |
| 249 | PWQ_NR_STATS, |
| 250 | }; |
| 251 | |
| 252 | /* |
| 253 | * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT |
| 254 | * of work_struct->data are used for flags and the remaining high bits |
| 255 | * point to the pwq; thus, pwqs need to be aligned at two's power of the |
| 256 | * number of flag bits. |
| 257 | */ |
| 258 | struct pool_workqueue { |
| 259 | struct worker_pool *pool; /* I: the associated pool */ |
| 260 | struct workqueue_struct *wq; /* I: the owning workqueue */ |
| 261 | int work_color; /* L: current color */ |
| 262 | int flush_color; /* L: flushing color */ |
| 263 | int refcnt; /* L: reference count */ |
| 264 | int nr_in_flight[WORK_NR_COLORS]; |
| 265 | /* L: nr of in_flight works */ |
| 266 | bool plugged; /* L: execution suspended */ |
| 267 | |
| 268 | /* |
| 269 | * nr_active management and WORK_STRUCT_INACTIVE: |
| 270 | * |
| 271 | * When pwq->nr_active >= max_active, new work item is queued to |
| 272 | * pwq->inactive_works instead of pool->worklist and marked with |
| 273 | * WORK_STRUCT_INACTIVE. |
| 274 | * |
| 275 | * All work items marked with WORK_STRUCT_INACTIVE do not participate in |
| 276 | * nr_active and all work items in pwq->inactive_works are marked with |
| 277 | * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are |
| 278 | * in pwq->inactive_works. Some of them are ready to run in |
| 279 | * pool->worklist or worker->scheduled. Those work itmes are only struct |
| 280 | * wq_barrier which is used for flush_work() and should not participate |
| 281 | * in nr_active. For non-barrier work item, it is marked with |
| 282 | * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. |
| 283 | */ |
| 284 | int nr_active; /* L: nr of active works */ |
| 285 | struct list_head inactive_works; /* L: inactive works */ |
| 286 | struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ |
| 287 | struct list_head pwqs_node; /* WR: node on wq->pwqs */ |
| 288 | struct list_head mayday_node; /* MD: node on wq->maydays */ |
| 289 | |
| 290 | u64 stats[PWQ_NR_STATS]; |
| 291 | |
| 292 | /* |
| 293 | * Release of unbound pwq is punted to a kthread_worker. See put_pwq() |
| 294 | * and pwq_release_workfn() for details. pool_workqueue itself is also |
| 295 | * RCU protected so that the first pwq can be determined without |
| 296 | * grabbing wq->mutex. |
| 297 | */ |
| 298 | struct kthread_work release_work; |
| 299 | struct rcu_head rcu; |
| 300 | } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); |
| 301 | |
| 302 | /* |
| 303 | * Structure used to wait for workqueue flush. |
| 304 | */ |
| 305 | struct wq_flusher { |
| 306 | struct list_head list; /* WQ: list of flushers */ |
| 307 | int flush_color; /* WQ: flush color waiting for */ |
| 308 | struct completion done; /* flush completion */ |
| 309 | }; |
| 310 | |
| 311 | struct wq_device; |
| 312 | |
| 313 | /* |
| 314 | * Unlike in a per-cpu workqueue where max_active limits its concurrency level |
| 315 | * on each CPU, in an unbound workqueue, max_active applies to the whole system. |
| 316 | * As sharing a single nr_active across multiple sockets can be very expensive, |
| 317 | * the counting and enforcement is per NUMA node. |
| 318 | * |
| 319 | * The following struct is used to enforce per-node max_active. When a pwq wants |
| 320 | * to start executing a work item, it should increment ->nr using |
| 321 | * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over |
| 322 | * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish |
| 323 | * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in |
| 324 | * round-robin order. |
| 325 | */ |
| 326 | struct wq_node_nr_active { |
| 327 | int max; /* per-node max_active */ |
| 328 | atomic_t nr; /* per-node nr_active */ |
| 329 | raw_spinlock_t lock; /* nests inside pool locks */ |
| 330 | struct list_head pending_pwqs; /* LN: pwqs with inactive works */ |
| 331 | }; |
| 332 | |
| 333 | /* |
| 334 | * The externally visible workqueue. It relays the issued work items to |
| 335 | * the appropriate worker_pool through its pool_workqueues. |
| 336 | */ |
| 337 | struct workqueue_struct { |
| 338 | struct list_head pwqs; /* WR: all pwqs of this wq */ |
| 339 | struct list_head list; /* PR: list of all workqueues */ |
| 340 | |
| 341 | struct mutex mutex; /* protects this wq */ |
| 342 | int work_color; /* WQ: current work color */ |
| 343 | int flush_color; /* WQ: current flush color */ |
| 344 | atomic_t nr_pwqs_to_flush; /* flush in progress */ |
| 345 | struct wq_flusher *first_flusher; /* WQ: first flusher */ |
| 346 | struct list_head flusher_queue; /* WQ: flush waiters */ |
| 347 | struct list_head flusher_overflow; /* WQ: flush overflow list */ |
| 348 | |
| 349 | struct list_head maydays; /* MD: pwqs requesting rescue */ |
| 350 | struct worker *rescuer; /* MD: rescue worker */ |
| 351 | |
| 352 | int nr_drainers; /* WQ: drain in progress */ |
| 353 | |
| 354 | /* See alloc_workqueue() function comment for info on min/max_active */ |
| 355 | int max_active; /* WO: max active works */ |
| 356 | int min_active; /* WO: min active works */ |
| 357 | int saved_max_active; /* WQ: saved max_active */ |
| 358 | int saved_min_active; /* WQ: saved min_active */ |
| 359 | |
| 360 | struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ |
| 361 | struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ |
| 362 | |
| 363 | #ifdef CONFIG_SYSFS |
| 364 | struct wq_device *wq_dev; /* I: for sysfs interface */ |
| 365 | #endif |
| 366 | #ifdef CONFIG_LOCKDEP |
| 367 | char *lock_name; |
| 368 | struct lock_class_key key; |
| 369 | struct lockdep_map __lockdep_map; |
| 370 | struct lockdep_map *lockdep_map; |
| 371 | #endif |
| 372 | char name[WQ_NAME_LEN]; /* I: workqueue name */ |
| 373 | |
| 374 | /* |
| 375 | * Destruction of workqueue_struct is RCU protected to allow walking |
| 376 | * the workqueues list without grabbing wq_pool_mutex. |
| 377 | * This is used to dump all workqueues from sysrq. |
| 378 | */ |
| 379 | struct rcu_head rcu; |
| 380 | |
| 381 | /* hot fields used during command issue, aligned to cacheline */ |
| 382 | unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ |
| 383 | struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */ |
| 384 | struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ |
| 385 | }; |
| 386 | |
| 387 | /* |
| 388 | * Each pod type describes how CPUs should be grouped for unbound workqueues. |
| 389 | * See the comment above workqueue_attrs->affn_scope. |
| 390 | */ |
| 391 | struct wq_pod_type { |
| 392 | int nr_pods; /* number of pods */ |
| 393 | cpumask_var_t *pod_cpus; /* pod -> cpus */ |
| 394 | int *pod_node; /* pod -> node */ |
| 395 | int *cpu_pod; /* cpu -> pod */ |
| 396 | }; |
| 397 | |
| 398 | struct work_offq_data { |
| 399 | u32 pool_id; |
| 400 | u32 disable; |
| 401 | u32 flags; |
| 402 | }; |
| 403 | |
| 404 | static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { |
| 405 | [WQ_AFFN_DFL] = "default" , |
| 406 | [WQ_AFFN_CPU] = "cpu" , |
| 407 | [WQ_AFFN_SMT] = "smt" , |
| 408 | [WQ_AFFN_CACHE] = "cache" , |
| 409 | [WQ_AFFN_NUMA] = "numa" , |
| 410 | [WQ_AFFN_SYSTEM] = "system" , |
| 411 | }; |
| 412 | |
| 413 | /* |
| 414 | * Per-cpu work items which run for longer than the following threshold are |
| 415 | * automatically considered CPU intensive and excluded from concurrency |
| 416 | * management to prevent them from noticeably delaying other per-cpu work items. |
| 417 | * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. |
| 418 | * The actual value is initialized in wq_cpu_intensive_thresh_init(). |
| 419 | */ |
| 420 | static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; |
| 421 | module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); |
| 422 | #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT |
| 423 | static unsigned int wq_cpu_intensive_warning_thresh = 4; |
| 424 | module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); |
| 425 | #endif |
| 426 | |
| 427 | /* see the comment above the definition of WQ_POWER_EFFICIENT */ |
| 428 | static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); |
| 429 | module_param_named(power_efficient, wq_power_efficient, bool, 0444); |
| 430 | |
| 431 | static bool wq_online; /* can kworkers be created yet? */ |
| 432 | static bool wq_topo_initialized __read_mostly = false; |
| 433 | |
| 434 | static struct kmem_cache *pwq_cache; |
| 435 | |
| 436 | static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; |
| 437 | static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; |
| 438 | |
| 439 | /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ |
| 440 | static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf; |
| 441 | |
| 442 | static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ |
| 443 | static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ |
| 444 | static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ |
| 445 | /* wait for manager to go away */ |
| 446 | static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); |
| 447 | |
| 448 | static LIST_HEAD(workqueues); /* PR: list of all workqueues */ |
| 449 | static bool workqueue_freezing; /* PL: have wqs started freezing? */ |
| 450 | |
| 451 | /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */ |
| 452 | static cpumask_var_t wq_online_cpumask; |
| 453 | |
| 454 | /* PL&A: allowable cpus for unbound wqs and work items */ |
| 455 | static cpumask_var_t wq_unbound_cpumask; |
| 456 | |
| 457 | /* PL: user requested unbound cpumask via sysfs */ |
| 458 | static cpumask_var_t wq_requested_unbound_cpumask; |
| 459 | |
| 460 | /* PL: isolated cpumask to be excluded from unbound cpumask */ |
| 461 | static cpumask_var_t wq_isolated_cpumask; |
| 462 | |
| 463 | /* for further constrain wq_unbound_cpumask by cmdline parameter*/ |
| 464 | static struct cpumask wq_cmdline_cpumask __initdata; |
| 465 | |
| 466 | /* CPU where unbound work was last round robin scheduled from this CPU */ |
| 467 | static DEFINE_PER_CPU(int, wq_rr_cpu_last); |
| 468 | |
| 469 | /* |
| 470 | * Local execution of unbound work items is no longer guaranteed. The |
| 471 | * following always forces round-robin CPU selection on unbound work items |
| 472 | * to uncover usages which depend on it. |
| 473 | */ |
| 474 | #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU |
| 475 | static bool wq_debug_force_rr_cpu = true; |
| 476 | #else |
| 477 | static bool wq_debug_force_rr_cpu = false; |
| 478 | #endif |
| 479 | module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); |
| 480 | |
| 481 | /* to raise softirq for the BH worker pools on other CPUs */ |
| 482 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works); |
| 483 | |
| 484 | /* the BH worker pools */ |
| 485 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools); |
| 486 | |
| 487 | /* the per-cpu worker pools */ |
| 488 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); |
| 489 | |
| 490 | static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ |
| 491 | |
| 492 | /* PL: hash of all unbound pools keyed by pool->attrs */ |
| 493 | static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); |
| 494 | |
| 495 | /* I: attributes used when instantiating standard unbound pools on demand */ |
| 496 | static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; |
| 497 | |
| 498 | /* I: attributes used when instantiating ordered pools on demand */ |
| 499 | static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; |
| 500 | |
| 501 | /* |
| 502 | * I: kthread_worker to release pwq's. pwq release needs to be bounced to a |
| 503 | * process context while holding a pool lock. Bounce to a dedicated kthread |
| 504 | * worker to avoid A-A deadlocks. |
| 505 | */ |
| 506 | static struct kthread_worker *pwq_release_worker __ro_after_init; |
| 507 | |
| 508 | struct workqueue_struct *system_wq __ro_after_init; |
| 509 | EXPORT_SYMBOL(system_wq); |
| 510 | struct workqueue_struct *system_percpu_wq __ro_after_init; |
| 511 | EXPORT_SYMBOL(system_percpu_wq); |
| 512 | struct workqueue_struct *system_highpri_wq __ro_after_init; |
| 513 | EXPORT_SYMBOL_GPL(system_highpri_wq); |
| 514 | struct workqueue_struct *system_long_wq __ro_after_init; |
| 515 | EXPORT_SYMBOL_GPL(system_long_wq); |
| 516 | struct workqueue_struct *system_unbound_wq __ro_after_init; |
| 517 | EXPORT_SYMBOL_GPL(system_unbound_wq); |
| 518 | struct workqueue_struct *system_dfl_wq __ro_after_init; |
| 519 | EXPORT_SYMBOL_GPL(system_dfl_wq); |
| 520 | struct workqueue_struct *system_freezable_wq __ro_after_init; |
| 521 | EXPORT_SYMBOL_GPL(system_freezable_wq); |
| 522 | struct workqueue_struct *system_power_efficient_wq __ro_after_init; |
| 523 | EXPORT_SYMBOL_GPL(system_power_efficient_wq); |
| 524 | struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; |
| 525 | EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); |
| 526 | struct workqueue_struct *system_bh_wq; |
| 527 | EXPORT_SYMBOL_GPL(system_bh_wq); |
| 528 | struct workqueue_struct *system_bh_highpri_wq; |
| 529 | EXPORT_SYMBOL_GPL(system_bh_highpri_wq); |
| 530 | |
| 531 | static int worker_thread(void *__worker); |
| 532 | static void workqueue_sysfs_unregister(struct workqueue_struct *wq); |
| 533 | static void show_pwq(struct pool_workqueue *pwq); |
| 534 | static void show_one_worker_pool(struct worker_pool *pool); |
| 535 | |
| 536 | #define CREATE_TRACE_POINTS |
| 537 | #include <trace/events/workqueue.h> |
| 538 | |
| 539 | #define assert_rcu_or_pool_mutex() \ |
| 540 | RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ |
| 541 | !lockdep_is_held(&wq_pool_mutex), \ |
| 542 | "RCU or wq_pool_mutex should be held") |
| 543 | |
| 544 | #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ |
| 545 | RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ |
| 546 | !lockdep_is_held(&wq->mutex) && \ |
| 547 | !lockdep_is_held(&wq_pool_mutex), \ |
| 548 | "RCU, wq->mutex or wq_pool_mutex should be held") |
| 549 | |
| 550 | #define for_each_bh_worker_pool(pool, cpu) \ |
| 551 | for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ |
| 552 | (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ |
| 553 | (pool)++) |
| 554 | |
| 555 | #define for_each_cpu_worker_pool(pool, cpu) \ |
| 556 | for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ |
| 557 | (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ |
| 558 | (pool)++) |
| 559 | |
| 560 | /** |
| 561 | * for_each_pool - iterate through all worker_pools in the system |
| 562 | * @pool: iteration cursor |
| 563 | * @pi: integer used for iteration |
| 564 | * |
| 565 | * This must be called either with wq_pool_mutex held or RCU read |
| 566 | * locked. If the pool needs to be used beyond the locking in effect, the |
| 567 | * caller is responsible for guaranteeing that the pool stays online. |
| 568 | * |
| 569 | * The if/else clause exists only for the lockdep assertion and can be |
| 570 | * ignored. |
| 571 | */ |
| 572 | #define for_each_pool(pool, pi) \ |
| 573 | idr_for_each_entry(&worker_pool_idr, pool, pi) \ |
| 574 | if (({ assert_rcu_or_pool_mutex(); false; })) { } \ |
| 575 | else |
| 576 | |
| 577 | /** |
| 578 | * for_each_pool_worker - iterate through all workers of a worker_pool |
| 579 | * @worker: iteration cursor |
| 580 | * @pool: worker_pool to iterate workers of |
| 581 | * |
| 582 | * This must be called with wq_pool_attach_mutex. |
| 583 | * |
| 584 | * The if/else clause exists only for the lockdep assertion and can be |
| 585 | * ignored. |
| 586 | */ |
| 587 | #define for_each_pool_worker(worker, pool) \ |
| 588 | list_for_each_entry((worker), &(pool)->workers, node) \ |
| 589 | if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ |
| 590 | else |
| 591 | |
| 592 | /** |
| 593 | * for_each_pwq - iterate through all pool_workqueues of the specified workqueue |
| 594 | * @pwq: iteration cursor |
| 595 | * @wq: the target workqueue |
| 596 | * |
| 597 | * This must be called either with wq->mutex held or RCU read locked. |
| 598 | * If the pwq needs to be used beyond the locking in effect, the caller is |
| 599 | * responsible for guaranteeing that the pwq stays online. |
| 600 | * |
| 601 | * The if/else clause exists only for the lockdep assertion and can be |
| 602 | * ignored. |
| 603 | */ |
| 604 | #define for_each_pwq(pwq, wq) \ |
| 605 | list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ |
| 606 | lockdep_is_held(&(wq->mutex))) |
| 607 | |
| 608 | #ifdef CONFIG_DEBUG_OBJECTS_WORK |
| 609 | |
| 610 | static const struct debug_obj_descr work_debug_descr; |
| 611 | |
| 612 | static void *work_debug_hint(void *addr) |
| 613 | { |
| 614 | return ((struct work_struct *) addr)->func; |
| 615 | } |
| 616 | |
| 617 | static bool work_is_static_object(void *addr) |
| 618 | { |
| 619 | struct work_struct *work = addr; |
| 620 | |
| 621 | return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); |
| 622 | } |
| 623 | |
| 624 | /* |
| 625 | * fixup_init is called when: |
| 626 | * - an active object is initialized |
| 627 | */ |
| 628 | static bool work_fixup_init(void *addr, enum debug_obj_state state) |
| 629 | { |
| 630 | struct work_struct *work = addr; |
| 631 | |
| 632 | switch (state) { |
| 633 | case ODEBUG_STATE_ACTIVE: |
| 634 | cancel_work_sync(work); |
| 635 | debug_object_init(work, &work_debug_descr); |
| 636 | return true; |
| 637 | default: |
| 638 | return false; |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | /* |
| 643 | * fixup_free is called when: |
| 644 | * - an active object is freed |
| 645 | */ |
| 646 | static bool work_fixup_free(void *addr, enum debug_obj_state state) |
| 647 | { |
| 648 | struct work_struct *work = addr; |
| 649 | |
| 650 | switch (state) { |
| 651 | case ODEBUG_STATE_ACTIVE: |
| 652 | cancel_work_sync(work); |
| 653 | debug_object_free(work, &work_debug_descr); |
| 654 | return true; |
| 655 | default: |
| 656 | return false; |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | static const struct debug_obj_descr work_debug_descr = { |
| 661 | .name = "work_struct" , |
| 662 | .debug_hint = work_debug_hint, |
| 663 | .is_static_object = work_is_static_object, |
| 664 | .fixup_init = work_fixup_init, |
| 665 | .fixup_free = work_fixup_free, |
| 666 | }; |
| 667 | |
| 668 | static inline void debug_work_activate(struct work_struct *work) |
| 669 | { |
| 670 | debug_object_activate(work, &work_debug_descr); |
| 671 | } |
| 672 | |
| 673 | static inline void debug_work_deactivate(struct work_struct *work) |
| 674 | { |
| 675 | debug_object_deactivate(work, &work_debug_descr); |
| 676 | } |
| 677 | |
| 678 | void __init_work(struct work_struct *work, int onstack) |
| 679 | { |
| 680 | if (onstack) |
| 681 | debug_object_init_on_stack(work, &work_debug_descr); |
| 682 | else |
| 683 | debug_object_init(work, &work_debug_descr); |
| 684 | } |
| 685 | EXPORT_SYMBOL_GPL(__init_work); |
| 686 | |
| 687 | void destroy_work_on_stack(struct work_struct *work) |
| 688 | { |
| 689 | debug_object_free(work, &work_debug_descr); |
| 690 | } |
| 691 | EXPORT_SYMBOL_GPL(destroy_work_on_stack); |
| 692 | |
| 693 | void destroy_delayed_work_on_stack(struct delayed_work *work) |
| 694 | { |
| 695 | timer_destroy_on_stack(&work->timer); |
| 696 | debug_object_free(&work->work, &work_debug_descr); |
| 697 | } |
| 698 | EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); |
| 699 | |
| 700 | #else |
| 701 | static inline void debug_work_activate(struct work_struct *work) { } |
| 702 | static inline void debug_work_deactivate(struct work_struct *work) { } |
| 703 | #endif |
| 704 | |
| 705 | /** |
| 706 | * worker_pool_assign_id - allocate ID and assign it to @pool |
| 707 | * @pool: the pool pointer of interest |
| 708 | * |
| 709 | * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned |
| 710 | * successfully, -errno on failure. |
| 711 | */ |
| 712 | static int worker_pool_assign_id(struct worker_pool *pool) |
| 713 | { |
| 714 | int ret; |
| 715 | |
| 716 | lockdep_assert_held(&wq_pool_mutex); |
| 717 | |
| 718 | ret = idr_alloc(&worker_pool_idr, ptr: pool, start: 0, WORK_OFFQ_POOL_NONE, |
| 719 | GFP_KERNEL); |
| 720 | if (ret >= 0) { |
| 721 | pool->id = ret; |
| 722 | return 0; |
| 723 | } |
| 724 | return ret; |
| 725 | } |
| 726 | |
| 727 | static struct pool_workqueue __rcu ** |
| 728 | unbound_pwq_slot(struct workqueue_struct *wq, int cpu) |
| 729 | { |
| 730 | if (cpu >= 0) |
| 731 | return per_cpu_ptr(wq->cpu_pwq, cpu); |
| 732 | else |
| 733 | return &wq->dfl_pwq; |
| 734 | } |
| 735 | |
| 736 | /* @cpu < 0 for dfl_pwq */ |
| 737 | static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) |
| 738 | { |
| 739 | return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), |
| 740 | lockdep_is_held(&wq_pool_mutex) || |
| 741 | lockdep_is_held(&wq->mutex)); |
| 742 | } |
| 743 | |
| 744 | /** |
| 745 | * unbound_effective_cpumask - effective cpumask of an unbound workqueue |
| 746 | * @wq: workqueue of interest |
| 747 | * |
| 748 | * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which |
| 749 | * is masked with wq_unbound_cpumask to determine the effective cpumask. The |
| 750 | * default pwq is always mapped to the pool with the current effective cpumask. |
| 751 | */ |
| 752 | static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) |
| 753 | { |
| 754 | return unbound_pwq(wq, cpu: -1)->pool->attrs->__pod_cpumask; |
| 755 | } |
| 756 | |
| 757 | static unsigned int work_color_to_flags(int color) |
| 758 | { |
| 759 | return color << WORK_STRUCT_COLOR_SHIFT; |
| 760 | } |
| 761 | |
| 762 | static int get_work_color(unsigned long work_data) |
| 763 | { |
| 764 | return (work_data >> WORK_STRUCT_COLOR_SHIFT) & |
| 765 | ((1 << WORK_STRUCT_COLOR_BITS) - 1); |
| 766 | } |
| 767 | |
| 768 | static int work_next_color(int color) |
| 769 | { |
| 770 | return (color + 1) % WORK_NR_COLORS; |
| 771 | } |
| 772 | |
| 773 | static unsigned long pool_offq_flags(struct worker_pool *pool) |
| 774 | { |
| 775 | return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data |
| 780 | * contain the pointer to the queued pwq. Once execution starts, the flag |
| 781 | * is cleared and the high bits contain OFFQ flags and pool ID. |
| 782 | * |
| 783 | * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() |
| 784 | * can be used to set the pwq, pool or clear work->data. These functions should |
| 785 | * only be called while the work is owned - ie. while the PENDING bit is set. |
| 786 | * |
| 787 | * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq |
| 788 | * corresponding to a work. Pool is available once the work has been |
| 789 | * queued anywhere after initialization until it is sync canceled. pwq is |
| 790 | * available only while the work item is queued. |
| 791 | */ |
| 792 | static inline void set_work_data(struct work_struct *work, unsigned long data) |
| 793 | { |
| 794 | WARN_ON_ONCE(!work_pending(work)); |
| 795 | atomic_long_set(v: &work->data, i: data | work_static(work)); |
| 796 | } |
| 797 | |
| 798 | static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, |
| 799 | unsigned long flags) |
| 800 | { |
| 801 | set_work_data(work, data: (unsigned long)pwq | WORK_STRUCT_PENDING | |
| 802 | WORK_STRUCT_PWQ | flags); |
| 803 | } |
| 804 | |
| 805 | static void set_work_pool_and_keep_pending(struct work_struct *work, |
| 806 | int pool_id, unsigned long flags) |
| 807 | { |
| 808 | set_work_data(work, data: ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | |
| 809 | WORK_STRUCT_PENDING | flags); |
| 810 | } |
| 811 | |
| 812 | static void set_work_pool_and_clear_pending(struct work_struct *work, |
| 813 | int pool_id, unsigned long flags) |
| 814 | { |
| 815 | /* |
| 816 | * The following wmb is paired with the implied mb in |
| 817 | * test_and_set_bit(PENDING) and ensures all updates to @work made |
| 818 | * here are visible to and precede any updates by the next PENDING |
| 819 | * owner. |
| 820 | */ |
| 821 | smp_wmb(); |
| 822 | set_work_data(work, data: ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | |
| 823 | flags); |
| 824 | /* |
| 825 | * The following mb guarantees that previous clear of a PENDING bit |
| 826 | * will not be reordered with any speculative LOADS or STORES from |
| 827 | * work->current_func, which is executed afterwards. This possible |
| 828 | * reordering can lead to a missed execution on attempt to queue |
| 829 | * the same @work. E.g. consider this case: |
| 830 | * |
| 831 | * CPU#0 CPU#1 |
| 832 | * ---------------------------- -------------------------------- |
| 833 | * |
| 834 | * 1 STORE event_indicated |
| 835 | * 2 queue_work_on() { |
| 836 | * 3 test_and_set_bit(PENDING) |
| 837 | * 4 } set_..._and_clear_pending() { |
| 838 | * 5 set_work_data() # clear bit |
| 839 | * 6 smp_mb() |
| 840 | * 7 work->current_func() { |
| 841 | * 8 LOAD event_indicated |
| 842 | * } |
| 843 | * |
| 844 | * Without an explicit full barrier speculative LOAD on line 8 can |
| 845 | * be executed before CPU#0 does STORE on line 1. If that happens, |
| 846 | * CPU#0 observes the PENDING bit is still set and new execution of |
| 847 | * a @work is not queued in a hope, that CPU#1 will eventually |
| 848 | * finish the queued @work. Meanwhile CPU#1 does not see |
| 849 | * event_indicated is set, because speculative LOAD was executed |
| 850 | * before actual STORE. |
| 851 | */ |
| 852 | smp_mb(); |
| 853 | } |
| 854 | |
| 855 | static inline struct pool_workqueue *work_struct_pwq(unsigned long data) |
| 856 | { |
| 857 | return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); |
| 858 | } |
| 859 | |
| 860 | static struct pool_workqueue *get_work_pwq(struct work_struct *work) |
| 861 | { |
| 862 | unsigned long data = atomic_long_read(v: &work->data); |
| 863 | |
| 864 | if (data & WORK_STRUCT_PWQ) |
| 865 | return work_struct_pwq(data); |
| 866 | else |
| 867 | return NULL; |
| 868 | } |
| 869 | |
| 870 | /** |
| 871 | * get_work_pool - return the worker_pool a given work was associated with |
| 872 | * @work: the work item of interest |
| 873 | * |
| 874 | * Pools are created and destroyed under wq_pool_mutex, and allows read |
| 875 | * access under RCU read lock. As such, this function should be |
| 876 | * called under wq_pool_mutex or inside of a rcu_read_lock() region. |
| 877 | * |
| 878 | * All fields of the returned pool are accessible as long as the above |
| 879 | * mentioned locking is in effect. If the returned pool needs to be used |
| 880 | * beyond the critical section, the caller is responsible for ensuring the |
| 881 | * returned pool is and stays online. |
| 882 | * |
| 883 | * Return: The worker_pool @work was last associated with. %NULL if none. |
| 884 | */ |
| 885 | static struct worker_pool *get_work_pool(struct work_struct *work) |
| 886 | { |
| 887 | unsigned long data = atomic_long_read(v: &work->data); |
| 888 | int pool_id; |
| 889 | |
| 890 | assert_rcu_or_pool_mutex(); |
| 891 | |
| 892 | if (data & WORK_STRUCT_PWQ) |
| 893 | return work_struct_pwq(data)->pool; |
| 894 | |
| 895 | pool_id = data >> WORK_OFFQ_POOL_SHIFT; |
| 896 | if (pool_id == WORK_OFFQ_POOL_NONE) |
| 897 | return NULL; |
| 898 | |
| 899 | return idr_find(&worker_pool_idr, id: pool_id); |
| 900 | } |
| 901 | |
| 902 | static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) |
| 903 | { |
| 904 | return (v >> shift) & ((1U << bits) - 1); |
| 905 | } |
| 906 | |
| 907 | static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) |
| 908 | { |
| 909 | WARN_ON_ONCE(data & WORK_STRUCT_PWQ); |
| 910 | |
| 911 | offqd->pool_id = shift_and_mask(v: data, shift: WORK_OFFQ_POOL_SHIFT, |
| 912 | bits: WORK_OFFQ_POOL_BITS); |
| 913 | offqd->disable = shift_and_mask(v: data, shift: WORK_OFFQ_DISABLE_SHIFT, |
| 914 | bits: WORK_OFFQ_DISABLE_BITS); |
| 915 | offqd->flags = data & WORK_OFFQ_FLAG_MASK; |
| 916 | } |
| 917 | |
| 918 | static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) |
| 919 | { |
| 920 | return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | |
| 921 | ((unsigned long)offqd->flags); |
| 922 | } |
| 923 | |
| 924 | /* |
| 925 | * Policy functions. These define the policies on how the global worker |
| 926 | * pools are managed. Unless noted otherwise, these functions assume that |
| 927 | * they're being called with pool->lock held. |
| 928 | */ |
| 929 | |
| 930 | /* |
| 931 | * Need to wake up a worker? Called from anything but currently |
| 932 | * running workers. |
| 933 | * |
| 934 | * Note that, because unbound workers never contribute to nr_running, this |
| 935 | * function will always return %true for unbound pools as long as the |
| 936 | * worklist isn't empty. |
| 937 | */ |
| 938 | static bool need_more_worker(struct worker_pool *pool) |
| 939 | { |
| 940 | return !list_empty(head: &pool->worklist) && !pool->nr_running; |
| 941 | } |
| 942 | |
| 943 | /* Can I start working? Called from busy but !running workers. */ |
| 944 | static bool may_start_working(struct worker_pool *pool) |
| 945 | { |
| 946 | return pool->nr_idle; |
| 947 | } |
| 948 | |
| 949 | /* Do I need to keep working? Called from currently running workers. */ |
| 950 | static bool keep_working(struct worker_pool *pool) |
| 951 | { |
| 952 | return !list_empty(head: &pool->worklist) && (pool->nr_running <= 1); |
| 953 | } |
| 954 | |
| 955 | /* Do we need a new worker? Called from manager. */ |
| 956 | static bool need_to_create_worker(struct worker_pool *pool) |
| 957 | { |
| 958 | return need_more_worker(pool) && !may_start_working(pool); |
| 959 | } |
| 960 | |
| 961 | /* Do we have too many workers and should some go away? */ |
| 962 | static bool too_many_workers(struct worker_pool *pool) |
| 963 | { |
| 964 | bool managing = pool->flags & POOL_MANAGER_ACTIVE; |
| 965 | int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ |
| 966 | int nr_busy = pool->nr_workers - nr_idle; |
| 967 | |
| 968 | return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; |
| 969 | } |
| 970 | |
| 971 | /** |
| 972 | * worker_set_flags - set worker flags and adjust nr_running accordingly |
| 973 | * @worker: self |
| 974 | * @flags: flags to set |
| 975 | * |
| 976 | * Set @flags in @worker->flags and adjust nr_running accordingly. |
| 977 | */ |
| 978 | static inline void worker_set_flags(struct worker *worker, unsigned int flags) |
| 979 | { |
| 980 | struct worker_pool *pool = worker->pool; |
| 981 | |
| 982 | lockdep_assert_held(&pool->lock); |
| 983 | |
| 984 | /* If transitioning into NOT_RUNNING, adjust nr_running. */ |
| 985 | if ((flags & WORKER_NOT_RUNNING) && |
| 986 | !(worker->flags & WORKER_NOT_RUNNING)) { |
| 987 | pool->nr_running--; |
| 988 | } |
| 989 | |
| 990 | worker->flags |= flags; |
| 991 | } |
| 992 | |
| 993 | /** |
| 994 | * worker_clr_flags - clear worker flags and adjust nr_running accordingly |
| 995 | * @worker: self |
| 996 | * @flags: flags to clear |
| 997 | * |
| 998 | * Clear @flags in @worker->flags and adjust nr_running accordingly. |
| 999 | */ |
| 1000 | static inline void worker_clr_flags(struct worker *worker, unsigned int flags) |
| 1001 | { |
| 1002 | struct worker_pool *pool = worker->pool; |
| 1003 | unsigned int oflags = worker->flags; |
| 1004 | |
| 1005 | lockdep_assert_held(&pool->lock); |
| 1006 | |
| 1007 | worker->flags &= ~flags; |
| 1008 | |
| 1009 | /* |
| 1010 | * If transitioning out of NOT_RUNNING, increment nr_running. Note |
| 1011 | * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask |
| 1012 | * of multiple flags, not a single flag. |
| 1013 | */ |
| 1014 | if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) |
| 1015 | if (!(worker->flags & WORKER_NOT_RUNNING)) |
| 1016 | pool->nr_running++; |
| 1017 | } |
| 1018 | |
| 1019 | /* Return the first idle worker. Called with pool->lock held. */ |
| 1020 | static struct worker *first_idle_worker(struct worker_pool *pool) |
| 1021 | { |
| 1022 | if (unlikely(list_empty(&pool->idle_list))) |
| 1023 | return NULL; |
| 1024 | |
| 1025 | return list_first_entry(&pool->idle_list, struct worker, entry); |
| 1026 | } |
| 1027 | |
| 1028 | /** |
| 1029 | * worker_enter_idle - enter idle state |
| 1030 | * @worker: worker which is entering idle state |
| 1031 | * |
| 1032 | * @worker is entering idle state. Update stats and idle timer if |
| 1033 | * necessary. |
| 1034 | * |
| 1035 | * LOCKING: |
| 1036 | * raw_spin_lock_irq(pool->lock). |
| 1037 | */ |
| 1038 | static void worker_enter_idle(struct worker *worker) |
| 1039 | { |
| 1040 | struct worker_pool *pool = worker->pool; |
| 1041 | |
| 1042 | if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || |
| 1043 | WARN_ON_ONCE(!list_empty(&worker->entry) && |
| 1044 | (worker->hentry.next || worker->hentry.pprev))) |
| 1045 | return; |
| 1046 | |
| 1047 | /* can't use worker_set_flags(), also called from create_worker() */ |
| 1048 | worker->flags |= WORKER_IDLE; |
| 1049 | pool->nr_idle++; |
| 1050 | worker->last_active = jiffies; |
| 1051 | |
| 1052 | /* idle_list is LIFO */ |
| 1053 | list_add(new: &worker->entry, head: &pool->idle_list); |
| 1054 | |
| 1055 | if (too_many_workers(pool) && !timer_pending(timer: &pool->idle_timer)) |
| 1056 | mod_timer(timer: &pool->idle_timer, expires: jiffies + IDLE_WORKER_TIMEOUT); |
| 1057 | |
| 1058 | /* Sanity check nr_running. */ |
| 1059 | WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); |
| 1060 | } |
| 1061 | |
| 1062 | /** |
| 1063 | * worker_leave_idle - leave idle state |
| 1064 | * @worker: worker which is leaving idle state |
| 1065 | * |
| 1066 | * @worker is leaving idle state. Update stats. |
| 1067 | * |
| 1068 | * LOCKING: |
| 1069 | * raw_spin_lock_irq(pool->lock). |
| 1070 | */ |
| 1071 | static void worker_leave_idle(struct worker *worker) |
| 1072 | { |
| 1073 | struct worker_pool *pool = worker->pool; |
| 1074 | |
| 1075 | if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) |
| 1076 | return; |
| 1077 | worker_clr_flags(worker, flags: WORKER_IDLE); |
| 1078 | pool->nr_idle--; |
| 1079 | list_del_init(entry: &worker->entry); |
| 1080 | } |
| 1081 | |
| 1082 | /** |
| 1083 | * find_worker_executing_work - find worker which is executing a work |
| 1084 | * @pool: pool of interest |
| 1085 | * @work: work to find worker for |
| 1086 | * |
| 1087 | * Find a worker which is executing @work on @pool by searching |
| 1088 | * @pool->busy_hash which is keyed by the address of @work. For a worker |
| 1089 | * to match, its current execution should match the address of @work and |
| 1090 | * its work function. This is to avoid unwanted dependency between |
| 1091 | * unrelated work executions through a work item being recycled while still |
| 1092 | * being executed. |
| 1093 | * |
| 1094 | * This is a bit tricky. A work item may be freed once its execution |
| 1095 | * starts and nothing prevents the freed area from being recycled for |
| 1096 | * another work item. If the same work item address ends up being reused |
| 1097 | * before the original execution finishes, workqueue will identify the |
| 1098 | * recycled work item as currently executing and make it wait until the |
| 1099 | * current execution finishes, introducing an unwanted dependency. |
| 1100 | * |
| 1101 | * This function checks the work item address and work function to avoid |
| 1102 | * false positives. Note that this isn't complete as one may construct a |
| 1103 | * work function which can introduce dependency onto itself through a |
| 1104 | * recycled work item. Well, if somebody wants to shoot oneself in the |
| 1105 | * foot that badly, there's only so much we can do, and if such deadlock |
| 1106 | * actually occurs, it should be easy to locate the culprit work function. |
| 1107 | * |
| 1108 | * CONTEXT: |
| 1109 | * raw_spin_lock_irq(pool->lock). |
| 1110 | * |
| 1111 | * Return: |
| 1112 | * Pointer to worker which is executing @work if found, %NULL |
| 1113 | * otherwise. |
| 1114 | */ |
| 1115 | static struct worker *find_worker_executing_work(struct worker_pool *pool, |
| 1116 | struct work_struct *work) |
| 1117 | { |
| 1118 | struct worker *worker; |
| 1119 | |
| 1120 | hash_for_each_possible(pool->busy_hash, worker, hentry, |
| 1121 | (unsigned long)work) |
| 1122 | if (worker->current_work == work && |
| 1123 | worker->current_func == work->func) |
| 1124 | return worker; |
| 1125 | |
| 1126 | return NULL; |
| 1127 | } |
| 1128 | |
| 1129 | /** |
| 1130 | * move_linked_works - move linked works to a list |
| 1131 | * @work: start of series of works to be scheduled |
| 1132 | * @head: target list to append @work to |
| 1133 | * @nextp: out parameter for nested worklist walking |
| 1134 | * |
| 1135 | * Schedule linked works starting from @work to @head. Work series to be |
| 1136 | * scheduled starts at @work and includes any consecutive work with |
| 1137 | * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on |
| 1138 | * @nextp. |
| 1139 | * |
| 1140 | * CONTEXT: |
| 1141 | * raw_spin_lock_irq(pool->lock). |
| 1142 | */ |
| 1143 | static void move_linked_works(struct work_struct *work, struct list_head *head, |
| 1144 | struct work_struct **nextp) |
| 1145 | { |
| 1146 | struct work_struct *n; |
| 1147 | |
| 1148 | /* |
| 1149 | * Linked worklist will always end before the end of the list, |
| 1150 | * use NULL for list head. |
| 1151 | */ |
| 1152 | list_for_each_entry_safe_from(work, n, NULL, entry) { |
| 1153 | list_move_tail(list: &work->entry, head); |
| 1154 | if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) |
| 1155 | break; |
| 1156 | } |
| 1157 | |
| 1158 | /* |
| 1159 | * If we're already inside safe list traversal and have moved |
| 1160 | * multiple works to the scheduled queue, the next position |
| 1161 | * needs to be updated. |
| 1162 | */ |
| 1163 | if (nextp) |
| 1164 | *nextp = n; |
| 1165 | } |
| 1166 | |
| 1167 | /** |
| 1168 | * assign_work - assign a work item and its linked work items to a worker |
| 1169 | * @work: work to assign |
| 1170 | * @worker: worker to assign to |
| 1171 | * @nextp: out parameter for nested worklist walking |
| 1172 | * |
| 1173 | * Assign @work and its linked work items to @worker. If @work is already being |
| 1174 | * executed by another worker in the same pool, it'll be punted there. |
| 1175 | * |
| 1176 | * If @nextp is not NULL, it's updated to point to the next work of the last |
| 1177 | * scheduled work. This allows assign_work() to be nested inside |
| 1178 | * list_for_each_entry_safe(). |
| 1179 | * |
| 1180 | * Returns %true if @work was successfully assigned to @worker. %false if @work |
| 1181 | * was punted to another worker already executing it. |
| 1182 | */ |
| 1183 | static bool assign_work(struct work_struct *work, struct worker *worker, |
| 1184 | struct work_struct **nextp) |
| 1185 | { |
| 1186 | struct worker_pool *pool = worker->pool; |
| 1187 | struct worker *collision; |
| 1188 | |
| 1189 | lockdep_assert_held(&pool->lock); |
| 1190 | |
| 1191 | /* |
| 1192 | * A single work shouldn't be executed concurrently by multiple workers. |
| 1193 | * __queue_work() ensures that @work doesn't jump to a different pool |
| 1194 | * while still running in the previous pool. Here, we should ensure that |
| 1195 | * @work is not executed concurrently by multiple workers from the same |
| 1196 | * pool. Check whether anyone is already processing the work. If so, |
| 1197 | * defer the work to the currently executing one. |
| 1198 | */ |
| 1199 | collision = find_worker_executing_work(pool, work); |
| 1200 | if (unlikely(collision)) { |
| 1201 | move_linked_works(work, head: &collision->scheduled, nextp); |
| 1202 | return false; |
| 1203 | } |
| 1204 | |
| 1205 | move_linked_works(work, head: &worker->scheduled, nextp); |
| 1206 | return true; |
| 1207 | } |
| 1208 | |
| 1209 | static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) |
| 1210 | { |
| 1211 | int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; |
| 1212 | |
| 1213 | return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; |
| 1214 | } |
| 1215 | |
| 1216 | static void kick_bh_pool(struct worker_pool *pool) |
| 1217 | { |
| 1218 | #ifdef CONFIG_SMP |
| 1219 | /* see drain_dead_softirq_workfn() for BH_DRAINING */ |
| 1220 | if (unlikely(pool->cpu != smp_processor_id() && |
| 1221 | !(pool->flags & POOL_BH_DRAINING))) { |
| 1222 | irq_work_queue_on(work: bh_pool_irq_work(pool), cpu: pool->cpu); |
| 1223 | return; |
| 1224 | } |
| 1225 | #endif |
| 1226 | if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) |
| 1227 | raise_softirq_irqoff(nr: HI_SOFTIRQ); |
| 1228 | else |
| 1229 | raise_softirq_irqoff(nr: TASKLET_SOFTIRQ); |
| 1230 | } |
| 1231 | |
| 1232 | /** |
| 1233 | * kick_pool - wake up an idle worker if necessary |
| 1234 | * @pool: pool to kick |
| 1235 | * |
| 1236 | * @pool may have pending work items. Wake up worker if necessary. Returns |
| 1237 | * whether a worker was woken up. |
| 1238 | */ |
| 1239 | static bool kick_pool(struct worker_pool *pool) |
| 1240 | { |
| 1241 | struct worker *worker = first_idle_worker(pool); |
| 1242 | struct task_struct *p; |
| 1243 | |
| 1244 | lockdep_assert_held(&pool->lock); |
| 1245 | |
| 1246 | if (!need_more_worker(pool) || !worker) |
| 1247 | return false; |
| 1248 | |
| 1249 | if (pool->flags & POOL_BH) { |
| 1250 | kick_bh_pool(pool); |
| 1251 | return true; |
| 1252 | } |
| 1253 | |
| 1254 | p = worker->task; |
| 1255 | |
| 1256 | #ifdef CONFIG_SMP |
| 1257 | /* |
| 1258 | * Idle @worker is about to execute @work and waking up provides an |
| 1259 | * opportunity to migrate @worker at a lower cost by setting the task's |
| 1260 | * wake_cpu field. Let's see if we want to move @worker to improve |
| 1261 | * execution locality. |
| 1262 | * |
| 1263 | * We're waking the worker that went idle the latest and there's some |
| 1264 | * chance that @worker is marked idle but hasn't gone off CPU yet. If |
| 1265 | * so, setting the wake_cpu won't do anything. As this is a best-effort |
| 1266 | * optimization and the race window is narrow, let's leave as-is for |
| 1267 | * now. If this becomes pronounced, we can skip over workers which are |
| 1268 | * still on cpu when picking an idle worker. |
| 1269 | * |
| 1270 | * If @pool has non-strict affinity, @worker might have ended up outside |
| 1271 | * its affinity scope. Repatriate. |
| 1272 | */ |
| 1273 | if (!pool->attrs->affn_strict && |
| 1274 | !cpumask_test_cpu(cpu: p->wake_cpu, cpumask: pool->attrs->__pod_cpumask)) { |
| 1275 | struct work_struct *work = list_first_entry(&pool->worklist, |
| 1276 | struct work_struct, entry); |
| 1277 | int wake_cpu = cpumask_any_and_distribute(src1p: pool->attrs->__pod_cpumask, |
| 1278 | cpu_online_mask); |
| 1279 | if (wake_cpu < nr_cpu_ids) { |
| 1280 | p->wake_cpu = wake_cpu; |
| 1281 | get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; |
| 1282 | } |
| 1283 | } |
| 1284 | #endif |
| 1285 | wake_up_process(tsk: p); |
| 1286 | return true; |
| 1287 | } |
| 1288 | |
| 1289 | #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT |
| 1290 | |
| 1291 | /* |
| 1292 | * Concurrency-managed per-cpu work items that hog CPU for longer than |
| 1293 | * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, |
| 1294 | * which prevents them from stalling other concurrency-managed work items. If a |
| 1295 | * work function keeps triggering this mechanism, it's likely that the work item |
| 1296 | * should be using an unbound workqueue instead. |
| 1297 | * |
| 1298 | * wq_cpu_intensive_report() tracks work functions which trigger such conditions |
| 1299 | * and report them so that they can be examined and converted to use unbound |
| 1300 | * workqueues as appropriate. To avoid flooding the console, each violating work |
| 1301 | * function is tracked and reported with exponential backoff. |
| 1302 | */ |
| 1303 | #define WCI_MAX_ENTS 128 |
| 1304 | |
| 1305 | struct wci_ent { |
| 1306 | work_func_t func; |
| 1307 | atomic64_t cnt; |
| 1308 | struct hlist_node hash_node; |
| 1309 | }; |
| 1310 | |
| 1311 | static struct wci_ent wci_ents[WCI_MAX_ENTS]; |
| 1312 | static int wci_nr_ents; |
| 1313 | static DEFINE_RAW_SPINLOCK(wci_lock); |
| 1314 | static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); |
| 1315 | |
| 1316 | static struct wci_ent *wci_find_ent(work_func_t func) |
| 1317 | { |
| 1318 | struct wci_ent *ent; |
| 1319 | |
| 1320 | hash_for_each_possible_rcu(wci_hash, ent, hash_node, |
| 1321 | (unsigned long)func) { |
| 1322 | if (ent->func == func) |
| 1323 | return ent; |
| 1324 | } |
| 1325 | return NULL; |
| 1326 | } |
| 1327 | |
| 1328 | static void wq_cpu_intensive_report(work_func_t func) |
| 1329 | { |
| 1330 | struct wci_ent *ent; |
| 1331 | |
| 1332 | restart: |
| 1333 | ent = wci_find_ent(func); |
| 1334 | if (ent) { |
| 1335 | u64 cnt; |
| 1336 | |
| 1337 | /* |
| 1338 | * Start reporting from the warning_thresh and back off |
| 1339 | * exponentially. |
| 1340 | */ |
| 1341 | cnt = atomic64_inc_return_relaxed(&ent->cnt); |
| 1342 | if (wq_cpu_intensive_warning_thresh && |
| 1343 | cnt >= wq_cpu_intensive_warning_thresh && |
| 1344 | is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) |
| 1345 | printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n" , |
| 1346 | ent->func, wq_cpu_intensive_thresh_us, |
| 1347 | atomic64_read(&ent->cnt)); |
| 1348 | return; |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * @func is a new violation. Allocate a new entry for it. If wcn_ents[] |
| 1353 | * is exhausted, something went really wrong and we probably made enough |
| 1354 | * noise already. |
| 1355 | */ |
| 1356 | if (wci_nr_ents >= WCI_MAX_ENTS) |
| 1357 | return; |
| 1358 | |
| 1359 | raw_spin_lock(&wci_lock); |
| 1360 | |
| 1361 | if (wci_nr_ents >= WCI_MAX_ENTS) { |
| 1362 | raw_spin_unlock(&wci_lock); |
| 1363 | return; |
| 1364 | } |
| 1365 | |
| 1366 | if (wci_find_ent(func)) { |
| 1367 | raw_spin_unlock(&wci_lock); |
| 1368 | goto restart; |
| 1369 | } |
| 1370 | |
| 1371 | ent = &wci_ents[wci_nr_ents++]; |
| 1372 | ent->func = func; |
| 1373 | atomic64_set(&ent->cnt, 0); |
| 1374 | hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); |
| 1375 | |
| 1376 | raw_spin_unlock(&wci_lock); |
| 1377 | |
| 1378 | goto restart; |
| 1379 | } |
| 1380 | |
| 1381 | #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ |
| 1382 | static void wq_cpu_intensive_report(work_func_t func) {} |
| 1383 | #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ |
| 1384 | |
| 1385 | /** |
| 1386 | * wq_worker_running - a worker is running again |
| 1387 | * @task: task waking up |
| 1388 | * |
| 1389 | * This function is called when a worker returns from schedule() |
| 1390 | */ |
| 1391 | void wq_worker_running(struct task_struct *task) |
| 1392 | { |
| 1393 | struct worker *worker = kthread_data(k: task); |
| 1394 | |
| 1395 | if (!READ_ONCE(worker->sleeping)) |
| 1396 | return; |
| 1397 | |
| 1398 | /* |
| 1399 | * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check |
| 1400 | * and the nr_running increment below, we may ruin the nr_running reset |
| 1401 | * and leave with an unexpected pool->nr_running == 1 on the newly unbound |
| 1402 | * pool. Protect against such race. |
| 1403 | */ |
| 1404 | preempt_disable(); |
| 1405 | if (!(worker->flags & WORKER_NOT_RUNNING)) |
| 1406 | worker->pool->nr_running++; |
| 1407 | preempt_enable(); |
| 1408 | |
| 1409 | /* |
| 1410 | * CPU intensive auto-detection cares about how long a work item hogged |
| 1411 | * CPU without sleeping. Reset the starting timestamp on wakeup. |
| 1412 | */ |
| 1413 | worker->current_at = worker->task->se.sum_exec_runtime; |
| 1414 | |
| 1415 | WRITE_ONCE(worker->sleeping, 0); |
| 1416 | } |
| 1417 | |
| 1418 | /** |
| 1419 | * wq_worker_sleeping - a worker is going to sleep |
| 1420 | * @task: task going to sleep |
| 1421 | * |
| 1422 | * This function is called from schedule() when a busy worker is |
| 1423 | * going to sleep. |
| 1424 | */ |
| 1425 | void wq_worker_sleeping(struct task_struct *task) |
| 1426 | { |
| 1427 | struct worker *worker = kthread_data(k: task); |
| 1428 | struct worker_pool *pool; |
| 1429 | |
| 1430 | /* |
| 1431 | * Rescuers, which may not have all the fields set up like normal |
| 1432 | * workers, also reach here, let's not access anything before |
| 1433 | * checking NOT_RUNNING. |
| 1434 | */ |
| 1435 | if (worker->flags & WORKER_NOT_RUNNING) |
| 1436 | return; |
| 1437 | |
| 1438 | pool = worker->pool; |
| 1439 | |
| 1440 | /* Return if preempted before wq_worker_running() was reached */ |
| 1441 | if (READ_ONCE(worker->sleeping)) |
| 1442 | return; |
| 1443 | |
| 1444 | WRITE_ONCE(worker->sleeping, 1); |
| 1445 | raw_spin_lock_irq(&pool->lock); |
| 1446 | |
| 1447 | /* |
| 1448 | * Recheck in case unbind_workers() preempted us. We don't |
| 1449 | * want to decrement nr_running after the worker is unbound |
| 1450 | * and nr_running has been reset. |
| 1451 | */ |
| 1452 | if (worker->flags & WORKER_NOT_RUNNING) { |
| 1453 | raw_spin_unlock_irq(&pool->lock); |
| 1454 | return; |
| 1455 | } |
| 1456 | |
| 1457 | pool->nr_running--; |
| 1458 | if (kick_pool(pool)) |
| 1459 | worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; |
| 1460 | |
| 1461 | raw_spin_unlock_irq(&pool->lock); |
| 1462 | } |
| 1463 | |
| 1464 | /** |
| 1465 | * wq_worker_tick - a scheduler tick occurred while a kworker is running |
| 1466 | * @task: task currently running |
| 1467 | * |
| 1468 | * Called from sched_tick(). We're in the IRQ context and the current |
| 1469 | * worker's fields which follow the 'K' locking rule can be accessed safely. |
| 1470 | */ |
| 1471 | void wq_worker_tick(struct task_struct *task) |
| 1472 | { |
| 1473 | struct worker *worker = kthread_data(k: task); |
| 1474 | struct pool_workqueue *pwq = worker->current_pwq; |
| 1475 | struct worker_pool *pool = worker->pool; |
| 1476 | |
| 1477 | if (!pwq) |
| 1478 | return; |
| 1479 | |
| 1480 | pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; |
| 1481 | |
| 1482 | if (!wq_cpu_intensive_thresh_us) |
| 1483 | return; |
| 1484 | |
| 1485 | /* |
| 1486 | * If the current worker is concurrency managed and hogged the CPU for |
| 1487 | * longer than wq_cpu_intensive_thresh_us, it's automatically marked |
| 1488 | * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. |
| 1489 | * |
| 1490 | * Set @worker->sleeping means that @worker is in the process of |
| 1491 | * switching out voluntarily and won't be contributing to |
| 1492 | * @pool->nr_running until it wakes up. As wq_worker_sleeping() also |
| 1493 | * decrements ->nr_running, setting CPU_INTENSIVE here can lead to |
| 1494 | * double decrements. The task is releasing the CPU anyway. Let's skip. |
| 1495 | * We probably want to make this prettier in the future. |
| 1496 | */ |
| 1497 | if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || |
| 1498 | worker->task->se.sum_exec_runtime - worker->current_at < |
| 1499 | wq_cpu_intensive_thresh_us * NSEC_PER_USEC) |
| 1500 | return; |
| 1501 | |
| 1502 | raw_spin_lock(&pool->lock); |
| 1503 | |
| 1504 | worker_set_flags(worker, flags: WORKER_CPU_INTENSIVE); |
| 1505 | wq_cpu_intensive_report(func: worker->current_func); |
| 1506 | pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; |
| 1507 | |
| 1508 | if (kick_pool(pool)) |
| 1509 | pwq->stats[PWQ_STAT_CM_WAKEUP]++; |
| 1510 | |
| 1511 | raw_spin_unlock(&pool->lock); |
| 1512 | } |
| 1513 | |
| 1514 | /** |
| 1515 | * wq_worker_last_func - retrieve worker's last work function |
| 1516 | * @task: Task to retrieve last work function of. |
| 1517 | * |
| 1518 | * Determine the last function a worker executed. This is called from |
| 1519 | * the scheduler to get a worker's last known identity. |
| 1520 | * |
| 1521 | * CONTEXT: |
| 1522 | * raw_spin_lock_irq(rq->lock) |
| 1523 | * |
| 1524 | * This function is called during schedule() when a kworker is going |
| 1525 | * to sleep. It's used by psi to identify aggregation workers during |
| 1526 | * dequeuing, to allow periodic aggregation to shut-off when that |
| 1527 | * worker is the last task in the system or cgroup to go to sleep. |
| 1528 | * |
| 1529 | * As this function doesn't involve any workqueue-related locking, it |
| 1530 | * only returns stable values when called from inside the scheduler's |
| 1531 | * queuing and dequeuing paths, when @task, which must be a kworker, |
| 1532 | * is guaranteed to not be processing any works. |
| 1533 | * |
| 1534 | * Return: |
| 1535 | * The last work function %current executed as a worker, NULL if it |
| 1536 | * hasn't executed any work yet. |
| 1537 | */ |
| 1538 | work_func_t wq_worker_last_func(struct task_struct *task) |
| 1539 | { |
| 1540 | struct worker *worker = kthread_data(k: task); |
| 1541 | |
| 1542 | return worker->last_func; |
| 1543 | } |
| 1544 | |
| 1545 | /** |
| 1546 | * wq_node_nr_active - Determine wq_node_nr_active to use |
| 1547 | * @wq: workqueue of interest |
| 1548 | * @node: NUMA node, can be %NUMA_NO_NODE |
| 1549 | * |
| 1550 | * Determine wq_node_nr_active to use for @wq on @node. Returns: |
| 1551 | * |
| 1552 | * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. |
| 1553 | * |
| 1554 | * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. |
| 1555 | * |
| 1556 | * - Otherwise, node_nr_active[@node]. |
| 1557 | */ |
| 1558 | static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, |
| 1559 | int node) |
| 1560 | { |
| 1561 | if (!(wq->flags & WQ_UNBOUND)) |
| 1562 | return NULL; |
| 1563 | |
| 1564 | if (node == NUMA_NO_NODE) |
| 1565 | node = nr_node_ids; |
| 1566 | |
| 1567 | return wq->node_nr_active[node]; |
| 1568 | } |
| 1569 | |
| 1570 | /** |
| 1571 | * wq_update_node_max_active - Update per-node max_actives to use |
| 1572 | * @wq: workqueue to update |
| 1573 | * @off_cpu: CPU that's going down, -1 if a CPU is not going down |
| 1574 | * |
| 1575 | * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is |
| 1576 | * distributed among nodes according to the proportions of numbers of online |
| 1577 | * cpus. The result is always between @wq->min_active and max_active. |
| 1578 | */ |
| 1579 | static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) |
| 1580 | { |
| 1581 | struct cpumask *effective = unbound_effective_cpumask(wq); |
| 1582 | int min_active = READ_ONCE(wq->min_active); |
| 1583 | int max_active = READ_ONCE(wq->max_active); |
| 1584 | int total_cpus, node; |
| 1585 | |
| 1586 | lockdep_assert_held(&wq->mutex); |
| 1587 | |
| 1588 | if (!wq_topo_initialized) |
| 1589 | return; |
| 1590 | |
| 1591 | if (off_cpu >= 0 && !cpumask_test_cpu(cpu: off_cpu, cpumask: effective)) |
| 1592 | off_cpu = -1; |
| 1593 | |
| 1594 | total_cpus = cpumask_weight_and(srcp1: effective, cpu_online_mask); |
| 1595 | if (off_cpu >= 0) |
| 1596 | total_cpus--; |
| 1597 | |
| 1598 | /* If all CPUs of the wq get offline, use the default values */ |
| 1599 | if (unlikely(!total_cpus)) { |
| 1600 | for_each_node(node) |
| 1601 | wq_node_nr_active(wq, node)->max = min_active; |
| 1602 | |
| 1603 | wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; |
| 1604 | return; |
| 1605 | } |
| 1606 | |
| 1607 | for_each_node(node) { |
| 1608 | int node_cpus; |
| 1609 | |
| 1610 | node_cpus = cpumask_weight_and(srcp1: effective, srcp2: cpumask_of_node(node)); |
| 1611 | if (off_cpu >= 0 && cpu_to_node(cpu: off_cpu) == node) |
| 1612 | node_cpus--; |
| 1613 | |
| 1614 | wq_node_nr_active(wq, node)->max = |
| 1615 | clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), |
| 1616 | min_active, max_active); |
| 1617 | } |
| 1618 | |
| 1619 | wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; |
| 1620 | } |
| 1621 | |
| 1622 | /** |
| 1623 | * get_pwq - get an extra reference on the specified pool_workqueue |
| 1624 | * @pwq: pool_workqueue to get |
| 1625 | * |
| 1626 | * Obtain an extra reference on @pwq. The caller should guarantee that |
| 1627 | * @pwq has positive refcnt and be holding the matching pool->lock. |
| 1628 | */ |
| 1629 | static void get_pwq(struct pool_workqueue *pwq) |
| 1630 | { |
| 1631 | lockdep_assert_held(&pwq->pool->lock); |
| 1632 | WARN_ON_ONCE(pwq->refcnt <= 0); |
| 1633 | pwq->refcnt++; |
| 1634 | } |
| 1635 | |
| 1636 | /** |
| 1637 | * put_pwq - put a pool_workqueue reference |
| 1638 | * @pwq: pool_workqueue to put |
| 1639 | * |
| 1640 | * Drop a reference of @pwq. If its refcnt reaches zero, schedule its |
| 1641 | * destruction. The caller should be holding the matching pool->lock. |
| 1642 | */ |
| 1643 | static void put_pwq(struct pool_workqueue *pwq) |
| 1644 | { |
| 1645 | lockdep_assert_held(&pwq->pool->lock); |
| 1646 | if (likely(--pwq->refcnt)) |
| 1647 | return; |
| 1648 | /* |
| 1649 | * @pwq can't be released under pool->lock, bounce to a dedicated |
| 1650 | * kthread_worker to avoid A-A deadlocks. |
| 1651 | */ |
| 1652 | kthread_queue_work(worker: pwq_release_worker, work: &pwq->release_work); |
| 1653 | } |
| 1654 | |
| 1655 | /** |
| 1656 | * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock |
| 1657 | * @pwq: pool_workqueue to put (can be %NULL) |
| 1658 | * |
| 1659 | * put_pwq() with locking. This function also allows %NULL @pwq. |
| 1660 | */ |
| 1661 | static void put_pwq_unlocked(struct pool_workqueue *pwq) |
| 1662 | { |
| 1663 | if (pwq) { |
| 1664 | /* |
| 1665 | * As both pwqs and pools are RCU protected, the |
| 1666 | * following lock operations are safe. |
| 1667 | */ |
| 1668 | raw_spin_lock_irq(&pwq->pool->lock); |
| 1669 | put_pwq(pwq); |
| 1670 | raw_spin_unlock_irq(&pwq->pool->lock); |
| 1671 | } |
| 1672 | } |
| 1673 | |
| 1674 | static bool pwq_is_empty(struct pool_workqueue *pwq) |
| 1675 | { |
| 1676 | return !pwq->nr_active && list_empty(head: &pwq->inactive_works); |
| 1677 | } |
| 1678 | |
| 1679 | static void __pwq_activate_work(struct pool_workqueue *pwq, |
| 1680 | struct work_struct *work) |
| 1681 | { |
| 1682 | unsigned long *wdb = work_data_bits(work); |
| 1683 | |
| 1684 | WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); |
| 1685 | trace_workqueue_activate_work(work); |
| 1686 | if (list_empty(head: &pwq->pool->worklist)) |
| 1687 | pwq->pool->watchdog_ts = jiffies; |
| 1688 | move_linked_works(work, head: &pwq->pool->worklist, NULL); |
| 1689 | __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); |
| 1690 | } |
| 1691 | |
| 1692 | static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) |
| 1693 | { |
| 1694 | int max = READ_ONCE(nna->max); |
| 1695 | int old = atomic_read(v: &nna->nr); |
| 1696 | |
| 1697 | do { |
| 1698 | if (old >= max) |
| 1699 | return false; |
| 1700 | } while (!atomic_try_cmpxchg_relaxed(v: &nna->nr, old: &old, new: old + 1)); |
| 1701 | |
| 1702 | return true; |
| 1703 | } |
| 1704 | |
| 1705 | /** |
| 1706 | * pwq_tryinc_nr_active - Try to increment nr_active for a pwq |
| 1707 | * @pwq: pool_workqueue of interest |
| 1708 | * @fill: max_active may have increased, try to increase concurrency level |
| 1709 | * |
| 1710 | * Try to increment nr_active for @pwq. Returns %true if an nr_active count is |
| 1711 | * successfully obtained. %false otherwise. |
| 1712 | */ |
| 1713 | static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) |
| 1714 | { |
| 1715 | struct workqueue_struct *wq = pwq->wq; |
| 1716 | struct worker_pool *pool = pwq->pool; |
| 1717 | struct wq_node_nr_active *nna = wq_node_nr_active(wq, node: pool->node); |
| 1718 | bool obtained = false; |
| 1719 | |
| 1720 | lockdep_assert_held(&pool->lock); |
| 1721 | |
| 1722 | if (!nna) { |
| 1723 | /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ |
| 1724 | obtained = pwq->nr_active < READ_ONCE(wq->max_active); |
| 1725 | goto out; |
| 1726 | } |
| 1727 | |
| 1728 | if (unlikely(pwq->plugged)) |
| 1729 | return false; |
| 1730 | |
| 1731 | /* |
| 1732 | * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is |
| 1733 | * already waiting on $nna, pwq_dec_nr_active() will maintain the |
| 1734 | * concurrency level. Don't jump the line. |
| 1735 | * |
| 1736 | * We need to ignore the pending test after max_active has increased as |
| 1737 | * pwq_dec_nr_active() can only maintain the concurrency level but not |
| 1738 | * increase it. This is indicated by @fill. |
| 1739 | */ |
| 1740 | if (!list_empty(head: &pwq->pending_node) && likely(!fill)) |
| 1741 | goto out; |
| 1742 | |
| 1743 | obtained = tryinc_node_nr_active(nna); |
| 1744 | if (obtained) |
| 1745 | goto out; |
| 1746 | |
| 1747 | /* |
| 1748 | * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs |
| 1749 | * and try again. The smp_mb() is paired with the implied memory barrier |
| 1750 | * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either |
| 1751 | * we see the decremented $nna->nr or they see non-empty |
| 1752 | * $nna->pending_pwqs. |
| 1753 | */ |
| 1754 | raw_spin_lock(&nna->lock); |
| 1755 | |
| 1756 | if (list_empty(head: &pwq->pending_node)) |
| 1757 | list_add_tail(new: &pwq->pending_node, head: &nna->pending_pwqs); |
| 1758 | else if (likely(!fill)) |
| 1759 | goto out_unlock; |
| 1760 | |
| 1761 | smp_mb(); |
| 1762 | |
| 1763 | obtained = tryinc_node_nr_active(nna); |
| 1764 | |
| 1765 | /* |
| 1766 | * If @fill, @pwq might have already been pending. Being spuriously |
| 1767 | * pending in cold paths doesn't affect anything. Let's leave it be. |
| 1768 | */ |
| 1769 | if (obtained && likely(!fill)) |
| 1770 | list_del_init(entry: &pwq->pending_node); |
| 1771 | |
| 1772 | out_unlock: |
| 1773 | raw_spin_unlock(&nna->lock); |
| 1774 | out: |
| 1775 | if (obtained) |
| 1776 | pwq->nr_active++; |
| 1777 | return obtained; |
| 1778 | } |
| 1779 | |
| 1780 | /** |
| 1781 | * pwq_activate_first_inactive - Activate the first inactive work item on a pwq |
| 1782 | * @pwq: pool_workqueue of interest |
| 1783 | * @fill: max_active may have increased, try to increase concurrency level |
| 1784 | * |
| 1785 | * Activate the first inactive work item of @pwq if available and allowed by |
| 1786 | * max_active limit. |
| 1787 | * |
| 1788 | * Returns %true if an inactive work item has been activated. %false if no |
| 1789 | * inactive work item is found or max_active limit is reached. |
| 1790 | */ |
| 1791 | static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) |
| 1792 | { |
| 1793 | struct work_struct *work = |
| 1794 | list_first_entry_or_null(&pwq->inactive_works, |
| 1795 | struct work_struct, entry); |
| 1796 | |
| 1797 | if (work && pwq_tryinc_nr_active(pwq, fill)) { |
| 1798 | __pwq_activate_work(pwq, work); |
| 1799 | return true; |
| 1800 | } else { |
| 1801 | return false; |
| 1802 | } |
| 1803 | } |
| 1804 | |
| 1805 | /** |
| 1806 | * unplug_oldest_pwq - unplug the oldest pool_workqueue |
| 1807 | * @wq: workqueue_struct where its oldest pwq is to be unplugged |
| 1808 | * |
| 1809 | * This function should only be called for ordered workqueues where only the |
| 1810 | * oldest pwq is unplugged, the others are plugged to suspend execution to |
| 1811 | * ensure proper work item ordering:: |
| 1812 | * |
| 1813 | * dfl_pwq --------------+ [P] - plugged |
| 1814 | * | |
| 1815 | * v |
| 1816 | * pwqs -> A -> B [P] -> C [P] (newest) |
| 1817 | * | | | |
| 1818 | * 1 3 5 |
| 1819 | * | | | |
| 1820 | * 2 4 6 |
| 1821 | * |
| 1822 | * When the oldest pwq is drained and removed, this function should be called |
| 1823 | * to unplug the next oldest one to start its work item execution. Note that |
| 1824 | * pwq's are linked into wq->pwqs with the oldest first, so the first one in |
| 1825 | * the list is the oldest. |
| 1826 | */ |
| 1827 | static void unplug_oldest_pwq(struct workqueue_struct *wq) |
| 1828 | { |
| 1829 | struct pool_workqueue *pwq; |
| 1830 | |
| 1831 | lockdep_assert_held(&wq->mutex); |
| 1832 | |
| 1833 | /* Caller should make sure that pwqs isn't empty before calling */ |
| 1834 | pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, |
| 1835 | pwqs_node); |
| 1836 | raw_spin_lock_irq(&pwq->pool->lock); |
| 1837 | if (pwq->plugged) { |
| 1838 | pwq->plugged = false; |
| 1839 | if (pwq_activate_first_inactive(pwq, fill: true)) |
| 1840 | kick_pool(pool: pwq->pool); |
| 1841 | } |
| 1842 | raw_spin_unlock_irq(&pwq->pool->lock); |
| 1843 | } |
| 1844 | |
| 1845 | /** |
| 1846 | * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active |
| 1847 | * @nna: wq_node_nr_active to activate a pending pwq for |
| 1848 | * @caller_pool: worker_pool the caller is locking |
| 1849 | * |
| 1850 | * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. |
| 1851 | * @caller_pool may be unlocked and relocked to lock other worker_pools. |
| 1852 | */ |
| 1853 | static void node_activate_pending_pwq(struct wq_node_nr_active *nna, |
| 1854 | struct worker_pool *caller_pool) |
| 1855 | { |
| 1856 | struct worker_pool *locked_pool = caller_pool; |
| 1857 | struct pool_workqueue *pwq; |
| 1858 | struct work_struct *work; |
| 1859 | |
| 1860 | lockdep_assert_held(&caller_pool->lock); |
| 1861 | |
| 1862 | raw_spin_lock(&nna->lock); |
| 1863 | retry: |
| 1864 | pwq = list_first_entry_or_null(&nna->pending_pwqs, |
| 1865 | struct pool_workqueue, pending_node); |
| 1866 | if (!pwq) |
| 1867 | goto out_unlock; |
| 1868 | |
| 1869 | /* |
| 1870 | * If @pwq is for a different pool than @locked_pool, we need to lock |
| 1871 | * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock |
| 1872 | * / lock dance. For that, we also need to release @nna->lock as it's |
| 1873 | * nested inside pool locks. |
| 1874 | */ |
| 1875 | if (pwq->pool != locked_pool) { |
| 1876 | raw_spin_unlock(&locked_pool->lock); |
| 1877 | locked_pool = pwq->pool; |
| 1878 | if (!raw_spin_trylock(&locked_pool->lock)) { |
| 1879 | raw_spin_unlock(&nna->lock); |
| 1880 | raw_spin_lock(&locked_pool->lock); |
| 1881 | raw_spin_lock(&nna->lock); |
| 1882 | goto retry; |
| 1883 | } |
| 1884 | } |
| 1885 | |
| 1886 | /* |
| 1887 | * $pwq may not have any inactive work items due to e.g. cancellations. |
| 1888 | * Drop it from pending_pwqs and see if there's another one. |
| 1889 | */ |
| 1890 | work = list_first_entry_or_null(&pwq->inactive_works, |
| 1891 | struct work_struct, entry); |
| 1892 | if (!work) { |
| 1893 | list_del_init(entry: &pwq->pending_node); |
| 1894 | goto retry; |
| 1895 | } |
| 1896 | |
| 1897 | /* |
| 1898 | * Acquire an nr_active count and activate the inactive work item. If |
| 1899 | * $pwq still has inactive work items, rotate it to the end of the |
| 1900 | * pending_pwqs so that we round-robin through them. This means that |
| 1901 | * inactive work items are not activated in queueing order which is fine |
| 1902 | * given that there has never been any ordering across different pwqs. |
| 1903 | */ |
| 1904 | if (likely(tryinc_node_nr_active(nna))) { |
| 1905 | pwq->nr_active++; |
| 1906 | __pwq_activate_work(pwq, work); |
| 1907 | |
| 1908 | if (list_empty(head: &pwq->inactive_works)) |
| 1909 | list_del_init(entry: &pwq->pending_node); |
| 1910 | else |
| 1911 | list_move_tail(list: &pwq->pending_node, head: &nna->pending_pwqs); |
| 1912 | |
| 1913 | /* if activating a foreign pool, make sure it's running */ |
| 1914 | if (pwq->pool != caller_pool) |
| 1915 | kick_pool(pool: pwq->pool); |
| 1916 | } |
| 1917 | |
| 1918 | out_unlock: |
| 1919 | raw_spin_unlock(&nna->lock); |
| 1920 | if (locked_pool != caller_pool) { |
| 1921 | raw_spin_unlock(&locked_pool->lock); |
| 1922 | raw_spin_lock(&caller_pool->lock); |
| 1923 | } |
| 1924 | } |
| 1925 | |
| 1926 | /** |
| 1927 | * pwq_dec_nr_active - Retire an active count |
| 1928 | * @pwq: pool_workqueue of interest |
| 1929 | * |
| 1930 | * Decrement @pwq's nr_active and try to activate the first inactive work item. |
| 1931 | * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. |
| 1932 | */ |
| 1933 | static void pwq_dec_nr_active(struct pool_workqueue *pwq) |
| 1934 | { |
| 1935 | struct worker_pool *pool = pwq->pool; |
| 1936 | struct wq_node_nr_active *nna = wq_node_nr_active(wq: pwq->wq, node: pool->node); |
| 1937 | |
| 1938 | lockdep_assert_held(&pool->lock); |
| 1939 | |
| 1940 | /* |
| 1941 | * @pwq->nr_active should be decremented for both percpu and unbound |
| 1942 | * workqueues. |
| 1943 | */ |
| 1944 | pwq->nr_active--; |
| 1945 | |
| 1946 | /* |
| 1947 | * For a percpu workqueue, it's simple. Just need to kick the first |
| 1948 | * inactive work item on @pwq itself. |
| 1949 | */ |
| 1950 | if (!nna) { |
| 1951 | pwq_activate_first_inactive(pwq, fill: false); |
| 1952 | return; |
| 1953 | } |
| 1954 | |
| 1955 | /* |
| 1956 | * If @pwq is for an unbound workqueue, it's more complicated because |
| 1957 | * multiple pwqs and pools may be sharing the nr_active count. When a |
| 1958 | * pwq needs to wait for an nr_active count, it puts itself on |
| 1959 | * $nna->pending_pwqs. The following atomic_dec_return()'s implied |
| 1960 | * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to |
| 1961 | * guarantee that either we see non-empty pending_pwqs or they see |
| 1962 | * decremented $nna->nr. |
| 1963 | * |
| 1964 | * $nna->max may change as CPUs come online/offline and @pwq->wq's |
| 1965 | * max_active gets updated. However, it is guaranteed to be equal to or |
| 1966 | * larger than @pwq->wq->min_active which is above zero unless freezing. |
| 1967 | * This maintains the forward progress guarantee. |
| 1968 | */ |
| 1969 | if (atomic_dec_return(v: &nna->nr) >= READ_ONCE(nna->max)) |
| 1970 | return; |
| 1971 | |
| 1972 | if (!list_empty(head: &nna->pending_pwqs)) |
| 1973 | node_activate_pending_pwq(nna, caller_pool: pool); |
| 1974 | } |
| 1975 | |
| 1976 | /** |
| 1977 | * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight |
| 1978 | * @pwq: pwq of interest |
| 1979 | * @work_data: work_data of work which left the queue |
| 1980 | * |
| 1981 | * A work either has completed or is removed from pending queue, |
| 1982 | * decrement nr_in_flight of its pwq and handle workqueue flushing. |
| 1983 | * |
| 1984 | * NOTE: |
| 1985 | * For unbound workqueues, this function may temporarily drop @pwq->pool->lock |
| 1986 | * and thus should be called after all other state updates for the in-flight |
| 1987 | * work item is complete. |
| 1988 | * |
| 1989 | * CONTEXT: |
| 1990 | * raw_spin_lock_irq(pool->lock). |
| 1991 | */ |
| 1992 | static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) |
| 1993 | { |
| 1994 | int color = get_work_color(work_data); |
| 1995 | |
| 1996 | if (!(work_data & WORK_STRUCT_INACTIVE)) |
| 1997 | pwq_dec_nr_active(pwq); |
| 1998 | |
| 1999 | pwq->nr_in_flight[color]--; |
| 2000 | |
| 2001 | /* is flush in progress and are we at the flushing tip? */ |
| 2002 | if (likely(pwq->flush_color != color)) |
| 2003 | goto out_put; |
| 2004 | |
| 2005 | /* are there still in-flight works? */ |
| 2006 | if (pwq->nr_in_flight[color]) |
| 2007 | goto out_put; |
| 2008 | |
| 2009 | /* this pwq is done, clear flush_color */ |
| 2010 | pwq->flush_color = -1; |
| 2011 | |
| 2012 | /* |
| 2013 | * If this was the last pwq, wake up the first flusher. It |
| 2014 | * will handle the rest. |
| 2015 | */ |
| 2016 | if (atomic_dec_and_test(v: &pwq->wq->nr_pwqs_to_flush)) |
| 2017 | complete(&pwq->wq->first_flusher->done); |
| 2018 | out_put: |
| 2019 | put_pwq(pwq); |
| 2020 | } |
| 2021 | |
| 2022 | /** |
| 2023 | * try_to_grab_pending - steal work item from worklist and disable irq |
| 2024 | * @work: work item to steal |
| 2025 | * @cflags: %WORK_CANCEL_ flags |
| 2026 | * @irq_flags: place to store irq state |
| 2027 | * |
| 2028 | * Try to grab PENDING bit of @work. This function can handle @work in any |
| 2029 | * stable state - idle, on timer or on worklist. |
| 2030 | * |
| 2031 | * Return: |
| 2032 | * |
| 2033 | * ======== ================================================================ |
| 2034 | * 1 if @work was pending and we successfully stole PENDING |
| 2035 | * 0 if @work was idle and we claimed PENDING |
| 2036 | * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry |
| 2037 | * ======== ================================================================ |
| 2038 | * |
| 2039 | * Note: |
| 2040 | * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting |
| 2041 | * interrupted while holding PENDING and @work off queue, irq must be |
| 2042 | * disabled on entry. This, combined with delayed_work->timer being |
| 2043 | * irqsafe, ensures that we return -EAGAIN for finite short period of time. |
| 2044 | * |
| 2045 | * On successful return, >= 0, irq is disabled and the caller is |
| 2046 | * responsible for releasing it using local_irq_restore(*@irq_flags). |
| 2047 | * |
| 2048 | * This function is safe to call from any context including IRQ handler. |
| 2049 | */ |
| 2050 | static int try_to_grab_pending(struct work_struct *work, u32 cflags, |
| 2051 | unsigned long *irq_flags) |
| 2052 | { |
| 2053 | struct worker_pool *pool; |
| 2054 | struct pool_workqueue *pwq; |
| 2055 | |
| 2056 | local_irq_save(*irq_flags); |
| 2057 | |
| 2058 | /* try to steal the timer if it exists */ |
| 2059 | if (cflags & WORK_CANCEL_DELAYED) { |
| 2060 | struct delayed_work *dwork = to_delayed_work(work); |
| 2061 | |
| 2062 | /* |
| 2063 | * dwork->timer is irqsafe. If timer_delete() fails, it's |
| 2064 | * guaranteed that the timer is not queued anywhere and not |
| 2065 | * running on the local CPU. |
| 2066 | */ |
| 2067 | if (likely(timer_delete(&dwork->timer))) |
| 2068 | return 1; |
| 2069 | } |
| 2070 | |
| 2071 | /* try to claim PENDING the normal way */ |
| 2072 | if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work))) |
| 2073 | return 0; |
| 2074 | |
| 2075 | rcu_read_lock(); |
| 2076 | /* |
| 2077 | * The queueing is in progress, or it is already queued. Try to |
| 2078 | * steal it from ->worklist without clearing WORK_STRUCT_PENDING. |
| 2079 | */ |
| 2080 | pool = get_work_pool(work); |
| 2081 | if (!pool) |
| 2082 | goto fail; |
| 2083 | |
| 2084 | raw_spin_lock(&pool->lock); |
| 2085 | /* |
| 2086 | * work->data is guaranteed to point to pwq only while the work |
| 2087 | * item is queued on pwq->wq, and both updating work->data to point |
| 2088 | * to pwq on queueing and to pool on dequeueing are done under |
| 2089 | * pwq->pool->lock. This in turn guarantees that, if work->data |
| 2090 | * points to pwq which is associated with a locked pool, the work |
| 2091 | * item is currently queued on that pool. |
| 2092 | */ |
| 2093 | pwq = get_work_pwq(work); |
| 2094 | if (pwq && pwq->pool == pool) { |
| 2095 | unsigned long work_data = *work_data_bits(work); |
| 2096 | |
| 2097 | debug_work_deactivate(work); |
| 2098 | |
| 2099 | /* |
| 2100 | * A cancelable inactive work item must be in the |
| 2101 | * pwq->inactive_works since a queued barrier can't be |
| 2102 | * canceled (see the comments in insert_wq_barrier()). |
| 2103 | * |
| 2104 | * An inactive work item cannot be deleted directly because |
| 2105 | * it might have linked barrier work items which, if left |
| 2106 | * on the inactive_works list, will confuse pwq->nr_active |
| 2107 | * management later on and cause stall. Move the linked |
| 2108 | * barrier work items to the worklist when deleting the grabbed |
| 2109 | * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that |
| 2110 | * it doesn't participate in nr_active management in later |
| 2111 | * pwq_dec_nr_in_flight(). |
| 2112 | */ |
| 2113 | if (work_data & WORK_STRUCT_INACTIVE) |
| 2114 | move_linked_works(work, head: &pwq->pool->worklist, NULL); |
| 2115 | |
| 2116 | list_del_init(entry: &work->entry); |
| 2117 | |
| 2118 | /* |
| 2119 | * work->data points to pwq iff queued. Let's point to pool. As |
| 2120 | * this destroys work->data needed by the next step, stash it. |
| 2121 | */ |
| 2122 | set_work_pool_and_keep_pending(work, pool_id: pool->id, |
| 2123 | flags: pool_offq_flags(pool)); |
| 2124 | |
| 2125 | /* must be the last step, see the function comment */ |
| 2126 | pwq_dec_nr_in_flight(pwq, work_data); |
| 2127 | |
| 2128 | raw_spin_unlock(&pool->lock); |
| 2129 | rcu_read_unlock(); |
| 2130 | return 1; |
| 2131 | } |
| 2132 | raw_spin_unlock(&pool->lock); |
| 2133 | fail: |
| 2134 | rcu_read_unlock(); |
| 2135 | local_irq_restore(*irq_flags); |
| 2136 | return -EAGAIN; |
| 2137 | } |
| 2138 | |
| 2139 | /** |
| 2140 | * work_grab_pending - steal work item from worklist and disable irq |
| 2141 | * @work: work item to steal |
| 2142 | * @cflags: %WORK_CANCEL_ flags |
| 2143 | * @irq_flags: place to store IRQ state |
| 2144 | * |
| 2145 | * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer |
| 2146 | * or on worklist. |
| 2147 | * |
| 2148 | * Can be called from any context. IRQ is disabled on return with IRQ state |
| 2149 | * stored in *@irq_flags. The caller is responsible for re-enabling it using |
| 2150 | * local_irq_restore(). |
| 2151 | * |
| 2152 | * Returns %true if @work was pending. %false if idle. |
| 2153 | */ |
| 2154 | static bool work_grab_pending(struct work_struct *work, u32 cflags, |
| 2155 | unsigned long *irq_flags) |
| 2156 | { |
| 2157 | int ret; |
| 2158 | |
| 2159 | while (true) { |
| 2160 | ret = try_to_grab_pending(work, cflags, irq_flags); |
| 2161 | if (ret >= 0) |
| 2162 | return ret; |
| 2163 | cpu_relax(); |
| 2164 | } |
| 2165 | } |
| 2166 | |
| 2167 | /** |
| 2168 | * insert_work - insert a work into a pool |
| 2169 | * @pwq: pwq @work belongs to |
| 2170 | * @work: work to insert |
| 2171 | * @head: insertion point |
| 2172 | * @extra_flags: extra WORK_STRUCT_* flags to set |
| 2173 | * |
| 2174 | * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to |
| 2175 | * work_struct flags. |
| 2176 | * |
| 2177 | * CONTEXT: |
| 2178 | * raw_spin_lock_irq(pool->lock). |
| 2179 | */ |
| 2180 | static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, |
| 2181 | struct list_head *head, unsigned int ) |
| 2182 | { |
| 2183 | debug_work_activate(work); |
| 2184 | |
| 2185 | /* record the work call stack in order to print it in KASAN reports */ |
| 2186 | kasan_record_aux_stack(ptr: work); |
| 2187 | |
| 2188 | /* we own @work, set data and link */ |
| 2189 | set_work_pwq(work, pwq, flags: extra_flags); |
| 2190 | list_add_tail(new: &work->entry, head); |
| 2191 | get_pwq(pwq); |
| 2192 | } |
| 2193 | |
| 2194 | /* |
| 2195 | * Test whether @work is being queued from another work executing on the |
| 2196 | * same workqueue. |
| 2197 | */ |
| 2198 | static bool is_chained_work(struct workqueue_struct *wq) |
| 2199 | { |
| 2200 | struct worker *worker; |
| 2201 | |
| 2202 | worker = current_wq_worker(); |
| 2203 | /* |
| 2204 | * Return %true iff I'm a worker executing a work item on @wq. If |
| 2205 | * I'm @worker, it's safe to dereference it without locking. |
| 2206 | */ |
| 2207 | return worker && worker->current_pwq->wq == wq; |
| 2208 | } |
| 2209 | |
| 2210 | /* |
| 2211 | * When queueing an unbound work item to a wq, prefer local CPU if allowed |
| 2212 | * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to |
| 2213 | * avoid perturbing sensitive tasks. |
| 2214 | */ |
| 2215 | static int wq_select_unbound_cpu(int cpu) |
| 2216 | { |
| 2217 | int new_cpu; |
| 2218 | |
| 2219 | if (likely(!wq_debug_force_rr_cpu)) { |
| 2220 | if (cpumask_test_cpu(cpu, cpumask: wq_unbound_cpumask)) |
| 2221 | return cpu; |
| 2222 | } else { |
| 2223 | pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n" ); |
| 2224 | } |
| 2225 | |
| 2226 | new_cpu = __this_cpu_read(wq_rr_cpu_last); |
| 2227 | new_cpu = cpumask_next_and_wrap(n: new_cpu, src1p: wq_unbound_cpumask, cpu_online_mask); |
| 2228 | if (unlikely(new_cpu >= nr_cpu_ids)) |
| 2229 | return cpu; |
| 2230 | __this_cpu_write(wq_rr_cpu_last, new_cpu); |
| 2231 | |
| 2232 | return new_cpu; |
| 2233 | } |
| 2234 | |
| 2235 | static void __queue_work(int cpu, struct workqueue_struct *wq, |
| 2236 | struct work_struct *work) |
| 2237 | { |
| 2238 | struct pool_workqueue *pwq; |
| 2239 | struct worker_pool *last_pool, *pool; |
| 2240 | unsigned int work_flags; |
| 2241 | unsigned int req_cpu = cpu; |
| 2242 | |
| 2243 | /* |
| 2244 | * While a work item is PENDING && off queue, a task trying to |
| 2245 | * steal the PENDING will busy-loop waiting for it to either get |
| 2246 | * queued or lose PENDING. Grabbing PENDING and queueing should |
| 2247 | * happen with IRQ disabled. |
| 2248 | */ |
| 2249 | lockdep_assert_irqs_disabled(); |
| 2250 | |
| 2251 | /* |
| 2252 | * For a draining wq, only works from the same workqueue are |
| 2253 | * allowed. The __WQ_DESTROYING helps to spot the issue that |
| 2254 | * queues a new work item to a wq after destroy_workqueue(wq). |
| 2255 | */ |
| 2256 | if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && |
| 2257 | WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n" , |
| 2258 | work->func, wq->name))) { |
| 2259 | return; |
| 2260 | } |
| 2261 | rcu_read_lock(); |
| 2262 | retry: |
| 2263 | /* pwq which will be used unless @work is executing elsewhere */ |
| 2264 | if (req_cpu == WORK_CPU_UNBOUND) { |
| 2265 | if (wq->flags & WQ_UNBOUND) |
| 2266 | cpu = wq_select_unbound_cpu(raw_smp_processor_id()); |
| 2267 | else |
| 2268 | cpu = raw_smp_processor_id(); |
| 2269 | } |
| 2270 | |
| 2271 | pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); |
| 2272 | pool = pwq->pool; |
| 2273 | |
| 2274 | /* |
| 2275 | * If @work was previously on a different pool, it might still be |
| 2276 | * running there, in which case the work needs to be queued on that |
| 2277 | * pool to guarantee non-reentrancy. |
| 2278 | * |
| 2279 | * For ordered workqueue, work items must be queued on the newest pwq |
| 2280 | * for accurate order management. Guaranteed order also guarantees |
| 2281 | * non-reentrancy. See the comments above unplug_oldest_pwq(). |
| 2282 | */ |
| 2283 | last_pool = get_work_pool(work); |
| 2284 | if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) { |
| 2285 | struct worker *worker; |
| 2286 | |
| 2287 | raw_spin_lock(&last_pool->lock); |
| 2288 | |
| 2289 | worker = find_worker_executing_work(pool: last_pool, work); |
| 2290 | |
| 2291 | if (worker && worker->current_pwq->wq == wq) { |
| 2292 | pwq = worker->current_pwq; |
| 2293 | pool = pwq->pool; |
| 2294 | WARN_ON_ONCE(pool != last_pool); |
| 2295 | } else { |
| 2296 | /* meh... not running there, queue here */ |
| 2297 | raw_spin_unlock(&last_pool->lock); |
| 2298 | raw_spin_lock(&pool->lock); |
| 2299 | } |
| 2300 | } else { |
| 2301 | raw_spin_lock(&pool->lock); |
| 2302 | } |
| 2303 | |
| 2304 | /* |
| 2305 | * pwq is determined and locked. For unbound pools, we could have raced |
| 2306 | * with pwq release and it could already be dead. If its refcnt is zero, |
| 2307 | * repeat pwq selection. Note that unbound pwqs never die without |
| 2308 | * another pwq replacing it in cpu_pwq or while work items are executing |
| 2309 | * on it, so the retrying is guaranteed to make forward-progress. |
| 2310 | */ |
| 2311 | if (unlikely(!pwq->refcnt)) { |
| 2312 | if (wq->flags & WQ_UNBOUND) { |
| 2313 | raw_spin_unlock(&pool->lock); |
| 2314 | cpu_relax(); |
| 2315 | goto retry; |
| 2316 | } |
| 2317 | /* oops */ |
| 2318 | WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt" , |
| 2319 | wq->name, cpu); |
| 2320 | } |
| 2321 | |
| 2322 | /* pwq determined, queue */ |
| 2323 | trace_workqueue_queue_work(req_cpu, pwq, work); |
| 2324 | |
| 2325 | if (WARN_ON(!list_empty(&work->entry))) |
| 2326 | goto out; |
| 2327 | |
| 2328 | pwq->nr_in_flight[pwq->work_color]++; |
| 2329 | work_flags = work_color_to_flags(color: pwq->work_color); |
| 2330 | |
| 2331 | /* |
| 2332 | * Limit the number of concurrently active work items to max_active. |
| 2333 | * @work must also queue behind existing inactive work items to maintain |
| 2334 | * ordering when max_active changes. See wq_adjust_max_active(). |
| 2335 | */ |
| 2336 | if (list_empty(head: &pwq->inactive_works) && pwq_tryinc_nr_active(pwq, fill: false)) { |
| 2337 | if (list_empty(head: &pool->worklist)) |
| 2338 | pool->watchdog_ts = jiffies; |
| 2339 | |
| 2340 | trace_workqueue_activate_work(work); |
| 2341 | insert_work(pwq, work, head: &pool->worklist, extra_flags: work_flags); |
| 2342 | kick_pool(pool); |
| 2343 | } else { |
| 2344 | work_flags |= WORK_STRUCT_INACTIVE; |
| 2345 | insert_work(pwq, work, head: &pwq->inactive_works, extra_flags: work_flags); |
| 2346 | } |
| 2347 | |
| 2348 | out: |
| 2349 | raw_spin_unlock(&pool->lock); |
| 2350 | rcu_read_unlock(); |
| 2351 | } |
| 2352 | |
| 2353 | static bool clear_pending_if_disabled(struct work_struct *work) |
| 2354 | { |
| 2355 | unsigned long data = *work_data_bits(work); |
| 2356 | struct work_offq_data offqd; |
| 2357 | |
| 2358 | if (likely((data & WORK_STRUCT_PWQ) || |
| 2359 | !(data & WORK_OFFQ_DISABLE_MASK))) |
| 2360 | return false; |
| 2361 | |
| 2362 | work_offqd_unpack(offqd: &offqd, data); |
| 2363 | set_work_pool_and_clear_pending(work, pool_id: offqd.pool_id, |
| 2364 | flags: work_offqd_pack_flags(offqd: &offqd)); |
| 2365 | return true; |
| 2366 | } |
| 2367 | |
| 2368 | /** |
| 2369 | * queue_work_on - queue work on specific cpu |
| 2370 | * @cpu: CPU number to execute work on |
| 2371 | * @wq: workqueue to use |
| 2372 | * @work: work to queue |
| 2373 | * |
| 2374 | * We queue the work to a specific CPU, the caller must ensure it |
| 2375 | * can't go away. Callers that fail to ensure that the specified |
| 2376 | * CPU cannot go away will execute on a randomly chosen CPU. |
| 2377 | * But note well that callers specifying a CPU that never has been |
| 2378 | * online will get a splat. |
| 2379 | * |
| 2380 | * Return: %false if @work was already on a queue, %true otherwise. |
| 2381 | */ |
| 2382 | bool queue_work_on(int cpu, struct workqueue_struct *wq, |
| 2383 | struct work_struct *work) |
| 2384 | { |
| 2385 | bool ret = false; |
| 2386 | unsigned long irq_flags; |
| 2387 | |
| 2388 | local_irq_save(irq_flags); |
| 2389 | |
| 2390 | if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && |
| 2391 | !clear_pending_if_disabled(work)) { |
| 2392 | __queue_work(cpu, wq, work); |
| 2393 | ret = true; |
| 2394 | } |
| 2395 | |
| 2396 | local_irq_restore(irq_flags); |
| 2397 | return ret; |
| 2398 | } |
| 2399 | EXPORT_SYMBOL(queue_work_on); |
| 2400 | |
| 2401 | /** |
| 2402 | * select_numa_node_cpu - Select a CPU based on NUMA node |
| 2403 | * @node: NUMA node ID that we want to select a CPU from |
| 2404 | * |
| 2405 | * This function will attempt to find a "random" cpu available on a given |
| 2406 | * node. If there are no CPUs available on the given node it will return |
| 2407 | * WORK_CPU_UNBOUND indicating that we should just schedule to any |
| 2408 | * available CPU if we need to schedule this work. |
| 2409 | */ |
| 2410 | static int select_numa_node_cpu(int node) |
| 2411 | { |
| 2412 | int cpu; |
| 2413 | |
| 2414 | /* Delay binding to CPU if node is not valid or online */ |
| 2415 | if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) |
| 2416 | return WORK_CPU_UNBOUND; |
| 2417 | |
| 2418 | /* Use local node/cpu if we are already there */ |
| 2419 | cpu = raw_smp_processor_id(); |
| 2420 | if (node == cpu_to_node(cpu)) |
| 2421 | return cpu; |
| 2422 | |
| 2423 | /* Use "random" otherwise know as "first" online CPU of node */ |
| 2424 | cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); |
| 2425 | |
| 2426 | /* If CPU is valid return that, otherwise just defer */ |
| 2427 | return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; |
| 2428 | } |
| 2429 | |
| 2430 | /** |
| 2431 | * queue_work_node - queue work on a "random" cpu for a given NUMA node |
| 2432 | * @node: NUMA node that we are targeting the work for |
| 2433 | * @wq: workqueue to use |
| 2434 | * @work: work to queue |
| 2435 | * |
| 2436 | * We queue the work to a "random" CPU within a given NUMA node. The basic |
| 2437 | * idea here is to provide a way to somehow associate work with a given |
| 2438 | * NUMA node. |
| 2439 | * |
| 2440 | * This function will only make a best effort attempt at getting this onto |
| 2441 | * the right NUMA node. If no node is requested or the requested node is |
| 2442 | * offline then we just fall back to standard queue_work behavior. |
| 2443 | * |
| 2444 | * Currently the "random" CPU ends up being the first available CPU in the |
| 2445 | * intersection of cpu_online_mask and the cpumask of the node, unless we |
| 2446 | * are running on the node. In that case we just use the current CPU. |
| 2447 | * |
| 2448 | * Return: %false if @work was already on a queue, %true otherwise. |
| 2449 | */ |
| 2450 | bool queue_work_node(int node, struct workqueue_struct *wq, |
| 2451 | struct work_struct *work) |
| 2452 | { |
| 2453 | unsigned long irq_flags; |
| 2454 | bool ret = false; |
| 2455 | |
| 2456 | /* |
| 2457 | * This current implementation is specific to unbound workqueues. |
| 2458 | * Specifically we only return the first available CPU for a given |
| 2459 | * node instead of cycling through individual CPUs within the node. |
| 2460 | * |
| 2461 | * If this is used with a per-cpu workqueue then the logic in |
| 2462 | * workqueue_select_cpu_near would need to be updated to allow for |
| 2463 | * some round robin type logic. |
| 2464 | */ |
| 2465 | WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); |
| 2466 | |
| 2467 | local_irq_save(irq_flags); |
| 2468 | |
| 2469 | if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && |
| 2470 | !clear_pending_if_disabled(work)) { |
| 2471 | int cpu = select_numa_node_cpu(node); |
| 2472 | |
| 2473 | __queue_work(cpu, wq, work); |
| 2474 | ret = true; |
| 2475 | } |
| 2476 | |
| 2477 | local_irq_restore(irq_flags); |
| 2478 | return ret; |
| 2479 | } |
| 2480 | EXPORT_SYMBOL_GPL(queue_work_node); |
| 2481 | |
| 2482 | void delayed_work_timer_fn(struct timer_list *t) |
| 2483 | { |
| 2484 | struct delayed_work *dwork = timer_container_of(dwork, t, timer); |
| 2485 | |
| 2486 | /* should have been called from irqsafe timer with irq already off */ |
| 2487 | __queue_work(cpu: dwork->cpu, wq: dwork->wq, work: &dwork->work); |
| 2488 | } |
| 2489 | EXPORT_SYMBOL(delayed_work_timer_fn); |
| 2490 | |
| 2491 | static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, |
| 2492 | struct delayed_work *dwork, unsigned long delay) |
| 2493 | { |
| 2494 | struct timer_list *timer = &dwork->timer; |
| 2495 | struct work_struct *work = &dwork->work; |
| 2496 | |
| 2497 | WARN_ON_ONCE(!wq); |
| 2498 | WARN_ON_ONCE(timer->function != delayed_work_timer_fn); |
| 2499 | WARN_ON_ONCE(timer_pending(timer)); |
| 2500 | WARN_ON_ONCE(!list_empty(&work->entry)); |
| 2501 | |
| 2502 | /* |
| 2503 | * If @delay is 0, queue @dwork->work immediately. This is for |
| 2504 | * both optimization and correctness. The earliest @timer can |
| 2505 | * expire is on the closest next tick and delayed_work users depend |
| 2506 | * on that there's no such delay when @delay is 0. |
| 2507 | */ |
| 2508 | if (!delay) { |
| 2509 | __queue_work(cpu, wq, work: &dwork->work); |
| 2510 | return; |
| 2511 | } |
| 2512 | |
| 2513 | WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu)); |
| 2514 | dwork->wq = wq; |
| 2515 | dwork->cpu = cpu; |
| 2516 | timer->expires = jiffies + delay; |
| 2517 | |
| 2518 | if (housekeeping_enabled(type: HK_TYPE_TIMER)) { |
| 2519 | /* If the current cpu is a housekeeping cpu, use it. */ |
| 2520 | cpu = smp_processor_id(); |
| 2521 | if (!housekeeping_test_cpu(cpu, type: HK_TYPE_TIMER)) |
| 2522 | cpu = housekeeping_any_cpu(type: HK_TYPE_TIMER); |
| 2523 | add_timer_on(timer, cpu); |
| 2524 | } else { |
| 2525 | if (likely(cpu == WORK_CPU_UNBOUND)) |
| 2526 | add_timer_global(timer); |
| 2527 | else |
| 2528 | add_timer_on(timer, cpu); |
| 2529 | } |
| 2530 | } |
| 2531 | |
| 2532 | /** |
| 2533 | * queue_delayed_work_on - queue work on specific CPU after delay |
| 2534 | * @cpu: CPU number to execute work on |
| 2535 | * @wq: workqueue to use |
| 2536 | * @dwork: work to queue |
| 2537 | * @delay: number of jiffies to wait before queueing |
| 2538 | * |
| 2539 | * We queue the delayed_work to a specific CPU, for non-zero delays the |
| 2540 | * caller must ensure it is online and can't go away. Callers that fail |
| 2541 | * to ensure this, may get @dwork->timer queued to an offlined CPU and |
| 2542 | * this will prevent queueing of @dwork->work unless the offlined CPU |
| 2543 | * becomes online again. |
| 2544 | * |
| 2545 | * Return: %false if @work was already on a queue, %true otherwise. If |
| 2546 | * @delay is zero and @dwork is idle, it will be scheduled for immediate |
| 2547 | * execution. |
| 2548 | */ |
| 2549 | bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, |
| 2550 | struct delayed_work *dwork, unsigned long delay) |
| 2551 | { |
| 2552 | struct work_struct *work = &dwork->work; |
| 2553 | bool ret = false; |
| 2554 | unsigned long irq_flags; |
| 2555 | |
| 2556 | /* read the comment in __queue_work() */ |
| 2557 | local_irq_save(irq_flags); |
| 2558 | |
| 2559 | if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && |
| 2560 | !clear_pending_if_disabled(work)) { |
| 2561 | __queue_delayed_work(cpu, wq, dwork, delay); |
| 2562 | ret = true; |
| 2563 | } |
| 2564 | |
| 2565 | local_irq_restore(irq_flags); |
| 2566 | return ret; |
| 2567 | } |
| 2568 | EXPORT_SYMBOL(queue_delayed_work_on); |
| 2569 | |
| 2570 | /** |
| 2571 | * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU |
| 2572 | * @cpu: CPU number to execute work on |
| 2573 | * @wq: workqueue to use |
| 2574 | * @dwork: work to queue |
| 2575 | * @delay: number of jiffies to wait before queueing |
| 2576 | * |
| 2577 | * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, |
| 2578 | * modify @dwork's timer so that it expires after @delay. If @delay is |
| 2579 | * zero, @work is guaranteed to be scheduled immediately regardless of its |
| 2580 | * current state. |
| 2581 | * |
| 2582 | * Return: %false if @dwork was idle and queued, %true if @dwork was |
| 2583 | * pending and its timer was modified. |
| 2584 | * |
| 2585 | * This function is safe to call from any context including IRQ handler. |
| 2586 | * See try_to_grab_pending() for details. |
| 2587 | */ |
| 2588 | bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, |
| 2589 | struct delayed_work *dwork, unsigned long delay) |
| 2590 | { |
| 2591 | unsigned long irq_flags; |
| 2592 | bool ret; |
| 2593 | |
| 2594 | ret = work_grab_pending(work: &dwork->work, cflags: WORK_CANCEL_DELAYED, irq_flags: &irq_flags); |
| 2595 | |
| 2596 | if (!clear_pending_if_disabled(work: &dwork->work)) |
| 2597 | __queue_delayed_work(cpu, wq, dwork, delay); |
| 2598 | |
| 2599 | local_irq_restore(irq_flags); |
| 2600 | return ret; |
| 2601 | } |
| 2602 | EXPORT_SYMBOL_GPL(mod_delayed_work_on); |
| 2603 | |
| 2604 | static void rcu_work_rcufn(struct rcu_head *rcu) |
| 2605 | { |
| 2606 | struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); |
| 2607 | |
| 2608 | /* read the comment in __queue_work() */ |
| 2609 | local_irq_disable(); |
| 2610 | __queue_work(cpu: WORK_CPU_UNBOUND, wq: rwork->wq, work: &rwork->work); |
| 2611 | local_irq_enable(); |
| 2612 | } |
| 2613 | |
| 2614 | /** |
| 2615 | * queue_rcu_work - queue work after a RCU grace period |
| 2616 | * @wq: workqueue to use |
| 2617 | * @rwork: work to queue |
| 2618 | * |
| 2619 | * Return: %false if @rwork was already pending, %true otherwise. Note |
| 2620 | * that a full RCU grace period is guaranteed only after a %true return. |
| 2621 | * While @rwork is guaranteed to be executed after a %false return, the |
| 2622 | * execution may happen before a full RCU grace period has passed. |
| 2623 | */ |
| 2624 | bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) |
| 2625 | { |
| 2626 | struct work_struct *work = &rwork->work; |
| 2627 | |
| 2628 | /* |
| 2629 | * rcu_work can't be canceled or disabled. Warn if the user reached |
| 2630 | * inside @rwork and disabled the inner work. |
| 2631 | */ |
| 2632 | if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && |
| 2633 | !WARN_ON_ONCE(clear_pending_if_disabled(work))) { |
| 2634 | rwork->wq = wq; |
| 2635 | call_rcu_hurry(head: &rwork->rcu, func: rcu_work_rcufn); |
| 2636 | return true; |
| 2637 | } |
| 2638 | |
| 2639 | return false; |
| 2640 | } |
| 2641 | EXPORT_SYMBOL(queue_rcu_work); |
| 2642 | |
| 2643 | static struct worker *alloc_worker(int node) |
| 2644 | { |
| 2645 | struct worker *worker; |
| 2646 | |
| 2647 | worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); |
| 2648 | if (worker) { |
| 2649 | INIT_LIST_HEAD(list: &worker->entry); |
| 2650 | INIT_LIST_HEAD(list: &worker->scheduled); |
| 2651 | INIT_LIST_HEAD(list: &worker->node); |
| 2652 | /* on creation a worker is in !idle && prep state */ |
| 2653 | worker->flags = WORKER_PREP; |
| 2654 | } |
| 2655 | return worker; |
| 2656 | } |
| 2657 | |
| 2658 | static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) |
| 2659 | { |
| 2660 | if (pool->cpu < 0 && pool->attrs->affn_strict) |
| 2661 | return pool->attrs->__pod_cpumask; |
| 2662 | else |
| 2663 | return pool->attrs->cpumask; |
| 2664 | } |
| 2665 | |
| 2666 | /** |
| 2667 | * worker_attach_to_pool() - attach a worker to a pool |
| 2668 | * @worker: worker to be attached |
| 2669 | * @pool: the target pool |
| 2670 | * |
| 2671 | * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and |
| 2672 | * cpu-binding of @worker are kept coordinated with the pool across |
| 2673 | * cpu-[un]hotplugs. |
| 2674 | */ |
| 2675 | static void worker_attach_to_pool(struct worker *worker, |
| 2676 | struct worker_pool *pool) |
| 2677 | { |
| 2678 | mutex_lock(lock: &wq_pool_attach_mutex); |
| 2679 | |
| 2680 | /* |
| 2681 | * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable |
| 2682 | * across this function. See the comments above the flag definition for |
| 2683 | * details. BH workers are, while per-CPU, always DISASSOCIATED. |
| 2684 | */ |
| 2685 | if (pool->flags & POOL_DISASSOCIATED) { |
| 2686 | worker->flags |= WORKER_UNBOUND; |
| 2687 | } else { |
| 2688 | WARN_ON_ONCE(pool->flags & POOL_BH); |
| 2689 | kthread_set_per_cpu(k: worker->task, cpu: pool->cpu); |
| 2690 | } |
| 2691 | |
| 2692 | if (worker->rescue_wq) |
| 2693 | set_cpus_allowed_ptr(p: worker->task, new_mask: pool_allowed_cpus(pool)); |
| 2694 | |
| 2695 | list_add_tail(new: &worker->node, head: &pool->workers); |
| 2696 | worker->pool = pool; |
| 2697 | |
| 2698 | mutex_unlock(lock: &wq_pool_attach_mutex); |
| 2699 | } |
| 2700 | |
| 2701 | static void unbind_worker(struct worker *worker) |
| 2702 | { |
| 2703 | lockdep_assert_held(&wq_pool_attach_mutex); |
| 2704 | |
| 2705 | kthread_set_per_cpu(k: worker->task, cpu: -1); |
| 2706 | if (cpumask_intersects(src1p: wq_unbound_cpumask, cpu_active_mask)) |
| 2707 | WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); |
| 2708 | else |
| 2709 | WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); |
| 2710 | } |
| 2711 | |
| 2712 | |
| 2713 | static void detach_worker(struct worker *worker) |
| 2714 | { |
| 2715 | lockdep_assert_held(&wq_pool_attach_mutex); |
| 2716 | |
| 2717 | unbind_worker(worker); |
| 2718 | list_del(entry: &worker->node); |
| 2719 | } |
| 2720 | |
| 2721 | /** |
| 2722 | * worker_detach_from_pool() - detach a worker from its pool |
| 2723 | * @worker: worker which is attached to its pool |
| 2724 | * |
| 2725 | * Undo the attaching which had been done in worker_attach_to_pool(). The |
| 2726 | * caller worker shouldn't access to the pool after detached except it has |
| 2727 | * other reference to the pool. |
| 2728 | */ |
| 2729 | static void worker_detach_from_pool(struct worker *worker) |
| 2730 | { |
| 2731 | struct worker_pool *pool = worker->pool; |
| 2732 | |
| 2733 | /* there is one permanent BH worker per CPU which should never detach */ |
| 2734 | WARN_ON_ONCE(pool->flags & POOL_BH); |
| 2735 | |
| 2736 | mutex_lock(lock: &wq_pool_attach_mutex); |
| 2737 | detach_worker(worker); |
| 2738 | worker->pool = NULL; |
| 2739 | mutex_unlock(lock: &wq_pool_attach_mutex); |
| 2740 | |
| 2741 | /* clear leftover flags without pool->lock after it is detached */ |
| 2742 | worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); |
| 2743 | } |
| 2744 | |
| 2745 | static int format_worker_id(char *buf, size_t size, struct worker *worker, |
| 2746 | struct worker_pool *pool) |
| 2747 | { |
| 2748 | if (worker->rescue_wq) |
| 2749 | return scnprintf(buf, size, fmt: "kworker/R-%s" , |
| 2750 | worker->rescue_wq->name); |
| 2751 | |
| 2752 | if (pool) { |
| 2753 | if (pool->cpu >= 0) |
| 2754 | return scnprintf(buf, size, fmt: "kworker/%d:%d%s" , |
| 2755 | pool->cpu, worker->id, |
| 2756 | pool->attrs->nice < 0 ? "H" : "" ); |
| 2757 | else |
| 2758 | return scnprintf(buf, size, fmt: "kworker/u%d:%d" , |
| 2759 | pool->id, worker->id); |
| 2760 | } else { |
| 2761 | return scnprintf(buf, size, fmt: "kworker/dying" ); |
| 2762 | } |
| 2763 | } |
| 2764 | |
| 2765 | /** |
| 2766 | * create_worker - create a new workqueue worker |
| 2767 | * @pool: pool the new worker will belong to |
| 2768 | * |
| 2769 | * Create and start a new worker which is attached to @pool. |
| 2770 | * |
| 2771 | * CONTEXT: |
| 2772 | * Might sleep. Does GFP_KERNEL allocations. |
| 2773 | * |
| 2774 | * Return: |
| 2775 | * Pointer to the newly created worker. |
| 2776 | */ |
| 2777 | static struct worker *create_worker(struct worker_pool *pool) |
| 2778 | { |
| 2779 | struct worker *worker; |
| 2780 | int id; |
| 2781 | |
| 2782 | /* ID is needed to determine kthread name */ |
| 2783 | id = ida_alloc(ida: &pool->worker_ida, GFP_KERNEL); |
| 2784 | if (id < 0) { |
| 2785 | pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n" , |
| 2786 | ERR_PTR(id)); |
| 2787 | return NULL; |
| 2788 | } |
| 2789 | |
| 2790 | worker = alloc_worker(node: pool->node); |
| 2791 | if (!worker) { |
| 2792 | pr_err_once("workqueue: Failed to allocate a worker\n" ); |
| 2793 | goto fail; |
| 2794 | } |
| 2795 | |
| 2796 | worker->id = id; |
| 2797 | |
| 2798 | if (!(pool->flags & POOL_BH)) { |
| 2799 | char id_buf[WORKER_ID_LEN]; |
| 2800 | |
| 2801 | format_worker_id(buf: id_buf, size: sizeof(id_buf), worker, pool); |
| 2802 | worker->task = kthread_create_on_node(threadfn: worker_thread, data: worker, |
| 2803 | node: pool->node, namefmt: "%s" , id_buf); |
| 2804 | if (IS_ERR(ptr: worker->task)) { |
| 2805 | if (PTR_ERR(ptr: worker->task) == -EINTR) { |
| 2806 | pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n" , |
| 2807 | id_buf); |
| 2808 | } else { |
| 2809 | pr_err_once("workqueue: Failed to create a worker thread: %pe" , |
| 2810 | worker->task); |
| 2811 | } |
| 2812 | goto fail; |
| 2813 | } |
| 2814 | |
| 2815 | set_user_nice(p: worker->task, nice: pool->attrs->nice); |
| 2816 | kthread_bind_mask(k: worker->task, mask: pool_allowed_cpus(pool)); |
| 2817 | } |
| 2818 | |
| 2819 | /* successful, attach the worker to the pool */ |
| 2820 | worker_attach_to_pool(worker, pool); |
| 2821 | |
| 2822 | /* start the newly created worker */ |
| 2823 | raw_spin_lock_irq(&pool->lock); |
| 2824 | |
| 2825 | worker->pool->nr_workers++; |
| 2826 | worker_enter_idle(worker); |
| 2827 | |
| 2828 | /* |
| 2829 | * @worker is waiting on a completion in kthread() and will trigger hung |
| 2830 | * check if not woken up soon. As kick_pool() is noop if @pool is empty, |
| 2831 | * wake it up explicitly. |
| 2832 | */ |
| 2833 | if (worker->task) |
| 2834 | wake_up_process(tsk: worker->task); |
| 2835 | |
| 2836 | raw_spin_unlock_irq(&pool->lock); |
| 2837 | |
| 2838 | return worker; |
| 2839 | |
| 2840 | fail: |
| 2841 | ida_free(&pool->worker_ida, id); |
| 2842 | kfree(objp: worker); |
| 2843 | return NULL; |
| 2844 | } |
| 2845 | |
| 2846 | static void detach_dying_workers(struct list_head *cull_list) |
| 2847 | { |
| 2848 | struct worker *worker; |
| 2849 | |
| 2850 | list_for_each_entry(worker, cull_list, entry) |
| 2851 | detach_worker(worker); |
| 2852 | } |
| 2853 | |
| 2854 | static void reap_dying_workers(struct list_head *cull_list) |
| 2855 | { |
| 2856 | struct worker *worker, *tmp; |
| 2857 | |
| 2858 | list_for_each_entry_safe(worker, tmp, cull_list, entry) { |
| 2859 | list_del_init(entry: &worker->entry); |
| 2860 | kthread_stop_put(k: worker->task); |
| 2861 | kfree(objp: worker); |
| 2862 | } |
| 2863 | } |
| 2864 | |
| 2865 | /** |
| 2866 | * set_worker_dying - Tag a worker for destruction |
| 2867 | * @worker: worker to be destroyed |
| 2868 | * @list: transfer worker away from its pool->idle_list and into list |
| 2869 | * |
| 2870 | * Tag @worker for destruction and adjust @pool stats accordingly. The worker |
| 2871 | * should be idle. |
| 2872 | * |
| 2873 | * CONTEXT: |
| 2874 | * raw_spin_lock_irq(pool->lock). |
| 2875 | */ |
| 2876 | static void set_worker_dying(struct worker *worker, struct list_head *list) |
| 2877 | { |
| 2878 | struct worker_pool *pool = worker->pool; |
| 2879 | |
| 2880 | lockdep_assert_held(&pool->lock); |
| 2881 | lockdep_assert_held(&wq_pool_attach_mutex); |
| 2882 | |
| 2883 | /* sanity check frenzy */ |
| 2884 | if (WARN_ON(worker->current_work) || |
| 2885 | WARN_ON(!list_empty(&worker->scheduled)) || |
| 2886 | WARN_ON(!(worker->flags & WORKER_IDLE))) |
| 2887 | return; |
| 2888 | |
| 2889 | pool->nr_workers--; |
| 2890 | pool->nr_idle--; |
| 2891 | |
| 2892 | worker->flags |= WORKER_DIE; |
| 2893 | |
| 2894 | list_move(list: &worker->entry, head: list); |
| 2895 | |
| 2896 | /* get an extra task struct reference for later kthread_stop_put() */ |
| 2897 | get_task_struct(t: worker->task); |
| 2898 | } |
| 2899 | |
| 2900 | /** |
| 2901 | * idle_worker_timeout - check if some idle workers can now be deleted. |
| 2902 | * @t: The pool's idle_timer that just expired |
| 2903 | * |
| 2904 | * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in |
| 2905 | * worker_leave_idle(), as a worker flicking between idle and active while its |
| 2906 | * pool is at the too_many_workers() tipping point would cause too much timer |
| 2907 | * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let |
| 2908 | * it expire and re-evaluate things from there. |
| 2909 | */ |
| 2910 | static void idle_worker_timeout(struct timer_list *t) |
| 2911 | { |
| 2912 | struct worker_pool *pool = timer_container_of(pool, t, idle_timer); |
| 2913 | bool do_cull = false; |
| 2914 | |
| 2915 | if (work_pending(&pool->idle_cull_work)) |
| 2916 | return; |
| 2917 | |
| 2918 | raw_spin_lock_irq(&pool->lock); |
| 2919 | |
| 2920 | if (too_many_workers(pool)) { |
| 2921 | struct worker *worker; |
| 2922 | unsigned long expires; |
| 2923 | |
| 2924 | /* idle_list is kept in LIFO order, check the last one */ |
| 2925 | worker = list_last_entry(&pool->idle_list, struct worker, entry); |
| 2926 | expires = worker->last_active + IDLE_WORKER_TIMEOUT; |
| 2927 | do_cull = !time_before(jiffies, expires); |
| 2928 | |
| 2929 | if (!do_cull) |
| 2930 | mod_timer(timer: &pool->idle_timer, expires); |
| 2931 | } |
| 2932 | raw_spin_unlock_irq(&pool->lock); |
| 2933 | |
| 2934 | if (do_cull) |
| 2935 | queue_work(wq: system_dfl_wq, work: &pool->idle_cull_work); |
| 2936 | } |
| 2937 | |
| 2938 | /** |
| 2939 | * idle_cull_fn - cull workers that have been idle for too long. |
| 2940 | * @work: the pool's work for handling these idle workers |
| 2941 | * |
| 2942 | * This goes through a pool's idle workers and gets rid of those that have been |
| 2943 | * idle for at least IDLE_WORKER_TIMEOUT seconds. |
| 2944 | * |
| 2945 | * We don't want to disturb isolated CPUs because of a pcpu kworker being |
| 2946 | * culled, so this also resets worker affinity. This requires a sleepable |
| 2947 | * context, hence the split between timer callback and work item. |
| 2948 | */ |
| 2949 | static void idle_cull_fn(struct work_struct *work) |
| 2950 | { |
| 2951 | struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); |
| 2952 | LIST_HEAD(cull_list); |
| 2953 | |
| 2954 | /* |
| 2955 | * Grabbing wq_pool_attach_mutex here ensures an already-running worker |
| 2956 | * cannot proceed beyong set_pf_worker() in its self-destruct path. |
| 2957 | * This is required as a previously-preempted worker could run after |
| 2958 | * set_worker_dying() has happened but before detach_dying_workers() did. |
| 2959 | */ |
| 2960 | mutex_lock(lock: &wq_pool_attach_mutex); |
| 2961 | raw_spin_lock_irq(&pool->lock); |
| 2962 | |
| 2963 | while (too_many_workers(pool)) { |
| 2964 | struct worker *worker; |
| 2965 | unsigned long expires; |
| 2966 | |
| 2967 | worker = list_last_entry(&pool->idle_list, struct worker, entry); |
| 2968 | expires = worker->last_active + IDLE_WORKER_TIMEOUT; |
| 2969 | |
| 2970 | if (time_before(jiffies, expires)) { |
| 2971 | mod_timer(timer: &pool->idle_timer, expires); |
| 2972 | break; |
| 2973 | } |
| 2974 | |
| 2975 | set_worker_dying(worker, list: &cull_list); |
| 2976 | } |
| 2977 | |
| 2978 | raw_spin_unlock_irq(&pool->lock); |
| 2979 | detach_dying_workers(cull_list: &cull_list); |
| 2980 | mutex_unlock(lock: &wq_pool_attach_mutex); |
| 2981 | |
| 2982 | reap_dying_workers(cull_list: &cull_list); |
| 2983 | } |
| 2984 | |
| 2985 | static void send_mayday(struct work_struct *work) |
| 2986 | { |
| 2987 | struct pool_workqueue *pwq = get_work_pwq(work); |
| 2988 | struct workqueue_struct *wq = pwq->wq; |
| 2989 | |
| 2990 | lockdep_assert_held(&wq_mayday_lock); |
| 2991 | |
| 2992 | if (!wq->rescuer) |
| 2993 | return; |
| 2994 | |
| 2995 | /* mayday mayday mayday */ |
| 2996 | if (list_empty(head: &pwq->mayday_node)) { |
| 2997 | /* |
| 2998 | * If @pwq is for an unbound wq, its base ref may be put at |
| 2999 | * any time due to an attribute change. Pin @pwq until the |
| 3000 | * rescuer is done with it. |
| 3001 | */ |
| 3002 | get_pwq(pwq); |
| 3003 | list_add_tail(new: &pwq->mayday_node, head: &wq->maydays); |
| 3004 | wake_up_process(tsk: wq->rescuer->task); |
| 3005 | pwq->stats[PWQ_STAT_MAYDAY]++; |
| 3006 | } |
| 3007 | } |
| 3008 | |
| 3009 | static void pool_mayday_timeout(struct timer_list *t) |
| 3010 | { |
| 3011 | struct worker_pool *pool = timer_container_of(pool, t, mayday_timer); |
| 3012 | struct work_struct *work; |
| 3013 | |
| 3014 | raw_spin_lock_irq(&pool->lock); |
| 3015 | raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ |
| 3016 | |
| 3017 | if (need_to_create_worker(pool)) { |
| 3018 | /* |
| 3019 | * We've been trying to create a new worker but |
| 3020 | * haven't been successful. We might be hitting an |
| 3021 | * allocation deadlock. Send distress signals to |
| 3022 | * rescuers. |
| 3023 | */ |
| 3024 | list_for_each_entry(work, &pool->worklist, entry) |
| 3025 | send_mayday(work); |
| 3026 | } |
| 3027 | |
| 3028 | raw_spin_unlock(&wq_mayday_lock); |
| 3029 | raw_spin_unlock_irq(&pool->lock); |
| 3030 | |
| 3031 | mod_timer(timer: &pool->mayday_timer, expires: jiffies + MAYDAY_INTERVAL); |
| 3032 | } |
| 3033 | |
| 3034 | /** |
| 3035 | * maybe_create_worker - create a new worker if necessary |
| 3036 | * @pool: pool to create a new worker for |
| 3037 | * |
| 3038 | * Create a new worker for @pool if necessary. @pool is guaranteed to |
| 3039 | * have at least one idle worker on return from this function. If |
| 3040 | * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is |
| 3041 | * sent to all rescuers with works scheduled on @pool to resolve |
| 3042 | * possible allocation deadlock. |
| 3043 | * |
| 3044 | * On return, need_to_create_worker() is guaranteed to be %false and |
| 3045 | * may_start_working() %true. |
| 3046 | * |
| 3047 | * LOCKING: |
| 3048 | * raw_spin_lock_irq(pool->lock) which may be released and regrabbed |
| 3049 | * multiple times. Does GFP_KERNEL allocations. Called only from |
| 3050 | * manager. |
| 3051 | */ |
| 3052 | static void maybe_create_worker(struct worker_pool *pool) |
| 3053 | __releases(&pool->lock) |
| 3054 | __acquires(&pool->lock) |
| 3055 | { |
| 3056 | restart: |
| 3057 | raw_spin_unlock_irq(&pool->lock); |
| 3058 | |
| 3059 | /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ |
| 3060 | mod_timer(timer: &pool->mayday_timer, expires: jiffies + MAYDAY_INITIAL_TIMEOUT); |
| 3061 | |
| 3062 | while (true) { |
| 3063 | if (create_worker(pool) || !need_to_create_worker(pool)) |
| 3064 | break; |
| 3065 | |
| 3066 | schedule_timeout_interruptible(timeout: CREATE_COOLDOWN); |
| 3067 | |
| 3068 | if (!need_to_create_worker(pool)) |
| 3069 | break; |
| 3070 | } |
| 3071 | |
| 3072 | timer_delete_sync(timer: &pool->mayday_timer); |
| 3073 | raw_spin_lock_irq(&pool->lock); |
| 3074 | /* |
| 3075 | * This is necessary even after a new worker was just successfully |
| 3076 | * created as @pool->lock was dropped and the new worker might have |
| 3077 | * already become busy. |
| 3078 | */ |
| 3079 | if (need_to_create_worker(pool)) |
| 3080 | goto restart; |
| 3081 | } |
| 3082 | |
| 3083 | #ifdef CONFIG_PREEMPT_RT |
| 3084 | static void worker_lock_callback(struct worker_pool *pool) |
| 3085 | { |
| 3086 | spin_lock(&pool->cb_lock); |
| 3087 | } |
| 3088 | |
| 3089 | static void worker_unlock_callback(struct worker_pool *pool) |
| 3090 | { |
| 3091 | spin_unlock(&pool->cb_lock); |
| 3092 | } |
| 3093 | |
| 3094 | static void workqueue_callback_cancel_wait_running(struct worker_pool *pool) |
| 3095 | { |
| 3096 | spin_lock(&pool->cb_lock); |
| 3097 | spin_unlock(&pool->cb_lock); |
| 3098 | } |
| 3099 | |
| 3100 | #else |
| 3101 | |
| 3102 | static void worker_lock_callback(struct worker_pool *pool) { } |
| 3103 | static void worker_unlock_callback(struct worker_pool *pool) { } |
| 3104 | static void workqueue_callback_cancel_wait_running(struct worker_pool *pool) { } |
| 3105 | |
| 3106 | #endif |
| 3107 | |
| 3108 | /** |
| 3109 | * manage_workers - manage worker pool |
| 3110 | * @worker: self |
| 3111 | * |
| 3112 | * Assume the manager role and manage the worker pool @worker belongs |
| 3113 | * to. At any given time, there can be only zero or one manager per |
| 3114 | * pool. The exclusion is handled automatically by this function. |
| 3115 | * |
| 3116 | * The caller can safely start processing works on false return. On |
| 3117 | * true return, it's guaranteed that need_to_create_worker() is false |
| 3118 | * and may_start_working() is true. |
| 3119 | * |
| 3120 | * CONTEXT: |
| 3121 | * raw_spin_lock_irq(pool->lock) which may be released and regrabbed |
| 3122 | * multiple times. Does GFP_KERNEL allocations. |
| 3123 | * |
| 3124 | * Return: |
| 3125 | * %false if the pool doesn't need management and the caller can safely |
| 3126 | * start processing works, %true if management function was performed and |
| 3127 | * the conditions that the caller verified before calling the function may |
| 3128 | * no longer be true. |
| 3129 | */ |
| 3130 | static bool manage_workers(struct worker *worker) |
| 3131 | { |
| 3132 | struct worker_pool *pool = worker->pool; |
| 3133 | |
| 3134 | if (pool->flags & POOL_MANAGER_ACTIVE) |
| 3135 | return false; |
| 3136 | |
| 3137 | pool->flags |= POOL_MANAGER_ACTIVE; |
| 3138 | pool->manager = worker; |
| 3139 | |
| 3140 | maybe_create_worker(pool); |
| 3141 | |
| 3142 | pool->manager = NULL; |
| 3143 | pool->flags &= ~POOL_MANAGER_ACTIVE; |
| 3144 | rcuwait_wake_up(w: &manager_wait); |
| 3145 | return true; |
| 3146 | } |
| 3147 | |
| 3148 | /** |
| 3149 | * process_one_work - process single work |
| 3150 | * @worker: self |
| 3151 | * @work: work to process |
| 3152 | * |
| 3153 | * Process @work. This function contains all the logics necessary to |
| 3154 | * process a single work including synchronization against and |
| 3155 | * interaction with other workers on the same cpu, queueing and |
| 3156 | * flushing. As long as context requirement is met, any worker can |
| 3157 | * call this function to process a work. |
| 3158 | * |
| 3159 | * CONTEXT: |
| 3160 | * raw_spin_lock_irq(pool->lock) which is released and regrabbed. |
| 3161 | */ |
| 3162 | static void process_one_work(struct worker *worker, struct work_struct *work) |
| 3163 | __releases(&pool->lock) |
| 3164 | __acquires(&pool->lock) |
| 3165 | { |
| 3166 | struct pool_workqueue *pwq = get_work_pwq(work); |
| 3167 | struct worker_pool *pool = worker->pool; |
| 3168 | unsigned long work_data; |
| 3169 | int lockdep_start_depth, rcu_start_depth; |
| 3170 | bool bh_draining = pool->flags & POOL_BH_DRAINING; |
| 3171 | #ifdef CONFIG_LOCKDEP |
| 3172 | /* |
| 3173 | * It is permissible to free the struct work_struct from |
| 3174 | * inside the function that is called from it, this we need to |
| 3175 | * take into account for lockdep too. To avoid bogus "held |
| 3176 | * lock freed" warnings as well as problems when looking into |
| 3177 | * work->lockdep_map, make a copy and use that here. |
| 3178 | */ |
| 3179 | struct lockdep_map lockdep_map; |
| 3180 | |
| 3181 | lockdep_copy_map(&lockdep_map, &work->lockdep_map); |
| 3182 | #endif |
| 3183 | /* ensure we're on the correct CPU */ |
| 3184 | WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && |
| 3185 | raw_smp_processor_id() != pool->cpu); |
| 3186 | |
| 3187 | /* claim and dequeue */ |
| 3188 | debug_work_deactivate(work); |
| 3189 | hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); |
| 3190 | worker->current_work = work; |
| 3191 | worker->current_func = work->func; |
| 3192 | worker->current_pwq = pwq; |
| 3193 | if (worker->task) |
| 3194 | worker->current_at = worker->task->se.sum_exec_runtime; |
| 3195 | work_data = *work_data_bits(work); |
| 3196 | worker->current_color = get_work_color(work_data); |
| 3197 | |
| 3198 | /* |
| 3199 | * Record wq name for cmdline and debug reporting, may get |
| 3200 | * overridden through set_worker_desc(). |
| 3201 | */ |
| 3202 | strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); |
| 3203 | |
| 3204 | list_del_init(entry: &work->entry); |
| 3205 | |
| 3206 | /* |
| 3207 | * CPU intensive works don't participate in concurrency management. |
| 3208 | * They're the scheduler's responsibility. This takes @worker out |
| 3209 | * of concurrency management and the next code block will chain |
| 3210 | * execution of the pending work items. |
| 3211 | */ |
| 3212 | if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) |
| 3213 | worker_set_flags(worker, flags: WORKER_CPU_INTENSIVE); |
| 3214 | |
| 3215 | /* |
| 3216 | * Kick @pool if necessary. It's always noop for per-cpu worker pools |
| 3217 | * since nr_running would always be >= 1 at this point. This is used to |
| 3218 | * chain execution of the pending work items for WORKER_NOT_RUNNING |
| 3219 | * workers such as the UNBOUND and CPU_INTENSIVE ones. |
| 3220 | */ |
| 3221 | kick_pool(pool); |
| 3222 | |
| 3223 | /* |
| 3224 | * Record the last pool and clear PENDING which should be the last |
| 3225 | * update to @work. Also, do this inside @pool->lock so that |
| 3226 | * PENDING and queued state changes happen together while IRQ is |
| 3227 | * disabled. |
| 3228 | */ |
| 3229 | set_work_pool_and_clear_pending(work, pool_id: pool->id, flags: pool_offq_flags(pool)); |
| 3230 | |
| 3231 | pwq->stats[PWQ_STAT_STARTED]++; |
| 3232 | raw_spin_unlock_irq(&pool->lock); |
| 3233 | |
| 3234 | rcu_start_depth = rcu_preempt_depth(); |
| 3235 | lockdep_start_depth = lockdep_depth(current); |
| 3236 | /* see drain_dead_softirq_workfn() */ |
| 3237 | if (!bh_draining) |
| 3238 | lock_map_acquire(pwq->wq->lockdep_map); |
| 3239 | lock_map_acquire(&lockdep_map); |
| 3240 | /* |
| 3241 | * Strictly speaking we should mark the invariant state without holding |
| 3242 | * any locks, that is, before these two lock_map_acquire()'s. |
| 3243 | * |
| 3244 | * However, that would result in: |
| 3245 | * |
| 3246 | * A(W1) |
| 3247 | * WFC(C) |
| 3248 | * A(W1) |
| 3249 | * C(C) |
| 3250 | * |
| 3251 | * Which would create W1->C->W1 dependencies, even though there is no |
| 3252 | * actual deadlock possible. There are two solutions, using a |
| 3253 | * read-recursive acquire on the work(queue) 'locks', but this will then |
| 3254 | * hit the lockdep limitation on recursive locks, or simply discard |
| 3255 | * these locks. |
| 3256 | * |
| 3257 | * AFAICT there is no possible deadlock scenario between the |
| 3258 | * flush_work() and complete() primitives (except for single-threaded |
| 3259 | * workqueues), so hiding them isn't a problem. |
| 3260 | */ |
| 3261 | lockdep_invariant_state(force: true); |
| 3262 | trace_workqueue_execute_start(work); |
| 3263 | worker->current_func(work); |
| 3264 | /* |
| 3265 | * While we must be careful to not use "work" after this, the trace |
| 3266 | * point will only record its address. |
| 3267 | */ |
| 3268 | trace_workqueue_execute_end(work, function: worker->current_func); |
| 3269 | |
| 3270 | lock_map_release(&lockdep_map); |
| 3271 | if (!bh_draining) |
| 3272 | lock_map_release(pwq->wq->lockdep_map); |
| 3273 | |
| 3274 | if (unlikely((worker->task && in_atomic()) || |
| 3275 | lockdep_depth(current) != lockdep_start_depth || |
| 3276 | rcu_preempt_depth() != rcu_start_depth)) { |
| 3277 | pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" |
| 3278 | " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n" , |
| 3279 | current->comm, task_pid_nr(current), preempt_count(), |
| 3280 | lockdep_start_depth, lockdep_depth(current), |
| 3281 | rcu_start_depth, rcu_preempt_depth(), |
| 3282 | worker->current_func); |
| 3283 | debug_show_held_locks(current); |
| 3284 | dump_stack(); |
| 3285 | } |
| 3286 | |
| 3287 | /* |
| 3288 | * The following prevents a kworker from hogging CPU on !PREEMPTION |
| 3289 | * kernels, where a requeueing work item waiting for something to |
| 3290 | * happen could deadlock with stop_machine as such work item could |
| 3291 | * indefinitely requeue itself while all other CPUs are trapped in |
| 3292 | * stop_machine. At the same time, report a quiescent RCU state so |
| 3293 | * the same condition doesn't freeze RCU. |
| 3294 | */ |
| 3295 | if (worker->task) |
| 3296 | cond_resched(); |
| 3297 | |
| 3298 | raw_spin_lock_irq(&pool->lock); |
| 3299 | |
| 3300 | pwq->stats[PWQ_STAT_COMPLETED]++; |
| 3301 | |
| 3302 | /* |
| 3303 | * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked |
| 3304 | * CPU intensive by wq_worker_tick() if @work hogged CPU longer than |
| 3305 | * wq_cpu_intensive_thresh_us. Clear it. |
| 3306 | */ |
| 3307 | worker_clr_flags(worker, flags: WORKER_CPU_INTENSIVE); |
| 3308 | |
| 3309 | /* tag the worker for identification in schedule() */ |
| 3310 | worker->last_func = worker->current_func; |
| 3311 | |
| 3312 | /* we're done with it, release */ |
| 3313 | hash_del(node: &worker->hentry); |
| 3314 | worker->current_work = NULL; |
| 3315 | worker->current_func = NULL; |
| 3316 | worker->current_pwq = NULL; |
| 3317 | worker->current_color = INT_MAX; |
| 3318 | |
| 3319 | /* must be the last step, see the function comment */ |
| 3320 | pwq_dec_nr_in_flight(pwq, work_data); |
| 3321 | } |
| 3322 | |
| 3323 | /** |
| 3324 | * process_scheduled_works - process scheduled works |
| 3325 | * @worker: self |
| 3326 | * |
| 3327 | * Process all scheduled works. Please note that the scheduled list |
| 3328 | * may change while processing a work, so this function repeatedly |
| 3329 | * fetches a work from the top and executes it. |
| 3330 | * |
| 3331 | * CONTEXT: |
| 3332 | * raw_spin_lock_irq(pool->lock) which may be released and regrabbed |
| 3333 | * multiple times. |
| 3334 | */ |
| 3335 | static void process_scheduled_works(struct worker *worker) |
| 3336 | { |
| 3337 | struct work_struct *work; |
| 3338 | bool first = true; |
| 3339 | |
| 3340 | while ((work = list_first_entry_or_null(&worker->scheduled, |
| 3341 | struct work_struct, entry))) { |
| 3342 | if (first) { |
| 3343 | worker->pool->watchdog_ts = jiffies; |
| 3344 | first = false; |
| 3345 | } |
| 3346 | process_one_work(worker, work); |
| 3347 | } |
| 3348 | } |
| 3349 | |
| 3350 | static void set_pf_worker(bool val) |
| 3351 | { |
| 3352 | mutex_lock(lock: &wq_pool_attach_mutex); |
| 3353 | if (val) |
| 3354 | current->flags |= PF_WQ_WORKER; |
| 3355 | else |
| 3356 | current->flags &= ~PF_WQ_WORKER; |
| 3357 | mutex_unlock(lock: &wq_pool_attach_mutex); |
| 3358 | } |
| 3359 | |
| 3360 | /** |
| 3361 | * worker_thread - the worker thread function |
| 3362 | * @__worker: self |
| 3363 | * |
| 3364 | * The worker thread function. All workers belong to a worker_pool - |
| 3365 | * either a per-cpu one or dynamic unbound one. These workers process all |
| 3366 | * work items regardless of their specific target workqueue. The only |
| 3367 | * exception is work items which belong to workqueues with a rescuer which |
| 3368 | * will be explained in rescuer_thread(). |
| 3369 | * |
| 3370 | * Return: 0 |
| 3371 | */ |
| 3372 | static int worker_thread(void *__worker) |
| 3373 | { |
| 3374 | struct worker *worker = __worker; |
| 3375 | struct worker_pool *pool = worker->pool; |
| 3376 | |
| 3377 | /* tell the scheduler that this is a workqueue worker */ |
| 3378 | set_pf_worker(true); |
| 3379 | woke_up: |
| 3380 | raw_spin_lock_irq(&pool->lock); |
| 3381 | |
| 3382 | /* am I supposed to die? */ |
| 3383 | if (unlikely(worker->flags & WORKER_DIE)) { |
| 3384 | raw_spin_unlock_irq(&pool->lock); |
| 3385 | set_pf_worker(false); |
| 3386 | /* |
| 3387 | * The worker is dead and PF_WQ_WORKER is cleared, worker->pool |
| 3388 | * shouldn't be accessed, reset it to NULL in case otherwise. |
| 3389 | */ |
| 3390 | worker->pool = NULL; |
| 3391 | ida_free(&pool->worker_ida, id: worker->id); |
| 3392 | return 0; |
| 3393 | } |
| 3394 | |
| 3395 | worker_leave_idle(worker); |
| 3396 | recheck: |
| 3397 | /* no more worker necessary? */ |
| 3398 | if (!need_more_worker(pool)) |
| 3399 | goto sleep; |
| 3400 | |
| 3401 | /* do we need to manage? */ |
| 3402 | if (unlikely(!may_start_working(pool)) && manage_workers(worker)) |
| 3403 | goto recheck; |
| 3404 | |
| 3405 | /* |
| 3406 | * ->scheduled list can only be filled while a worker is |
| 3407 | * preparing to process a work or actually processing it. |
| 3408 | * Make sure nobody diddled with it while I was sleeping. |
| 3409 | */ |
| 3410 | WARN_ON_ONCE(!list_empty(&worker->scheduled)); |
| 3411 | |
| 3412 | /* |
| 3413 | * Finish PREP stage. We're guaranteed to have at least one idle |
| 3414 | * worker or that someone else has already assumed the manager |
| 3415 | * role. This is where @worker starts participating in concurrency |
| 3416 | * management if applicable and concurrency management is restored |
| 3417 | * after being rebound. See rebind_workers() for details. |
| 3418 | */ |
| 3419 | worker_clr_flags(worker, flags: WORKER_PREP | WORKER_REBOUND); |
| 3420 | |
| 3421 | do { |
| 3422 | struct work_struct *work = |
| 3423 | list_first_entry(&pool->worklist, |
| 3424 | struct work_struct, entry); |
| 3425 | |
| 3426 | if (assign_work(work, worker, NULL)) |
| 3427 | process_scheduled_works(worker); |
| 3428 | } while (keep_working(pool)); |
| 3429 | |
| 3430 | worker_set_flags(worker, flags: WORKER_PREP); |
| 3431 | sleep: |
| 3432 | /* |
| 3433 | * pool->lock is held and there's no work to process and no need to |
| 3434 | * manage, sleep. Workers are woken up only while holding |
| 3435 | * pool->lock or from local cpu, so setting the current state |
| 3436 | * before releasing pool->lock is enough to prevent losing any |
| 3437 | * event. |
| 3438 | */ |
| 3439 | worker_enter_idle(worker); |
| 3440 | __set_current_state(TASK_IDLE); |
| 3441 | raw_spin_unlock_irq(&pool->lock); |
| 3442 | schedule(); |
| 3443 | goto woke_up; |
| 3444 | } |
| 3445 | |
| 3446 | /** |
| 3447 | * rescuer_thread - the rescuer thread function |
| 3448 | * @__rescuer: self |
| 3449 | * |
| 3450 | * Workqueue rescuer thread function. There's one rescuer for each |
| 3451 | * workqueue which has WQ_MEM_RECLAIM set. |
| 3452 | * |
| 3453 | * Regular work processing on a pool may block trying to create a new |
| 3454 | * worker which uses GFP_KERNEL allocation which has slight chance of |
| 3455 | * developing into deadlock if some works currently on the same queue |
| 3456 | * need to be processed to satisfy the GFP_KERNEL allocation. This is |
| 3457 | * the problem rescuer solves. |
| 3458 | * |
| 3459 | * When such condition is possible, the pool summons rescuers of all |
| 3460 | * workqueues which have works queued on the pool and let them process |
| 3461 | * those works so that forward progress can be guaranteed. |
| 3462 | * |
| 3463 | * This should happen rarely. |
| 3464 | * |
| 3465 | * Return: 0 |
| 3466 | */ |
| 3467 | static int rescuer_thread(void *__rescuer) |
| 3468 | { |
| 3469 | struct worker *rescuer = __rescuer; |
| 3470 | struct workqueue_struct *wq = rescuer->rescue_wq; |
| 3471 | bool should_stop; |
| 3472 | |
| 3473 | set_user_nice(current, nice: RESCUER_NICE_LEVEL); |
| 3474 | |
| 3475 | /* |
| 3476 | * Mark rescuer as worker too. As WORKER_PREP is never cleared, it |
| 3477 | * doesn't participate in concurrency management. |
| 3478 | */ |
| 3479 | set_pf_worker(true); |
| 3480 | repeat: |
| 3481 | set_current_state(TASK_IDLE); |
| 3482 | |
| 3483 | /* |
| 3484 | * By the time the rescuer is requested to stop, the workqueue |
| 3485 | * shouldn't have any work pending, but @wq->maydays may still have |
| 3486 | * pwq(s) queued. This can happen by non-rescuer workers consuming |
| 3487 | * all the work items before the rescuer got to them. Go through |
| 3488 | * @wq->maydays processing before acting on should_stop so that the |
| 3489 | * list is always empty on exit. |
| 3490 | */ |
| 3491 | should_stop = kthread_should_stop(); |
| 3492 | |
| 3493 | /* see whether any pwq is asking for help */ |
| 3494 | raw_spin_lock_irq(&wq_mayday_lock); |
| 3495 | |
| 3496 | while (!list_empty(head: &wq->maydays)) { |
| 3497 | struct pool_workqueue *pwq = list_first_entry(&wq->maydays, |
| 3498 | struct pool_workqueue, mayday_node); |
| 3499 | struct worker_pool *pool = pwq->pool; |
| 3500 | struct work_struct *work, *n; |
| 3501 | |
| 3502 | __set_current_state(TASK_RUNNING); |
| 3503 | list_del_init(entry: &pwq->mayday_node); |
| 3504 | |
| 3505 | raw_spin_unlock_irq(&wq_mayday_lock); |
| 3506 | |
| 3507 | worker_attach_to_pool(worker: rescuer, pool); |
| 3508 | |
| 3509 | raw_spin_lock_irq(&pool->lock); |
| 3510 | |
| 3511 | /* |
| 3512 | * Slurp in all works issued via this workqueue and |
| 3513 | * process'em. |
| 3514 | */ |
| 3515 | WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); |
| 3516 | list_for_each_entry_safe(work, n, &pool->worklist, entry) { |
| 3517 | if (get_work_pwq(work) == pwq && |
| 3518 | assign_work(work, worker: rescuer, nextp: &n)) |
| 3519 | pwq->stats[PWQ_STAT_RESCUED]++; |
| 3520 | } |
| 3521 | |
| 3522 | if (!list_empty(head: &rescuer->scheduled)) { |
| 3523 | process_scheduled_works(worker: rescuer); |
| 3524 | |
| 3525 | /* |
| 3526 | * The above execution of rescued work items could |
| 3527 | * have created more to rescue through |
| 3528 | * pwq_activate_first_inactive() or chained |
| 3529 | * queueing. Let's put @pwq back on mayday list so |
| 3530 | * that such back-to-back work items, which may be |
| 3531 | * being used to relieve memory pressure, don't |
| 3532 | * incur MAYDAY_INTERVAL delay inbetween. |
| 3533 | */ |
| 3534 | if (pwq->nr_active && need_to_create_worker(pool)) { |
| 3535 | raw_spin_lock(&wq_mayday_lock); |
| 3536 | /* |
| 3537 | * Queue iff we aren't racing destruction |
| 3538 | * and somebody else hasn't queued it already. |
| 3539 | */ |
| 3540 | if (wq->rescuer && list_empty(head: &pwq->mayday_node)) { |
| 3541 | get_pwq(pwq); |
| 3542 | list_add_tail(new: &pwq->mayday_node, head: &wq->maydays); |
| 3543 | } |
| 3544 | raw_spin_unlock(&wq_mayday_lock); |
| 3545 | } |
| 3546 | } |
| 3547 | |
| 3548 | /* |
| 3549 | * Leave this pool. Notify regular workers; otherwise, we end up |
| 3550 | * with 0 concurrency and stalling the execution. |
| 3551 | */ |
| 3552 | kick_pool(pool); |
| 3553 | |
| 3554 | raw_spin_unlock_irq(&pool->lock); |
| 3555 | |
| 3556 | worker_detach_from_pool(worker: rescuer); |
| 3557 | |
| 3558 | /* |
| 3559 | * Put the reference grabbed by send_mayday(). @pool might |
| 3560 | * go away any time after it. |
| 3561 | */ |
| 3562 | put_pwq_unlocked(pwq); |
| 3563 | |
| 3564 | raw_spin_lock_irq(&wq_mayday_lock); |
| 3565 | } |
| 3566 | |
| 3567 | raw_spin_unlock_irq(&wq_mayday_lock); |
| 3568 | |
| 3569 | if (should_stop) { |
| 3570 | __set_current_state(TASK_RUNNING); |
| 3571 | set_pf_worker(false); |
| 3572 | return 0; |
| 3573 | } |
| 3574 | |
| 3575 | /* rescuers should never participate in concurrency management */ |
| 3576 | WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); |
| 3577 | schedule(); |
| 3578 | goto repeat; |
| 3579 | } |
| 3580 | |
| 3581 | static void bh_worker(struct worker *worker) |
| 3582 | { |
| 3583 | struct worker_pool *pool = worker->pool; |
| 3584 | int nr_restarts = BH_WORKER_RESTARTS; |
| 3585 | unsigned long end = jiffies + BH_WORKER_JIFFIES; |
| 3586 | |
| 3587 | worker_lock_callback(pool); |
| 3588 | raw_spin_lock_irq(&pool->lock); |
| 3589 | worker_leave_idle(worker); |
| 3590 | |
| 3591 | /* |
| 3592 | * This function follows the structure of worker_thread(). See there for |
| 3593 | * explanations on each step. |
| 3594 | */ |
| 3595 | if (!need_more_worker(pool)) |
| 3596 | goto done; |
| 3597 | |
| 3598 | WARN_ON_ONCE(!list_empty(&worker->scheduled)); |
| 3599 | worker_clr_flags(worker, flags: WORKER_PREP | WORKER_REBOUND); |
| 3600 | |
| 3601 | do { |
| 3602 | struct work_struct *work = |
| 3603 | list_first_entry(&pool->worklist, |
| 3604 | struct work_struct, entry); |
| 3605 | |
| 3606 | if (assign_work(work, worker, NULL)) |
| 3607 | process_scheduled_works(worker); |
| 3608 | } while (keep_working(pool) && |
| 3609 | --nr_restarts && time_before(jiffies, end)); |
| 3610 | |
| 3611 | worker_set_flags(worker, flags: WORKER_PREP); |
| 3612 | done: |
| 3613 | worker_enter_idle(worker); |
| 3614 | kick_pool(pool); |
| 3615 | raw_spin_unlock_irq(&pool->lock); |
| 3616 | worker_unlock_callback(pool); |
| 3617 | } |
| 3618 | |
| 3619 | /* |
| 3620 | * TODO: Convert all tasklet users to workqueue and use softirq directly. |
| 3621 | * |
| 3622 | * This is currently called from tasklet[_hi]action() and thus is also called |
| 3623 | * whenever there are tasklets to run. Let's do an early exit if there's nothing |
| 3624 | * queued. Once conversion from tasklet is complete, the need_more_worker() test |
| 3625 | * can be dropped. |
| 3626 | * |
| 3627 | * After full conversion, we'll add worker->softirq_action, directly use the |
| 3628 | * softirq action and obtain the worker pointer from the softirq_action pointer. |
| 3629 | */ |
| 3630 | void workqueue_softirq_action(bool highpri) |
| 3631 | { |
| 3632 | struct worker_pool *pool = |
| 3633 | &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; |
| 3634 | if (need_more_worker(pool)) |
| 3635 | bh_worker(list_first_entry(&pool->workers, struct worker, node)); |
| 3636 | } |
| 3637 | |
| 3638 | struct wq_drain_dead_softirq_work { |
| 3639 | struct work_struct work; |
| 3640 | struct worker_pool *pool; |
| 3641 | struct completion done; |
| 3642 | }; |
| 3643 | |
| 3644 | static void drain_dead_softirq_workfn(struct work_struct *work) |
| 3645 | { |
| 3646 | struct wq_drain_dead_softirq_work *dead_work = |
| 3647 | container_of(work, struct wq_drain_dead_softirq_work, work); |
| 3648 | struct worker_pool *pool = dead_work->pool; |
| 3649 | bool repeat; |
| 3650 | |
| 3651 | /* |
| 3652 | * @pool's CPU is dead and we want to execute its still pending work |
| 3653 | * items from this BH work item which is running on a different CPU. As |
| 3654 | * its CPU is dead, @pool can't be kicked and, as work execution path |
| 3655 | * will be nested, a lockdep annotation needs to be suppressed. Mark |
| 3656 | * @pool with %POOL_BH_DRAINING for the special treatments. |
| 3657 | */ |
| 3658 | raw_spin_lock_irq(&pool->lock); |
| 3659 | pool->flags |= POOL_BH_DRAINING; |
| 3660 | raw_spin_unlock_irq(&pool->lock); |
| 3661 | |
| 3662 | bh_worker(list_first_entry(&pool->workers, struct worker, node)); |
| 3663 | |
| 3664 | raw_spin_lock_irq(&pool->lock); |
| 3665 | pool->flags &= ~POOL_BH_DRAINING; |
| 3666 | repeat = need_more_worker(pool); |
| 3667 | raw_spin_unlock_irq(&pool->lock); |
| 3668 | |
| 3669 | /* |
| 3670 | * bh_worker() might hit consecutive execution limit and bail. If there |
| 3671 | * still are pending work items, reschedule self and return so that we |
| 3672 | * don't hog this CPU's BH. |
| 3673 | */ |
| 3674 | if (repeat) { |
| 3675 | if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) |
| 3676 | queue_work(wq: system_bh_highpri_wq, work); |
| 3677 | else |
| 3678 | queue_work(wq: system_bh_wq, work); |
| 3679 | } else { |
| 3680 | complete(&dead_work->done); |
| 3681 | } |
| 3682 | } |
| 3683 | |
| 3684 | /* |
| 3685 | * @cpu is dead. Drain the remaining BH work items on the current CPU. It's |
| 3686 | * possible to allocate dead_work per CPU and avoid flushing. However, then we |
| 3687 | * have to worry about draining overlapping with CPU coming back online or |
| 3688 | * nesting (one CPU's dead_work queued on another CPU which is also dead and so |
| 3689 | * on). Let's keep it simple and drain them synchronously. These are BH work |
| 3690 | * items which shouldn't be requeued on the same pool. Shouldn't take long. |
| 3691 | */ |
| 3692 | void workqueue_softirq_dead(unsigned int cpu) |
| 3693 | { |
| 3694 | int i; |
| 3695 | |
| 3696 | for (i = 0; i < NR_STD_WORKER_POOLS; i++) { |
| 3697 | struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; |
| 3698 | struct wq_drain_dead_softirq_work dead_work; |
| 3699 | |
| 3700 | if (!need_more_worker(pool)) |
| 3701 | continue; |
| 3702 | |
| 3703 | INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); |
| 3704 | dead_work.pool = pool; |
| 3705 | init_completion(x: &dead_work.done); |
| 3706 | |
| 3707 | if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) |
| 3708 | queue_work(wq: system_bh_highpri_wq, work: &dead_work.work); |
| 3709 | else |
| 3710 | queue_work(wq: system_bh_wq, work: &dead_work.work); |
| 3711 | |
| 3712 | wait_for_completion(&dead_work.done); |
| 3713 | destroy_work_on_stack(work: &dead_work.work); |
| 3714 | } |
| 3715 | } |
| 3716 | |
| 3717 | /** |
| 3718 | * check_flush_dependency - check for flush dependency sanity |
| 3719 | * @target_wq: workqueue being flushed |
| 3720 | * @target_work: work item being flushed (NULL for workqueue flushes) |
| 3721 | * @from_cancel: are we called from the work cancel path |
| 3722 | * |
| 3723 | * %current is trying to flush the whole @target_wq or @target_work on it. |
| 3724 | * If this is not the cancel path (which implies work being flushed is either |
| 3725 | * already running, or will not be at all), check if @target_wq doesn't have |
| 3726 | * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running |
| 3727 | * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward- |
| 3728 | * progress guarantee leading to a deadlock. |
| 3729 | */ |
| 3730 | static void check_flush_dependency(struct workqueue_struct *target_wq, |
| 3731 | struct work_struct *target_work, |
| 3732 | bool from_cancel) |
| 3733 | { |
| 3734 | work_func_t target_func; |
| 3735 | struct worker *worker; |
| 3736 | |
| 3737 | if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM) |
| 3738 | return; |
| 3739 | |
| 3740 | worker = current_wq_worker(); |
| 3741 | target_func = target_work ? target_work->func : NULL; |
| 3742 | |
| 3743 | WARN_ONCE(current->flags & PF_MEMALLOC, |
| 3744 | "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps" , |
| 3745 | current->pid, current->comm, target_wq->name, target_func); |
| 3746 | WARN_ONCE(worker && ((worker->current_pwq->wq->flags & |
| 3747 | (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), |
| 3748 | "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps" , |
| 3749 | worker->current_pwq->wq->name, worker->current_func, |
| 3750 | target_wq->name, target_func); |
| 3751 | } |
| 3752 | |
| 3753 | struct wq_barrier { |
| 3754 | struct work_struct work; |
| 3755 | struct completion done; |
| 3756 | struct task_struct *task; /* purely informational */ |
| 3757 | }; |
| 3758 | |
| 3759 | static void wq_barrier_func(struct work_struct *work) |
| 3760 | { |
| 3761 | struct wq_barrier *barr = container_of(work, struct wq_barrier, work); |
| 3762 | complete(&barr->done); |
| 3763 | } |
| 3764 | |
| 3765 | /** |
| 3766 | * insert_wq_barrier - insert a barrier work |
| 3767 | * @pwq: pwq to insert barrier into |
| 3768 | * @barr: wq_barrier to insert |
| 3769 | * @target: target work to attach @barr to |
| 3770 | * @worker: worker currently executing @target, NULL if @target is not executing |
| 3771 | * |
| 3772 | * @barr is linked to @target such that @barr is completed only after |
| 3773 | * @target finishes execution. Please note that the ordering |
| 3774 | * guarantee is observed only with respect to @target and on the local |
| 3775 | * cpu. |
| 3776 | * |
| 3777 | * Currently, a queued barrier can't be canceled. This is because |
| 3778 | * try_to_grab_pending() can't determine whether the work to be |
| 3779 | * grabbed is at the head of the queue and thus can't clear LINKED |
| 3780 | * flag of the previous work while there must be a valid next work |
| 3781 | * after a work with LINKED flag set. |
| 3782 | * |
| 3783 | * Note that when @worker is non-NULL, @target may be modified |
| 3784 | * underneath us, so we can't reliably determine pwq from @target. |
| 3785 | * |
| 3786 | * CONTEXT: |
| 3787 | * raw_spin_lock_irq(pool->lock). |
| 3788 | */ |
| 3789 | static void insert_wq_barrier(struct pool_workqueue *pwq, |
| 3790 | struct wq_barrier *barr, |
| 3791 | struct work_struct *target, struct worker *worker) |
| 3792 | { |
| 3793 | static __maybe_unused struct lock_class_key bh_key, thr_key; |
| 3794 | unsigned int work_flags = 0; |
| 3795 | unsigned int work_color; |
| 3796 | struct list_head *head; |
| 3797 | |
| 3798 | /* |
| 3799 | * debugobject calls are safe here even with pool->lock locked |
| 3800 | * as we know for sure that this will not trigger any of the |
| 3801 | * checks and call back into the fixup functions where we |
| 3802 | * might deadlock. |
| 3803 | * |
| 3804 | * BH and threaded workqueues need separate lockdep keys to avoid |
| 3805 | * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} |
| 3806 | * usage". |
| 3807 | */ |
| 3808 | INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, |
| 3809 | (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); |
| 3810 | __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); |
| 3811 | |
| 3812 | init_completion_map(&barr->done, &target->lockdep_map); |
| 3813 | |
| 3814 | barr->task = current; |
| 3815 | |
| 3816 | /* The barrier work item does not participate in nr_active. */ |
| 3817 | work_flags |= WORK_STRUCT_INACTIVE; |
| 3818 | |
| 3819 | /* |
| 3820 | * If @target is currently being executed, schedule the |
| 3821 | * barrier to the worker; otherwise, put it after @target. |
| 3822 | */ |
| 3823 | if (worker) { |
| 3824 | head = worker->scheduled.next; |
| 3825 | work_color = worker->current_color; |
| 3826 | } else { |
| 3827 | unsigned long *bits = work_data_bits(target); |
| 3828 | |
| 3829 | head = target->entry.next; |
| 3830 | /* there can already be other linked works, inherit and set */ |
| 3831 | work_flags |= *bits & WORK_STRUCT_LINKED; |
| 3832 | work_color = get_work_color(work_data: *bits); |
| 3833 | __set_bit(WORK_STRUCT_LINKED_BIT, bits); |
| 3834 | } |
| 3835 | |
| 3836 | pwq->nr_in_flight[work_color]++; |
| 3837 | work_flags |= work_color_to_flags(color: work_color); |
| 3838 | |
| 3839 | insert_work(pwq, work: &barr->work, head, extra_flags: work_flags); |
| 3840 | } |
| 3841 | |
| 3842 | /** |
| 3843 | * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing |
| 3844 | * @wq: workqueue being flushed |
| 3845 | * @flush_color: new flush color, < 0 for no-op |
| 3846 | * @work_color: new work color, < 0 for no-op |
| 3847 | * |
| 3848 | * Prepare pwqs for workqueue flushing. |
| 3849 | * |
| 3850 | * If @flush_color is non-negative, flush_color on all pwqs should be |
| 3851 | * -1. If no pwq has in-flight commands at the specified color, all |
| 3852 | * pwq->flush_color's stay at -1 and %false is returned. If any pwq |
| 3853 | * has in flight commands, its pwq->flush_color is set to |
| 3854 | * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq |
| 3855 | * wakeup logic is armed and %true is returned. |
| 3856 | * |
| 3857 | * The caller should have initialized @wq->first_flusher prior to |
| 3858 | * calling this function with non-negative @flush_color. If |
| 3859 | * @flush_color is negative, no flush color update is done and %false |
| 3860 | * is returned. |
| 3861 | * |
| 3862 | * If @work_color is non-negative, all pwqs should have the same |
| 3863 | * work_color which is previous to @work_color and all will be |
| 3864 | * advanced to @work_color. |
| 3865 | * |
| 3866 | * CONTEXT: |
| 3867 | * mutex_lock(wq->mutex). |
| 3868 | * |
| 3869 | * Return: |
| 3870 | * %true if @flush_color >= 0 and there's something to flush. %false |
| 3871 | * otherwise. |
| 3872 | */ |
| 3873 | static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, |
| 3874 | int flush_color, int work_color) |
| 3875 | { |
| 3876 | bool wait = false; |
| 3877 | struct pool_workqueue *pwq; |
| 3878 | struct worker_pool *current_pool = NULL; |
| 3879 | |
| 3880 | if (flush_color >= 0) { |
| 3881 | WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); |
| 3882 | atomic_set(v: &wq->nr_pwqs_to_flush, i: 1); |
| 3883 | } |
| 3884 | |
| 3885 | /* |
| 3886 | * For unbound workqueue, pwqs will map to only a few pools. |
| 3887 | * Most of the time, pwqs within the same pool will be linked |
| 3888 | * sequentially to wq->pwqs by cpu index. So in the majority |
| 3889 | * of pwq iters, the pool is the same, only doing lock/unlock |
| 3890 | * if the pool has changed. This can largely reduce expensive |
| 3891 | * lock operations. |
| 3892 | */ |
| 3893 | for_each_pwq(pwq, wq) { |
| 3894 | if (current_pool != pwq->pool) { |
| 3895 | if (likely(current_pool)) |
| 3896 | raw_spin_unlock_irq(¤t_pool->lock); |
| 3897 | current_pool = pwq->pool; |
| 3898 | raw_spin_lock_irq(¤t_pool->lock); |
| 3899 | } |
| 3900 | |
| 3901 | if (flush_color >= 0) { |
| 3902 | WARN_ON_ONCE(pwq->flush_color != -1); |
| 3903 | |
| 3904 | if (pwq->nr_in_flight[flush_color]) { |
| 3905 | pwq->flush_color = flush_color; |
| 3906 | atomic_inc(v: &wq->nr_pwqs_to_flush); |
| 3907 | wait = true; |
| 3908 | } |
| 3909 | } |
| 3910 | |
| 3911 | if (work_color >= 0) { |
| 3912 | WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); |
| 3913 | pwq->work_color = work_color; |
| 3914 | } |
| 3915 | |
| 3916 | } |
| 3917 | |
| 3918 | if (current_pool) |
| 3919 | raw_spin_unlock_irq(¤t_pool->lock); |
| 3920 | |
| 3921 | if (flush_color >= 0 && atomic_dec_and_test(v: &wq->nr_pwqs_to_flush)) |
| 3922 | complete(&wq->first_flusher->done); |
| 3923 | |
| 3924 | return wait; |
| 3925 | } |
| 3926 | |
| 3927 | static void touch_wq_lockdep_map(struct workqueue_struct *wq) |
| 3928 | { |
| 3929 | #ifdef CONFIG_LOCKDEP |
| 3930 | if (unlikely(!wq->lockdep_map)) |
| 3931 | return; |
| 3932 | |
| 3933 | if (wq->flags & WQ_BH) |
| 3934 | local_bh_disable(); |
| 3935 | |
| 3936 | lock_map_acquire(wq->lockdep_map); |
| 3937 | lock_map_release(wq->lockdep_map); |
| 3938 | |
| 3939 | if (wq->flags & WQ_BH) |
| 3940 | local_bh_enable(); |
| 3941 | #endif |
| 3942 | } |
| 3943 | |
| 3944 | static void touch_work_lockdep_map(struct work_struct *work, |
| 3945 | struct workqueue_struct *wq) |
| 3946 | { |
| 3947 | #ifdef CONFIG_LOCKDEP |
| 3948 | if (wq->flags & WQ_BH) |
| 3949 | local_bh_disable(); |
| 3950 | |
| 3951 | lock_map_acquire(&work->lockdep_map); |
| 3952 | lock_map_release(&work->lockdep_map); |
| 3953 | |
| 3954 | if (wq->flags & WQ_BH) |
| 3955 | local_bh_enable(); |
| 3956 | #endif |
| 3957 | } |
| 3958 | |
| 3959 | /** |
| 3960 | * __flush_workqueue - ensure that any scheduled work has run to completion. |
| 3961 | * @wq: workqueue to flush |
| 3962 | * |
| 3963 | * This function sleeps until all work items which were queued on entry |
| 3964 | * have finished execution, but it is not livelocked by new incoming ones. |
| 3965 | */ |
| 3966 | void __flush_workqueue(struct workqueue_struct *wq) |
| 3967 | { |
| 3968 | struct wq_flusher this_flusher = { |
| 3969 | .list = LIST_HEAD_INIT(this_flusher.list), |
| 3970 | .flush_color = -1, |
| 3971 | .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)), |
| 3972 | }; |
| 3973 | int next_color; |
| 3974 | |
| 3975 | if (WARN_ON(!wq_online)) |
| 3976 | return; |
| 3977 | |
| 3978 | touch_wq_lockdep_map(wq); |
| 3979 | |
| 3980 | mutex_lock(lock: &wq->mutex); |
| 3981 | |
| 3982 | /* |
| 3983 | * Start-to-wait phase |
| 3984 | */ |
| 3985 | next_color = work_next_color(color: wq->work_color); |
| 3986 | |
| 3987 | if (next_color != wq->flush_color) { |
| 3988 | /* |
| 3989 | * Color space is not full. The current work_color |
| 3990 | * becomes our flush_color and work_color is advanced |
| 3991 | * by one. |
| 3992 | */ |
| 3993 | WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); |
| 3994 | this_flusher.flush_color = wq->work_color; |
| 3995 | wq->work_color = next_color; |
| 3996 | |
| 3997 | if (!wq->first_flusher) { |
| 3998 | /* no flush in progress, become the first flusher */ |
| 3999 | WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); |
| 4000 | |
| 4001 | wq->first_flusher = &this_flusher; |
| 4002 | |
| 4003 | if (!flush_workqueue_prep_pwqs(wq, flush_color: wq->flush_color, |
| 4004 | work_color: wq->work_color)) { |
| 4005 | /* nothing to flush, done */ |
| 4006 | wq->flush_color = next_color; |
| 4007 | wq->first_flusher = NULL; |
| 4008 | goto out_unlock; |
| 4009 | } |
| 4010 | } else { |
| 4011 | /* wait in queue */ |
| 4012 | WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); |
| 4013 | list_add_tail(new: &this_flusher.list, head: &wq->flusher_queue); |
| 4014 | flush_workqueue_prep_pwqs(wq, flush_color: -1, work_color: wq->work_color); |
| 4015 | } |
| 4016 | } else { |
| 4017 | /* |
| 4018 | * Oops, color space is full, wait on overflow queue. |
| 4019 | * The next flush completion will assign us |
| 4020 | * flush_color and transfer to flusher_queue. |
| 4021 | */ |
| 4022 | list_add_tail(new: &this_flusher.list, head: &wq->flusher_overflow); |
| 4023 | } |
| 4024 | |
| 4025 | check_flush_dependency(target_wq: wq, NULL, from_cancel: false); |
| 4026 | |
| 4027 | mutex_unlock(lock: &wq->mutex); |
| 4028 | |
| 4029 | wait_for_completion(&this_flusher.done); |
| 4030 | |
| 4031 | /* |
| 4032 | * Wake-up-and-cascade phase |
| 4033 | * |
| 4034 | * First flushers are responsible for cascading flushes and |
| 4035 | * handling overflow. Non-first flushers can simply return. |
| 4036 | */ |
| 4037 | if (READ_ONCE(wq->first_flusher) != &this_flusher) |
| 4038 | return; |
| 4039 | |
| 4040 | mutex_lock(lock: &wq->mutex); |
| 4041 | |
| 4042 | /* we might have raced, check again with mutex held */ |
| 4043 | if (wq->first_flusher != &this_flusher) |
| 4044 | goto out_unlock; |
| 4045 | |
| 4046 | WRITE_ONCE(wq->first_flusher, NULL); |
| 4047 | |
| 4048 | WARN_ON_ONCE(!list_empty(&this_flusher.list)); |
| 4049 | WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); |
| 4050 | |
| 4051 | while (true) { |
| 4052 | struct wq_flusher *next, *tmp; |
| 4053 | |
| 4054 | /* complete all the flushers sharing the current flush color */ |
| 4055 | list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { |
| 4056 | if (next->flush_color != wq->flush_color) |
| 4057 | break; |
| 4058 | list_del_init(entry: &next->list); |
| 4059 | complete(&next->done); |
| 4060 | } |
| 4061 | |
| 4062 | WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && |
| 4063 | wq->flush_color != work_next_color(wq->work_color)); |
| 4064 | |
| 4065 | /* this flush_color is finished, advance by one */ |
| 4066 | wq->flush_color = work_next_color(color: wq->flush_color); |
| 4067 | |
| 4068 | /* one color has been freed, handle overflow queue */ |
| 4069 | if (!list_empty(head: &wq->flusher_overflow)) { |
| 4070 | /* |
| 4071 | * Assign the same color to all overflowed |
| 4072 | * flushers, advance work_color and append to |
| 4073 | * flusher_queue. This is the start-to-wait |
| 4074 | * phase for these overflowed flushers. |
| 4075 | */ |
| 4076 | list_for_each_entry(tmp, &wq->flusher_overflow, list) |
| 4077 | tmp->flush_color = wq->work_color; |
| 4078 | |
| 4079 | wq->work_color = work_next_color(color: wq->work_color); |
| 4080 | |
| 4081 | list_splice_tail_init(list: &wq->flusher_overflow, |
| 4082 | head: &wq->flusher_queue); |
| 4083 | flush_workqueue_prep_pwqs(wq, flush_color: -1, work_color: wq->work_color); |
| 4084 | } |
| 4085 | |
| 4086 | if (list_empty(head: &wq->flusher_queue)) { |
| 4087 | WARN_ON_ONCE(wq->flush_color != wq->work_color); |
| 4088 | break; |
| 4089 | } |
| 4090 | |
| 4091 | /* |
| 4092 | * Need to flush more colors. Make the next flusher |
| 4093 | * the new first flusher and arm pwqs. |
| 4094 | */ |
| 4095 | WARN_ON_ONCE(wq->flush_color == wq->work_color); |
| 4096 | WARN_ON_ONCE(wq->flush_color != next->flush_color); |
| 4097 | |
| 4098 | list_del_init(entry: &next->list); |
| 4099 | wq->first_flusher = next; |
| 4100 | |
| 4101 | if (flush_workqueue_prep_pwqs(wq, flush_color: wq->flush_color, work_color: -1)) |
| 4102 | break; |
| 4103 | |
| 4104 | /* |
| 4105 | * Meh... this color is already done, clear first |
| 4106 | * flusher and repeat cascading. |
| 4107 | */ |
| 4108 | wq->first_flusher = NULL; |
| 4109 | } |
| 4110 | |
| 4111 | out_unlock: |
| 4112 | mutex_unlock(lock: &wq->mutex); |
| 4113 | } |
| 4114 | EXPORT_SYMBOL(__flush_workqueue); |
| 4115 | |
| 4116 | /** |
| 4117 | * drain_workqueue - drain a workqueue |
| 4118 | * @wq: workqueue to drain |
| 4119 | * |
| 4120 | * Wait until the workqueue becomes empty. While draining is in progress, |
| 4121 | * only chain queueing is allowed. IOW, only currently pending or running |
| 4122 | * work items on @wq can queue further work items on it. @wq is flushed |
| 4123 | * repeatedly until it becomes empty. The number of flushing is determined |
| 4124 | * by the depth of chaining and should be relatively short. Whine if it |
| 4125 | * takes too long. |
| 4126 | */ |
| 4127 | void drain_workqueue(struct workqueue_struct *wq) |
| 4128 | { |
| 4129 | unsigned int flush_cnt = 0; |
| 4130 | struct pool_workqueue *pwq; |
| 4131 | |
| 4132 | /* |
| 4133 | * __queue_work() needs to test whether there are drainers, is much |
| 4134 | * hotter than drain_workqueue() and already looks at @wq->flags. |
| 4135 | * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. |
| 4136 | */ |
| 4137 | mutex_lock(lock: &wq->mutex); |
| 4138 | if (!wq->nr_drainers++) |
| 4139 | wq->flags |= __WQ_DRAINING; |
| 4140 | mutex_unlock(lock: &wq->mutex); |
| 4141 | reflush: |
| 4142 | __flush_workqueue(wq); |
| 4143 | |
| 4144 | mutex_lock(lock: &wq->mutex); |
| 4145 | |
| 4146 | for_each_pwq(pwq, wq) { |
| 4147 | bool drained; |
| 4148 | |
| 4149 | raw_spin_lock_irq(&pwq->pool->lock); |
| 4150 | drained = pwq_is_empty(pwq); |
| 4151 | raw_spin_unlock_irq(&pwq->pool->lock); |
| 4152 | |
| 4153 | if (drained) |
| 4154 | continue; |
| 4155 | |
| 4156 | if (++flush_cnt == 10 || |
| 4157 | (flush_cnt % 100 == 0 && flush_cnt <= 1000)) |
| 4158 | pr_warn("workqueue %s: %s() isn't complete after %u tries\n" , |
| 4159 | wq->name, __func__, flush_cnt); |
| 4160 | |
| 4161 | mutex_unlock(lock: &wq->mutex); |
| 4162 | goto reflush; |
| 4163 | } |
| 4164 | |
| 4165 | if (!--wq->nr_drainers) |
| 4166 | wq->flags &= ~__WQ_DRAINING; |
| 4167 | mutex_unlock(lock: &wq->mutex); |
| 4168 | } |
| 4169 | EXPORT_SYMBOL_GPL(drain_workqueue); |
| 4170 | |
| 4171 | static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, |
| 4172 | bool from_cancel) |
| 4173 | { |
| 4174 | struct worker *worker = NULL; |
| 4175 | struct worker_pool *pool; |
| 4176 | struct pool_workqueue *pwq; |
| 4177 | struct workqueue_struct *wq; |
| 4178 | |
| 4179 | rcu_read_lock(); |
| 4180 | pool = get_work_pool(work); |
| 4181 | if (!pool) { |
| 4182 | rcu_read_unlock(); |
| 4183 | return false; |
| 4184 | } |
| 4185 | |
| 4186 | raw_spin_lock_irq(&pool->lock); |
| 4187 | /* see the comment in try_to_grab_pending() with the same code */ |
| 4188 | pwq = get_work_pwq(work); |
| 4189 | if (pwq) { |
| 4190 | if (unlikely(pwq->pool != pool)) |
| 4191 | goto already_gone; |
| 4192 | } else { |
| 4193 | worker = find_worker_executing_work(pool, work); |
| 4194 | if (!worker) |
| 4195 | goto already_gone; |
| 4196 | pwq = worker->current_pwq; |
| 4197 | } |
| 4198 | |
| 4199 | wq = pwq->wq; |
| 4200 | check_flush_dependency(target_wq: wq, target_work: work, from_cancel); |
| 4201 | |
| 4202 | insert_wq_barrier(pwq, barr, target: work, worker); |
| 4203 | raw_spin_unlock_irq(&pool->lock); |
| 4204 | |
| 4205 | touch_work_lockdep_map(work, wq); |
| 4206 | |
| 4207 | /* |
| 4208 | * Force a lock recursion deadlock when using flush_work() inside a |
| 4209 | * single-threaded or rescuer equipped workqueue. |
| 4210 | * |
| 4211 | * For single threaded workqueues the deadlock happens when the work |
| 4212 | * is after the work issuing the flush_work(). For rescuer equipped |
| 4213 | * workqueues the deadlock happens when the rescuer stalls, blocking |
| 4214 | * forward progress. |
| 4215 | */ |
| 4216 | if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) |
| 4217 | touch_wq_lockdep_map(wq); |
| 4218 | |
| 4219 | rcu_read_unlock(); |
| 4220 | return true; |
| 4221 | already_gone: |
| 4222 | raw_spin_unlock_irq(&pool->lock); |
| 4223 | rcu_read_unlock(); |
| 4224 | return false; |
| 4225 | } |
| 4226 | |
| 4227 | static bool __flush_work(struct work_struct *work, bool from_cancel) |
| 4228 | { |
| 4229 | struct wq_barrier barr; |
| 4230 | |
| 4231 | if (WARN_ON(!wq_online)) |
| 4232 | return false; |
| 4233 | |
| 4234 | if (WARN_ON(!work->func)) |
| 4235 | return false; |
| 4236 | |
| 4237 | if (!start_flush_work(work, barr: &barr, from_cancel)) |
| 4238 | return false; |
| 4239 | |
| 4240 | /* |
| 4241 | * start_flush_work() returned %true. If @from_cancel is set, we know |
| 4242 | * that @work must have been executing during start_flush_work() and |
| 4243 | * can't currently be queued. Its data must contain OFFQ bits. If @work |
| 4244 | * was queued on a BH workqueue, we also know that it was running in the |
| 4245 | * BH context and thus can be busy-waited. |
| 4246 | */ |
| 4247 | if (from_cancel) { |
| 4248 | unsigned long data = *work_data_bits(work); |
| 4249 | |
| 4250 | if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && |
| 4251 | (data & WORK_OFFQ_BH)) { |
| 4252 | /* |
| 4253 | * On RT, prevent a live lock when %current preempted |
| 4254 | * soft interrupt processing by blocking on lock which |
| 4255 | * is owned by the thread invoking the callback. |
| 4256 | */ |
| 4257 | while (!try_wait_for_completion(x: &barr.done)) { |
| 4258 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) { |
| 4259 | struct worker_pool *pool; |
| 4260 | |
| 4261 | guard(rcu)(); |
| 4262 | pool = get_work_pool(work); |
| 4263 | if (pool) |
| 4264 | workqueue_callback_cancel_wait_running(pool); |
| 4265 | } else { |
| 4266 | cpu_relax(); |
| 4267 | } |
| 4268 | } |
| 4269 | goto out_destroy; |
| 4270 | } |
| 4271 | } |
| 4272 | |
| 4273 | wait_for_completion(&barr.done); |
| 4274 | |
| 4275 | out_destroy: |
| 4276 | destroy_work_on_stack(work: &barr.work); |
| 4277 | return true; |
| 4278 | } |
| 4279 | |
| 4280 | /** |
| 4281 | * flush_work - wait for a work to finish executing the last queueing instance |
| 4282 | * @work: the work to flush |
| 4283 | * |
| 4284 | * Wait until @work has finished execution. @work is guaranteed to be idle |
| 4285 | * on return if it hasn't been requeued since flush started. |
| 4286 | * |
| 4287 | * Return: |
| 4288 | * %true if flush_work() waited for the work to finish execution, |
| 4289 | * %false if it was already idle. |
| 4290 | */ |
| 4291 | bool flush_work(struct work_struct *work) |
| 4292 | { |
| 4293 | might_sleep(); |
| 4294 | return __flush_work(work, from_cancel: false); |
| 4295 | } |
| 4296 | EXPORT_SYMBOL_GPL(flush_work); |
| 4297 | |
| 4298 | /** |
| 4299 | * flush_delayed_work - wait for a dwork to finish executing the last queueing |
| 4300 | * @dwork: the delayed work to flush |
| 4301 | * |
| 4302 | * Delayed timer is cancelled and the pending work is queued for |
| 4303 | * immediate execution. Like flush_work(), this function only |
| 4304 | * considers the last queueing instance of @dwork. |
| 4305 | * |
| 4306 | * Return: |
| 4307 | * %true if flush_work() waited for the work to finish execution, |
| 4308 | * %false if it was already idle. |
| 4309 | */ |
| 4310 | bool flush_delayed_work(struct delayed_work *dwork) |
| 4311 | { |
| 4312 | local_irq_disable(); |
| 4313 | if (timer_delete_sync(timer: &dwork->timer)) |
| 4314 | __queue_work(cpu: dwork->cpu, wq: dwork->wq, work: &dwork->work); |
| 4315 | local_irq_enable(); |
| 4316 | return flush_work(&dwork->work); |
| 4317 | } |
| 4318 | EXPORT_SYMBOL(flush_delayed_work); |
| 4319 | |
| 4320 | /** |
| 4321 | * flush_rcu_work - wait for a rwork to finish executing the last queueing |
| 4322 | * @rwork: the rcu work to flush |
| 4323 | * |
| 4324 | * Return: |
| 4325 | * %true if flush_rcu_work() waited for the work to finish execution, |
| 4326 | * %false if it was already idle. |
| 4327 | */ |
| 4328 | bool flush_rcu_work(struct rcu_work *rwork) |
| 4329 | { |
| 4330 | if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { |
| 4331 | rcu_barrier(); |
| 4332 | flush_work(&rwork->work); |
| 4333 | return true; |
| 4334 | } else { |
| 4335 | return flush_work(&rwork->work); |
| 4336 | } |
| 4337 | } |
| 4338 | EXPORT_SYMBOL(flush_rcu_work); |
| 4339 | |
| 4340 | static void work_offqd_disable(struct work_offq_data *offqd) |
| 4341 | { |
| 4342 | const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; |
| 4343 | |
| 4344 | if (likely(offqd->disable < max)) |
| 4345 | offqd->disable++; |
| 4346 | else |
| 4347 | WARN_ONCE(true, "workqueue: work disable count overflowed\n" ); |
| 4348 | } |
| 4349 | |
| 4350 | static void work_offqd_enable(struct work_offq_data *offqd) |
| 4351 | { |
| 4352 | if (likely(offqd->disable > 0)) |
| 4353 | offqd->disable--; |
| 4354 | else |
| 4355 | WARN_ONCE(true, "workqueue: work disable count underflowed\n" ); |
| 4356 | } |
| 4357 | |
| 4358 | static bool __cancel_work(struct work_struct *work, u32 cflags) |
| 4359 | { |
| 4360 | struct work_offq_data offqd; |
| 4361 | unsigned long irq_flags; |
| 4362 | int ret; |
| 4363 | |
| 4364 | ret = work_grab_pending(work, cflags, irq_flags: &irq_flags); |
| 4365 | |
| 4366 | work_offqd_unpack(offqd: &offqd, data: *work_data_bits(work)); |
| 4367 | |
| 4368 | if (cflags & WORK_CANCEL_DISABLE) |
| 4369 | work_offqd_disable(offqd: &offqd); |
| 4370 | |
| 4371 | set_work_pool_and_clear_pending(work, pool_id: offqd.pool_id, |
| 4372 | flags: work_offqd_pack_flags(offqd: &offqd)); |
| 4373 | local_irq_restore(irq_flags); |
| 4374 | return ret; |
| 4375 | } |
| 4376 | |
| 4377 | static bool __cancel_work_sync(struct work_struct *work, u32 cflags) |
| 4378 | { |
| 4379 | bool ret; |
| 4380 | |
| 4381 | ret = __cancel_work(work, cflags: cflags | WORK_CANCEL_DISABLE); |
| 4382 | |
| 4383 | if (*work_data_bits(work) & WORK_OFFQ_BH) |
| 4384 | WARN_ON_ONCE(in_hardirq()); |
| 4385 | else |
| 4386 | might_sleep(); |
| 4387 | |
| 4388 | /* |
| 4389 | * Skip __flush_work() during early boot when we know that @work isn't |
| 4390 | * executing. This allows canceling during early boot. |
| 4391 | */ |
| 4392 | if (wq_online) |
| 4393 | __flush_work(work, from_cancel: true); |
| 4394 | |
| 4395 | if (!(cflags & WORK_CANCEL_DISABLE)) |
| 4396 | enable_work(work); |
| 4397 | |
| 4398 | return ret; |
| 4399 | } |
| 4400 | |
| 4401 | /* |
| 4402 | * See cancel_delayed_work() |
| 4403 | */ |
| 4404 | bool cancel_work(struct work_struct *work) |
| 4405 | { |
| 4406 | return __cancel_work(work, cflags: 0); |
| 4407 | } |
| 4408 | EXPORT_SYMBOL(cancel_work); |
| 4409 | |
| 4410 | /** |
| 4411 | * cancel_work_sync - cancel a work and wait for it to finish |
| 4412 | * @work: the work to cancel |
| 4413 | * |
| 4414 | * Cancel @work and wait for its execution to finish. This function can be used |
| 4415 | * even if the work re-queues itself or migrates to another workqueue. On return |
| 4416 | * from this function, @work is guaranteed to be not pending or executing on any |
| 4417 | * CPU as long as there aren't racing enqueues. |
| 4418 | * |
| 4419 | * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. |
| 4420 | * Use cancel_delayed_work_sync() instead. |
| 4421 | * |
| 4422 | * Must be called from a sleepable context if @work was last queued on a non-BH |
| 4423 | * workqueue. Can also be called from non-hardirq atomic contexts including BH |
| 4424 | * if @work was last queued on a BH workqueue. |
| 4425 | * |
| 4426 | * Returns %true if @work was pending, %false otherwise. |
| 4427 | */ |
| 4428 | bool cancel_work_sync(struct work_struct *work) |
| 4429 | { |
| 4430 | return __cancel_work_sync(work, cflags: 0); |
| 4431 | } |
| 4432 | EXPORT_SYMBOL_GPL(cancel_work_sync); |
| 4433 | |
| 4434 | /** |
| 4435 | * cancel_delayed_work - cancel a delayed work |
| 4436 | * @dwork: delayed_work to cancel |
| 4437 | * |
| 4438 | * Kill off a pending delayed_work. |
| 4439 | * |
| 4440 | * Return: %true if @dwork was pending and canceled; %false if it wasn't |
| 4441 | * pending. |
| 4442 | * |
| 4443 | * Note: |
| 4444 | * The work callback function may still be running on return, unless |
| 4445 | * it returns %true and the work doesn't re-arm itself. Explicitly flush or |
| 4446 | * use cancel_delayed_work_sync() to wait on it. |
| 4447 | * |
| 4448 | * This function is safe to call from any context including IRQ handler. |
| 4449 | */ |
| 4450 | bool cancel_delayed_work(struct delayed_work *dwork) |
| 4451 | { |
| 4452 | return __cancel_work(work: &dwork->work, cflags: WORK_CANCEL_DELAYED); |
| 4453 | } |
| 4454 | EXPORT_SYMBOL(cancel_delayed_work); |
| 4455 | |
| 4456 | /** |
| 4457 | * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish |
| 4458 | * @dwork: the delayed work cancel |
| 4459 | * |
| 4460 | * This is cancel_work_sync() for delayed works. |
| 4461 | * |
| 4462 | * Return: |
| 4463 | * %true if @dwork was pending, %false otherwise. |
| 4464 | */ |
| 4465 | bool cancel_delayed_work_sync(struct delayed_work *dwork) |
| 4466 | { |
| 4467 | return __cancel_work_sync(work: &dwork->work, cflags: WORK_CANCEL_DELAYED); |
| 4468 | } |
| 4469 | EXPORT_SYMBOL(cancel_delayed_work_sync); |
| 4470 | |
| 4471 | /** |
| 4472 | * disable_work - Disable and cancel a work item |
| 4473 | * @work: work item to disable |
| 4474 | * |
| 4475 | * Disable @work by incrementing its disable count and cancel it if currently |
| 4476 | * pending. As long as the disable count is non-zero, any attempt to queue @work |
| 4477 | * will fail and return %false. The maximum supported disable depth is 2 to the |
| 4478 | * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. |
| 4479 | * |
| 4480 | * Can be called from any context. Returns %true if @work was pending, %false |
| 4481 | * otherwise. |
| 4482 | */ |
| 4483 | bool disable_work(struct work_struct *work) |
| 4484 | { |
| 4485 | return __cancel_work(work, cflags: WORK_CANCEL_DISABLE); |
| 4486 | } |
| 4487 | EXPORT_SYMBOL_GPL(disable_work); |
| 4488 | |
| 4489 | /** |
| 4490 | * disable_work_sync - Disable, cancel and drain a work item |
| 4491 | * @work: work item to disable |
| 4492 | * |
| 4493 | * Similar to disable_work() but also wait for @work to finish if currently |
| 4494 | * executing. |
| 4495 | * |
| 4496 | * Must be called from a sleepable context if @work was last queued on a non-BH |
| 4497 | * workqueue. Can also be called from non-hardirq atomic contexts including BH |
| 4498 | * if @work was last queued on a BH workqueue. |
| 4499 | * |
| 4500 | * Returns %true if @work was pending, %false otherwise. |
| 4501 | */ |
| 4502 | bool disable_work_sync(struct work_struct *work) |
| 4503 | { |
| 4504 | return __cancel_work_sync(work, cflags: WORK_CANCEL_DISABLE); |
| 4505 | } |
| 4506 | EXPORT_SYMBOL_GPL(disable_work_sync); |
| 4507 | |
| 4508 | /** |
| 4509 | * enable_work - Enable a work item |
| 4510 | * @work: work item to enable |
| 4511 | * |
| 4512 | * Undo disable_work[_sync]() by decrementing @work's disable count. @work can |
| 4513 | * only be queued if its disable count is 0. |
| 4514 | * |
| 4515 | * Can be called from any context. Returns %true if the disable count reached 0. |
| 4516 | * Otherwise, %false. |
| 4517 | */ |
| 4518 | bool enable_work(struct work_struct *work) |
| 4519 | { |
| 4520 | struct work_offq_data offqd; |
| 4521 | unsigned long irq_flags; |
| 4522 | |
| 4523 | work_grab_pending(work, cflags: 0, irq_flags: &irq_flags); |
| 4524 | |
| 4525 | work_offqd_unpack(offqd: &offqd, data: *work_data_bits(work)); |
| 4526 | work_offqd_enable(offqd: &offqd); |
| 4527 | set_work_pool_and_clear_pending(work, pool_id: offqd.pool_id, |
| 4528 | flags: work_offqd_pack_flags(offqd: &offqd)); |
| 4529 | local_irq_restore(irq_flags); |
| 4530 | |
| 4531 | return !offqd.disable; |
| 4532 | } |
| 4533 | EXPORT_SYMBOL_GPL(enable_work); |
| 4534 | |
| 4535 | /** |
| 4536 | * disable_delayed_work - Disable and cancel a delayed work item |
| 4537 | * @dwork: delayed work item to disable |
| 4538 | * |
| 4539 | * disable_work() for delayed work items. |
| 4540 | */ |
| 4541 | bool disable_delayed_work(struct delayed_work *dwork) |
| 4542 | { |
| 4543 | return __cancel_work(work: &dwork->work, |
| 4544 | cflags: WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); |
| 4545 | } |
| 4546 | EXPORT_SYMBOL_GPL(disable_delayed_work); |
| 4547 | |
| 4548 | /** |
| 4549 | * disable_delayed_work_sync - Disable, cancel and drain a delayed work item |
| 4550 | * @dwork: delayed work item to disable |
| 4551 | * |
| 4552 | * disable_work_sync() for delayed work items. |
| 4553 | */ |
| 4554 | bool disable_delayed_work_sync(struct delayed_work *dwork) |
| 4555 | { |
| 4556 | return __cancel_work_sync(work: &dwork->work, |
| 4557 | cflags: WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); |
| 4558 | } |
| 4559 | EXPORT_SYMBOL_GPL(disable_delayed_work_sync); |
| 4560 | |
| 4561 | /** |
| 4562 | * enable_delayed_work - Enable a delayed work item |
| 4563 | * @dwork: delayed work item to enable |
| 4564 | * |
| 4565 | * enable_work() for delayed work items. |
| 4566 | */ |
| 4567 | bool enable_delayed_work(struct delayed_work *dwork) |
| 4568 | { |
| 4569 | return enable_work(&dwork->work); |
| 4570 | } |
| 4571 | EXPORT_SYMBOL_GPL(enable_delayed_work); |
| 4572 | |
| 4573 | /** |
| 4574 | * schedule_on_each_cpu - execute a function synchronously on each online CPU |
| 4575 | * @func: the function to call |
| 4576 | * |
| 4577 | * schedule_on_each_cpu() executes @func on each online CPU using the |
| 4578 | * system workqueue and blocks until all CPUs have completed. |
| 4579 | * schedule_on_each_cpu() is very slow. |
| 4580 | * |
| 4581 | * Return: |
| 4582 | * 0 on success, -errno on failure. |
| 4583 | */ |
| 4584 | int schedule_on_each_cpu(work_func_t func) |
| 4585 | { |
| 4586 | int cpu; |
| 4587 | struct work_struct __percpu *works; |
| 4588 | |
| 4589 | works = alloc_percpu(struct work_struct); |
| 4590 | if (!works) |
| 4591 | return -ENOMEM; |
| 4592 | |
| 4593 | cpus_read_lock(); |
| 4594 | |
| 4595 | for_each_online_cpu(cpu) { |
| 4596 | struct work_struct *work = per_cpu_ptr(works, cpu); |
| 4597 | |
| 4598 | INIT_WORK(work, func); |
| 4599 | schedule_work_on(cpu, work); |
| 4600 | } |
| 4601 | |
| 4602 | for_each_online_cpu(cpu) |
| 4603 | flush_work(per_cpu_ptr(works, cpu)); |
| 4604 | |
| 4605 | cpus_read_unlock(); |
| 4606 | free_percpu(pdata: works); |
| 4607 | return 0; |
| 4608 | } |
| 4609 | |
| 4610 | /** |
| 4611 | * execute_in_process_context - reliably execute the routine with user context |
| 4612 | * @fn: the function to execute |
| 4613 | * @ew: guaranteed storage for the execute work structure (must |
| 4614 | * be available when the work executes) |
| 4615 | * |
| 4616 | * Executes the function immediately if process context is available, |
| 4617 | * otherwise schedules the function for delayed execution. |
| 4618 | * |
| 4619 | * Return: 0 - function was executed |
| 4620 | * 1 - function was scheduled for execution |
| 4621 | */ |
| 4622 | int execute_in_process_context(work_func_t fn, struct execute_work *ew) |
| 4623 | { |
| 4624 | if (!in_interrupt()) { |
| 4625 | fn(&ew->work); |
| 4626 | return 0; |
| 4627 | } |
| 4628 | |
| 4629 | INIT_WORK(&ew->work, fn); |
| 4630 | schedule_work(work: &ew->work); |
| 4631 | |
| 4632 | return 1; |
| 4633 | } |
| 4634 | EXPORT_SYMBOL_GPL(execute_in_process_context); |
| 4635 | |
| 4636 | /** |
| 4637 | * free_workqueue_attrs - free a workqueue_attrs |
| 4638 | * @attrs: workqueue_attrs to free |
| 4639 | * |
| 4640 | * Undo alloc_workqueue_attrs(). |
| 4641 | */ |
| 4642 | void free_workqueue_attrs(struct workqueue_attrs *attrs) |
| 4643 | { |
| 4644 | if (attrs) { |
| 4645 | free_cpumask_var(mask: attrs->cpumask); |
| 4646 | free_cpumask_var(mask: attrs->__pod_cpumask); |
| 4647 | kfree(objp: attrs); |
| 4648 | } |
| 4649 | } |
| 4650 | |
| 4651 | /** |
| 4652 | * alloc_workqueue_attrs - allocate a workqueue_attrs |
| 4653 | * |
| 4654 | * Allocate a new workqueue_attrs, initialize with default settings and |
| 4655 | * return it. |
| 4656 | * |
| 4657 | * Return: The allocated new workqueue_attr on success. %NULL on failure. |
| 4658 | */ |
| 4659 | struct workqueue_attrs *alloc_workqueue_attrs_noprof(void) |
| 4660 | { |
| 4661 | struct workqueue_attrs *attrs; |
| 4662 | |
| 4663 | attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); |
| 4664 | if (!attrs) |
| 4665 | goto fail; |
| 4666 | if (!alloc_cpumask_var(mask: &attrs->cpumask, GFP_KERNEL)) |
| 4667 | goto fail; |
| 4668 | if (!alloc_cpumask_var(mask: &attrs->__pod_cpumask, GFP_KERNEL)) |
| 4669 | goto fail; |
| 4670 | |
| 4671 | cpumask_copy(dstp: attrs->cpumask, cpu_possible_mask); |
| 4672 | attrs->affn_scope = WQ_AFFN_DFL; |
| 4673 | return attrs; |
| 4674 | fail: |
| 4675 | free_workqueue_attrs(attrs); |
| 4676 | return NULL; |
| 4677 | } |
| 4678 | |
| 4679 | static void copy_workqueue_attrs(struct workqueue_attrs *to, |
| 4680 | const struct workqueue_attrs *from) |
| 4681 | { |
| 4682 | to->nice = from->nice; |
| 4683 | cpumask_copy(dstp: to->cpumask, srcp: from->cpumask); |
| 4684 | cpumask_copy(dstp: to->__pod_cpumask, srcp: from->__pod_cpumask); |
| 4685 | to->affn_strict = from->affn_strict; |
| 4686 | |
| 4687 | /* |
| 4688 | * Unlike hash and equality test, copying shouldn't ignore wq-only |
| 4689 | * fields as copying is used for both pool and wq attrs. Instead, |
| 4690 | * get_unbound_pool() explicitly clears the fields. |
| 4691 | */ |
| 4692 | to->affn_scope = from->affn_scope; |
| 4693 | to->ordered = from->ordered; |
| 4694 | } |
| 4695 | |
| 4696 | /* |
| 4697 | * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the |
| 4698 | * comments in 'struct workqueue_attrs' definition. |
| 4699 | */ |
| 4700 | static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) |
| 4701 | { |
| 4702 | attrs->affn_scope = WQ_AFFN_NR_TYPES; |
| 4703 | attrs->ordered = false; |
| 4704 | if (attrs->affn_strict) |
| 4705 | cpumask_copy(dstp: attrs->cpumask, cpu_possible_mask); |
| 4706 | } |
| 4707 | |
| 4708 | /* hash value of the content of @attr */ |
| 4709 | static u32 wqattrs_hash(const struct workqueue_attrs *attrs) |
| 4710 | { |
| 4711 | u32 hash = 0; |
| 4712 | |
| 4713 | hash = jhash_1word(a: attrs->nice, initval: hash); |
| 4714 | hash = jhash_1word(a: attrs->affn_strict, initval: hash); |
| 4715 | hash = jhash(cpumask_bits(attrs->__pod_cpumask), |
| 4716 | BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), initval: hash); |
| 4717 | if (!attrs->affn_strict) |
| 4718 | hash = jhash(cpumask_bits(attrs->cpumask), |
| 4719 | BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), initval: hash); |
| 4720 | return hash; |
| 4721 | } |
| 4722 | |
| 4723 | /* content equality test */ |
| 4724 | static bool wqattrs_equal(const struct workqueue_attrs *a, |
| 4725 | const struct workqueue_attrs *b) |
| 4726 | { |
| 4727 | if (a->nice != b->nice) |
| 4728 | return false; |
| 4729 | if (a->affn_strict != b->affn_strict) |
| 4730 | return false; |
| 4731 | if (!cpumask_equal(src1p: a->__pod_cpumask, src2p: b->__pod_cpumask)) |
| 4732 | return false; |
| 4733 | if (!a->affn_strict && !cpumask_equal(src1p: a->cpumask, src2p: b->cpumask)) |
| 4734 | return false; |
| 4735 | return true; |
| 4736 | } |
| 4737 | |
| 4738 | /* Update @attrs with actually available CPUs */ |
| 4739 | static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, |
| 4740 | const cpumask_t *unbound_cpumask) |
| 4741 | { |
| 4742 | /* |
| 4743 | * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If |
| 4744 | * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to |
| 4745 | * @unbound_cpumask. |
| 4746 | */ |
| 4747 | cpumask_and(dstp: attrs->cpumask, src1p: attrs->cpumask, src2p: unbound_cpumask); |
| 4748 | if (unlikely(cpumask_empty(attrs->cpumask))) |
| 4749 | cpumask_copy(dstp: attrs->cpumask, srcp: unbound_cpumask); |
| 4750 | } |
| 4751 | |
| 4752 | /* find wq_pod_type to use for @attrs */ |
| 4753 | static const struct wq_pod_type * |
| 4754 | wqattrs_pod_type(const struct workqueue_attrs *attrs) |
| 4755 | { |
| 4756 | enum wq_affn_scope scope; |
| 4757 | struct wq_pod_type *pt; |
| 4758 | |
| 4759 | /* to synchronize access to wq_affn_dfl */ |
| 4760 | lockdep_assert_held(&wq_pool_mutex); |
| 4761 | |
| 4762 | if (attrs->affn_scope == WQ_AFFN_DFL) |
| 4763 | scope = wq_affn_dfl; |
| 4764 | else |
| 4765 | scope = attrs->affn_scope; |
| 4766 | |
| 4767 | pt = &wq_pod_types[scope]; |
| 4768 | |
| 4769 | if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && |
| 4770 | likely(pt->nr_pods)) |
| 4771 | return pt; |
| 4772 | |
| 4773 | /* |
| 4774 | * Before workqueue_init_topology(), only SYSTEM is available which is |
| 4775 | * initialized in workqueue_init_early(). |
| 4776 | */ |
| 4777 | pt = &wq_pod_types[WQ_AFFN_SYSTEM]; |
| 4778 | BUG_ON(!pt->nr_pods); |
| 4779 | return pt; |
| 4780 | } |
| 4781 | |
| 4782 | /** |
| 4783 | * init_worker_pool - initialize a newly zalloc'd worker_pool |
| 4784 | * @pool: worker_pool to initialize |
| 4785 | * |
| 4786 | * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. |
| 4787 | * |
| 4788 | * Return: 0 on success, -errno on failure. Even on failure, all fields |
| 4789 | * inside @pool proper are initialized and put_unbound_pool() can be called |
| 4790 | * on @pool safely to release it. |
| 4791 | */ |
| 4792 | static int init_worker_pool(struct worker_pool *pool) |
| 4793 | { |
| 4794 | raw_spin_lock_init(&pool->lock); |
| 4795 | pool->id = -1; |
| 4796 | pool->cpu = -1; |
| 4797 | pool->node = NUMA_NO_NODE; |
| 4798 | pool->flags |= POOL_DISASSOCIATED; |
| 4799 | pool->watchdog_ts = jiffies; |
| 4800 | INIT_LIST_HEAD(list: &pool->worklist); |
| 4801 | INIT_LIST_HEAD(list: &pool->idle_list); |
| 4802 | hash_init(pool->busy_hash); |
| 4803 | |
| 4804 | timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); |
| 4805 | INIT_WORK(&pool->idle_cull_work, idle_cull_fn); |
| 4806 | |
| 4807 | timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); |
| 4808 | |
| 4809 | INIT_LIST_HEAD(list: &pool->workers); |
| 4810 | |
| 4811 | ida_init(ida: &pool->worker_ida); |
| 4812 | INIT_HLIST_NODE(h: &pool->hash_node); |
| 4813 | pool->refcnt = 1; |
| 4814 | #ifdef CONFIG_PREEMPT_RT |
| 4815 | spin_lock_init(&pool->cb_lock); |
| 4816 | #endif |
| 4817 | |
| 4818 | /* shouldn't fail above this point */ |
| 4819 | pool->attrs = alloc_workqueue_attrs(); |
| 4820 | if (!pool->attrs) |
| 4821 | return -ENOMEM; |
| 4822 | |
| 4823 | wqattrs_clear_for_pool(attrs: pool->attrs); |
| 4824 | |
| 4825 | return 0; |
| 4826 | } |
| 4827 | |
| 4828 | #ifdef CONFIG_LOCKDEP |
| 4829 | static void wq_init_lockdep(struct workqueue_struct *wq) |
| 4830 | { |
| 4831 | char *lock_name; |
| 4832 | |
| 4833 | lockdep_register_key(&wq->key); |
| 4834 | lock_name = kasprintf(GFP_KERNEL, "%s%s" , "(wq_completion)" , wq->name); |
| 4835 | if (!lock_name) |
| 4836 | lock_name = wq->name; |
| 4837 | |
| 4838 | wq->lock_name = lock_name; |
| 4839 | wq->lockdep_map = &wq->__lockdep_map; |
| 4840 | lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0); |
| 4841 | } |
| 4842 | |
| 4843 | static void wq_unregister_lockdep(struct workqueue_struct *wq) |
| 4844 | { |
| 4845 | if (wq->lockdep_map != &wq->__lockdep_map) |
| 4846 | return; |
| 4847 | |
| 4848 | lockdep_unregister_key(&wq->key); |
| 4849 | } |
| 4850 | |
| 4851 | static void wq_free_lockdep(struct workqueue_struct *wq) |
| 4852 | { |
| 4853 | if (wq->lockdep_map != &wq->__lockdep_map) |
| 4854 | return; |
| 4855 | |
| 4856 | if (wq->lock_name != wq->name) |
| 4857 | kfree(wq->lock_name); |
| 4858 | } |
| 4859 | #else |
| 4860 | static void wq_init_lockdep(struct workqueue_struct *wq) |
| 4861 | { |
| 4862 | } |
| 4863 | |
| 4864 | static void wq_unregister_lockdep(struct workqueue_struct *wq) |
| 4865 | { |
| 4866 | } |
| 4867 | |
| 4868 | static void wq_free_lockdep(struct workqueue_struct *wq) |
| 4869 | { |
| 4870 | } |
| 4871 | #endif |
| 4872 | |
| 4873 | static void free_node_nr_active(struct wq_node_nr_active **nna_ar) |
| 4874 | { |
| 4875 | int node; |
| 4876 | |
| 4877 | for_each_node(node) { |
| 4878 | kfree(objp: nna_ar[node]); |
| 4879 | nna_ar[node] = NULL; |
| 4880 | } |
| 4881 | |
| 4882 | kfree(objp: nna_ar[nr_node_ids]); |
| 4883 | nna_ar[nr_node_ids] = NULL; |
| 4884 | } |
| 4885 | |
| 4886 | static void init_node_nr_active(struct wq_node_nr_active *nna) |
| 4887 | { |
| 4888 | nna->max = WQ_DFL_MIN_ACTIVE; |
| 4889 | atomic_set(v: &nna->nr, i: 0); |
| 4890 | raw_spin_lock_init(&nna->lock); |
| 4891 | INIT_LIST_HEAD(list: &nna->pending_pwqs); |
| 4892 | } |
| 4893 | |
| 4894 | /* |
| 4895 | * Each node's nr_active counter will be accessed mostly from its own node and |
| 4896 | * should be allocated in the node. |
| 4897 | */ |
| 4898 | static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) |
| 4899 | { |
| 4900 | struct wq_node_nr_active *nna; |
| 4901 | int node; |
| 4902 | |
| 4903 | for_each_node(node) { |
| 4904 | nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); |
| 4905 | if (!nna) |
| 4906 | goto err_free; |
| 4907 | init_node_nr_active(nna); |
| 4908 | nna_ar[node] = nna; |
| 4909 | } |
| 4910 | |
| 4911 | /* [nr_node_ids] is used as the fallback */ |
| 4912 | nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); |
| 4913 | if (!nna) |
| 4914 | goto err_free; |
| 4915 | init_node_nr_active(nna); |
| 4916 | nna_ar[nr_node_ids] = nna; |
| 4917 | |
| 4918 | return 0; |
| 4919 | |
| 4920 | err_free: |
| 4921 | free_node_nr_active(nna_ar); |
| 4922 | return -ENOMEM; |
| 4923 | } |
| 4924 | |
| 4925 | static void rcu_free_wq(struct rcu_head *rcu) |
| 4926 | { |
| 4927 | struct workqueue_struct *wq = |
| 4928 | container_of(rcu, struct workqueue_struct, rcu); |
| 4929 | |
| 4930 | if (wq->flags & WQ_UNBOUND) |
| 4931 | free_node_nr_active(nna_ar: wq->node_nr_active); |
| 4932 | |
| 4933 | wq_free_lockdep(wq); |
| 4934 | free_percpu(pdata: wq->cpu_pwq); |
| 4935 | free_workqueue_attrs(attrs: wq->unbound_attrs); |
| 4936 | kfree(objp: wq); |
| 4937 | } |
| 4938 | |
| 4939 | static void rcu_free_pool(struct rcu_head *rcu) |
| 4940 | { |
| 4941 | struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); |
| 4942 | |
| 4943 | ida_destroy(ida: &pool->worker_ida); |
| 4944 | free_workqueue_attrs(attrs: pool->attrs); |
| 4945 | kfree(objp: pool); |
| 4946 | } |
| 4947 | |
| 4948 | /** |
| 4949 | * put_unbound_pool - put a worker_pool |
| 4950 | * @pool: worker_pool to put |
| 4951 | * |
| 4952 | * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU |
| 4953 | * safe manner. get_unbound_pool() calls this function on its failure path |
| 4954 | * and this function should be able to release pools which went through, |
| 4955 | * successfully or not, init_worker_pool(). |
| 4956 | * |
| 4957 | * Should be called with wq_pool_mutex held. |
| 4958 | */ |
| 4959 | static void put_unbound_pool(struct worker_pool *pool) |
| 4960 | { |
| 4961 | struct worker *worker; |
| 4962 | LIST_HEAD(cull_list); |
| 4963 | |
| 4964 | lockdep_assert_held(&wq_pool_mutex); |
| 4965 | |
| 4966 | if (--pool->refcnt) |
| 4967 | return; |
| 4968 | |
| 4969 | /* sanity checks */ |
| 4970 | if (WARN_ON(!(pool->cpu < 0)) || |
| 4971 | WARN_ON(!list_empty(&pool->worklist))) |
| 4972 | return; |
| 4973 | |
| 4974 | /* release id and unhash */ |
| 4975 | if (pool->id >= 0) |
| 4976 | idr_remove(&worker_pool_idr, id: pool->id); |
| 4977 | hash_del(node: &pool->hash_node); |
| 4978 | |
| 4979 | /* |
| 4980 | * Become the manager and destroy all workers. This prevents |
| 4981 | * @pool's workers from blocking on attach_mutex. We're the last |
| 4982 | * manager and @pool gets freed with the flag set. |
| 4983 | * |
| 4984 | * Having a concurrent manager is quite unlikely to happen as we can |
| 4985 | * only get here with |
| 4986 | * pwq->refcnt == pool->refcnt == 0 |
| 4987 | * which implies no work queued to the pool, which implies no worker can |
| 4988 | * become the manager. However a worker could have taken the role of |
| 4989 | * manager before the refcnts dropped to 0, since maybe_create_worker() |
| 4990 | * drops pool->lock |
| 4991 | */ |
| 4992 | while (true) { |
| 4993 | rcuwait_wait_event(&manager_wait, |
| 4994 | !(pool->flags & POOL_MANAGER_ACTIVE), |
| 4995 | TASK_UNINTERRUPTIBLE); |
| 4996 | |
| 4997 | mutex_lock(lock: &wq_pool_attach_mutex); |
| 4998 | raw_spin_lock_irq(&pool->lock); |
| 4999 | if (!(pool->flags & POOL_MANAGER_ACTIVE)) { |
| 5000 | pool->flags |= POOL_MANAGER_ACTIVE; |
| 5001 | break; |
| 5002 | } |
| 5003 | raw_spin_unlock_irq(&pool->lock); |
| 5004 | mutex_unlock(lock: &wq_pool_attach_mutex); |
| 5005 | } |
| 5006 | |
| 5007 | while ((worker = first_idle_worker(pool))) |
| 5008 | set_worker_dying(worker, list: &cull_list); |
| 5009 | WARN_ON(pool->nr_workers || pool->nr_idle); |
| 5010 | raw_spin_unlock_irq(&pool->lock); |
| 5011 | |
| 5012 | detach_dying_workers(cull_list: &cull_list); |
| 5013 | |
| 5014 | mutex_unlock(lock: &wq_pool_attach_mutex); |
| 5015 | |
| 5016 | reap_dying_workers(cull_list: &cull_list); |
| 5017 | |
| 5018 | /* shut down the timers */ |
| 5019 | timer_delete_sync(timer: &pool->idle_timer); |
| 5020 | cancel_work_sync(&pool->idle_cull_work); |
| 5021 | timer_delete_sync(timer: &pool->mayday_timer); |
| 5022 | |
| 5023 | /* RCU protected to allow dereferences from get_work_pool() */ |
| 5024 | call_rcu(head: &pool->rcu, func: rcu_free_pool); |
| 5025 | } |
| 5026 | |
| 5027 | /** |
| 5028 | * get_unbound_pool - get a worker_pool with the specified attributes |
| 5029 | * @attrs: the attributes of the worker_pool to get |
| 5030 | * |
| 5031 | * Obtain a worker_pool which has the same attributes as @attrs, bump the |
| 5032 | * reference count and return it. If there already is a matching |
| 5033 | * worker_pool, it will be used; otherwise, this function attempts to |
| 5034 | * create a new one. |
| 5035 | * |
| 5036 | * Should be called with wq_pool_mutex held. |
| 5037 | * |
| 5038 | * Return: On success, a worker_pool with the same attributes as @attrs. |
| 5039 | * On failure, %NULL. |
| 5040 | */ |
| 5041 | static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) |
| 5042 | { |
| 5043 | struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; |
| 5044 | u32 hash = wqattrs_hash(attrs); |
| 5045 | struct worker_pool *pool; |
| 5046 | int pod, node = NUMA_NO_NODE; |
| 5047 | |
| 5048 | lockdep_assert_held(&wq_pool_mutex); |
| 5049 | |
| 5050 | /* do we already have a matching pool? */ |
| 5051 | hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { |
| 5052 | if (wqattrs_equal(a: pool->attrs, b: attrs)) { |
| 5053 | pool->refcnt++; |
| 5054 | return pool; |
| 5055 | } |
| 5056 | } |
| 5057 | |
| 5058 | /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ |
| 5059 | for (pod = 0; pod < pt->nr_pods; pod++) { |
| 5060 | if (cpumask_subset(src1p: attrs->__pod_cpumask, src2p: pt->pod_cpus[pod])) { |
| 5061 | node = pt->pod_node[pod]; |
| 5062 | break; |
| 5063 | } |
| 5064 | } |
| 5065 | |
| 5066 | /* nope, create a new one */ |
| 5067 | pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); |
| 5068 | if (!pool || init_worker_pool(pool) < 0) |
| 5069 | goto fail; |
| 5070 | |
| 5071 | pool->node = node; |
| 5072 | copy_workqueue_attrs(to: pool->attrs, from: attrs); |
| 5073 | wqattrs_clear_for_pool(attrs: pool->attrs); |
| 5074 | |
| 5075 | if (worker_pool_assign_id(pool) < 0) |
| 5076 | goto fail; |
| 5077 | |
| 5078 | /* create and start the initial worker */ |
| 5079 | if (wq_online && !create_worker(pool)) |
| 5080 | goto fail; |
| 5081 | |
| 5082 | /* install */ |
| 5083 | hash_add(unbound_pool_hash, &pool->hash_node, hash); |
| 5084 | |
| 5085 | return pool; |
| 5086 | fail: |
| 5087 | if (pool) |
| 5088 | put_unbound_pool(pool); |
| 5089 | return NULL; |
| 5090 | } |
| 5091 | |
| 5092 | /* |
| 5093 | * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero |
| 5094 | * refcnt and needs to be destroyed. |
| 5095 | */ |
| 5096 | static void pwq_release_workfn(struct kthread_work *work) |
| 5097 | { |
| 5098 | struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, |
| 5099 | release_work); |
| 5100 | struct workqueue_struct *wq = pwq->wq; |
| 5101 | struct worker_pool *pool = pwq->pool; |
| 5102 | bool is_last = false; |
| 5103 | |
| 5104 | /* |
| 5105 | * When @pwq is not linked, it doesn't hold any reference to the |
| 5106 | * @wq, and @wq is invalid to access. |
| 5107 | */ |
| 5108 | if (!list_empty(head: &pwq->pwqs_node)) { |
| 5109 | mutex_lock(lock: &wq->mutex); |
| 5110 | list_del_rcu(entry: &pwq->pwqs_node); |
| 5111 | is_last = list_empty(head: &wq->pwqs); |
| 5112 | |
| 5113 | /* |
| 5114 | * For ordered workqueue with a plugged dfl_pwq, restart it now. |
| 5115 | */ |
| 5116 | if (!is_last && (wq->flags & __WQ_ORDERED)) |
| 5117 | unplug_oldest_pwq(wq); |
| 5118 | |
| 5119 | mutex_unlock(lock: &wq->mutex); |
| 5120 | } |
| 5121 | |
| 5122 | if (wq->flags & WQ_UNBOUND) { |
| 5123 | mutex_lock(lock: &wq_pool_mutex); |
| 5124 | put_unbound_pool(pool); |
| 5125 | mutex_unlock(lock: &wq_pool_mutex); |
| 5126 | } |
| 5127 | |
| 5128 | if (!list_empty(head: &pwq->pending_node)) { |
| 5129 | struct wq_node_nr_active *nna = |
| 5130 | wq_node_nr_active(wq: pwq->wq, node: pwq->pool->node); |
| 5131 | |
| 5132 | raw_spin_lock_irq(&nna->lock); |
| 5133 | list_del_init(entry: &pwq->pending_node); |
| 5134 | raw_spin_unlock_irq(&nna->lock); |
| 5135 | } |
| 5136 | |
| 5137 | kfree_rcu(pwq, rcu); |
| 5138 | |
| 5139 | /* |
| 5140 | * If we're the last pwq going away, @wq is already dead and no one |
| 5141 | * is gonna access it anymore. Schedule RCU free. |
| 5142 | */ |
| 5143 | if (is_last) { |
| 5144 | wq_unregister_lockdep(wq); |
| 5145 | call_rcu(head: &wq->rcu, func: rcu_free_wq); |
| 5146 | } |
| 5147 | } |
| 5148 | |
| 5149 | /* initialize newly allocated @pwq which is associated with @wq and @pool */ |
| 5150 | static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, |
| 5151 | struct worker_pool *pool) |
| 5152 | { |
| 5153 | BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); |
| 5154 | |
| 5155 | memset(s: pwq, c: 0, n: sizeof(*pwq)); |
| 5156 | |
| 5157 | pwq->pool = pool; |
| 5158 | pwq->wq = wq; |
| 5159 | pwq->flush_color = -1; |
| 5160 | pwq->refcnt = 1; |
| 5161 | INIT_LIST_HEAD(list: &pwq->inactive_works); |
| 5162 | INIT_LIST_HEAD(list: &pwq->pending_node); |
| 5163 | INIT_LIST_HEAD(list: &pwq->pwqs_node); |
| 5164 | INIT_LIST_HEAD(list: &pwq->mayday_node); |
| 5165 | kthread_init_work(&pwq->release_work, pwq_release_workfn); |
| 5166 | } |
| 5167 | |
| 5168 | /* sync @pwq with the current state of its associated wq and link it */ |
| 5169 | static void link_pwq(struct pool_workqueue *pwq) |
| 5170 | { |
| 5171 | struct workqueue_struct *wq = pwq->wq; |
| 5172 | |
| 5173 | lockdep_assert_held(&wq->mutex); |
| 5174 | |
| 5175 | /* may be called multiple times, ignore if already linked */ |
| 5176 | if (!list_empty(head: &pwq->pwqs_node)) |
| 5177 | return; |
| 5178 | |
| 5179 | /* set the matching work_color */ |
| 5180 | pwq->work_color = wq->work_color; |
| 5181 | |
| 5182 | /* link in @pwq */ |
| 5183 | list_add_tail_rcu(new: &pwq->pwqs_node, head: &wq->pwqs); |
| 5184 | } |
| 5185 | |
| 5186 | /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ |
| 5187 | static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, |
| 5188 | const struct workqueue_attrs *attrs) |
| 5189 | { |
| 5190 | struct worker_pool *pool; |
| 5191 | struct pool_workqueue *pwq; |
| 5192 | |
| 5193 | lockdep_assert_held(&wq_pool_mutex); |
| 5194 | |
| 5195 | pool = get_unbound_pool(attrs); |
| 5196 | if (!pool) |
| 5197 | return NULL; |
| 5198 | |
| 5199 | pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); |
| 5200 | if (!pwq) { |
| 5201 | put_unbound_pool(pool); |
| 5202 | return NULL; |
| 5203 | } |
| 5204 | |
| 5205 | init_pwq(pwq, wq, pool); |
| 5206 | return pwq; |
| 5207 | } |
| 5208 | |
| 5209 | static void apply_wqattrs_lock(void) |
| 5210 | { |
| 5211 | mutex_lock(lock: &wq_pool_mutex); |
| 5212 | } |
| 5213 | |
| 5214 | static void apply_wqattrs_unlock(void) |
| 5215 | { |
| 5216 | mutex_unlock(lock: &wq_pool_mutex); |
| 5217 | } |
| 5218 | |
| 5219 | /** |
| 5220 | * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod |
| 5221 | * @attrs: the wq_attrs of the default pwq of the target workqueue |
| 5222 | * @cpu: the target CPU |
| 5223 | * |
| 5224 | * Calculate the cpumask a workqueue with @attrs should use on @pod. |
| 5225 | * The result is stored in @attrs->__pod_cpumask. |
| 5226 | * |
| 5227 | * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled |
| 5228 | * and @pod has online CPUs requested by @attrs, the returned cpumask is the |
| 5229 | * intersection of the possible CPUs of @pod and @attrs->cpumask. |
| 5230 | * |
| 5231 | * The caller is responsible for ensuring that the cpumask of @pod stays stable. |
| 5232 | */ |
| 5233 | static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu) |
| 5234 | { |
| 5235 | const struct wq_pod_type *pt = wqattrs_pod_type(attrs); |
| 5236 | int pod = pt->cpu_pod[cpu]; |
| 5237 | |
| 5238 | /* calculate possible CPUs in @pod that @attrs wants */ |
| 5239 | cpumask_and(dstp: attrs->__pod_cpumask, src1p: pt->pod_cpus[pod], src2p: attrs->cpumask); |
| 5240 | /* does @pod have any online CPUs @attrs wants? */ |
| 5241 | if (!cpumask_intersects(src1p: attrs->__pod_cpumask, src2p: wq_online_cpumask)) { |
| 5242 | cpumask_copy(dstp: attrs->__pod_cpumask, srcp: attrs->cpumask); |
| 5243 | return; |
| 5244 | } |
| 5245 | } |
| 5246 | |
| 5247 | /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ |
| 5248 | static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, |
| 5249 | int cpu, struct pool_workqueue *pwq) |
| 5250 | { |
| 5251 | struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); |
| 5252 | struct pool_workqueue *old_pwq; |
| 5253 | |
| 5254 | lockdep_assert_held(&wq_pool_mutex); |
| 5255 | lockdep_assert_held(&wq->mutex); |
| 5256 | |
| 5257 | /* link_pwq() can handle duplicate calls */ |
| 5258 | link_pwq(pwq); |
| 5259 | |
| 5260 | old_pwq = rcu_access_pointer(*slot); |
| 5261 | rcu_assign_pointer(*slot, pwq); |
| 5262 | return old_pwq; |
| 5263 | } |
| 5264 | |
| 5265 | /* context to store the prepared attrs & pwqs before applying */ |
| 5266 | struct apply_wqattrs_ctx { |
| 5267 | struct workqueue_struct *wq; /* target workqueue */ |
| 5268 | struct workqueue_attrs *attrs; /* attrs to apply */ |
| 5269 | struct list_head list; /* queued for batching commit */ |
| 5270 | struct pool_workqueue *dfl_pwq; |
| 5271 | struct pool_workqueue *pwq_tbl[]; |
| 5272 | }; |
| 5273 | |
| 5274 | /* free the resources after success or abort */ |
| 5275 | static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) |
| 5276 | { |
| 5277 | if (ctx) { |
| 5278 | int cpu; |
| 5279 | |
| 5280 | for_each_possible_cpu(cpu) |
| 5281 | put_pwq_unlocked(pwq: ctx->pwq_tbl[cpu]); |
| 5282 | put_pwq_unlocked(pwq: ctx->dfl_pwq); |
| 5283 | |
| 5284 | free_workqueue_attrs(attrs: ctx->attrs); |
| 5285 | |
| 5286 | kfree(objp: ctx); |
| 5287 | } |
| 5288 | } |
| 5289 | |
| 5290 | /* allocate the attrs and pwqs for later installation */ |
| 5291 | static struct apply_wqattrs_ctx * |
| 5292 | apply_wqattrs_prepare(struct workqueue_struct *wq, |
| 5293 | const struct workqueue_attrs *attrs, |
| 5294 | const cpumask_var_t unbound_cpumask) |
| 5295 | { |
| 5296 | struct apply_wqattrs_ctx *ctx; |
| 5297 | struct workqueue_attrs *new_attrs; |
| 5298 | int cpu; |
| 5299 | |
| 5300 | lockdep_assert_held(&wq_pool_mutex); |
| 5301 | |
| 5302 | if (WARN_ON(attrs->affn_scope < 0 || |
| 5303 | attrs->affn_scope >= WQ_AFFN_NR_TYPES)) |
| 5304 | return ERR_PTR(error: -EINVAL); |
| 5305 | |
| 5306 | ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); |
| 5307 | |
| 5308 | new_attrs = alloc_workqueue_attrs(); |
| 5309 | if (!ctx || !new_attrs) |
| 5310 | goto out_free; |
| 5311 | |
| 5312 | /* |
| 5313 | * If something goes wrong during CPU up/down, we'll fall back to |
| 5314 | * the default pwq covering whole @attrs->cpumask. Always create |
| 5315 | * it even if we don't use it immediately. |
| 5316 | */ |
| 5317 | copy_workqueue_attrs(to: new_attrs, from: attrs); |
| 5318 | wqattrs_actualize_cpumask(attrs: new_attrs, unbound_cpumask); |
| 5319 | cpumask_copy(dstp: new_attrs->__pod_cpumask, srcp: new_attrs->cpumask); |
| 5320 | ctx->dfl_pwq = alloc_unbound_pwq(wq, attrs: new_attrs); |
| 5321 | if (!ctx->dfl_pwq) |
| 5322 | goto out_free; |
| 5323 | |
| 5324 | for_each_possible_cpu(cpu) { |
| 5325 | if (new_attrs->ordered) { |
| 5326 | ctx->dfl_pwq->refcnt++; |
| 5327 | ctx->pwq_tbl[cpu] = ctx->dfl_pwq; |
| 5328 | } else { |
| 5329 | wq_calc_pod_cpumask(attrs: new_attrs, cpu); |
| 5330 | ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, attrs: new_attrs); |
| 5331 | if (!ctx->pwq_tbl[cpu]) |
| 5332 | goto out_free; |
| 5333 | } |
| 5334 | } |
| 5335 | |
| 5336 | /* save the user configured attrs and sanitize it. */ |
| 5337 | copy_workqueue_attrs(to: new_attrs, from: attrs); |
| 5338 | cpumask_and(dstp: new_attrs->cpumask, src1p: new_attrs->cpumask, cpu_possible_mask); |
| 5339 | cpumask_copy(dstp: new_attrs->__pod_cpumask, srcp: new_attrs->cpumask); |
| 5340 | ctx->attrs = new_attrs; |
| 5341 | |
| 5342 | /* |
| 5343 | * For initialized ordered workqueues, there should only be one pwq |
| 5344 | * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution |
| 5345 | * of newly queued work items until execution of older work items in |
| 5346 | * the old pwq's have completed. |
| 5347 | */ |
| 5348 | if ((wq->flags & __WQ_ORDERED) && !list_empty(head: &wq->pwqs)) |
| 5349 | ctx->dfl_pwq->plugged = true; |
| 5350 | |
| 5351 | ctx->wq = wq; |
| 5352 | return ctx; |
| 5353 | |
| 5354 | out_free: |
| 5355 | free_workqueue_attrs(attrs: new_attrs); |
| 5356 | apply_wqattrs_cleanup(ctx); |
| 5357 | return ERR_PTR(error: -ENOMEM); |
| 5358 | } |
| 5359 | |
| 5360 | /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ |
| 5361 | static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) |
| 5362 | { |
| 5363 | int cpu; |
| 5364 | |
| 5365 | /* all pwqs have been created successfully, let's install'em */ |
| 5366 | mutex_lock(lock: &ctx->wq->mutex); |
| 5367 | |
| 5368 | copy_workqueue_attrs(to: ctx->wq->unbound_attrs, from: ctx->attrs); |
| 5369 | |
| 5370 | /* save the previous pwqs and install the new ones */ |
| 5371 | for_each_possible_cpu(cpu) |
| 5372 | ctx->pwq_tbl[cpu] = install_unbound_pwq(wq: ctx->wq, cpu, |
| 5373 | pwq: ctx->pwq_tbl[cpu]); |
| 5374 | ctx->dfl_pwq = install_unbound_pwq(wq: ctx->wq, cpu: -1, pwq: ctx->dfl_pwq); |
| 5375 | |
| 5376 | /* update node_nr_active->max */ |
| 5377 | wq_update_node_max_active(wq: ctx->wq, off_cpu: -1); |
| 5378 | |
| 5379 | /* rescuer needs to respect wq cpumask changes */ |
| 5380 | if (ctx->wq->rescuer) |
| 5381 | set_cpus_allowed_ptr(p: ctx->wq->rescuer->task, |
| 5382 | new_mask: unbound_effective_cpumask(wq: ctx->wq)); |
| 5383 | |
| 5384 | mutex_unlock(lock: &ctx->wq->mutex); |
| 5385 | } |
| 5386 | |
| 5387 | static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, |
| 5388 | const struct workqueue_attrs *attrs) |
| 5389 | { |
| 5390 | struct apply_wqattrs_ctx *ctx; |
| 5391 | |
| 5392 | /* only unbound workqueues can change attributes */ |
| 5393 | if (WARN_ON(!(wq->flags & WQ_UNBOUND))) |
| 5394 | return -EINVAL; |
| 5395 | |
| 5396 | ctx = apply_wqattrs_prepare(wq, attrs, unbound_cpumask: wq_unbound_cpumask); |
| 5397 | if (IS_ERR(ptr: ctx)) |
| 5398 | return PTR_ERR(ptr: ctx); |
| 5399 | |
| 5400 | /* the ctx has been prepared successfully, let's commit it */ |
| 5401 | apply_wqattrs_commit(ctx); |
| 5402 | apply_wqattrs_cleanup(ctx); |
| 5403 | |
| 5404 | return 0; |
| 5405 | } |
| 5406 | |
| 5407 | /** |
| 5408 | * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue |
| 5409 | * @wq: the target workqueue |
| 5410 | * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() |
| 5411 | * |
| 5412 | * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps |
| 5413 | * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that |
| 5414 | * work items are affine to the pod it was issued on. Older pwqs are released as |
| 5415 | * in-flight work items finish. Note that a work item which repeatedly requeues |
| 5416 | * itself back-to-back will stay on its current pwq. |
| 5417 | * |
| 5418 | * Performs GFP_KERNEL allocations. |
| 5419 | * |
| 5420 | * Return: 0 on success and -errno on failure. |
| 5421 | */ |
| 5422 | int apply_workqueue_attrs(struct workqueue_struct *wq, |
| 5423 | const struct workqueue_attrs *attrs) |
| 5424 | { |
| 5425 | int ret; |
| 5426 | |
| 5427 | mutex_lock(lock: &wq_pool_mutex); |
| 5428 | ret = apply_workqueue_attrs_locked(wq, attrs); |
| 5429 | mutex_unlock(lock: &wq_pool_mutex); |
| 5430 | |
| 5431 | return ret; |
| 5432 | } |
| 5433 | |
| 5434 | /** |
| 5435 | * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug |
| 5436 | * @wq: the target workqueue |
| 5437 | * @cpu: the CPU to update the pwq slot for |
| 5438 | * |
| 5439 | * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and |
| 5440 | * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged. |
| 5441 | * |
| 5442 | * |
| 5443 | * If pod affinity can't be adjusted due to memory allocation failure, it falls |
| 5444 | * back to @wq->dfl_pwq which may not be optimal but is always correct. |
| 5445 | * |
| 5446 | * Note that when the last allowed CPU of a pod goes offline for a workqueue |
| 5447 | * with a cpumask spanning multiple pods, the workers which were already |
| 5448 | * executing the work items for the workqueue will lose their CPU affinity and |
| 5449 | * may execute on any CPU. This is similar to how per-cpu workqueues behave on |
| 5450 | * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's |
| 5451 | * responsibility to flush the work item from CPU_DOWN_PREPARE. |
| 5452 | */ |
| 5453 | static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu) |
| 5454 | { |
| 5455 | struct pool_workqueue *old_pwq = NULL, *pwq; |
| 5456 | struct workqueue_attrs *target_attrs; |
| 5457 | |
| 5458 | lockdep_assert_held(&wq_pool_mutex); |
| 5459 | |
| 5460 | if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) |
| 5461 | return; |
| 5462 | |
| 5463 | /* |
| 5464 | * We don't wanna alloc/free wq_attrs for each wq for each CPU. |
| 5465 | * Let's use a preallocated one. The following buf is protected by |
| 5466 | * CPU hotplug exclusion. |
| 5467 | */ |
| 5468 | target_attrs = unbound_wq_update_pwq_attrs_buf; |
| 5469 | |
| 5470 | copy_workqueue_attrs(to: target_attrs, from: wq->unbound_attrs); |
| 5471 | wqattrs_actualize_cpumask(attrs: target_attrs, unbound_cpumask: wq_unbound_cpumask); |
| 5472 | |
| 5473 | /* nothing to do if the target cpumask matches the current pwq */ |
| 5474 | wq_calc_pod_cpumask(attrs: target_attrs, cpu); |
| 5475 | if (wqattrs_equal(a: target_attrs, b: unbound_pwq(wq, cpu)->pool->attrs)) |
| 5476 | return; |
| 5477 | |
| 5478 | /* create a new pwq */ |
| 5479 | pwq = alloc_unbound_pwq(wq, attrs: target_attrs); |
| 5480 | if (!pwq) { |
| 5481 | pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n" , |
| 5482 | wq->name); |
| 5483 | goto use_dfl_pwq; |
| 5484 | } |
| 5485 | |
| 5486 | /* Install the new pwq. */ |
| 5487 | mutex_lock(lock: &wq->mutex); |
| 5488 | old_pwq = install_unbound_pwq(wq, cpu, pwq); |
| 5489 | goto out_unlock; |
| 5490 | |
| 5491 | use_dfl_pwq: |
| 5492 | mutex_lock(lock: &wq->mutex); |
| 5493 | pwq = unbound_pwq(wq, cpu: -1); |
| 5494 | raw_spin_lock_irq(&pwq->pool->lock); |
| 5495 | get_pwq(pwq); |
| 5496 | raw_spin_unlock_irq(&pwq->pool->lock); |
| 5497 | old_pwq = install_unbound_pwq(wq, cpu, pwq); |
| 5498 | out_unlock: |
| 5499 | mutex_unlock(lock: &wq->mutex); |
| 5500 | put_pwq_unlocked(pwq: old_pwq); |
| 5501 | } |
| 5502 | |
| 5503 | static int alloc_and_link_pwqs(struct workqueue_struct *wq) |
| 5504 | { |
| 5505 | bool highpri = wq->flags & WQ_HIGHPRI; |
| 5506 | int cpu, ret; |
| 5507 | |
| 5508 | lockdep_assert_held(&wq_pool_mutex); |
| 5509 | |
| 5510 | wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); |
| 5511 | if (!wq->cpu_pwq) |
| 5512 | goto enomem; |
| 5513 | |
| 5514 | if (!(wq->flags & WQ_UNBOUND)) { |
| 5515 | struct worker_pool __percpu *pools; |
| 5516 | |
| 5517 | if (wq->flags & WQ_BH) |
| 5518 | pools = bh_worker_pools; |
| 5519 | else |
| 5520 | pools = cpu_worker_pools; |
| 5521 | |
| 5522 | for_each_possible_cpu(cpu) { |
| 5523 | struct pool_workqueue **pwq_p; |
| 5524 | struct worker_pool *pool; |
| 5525 | |
| 5526 | pool = &(per_cpu_ptr(pools, cpu)[highpri]); |
| 5527 | pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); |
| 5528 | |
| 5529 | *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, |
| 5530 | pool->node); |
| 5531 | if (!*pwq_p) |
| 5532 | goto enomem; |
| 5533 | |
| 5534 | init_pwq(pwq: *pwq_p, wq, pool); |
| 5535 | |
| 5536 | mutex_lock(lock: &wq->mutex); |
| 5537 | link_pwq(pwq: *pwq_p); |
| 5538 | mutex_unlock(lock: &wq->mutex); |
| 5539 | } |
| 5540 | return 0; |
| 5541 | } |
| 5542 | |
| 5543 | if (wq->flags & __WQ_ORDERED) { |
| 5544 | struct pool_workqueue *dfl_pwq; |
| 5545 | |
| 5546 | ret = apply_workqueue_attrs_locked(wq, attrs: ordered_wq_attrs[highpri]); |
| 5547 | /* there should only be single pwq for ordering guarantee */ |
| 5548 | dfl_pwq = rcu_access_pointer(wq->dfl_pwq); |
| 5549 | WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || |
| 5550 | wq->pwqs.prev != &dfl_pwq->pwqs_node), |
| 5551 | "ordering guarantee broken for workqueue %s\n" , wq->name); |
| 5552 | } else { |
| 5553 | ret = apply_workqueue_attrs_locked(wq, attrs: unbound_std_wq_attrs[highpri]); |
| 5554 | } |
| 5555 | |
| 5556 | return ret; |
| 5557 | |
| 5558 | enomem: |
| 5559 | if (wq->cpu_pwq) { |
| 5560 | for_each_possible_cpu(cpu) { |
| 5561 | struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); |
| 5562 | |
| 5563 | if (pwq) |
| 5564 | kmem_cache_free(s: pwq_cache, objp: pwq); |
| 5565 | } |
| 5566 | free_percpu(pdata: wq->cpu_pwq); |
| 5567 | wq->cpu_pwq = NULL; |
| 5568 | } |
| 5569 | return -ENOMEM; |
| 5570 | } |
| 5571 | |
| 5572 | static int wq_clamp_max_active(int max_active, unsigned int flags, |
| 5573 | const char *name) |
| 5574 | { |
| 5575 | if (max_active < 1 || max_active > WQ_MAX_ACTIVE) |
| 5576 | pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n" , |
| 5577 | max_active, name, 1, WQ_MAX_ACTIVE); |
| 5578 | |
| 5579 | return clamp_val(max_active, 1, WQ_MAX_ACTIVE); |
| 5580 | } |
| 5581 | |
| 5582 | /* |
| 5583 | * Workqueues which may be used during memory reclaim should have a rescuer |
| 5584 | * to guarantee forward progress. |
| 5585 | */ |
| 5586 | static int init_rescuer(struct workqueue_struct *wq) |
| 5587 | { |
| 5588 | struct worker *rescuer; |
| 5589 | char id_buf[WORKER_ID_LEN]; |
| 5590 | int ret; |
| 5591 | |
| 5592 | lockdep_assert_held(&wq_pool_mutex); |
| 5593 | |
| 5594 | if (!(wq->flags & WQ_MEM_RECLAIM)) |
| 5595 | return 0; |
| 5596 | |
| 5597 | rescuer = alloc_worker(NUMA_NO_NODE); |
| 5598 | if (!rescuer) { |
| 5599 | pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n" , |
| 5600 | wq->name); |
| 5601 | return -ENOMEM; |
| 5602 | } |
| 5603 | |
| 5604 | rescuer->rescue_wq = wq; |
| 5605 | format_worker_id(buf: id_buf, size: sizeof(id_buf), worker: rescuer, NULL); |
| 5606 | |
| 5607 | rescuer->task = kthread_create(rescuer_thread, rescuer, "%s" , id_buf); |
| 5608 | if (IS_ERR(ptr: rescuer->task)) { |
| 5609 | ret = PTR_ERR(ptr: rescuer->task); |
| 5610 | pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe" , |
| 5611 | wq->name, ERR_PTR(ret)); |
| 5612 | kfree(objp: rescuer); |
| 5613 | return ret; |
| 5614 | } |
| 5615 | |
| 5616 | wq->rescuer = rescuer; |
| 5617 | if (wq->flags & WQ_UNBOUND) |
| 5618 | kthread_bind_mask(k: rescuer->task, mask: unbound_effective_cpumask(wq)); |
| 5619 | else |
| 5620 | kthread_bind_mask(k: rescuer->task, cpu_possible_mask); |
| 5621 | wake_up_process(tsk: rescuer->task); |
| 5622 | |
| 5623 | return 0; |
| 5624 | } |
| 5625 | |
| 5626 | /** |
| 5627 | * wq_adjust_max_active - update a wq's max_active to the current setting |
| 5628 | * @wq: target workqueue |
| 5629 | * |
| 5630 | * If @wq isn't freezing, set @wq->max_active to the saved_max_active and |
| 5631 | * activate inactive work items accordingly. If @wq is freezing, clear |
| 5632 | * @wq->max_active to zero. |
| 5633 | */ |
| 5634 | static void wq_adjust_max_active(struct workqueue_struct *wq) |
| 5635 | { |
| 5636 | bool activated; |
| 5637 | int new_max, new_min; |
| 5638 | |
| 5639 | lockdep_assert_held(&wq->mutex); |
| 5640 | |
| 5641 | if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { |
| 5642 | new_max = 0; |
| 5643 | new_min = 0; |
| 5644 | } else { |
| 5645 | new_max = wq->saved_max_active; |
| 5646 | new_min = wq->saved_min_active; |
| 5647 | } |
| 5648 | |
| 5649 | if (wq->max_active == new_max && wq->min_active == new_min) |
| 5650 | return; |
| 5651 | |
| 5652 | /* |
| 5653 | * Update @wq->max/min_active and then kick inactive work items if more |
| 5654 | * active work items are allowed. This doesn't break work item ordering |
| 5655 | * because new work items are always queued behind existing inactive |
| 5656 | * work items if there are any. |
| 5657 | */ |
| 5658 | WRITE_ONCE(wq->max_active, new_max); |
| 5659 | WRITE_ONCE(wq->min_active, new_min); |
| 5660 | |
| 5661 | if (wq->flags & WQ_UNBOUND) |
| 5662 | wq_update_node_max_active(wq, off_cpu: -1); |
| 5663 | |
| 5664 | if (new_max == 0) |
| 5665 | return; |
| 5666 | |
| 5667 | /* |
| 5668 | * Round-robin through pwq's activating the first inactive work item |
| 5669 | * until max_active is filled. |
| 5670 | */ |
| 5671 | do { |
| 5672 | struct pool_workqueue *pwq; |
| 5673 | |
| 5674 | activated = false; |
| 5675 | for_each_pwq(pwq, wq) { |
| 5676 | unsigned long irq_flags; |
| 5677 | |
| 5678 | /* can be called during early boot w/ irq disabled */ |
| 5679 | raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); |
| 5680 | if (pwq_activate_first_inactive(pwq, fill: true)) { |
| 5681 | activated = true; |
| 5682 | kick_pool(pool: pwq->pool); |
| 5683 | } |
| 5684 | raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); |
| 5685 | } |
| 5686 | } while (activated); |
| 5687 | } |
| 5688 | |
| 5689 | __printf(1, 0) |
| 5690 | static struct workqueue_struct *__alloc_workqueue(const char *fmt, |
| 5691 | unsigned int flags, |
| 5692 | int max_active, va_list args) |
| 5693 | { |
| 5694 | struct workqueue_struct *wq; |
| 5695 | size_t wq_size; |
| 5696 | int name_len; |
| 5697 | |
| 5698 | if (flags & WQ_BH) { |
| 5699 | if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) |
| 5700 | return NULL; |
| 5701 | if (WARN_ON_ONCE(max_active)) |
| 5702 | return NULL; |
| 5703 | } |
| 5704 | |
| 5705 | /* see the comment above the definition of WQ_POWER_EFFICIENT */ |
| 5706 | if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) |
| 5707 | flags |= WQ_UNBOUND; |
| 5708 | |
| 5709 | /* allocate wq and format name */ |
| 5710 | if (flags & WQ_UNBOUND) |
| 5711 | wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); |
| 5712 | else |
| 5713 | wq_size = sizeof(*wq); |
| 5714 | |
| 5715 | wq = kzalloc_noprof(size: wq_size, GFP_KERNEL); |
| 5716 | if (!wq) |
| 5717 | return NULL; |
| 5718 | |
| 5719 | if (flags & WQ_UNBOUND) { |
| 5720 | wq->unbound_attrs = alloc_workqueue_attrs_noprof(); |
| 5721 | if (!wq->unbound_attrs) |
| 5722 | goto err_free_wq; |
| 5723 | } |
| 5724 | |
| 5725 | name_len = vsnprintf(buf: wq->name, size: sizeof(wq->name), fmt, args); |
| 5726 | |
| 5727 | if (name_len >= WQ_NAME_LEN) |
| 5728 | pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n" , |
| 5729 | wq->name); |
| 5730 | |
| 5731 | if (flags & WQ_BH) { |
| 5732 | /* |
| 5733 | * BH workqueues always share a single execution context per CPU |
| 5734 | * and don't impose any max_active limit. |
| 5735 | */ |
| 5736 | max_active = INT_MAX; |
| 5737 | } else { |
| 5738 | max_active = max_active ?: WQ_DFL_ACTIVE; |
| 5739 | max_active = wq_clamp_max_active(max_active, flags, name: wq->name); |
| 5740 | } |
| 5741 | |
| 5742 | /* init wq */ |
| 5743 | wq->flags = flags; |
| 5744 | wq->max_active = max_active; |
| 5745 | wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); |
| 5746 | wq->saved_max_active = wq->max_active; |
| 5747 | wq->saved_min_active = wq->min_active; |
| 5748 | mutex_init(&wq->mutex); |
| 5749 | atomic_set(v: &wq->nr_pwqs_to_flush, i: 0); |
| 5750 | INIT_LIST_HEAD(list: &wq->pwqs); |
| 5751 | INIT_LIST_HEAD(list: &wq->flusher_queue); |
| 5752 | INIT_LIST_HEAD(list: &wq->flusher_overflow); |
| 5753 | INIT_LIST_HEAD(list: &wq->maydays); |
| 5754 | |
| 5755 | INIT_LIST_HEAD(list: &wq->list); |
| 5756 | |
| 5757 | if (flags & WQ_UNBOUND) { |
| 5758 | if (alloc_node_nr_active(nna_ar: wq->node_nr_active) < 0) |
| 5759 | goto err_free_wq; |
| 5760 | } |
| 5761 | |
| 5762 | /* |
| 5763 | * wq_pool_mutex protects the workqueues list, allocations of PWQs, |
| 5764 | * and the global freeze state. |
| 5765 | */ |
| 5766 | apply_wqattrs_lock(); |
| 5767 | |
| 5768 | if (alloc_and_link_pwqs(wq) < 0) |
| 5769 | goto err_unlock_free_node_nr_active; |
| 5770 | |
| 5771 | mutex_lock(lock: &wq->mutex); |
| 5772 | wq_adjust_max_active(wq); |
| 5773 | mutex_unlock(lock: &wq->mutex); |
| 5774 | |
| 5775 | list_add_tail_rcu(new: &wq->list, head: &workqueues); |
| 5776 | |
| 5777 | if (wq_online && init_rescuer(wq) < 0) |
| 5778 | goto err_unlock_destroy; |
| 5779 | |
| 5780 | apply_wqattrs_unlock(); |
| 5781 | |
| 5782 | if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) |
| 5783 | goto err_destroy; |
| 5784 | |
| 5785 | return wq; |
| 5786 | |
| 5787 | err_unlock_free_node_nr_active: |
| 5788 | apply_wqattrs_unlock(); |
| 5789 | /* |
| 5790 | * Failed alloc_and_link_pwqs() may leave pending pwq->release_work, |
| 5791 | * flushing the pwq_release_worker ensures that the pwq_release_workfn() |
| 5792 | * completes before calling kfree(wq). |
| 5793 | */ |
| 5794 | if (wq->flags & WQ_UNBOUND) { |
| 5795 | kthread_flush_worker(worker: pwq_release_worker); |
| 5796 | free_node_nr_active(nna_ar: wq->node_nr_active); |
| 5797 | } |
| 5798 | err_free_wq: |
| 5799 | free_workqueue_attrs(attrs: wq->unbound_attrs); |
| 5800 | kfree(objp: wq); |
| 5801 | return NULL; |
| 5802 | err_unlock_destroy: |
| 5803 | apply_wqattrs_unlock(); |
| 5804 | err_destroy: |
| 5805 | destroy_workqueue(wq); |
| 5806 | return NULL; |
| 5807 | } |
| 5808 | |
| 5809 | __printf(1, 4) |
| 5810 | struct workqueue_struct *alloc_workqueue_noprof(const char *fmt, |
| 5811 | unsigned int flags, |
| 5812 | int max_active, ...) |
| 5813 | { |
| 5814 | struct workqueue_struct *wq; |
| 5815 | va_list args; |
| 5816 | |
| 5817 | va_start(args, max_active); |
| 5818 | wq = __alloc_workqueue(fmt, flags, max_active, args); |
| 5819 | va_end(args); |
| 5820 | if (!wq) |
| 5821 | return NULL; |
| 5822 | |
| 5823 | wq_init_lockdep(wq); |
| 5824 | |
| 5825 | return wq; |
| 5826 | } |
| 5827 | EXPORT_SYMBOL_GPL(alloc_workqueue_noprof); |
| 5828 | |
| 5829 | #ifdef CONFIG_LOCKDEP |
| 5830 | __printf(1, 5) |
| 5831 | struct workqueue_struct * |
| 5832 | alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags, |
| 5833 | int max_active, struct lockdep_map *lockdep_map, ...) |
| 5834 | { |
| 5835 | struct workqueue_struct *wq; |
| 5836 | va_list args; |
| 5837 | |
| 5838 | va_start(args, lockdep_map); |
| 5839 | wq = __alloc_workqueue(fmt, flags, max_active, args); |
| 5840 | va_end(args); |
| 5841 | if (!wq) |
| 5842 | return NULL; |
| 5843 | |
| 5844 | wq->lockdep_map = lockdep_map; |
| 5845 | |
| 5846 | return wq; |
| 5847 | } |
| 5848 | EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map); |
| 5849 | #endif |
| 5850 | |
| 5851 | static bool pwq_busy(struct pool_workqueue *pwq) |
| 5852 | { |
| 5853 | int i; |
| 5854 | |
| 5855 | for (i = 0; i < WORK_NR_COLORS; i++) |
| 5856 | if (pwq->nr_in_flight[i]) |
| 5857 | return true; |
| 5858 | |
| 5859 | if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) |
| 5860 | return true; |
| 5861 | if (!pwq_is_empty(pwq)) |
| 5862 | return true; |
| 5863 | |
| 5864 | return false; |
| 5865 | } |
| 5866 | |
| 5867 | /** |
| 5868 | * destroy_workqueue - safely terminate a workqueue |
| 5869 | * @wq: target workqueue |
| 5870 | * |
| 5871 | * Safely destroy a workqueue. All work currently pending will be done first. |
| 5872 | * |
| 5873 | * This function does NOT guarantee that non-pending work that has been |
| 5874 | * submitted with queue_delayed_work() and similar functions will be done |
| 5875 | * before destroying the workqueue. The fundamental problem is that, currently, |
| 5876 | * the workqueue has no way of accessing non-pending delayed_work. delayed_work |
| 5877 | * is only linked on the timer-side. All delayed_work must, therefore, be |
| 5878 | * canceled before calling this function. |
| 5879 | * |
| 5880 | * TODO: It would be better if the problem described above wouldn't exist and |
| 5881 | * destroy_workqueue() would cleanly cancel all pending and non-pending |
| 5882 | * delayed_work. |
| 5883 | */ |
| 5884 | void destroy_workqueue(struct workqueue_struct *wq) |
| 5885 | { |
| 5886 | struct pool_workqueue *pwq; |
| 5887 | int cpu; |
| 5888 | |
| 5889 | /* |
| 5890 | * Remove it from sysfs first so that sanity check failure doesn't |
| 5891 | * lead to sysfs name conflicts. |
| 5892 | */ |
| 5893 | workqueue_sysfs_unregister(wq); |
| 5894 | |
| 5895 | /* mark the workqueue destruction is in progress */ |
| 5896 | mutex_lock(lock: &wq->mutex); |
| 5897 | wq->flags |= __WQ_DESTROYING; |
| 5898 | mutex_unlock(lock: &wq->mutex); |
| 5899 | |
| 5900 | /* drain it before proceeding with destruction */ |
| 5901 | drain_workqueue(wq); |
| 5902 | |
| 5903 | /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ |
| 5904 | if (wq->rescuer) { |
| 5905 | struct worker *rescuer = wq->rescuer; |
| 5906 | |
| 5907 | /* this prevents new queueing */ |
| 5908 | raw_spin_lock_irq(&wq_mayday_lock); |
| 5909 | wq->rescuer = NULL; |
| 5910 | raw_spin_unlock_irq(&wq_mayday_lock); |
| 5911 | |
| 5912 | /* rescuer will empty maydays list before exiting */ |
| 5913 | kthread_stop(k: rescuer->task); |
| 5914 | kfree(objp: rescuer); |
| 5915 | } |
| 5916 | |
| 5917 | /* |
| 5918 | * Sanity checks - grab all the locks so that we wait for all |
| 5919 | * in-flight operations which may do put_pwq(). |
| 5920 | */ |
| 5921 | mutex_lock(lock: &wq_pool_mutex); |
| 5922 | mutex_lock(lock: &wq->mutex); |
| 5923 | for_each_pwq(pwq, wq) { |
| 5924 | raw_spin_lock_irq(&pwq->pool->lock); |
| 5925 | if (WARN_ON(pwq_busy(pwq))) { |
| 5926 | pr_warn("%s: %s has the following busy pwq\n" , |
| 5927 | __func__, wq->name); |
| 5928 | show_pwq(pwq); |
| 5929 | raw_spin_unlock_irq(&pwq->pool->lock); |
| 5930 | mutex_unlock(lock: &wq->mutex); |
| 5931 | mutex_unlock(lock: &wq_pool_mutex); |
| 5932 | show_one_workqueue(wq); |
| 5933 | return; |
| 5934 | } |
| 5935 | raw_spin_unlock_irq(&pwq->pool->lock); |
| 5936 | } |
| 5937 | mutex_unlock(lock: &wq->mutex); |
| 5938 | |
| 5939 | /* |
| 5940 | * wq list is used to freeze wq, remove from list after |
| 5941 | * flushing is complete in case freeze races us. |
| 5942 | */ |
| 5943 | list_del_rcu(entry: &wq->list); |
| 5944 | mutex_unlock(lock: &wq_pool_mutex); |
| 5945 | |
| 5946 | /* |
| 5947 | * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq |
| 5948 | * to put the base refs. @wq will be auto-destroyed from the last |
| 5949 | * pwq_put. RCU read lock prevents @wq from going away from under us. |
| 5950 | */ |
| 5951 | rcu_read_lock(); |
| 5952 | |
| 5953 | for_each_possible_cpu(cpu) { |
| 5954 | put_pwq_unlocked(pwq: unbound_pwq(wq, cpu)); |
| 5955 | RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); |
| 5956 | } |
| 5957 | |
| 5958 | put_pwq_unlocked(pwq: unbound_pwq(wq, cpu: -1)); |
| 5959 | RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); |
| 5960 | |
| 5961 | rcu_read_unlock(); |
| 5962 | } |
| 5963 | EXPORT_SYMBOL_GPL(destroy_workqueue); |
| 5964 | |
| 5965 | /** |
| 5966 | * workqueue_set_max_active - adjust max_active of a workqueue |
| 5967 | * @wq: target workqueue |
| 5968 | * @max_active: new max_active value. |
| 5969 | * |
| 5970 | * Set max_active of @wq to @max_active. See the alloc_workqueue() function |
| 5971 | * comment. |
| 5972 | * |
| 5973 | * CONTEXT: |
| 5974 | * Don't call from IRQ context. |
| 5975 | */ |
| 5976 | void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) |
| 5977 | { |
| 5978 | /* max_active doesn't mean anything for BH workqueues */ |
| 5979 | if (WARN_ON(wq->flags & WQ_BH)) |
| 5980 | return; |
| 5981 | /* disallow meddling with max_active for ordered workqueues */ |
| 5982 | if (WARN_ON(wq->flags & __WQ_ORDERED)) |
| 5983 | return; |
| 5984 | |
| 5985 | max_active = wq_clamp_max_active(max_active, flags: wq->flags, name: wq->name); |
| 5986 | |
| 5987 | mutex_lock(lock: &wq->mutex); |
| 5988 | |
| 5989 | wq->saved_max_active = max_active; |
| 5990 | if (wq->flags & WQ_UNBOUND) |
| 5991 | wq->saved_min_active = min(wq->saved_min_active, max_active); |
| 5992 | |
| 5993 | wq_adjust_max_active(wq); |
| 5994 | |
| 5995 | mutex_unlock(lock: &wq->mutex); |
| 5996 | } |
| 5997 | EXPORT_SYMBOL_GPL(workqueue_set_max_active); |
| 5998 | |
| 5999 | /** |
| 6000 | * workqueue_set_min_active - adjust min_active of an unbound workqueue |
| 6001 | * @wq: target unbound workqueue |
| 6002 | * @min_active: new min_active value |
| 6003 | * |
| 6004 | * Set min_active of an unbound workqueue. Unlike other types of workqueues, an |
| 6005 | * unbound workqueue is not guaranteed to be able to process max_active |
| 6006 | * interdependent work items. Instead, an unbound workqueue is guaranteed to be |
| 6007 | * able to process min_active number of interdependent work items which is |
| 6008 | * %WQ_DFL_MIN_ACTIVE by default. |
| 6009 | * |
| 6010 | * Use this function to adjust the min_active value between 0 and the current |
| 6011 | * max_active. |
| 6012 | */ |
| 6013 | void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) |
| 6014 | { |
| 6015 | /* min_active is only meaningful for non-ordered unbound workqueues */ |
| 6016 | if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != |
| 6017 | WQ_UNBOUND)) |
| 6018 | return; |
| 6019 | |
| 6020 | mutex_lock(lock: &wq->mutex); |
| 6021 | wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); |
| 6022 | wq_adjust_max_active(wq); |
| 6023 | mutex_unlock(lock: &wq->mutex); |
| 6024 | } |
| 6025 | |
| 6026 | /** |
| 6027 | * current_work - retrieve %current task's work struct |
| 6028 | * |
| 6029 | * Determine if %current task is a workqueue worker and what it's working on. |
| 6030 | * Useful to find out the context that the %current task is running in. |
| 6031 | * |
| 6032 | * Return: work struct if %current task is a workqueue worker, %NULL otherwise. |
| 6033 | */ |
| 6034 | struct work_struct *current_work(void) |
| 6035 | { |
| 6036 | struct worker *worker = current_wq_worker(); |
| 6037 | |
| 6038 | return worker ? worker->current_work : NULL; |
| 6039 | } |
| 6040 | EXPORT_SYMBOL(current_work); |
| 6041 | |
| 6042 | /** |
| 6043 | * current_is_workqueue_rescuer - is %current workqueue rescuer? |
| 6044 | * |
| 6045 | * Determine whether %current is a workqueue rescuer. Can be used from |
| 6046 | * work functions to determine whether it's being run off the rescuer task. |
| 6047 | * |
| 6048 | * Return: %true if %current is a workqueue rescuer. %false otherwise. |
| 6049 | */ |
| 6050 | bool current_is_workqueue_rescuer(void) |
| 6051 | { |
| 6052 | struct worker *worker = current_wq_worker(); |
| 6053 | |
| 6054 | return worker && worker->rescue_wq; |
| 6055 | } |
| 6056 | |
| 6057 | /** |
| 6058 | * workqueue_congested - test whether a workqueue is congested |
| 6059 | * @cpu: CPU in question |
| 6060 | * @wq: target workqueue |
| 6061 | * |
| 6062 | * Test whether @wq's cpu workqueue for @cpu is congested. There is |
| 6063 | * no synchronization around this function and the test result is |
| 6064 | * unreliable and only useful as advisory hints or for debugging. |
| 6065 | * |
| 6066 | * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. |
| 6067 | * |
| 6068 | * With the exception of ordered workqueues, all workqueues have per-cpu |
| 6069 | * pool_workqueues, each with its own congested state. A workqueue being |
| 6070 | * congested on one CPU doesn't mean that the workqueue is contested on any |
| 6071 | * other CPUs. |
| 6072 | * |
| 6073 | * Return: |
| 6074 | * %true if congested, %false otherwise. |
| 6075 | */ |
| 6076 | bool workqueue_congested(int cpu, struct workqueue_struct *wq) |
| 6077 | { |
| 6078 | struct pool_workqueue *pwq; |
| 6079 | bool ret; |
| 6080 | |
| 6081 | preempt_disable(); |
| 6082 | |
| 6083 | if (cpu == WORK_CPU_UNBOUND) |
| 6084 | cpu = smp_processor_id(); |
| 6085 | |
| 6086 | pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); |
| 6087 | ret = !list_empty(head: &pwq->inactive_works); |
| 6088 | |
| 6089 | preempt_enable(); |
| 6090 | |
| 6091 | return ret; |
| 6092 | } |
| 6093 | EXPORT_SYMBOL_GPL(workqueue_congested); |
| 6094 | |
| 6095 | /** |
| 6096 | * work_busy - test whether a work is currently pending or running |
| 6097 | * @work: the work to be tested |
| 6098 | * |
| 6099 | * Test whether @work is currently pending or running. There is no |
| 6100 | * synchronization around this function and the test result is |
| 6101 | * unreliable and only useful as advisory hints or for debugging. |
| 6102 | * |
| 6103 | * Return: |
| 6104 | * OR'd bitmask of WORK_BUSY_* bits. |
| 6105 | */ |
| 6106 | unsigned int work_busy(struct work_struct *work) |
| 6107 | { |
| 6108 | struct worker_pool *pool; |
| 6109 | unsigned long irq_flags; |
| 6110 | unsigned int ret = 0; |
| 6111 | |
| 6112 | if (work_pending(work)) |
| 6113 | ret |= WORK_BUSY_PENDING; |
| 6114 | |
| 6115 | rcu_read_lock(); |
| 6116 | pool = get_work_pool(work); |
| 6117 | if (pool) { |
| 6118 | raw_spin_lock_irqsave(&pool->lock, irq_flags); |
| 6119 | if (find_worker_executing_work(pool, work)) |
| 6120 | ret |= WORK_BUSY_RUNNING; |
| 6121 | raw_spin_unlock_irqrestore(&pool->lock, irq_flags); |
| 6122 | } |
| 6123 | rcu_read_unlock(); |
| 6124 | |
| 6125 | return ret; |
| 6126 | } |
| 6127 | EXPORT_SYMBOL_GPL(work_busy); |
| 6128 | |
| 6129 | /** |
| 6130 | * set_worker_desc - set description for the current work item |
| 6131 | * @fmt: printf-style format string |
| 6132 | * @...: arguments for the format string |
| 6133 | * |
| 6134 | * This function can be called by a running work function to describe what |
| 6135 | * the work item is about. If the worker task gets dumped, this |
| 6136 | * information will be printed out together to help debugging. The |
| 6137 | * description can be at most WORKER_DESC_LEN including the trailing '\0'. |
| 6138 | */ |
| 6139 | void set_worker_desc(const char *fmt, ...) |
| 6140 | { |
| 6141 | struct worker *worker = current_wq_worker(); |
| 6142 | va_list args; |
| 6143 | |
| 6144 | if (worker) { |
| 6145 | va_start(args, fmt); |
| 6146 | vsnprintf(buf: worker->desc, size: sizeof(worker->desc), fmt, args); |
| 6147 | va_end(args); |
| 6148 | } |
| 6149 | } |
| 6150 | EXPORT_SYMBOL_GPL(set_worker_desc); |
| 6151 | |
| 6152 | /** |
| 6153 | * print_worker_info - print out worker information and description |
| 6154 | * @log_lvl: the log level to use when printing |
| 6155 | * @task: target task |
| 6156 | * |
| 6157 | * If @task is a worker and currently executing a work item, print out the |
| 6158 | * name of the workqueue being serviced and worker description set with |
| 6159 | * set_worker_desc() by the currently executing work item. |
| 6160 | * |
| 6161 | * This function can be safely called on any task as long as the |
| 6162 | * task_struct itself is accessible. While safe, this function isn't |
| 6163 | * synchronized and may print out mixups or garbages of limited length. |
| 6164 | */ |
| 6165 | void print_worker_info(const char *log_lvl, struct task_struct *task) |
| 6166 | { |
| 6167 | work_func_t *fn = NULL; |
| 6168 | char name[WQ_NAME_LEN] = { }; |
| 6169 | char desc[WORKER_DESC_LEN] = { }; |
| 6170 | struct pool_workqueue *pwq = NULL; |
| 6171 | struct workqueue_struct *wq = NULL; |
| 6172 | struct worker *worker; |
| 6173 | |
| 6174 | if (!(task->flags & PF_WQ_WORKER)) |
| 6175 | return; |
| 6176 | |
| 6177 | /* |
| 6178 | * This function is called without any synchronization and @task |
| 6179 | * could be in any state. Be careful with dereferences. |
| 6180 | */ |
| 6181 | worker = kthread_probe_data(k: task); |
| 6182 | |
| 6183 | /* |
| 6184 | * Carefully copy the associated workqueue's workfn, name and desc. |
| 6185 | * Keep the original last '\0' in case the original is garbage. |
| 6186 | */ |
| 6187 | copy_from_kernel_nofault(dst: &fn, src: &worker->current_func, size: sizeof(fn)); |
| 6188 | copy_from_kernel_nofault(dst: &pwq, src: &worker->current_pwq, size: sizeof(pwq)); |
| 6189 | copy_from_kernel_nofault(dst: &wq, src: &pwq->wq, size: sizeof(wq)); |
| 6190 | copy_from_kernel_nofault(dst: name, src: wq->name, size: sizeof(name) - 1); |
| 6191 | copy_from_kernel_nofault(dst: desc, src: worker->desc, size: sizeof(desc) - 1); |
| 6192 | |
| 6193 | if (fn || name[0] || desc[0]) { |
| 6194 | printk("%sWorkqueue: %s %ps" , log_lvl, name, fn); |
| 6195 | if (strcmp(name, desc)) |
| 6196 | pr_cont(" (%s)" , desc); |
| 6197 | pr_cont("\n" ); |
| 6198 | } |
| 6199 | } |
| 6200 | |
| 6201 | static void pr_cont_pool_info(struct worker_pool *pool) |
| 6202 | { |
| 6203 | pr_cont(" cpus=%*pbl" , nr_cpumask_bits, pool->attrs->cpumask); |
| 6204 | if (pool->node != NUMA_NO_NODE) |
| 6205 | pr_cont(" node=%d" , pool->node); |
| 6206 | pr_cont(" flags=0x%x" , pool->flags); |
| 6207 | if (pool->flags & POOL_BH) |
| 6208 | pr_cont(" bh%s" , |
| 6209 | pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "" ); |
| 6210 | else |
| 6211 | pr_cont(" nice=%d" , pool->attrs->nice); |
| 6212 | } |
| 6213 | |
| 6214 | static void pr_cont_worker_id(struct worker *worker) |
| 6215 | { |
| 6216 | struct worker_pool *pool = worker->pool; |
| 6217 | |
| 6218 | if (pool->flags & WQ_BH) |
| 6219 | pr_cont("bh%s" , |
| 6220 | pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "" ); |
| 6221 | else |
| 6222 | pr_cont("%d%s" , task_pid_nr(worker->task), |
| 6223 | worker->rescue_wq ? "(RESCUER)" : "" ); |
| 6224 | } |
| 6225 | |
| 6226 | struct pr_cont_work_struct { |
| 6227 | bool comma; |
| 6228 | work_func_t func; |
| 6229 | long ctr; |
| 6230 | }; |
| 6231 | |
| 6232 | static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) |
| 6233 | { |
| 6234 | if (!pcwsp->ctr) |
| 6235 | goto out_record; |
| 6236 | if (func == pcwsp->func) { |
| 6237 | pcwsp->ctr++; |
| 6238 | return; |
| 6239 | } |
| 6240 | if (pcwsp->ctr == 1) |
| 6241 | pr_cont("%s %ps" , pcwsp->comma ? "," : "" , pcwsp->func); |
| 6242 | else |
| 6243 | pr_cont("%s %ld*%ps" , pcwsp->comma ? "," : "" , pcwsp->ctr, pcwsp->func); |
| 6244 | pcwsp->ctr = 0; |
| 6245 | out_record: |
| 6246 | if ((long)func == -1L) |
| 6247 | return; |
| 6248 | pcwsp->comma = comma; |
| 6249 | pcwsp->func = func; |
| 6250 | pcwsp->ctr = 1; |
| 6251 | } |
| 6252 | |
| 6253 | static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) |
| 6254 | { |
| 6255 | if (work->func == wq_barrier_func) { |
| 6256 | struct wq_barrier *barr; |
| 6257 | |
| 6258 | barr = container_of(work, struct wq_barrier, work); |
| 6259 | |
| 6260 | pr_cont_work_flush(comma, func: (work_func_t)-1, pcwsp); |
| 6261 | pr_cont("%s BAR(%d)" , comma ? "," : "" , |
| 6262 | task_pid_nr(barr->task)); |
| 6263 | } else { |
| 6264 | if (!comma) |
| 6265 | pr_cont_work_flush(comma, func: (work_func_t)-1, pcwsp); |
| 6266 | pr_cont_work_flush(comma, func: work->func, pcwsp); |
| 6267 | } |
| 6268 | } |
| 6269 | |
| 6270 | static void show_pwq(struct pool_workqueue *pwq) |
| 6271 | { |
| 6272 | struct pr_cont_work_struct pcws = { .ctr = 0, }; |
| 6273 | struct worker_pool *pool = pwq->pool; |
| 6274 | struct work_struct *work; |
| 6275 | struct worker *worker; |
| 6276 | bool has_in_flight = false, has_pending = false; |
| 6277 | int bkt; |
| 6278 | |
| 6279 | pr_info(" pwq %d:" , pool->id); |
| 6280 | pr_cont_pool_info(pool); |
| 6281 | |
| 6282 | pr_cont(" active=%d refcnt=%d%s\n" , |
| 6283 | pwq->nr_active, pwq->refcnt, |
| 6284 | !list_empty(&pwq->mayday_node) ? " MAYDAY" : "" ); |
| 6285 | |
| 6286 | hash_for_each(pool->busy_hash, bkt, worker, hentry) { |
| 6287 | if (worker->current_pwq == pwq) { |
| 6288 | has_in_flight = true; |
| 6289 | break; |
| 6290 | } |
| 6291 | } |
| 6292 | if (has_in_flight) { |
| 6293 | bool comma = false; |
| 6294 | |
| 6295 | pr_info(" in-flight:" ); |
| 6296 | hash_for_each(pool->busy_hash, bkt, worker, hentry) { |
| 6297 | if (worker->current_pwq != pwq) |
| 6298 | continue; |
| 6299 | |
| 6300 | pr_cont(" %s" , comma ? "," : "" ); |
| 6301 | pr_cont_worker_id(worker); |
| 6302 | pr_cont(":%ps" , worker->current_func); |
| 6303 | list_for_each_entry(work, &worker->scheduled, entry) |
| 6304 | pr_cont_work(comma: false, work, pcwsp: &pcws); |
| 6305 | pr_cont_work_flush(comma, func: (work_func_t)-1L, pcwsp: &pcws); |
| 6306 | comma = true; |
| 6307 | } |
| 6308 | pr_cont("\n" ); |
| 6309 | } |
| 6310 | |
| 6311 | list_for_each_entry(work, &pool->worklist, entry) { |
| 6312 | if (get_work_pwq(work) == pwq) { |
| 6313 | has_pending = true; |
| 6314 | break; |
| 6315 | } |
| 6316 | } |
| 6317 | if (has_pending) { |
| 6318 | bool comma = false; |
| 6319 | |
| 6320 | pr_info(" pending:" ); |
| 6321 | list_for_each_entry(work, &pool->worklist, entry) { |
| 6322 | if (get_work_pwq(work) != pwq) |
| 6323 | continue; |
| 6324 | |
| 6325 | pr_cont_work(comma, work, pcwsp: &pcws); |
| 6326 | comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); |
| 6327 | } |
| 6328 | pr_cont_work_flush(comma, func: (work_func_t)-1L, pcwsp: &pcws); |
| 6329 | pr_cont("\n" ); |
| 6330 | } |
| 6331 | |
| 6332 | if (!list_empty(head: &pwq->inactive_works)) { |
| 6333 | bool comma = false; |
| 6334 | |
| 6335 | pr_info(" inactive:" ); |
| 6336 | list_for_each_entry(work, &pwq->inactive_works, entry) { |
| 6337 | pr_cont_work(comma, work, pcwsp: &pcws); |
| 6338 | comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); |
| 6339 | } |
| 6340 | pr_cont_work_flush(comma, func: (work_func_t)-1L, pcwsp: &pcws); |
| 6341 | pr_cont("\n" ); |
| 6342 | } |
| 6343 | } |
| 6344 | |
| 6345 | /** |
| 6346 | * show_one_workqueue - dump state of specified workqueue |
| 6347 | * @wq: workqueue whose state will be printed |
| 6348 | */ |
| 6349 | void show_one_workqueue(struct workqueue_struct *wq) |
| 6350 | { |
| 6351 | struct pool_workqueue *pwq; |
| 6352 | bool idle = true; |
| 6353 | unsigned long irq_flags; |
| 6354 | |
| 6355 | for_each_pwq(pwq, wq) { |
| 6356 | if (!pwq_is_empty(pwq)) { |
| 6357 | idle = false; |
| 6358 | break; |
| 6359 | } |
| 6360 | } |
| 6361 | if (idle) /* Nothing to print for idle workqueue */ |
| 6362 | return; |
| 6363 | |
| 6364 | pr_info("workqueue %s: flags=0x%x\n" , wq->name, wq->flags); |
| 6365 | |
| 6366 | for_each_pwq(pwq, wq) { |
| 6367 | raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); |
| 6368 | if (!pwq_is_empty(pwq)) { |
| 6369 | /* |
| 6370 | * Defer printing to avoid deadlocks in console |
| 6371 | * drivers that queue work while holding locks |
| 6372 | * also taken in their write paths. |
| 6373 | */ |
| 6374 | printk_deferred_enter(); |
| 6375 | show_pwq(pwq); |
| 6376 | printk_deferred_exit(); |
| 6377 | } |
| 6378 | raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); |
| 6379 | /* |
| 6380 | * We could be printing a lot from atomic context, e.g. |
| 6381 | * sysrq-t -> show_all_workqueues(). Avoid triggering |
| 6382 | * hard lockup. |
| 6383 | */ |
| 6384 | touch_nmi_watchdog(); |
| 6385 | } |
| 6386 | |
| 6387 | } |
| 6388 | |
| 6389 | /** |
| 6390 | * show_one_worker_pool - dump state of specified worker pool |
| 6391 | * @pool: worker pool whose state will be printed |
| 6392 | */ |
| 6393 | static void show_one_worker_pool(struct worker_pool *pool) |
| 6394 | { |
| 6395 | struct worker *worker; |
| 6396 | bool first = true; |
| 6397 | unsigned long irq_flags; |
| 6398 | unsigned long hung = 0; |
| 6399 | |
| 6400 | raw_spin_lock_irqsave(&pool->lock, irq_flags); |
| 6401 | if (pool->nr_workers == pool->nr_idle) |
| 6402 | goto next_pool; |
| 6403 | |
| 6404 | /* How long the first pending work is waiting for a worker. */ |
| 6405 | if (!list_empty(head: &pool->worklist)) |
| 6406 | hung = jiffies_to_msecs(j: jiffies - pool->watchdog_ts) / 1000; |
| 6407 | |
| 6408 | /* |
| 6409 | * Defer printing to avoid deadlocks in console drivers that |
| 6410 | * queue work while holding locks also taken in their write |
| 6411 | * paths. |
| 6412 | */ |
| 6413 | printk_deferred_enter(); |
| 6414 | pr_info("pool %d:" , pool->id); |
| 6415 | pr_cont_pool_info(pool); |
| 6416 | pr_cont(" hung=%lus workers=%d" , hung, pool->nr_workers); |
| 6417 | if (pool->manager) |
| 6418 | pr_cont(" manager: %d" , |
| 6419 | task_pid_nr(pool->manager->task)); |
| 6420 | list_for_each_entry(worker, &pool->idle_list, entry) { |
| 6421 | pr_cont(" %s" , first ? "idle: " : "" ); |
| 6422 | pr_cont_worker_id(worker); |
| 6423 | first = false; |
| 6424 | } |
| 6425 | pr_cont("\n" ); |
| 6426 | printk_deferred_exit(); |
| 6427 | next_pool: |
| 6428 | raw_spin_unlock_irqrestore(&pool->lock, irq_flags); |
| 6429 | /* |
| 6430 | * We could be printing a lot from atomic context, e.g. |
| 6431 | * sysrq-t -> show_all_workqueues(). Avoid triggering |
| 6432 | * hard lockup. |
| 6433 | */ |
| 6434 | touch_nmi_watchdog(); |
| 6435 | |
| 6436 | } |
| 6437 | |
| 6438 | /** |
| 6439 | * show_all_workqueues - dump workqueue state |
| 6440 | * |
| 6441 | * Called from a sysrq handler and prints out all busy workqueues and pools. |
| 6442 | */ |
| 6443 | void show_all_workqueues(void) |
| 6444 | { |
| 6445 | struct workqueue_struct *wq; |
| 6446 | struct worker_pool *pool; |
| 6447 | int pi; |
| 6448 | |
| 6449 | rcu_read_lock(); |
| 6450 | |
| 6451 | pr_info("Showing busy workqueues and worker pools:\n" ); |
| 6452 | |
| 6453 | list_for_each_entry_rcu(wq, &workqueues, list) |
| 6454 | show_one_workqueue(wq); |
| 6455 | |
| 6456 | for_each_pool(pool, pi) |
| 6457 | show_one_worker_pool(pool); |
| 6458 | |
| 6459 | rcu_read_unlock(); |
| 6460 | } |
| 6461 | |
| 6462 | /** |
| 6463 | * show_freezable_workqueues - dump freezable workqueue state |
| 6464 | * |
| 6465 | * Called from try_to_freeze_tasks() and prints out all freezable workqueues |
| 6466 | * still busy. |
| 6467 | */ |
| 6468 | void show_freezable_workqueues(void) |
| 6469 | { |
| 6470 | struct workqueue_struct *wq; |
| 6471 | |
| 6472 | rcu_read_lock(); |
| 6473 | |
| 6474 | pr_info("Showing freezable workqueues that are still busy:\n" ); |
| 6475 | |
| 6476 | list_for_each_entry_rcu(wq, &workqueues, list) { |
| 6477 | if (!(wq->flags & WQ_FREEZABLE)) |
| 6478 | continue; |
| 6479 | show_one_workqueue(wq); |
| 6480 | } |
| 6481 | |
| 6482 | rcu_read_unlock(); |
| 6483 | } |
| 6484 | |
| 6485 | /* used to show worker information through /proc/PID/{comm,stat,status} */ |
| 6486 | void wq_worker_comm(char *buf, size_t size, struct task_struct *task) |
| 6487 | { |
| 6488 | /* stabilize PF_WQ_WORKER and worker pool association */ |
| 6489 | mutex_lock(lock: &wq_pool_attach_mutex); |
| 6490 | |
| 6491 | if (task->flags & PF_WQ_WORKER) { |
| 6492 | struct worker *worker = kthread_data(k: task); |
| 6493 | struct worker_pool *pool = worker->pool; |
| 6494 | int off; |
| 6495 | |
| 6496 | off = format_worker_id(buf, size, worker, pool); |
| 6497 | |
| 6498 | if (pool) { |
| 6499 | raw_spin_lock_irq(&pool->lock); |
| 6500 | /* |
| 6501 | * ->desc tracks information (wq name or |
| 6502 | * set_worker_desc()) for the latest execution. If |
| 6503 | * current, prepend '+', otherwise '-'. |
| 6504 | */ |
| 6505 | if (worker->desc[0] != '\0') { |
| 6506 | if (worker->current_work) |
| 6507 | scnprintf(buf: buf + off, size: size - off, fmt: "+%s" , |
| 6508 | worker->desc); |
| 6509 | else |
| 6510 | scnprintf(buf: buf + off, size: size - off, fmt: "-%s" , |
| 6511 | worker->desc); |
| 6512 | } |
| 6513 | raw_spin_unlock_irq(&pool->lock); |
| 6514 | } |
| 6515 | } else { |
| 6516 | strscpy(buf, task->comm, size); |
| 6517 | } |
| 6518 | |
| 6519 | mutex_unlock(lock: &wq_pool_attach_mutex); |
| 6520 | } |
| 6521 | |
| 6522 | #ifdef CONFIG_SMP |
| 6523 | |
| 6524 | /* |
| 6525 | * CPU hotplug. |
| 6526 | * |
| 6527 | * There are two challenges in supporting CPU hotplug. Firstly, there |
| 6528 | * are a lot of assumptions on strong associations among work, pwq and |
| 6529 | * pool which make migrating pending and scheduled works very |
| 6530 | * difficult to implement without impacting hot paths. Secondly, |
| 6531 | * worker pools serve mix of short, long and very long running works making |
| 6532 | * blocked draining impractical. |
| 6533 | * |
| 6534 | * This is solved by allowing the pools to be disassociated from the CPU |
| 6535 | * running as an unbound one and allowing it to be reattached later if the |
| 6536 | * cpu comes back online. |
| 6537 | */ |
| 6538 | |
| 6539 | static void unbind_workers(int cpu) |
| 6540 | { |
| 6541 | struct worker_pool *pool; |
| 6542 | struct worker *worker; |
| 6543 | |
| 6544 | for_each_cpu_worker_pool(pool, cpu) { |
| 6545 | mutex_lock(lock: &wq_pool_attach_mutex); |
| 6546 | raw_spin_lock_irq(&pool->lock); |
| 6547 | |
| 6548 | /* |
| 6549 | * We've blocked all attach/detach operations. Make all workers |
| 6550 | * unbound and set DISASSOCIATED. Before this, all workers |
| 6551 | * must be on the cpu. After this, they may become diasporas. |
| 6552 | * And the preemption disabled section in their sched callbacks |
| 6553 | * are guaranteed to see WORKER_UNBOUND since the code here |
| 6554 | * is on the same cpu. |
| 6555 | */ |
| 6556 | for_each_pool_worker(worker, pool) |
| 6557 | worker->flags |= WORKER_UNBOUND; |
| 6558 | |
| 6559 | pool->flags |= POOL_DISASSOCIATED; |
| 6560 | |
| 6561 | /* |
| 6562 | * The handling of nr_running in sched callbacks are disabled |
| 6563 | * now. Zap nr_running. After this, nr_running stays zero and |
| 6564 | * need_more_worker() and keep_working() are always true as |
| 6565 | * long as the worklist is not empty. This pool now behaves as |
| 6566 | * an unbound (in terms of concurrency management) pool which |
| 6567 | * are served by workers tied to the pool. |
| 6568 | */ |
| 6569 | pool->nr_running = 0; |
| 6570 | |
| 6571 | /* |
| 6572 | * With concurrency management just turned off, a busy |
| 6573 | * worker blocking could lead to lengthy stalls. Kick off |
| 6574 | * unbound chain execution of currently pending work items. |
| 6575 | */ |
| 6576 | kick_pool(pool); |
| 6577 | |
| 6578 | raw_spin_unlock_irq(&pool->lock); |
| 6579 | |
| 6580 | for_each_pool_worker(worker, pool) |
| 6581 | unbind_worker(worker); |
| 6582 | |
| 6583 | mutex_unlock(lock: &wq_pool_attach_mutex); |
| 6584 | } |
| 6585 | } |
| 6586 | |
| 6587 | /** |
| 6588 | * rebind_workers - rebind all workers of a pool to the associated CPU |
| 6589 | * @pool: pool of interest |
| 6590 | * |
| 6591 | * @pool->cpu is coming online. Rebind all workers to the CPU. |
| 6592 | */ |
| 6593 | static void rebind_workers(struct worker_pool *pool) |
| 6594 | { |
| 6595 | struct worker *worker; |
| 6596 | |
| 6597 | lockdep_assert_held(&wq_pool_attach_mutex); |
| 6598 | |
| 6599 | /* |
| 6600 | * Restore CPU affinity of all workers. As all idle workers should |
| 6601 | * be on the run-queue of the associated CPU before any local |
| 6602 | * wake-ups for concurrency management happen, restore CPU affinity |
| 6603 | * of all workers first and then clear UNBOUND. As we're called |
| 6604 | * from CPU_ONLINE, the following shouldn't fail. |
| 6605 | */ |
| 6606 | for_each_pool_worker(worker, pool) { |
| 6607 | kthread_set_per_cpu(k: worker->task, cpu: pool->cpu); |
| 6608 | WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, |
| 6609 | pool_allowed_cpus(pool)) < 0); |
| 6610 | } |
| 6611 | |
| 6612 | raw_spin_lock_irq(&pool->lock); |
| 6613 | |
| 6614 | pool->flags &= ~POOL_DISASSOCIATED; |
| 6615 | |
| 6616 | for_each_pool_worker(worker, pool) { |
| 6617 | unsigned int worker_flags = worker->flags; |
| 6618 | |
| 6619 | /* |
| 6620 | * We want to clear UNBOUND but can't directly call |
| 6621 | * worker_clr_flags() or adjust nr_running. Atomically |
| 6622 | * replace UNBOUND with another NOT_RUNNING flag REBOUND. |
| 6623 | * @worker will clear REBOUND using worker_clr_flags() when |
| 6624 | * it initiates the next execution cycle thus restoring |
| 6625 | * concurrency management. Note that when or whether |
| 6626 | * @worker clears REBOUND doesn't affect correctness. |
| 6627 | * |
| 6628 | * WRITE_ONCE() is necessary because @worker->flags may be |
| 6629 | * tested without holding any lock in |
| 6630 | * wq_worker_running(). Without it, NOT_RUNNING test may |
| 6631 | * fail incorrectly leading to premature concurrency |
| 6632 | * management operations. |
| 6633 | */ |
| 6634 | WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); |
| 6635 | worker_flags |= WORKER_REBOUND; |
| 6636 | worker_flags &= ~WORKER_UNBOUND; |
| 6637 | WRITE_ONCE(worker->flags, worker_flags); |
| 6638 | } |
| 6639 | |
| 6640 | raw_spin_unlock_irq(&pool->lock); |
| 6641 | } |
| 6642 | |
| 6643 | /** |
| 6644 | * restore_unbound_workers_cpumask - restore cpumask of unbound workers |
| 6645 | * @pool: unbound pool of interest |
| 6646 | * @cpu: the CPU which is coming up |
| 6647 | * |
| 6648 | * An unbound pool may end up with a cpumask which doesn't have any online |
| 6649 | * CPUs. When a worker of such pool get scheduled, the scheduler resets |
| 6650 | * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any |
| 6651 | * online CPU before, cpus_allowed of all its workers should be restored. |
| 6652 | */ |
| 6653 | static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) |
| 6654 | { |
| 6655 | static cpumask_t cpumask; |
| 6656 | struct worker *worker; |
| 6657 | |
| 6658 | lockdep_assert_held(&wq_pool_attach_mutex); |
| 6659 | |
| 6660 | /* is @cpu allowed for @pool? */ |
| 6661 | if (!cpumask_test_cpu(cpu, cpumask: pool->attrs->cpumask)) |
| 6662 | return; |
| 6663 | |
| 6664 | cpumask_and(dstp: &cpumask, src1p: pool->attrs->cpumask, cpu_online_mask); |
| 6665 | |
| 6666 | /* as we're called from CPU_ONLINE, the following shouldn't fail */ |
| 6667 | for_each_pool_worker(worker, pool) |
| 6668 | WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); |
| 6669 | } |
| 6670 | |
| 6671 | int workqueue_prepare_cpu(unsigned int cpu) |
| 6672 | { |
| 6673 | struct worker_pool *pool; |
| 6674 | |
| 6675 | for_each_cpu_worker_pool(pool, cpu) { |
| 6676 | if (pool->nr_workers) |
| 6677 | continue; |
| 6678 | if (!create_worker(pool)) |
| 6679 | return -ENOMEM; |
| 6680 | } |
| 6681 | return 0; |
| 6682 | } |
| 6683 | |
| 6684 | int workqueue_online_cpu(unsigned int cpu) |
| 6685 | { |
| 6686 | struct worker_pool *pool; |
| 6687 | struct workqueue_struct *wq; |
| 6688 | int pi; |
| 6689 | |
| 6690 | mutex_lock(lock: &wq_pool_mutex); |
| 6691 | |
| 6692 | cpumask_set_cpu(cpu, dstp: wq_online_cpumask); |
| 6693 | |
| 6694 | for_each_pool(pool, pi) { |
| 6695 | /* BH pools aren't affected by hotplug */ |
| 6696 | if (pool->flags & POOL_BH) |
| 6697 | continue; |
| 6698 | |
| 6699 | mutex_lock(lock: &wq_pool_attach_mutex); |
| 6700 | if (pool->cpu == cpu) |
| 6701 | rebind_workers(pool); |
| 6702 | else if (pool->cpu < 0) |
| 6703 | restore_unbound_workers_cpumask(pool, cpu); |
| 6704 | mutex_unlock(lock: &wq_pool_attach_mutex); |
| 6705 | } |
| 6706 | |
| 6707 | /* update pod affinity of unbound workqueues */ |
| 6708 | list_for_each_entry(wq, &workqueues, list) { |
| 6709 | struct workqueue_attrs *attrs = wq->unbound_attrs; |
| 6710 | |
| 6711 | if (attrs) { |
| 6712 | const struct wq_pod_type *pt = wqattrs_pod_type(attrs); |
| 6713 | int tcpu; |
| 6714 | |
| 6715 | for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) |
| 6716 | unbound_wq_update_pwq(wq, cpu: tcpu); |
| 6717 | |
| 6718 | mutex_lock(lock: &wq->mutex); |
| 6719 | wq_update_node_max_active(wq, off_cpu: -1); |
| 6720 | mutex_unlock(lock: &wq->mutex); |
| 6721 | } |
| 6722 | } |
| 6723 | |
| 6724 | mutex_unlock(lock: &wq_pool_mutex); |
| 6725 | return 0; |
| 6726 | } |
| 6727 | |
| 6728 | int workqueue_offline_cpu(unsigned int cpu) |
| 6729 | { |
| 6730 | struct workqueue_struct *wq; |
| 6731 | |
| 6732 | /* unbinding per-cpu workers should happen on the local CPU */ |
| 6733 | if (WARN_ON(cpu != smp_processor_id())) |
| 6734 | return -1; |
| 6735 | |
| 6736 | unbind_workers(cpu); |
| 6737 | |
| 6738 | /* update pod affinity of unbound workqueues */ |
| 6739 | mutex_lock(lock: &wq_pool_mutex); |
| 6740 | |
| 6741 | cpumask_clear_cpu(cpu, dstp: wq_online_cpumask); |
| 6742 | |
| 6743 | list_for_each_entry(wq, &workqueues, list) { |
| 6744 | struct workqueue_attrs *attrs = wq->unbound_attrs; |
| 6745 | |
| 6746 | if (attrs) { |
| 6747 | const struct wq_pod_type *pt = wqattrs_pod_type(attrs); |
| 6748 | int tcpu; |
| 6749 | |
| 6750 | for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) |
| 6751 | unbound_wq_update_pwq(wq, cpu: tcpu); |
| 6752 | |
| 6753 | mutex_lock(lock: &wq->mutex); |
| 6754 | wq_update_node_max_active(wq, off_cpu: cpu); |
| 6755 | mutex_unlock(lock: &wq->mutex); |
| 6756 | } |
| 6757 | } |
| 6758 | mutex_unlock(lock: &wq_pool_mutex); |
| 6759 | |
| 6760 | return 0; |
| 6761 | } |
| 6762 | |
| 6763 | struct work_for_cpu { |
| 6764 | struct work_struct work; |
| 6765 | long (*fn)(void *); |
| 6766 | void *arg; |
| 6767 | long ret; |
| 6768 | }; |
| 6769 | |
| 6770 | static void work_for_cpu_fn(struct work_struct *work) |
| 6771 | { |
| 6772 | struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); |
| 6773 | |
| 6774 | wfc->ret = wfc->fn(wfc->arg); |
| 6775 | } |
| 6776 | |
| 6777 | /** |
| 6778 | * work_on_cpu_key - run a function in thread context on a particular cpu |
| 6779 | * @cpu: the cpu to run on |
| 6780 | * @fn: the function to run |
| 6781 | * @arg: the function arg |
| 6782 | * @key: The lock class key for lock debugging purposes |
| 6783 | * |
| 6784 | * It is up to the caller to ensure that the cpu doesn't go offline. |
| 6785 | * The caller must not hold any locks which would prevent @fn from completing. |
| 6786 | * |
| 6787 | * Return: The value @fn returns. |
| 6788 | */ |
| 6789 | long work_on_cpu_key(int cpu, long (*fn)(void *), |
| 6790 | void *arg, struct lock_class_key *key) |
| 6791 | { |
| 6792 | struct work_for_cpu wfc = { .fn = fn, .arg = arg }; |
| 6793 | |
| 6794 | INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); |
| 6795 | schedule_work_on(cpu, work: &wfc.work); |
| 6796 | flush_work(&wfc.work); |
| 6797 | destroy_work_on_stack(work: &wfc.work); |
| 6798 | return wfc.ret; |
| 6799 | } |
| 6800 | EXPORT_SYMBOL_GPL(work_on_cpu_key); |
| 6801 | #endif /* CONFIG_SMP */ |
| 6802 | |
| 6803 | #ifdef CONFIG_FREEZER |
| 6804 | |
| 6805 | /** |
| 6806 | * freeze_workqueues_begin - begin freezing workqueues |
| 6807 | * |
| 6808 | * Start freezing workqueues. After this function returns, all freezable |
| 6809 | * workqueues will queue new works to their inactive_works list instead of |
| 6810 | * pool->worklist. |
| 6811 | * |
| 6812 | * CONTEXT: |
| 6813 | * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. |
| 6814 | */ |
| 6815 | void freeze_workqueues_begin(void) |
| 6816 | { |
| 6817 | struct workqueue_struct *wq; |
| 6818 | |
| 6819 | mutex_lock(lock: &wq_pool_mutex); |
| 6820 | |
| 6821 | WARN_ON_ONCE(workqueue_freezing); |
| 6822 | workqueue_freezing = true; |
| 6823 | |
| 6824 | list_for_each_entry(wq, &workqueues, list) { |
| 6825 | mutex_lock(lock: &wq->mutex); |
| 6826 | wq_adjust_max_active(wq); |
| 6827 | mutex_unlock(lock: &wq->mutex); |
| 6828 | } |
| 6829 | |
| 6830 | mutex_unlock(lock: &wq_pool_mutex); |
| 6831 | } |
| 6832 | |
| 6833 | /** |
| 6834 | * freeze_workqueues_busy - are freezable workqueues still busy? |
| 6835 | * |
| 6836 | * Check whether freezing is complete. This function must be called |
| 6837 | * between freeze_workqueues_begin() and thaw_workqueues(). |
| 6838 | * |
| 6839 | * CONTEXT: |
| 6840 | * Grabs and releases wq_pool_mutex. |
| 6841 | * |
| 6842 | * Return: |
| 6843 | * %true if some freezable workqueues are still busy. %false if freezing |
| 6844 | * is complete. |
| 6845 | */ |
| 6846 | bool freeze_workqueues_busy(void) |
| 6847 | { |
| 6848 | bool busy = false; |
| 6849 | struct workqueue_struct *wq; |
| 6850 | struct pool_workqueue *pwq; |
| 6851 | |
| 6852 | mutex_lock(lock: &wq_pool_mutex); |
| 6853 | |
| 6854 | WARN_ON_ONCE(!workqueue_freezing); |
| 6855 | |
| 6856 | list_for_each_entry(wq, &workqueues, list) { |
| 6857 | if (!(wq->flags & WQ_FREEZABLE)) |
| 6858 | continue; |
| 6859 | /* |
| 6860 | * nr_active is monotonically decreasing. It's safe |
| 6861 | * to peek without lock. |
| 6862 | */ |
| 6863 | rcu_read_lock(); |
| 6864 | for_each_pwq(pwq, wq) { |
| 6865 | WARN_ON_ONCE(pwq->nr_active < 0); |
| 6866 | if (pwq->nr_active) { |
| 6867 | busy = true; |
| 6868 | rcu_read_unlock(); |
| 6869 | goto out_unlock; |
| 6870 | } |
| 6871 | } |
| 6872 | rcu_read_unlock(); |
| 6873 | } |
| 6874 | out_unlock: |
| 6875 | mutex_unlock(lock: &wq_pool_mutex); |
| 6876 | return busy; |
| 6877 | } |
| 6878 | |
| 6879 | /** |
| 6880 | * thaw_workqueues - thaw workqueues |
| 6881 | * |
| 6882 | * Thaw workqueues. Normal queueing is restored and all collected |
| 6883 | * frozen works are transferred to their respective pool worklists. |
| 6884 | * |
| 6885 | * CONTEXT: |
| 6886 | * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. |
| 6887 | */ |
| 6888 | void thaw_workqueues(void) |
| 6889 | { |
| 6890 | struct workqueue_struct *wq; |
| 6891 | |
| 6892 | mutex_lock(lock: &wq_pool_mutex); |
| 6893 | |
| 6894 | if (!workqueue_freezing) |
| 6895 | goto out_unlock; |
| 6896 | |
| 6897 | workqueue_freezing = false; |
| 6898 | |
| 6899 | /* restore max_active and repopulate worklist */ |
| 6900 | list_for_each_entry(wq, &workqueues, list) { |
| 6901 | mutex_lock(lock: &wq->mutex); |
| 6902 | wq_adjust_max_active(wq); |
| 6903 | mutex_unlock(lock: &wq->mutex); |
| 6904 | } |
| 6905 | |
| 6906 | out_unlock: |
| 6907 | mutex_unlock(lock: &wq_pool_mutex); |
| 6908 | } |
| 6909 | #endif /* CONFIG_FREEZER */ |
| 6910 | |
| 6911 | static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) |
| 6912 | { |
| 6913 | LIST_HEAD(ctxs); |
| 6914 | int ret = 0; |
| 6915 | struct workqueue_struct *wq; |
| 6916 | struct apply_wqattrs_ctx *ctx, *n; |
| 6917 | |
| 6918 | lockdep_assert_held(&wq_pool_mutex); |
| 6919 | |
| 6920 | list_for_each_entry(wq, &workqueues, list) { |
| 6921 | if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) |
| 6922 | continue; |
| 6923 | |
| 6924 | ctx = apply_wqattrs_prepare(wq, attrs: wq->unbound_attrs, unbound_cpumask); |
| 6925 | if (IS_ERR(ptr: ctx)) { |
| 6926 | ret = PTR_ERR(ptr: ctx); |
| 6927 | break; |
| 6928 | } |
| 6929 | |
| 6930 | list_add_tail(new: &ctx->list, head: &ctxs); |
| 6931 | } |
| 6932 | |
| 6933 | list_for_each_entry_safe(ctx, n, &ctxs, list) { |
| 6934 | if (!ret) |
| 6935 | apply_wqattrs_commit(ctx); |
| 6936 | apply_wqattrs_cleanup(ctx); |
| 6937 | } |
| 6938 | |
| 6939 | if (!ret) { |
| 6940 | mutex_lock(lock: &wq_pool_attach_mutex); |
| 6941 | cpumask_copy(dstp: wq_unbound_cpumask, srcp: unbound_cpumask); |
| 6942 | mutex_unlock(lock: &wq_pool_attach_mutex); |
| 6943 | } |
| 6944 | return ret; |
| 6945 | } |
| 6946 | |
| 6947 | /** |
| 6948 | * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask |
| 6949 | * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask |
| 6950 | * |
| 6951 | * This function can be called from cpuset code to provide a set of isolated |
| 6952 | * CPUs that should be excluded from wq_unbound_cpumask. |
| 6953 | */ |
| 6954 | int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) |
| 6955 | { |
| 6956 | cpumask_var_t cpumask; |
| 6957 | int ret = 0; |
| 6958 | |
| 6959 | if (!zalloc_cpumask_var(mask: &cpumask, GFP_KERNEL)) |
| 6960 | return -ENOMEM; |
| 6961 | |
| 6962 | mutex_lock(lock: &wq_pool_mutex); |
| 6963 | |
| 6964 | /* |
| 6965 | * If the operation fails, it will fall back to |
| 6966 | * wq_requested_unbound_cpumask which is initially set to |
| 6967 | * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten |
| 6968 | * by any subsequent write to workqueue/cpumask sysfs file. |
| 6969 | */ |
| 6970 | if (!cpumask_andnot(dstp: cpumask, src1p: wq_requested_unbound_cpumask, src2p: exclude_cpumask)) |
| 6971 | cpumask_copy(dstp: cpumask, srcp: wq_requested_unbound_cpumask); |
| 6972 | if (!cpumask_equal(src1p: cpumask, src2p: wq_unbound_cpumask)) |
| 6973 | ret = workqueue_apply_unbound_cpumask(unbound_cpumask: cpumask); |
| 6974 | |
| 6975 | /* Save the current isolated cpumask & export it via sysfs */ |
| 6976 | if (!ret) |
| 6977 | cpumask_copy(dstp: wq_isolated_cpumask, srcp: exclude_cpumask); |
| 6978 | |
| 6979 | mutex_unlock(lock: &wq_pool_mutex); |
| 6980 | free_cpumask_var(mask: cpumask); |
| 6981 | return ret; |
| 6982 | } |
| 6983 | |
| 6984 | static int parse_affn_scope(const char *val) |
| 6985 | { |
| 6986 | int i; |
| 6987 | |
| 6988 | for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { |
| 6989 | if (!strncasecmp(s1: val, s2: wq_affn_names[i], n: strlen(wq_affn_names[i]))) |
| 6990 | return i; |
| 6991 | } |
| 6992 | return -EINVAL; |
| 6993 | } |
| 6994 | |
| 6995 | static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) |
| 6996 | { |
| 6997 | struct workqueue_struct *wq; |
| 6998 | int affn, cpu; |
| 6999 | |
| 7000 | affn = parse_affn_scope(val); |
| 7001 | if (affn < 0) |
| 7002 | return affn; |
| 7003 | if (affn == WQ_AFFN_DFL) |
| 7004 | return -EINVAL; |
| 7005 | |
| 7006 | cpus_read_lock(); |
| 7007 | mutex_lock(lock: &wq_pool_mutex); |
| 7008 | |
| 7009 | wq_affn_dfl = affn; |
| 7010 | |
| 7011 | list_for_each_entry(wq, &workqueues, list) { |
| 7012 | for_each_online_cpu(cpu) |
| 7013 | unbound_wq_update_pwq(wq, cpu); |
| 7014 | } |
| 7015 | |
| 7016 | mutex_unlock(lock: &wq_pool_mutex); |
| 7017 | cpus_read_unlock(); |
| 7018 | |
| 7019 | return 0; |
| 7020 | } |
| 7021 | |
| 7022 | static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) |
| 7023 | { |
| 7024 | return scnprintf(buf: buffer, PAGE_SIZE, fmt: "%s\n" , wq_affn_names[wq_affn_dfl]); |
| 7025 | } |
| 7026 | |
| 7027 | static const struct kernel_param_ops wq_affn_dfl_ops = { |
| 7028 | .set = wq_affn_dfl_set, |
| 7029 | .get = wq_affn_dfl_get, |
| 7030 | }; |
| 7031 | |
| 7032 | module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); |
| 7033 | |
| 7034 | #ifdef CONFIG_SYSFS |
| 7035 | /* |
| 7036 | * Workqueues with WQ_SYSFS flag set is visible to userland via |
| 7037 | * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the |
| 7038 | * following attributes. |
| 7039 | * |
| 7040 | * per_cpu RO bool : whether the workqueue is per-cpu or unbound |
| 7041 | * max_active RW int : maximum number of in-flight work items |
| 7042 | * |
| 7043 | * Unbound workqueues have the following extra attributes. |
| 7044 | * |
| 7045 | * nice RW int : nice value of the workers |
| 7046 | * cpumask RW mask : bitmask of allowed CPUs for the workers |
| 7047 | * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) |
| 7048 | * affinity_strict RW bool : worker CPU affinity is strict |
| 7049 | */ |
| 7050 | struct wq_device { |
| 7051 | struct workqueue_struct *wq; |
| 7052 | struct device dev; |
| 7053 | }; |
| 7054 | |
| 7055 | static struct workqueue_struct *dev_to_wq(struct device *dev) |
| 7056 | { |
| 7057 | struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); |
| 7058 | |
| 7059 | return wq_dev->wq; |
| 7060 | } |
| 7061 | |
| 7062 | static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, |
| 7063 | char *buf) |
| 7064 | { |
| 7065 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7066 | |
| 7067 | return scnprintf(buf, PAGE_SIZE, fmt: "%d\n" , (bool)!(wq->flags & WQ_UNBOUND)); |
| 7068 | } |
| 7069 | static DEVICE_ATTR_RO(per_cpu); |
| 7070 | |
| 7071 | static ssize_t max_active_show(struct device *dev, |
| 7072 | struct device_attribute *attr, char *buf) |
| 7073 | { |
| 7074 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7075 | |
| 7076 | return scnprintf(buf, PAGE_SIZE, fmt: "%d\n" , wq->saved_max_active); |
| 7077 | } |
| 7078 | |
| 7079 | static ssize_t max_active_store(struct device *dev, |
| 7080 | struct device_attribute *attr, const char *buf, |
| 7081 | size_t count) |
| 7082 | { |
| 7083 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7084 | int val; |
| 7085 | |
| 7086 | if (sscanf(buf, "%d" , &val) != 1 || val <= 0) |
| 7087 | return -EINVAL; |
| 7088 | |
| 7089 | workqueue_set_max_active(wq, val); |
| 7090 | return count; |
| 7091 | } |
| 7092 | static DEVICE_ATTR_RW(max_active); |
| 7093 | |
| 7094 | static struct attribute *wq_sysfs_attrs[] = { |
| 7095 | &dev_attr_per_cpu.attr, |
| 7096 | &dev_attr_max_active.attr, |
| 7097 | NULL, |
| 7098 | }; |
| 7099 | ATTRIBUTE_GROUPS(wq_sysfs); |
| 7100 | |
| 7101 | static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, |
| 7102 | char *buf) |
| 7103 | { |
| 7104 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7105 | int written; |
| 7106 | |
| 7107 | mutex_lock(lock: &wq->mutex); |
| 7108 | written = scnprintf(buf, PAGE_SIZE, fmt: "%d\n" , wq->unbound_attrs->nice); |
| 7109 | mutex_unlock(lock: &wq->mutex); |
| 7110 | |
| 7111 | return written; |
| 7112 | } |
| 7113 | |
| 7114 | /* prepare workqueue_attrs for sysfs store operations */ |
| 7115 | static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) |
| 7116 | { |
| 7117 | struct workqueue_attrs *attrs; |
| 7118 | |
| 7119 | lockdep_assert_held(&wq_pool_mutex); |
| 7120 | |
| 7121 | attrs = alloc_workqueue_attrs(); |
| 7122 | if (!attrs) |
| 7123 | return NULL; |
| 7124 | |
| 7125 | copy_workqueue_attrs(to: attrs, from: wq->unbound_attrs); |
| 7126 | return attrs; |
| 7127 | } |
| 7128 | |
| 7129 | static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, |
| 7130 | const char *buf, size_t count) |
| 7131 | { |
| 7132 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7133 | struct workqueue_attrs *attrs; |
| 7134 | int ret = -ENOMEM; |
| 7135 | |
| 7136 | apply_wqattrs_lock(); |
| 7137 | |
| 7138 | attrs = wq_sysfs_prep_attrs(wq); |
| 7139 | if (!attrs) |
| 7140 | goto out_unlock; |
| 7141 | |
| 7142 | if (sscanf(buf, "%d" , &attrs->nice) == 1 && |
| 7143 | attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) |
| 7144 | ret = apply_workqueue_attrs_locked(wq, attrs); |
| 7145 | else |
| 7146 | ret = -EINVAL; |
| 7147 | |
| 7148 | out_unlock: |
| 7149 | apply_wqattrs_unlock(); |
| 7150 | free_workqueue_attrs(attrs); |
| 7151 | return ret ?: count; |
| 7152 | } |
| 7153 | |
| 7154 | static ssize_t wq_cpumask_show(struct device *dev, |
| 7155 | struct device_attribute *attr, char *buf) |
| 7156 | { |
| 7157 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7158 | int written; |
| 7159 | |
| 7160 | mutex_lock(lock: &wq->mutex); |
| 7161 | written = scnprintf(buf, PAGE_SIZE, fmt: "%*pb\n" , |
| 7162 | cpumask_pr_args(wq->unbound_attrs->cpumask)); |
| 7163 | mutex_unlock(lock: &wq->mutex); |
| 7164 | return written; |
| 7165 | } |
| 7166 | |
| 7167 | static ssize_t wq_cpumask_store(struct device *dev, |
| 7168 | struct device_attribute *attr, |
| 7169 | const char *buf, size_t count) |
| 7170 | { |
| 7171 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7172 | struct workqueue_attrs *attrs; |
| 7173 | int ret = -ENOMEM; |
| 7174 | |
| 7175 | apply_wqattrs_lock(); |
| 7176 | |
| 7177 | attrs = wq_sysfs_prep_attrs(wq); |
| 7178 | if (!attrs) |
| 7179 | goto out_unlock; |
| 7180 | |
| 7181 | ret = cpumask_parse(buf, dstp: attrs->cpumask); |
| 7182 | if (!ret) |
| 7183 | ret = apply_workqueue_attrs_locked(wq, attrs); |
| 7184 | |
| 7185 | out_unlock: |
| 7186 | apply_wqattrs_unlock(); |
| 7187 | free_workqueue_attrs(attrs); |
| 7188 | return ret ?: count; |
| 7189 | } |
| 7190 | |
| 7191 | static ssize_t wq_affn_scope_show(struct device *dev, |
| 7192 | struct device_attribute *attr, char *buf) |
| 7193 | { |
| 7194 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7195 | int written; |
| 7196 | |
| 7197 | mutex_lock(lock: &wq->mutex); |
| 7198 | if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) |
| 7199 | written = scnprintf(buf, PAGE_SIZE, fmt: "%s (%s)\n" , |
| 7200 | wq_affn_names[WQ_AFFN_DFL], |
| 7201 | wq_affn_names[wq_affn_dfl]); |
| 7202 | else |
| 7203 | written = scnprintf(buf, PAGE_SIZE, fmt: "%s\n" , |
| 7204 | wq_affn_names[wq->unbound_attrs->affn_scope]); |
| 7205 | mutex_unlock(lock: &wq->mutex); |
| 7206 | |
| 7207 | return written; |
| 7208 | } |
| 7209 | |
| 7210 | static ssize_t wq_affn_scope_store(struct device *dev, |
| 7211 | struct device_attribute *attr, |
| 7212 | const char *buf, size_t count) |
| 7213 | { |
| 7214 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7215 | struct workqueue_attrs *attrs; |
| 7216 | int affn, ret = -ENOMEM; |
| 7217 | |
| 7218 | affn = parse_affn_scope(val: buf); |
| 7219 | if (affn < 0) |
| 7220 | return affn; |
| 7221 | |
| 7222 | apply_wqattrs_lock(); |
| 7223 | attrs = wq_sysfs_prep_attrs(wq); |
| 7224 | if (attrs) { |
| 7225 | attrs->affn_scope = affn; |
| 7226 | ret = apply_workqueue_attrs_locked(wq, attrs); |
| 7227 | } |
| 7228 | apply_wqattrs_unlock(); |
| 7229 | free_workqueue_attrs(attrs); |
| 7230 | return ret ?: count; |
| 7231 | } |
| 7232 | |
| 7233 | static ssize_t wq_affinity_strict_show(struct device *dev, |
| 7234 | struct device_attribute *attr, char *buf) |
| 7235 | { |
| 7236 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7237 | |
| 7238 | return scnprintf(buf, PAGE_SIZE, fmt: "%d\n" , |
| 7239 | wq->unbound_attrs->affn_strict); |
| 7240 | } |
| 7241 | |
| 7242 | static ssize_t wq_affinity_strict_store(struct device *dev, |
| 7243 | struct device_attribute *attr, |
| 7244 | const char *buf, size_t count) |
| 7245 | { |
| 7246 | struct workqueue_struct *wq = dev_to_wq(dev); |
| 7247 | struct workqueue_attrs *attrs; |
| 7248 | int v, ret = -ENOMEM; |
| 7249 | |
| 7250 | if (sscanf(buf, "%d" , &v) != 1) |
| 7251 | return -EINVAL; |
| 7252 | |
| 7253 | apply_wqattrs_lock(); |
| 7254 | attrs = wq_sysfs_prep_attrs(wq); |
| 7255 | if (attrs) { |
| 7256 | attrs->affn_strict = (bool)v; |
| 7257 | ret = apply_workqueue_attrs_locked(wq, attrs); |
| 7258 | } |
| 7259 | apply_wqattrs_unlock(); |
| 7260 | free_workqueue_attrs(attrs); |
| 7261 | return ret ?: count; |
| 7262 | } |
| 7263 | |
| 7264 | static struct device_attribute wq_sysfs_unbound_attrs[] = { |
| 7265 | __ATTR(nice, 0644, wq_nice_show, wq_nice_store), |
| 7266 | __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), |
| 7267 | __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), |
| 7268 | __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), |
| 7269 | __ATTR_NULL, |
| 7270 | }; |
| 7271 | |
| 7272 | static const struct bus_type wq_subsys = { |
| 7273 | .name = "workqueue" , |
| 7274 | .dev_groups = wq_sysfs_groups, |
| 7275 | }; |
| 7276 | |
| 7277 | /** |
| 7278 | * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask |
| 7279 | * @cpumask: the cpumask to set |
| 7280 | * |
| 7281 | * The low-level workqueues cpumask is a global cpumask that limits |
| 7282 | * the affinity of all unbound workqueues. This function check the @cpumask |
| 7283 | * and apply it to all unbound workqueues and updates all pwqs of them. |
| 7284 | * |
| 7285 | * Return: 0 - Success |
| 7286 | * -EINVAL - Invalid @cpumask |
| 7287 | * -ENOMEM - Failed to allocate memory for attrs or pwqs. |
| 7288 | */ |
| 7289 | static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) |
| 7290 | { |
| 7291 | int ret = -EINVAL; |
| 7292 | |
| 7293 | /* |
| 7294 | * Not excluding isolated cpus on purpose. |
| 7295 | * If the user wishes to include them, we allow that. |
| 7296 | */ |
| 7297 | cpumask_and(dstp: cpumask, src1p: cpumask, cpu_possible_mask); |
| 7298 | if (!cpumask_empty(srcp: cpumask)) { |
| 7299 | ret = 0; |
| 7300 | apply_wqattrs_lock(); |
| 7301 | if (!cpumask_equal(src1p: cpumask, src2p: wq_unbound_cpumask)) |
| 7302 | ret = workqueue_apply_unbound_cpumask(unbound_cpumask: cpumask); |
| 7303 | if (!ret) |
| 7304 | cpumask_copy(dstp: wq_requested_unbound_cpumask, srcp: cpumask); |
| 7305 | apply_wqattrs_unlock(); |
| 7306 | } |
| 7307 | |
| 7308 | return ret; |
| 7309 | } |
| 7310 | |
| 7311 | static ssize_t __wq_cpumask_show(struct device *dev, |
| 7312 | struct device_attribute *attr, char *buf, cpumask_var_t mask) |
| 7313 | { |
| 7314 | int written; |
| 7315 | |
| 7316 | mutex_lock(lock: &wq_pool_mutex); |
| 7317 | written = scnprintf(buf, PAGE_SIZE, fmt: "%*pb\n" , cpumask_pr_args(mask)); |
| 7318 | mutex_unlock(lock: &wq_pool_mutex); |
| 7319 | |
| 7320 | return written; |
| 7321 | } |
| 7322 | |
| 7323 | static ssize_t cpumask_requested_show(struct device *dev, |
| 7324 | struct device_attribute *attr, char *buf) |
| 7325 | { |
| 7326 | return __wq_cpumask_show(dev, attr, buf, mask: wq_requested_unbound_cpumask); |
| 7327 | } |
| 7328 | static DEVICE_ATTR_RO(cpumask_requested); |
| 7329 | |
| 7330 | static ssize_t cpumask_isolated_show(struct device *dev, |
| 7331 | struct device_attribute *attr, char *buf) |
| 7332 | { |
| 7333 | return __wq_cpumask_show(dev, attr, buf, mask: wq_isolated_cpumask); |
| 7334 | } |
| 7335 | static DEVICE_ATTR_RO(cpumask_isolated); |
| 7336 | |
| 7337 | static ssize_t cpumask_show(struct device *dev, |
| 7338 | struct device_attribute *attr, char *buf) |
| 7339 | { |
| 7340 | return __wq_cpumask_show(dev, attr, buf, mask: wq_unbound_cpumask); |
| 7341 | } |
| 7342 | |
| 7343 | static ssize_t cpumask_store(struct device *dev, |
| 7344 | struct device_attribute *attr, const char *buf, size_t count) |
| 7345 | { |
| 7346 | cpumask_var_t cpumask; |
| 7347 | int ret; |
| 7348 | |
| 7349 | if (!zalloc_cpumask_var(mask: &cpumask, GFP_KERNEL)) |
| 7350 | return -ENOMEM; |
| 7351 | |
| 7352 | ret = cpumask_parse(buf, dstp: cpumask); |
| 7353 | if (!ret) |
| 7354 | ret = workqueue_set_unbound_cpumask(cpumask); |
| 7355 | |
| 7356 | free_cpumask_var(mask: cpumask); |
| 7357 | return ret ? ret : count; |
| 7358 | } |
| 7359 | static DEVICE_ATTR_RW(cpumask); |
| 7360 | |
| 7361 | static struct attribute *wq_sysfs_cpumask_attrs[] = { |
| 7362 | &dev_attr_cpumask.attr, |
| 7363 | &dev_attr_cpumask_requested.attr, |
| 7364 | &dev_attr_cpumask_isolated.attr, |
| 7365 | NULL, |
| 7366 | }; |
| 7367 | ATTRIBUTE_GROUPS(wq_sysfs_cpumask); |
| 7368 | |
| 7369 | static int __init wq_sysfs_init(void) |
| 7370 | { |
| 7371 | return subsys_virtual_register(subsys: &wq_subsys, groups: wq_sysfs_cpumask_groups); |
| 7372 | } |
| 7373 | core_initcall(wq_sysfs_init); |
| 7374 | |
| 7375 | static void wq_device_release(struct device *dev) |
| 7376 | { |
| 7377 | struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); |
| 7378 | |
| 7379 | kfree(objp: wq_dev); |
| 7380 | } |
| 7381 | |
| 7382 | /** |
| 7383 | * workqueue_sysfs_register - make a workqueue visible in sysfs |
| 7384 | * @wq: the workqueue to register |
| 7385 | * |
| 7386 | * Expose @wq in sysfs under /sys/bus/workqueue/devices. |
| 7387 | * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set |
| 7388 | * which is the preferred method. |
| 7389 | * |
| 7390 | * Workqueue user should use this function directly iff it wants to apply |
| 7391 | * workqueue_attrs before making the workqueue visible in sysfs; otherwise, |
| 7392 | * apply_workqueue_attrs() may race against userland updating the |
| 7393 | * attributes. |
| 7394 | * |
| 7395 | * Return: 0 on success, -errno on failure. |
| 7396 | */ |
| 7397 | int workqueue_sysfs_register(struct workqueue_struct *wq) |
| 7398 | { |
| 7399 | struct wq_device *wq_dev; |
| 7400 | int ret; |
| 7401 | |
| 7402 | /* |
| 7403 | * Adjusting max_active breaks ordering guarantee. Disallow exposing |
| 7404 | * ordered workqueues. |
| 7405 | */ |
| 7406 | if (WARN_ON(wq->flags & __WQ_ORDERED)) |
| 7407 | return -EINVAL; |
| 7408 | |
| 7409 | wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); |
| 7410 | if (!wq_dev) |
| 7411 | return -ENOMEM; |
| 7412 | |
| 7413 | wq_dev->wq = wq; |
| 7414 | wq_dev->dev.bus = &wq_subsys; |
| 7415 | wq_dev->dev.release = wq_device_release; |
| 7416 | dev_set_name(dev: &wq_dev->dev, name: "%s" , wq->name); |
| 7417 | |
| 7418 | /* |
| 7419 | * unbound_attrs are created separately. Suppress uevent until |
| 7420 | * everything is ready. |
| 7421 | */ |
| 7422 | dev_set_uevent_suppress(dev: &wq_dev->dev, val: true); |
| 7423 | |
| 7424 | ret = device_register(dev: &wq_dev->dev); |
| 7425 | if (ret) { |
| 7426 | put_device(dev: &wq_dev->dev); |
| 7427 | wq->wq_dev = NULL; |
| 7428 | return ret; |
| 7429 | } |
| 7430 | |
| 7431 | if (wq->flags & WQ_UNBOUND) { |
| 7432 | struct device_attribute *attr; |
| 7433 | |
| 7434 | for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { |
| 7435 | ret = device_create_file(device: &wq_dev->dev, entry: attr); |
| 7436 | if (ret) { |
| 7437 | device_unregister(dev: &wq_dev->dev); |
| 7438 | wq->wq_dev = NULL; |
| 7439 | return ret; |
| 7440 | } |
| 7441 | } |
| 7442 | } |
| 7443 | |
| 7444 | dev_set_uevent_suppress(dev: &wq_dev->dev, val: false); |
| 7445 | kobject_uevent(kobj: &wq_dev->dev.kobj, action: KOBJ_ADD); |
| 7446 | return 0; |
| 7447 | } |
| 7448 | |
| 7449 | /** |
| 7450 | * workqueue_sysfs_unregister - undo workqueue_sysfs_register() |
| 7451 | * @wq: the workqueue to unregister |
| 7452 | * |
| 7453 | * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. |
| 7454 | */ |
| 7455 | static void workqueue_sysfs_unregister(struct workqueue_struct *wq) |
| 7456 | { |
| 7457 | struct wq_device *wq_dev = wq->wq_dev; |
| 7458 | |
| 7459 | if (!wq->wq_dev) |
| 7460 | return; |
| 7461 | |
| 7462 | wq->wq_dev = NULL; |
| 7463 | device_unregister(dev: &wq_dev->dev); |
| 7464 | } |
| 7465 | #else /* CONFIG_SYSFS */ |
| 7466 | static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } |
| 7467 | #endif /* CONFIG_SYSFS */ |
| 7468 | |
| 7469 | /* |
| 7470 | * Workqueue watchdog. |
| 7471 | * |
| 7472 | * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal |
| 7473 | * flush dependency, a concurrency managed work item which stays RUNNING |
| 7474 | * indefinitely. Workqueue stalls can be very difficult to debug as the |
| 7475 | * usual warning mechanisms don't trigger and internal workqueue state is |
| 7476 | * largely opaque. |
| 7477 | * |
| 7478 | * Workqueue watchdog monitors all worker pools periodically and dumps |
| 7479 | * state if some pools failed to make forward progress for a while where |
| 7480 | * forward progress is defined as the first item on ->worklist changing. |
| 7481 | * |
| 7482 | * This mechanism is controlled through the kernel parameter |
| 7483 | * "workqueue.watchdog_thresh" which can be updated at runtime through the |
| 7484 | * corresponding sysfs parameter file. |
| 7485 | */ |
| 7486 | #ifdef CONFIG_WQ_WATCHDOG |
| 7487 | |
| 7488 | static unsigned long wq_watchdog_thresh = 30; |
| 7489 | static struct timer_list wq_watchdog_timer; |
| 7490 | |
| 7491 | static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; |
| 7492 | static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; |
| 7493 | |
| 7494 | static unsigned int wq_panic_on_stall; |
| 7495 | module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644); |
| 7496 | |
| 7497 | /* |
| 7498 | * Show workers that might prevent the processing of pending work items. |
| 7499 | * The only candidates are CPU-bound workers in the running state. |
| 7500 | * Pending work items should be handled by another idle worker |
| 7501 | * in all other situations. |
| 7502 | */ |
| 7503 | static void show_cpu_pool_hog(struct worker_pool *pool) |
| 7504 | { |
| 7505 | struct worker *worker; |
| 7506 | unsigned long irq_flags; |
| 7507 | int bkt; |
| 7508 | |
| 7509 | raw_spin_lock_irqsave(&pool->lock, irq_flags); |
| 7510 | |
| 7511 | hash_for_each(pool->busy_hash, bkt, worker, hentry) { |
| 7512 | if (task_is_running(worker->task)) { |
| 7513 | /* |
| 7514 | * Defer printing to avoid deadlocks in console |
| 7515 | * drivers that queue work while holding locks |
| 7516 | * also taken in their write paths. |
| 7517 | */ |
| 7518 | printk_deferred_enter(); |
| 7519 | |
| 7520 | pr_info("pool %d:\n" , pool->id); |
| 7521 | sched_show_task(worker->task); |
| 7522 | |
| 7523 | printk_deferred_exit(); |
| 7524 | } |
| 7525 | } |
| 7526 | |
| 7527 | raw_spin_unlock_irqrestore(&pool->lock, irq_flags); |
| 7528 | } |
| 7529 | |
| 7530 | static void show_cpu_pools_hogs(void) |
| 7531 | { |
| 7532 | struct worker_pool *pool; |
| 7533 | int pi; |
| 7534 | |
| 7535 | pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n" ); |
| 7536 | |
| 7537 | rcu_read_lock(); |
| 7538 | |
| 7539 | for_each_pool(pool, pi) { |
| 7540 | if (pool->cpu_stall) |
| 7541 | show_cpu_pool_hog(pool); |
| 7542 | |
| 7543 | } |
| 7544 | |
| 7545 | rcu_read_unlock(); |
| 7546 | } |
| 7547 | |
| 7548 | static void panic_on_wq_watchdog(void) |
| 7549 | { |
| 7550 | static unsigned int wq_stall; |
| 7551 | |
| 7552 | if (wq_panic_on_stall) { |
| 7553 | wq_stall++; |
| 7554 | BUG_ON(wq_stall >= wq_panic_on_stall); |
| 7555 | } |
| 7556 | } |
| 7557 | |
| 7558 | static void wq_watchdog_reset_touched(void) |
| 7559 | { |
| 7560 | int cpu; |
| 7561 | |
| 7562 | wq_watchdog_touched = jiffies; |
| 7563 | for_each_possible_cpu(cpu) |
| 7564 | per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; |
| 7565 | } |
| 7566 | |
| 7567 | static void wq_watchdog_timer_fn(struct timer_list *unused) |
| 7568 | { |
| 7569 | unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; |
| 7570 | bool lockup_detected = false; |
| 7571 | bool cpu_pool_stall = false; |
| 7572 | unsigned long now = jiffies; |
| 7573 | struct worker_pool *pool; |
| 7574 | int pi; |
| 7575 | |
| 7576 | if (!thresh) |
| 7577 | return; |
| 7578 | |
| 7579 | for_each_pool(pool, pi) { |
| 7580 | unsigned long pool_ts, touched, ts; |
| 7581 | |
| 7582 | pool->cpu_stall = false; |
| 7583 | if (list_empty(&pool->worklist)) |
| 7584 | continue; |
| 7585 | |
| 7586 | /* |
| 7587 | * If a virtual machine is stopped by the host it can look to |
| 7588 | * the watchdog like a stall. |
| 7589 | */ |
| 7590 | kvm_check_and_clear_guest_paused(); |
| 7591 | |
| 7592 | /* get the latest of pool and touched timestamps */ |
| 7593 | if (pool->cpu >= 0) |
| 7594 | touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); |
| 7595 | else |
| 7596 | touched = READ_ONCE(wq_watchdog_touched); |
| 7597 | pool_ts = READ_ONCE(pool->watchdog_ts); |
| 7598 | |
| 7599 | if (time_after(pool_ts, touched)) |
| 7600 | ts = pool_ts; |
| 7601 | else |
| 7602 | ts = touched; |
| 7603 | |
| 7604 | /* did we stall? */ |
| 7605 | if (time_after(now, ts + thresh)) { |
| 7606 | lockup_detected = true; |
| 7607 | if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { |
| 7608 | pool->cpu_stall = true; |
| 7609 | cpu_pool_stall = true; |
| 7610 | } |
| 7611 | pr_emerg("BUG: workqueue lockup - pool" ); |
| 7612 | pr_cont_pool_info(pool); |
| 7613 | pr_cont(" stuck for %us!\n" , |
| 7614 | jiffies_to_msecs(now - pool_ts) / 1000); |
| 7615 | } |
| 7616 | |
| 7617 | |
| 7618 | } |
| 7619 | |
| 7620 | if (lockup_detected) |
| 7621 | show_all_workqueues(); |
| 7622 | |
| 7623 | if (cpu_pool_stall) |
| 7624 | show_cpu_pools_hogs(); |
| 7625 | |
| 7626 | if (lockup_detected) |
| 7627 | panic_on_wq_watchdog(); |
| 7628 | |
| 7629 | wq_watchdog_reset_touched(); |
| 7630 | mod_timer(&wq_watchdog_timer, jiffies + thresh); |
| 7631 | } |
| 7632 | |
| 7633 | notrace void wq_watchdog_touch(int cpu) |
| 7634 | { |
| 7635 | unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; |
| 7636 | unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); |
| 7637 | unsigned long now = jiffies; |
| 7638 | |
| 7639 | if (cpu >= 0) |
| 7640 | per_cpu(wq_watchdog_touched_cpu, cpu) = now; |
| 7641 | else |
| 7642 | WARN_ONCE(1, "%s should be called with valid CPU" , __func__); |
| 7643 | |
| 7644 | /* Don't unnecessarily store to global cacheline */ |
| 7645 | if (time_after(now, touch_ts + thresh / 4)) |
| 7646 | WRITE_ONCE(wq_watchdog_touched, jiffies); |
| 7647 | } |
| 7648 | |
| 7649 | static void wq_watchdog_set_thresh(unsigned long thresh) |
| 7650 | { |
| 7651 | wq_watchdog_thresh = 0; |
| 7652 | timer_delete_sync(&wq_watchdog_timer); |
| 7653 | |
| 7654 | if (thresh) { |
| 7655 | wq_watchdog_thresh = thresh; |
| 7656 | wq_watchdog_reset_touched(); |
| 7657 | mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); |
| 7658 | } |
| 7659 | } |
| 7660 | |
| 7661 | static int wq_watchdog_param_set_thresh(const char *val, |
| 7662 | const struct kernel_param *kp) |
| 7663 | { |
| 7664 | unsigned long thresh; |
| 7665 | int ret; |
| 7666 | |
| 7667 | ret = kstrtoul(val, 0, &thresh); |
| 7668 | if (ret) |
| 7669 | return ret; |
| 7670 | |
| 7671 | if (system_percpu_wq) |
| 7672 | wq_watchdog_set_thresh(thresh); |
| 7673 | else |
| 7674 | wq_watchdog_thresh = thresh; |
| 7675 | |
| 7676 | return 0; |
| 7677 | } |
| 7678 | |
| 7679 | static const struct kernel_param_ops wq_watchdog_thresh_ops = { |
| 7680 | .set = wq_watchdog_param_set_thresh, |
| 7681 | .get = param_get_ulong, |
| 7682 | }; |
| 7683 | |
| 7684 | module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, |
| 7685 | 0644); |
| 7686 | |
| 7687 | static void wq_watchdog_init(void) |
| 7688 | { |
| 7689 | timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); |
| 7690 | wq_watchdog_set_thresh(wq_watchdog_thresh); |
| 7691 | } |
| 7692 | |
| 7693 | #else /* CONFIG_WQ_WATCHDOG */ |
| 7694 | |
| 7695 | static inline void wq_watchdog_init(void) { } |
| 7696 | |
| 7697 | #endif /* CONFIG_WQ_WATCHDOG */ |
| 7698 | |
| 7699 | static void bh_pool_kick_normal(struct irq_work *irq_work) |
| 7700 | { |
| 7701 | raise_softirq_irqoff(nr: TASKLET_SOFTIRQ); |
| 7702 | } |
| 7703 | |
| 7704 | static void bh_pool_kick_highpri(struct irq_work *irq_work) |
| 7705 | { |
| 7706 | raise_softirq_irqoff(nr: HI_SOFTIRQ); |
| 7707 | } |
| 7708 | |
| 7709 | static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) |
| 7710 | { |
| 7711 | if (!cpumask_intersects(src1p: wq_unbound_cpumask, src2p: mask)) { |
| 7712 | pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n" , |
| 7713 | cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); |
| 7714 | return; |
| 7715 | } |
| 7716 | |
| 7717 | cpumask_and(dstp: wq_unbound_cpumask, src1p: wq_unbound_cpumask, src2p: mask); |
| 7718 | } |
| 7719 | |
| 7720 | static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) |
| 7721 | { |
| 7722 | BUG_ON(init_worker_pool(pool)); |
| 7723 | pool->cpu = cpu; |
| 7724 | cpumask_copy(dstp: pool->attrs->cpumask, cpumask_of(cpu)); |
| 7725 | cpumask_copy(dstp: pool->attrs->__pod_cpumask, cpumask_of(cpu)); |
| 7726 | pool->attrs->nice = nice; |
| 7727 | pool->attrs->affn_strict = true; |
| 7728 | pool->node = cpu_to_node(cpu); |
| 7729 | |
| 7730 | /* alloc pool ID */ |
| 7731 | mutex_lock(lock: &wq_pool_mutex); |
| 7732 | BUG_ON(worker_pool_assign_id(pool)); |
| 7733 | mutex_unlock(lock: &wq_pool_mutex); |
| 7734 | } |
| 7735 | |
| 7736 | /** |
| 7737 | * workqueue_init_early - early init for workqueue subsystem |
| 7738 | * |
| 7739 | * This is the first step of three-staged workqueue subsystem initialization and |
| 7740 | * invoked as soon as the bare basics - memory allocation, cpumasks and idr are |
| 7741 | * up. It sets up all the data structures and system workqueues and allows early |
| 7742 | * boot code to create workqueues and queue/cancel work items. Actual work item |
| 7743 | * execution starts only after kthreads can be created and scheduled right |
| 7744 | * before early initcalls. |
| 7745 | */ |
| 7746 | void __init workqueue_init_early(void) |
| 7747 | { |
| 7748 | struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; |
| 7749 | int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; |
| 7750 | void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, |
| 7751 | bh_pool_kick_highpri }; |
| 7752 | int i, cpu; |
| 7753 | |
| 7754 | BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); |
| 7755 | |
| 7756 | BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL)); |
| 7757 | BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); |
| 7758 | BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); |
| 7759 | BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); |
| 7760 | |
| 7761 | cpumask_copy(dstp: wq_online_cpumask, cpu_online_mask); |
| 7762 | cpumask_copy(dstp: wq_unbound_cpumask, cpu_possible_mask); |
| 7763 | restrict_unbound_cpumask(name: "HK_TYPE_WQ" , mask: housekeeping_cpumask(type: HK_TYPE_WQ)); |
| 7764 | restrict_unbound_cpumask(name: "HK_TYPE_DOMAIN" , mask: housekeeping_cpumask(type: HK_TYPE_DOMAIN)); |
| 7765 | if (!cpumask_empty(srcp: &wq_cmdline_cpumask)) |
| 7766 | restrict_unbound_cpumask(name: "workqueue.unbound_cpus" , mask: &wq_cmdline_cpumask); |
| 7767 | |
| 7768 | cpumask_copy(dstp: wq_requested_unbound_cpumask, srcp: wq_unbound_cpumask); |
| 7769 | cpumask_andnot(dstp: wq_isolated_cpumask, cpu_possible_mask, |
| 7770 | src2p: housekeeping_cpumask(type: HK_TYPE_DOMAIN)); |
| 7771 | pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); |
| 7772 | |
| 7773 | unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs(); |
| 7774 | BUG_ON(!unbound_wq_update_pwq_attrs_buf); |
| 7775 | |
| 7776 | /* |
| 7777 | * If nohz_full is enabled, set power efficient workqueue as unbound. |
| 7778 | * This allows workqueue items to be moved to HK CPUs. |
| 7779 | */ |
| 7780 | if (housekeeping_enabled(type: HK_TYPE_TICK)) |
| 7781 | wq_power_efficient = true; |
| 7782 | |
| 7783 | /* initialize WQ_AFFN_SYSTEM pods */ |
| 7784 | pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); |
| 7785 | pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); |
| 7786 | pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); |
| 7787 | BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); |
| 7788 | |
| 7789 | BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); |
| 7790 | |
| 7791 | pt->nr_pods = 1; |
| 7792 | cpumask_copy(dstp: pt->pod_cpus[0], cpu_possible_mask); |
| 7793 | pt->pod_node[0] = NUMA_NO_NODE; |
| 7794 | pt->cpu_pod[0] = 0; |
| 7795 | |
| 7796 | /* initialize BH and CPU pools */ |
| 7797 | for_each_possible_cpu(cpu) { |
| 7798 | struct worker_pool *pool; |
| 7799 | |
| 7800 | i = 0; |
| 7801 | for_each_bh_worker_pool(pool, cpu) { |
| 7802 | init_cpu_worker_pool(pool, cpu, nice: std_nice[i]); |
| 7803 | pool->flags |= POOL_BH; |
| 7804 | init_irq_work(work: bh_pool_irq_work(pool), func: irq_work_fns[i]); |
| 7805 | i++; |
| 7806 | } |
| 7807 | |
| 7808 | i = 0; |
| 7809 | for_each_cpu_worker_pool(pool, cpu) |
| 7810 | init_cpu_worker_pool(pool, cpu, nice: std_nice[i++]); |
| 7811 | } |
| 7812 | |
| 7813 | /* create default unbound and ordered wq attrs */ |
| 7814 | for (i = 0; i < NR_STD_WORKER_POOLS; i++) { |
| 7815 | struct workqueue_attrs *attrs; |
| 7816 | |
| 7817 | BUG_ON(!(attrs = alloc_workqueue_attrs())); |
| 7818 | attrs->nice = std_nice[i]; |
| 7819 | unbound_std_wq_attrs[i] = attrs; |
| 7820 | |
| 7821 | /* |
| 7822 | * An ordered wq should have only one pwq as ordering is |
| 7823 | * guaranteed by max_active which is enforced by pwqs. |
| 7824 | */ |
| 7825 | BUG_ON(!(attrs = alloc_workqueue_attrs())); |
| 7826 | attrs->nice = std_nice[i]; |
| 7827 | attrs->ordered = true; |
| 7828 | ordered_wq_attrs[i] = attrs; |
| 7829 | } |
| 7830 | |
| 7831 | system_wq = alloc_workqueue("events" , WQ_PERCPU, 0); |
| 7832 | system_percpu_wq = alloc_workqueue("events" , WQ_PERCPU, 0); |
| 7833 | system_highpri_wq = alloc_workqueue("events_highpri" , |
| 7834 | WQ_HIGHPRI | WQ_PERCPU, 0); |
| 7835 | system_long_wq = alloc_workqueue("events_long" , WQ_PERCPU, 0); |
| 7836 | system_unbound_wq = alloc_workqueue("events_unbound" , WQ_UNBOUND, WQ_MAX_ACTIVE); |
| 7837 | system_dfl_wq = alloc_workqueue("events_unbound" , WQ_UNBOUND, WQ_MAX_ACTIVE); |
| 7838 | system_freezable_wq = alloc_workqueue("events_freezable" , |
| 7839 | WQ_FREEZABLE | WQ_PERCPU, 0); |
| 7840 | system_power_efficient_wq = alloc_workqueue("events_power_efficient" , |
| 7841 | WQ_POWER_EFFICIENT | WQ_PERCPU, 0); |
| 7842 | system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient" , |
| 7843 | WQ_FREEZABLE | WQ_POWER_EFFICIENT | WQ_PERCPU, 0); |
| 7844 | system_bh_wq = alloc_workqueue("events_bh" , WQ_BH | WQ_PERCPU, 0); |
| 7845 | system_bh_highpri_wq = alloc_workqueue("events_bh_highpri" , |
| 7846 | WQ_BH | WQ_HIGHPRI | WQ_PERCPU, 0); |
| 7847 | BUG_ON(!system_wq || !system_percpu_wq|| !system_highpri_wq || !system_long_wq || |
| 7848 | !system_unbound_wq || !system_freezable_wq || !system_dfl_wq || |
| 7849 | !system_power_efficient_wq || |
| 7850 | !system_freezable_power_efficient_wq || |
| 7851 | !system_bh_wq || !system_bh_highpri_wq); |
| 7852 | } |
| 7853 | |
| 7854 | static void __init wq_cpu_intensive_thresh_init(void) |
| 7855 | { |
| 7856 | unsigned long thresh; |
| 7857 | unsigned long bogo; |
| 7858 | |
| 7859 | pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release" ); |
| 7860 | BUG_ON(IS_ERR(pwq_release_worker)); |
| 7861 | |
| 7862 | /* if the user set it to a specific value, keep it */ |
| 7863 | if (wq_cpu_intensive_thresh_us != ULONG_MAX) |
| 7864 | return; |
| 7865 | |
| 7866 | /* |
| 7867 | * The default of 10ms is derived from the fact that most modern (as of |
| 7868 | * 2023) processors can do a lot in 10ms and that it's just below what |
| 7869 | * most consider human-perceivable. However, the kernel also runs on a |
| 7870 | * lot slower CPUs including microcontrollers where the threshold is way |
| 7871 | * too low. |
| 7872 | * |
| 7873 | * Let's scale up the threshold upto 1 second if BogoMips is below 4000. |
| 7874 | * This is by no means accurate but it doesn't have to be. The mechanism |
| 7875 | * is still useful even when the threshold is fully scaled up. Also, as |
| 7876 | * the reports would usually be applicable to everyone, some machines |
| 7877 | * operating on longer thresholds won't significantly diminish their |
| 7878 | * usefulness. |
| 7879 | */ |
| 7880 | thresh = 10 * USEC_PER_MSEC; |
| 7881 | |
| 7882 | /* see init/calibrate.c for lpj -> BogoMIPS calculation */ |
| 7883 | bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); |
| 7884 | if (bogo < 4000) |
| 7885 | thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); |
| 7886 | |
| 7887 | pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n" , |
| 7888 | loops_per_jiffy, bogo, thresh); |
| 7889 | |
| 7890 | wq_cpu_intensive_thresh_us = thresh; |
| 7891 | } |
| 7892 | |
| 7893 | /** |
| 7894 | * workqueue_init - bring workqueue subsystem fully online |
| 7895 | * |
| 7896 | * This is the second step of three-staged workqueue subsystem initialization |
| 7897 | * and invoked as soon as kthreads can be created and scheduled. Workqueues have |
| 7898 | * been created and work items queued on them, but there are no kworkers |
| 7899 | * executing the work items yet. Populate the worker pools with the initial |
| 7900 | * workers and enable future kworker creations. |
| 7901 | */ |
| 7902 | void __init workqueue_init(void) |
| 7903 | { |
| 7904 | struct workqueue_struct *wq; |
| 7905 | struct worker_pool *pool; |
| 7906 | int cpu, bkt; |
| 7907 | |
| 7908 | wq_cpu_intensive_thresh_init(); |
| 7909 | |
| 7910 | mutex_lock(lock: &wq_pool_mutex); |
| 7911 | |
| 7912 | /* |
| 7913 | * Per-cpu pools created earlier could be missing node hint. Fix them |
| 7914 | * up. Also, create a rescuer for workqueues that requested it. |
| 7915 | */ |
| 7916 | for_each_possible_cpu(cpu) { |
| 7917 | for_each_bh_worker_pool(pool, cpu) |
| 7918 | pool->node = cpu_to_node(cpu); |
| 7919 | for_each_cpu_worker_pool(pool, cpu) |
| 7920 | pool->node = cpu_to_node(cpu); |
| 7921 | } |
| 7922 | |
| 7923 | list_for_each_entry(wq, &workqueues, list) { |
| 7924 | WARN(init_rescuer(wq), |
| 7925 | "workqueue: failed to create early rescuer for %s" , |
| 7926 | wq->name); |
| 7927 | } |
| 7928 | |
| 7929 | mutex_unlock(lock: &wq_pool_mutex); |
| 7930 | |
| 7931 | /* |
| 7932 | * Create the initial workers. A BH pool has one pseudo worker that |
| 7933 | * represents the shared BH execution context and thus doesn't get |
| 7934 | * affected by hotplug events. Create the BH pseudo workers for all |
| 7935 | * possible CPUs here. |
| 7936 | */ |
| 7937 | for_each_possible_cpu(cpu) |
| 7938 | for_each_bh_worker_pool(pool, cpu) |
| 7939 | BUG_ON(!create_worker(pool)); |
| 7940 | |
| 7941 | for_each_online_cpu(cpu) { |
| 7942 | for_each_cpu_worker_pool(pool, cpu) { |
| 7943 | pool->flags &= ~POOL_DISASSOCIATED; |
| 7944 | BUG_ON(!create_worker(pool)); |
| 7945 | } |
| 7946 | } |
| 7947 | |
| 7948 | hash_for_each(unbound_pool_hash, bkt, pool, hash_node) |
| 7949 | BUG_ON(!create_worker(pool)); |
| 7950 | |
| 7951 | wq_online = true; |
| 7952 | wq_watchdog_init(); |
| 7953 | } |
| 7954 | |
| 7955 | /* |
| 7956 | * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to |
| 7957 | * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique |
| 7958 | * and consecutive pod ID. The rest of @pt is initialized accordingly. |
| 7959 | */ |
| 7960 | static void __init init_pod_type(struct wq_pod_type *pt, |
| 7961 | bool (*cpus_share_pod)(int, int)) |
| 7962 | { |
| 7963 | int cur, pre, cpu, pod; |
| 7964 | |
| 7965 | pt->nr_pods = 0; |
| 7966 | |
| 7967 | /* init @pt->cpu_pod[] according to @cpus_share_pod() */ |
| 7968 | pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); |
| 7969 | BUG_ON(!pt->cpu_pod); |
| 7970 | |
| 7971 | for_each_possible_cpu(cur) { |
| 7972 | for_each_possible_cpu(pre) { |
| 7973 | if (pre >= cur) { |
| 7974 | pt->cpu_pod[cur] = pt->nr_pods++; |
| 7975 | break; |
| 7976 | } |
| 7977 | if (cpus_share_pod(cur, pre)) { |
| 7978 | pt->cpu_pod[cur] = pt->cpu_pod[pre]; |
| 7979 | break; |
| 7980 | } |
| 7981 | } |
| 7982 | } |
| 7983 | |
| 7984 | /* init the rest to match @pt->cpu_pod[] */ |
| 7985 | pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); |
| 7986 | pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); |
| 7987 | BUG_ON(!pt->pod_cpus || !pt->pod_node); |
| 7988 | |
| 7989 | for (pod = 0; pod < pt->nr_pods; pod++) |
| 7990 | BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); |
| 7991 | |
| 7992 | for_each_possible_cpu(cpu) { |
| 7993 | cpumask_set_cpu(cpu, dstp: pt->pod_cpus[pt->cpu_pod[cpu]]); |
| 7994 | pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); |
| 7995 | } |
| 7996 | } |
| 7997 | |
| 7998 | static bool __init cpus_dont_share(int cpu0, int cpu1) |
| 7999 | { |
| 8000 | return false; |
| 8001 | } |
| 8002 | |
| 8003 | static bool __init cpus_share_smt(int cpu0, int cpu1) |
| 8004 | { |
| 8005 | #ifdef CONFIG_SCHED_SMT |
| 8006 | return cpumask_test_cpu(cpu: cpu0, cpumask: cpu_smt_mask(cpu: cpu1)); |
| 8007 | #else |
| 8008 | return false; |
| 8009 | #endif |
| 8010 | } |
| 8011 | |
| 8012 | static bool __init cpus_share_numa(int cpu0, int cpu1) |
| 8013 | { |
| 8014 | return cpu_to_node(cpu: cpu0) == cpu_to_node(cpu: cpu1); |
| 8015 | } |
| 8016 | |
| 8017 | /** |
| 8018 | * workqueue_init_topology - initialize CPU pods for unbound workqueues |
| 8019 | * |
| 8020 | * This is the third step of three-staged workqueue subsystem initialization and |
| 8021 | * invoked after SMP and topology information are fully initialized. It |
| 8022 | * initializes the unbound CPU pods accordingly. |
| 8023 | */ |
| 8024 | void __init workqueue_init_topology(void) |
| 8025 | { |
| 8026 | struct workqueue_struct *wq; |
| 8027 | int cpu; |
| 8028 | |
| 8029 | init_pod_type(pt: &wq_pod_types[WQ_AFFN_CPU], cpus_share_pod: cpus_dont_share); |
| 8030 | init_pod_type(pt: &wq_pod_types[WQ_AFFN_SMT], cpus_share_pod: cpus_share_smt); |
| 8031 | init_pod_type(pt: &wq_pod_types[WQ_AFFN_CACHE], cpus_share_pod: cpus_share_cache); |
| 8032 | init_pod_type(pt: &wq_pod_types[WQ_AFFN_NUMA], cpus_share_pod: cpus_share_numa); |
| 8033 | |
| 8034 | wq_topo_initialized = true; |
| 8035 | |
| 8036 | mutex_lock(lock: &wq_pool_mutex); |
| 8037 | |
| 8038 | /* |
| 8039 | * Workqueues allocated earlier would have all CPUs sharing the default |
| 8040 | * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue |
| 8041 | * and CPU combinations to apply per-pod sharing. |
| 8042 | */ |
| 8043 | list_for_each_entry(wq, &workqueues, list) { |
| 8044 | for_each_online_cpu(cpu) |
| 8045 | unbound_wq_update_pwq(wq, cpu); |
| 8046 | if (wq->flags & WQ_UNBOUND) { |
| 8047 | mutex_lock(lock: &wq->mutex); |
| 8048 | wq_update_node_max_active(wq, off_cpu: -1); |
| 8049 | mutex_unlock(lock: &wq->mutex); |
| 8050 | } |
| 8051 | } |
| 8052 | |
| 8053 | mutex_unlock(lock: &wq_pool_mutex); |
| 8054 | } |
| 8055 | |
| 8056 | void __warn_flushing_systemwide_wq(void) |
| 8057 | { |
| 8058 | pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n" ); |
| 8059 | dump_stack(); |
| 8060 | } |
| 8061 | EXPORT_SYMBOL(__warn_flushing_systemwide_wq); |
| 8062 | |
| 8063 | static int __init workqueue_unbound_cpus_setup(char *str) |
| 8064 | { |
| 8065 | if (cpulist_parse(buf: str, dstp: &wq_cmdline_cpumask) < 0) { |
| 8066 | cpumask_clear(dstp: &wq_cmdline_cpumask); |
| 8067 | pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n" ); |
| 8068 | } |
| 8069 | |
| 8070 | return 1; |
| 8071 | } |
| 8072 | __setup("workqueue.unbound_cpus=" , workqueue_unbound_cpus_setup); |
| 8073 | |