| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | #include <linux/export.h> |
| 3 | #include <linux/bvec.h> |
| 4 | #include <linux/fault-inject-usercopy.h> |
| 5 | #include <linux/uio.h> |
| 6 | #include <linux/pagemap.h> |
| 7 | #include <linux/highmem.h> |
| 8 | #include <linux/slab.h> |
| 9 | #include <linux/vmalloc.h> |
| 10 | #include <linux/splice.h> |
| 11 | #include <linux/compat.h> |
| 12 | #include <linux/scatterlist.h> |
| 13 | #include <linux/instrumented.h> |
| 14 | #include <linux/iov_iter.h> |
| 15 | |
| 16 | static __always_inline |
| 17 | size_t copy_to_user_iter(void __user *iter_to, size_t progress, |
| 18 | size_t len, void *from, void *priv2) |
| 19 | { |
| 20 | if (should_fail_usercopy()) |
| 21 | return len; |
| 22 | if (access_ok(iter_to, len)) { |
| 23 | from += progress; |
| 24 | instrument_copy_to_user(to: iter_to, from, n: len); |
| 25 | len = raw_copy_to_user(dst: iter_to, src: from, size: len); |
| 26 | } |
| 27 | return len; |
| 28 | } |
| 29 | |
| 30 | static __always_inline |
| 31 | size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, |
| 32 | size_t len, void *from, void *priv2) |
| 33 | { |
| 34 | ssize_t res; |
| 35 | |
| 36 | if (should_fail_usercopy()) |
| 37 | return len; |
| 38 | |
| 39 | from += progress; |
| 40 | res = copy_to_user_nofault(dst: iter_to, src: from, size: len); |
| 41 | return res < 0 ? len : res; |
| 42 | } |
| 43 | |
| 44 | static __always_inline |
| 45 | size_t copy_from_user_iter(void __user *iter_from, size_t progress, |
| 46 | size_t len, void *to, void *priv2) |
| 47 | { |
| 48 | size_t res = len; |
| 49 | |
| 50 | if (should_fail_usercopy()) |
| 51 | return len; |
| 52 | if (access_ok(iter_from, len)) { |
| 53 | to += progress; |
| 54 | instrument_copy_from_user_before(to, from: iter_from, n: len); |
| 55 | res = raw_copy_from_user(dst: to, src: iter_from, size: len); |
| 56 | instrument_copy_from_user_after(to, from: iter_from, n: len, left: res); |
| 57 | } |
| 58 | return res; |
| 59 | } |
| 60 | |
| 61 | static __always_inline |
| 62 | size_t memcpy_to_iter(void *iter_to, size_t progress, |
| 63 | size_t len, void *from, void *priv2) |
| 64 | { |
| 65 | memcpy(to: iter_to, from: from + progress, len); |
| 66 | return 0; |
| 67 | } |
| 68 | |
| 69 | static __always_inline |
| 70 | size_t memcpy_from_iter(void *iter_from, size_t progress, |
| 71 | size_t len, void *to, void *priv2) |
| 72 | { |
| 73 | memcpy(to: to + progress, from: iter_from, len); |
| 74 | return 0; |
| 75 | } |
| 76 | |
| 77 | /* |
| 78 | * fault_in_iov_iter_readable - fault in iov iterator for reading |
| 79 | * @i: iterator |
| 80 | * @size: maximum length |
| 81 | * |
| 82 | * Fault in one or more iovecs of the given iov_iter, to a maximum length of |
| 83 | * @size. For each iovec, fault in each page that constitutes the iovec. |
| 84 | * |
| 85 | * Returns the number of bytes not faulted in (like copy_to_user() and |
| 86 | * copy_from_user()). |
| 87 | * |
| 88 | * Always returns 0 for non-userspace iterators. |
| 89 | */ |
| 90 | size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) |
| 91 | { |
| 92 | if (iter_is_ubuf(i)) { |
| 93 | size_t n = min(size, iov_iter_count(i)); |
| 94 | n -= fault_in_readable(uaddr: i->ubuf + i->iov_offset, size: n); |
| 95 | return size - n; |
| 96 | } else if (iter_is_iovec(i)) { |
| 97 | size_t count = min(size, iov_iter_count(i)); |
| 98 | const struct iovec *p; |
| 99 | size_t skip; |
| 100 | |
| 101 | size -= count; |
| 102 | for (p = iter_iov(iter: i), skip = i->iov_offset; count; p++, skip = 0) { |
| 103 | size_t len = min(count, p->iov_len - skip); |
| 104 | size_t ret; |
| 105 | |
| 106 | if (unlikely(!len)) |
| 107 | continue; |
| 108 | ret = fault_in_readable(uaddr: p->iov_base + skip, size: len); |
| 109 | count -= len - ret; |
| 110 | if (ret) |
| 111 | break; |
| 112 | } |
| 113 | return count + size; |
| 114 | } |
| 115 | return 0; |
| 116 | } |
| 117 | EXPORT_SYMBOL(fault_in_iov_iter_readable); |
| 118 | |
| 119 | /* |
| 120 | * fault_in_iov_iter_writeable - fault in iov iterator for writing |
| 121 | * @i: iterator |
| 122 | * @size: maximum length |
| 123 | * |
| 124 | * Faults in the iterator using get_user_pages(), i.e., without triggering |
| 125 | * hardware page faults. This is primarily useful when we already know that |
| 126 | * some or all of the pages in @i aren't in memory. |
| 127 | * |
| 128 | * Returns the number of bytes not faulted in, like copy_to_user() and |
| 129 | * copy_from_user(). |
| 130 | * |
| 131 | * Always returns 0 for non-user-space iterators. |
| 132 | */ |
| 133 | size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) |
| 134 | { |
| 135 | if (iter_is_ubuf(i)) { |
| 136 | size_t n = min(size, iov_iter_count(i)); |
| 137 | n -= fault_in_safe_writeable(uaddr: i->ubuf + i->iov_offset, size: n); |
| 138 | return size - n; |
| 139 | } else if (iter_is_iovec(i)) { |
| 140 | size_t count = min(size, iov_iter_count(i)); |
| 141 | const struct iovec *p; |
| 142 | size_t skip; |
| 143 | |
| 144 | size -= count; |
| 145 | for (p = iter_iov(iter: i), skip = i->iov_offset; count; p++, skip = 0) { |
| 146 | size_t len = min(count, p->iov_len - skip); |
| 147 | size_t ret; |
| 148 | |
| 149 | if (unlikely(!len)) |
| 150 | continue; |
| 151 | ret = fault_in_safe_writeable(uaddr: p->iov_base + skip, size: len); |
| 152 | count -= len - ret; |
| 153 | if (ret) |
| 154 | break; |
| 155 | } |
| 156 | return count + size; |
| 157 | } |
| 158 | return 0; |
| 159 | } |
| 160 | EXPORT_SYMBOL(fault_in_iov_iter_writeable); |
| 161 | |
| 162 | void iov_iter_init(struct iov_iter *i, unsigned int direction, |
| 163 | const struct iovec *iov, unsigned long nr_segs, |
| 164 | size_t count) |
| 165 | { |
| 166 | WARN_ON(direction & ~(READ | WRITE)); |
| 167 | *i = (struct iov_iter) { |
| 168 | .iter_type = ITER_IOVEC, |
| 169 | .nofault = false, |
| 170 | .data_source = direction, |
| 171 | .__iov = iov, |
| 172 | .nr_segs = nr_segs, |
| 173 | .iov_offset = 0, |
| 174 | .count = count |
| 175 | }; |
| 176 | } |
| 177 | EXPORT_SYMBOL(iov_iter_init); |
| 178 | |
| 179 | size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) |
| 180 | { |
| 181 | if (WARN_ON_ONCE(i->data_source)) |
| 182 | return 0; |
| 183 | if (user_backed_iter(i)) |
| 184 | might_fault(); |
| 185 | return iterate_and_advance(iter: i, len: bytes, priv: (void *)addr, |
| 186 | ustep: copy_to_user_iter, step: memcpy_to_iter); |
| 187 | } |
| 188 | EXPORT_SYMBOL(_copy_to_iter); |
| 189 | |
| 190 | #ifdef CONFIG_ARCH_HAS_COPY_MC |
| 191 | static __always_inline |
| 192 | size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, |
| 193 | size_t len, void *from, void *priv2) |
| 194 | { |
| 195 | if (access_ok(iter_to, len)) { |
| 196 | from += progress; |
| 197 | instrument_copy_to_user(to: iter_to, from, n: len); |
| 198 | len = copy_mc_to_user(to: iter_to, from, len); |
| 199 | } |
| 200 | return len; |
| 201 | } |
| 202 | |
| 203 | static __always_inline |
| 204 | size_t memcpy_to_iter_mc(void *iter_to, size_t progress, |
| 205 | size_t len, void *from, void *priv2) |
| 206 | { |
| 207 | return copy_mc_to_kernel(to: iter_to, from: from + progress, len); |
| 208 | } |
| 209 | |
| 210 | /** |
| 211 | * _copy_mc_to_iter - copy to iter with source memory error exception handling |
| 212 | * @addr: source kernel address |
| 213 | * @bytes: total transfer length |
| 214 | * @i: destination iterator |
| 215 | * |
| 216 | * The pmem driver deploys this for the dax operation |
| 217 | * (dax_copy_to_iter()) for dax reads (bypass page-cache and the |
| 218 | * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes |
| 219 | * successfully copied. |
| 220 | * |
| 221 | * The main differences between this and typical _copy_to_iter(). |
| 222 | * |
| 223 | * * Typical tail/residue handling after a fault retries the copy |
| 224 | * byte-by-byte until the fault happens again. Re-triggering machine |
| 225 | * checks is potentially fatal so the implementation uses source |
| 226 | * alignment and poison alignment assumptions to avoid re-triggering |
| 227 | * hardware exceptions. |
| 228 | * |
| 229 | * * ITER_KVEC and ITER_BVEC can return short copies. Compare to |
| 230 | * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. |
| 231 | * |
| 232 | * Return: number of bytes copied (may be %0) |
| 233 | */ |
| 234 | size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) |
| 235 | { |
| 236 | if (WARN_ON_ONCE(i->data_source)) |
| 237 | return 0; |
| 238 | if (user_backed_iter(i)) |
| 239 | might_fault(); |
| 240 | return iterate_and_advance(iter: i, len: bytes, priv: (void *)addr, |
| 241 | ustep: copy_to_user_iter_mc, step: memcpy_to_iter_mc); |
| 242 | } |
| 243 | EXPORT_SYMBOL_GPL(_copy_mc_to_iter); |
| 244 | #endif /* CONFIG_ARCH_HAS_COPY_MC */ |
| 245 | |
| 246 | static __always_inline |
| 247 | size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) |
| 248 | { |
| 249 | return iterate_and_advance(iter: i, len: bytes, priv: addr, |
| 250 | ustep: copy_from_user_iter, step: memcpy_from_iter); |
| 251 | } |
| 252 | |
| 253 | size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) |
| 254 | { |
| 255 | if (WARN_ON_ONCE(!i->data_source)) |
| 256 | return 0; |
| 257 | |
| 258 | if (user_backed_iter(i)) |
| 259 | might_fault(); |
| 260 | return __copy_from_iter(addr, bytes, i); |
| 261 | } |
| 262 | EXPORT_SYMBOL(_copy_from_iter); |
| 263 | |
| 264 | static __always_inline |
| 265 | size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, |
| 266 | size_t len, void *to, void *priv2) |
| 267 | { |
| 268 | return __copy_from_user_inatomic_nocache(dst: to + progress, src: iter_from, size: len); |
| 269 | } |
| 270 | |
| 271 | size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) |
| 272 | { |
| 273 | if (WARN_ON_ONCE(!i->data_source)) |
| 274 | return 0; |
| 275 | |
| 276 | return iterate_and_advance(iter: i, len: bytes, priv: addr, |
| 277 | ustep: copy_from_user_iter_nocache, |
| 278 | step: memcpy_from_iter); |
| 279 | } |
| 280 | EXPORT_SYMBOL(_copy_from_iter_nocache); |
| 281 | |
| 282 | #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE |
| 283 | static __always_inline |
| 284 | size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, |
| 285 | size_t len, void *to, void *priv2) |
| 286 | { |
| 287 | return __copy_from_user_flushcache(dst: to + progress, src: iter_from, size: len); |
| 288 | } |
| 289 | |
| 290 | static __always_inline |
| 291 | size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, |
| 292 | size_t len, void *to, void *priv2) |
| 293 | { |
| 294 | memcpy_flushcache(dst: to + progress, src: iter_from, cnt: len); |
| 295 | return 0; |
| 296 | } |
| 297 | |
| 298 | /** |
| 299 | * _copy_from_iter_flushcache - write destination through cpu cache |
| 300 | * @addr: destination kernel address |
| 301 | * @bytes: total transfer length |
| 302 | * @i: source iterator |
| 303 | * |
| 304 | * The pmem driver arranges for filesystem-dax to use this facility via |
| 305 | * dax_copy_from_iter() for ensuring that writes to persistent memory |
| 306 | * are flushed through the CPU cache. It is differentiated from |
| 307 | * _copy_from_iter_nocache() in that guarantees all data is flushed for |
| 308 | * all iterator types. The _copy_from_iter_nocache() only attempts to |
| 309 | * bypass the cache for the ITER_IOVEC case, and on some archs may use |
| 310 | * instructions that strand dirty-data in the cache. |
| 311 | * |
| 312 | * Return: number of bytes copied (may be %0) |
| 313 | */ |
| 314 | size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) |
| 315 | { |
| 316 | if (WARN_ON_ONCE(!i->data_source)) |
| 317 | return 0; |
| 318 | |
| 319 | return iterate_and_advance(iter: i, len: bytes, priv: addr, |
| 320 | ustep: copy_from_user_iter_flushcache, |
| 321 | step: memcpy_from_iter_flushcache); |
| 322 | } |
| 323 | EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); |
| 324 | #endif |
| 325 | |
| 326 | static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) |
| 327 | { |
| 328 | struct page *head; |
| 329 | size_t v = n + offset; |
| 330 | |
| 331 | /* |
| 332 | * The general case needs to access the page order in order |
| 333 | * to compute the page size. |
| 334 | * However, we mostly deal with order-0 pages and thus can |
| 335 | * avoid a possible cache line miss for requests that fit all |
| 336 | * page orders. |
| 337 | */ |
| 338 | if (n <= v && v <= PAGE_SIZE) |
| 339 | return true; |
| 340 | |
| 341 | head = compound_head(page); |
| 342 | v += (page - head) << PAGE_SHIFT; |
| 343 | |
| 344 | if (WARN_ON(n > v || v > page_size(head))) |
| 345 | return false; |
| 346 | return true; |
| 347 | } |
| 348 | |
| 349 | size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, |
| 350 | struct iov_iter *i) |
| 351 | { |
| 352 | size_t res = 0; |
| 353 | if (!page_copy_sane(page, offset, n: bytes)) |
| 354 | return 0; |
| 355 | if (WARN_ON_ONCE(i->data_source)) |
| 356 | return 0; |
| 357 | page += offset / PAGE_SIZE; // first subpage |
| 358 | offset %= PAGE_SIZE; |
| 359 | while (1) { |
| 360 | void *kaddr = kmap_local_page(page); |
| 361 | size_t n = min(bytes, (size_t)PAGE_SIZE - offset); |
| 362 | n = _copy_to_iter(kaddr + offset, n, i); |
| 363 | kunmap_local(kaddr); |
| 364 | res += n; |
| 365 | bytes -= n; |
| 366 | if (!bytes || !n) |
| 367 | break; |
| 368 | offset += n; |
| 369 | if (offset == PAGE_SIZE) { |
| 370 | page++; |
| 371 | offset = 0; |
| 372 | } |
| 373 | } |
| 374 | return res; |
| 375 | } |
| 376 | EXPORT_SYMBOL(copy_page_to_iter); |
| 377 | |
| 378 | size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, |
| 379 | struct iov_iter *i) |
| 380 | { |
| 381 | size_t res = 0; |
| 382 | |
| 383 | if (!page_copy_sane(page, offset, n: bytes)) |
| 384 | return 0; |
| 385 | if (WARN_ON_ONCE(i->data_source)) |
| 386 | return 0; |
| 387 | page += offset / PAGE_SIZE; // first subpage |
| 388 | offset %= PAGE_SIZE; |
| 389 | while (1) { |
| 390 | void *kaddr = kmap_local_page(page); |
| 391 | size_t n = min(bytes, (size_t)PAGE_SIZE - offset); |
| 392 | |
| 393 | n = iterate_and_advance(iter: i, len: n, priv: kaddr + offset, |
| 394 | ustep: copy_to_user_iter_nofault, |
| 395 | step: memcpy_to_iter); |
| 396 | kunmap_local(kaddr); |
| 397 | res += n; |
| 398 | bytes -= n; |
| 399 | if (!bytes || !n) |
| 400 | break; |
| 401 | offset += n; |
| 402 | if (offset == PAGE_SIZE) { |
| 403 | page++; |
| 404 | offset = 0; |
| 405 | } |
| 406 | } |
| 407 | return res; |
| 408 | } |
| 409 | EXPORT_SYMBOL(copy_page_to_iter_nofault); |
| 410 | |
| 411 | size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, |
| 412 | struct iov_iter *i) |
| 413 | { |
| 414 | size_t res = 0; |
| 415 | if (!page_copy_sane(page, offset, n: bytes)) |
| 416 | return 0; |
| 417 | page += offset / PAGE_SIZE; // first subpage |
| 418 | offset %= PAGE_SIZE; |
| 419 | while (1) { |
| 420 | void *kaddr = kmap_local_page(page); |
| 421 | size_t n = min(bytes, (size_t)PAGE_SIZE - offset); |
| 422 | n = _copy_from_iter(kaddr + offset, n, i); |
| 423 | kunmap_local(kaddr); |
| 424 | res += n; |
| 425 | bytes -= n; |
| 426 | if (!bytes || !n) |
| 427 | break; |
| 428 | offset += n; |
| 429 | if (offset == PAGE_SIZE) { |
| 430 | page++; |
| 431 | offset = 0; |
| 432 | } |
| 433 | } |
| 434 | return res; |
| 435 | } |
| 436 | EXPORT_SYMBOL(copy_page_from_iter); |
| 437 | |
| 438 | static __always_inline |
| 439 | size_t zero_to_user_iter(void __user *iter_to, size_t progress, |
| 440 | size_t len, void *priv, void *priv2) |
| 441 | { |
| 442 | return clear_user(to: iter_to, n: len); |
| 443 | } |
| 444 | |
| 445 | static __always_inline |
| 446 | size_t zero_to_iter(void *iter_to, size_t progress, |
| 447 | size_t len, void *priv, void *priv2) |
| 448 | { |
| 449 | memset(s: iter_to, c: 0, n: len); |
| 450 | return 0; |
| 451 | } |
| 452 | |
| 453 | size_t iov_iter_zero(size_t bytes, struct iov_iter *i) |
| 454 | { |
| 455 | return iterate_and_advance(iter: i, len: bytes, NULL, |
| 456 | ustep: zero_to_user_iter, step: zero_to_iter); |
| 457 | } |
| 458 | EXPORT_SYMBOL(iov_iter_zero); |
| 459 | |
| 460 | size_t copy_folio_from_iter_atomic(struct folio *folio, size_t offset, |
| 461 | size_t bytes, struct iov_iter *i) |
| 462 | { |
| 463 | size_t n, copied = 0; |
| 464 | |
| 465 | if (!page_copy_sane(page: &folio->page, offset, n: bytes)) |
| 466 | return 0; |
| 467 | if (WARN_ON_ONCE(!i->data_source)) |
| 468 | return 0; |
| 469 | |
| 470 | do { |
| 471 | char *to = kmap_local_folio(folio, offset); |
| 472 | |
| 473 | n = bytes - copied; |
| 474 | if (folio_test_partial_kmap(folio) && |
| 475 | n > PAGE_SIZE - offset_in_page(offset)) |
| 476 | n = PAGE_SIZE - offset_in_page(offset); |
| 477 | |
| 478 | pagefault_disable(); |
| 479 | n = __copy_from_iter(addr: to, bytes: n, i); |
| 480 | pagefault_enable(); |
| 481 | kunmap_local(to); |
| 482 | copied += n; |
| 483 | offset += n; |
| 484 | } while (copied != bytes && n > 0); |
| 485 | |
| 486 | return copied; |
| 487 | } |
| 488 | EXPORT_SYMBOL(copy_folio_from_iter_atomic); |
| 489 | |
| 490 | static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) |
| 491 | { |
| 492 | const struct bio_vec *bvec, *end; |
| 493 | |
| 494 | if (!i->count) |
| 495 | return; |
| 496 | i->count -= size; |
| 497 | |
| 498 | size += i->iov_offset; |
| 499 | |
| 500 | for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { |
| 501 | if (likely(size < bvec->bv_len)) |
| 502 | break; |
| 503 | size -= bvec->bv_len; |
| 504 | } |
| 505 | i->iov_offset = size; |
| 506 | i->nr_segs -= bvec - i->bvec; |
| 507 | i->bvec = bvec; |
| 508 | } |
| 509 | |
| 510 | static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) |
| 511 | { |
| 512 | const struct iovec *iov, *end; |
| 513 | |
| 514 | if (!i->count) |
| 515 | return; |
| 516 | i->count -= size; |
| 517 | |
| 518 | size += i->iov_offset; // from beginning of current segment |
| 519 | for (iov = iter_iov(iter: i), end = iov + i->nr_segs; iov < end; iov++) { |
| 520 | if (likely(size < iov->iov_len)) |
| 521 | break; |
| 522 | size -= iov->iov_len; |
| 523 | } |
| 524 | i->iov_offset = size; |
| 525 | i->nr_segs -= iov - iter_iov(iter: i); |
| 526 | i->__iov = iov; |
| 527 | } |
| 528 | |
| 529 | static void iov_iter_folioq_advance(struct iov_iter *i, size_t size) |
| 530 | { |
| 531 | const struct folio_queue *folioq = i->folioq; |
| 532 | unsigned int slot = i->folioq_slot; |
| 533 | |
| 534 | if (!i->count) |
| 535 | return; |
| 536 | i->count -= size; |
| 537 | |
| 538 | if (slot >= folioq_nr_slots(folioq)) { |
| 539 | folioq = folioq->next; |
| 540 | slot = 0; |
| 541 | } |
| 542 | |
| 543 | size += i->iov_offset; /* From beginning of current segment. */ |
| 544 | do { |
| 545 | size_t fsize = folioq_folio_size(folioq, slot); |
| 546 | |
| 547 | if (likely(size < fsize)) |
| 548 | break; |
| 549 | size -= fsize; |
| 550 | slot++; |
| 551 | if (slot >= folioq_nr_slots(folioq) && folioq->next) { |
| 552 | folioq = folioq->next; |
| 553 | slot = 0; |
| 554 | } |
| 555 | } while (size); |
| 556 | |
| 557 | i->iov_offset = size; |
| 558 | i->folioq_slot = slot; |
| 559 | i->folioq = folioq; |
| 560 | } |
| 561 | |
| 562 | void iov_iter_advance(struct iov_iter *i, size_t size) |
| 563 | { |
| 564 | if (unlikely(i->count < size)) |
| 565 | size = i->count; |
| 566 | if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { |
| 567 | i->iov_offset += size; |
| 568 | i->count -= size; |
| 569 | } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { |
| 570 | /* iovec and kvec have identical layouts */ |
| 571 | iov_iter_iovec_advance(i, size); |
| 572 | } else if (iov_iter_is_bvec(i)) { |
| 573 | iov_iter_bvec_advance(i, size); |
| 574 | } else if (iov_iter_is_folioq(i)) { |
| 575 | iov_iter_folioq_advance(i, size); |
| 576 | } else if (iov_iter_is_discard(i)) { |
| 577 | i->count -= size; |
| 578 | } |
| 579 | } |
| 580 | EXPORT_SYMBOL(iov_iter_advance); |
| 581 | |
| 582 | static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll) |
| 583 | { |
| 584 | const struct folio_queue *folioq = i->folioq; |
| 585 | unsigned int slot = i->folioq_slot; |
| 586 | |
| 587 | for (;;) { |
| 588 | size_t fsize; |
| 589 | |
| 590 | if (slot == 0) { |
| 591 | folioq = folioq->prev; |
| 592 | slot = folioq_nr_slots(folioq); |
| 593 | } |
| 594 | slot--; |
| 595 | |
| 596 | fsize = folioq_folio_size(folioq, slot); |
| 597 | if (unroll <= fsize) { |
| 598 | i->iov_offset = fsize - unroll; |
| 599 | break; |
| 600 | } |
| 601 | unroll -= fsize; |
| 602 | } |
| 603 | |
| 604 | i->folioq_slot = slot; |
| 605 | i->folioq = folioq; |
| 606 | } |
| 607 | |
| 608 | void iov_iter_revert(struct iov_iter *i, size_t unroll) |
| 609 | { |
| 610 | if (!unroll) |
| 611 | return; |
| 612 | if (WARN_ON(unroll > MAX_RW_COUNT)) |
| 613 | return; |
| 614 | i->count += unroll; |
| 615 | if (unlikely(iov_iter_is_discard(i))) |
| 616 | return; |
| 617 | if (unroll <= i->iov_offset) { |
| 618 | i->iov_offset -= unroll; |
| 619 | return; |
| 620 | } |
| 621 | unroll -= i->iov_offset; |
| 622 | if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { |
| 623 | BUG(); /* We should never go beyond the start of the specified |
| 624 | * range since we might then be straying into pages that |
| 625 | * aren't pinned. |
| 626 | */ |
| 627 | } else if (iov_iter_is_bvec(i)) { |
| 628 | const struct bio_vec *bvec = i->bvec; |
| 629 | while (1) { |
| 630 | size_t n = (--bvec)->bv_len; |
| 631 | i->nr_segs++; |
| 632 | if (unroll <= n) { |
| 633 | i->bvec = bvec; |
| 634 | i->iov_offset = n - unroll; |
| 635 | return; |
| 636 | } |
| 637 | unroll -= n; |
| 638 | } |
| 639 | } else if (iov_iter_is_folioq(i)) { |
| 640 | i->iov_offset = 0; |
| 641 | iov_iter_folioq_revert(i, unroll); |
| 642 | } else { /* same logics for iovec and kvec */ |
| 643 | const struct iovec *iov = iter_iov(iter: i); |
| 644 | while (1) { |
| 645 | size_t n = (--iov)->iov_len; |
| 646 | i->nr_segs++; |
| 647 | if (unroll <= n) { |
| 648 | i->__iov = iov; |
| 649 | i->iov_offset = n - unroll; |
| 650 | return; |
| 651 | } |
| 652 | unroll -= n; |
| 653 | } |
| 654 | } |
| 655 | } |
| 656 | EXPORT_SYMBOL(iov_iter_revert); |
| 657 | |
| 658 | /* |
| 659 | * Return the count of just the current iov_iter segment. |
| 660 | */ |
| 661 | size_t iov_iter_single_seg_count(const struct iov_iter *i) |
| 662 | { |
| 663 | if (i->nr_segs > 1) { |
| 664 | if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
| 665 | return min(i->count, iter_iov(i)->iov_len - i->iov_offset); |
| 666 | if (iov_iter_is_bvec(i)) |
| 667 | return min(i->count, i->bvec->bv_len - i->iov_offset); |
| 668 | } |
| 669 | if (unlikely(iov_iter_is_folioq(i))) |
| 670 | return !i->count ? 0 : |
| 671 | umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count); |
| 672 | return i->count; |
| 673 | } |
| 674 | EXPORT_SYMBOL(iov_iter_single_seg_count); |
| 675 | |
| 676 | void iov_iter_kvec(struct iov_iter *i, unsigned int direction, |
| 677 | const struct kvec *kvec, unsigned long nr_segs, |
| 678 | size_t count) |
| 679 | { |
| 680 | WARN_ON(direction & ~(READ | WRITE)); |
| 681 | *i = (struct iov_iter){ |
| 682 | .iter_type = ITER_KVEC, |
| 683 | .data_source = direction, |
| 684 | .kvec = kvec, |
| 685 | .nr_segs = nr_segs, |
| 686 | .iov_offset = 0, |
| 687 | .count = count |
| 688 | }; |
| 689 | } |
| 690 | EXPORT_SYMBOL(iov_iter_kvec); |
| 691 | |
| 692 | void iov_iter_bvec(struct iov_iter *i, unsigned int direction, |
| 693 | const struct bio_vec *bvec, unsigned long nr_segs, |
| 694 | size_t count) |
| 695 | { |
| 696 | WARN_ON(direction & ~(READ | WRITE)); |
| 697 | *i = (struct iov_iter){ |
| 698 | .iter_type = ITER_BVEC, |
| 699 | .data_source = direction, |
| 700 | .bvec = bvec, |
| 701 | .nr_segs = nr_segs, |
| 702 | .iov_offset = 0, |
| 703 | .count = count |
| 704 | }; |
| 705 | } |
| 706 | EXPORT_SYMBOL(iov_iter_bvec); |
| 707 | |
| 708 | /** |
| 709 | * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue |
| 710 | * @i: The iterator to initialise. |
| 711 | * @direction: The direction of the transfer. |
| 712 | * @folioq: The starting point in the folio queue. |
| 713 | * @first_slot: The first slot in the folio queue to use |
| 714 | * @offset: The offset into the folio in the first slot to start at |
| 715 | * @count: The size of the I/O buffer in bytes. |
| 716 | * |
| 717 | * Set up an I/O iterator to either draw data out of the pages attached to an |
| 718 | * inode or to inject data into those pages. The pages *must* be prevented |
| 719 | * from evaporation, either by taking a ref on them or locking them by the |
| 720 | * caller. |
| 721 | */ |
| 722 | void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction, |
| 723 | const struct folio_queue *folioq, unsigned int first_slot, |
| 724 | unsigned int offset, size_t count) |
| 725 | { |
| 726 | BUG_ON(direction & ~1); |
| 727 | *i = (struct iov_iter) { |
| 728 | .iter_type = ITER_FOLIOQ, |
| 729 | .data_source = direction, |
| 730 | .folioq = folioq, |
| 731 | .folioq_slot = first_slot, |
| 732 | .count = count, |
| 733 | .iov_offset = offset, |
| 734 | }; |
| 735 | } |
| 736 | EXPORT_SYMBOL(iov_iter_folio_queue); |
| 737 | |
| 738 | /** |
| 739 | * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray |
| 740 | * @i: The iterator to initialise. |
| 741 | * @direction: The direction of the transfer. |
| 742 | * @xarray: The xarray to access. |
| 743 | * @start: The start file position. |
| 744 | * @count: The size of the I/O buffer in bytes. |
| 745 | * |
| 746 | * Set up an I/O iterator to either draw data out of the pages attached to an |
| 747 | * inode or to inject data into those pages. The pages *must* be prevented |
| 748 | * from evaporation, either by taking a ref on them or locking them by the |
| 749 | * caller. |
| 750 | */ |
| 751 | void iov_iter_xarray(struct iov_iter *i, unsigned int direction, |
| 752 | struct xarray *xarray, loff_t start, size_t count) |
| 753 | { |
| 754 | BUG_ON(direction & ~1); |
| 755 | *i = (struct iov_iter) { |
| 756 | .iter_type = ITER_XARRAY, |
| 757 | .data_source = direction, |
| 758 | .xarray = xarray, |
| 759 | .xarray_start = start, |
| 760 | .count = count, |
| 761 | .iov_offset = 0 |
| 762 | }; |
| 763 | } |
| 764 | EXPORT_SYMBOL(iov_iter_xarray); |
| 765 | |
| 766 | /** |
| 767 | * iov_iter_discard - Initialise an I/O iterator that discards data |
| 768 | * @i: The iterator to initialise. |
| 769 | * @direction: The direction of the transfer. |
| 770 | * @count: The size of the I/O buffer in bytes. |
| 771 | * |
| 772 | * Set up an I/O iterator that just discards everything that's written to it. |
| 773 | * It's only available as a READ iterator. |
| 774 | */ |
| 775 | void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) |
| 776 | { |
| 777 | BUG_ON(direction != READ); |
| 778 | *i = (struct iov_iter){ |
| 779 | .iter_type = ITER_DISCARD, |
| 780 | .data_source = false, |
| 781 | .count = count, |
| 782 | .iov_offset = 0 |
| 783 | }; |
| 784 | } |
| 785 | EXPORT_SYMBOL(iov_iter_discard); |
| 786 | |
| 787 | static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) |
| 788 | { |
| 789 | const struct iovec *iov = iter_iov(iter: i); |
| 790 | unsigned long res = 0; |
| 791 | size_t size = i->count; |
| 792 | size_t skip = i->iov_offset; |
| 793 | |
| 794 | do { |
| 795 | size_t len = iov->iov_len - skip; |
| 796 | if (len) { |
| 797 | res |= (unsigned long)iov->iov_base + skip; |
| 798 | if (len > size) |
| 799 | len = size; |
| 800 | res |= len; |
| 801 | size -= len; |
| 802 | } |
| 803 | iov++; |
| 804 | skip = 0; |
| 805 | } while (size); |
| 806 | return res; |
| 807 | } |
| 808 | |
| 809 | static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) |
| 810 | { |
| 811 | const struct bio_vec *bvec = i->bvec; |
| 812 | unsigned res = 0; |
| 813 | size_t size = i->count; |
| 814 | unsigned skip = i->iov_offset; |
| 815 | |
| 816 | do { |
| 817 | size_t len = bvec->bv_len - skip; |
| 818 | res |= (unsigned long)bvec->bv_offset + skip; |
| 819 | if (len > size) |
| 820 | len = size; |
| 821 | res |= len; |
| 822 | bvec++; |
| 823 | size -= len; |
| 824 | skip = 0; |
| 825 | } while (size); |
| 826 | |
| 827 | return res; |
| 828 | } |
| 829 | |
| 830 | unsigned long iov_iter_alignment(const struct iov_iter *i) |
| 831 | { |
| 832 | if (likely(iter_is_ubuf(i))) { |
| 833 | size_t size = i->count; |
| 834 | if (size) |
| 835 | return ((unsigned long)i->ubuf + i->iov_offset) | size; |
| 836 | return 0; |
| 837 | } |
| 838 | |
| 839 | /* iovec and kvec have identical layouts */ |
| 840 | if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
| 841 | return iov_iter_alignment_iovec(i); |
| 842 | |
| 843 | if (iov_iter_is_bvec(i)) |
| 844 | return iov_iter_alignment_bvec(i); |
| 845 | |
| 846 | /* With both xarray and folioq types, we're dealing with whole folios. */ |
| 847 | if (iov_iter_is_folioq(i)) |
| 848 | return i->iov_offset | i->count; |
| 849 | if (iov_iter_is_xarray(i)) |
| 850 | return (i->xarray_start + i->iov_offset) | i->count; |
| 851 | |
| 852 | return 0; |
| 853 | } |
| 854 | EXPORT_SYMBOL(iov_iter_alignment); |
| 855 | |
| 856 | unsigned long iov_iter_gap_alignment(const struct iov_iter *i) |
| 857 | { |
| 858 | unsigned long res = 0; |
| 859 | unsigned long v = 0; |
| 860 | size_t size = i->count; |
| 861 | unsigned k; |
| 862 | |
| 863 | if (iter_is_ubuf(i)) |
| 864 | return 0; |
| 865 | |
| 866 | if (WARN_ON(!iter_is_iovec(i))) |
| 867 | return ~0U; |
| 868 | |
| 869 | for (k = 0; k < i->nr_segs; k++) { |
| 870 | const struct iovec *iov = iter_iov(iter: i) + k; |
| 871 | if (iov->iov_len) { |
| 872 | unsigned long base = (unsigned long)iov->iov_base; |
| 873 | if (v) // if not the first one |
| 874 | res |= base | v; // this start | previous end |
| 875 | v = base + iov->iov_len; |
| 876 | if (size <= iov->iov_len) |
| 877 | break; |
| 878 | size -= iov->iov_len; |
| 879 | } |
| 880 | } |
| 881 | return res; |
| 882 | } |
| 883 | EXPORT_SYMBOL(iov_iter_gap_alignment); |
| 884 | |
| 885 | static int want_pages_array(struct page ***res, size_t size, |
| 886 | size_t start, unsigned int maxpages) |
| 887 | { |
| 888 | unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); |
| 889 | |
| 890 | if (count > maxpages) |
| 891 | count = maxpages; |
| 892 | WARN_ON(!count); // caller should've prevented that |
| 893 | if (!*res) { |
| 894 | *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); |
| 895 | if (!*res) |
| 896 | return 0; |
| 897 | } |
| 898 | return count; |
| 899 | } |
| 900 | |
| 901 | static ssize_t iter_folioq_get_pages(struct iov_iter *iter, |
| 902 | struct page ***ppages, size_t maxsize, |
| 903 | unsigned maxpages, size_t *_start_offset) |
| 904 | { |
| 905 | const struct folio_queue *folioq = iter->folioq; |
| 906 | struct page **pages; |
| 907 | unsigned int slot = iter->folioq_slot; |
| 908 | size_t = 0, count = iter->count, iov_offset = iter->iov_offset; |
| 909 | |
| 910 | if (slot >= folioq_nr_slots(folioq)) { |
| 911 | folioq = folioq->next; |
| 912 | slot = 0; |
| 913 | if (WARN_ON(iov_offset != 0)) |
| 914 | return -EIO; |
| 915 | } |
| 916 | |
| 917 | maxpages = want_pages_array(res: ppages, size: maxsize, start: iov_offset & ~PAGE_MASK, maxpages); |
| 918 | if (!maxpages) |
| 919 | return -ENOMEM; |
| 920 | *_start_offset = iov_offset & ~PAGE_MASK; |
| 921 | pages = *ppages; |
| 922 | |
| 923 | for (;;) { |
| 924 | struct folio *folio = folioq_folio(folioq, slot); |
| 925 | size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot); |
| 926 | size_t part = PAGE_SIZE - offset % PAGE_SIZE; |
| 927 | |
| 928 | if (offset < fsize) { |
| 929 | part = umin(part, umin(maxsize - extracted, fsize - offset)); |
| 930 | count -= part; |
| 931 | iov_offset += part; |
| 932 | extracted += part; |
| 933 | |
| 934 | *pages = folio_page(folio, offset / PAGE_SIZE); |
| 935 | get_page(page: *pages); |
| 936 | pages++; |
| 937 | maxpages--; |
| 938 | } |
| 939 | |
| 940 | if (maxpages == 0 || extracted >= maxsize) |
| 941 | break; |
| 942 | |
| 943 | if (iov_offset >= fsize) { |
| 944 | iov_offset = 0; |
| 945 | slot++; |
| 946 | if (slot == folioq_nr_slots(folioq) && folioq->next) { |
| 947 | folioq = folioq->next; |
| 948 | slot = 0; |
| 949 | } |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | iter->count = count; |
| 954 | iter->iov_offset = iov_offset; |
| 955 | iter->folioq = folioq; |
| 956 | iter->folioq_slot = slot; |
| 957 | return extracted; |
| 958 | } |
| 959 | |
| 960 | static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, |
| 961 | pgoff_t index, unsigned int nr_pages) |
| 962 | { |
| 963 | XA_STATE(xas, xa, index); |
| 964 | struct folio *folio; |
| 965 | unsigned int ret = 0; |
| 966 | |
| 967 | rcu_read_lock(); |
| 968 | for (folio = xas_load(&xas); folio; folio = xas_next(xas: &xas)) { |
| 969 | if (xas_retry(xas: &xas, entry: folio)) |
| 970 | continue; |
| 971 | |
| 972 | /* Has the folio moved or been split? */ |
| 973 | if (unlikely(folio != xas_reload(&xas))) { |
| 974 | xas_reset(xas: &xas); |
| 975 | continue; |
| 976 | } |
| 977 | |
| 978 | pages[ret] = folio_file_page(folio, index: xas.xa_index); |
| 979 | folio_get(folio); |
| 980 | if (++ret == nr_pages) |
| 981 | break; |
| 982 | } |
| 983 | rcu_read_unlock(); |
| 984 | return ret; |
| 985 | } |
| 986 | |
| 987 | static ssize_t iter_xarray_get_pages(struct iov_iter *i, |
| 988 | struct page ***pages, size_t maxsize, |
| 989 | unsigned maxpages, size_t *_start_offset) |
| 990 | { |
| 991 | unsigned nr, offset, count; |
| 992 | pgoff_t index; |
| 993 | loff_t pos; |
| 994 | |
| 995 | pos = i->xarray_start + i->iov_offset; |
| 996 | index = pos >> PAGE_SHIFT; |
| 997 | offset = pos & ~PAGE_MASK; |
| 998 | *_start_offset = offset; |
| 999 | |
| 1000 | count = want_pages_array(res: pages, size: maxsize, start: offset, maxpages); |
| 1001 | if (!count) |
| 1002 | return -ENOMEM; |
| 1003 | nr = iter_xarray_populate_pages(pages: *pages, xa: i->xarray, index, nr_pages: count); |
| 1004 | if (nr == 0) |
| 1005 | return 0; |
| 1006 | |
| 1007 | maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); |
| 1008 | i->iov_offset += maxsize; |
| 1009 | i->count -= maxsize; |
| 1010 | return maxsize; |
| 1011 | } |
| 1012 | |
| 1013 | /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ |
| 1014 | static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) |
| 1015 | { |
| 1016 | size_t skip; |
| 1017 | long k; |
| 1018 | |
| 1019 | if (iter_is_ubuf(i)) |
| 1020 | return (unsigned long)i->ubuf + i->iov_offset; |
| 1021 | |
| 1022 | for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { |
| 1023 | const struct iovec *iov = iter_iov(iter: i) + k; |
| 1024 | size_t len = iov->iov_len - skip; |
| 1025 | |
| 1026 | if (unlikely(!len)) |
| 1027 | continue; |
| 1028 | if (*size > len) |
| 1029 | *size = len; |
| 1030 | return (unsigned long)iov->iov_base + skip; |
| 1031 | } |
| 1032 | BUG(); // if it had been empty, we wouldn't get called |
| 1033 | } |
| 1034 | |
| 1035 | /* must be done on non-empty ITER_BVEC one */ |
| 1036 | static struct page *first_bvec_segment(const struct iov_iter *i, |
| 1037 | size_t *size, size_t *start) |
| 1038 | { |
| 1039 | struct page *page; |
| 1040 | size_t skip = i->iov_offset, len; |
| 1041 | |
| 1042 | len = i->bvec->bv_len - skip; |
| 1043 | if (*size > len) |
| 1044 | *size = len; |
| 1045 | skip += i->bvec->bv_offset; |
| 1046 | page = i->bvec->bv_page + skip / PAGE_SIZE; |
| 1047 | *start = skip % PAGE_SIZE; |
| 1048 | return page; |
| 1049 | } |
| 1050 | |
| 1051 | static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, |
| 1052 | struct page ***pages, size_t maxsize, |
| 1053 | unsigned int maxpages, size_t *start) |
| 1054 | { |
| 1055 | unsigned int n, gup_flags = 0; |
| 1056 | |
| 1057 | if (maxsize > i->count) |
| 1058 | maxsize = i->count; |
| 1059 | if (!maxsize) |
| 1060 | return 0; |
| 1061 | if (maxsize > MAX_RW_COUNT) |
| 1062 | maxsize = MAX_RW_COUNT; |
| 1063 | |
| 1064 | if (likely(user_backed_iter(i))) { |
| 1065 | unsigned long addr; |
| 1066 | int res; |
| 1067 | |
| 1068 | if (iov_iter_rw(i) != WRITE) |
| 1069 | gup_flags |= FOLL_WRITE; |
| 1070 | if (i->nofault) |
| 1071 | gup_flags |= FOLL_NOFAULT; |
| 1072 | |
| 1073 | addr = first_iovec_segment(i, size: &maxsize); |
| 1074 | *start = addr % PAGE_SIZE; |
| 1075 | addr &= PAGE_MASK; |
| 1076 | n = want_pages_array(res: pages, size: maxsize, start: *start, maxpages); |
| 1077 | if (!n) |
| 1078 | return -ENOMEM; |
| 1079 | res = get_user_pages_fast(start: addr, nr_pages: n, gup_flags, pages: *pages); |
| 1080 | if (unlikely(res <= 0)) |
| 1081 | return res; |
| 1082 | maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); |
| 1083 | iov_iter_advance(i, maxsize); |
| 1084 | return maxsize; |
| 1085 | } |
| 1086 | if (iov_iter_is_bvec(i)) { |
| 1087 | struct page **p; |
| 1088 | struct page *page; |
| 1089 | |
| 1090 | page = first_bvec_segment(i, size: &maxsize, start); |
| 1091 | n = want_pages_array(res: pages, size: maxsize, start: *start, maxpages); |
| 1092 | if (!n) |
| 1093 | return -ENOMEM; |
| 1094 | p = *pages; |
| 1095 | for (int k = 0; k < n; k++) { |
| 1096 | struct folio *folio = page_folio(page + k); |
| 1097 | p[k] = page + k; |
| 1098 | if (!folio_test_slab(folio)) |
| 1099 | folio_get(folio); |
| 1100 | } |
| 1101 | maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); |
| 1102 | i->count -= maxsize; |
| 1103 | i->iov_offset += maxsize; |
| 1104 | if (i->iov_offset == i->bvec->bv_len) { |
| 1105 | i->iov_offset = 0; |
| 1106 | i->bvec++; |
| 1107 | i->nr_segs--; |
| 1108 | } |
| 1109 | return maxsize; |
| 1110 | } |
| 1111 | if (iov_iter_is_folioq(i)) |
| 1112 | return iter_folioq_get_pages(iter: i, ppages: pages, maxsize, maxpages, start_offset: start); |
| 1113 | if (iov_iter_is_xarray(i)) |
| 1114 | return iter_xarray_get_pages(i, pages, maxsize, maxpages, start_offset: start); |
| 1115 | return -EFAULT; |
| 1116 | } |
| 1117 | |
| 1118 | ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, |
| 1119 | size_t maxsize, unsigned maxpages, size_t *start) |
| 1120 | { |
| 1121 | if (!maxpages) |
| 1122 | return 0; |
| 1123 | BUG_ON(!pages); |
| 1124 | |
| 1125 | return __iov_iter_get_pages_alloc(i, pages: &pages, maxsize, maxpages, start); |
| 1126 | } |
| 1127 | EXPORT_SYMBOL(iov_iter_get_pages2); |
| 1128 | |
| 1129 | ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, |
| 1130 | struct page ***pages, size_t maxsize, size_t *start) |
| 1131 | { |
| 1132 | ssize_t len; |
| 1133 | |
| 1134 | *pages = NULL; |
| 1135 | |
| 1136 | len = __iov_iter_get_pages_alloc(i, pages, maxsize, maxpages: ~0U, start); |
| 1137 | if (len <= 0) { |
| 1138 | kvfree(addr: *pages); |
| 1139 | *pages = NULL; |
| 1140 | } |
| 1141 | return len; |
| 1142 | } |
| 1143 | EXPORT_SYMBOL(iov_iter_get_pages_alloc2); |
| 1144 | |
| 1145 | static int iov_npages(const struct iov_iter *i, int maxpages) |
| 1146 | { |
| 1147 | size_t skip = i->iov_offset, size = i->count; |
| 1148 | const struct iovec *p; |
| 1149 | int npages = 0; |
| 1150 | |
| 1151 | for (p = iter_iov(iter: i); size; skip = 0, p++) { |
| 1152 | unsigned offs = offset_in_page(p->iov_base + skip); |
| 1153 | size_t len = min(p->iov_len - skip, size); |
| 1154 | |
| 1155 | if (len) { |
| 1156 | size -= len; |
| 1157 | npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); |
| 1158 | if (unlikely(npages > maxpages)) |
| 1159 | return maxpages; |
| 1160 | } |
| 1161 | } |
| 1162 | return npages; |
| 1163 | } |
| 1164 | |
| 1165 | static int bvec_npages(const struct iov_iter *i, int maxpages) |
| 1166 | { |
| 1167 | size_t skip = i->iov_offset, size = i->count; |
| 1168 | const struct bio_vec *p; |
| 1169 | int npages = 0; |
| 1170 | |
| 1171 | for (p = i->bvec; size; skip = 0, p++) { |
| 1172 | unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; |
| 1173 | size_t len = min(p->bv_len - skip, size); |
| 1174 | |
| 1175 | size -= len; |
| 1176 | npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); |
| 1177 | if (unlikely(npages > maxpages)) |
| 1178 | return maxpages; |
| 1179 | } |
| 1180 | return npages; |
| 1181 | } |
| 1182 | |
| 1183 | int iov_iter_npages(const struct iov_iter *i, int maxpages) |
| 1184 | { |
| 1185 | if (unlikely(!i->count)) |
| 1186 | return 0; |
| 1187 | if (likely(iter_is_ubuf(i))) { |
| 1188 | unsigned offs = offset_in_page(i->ubuf + i->iov_offset); |
| 1189 | int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); |
| 1190 | return min(npages, maxpages); |
| 1191 | } |
| 1192 | /* iovec and kvec have identical layouts */ |
| 1193 | if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
| 1194 | return iov_npages(i, maxpages); |
| 1195 | if (iov_iter_is_bvec(i)) |
| 1196 | return bvec_npages(i, maxpages); |
| 1197 | if (iov_iter_is_folioq(i)) { |
| 1198 | unsigned offset = i->iov_offset % PAGE_SIZE; |
| 1199 | int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); |
| 1200 | return min(npages, maxpages); |
| 1201 | } |
| 1202 | if (iov_iter_is_xarray(i)) { |
| 1203 | unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; |
| 1204 | int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); |
| 1205 | return min(npages, maxpages); |
| 1206 | } |
| 1207 | return 0; |
| 1208 | } |
| 1209 | EXPORT_SYMBOL(iov_iter_npages); |
| 1210 | |
| 1211 | const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) |
| 1212 | { |
| 1213 | *new = *old; |
| 1214 | if (iov_iter_is_bvec(i: new)) |
| 1215 | return new->bvec = kmemdup(new->bvec, |
| 1216 | new->nr_segs * sizeof(struct bio_vec), |
| 1217 | flags); |
| 1218 | else if (iov_iter_is_kvec(i: new) || iter_is_iovec(i: new)) |
| 1219 | /* iovec and kvec have identical layout */ |
| 1220 | return new->__iov = kmemdup(new->__iov, |
| 1221 | new->nr_segs * sizeof(struct iovec), |
| 1222 | flags); |
| 1223 | return NULL; |
| 1224 | } |
| 1225 | EXPORT_SYMBOL(dup_iter); |
| 1226 | |
| 1227 | static __noclone int copy_compat_iovec_from_user(struct iovec *iov, |
| 1228 | const struct iovec __user *uvec, u32 nr_segs) |
| 1229 | { |
| 1230 | const struct compat_iovec __user *uiov = |
| 1231 | (const struct compat_iovec __user *)uvec; |
| 1232 | int ret = -EFAULT; |
| 1233 | u32 i; |
| 1234 | |
| 1235 | if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) |
| 1236 | return -EFAULT; |
| 1237 | |
| 1238 | for (i = 0; i < nr_segs; i++) { |
| 1239 | compat_uptr_t buf; |
| 1240 | compat_ssize_t len; |
| 1241 | |
| 1242 | unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); |
| 1243 | unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); |
| 1244 | |
| 1245 | /* check for compat_size_t not fitting in compat_ssize_t .. */ |
| 1246 | if (len < 0) { |
| 1247 | ret = -EINVAL; |
| 1248 | goto uaccess_end; |
| 1249 | } |
| 1250 | iov[i].iov_base = compat_ptr(uptr: buf); |
| 1251 | iov[i].iov_len = len; |
| 1252 | } |
| 1253 | |
| 1254 | ret = 0; |
| 1255 | uaccess_end: |
| 1256 | user_access_end(); |
| 1257 | return ret; |
| 1258 | } |
| 1259 | |
| 1260 | static __noclone int copy_iovec_from_user(struct iovec *iov, |
| 1261 | const struct iovec __user *uiov, unsigned long nr_segs) |
| 1262 | { |
| 1263 | int ret = -EFAULT; |
| 1264 | |
| 1265 | if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) |
| 1266 | return -EFAULT; |
| 1267 | |
| 1268 | do { |
| 1269 | void __user *buf; |
| 1270 | ssize_t len; |
| 1271 | |
| 1272 | unsafe_get_user(len, &uiov->iov_len, uaccess_end); |
| 1273 | unsafe_get_user(buf, &uiov->iov_base, uaccess_end); |
| 1274 | |
| 1275 | /* check for size_t not fitting in ssize_t .. */ |
| 1276 | if (unlikely(len < 0)) { |
| 1277 | ret = -EINVAL; |
| 1278 | goto uaccess_end; |
| 1279 | } |
| 1280 | iov->iov_base = buf; |
| 1281 | iov->iov_len = len; |
| 1282 | |
| 1283 | uiov++; iov++; |
| 1284 | } while (--nr_segs); |
| 1285 | |
| 1286 | ret = 0; |
| 1287 | uaccess_end: |
| 1288 | user_access_end(); |
| 1289 | return ret; |
| 1290 | } |
| 1291 | |
| 1292 | struct iovec *iovec_from_user(const struct iovec __user *uvec, |
| 1293 | unsigned long nr_segs, unsigned long fast_segs, |
| 1294 | struct iovec *fast_iov, bool compat) |
| 1295 | { |
| 1296 | struct iovec *iov = fast_iov; |
| 1297 | int ret; |
| 1298 | |
| 1299 | /* |
| 1300 | * SuS says "The readv() function *may* fail if the iovcnt argument was |
| 1301 | * less than or equal to 0, or greater than {IOV_MAX}. Linux has |
| 1302 | * traditionally returned zero for zero segments, so... |
| 1303 | */ |
| 1304 | if (nr_segs == 0) |
| 1305 | return iov; |
| 1306 | if (nr_segs > UIO_MAXIOV) |
| 1307 | return ERR_PTR(error: -EINVAL); |
| 1308 | if (nr_segs > fast_segs) { |
| 1309 | iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); |
| 1310 | if (!iov) |
| 1311 | return ERR_PTR(error: -ENOMEM); |
| 1312 | } |
| 1313 | |
| 1314 | if (unlikely(compat)) |
| 1315 | ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); |
| 1316 | else |
| 1317 | ret = copy_iovec_from_user(iov, uiov: uvec, nr_segs); |
| 1318 | if (ret) { |
| 1319 | if (iov != fast_iov) |
| 1320 | kfree(objp: iov); |
| 1321 | return ERR_PTR(error: ret); |
| 1322 | } |
| 1323 | |
| 1324 | return iov; |
| 1325 | } |
| 1326 | |
| 1327 | /* |
| 1328 | * Single segment iovec supplied by the user, import it as ITER_UBUF. |
| 1329 | */ |
| 1330 | static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, |
| 1331 | struct iovec **iovp, struct iov_iter *i, |
| 1332 | bool compat) |
| 1333 | { |
| 1334 | struct iovec *iov = *iovp; |
| 1335 | ssize_t ret; |
| 1336 | |
| 1337 | *iovp = NULL; |
| 1338 | |
| 1339 | if (compat) |
| 1340 | ret = copy_compat_iovec_from_user(iov, uvec, nr_segs: 1); |
| 1341 | else |
| 1342 | ret = copy_iovec_from_user(iov, uiov: uvec, nr_segs: 1); |
| 1343 | if (unlikely(ret)) |
| 1344 | return ret; |
| 1345 | |
| 1346 | ret = import_ubuf(type, buf: iov->iov_base, len: iov->iov_len, i); |
| 1347 | if (unlikely(ret)) |
| 1348 | return ret; |
| 1349 | return i->count; |
| 1350 | } |
| 1351 | |
| 1352 | ssize_t __import_iovec(int type, const struct iovec __user *uvec, |
| 1353 | unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, |
| 1354 | struct iov_iter *i, bool compat) |
| 1355 | { |
| 1356 | ssize_t total_len = 0; |
| 1357 | unsigned long seg; |
| 1358 | struct iovec *iov; |
| 1359 | |
| 1360 | if (nr_segs == 1) |
| 1361 | return __import_iovec_ubuf(type, uvec, iovp, i, compat); |
| 1362 | |
| 1363 | iov = iovec_from_user(uvec, nr_segs, fast_segs, fast_iov: *iovp, compat); |
| 1364 | if (IS_ERR(ptr: iov)) { |
| 1365 | *iovp = NULL; |
| 1366 | return PTR_ERR(ptr: iov); |
| 1367 | } |
| 1368 | |
| 1369 | /* |
| 1370 | * According to the Single Unix Specification we should return EINVAL if |
| 1371 | * an element length is < 0 when cast to ssize_t or if the total length |
| 1372 | * would overflow the ssize_t return value of the system call. |
| 1373 | * |
| 1374 | * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the |
| 1375 | * overflow case. |
| 1376 | */ |
| 1377 | for (seg = 0; seg < nr_segs; seg++) { |
| 1378 | ssize_t len = (ssize_t)iov[seg].iov_len; |
| 1379 | |
| 1380 | if (!access_ok(iov[seg].iov_base, len)) { |
| 1381 | if (iov != *iovp) |
| 1382 | kfree(objp: iov); |
| 1383 | *iovp = NULL; |
| 1384 | return -EFAULT; |
| 1385 | } |
| 1386 | |
| 1387 | if (len > MAX_RW_COUNT - total_len) { |
| 1388 | len = MAX_RW_COUNT - total_len; |
| 1389 | iov[seg].iov_len = len; |
| 1390 | } |
| 1391 | total_len += len; |
| 1392 | } |
| 1393 | |
| 1394 | iov_iter_init(i, type, iov, nr_segs, total_len); |
| 1395 | if (iov == *iovp) |
| 1396 | *iovp = NULL; |
| 1397 | else |
| 1398 | *iovp = iov; |
| 1399 | return total_len; |
| 1400 | } |
| 1401 | |
| 1402 | /** |
| 1403 | * import_iovec() - Copy an array of &struct iovec from userspace |
| 1404 | * into the kernel, check that it is valid, and initialize a new |
| 1405 | * &struct iov_iter iterator to access it. |
| 1406 | * |
| 1407 | * @type: One of %READ or %WRITE. |
| 1408 | * @uvec: Pointer to the userspace array. |
| 1409 | * @nr_segs: Number of elements in userspace array. |
| 1410 | * @fast_segs: Number of elements in @iov. |
| 1411 | * @iovp: (input and output parameter) Pointer to pointer to (usually small |
| 1412 | * on-stack) kernel array. |
| 1413 | * @i: Pointer to iterator that will be initialized on success. |
| 1414 | * |
| 1415 | * If the array pointed to by *@iov is large enough to hold all @nr_segs, |
| 1416 | * then this function places %NULL in *@iov on return. Otherwise, a new |
| 1417 | * array will be allocated and the result placed in *@iov. This means that |
| 1418 | * the caller may call kfree() on *@iov regardless of whether the small |
| 1419 | * on-stack array was used or not (and regardless of whether this function |
| 1420 | * returns an error or not). |
| 1421 | * |
| 1422 | * Return: Negative error code on error, bytes imported on success |
| 1423 | */ |
| 1424 | ssize_t import_iovec(int type, const struct iovec __user *uvec, |
| 1425 | unsigned nr_segs, unsigned fast_segs, |
| 1426 | struct iovec **iovp, struct iov_iter *i) |
| 1427 | { |
| 1428 | return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, |
| 1429 | in_compat_syscall()); |
| 1430 | } |
| 1431 | EXPORT_SYMBOL(import_iovec); |
| 1432 | |
| 1433 | int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) |
| 1434 | { |
| 1435 | if (len > MAX_RW_COUNT) |
| 1436 | len = MAX_RW_COUNT; |
| 1437 | if (unlikely(!access_ok(buf, len))) |
| 1438 | return -EFAULT; |
| 1439 | |
| 1440 | iov_iter_ubuf(i, direction: rw, buf, count: len); |
| 1441 | return 0; |
| 1442 | } |
| 1443 | EXPORT_SYMBOL_GPL(import_ubuf); |
| 1444 | |
| 1445 | /** |
| 1446 | * iov_iter_restore() - Restore a &struct iov_iter to the same state as when |
| 1447 | * iov_iter_save_state() was called. |
| 1448 | * |
| 1449 | * @i: &struct iov_iter to restore |
| 1450 | * @state: state to restore from |
| 1451 | * |
| 1452 | * Used after iov_iter_save_state() to bring restore @i, if operations may |
| 1453 | * have advanced it. |
| 1454 | * |
| 1455 | * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC |
| 1456 | */ |
| 1457 | void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) |
| 1458 | { |
| 1459 | if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && |
| 1460 | !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) |
| 1461 | return; |
| 1462 | i->iov_offset = state->iov_offset; |
| 1463 | i->count = state->count; |
| 1464 | if (iter_is_ubuf(i)) |
| 1465 | return; |
| 1466 | /* |
| 1467 | * For the *vec iters, nr_segs + iov is constant - if we increment |
| 1468 | * the vec, then we also decrement the nr_segs count. Hence we don't |
| 1469 | * need to track both of these, just one is enough and we can deduct |
| 1470 | * the other from that. ITER_KVEC and ITER_IOVEC are the same struct |
| 1471 | * size, so we can just increment the iov pointer as they are unionzed. |
| 1472 | * ITER_BVEC _may_ be the same size on some archs, but on others it is |
| 1473 | * not. Be safe and handle it separately. |
| 1474 | */ |
| 1475 | BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); |
| 1476 | if (iov_iter_is_bvec(i)) |
| 1477 | i->bvec -= state->nr_segs - i->nr_segs; |
| 1478 | else |
| 1479 | i->__iov -= state->nr_segs - i->nr_segs; |
| 1480 | i->nr_segs = state->nr_segs; |
| 1481 | } |
| 1482 | |
| 1483 | /* |
| 1484 | * Extract a list of contiguous pages from an ITER_FOLIOQ iterator. This does |
| 1485 | * not get references on the pages, nor does it get a pin on them. |
| 1486 | */ |
| 1487 | static ssize_t (struct iov_iter *i, |
| 1488 | struct page ***pages, size_t maxsize, |
| 1489 | unsigned int maxpages, |
| 1490 | iov_iter_extraction_t , |
| 1491 | size_t *offset0) |
| 1492 | { |
| 1493 | const struct folio_queue *folioq = i->folioq; |
| 1494 | struct page **p; |
| 1495 | unsigned int nr = 0; |
| 1496 | size_t = 0, offset, slot = i->folioq_slot; |
| 1497 | |
| 1498 | if (slot >= folioq_nr_slots(folioq)) { |
| 1499 | folioq = folioq->next; |
| 1500 | slot = 0; |
| 1501 | if (WARN_ON(i->iov_offset != 0)) |
| 1502 | return -EIO; |
| 1503 | } |
| 1504 | |
| 1505 | offset = i->iov_offset & ~PAGE_MASK; |
| 1506 | *offset0 = offset; |
| 1507 | |
| 1508 | maxpages = want_pages_array(res: pages, size: maxsize, start: offset, maxpages); |
| 1509 | if (!maxpages) |
| 1510 | return -ENOMEM; |
| 1511 | p = *pages; |
| 1512 | |
| 1513 | for (;;) { |
| 1514 | struct folio *folio = folioq_folio(folioq, slot); |
| 1515 | size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot); |
| 1516 | size_t part = PAGE_SIZE - offset % PAGE_SIZE; |
| 1517 | |
| 1518 | if (offset < fsize) { |
| 1519 | part = umin(part, umin(maxsize - extracted, fsize - offset)); |
| 1520 | i->count -= part; |
| 1521 | i->iov_offset += part; |
| 1522 | extracted += part; |
| 1523 | |
| 1524 | p[nr++] = folio_page(folio, offset / PAGE_SIZE); |
| 1525 | } |
| 1526 | |
| 1527 | if (nr >= maxpages || extracted >= maxsize) |
| 1528 | break; |
| 1529 | |
| 1530 | if (i->iov_offset >= fsize) { |
| 1531 | i->iov_offset = 0; |
| 1532 | slot++; |
| 1533 | if (slot == folioq_nr_slots(folioq) && folioq->next) { |
| 1534 | folioq = folioq->next; |
| 1535 | slot = 0; |
| 1536 | } |
| 1537 | } |
| 1538 | } |
| 1539 | |
| 1540 | i->folioq = folioq; |
| 1541 | i->folioq_slot = slot; |
| 1542 | return extracted; |
| 1543 | } |
| 1544 | |
| 1545 | /* |
| 1546 | * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not |
| 1547 | * get references on the pages, nor does it get a pin on them. |
| 1548 | */ |
| 1549 | static ssize_t (struct iov_iter *i, |
| 1550 | struct page ***pages, size_t maxsize, |
| 1551 | unsigned int maxpages, |
| 1552 | iov_iter_extraction_t , |
| 1553 | size_t *offset0) |
| 1554 | { |
| 1555 | struct page **p; |
| 1556 | struct folio *folio; |
| 1557 | unsigned int nr = 0, offset; |
| 1558 | loff_t pos = i->xarray_start + i->iov_offset; |
| 1559 | XA_STATE(xas, i->xarray, pos >> PAGE_SHIFT); |
| 1560 | |
| 1561 | offset = pos & ~PAGE_MASK; |
| 1562 | *offset0 = offset; |
| 1563 | |
| 1564 | maxpages = want_pages_array(res: pages, size: maxsize, start: offset, maxpages); |
| 1565 | if (!maxpages) |
| 1566 | return -ENOMEM; |
| 1567 | p = *pages; |
| 1568 | |
| 1569 | rcu_read_lock(); |
| 1570 | for (folio = xas_load(&xas); folio; folio = xas_next(xas: &xas)) { |
| 1571 | if (xas_retry(xas: &xas, entry: folio)) |
| 1572 | continue; |
| 1573 | |
| 1574 | /* Has the folio moved or been split? */ |
| 1575 | if (unlikely(folio != xas_reload(&xas))) { |
| 1576 | xas_reset(xas: &xas); |
| 1577 | continue; |
| 1578 | } |
| 1579 | |
| 1580 | p[nr++] = folio_file_page(folio, index: xas.xa_index); |
| 1581 | if (nr == maxpages) |
| 1582 | break; |
| 1583 | } |
| 1584 | rcu_read_unlock(); |
| 1585 | |
| 1586 | maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); |
| 1587 | iov_iter_advance(i, maxsize); |
| 1588 | return maxsize; |
| 1589 | } |
| 1590 | |
| 1591 | /* |
| 1592 | * Extract a list of virtually contiguous pages from an ITER_BVEC iterator. |
| 1593 | * This does not get references on the pages, nor does it get a pin on them. |
| 1594 | */ |
| 1595 | static ssize_t (struct iov_iter *i, |
| 1596 | struct page ***pages, size_t maxsize, |
| 1597 | unsigned int maxpages, |
| 1598 | iov_iter_extraction_t , |
| 1599 | size_t *offset0) |
| 1600 | { |
| 1601 | size_t skip = i->iov_offset, size = 0; |
| 1602 | struct bvec_iter bi; |
| 1603 | int k = 0; |
| 1604 | |
| 1605 | if (i->nr_segs == 0) |
| 1606 | return 0; |
| 1607 | |
| 1608 | if (i->iov_offset == i->bvec->bv_len) { |
| 1609 | i->iov_offset = 0; |
| 1610 | i->nr_segs--; |
| 1611 | i->bvec++; |
| 1612 | skip = 0; |
| 1613 | } |
| 1614 | bi.bi_idx = 0; |
| 1615 | bi.bi_size = maxsize; |
| 1616 | bi.bi_bvec_done = skip; |
| 1617 | |
| 1618 | maxpages = want_pages_array(res: pages, size: maxsize, start: skip, maxpages); |
| 1619 | |
| 1620 | while (bi.bi_size && bi.bi_idx < i->nr_segs) { |
| 1621 | struct bio_vec bv = bvec_iter_bvec(i->bvec, bi); |
| 1622 | |
| 1623 | /* |
| 1624 | * The iov_iter_extract_pages interface only allows an offset |
| 1625 | * into the first page. Break out of the loop if we see an |
| 1626 | * offset into subsequent pages, the caller will have to call |
| 1627 | * iov_iter_extract_pages again for the reminder. |
| 1628 | */ |
| 1629 | if (k) { |
| 1630 | if (bv.bv_offset) |
| 1631 | break; |
| 1632 | } else { |
| 1633 | *offset0 = bv.bv_offset; |
| 1634 | } |
| 1635 | |
| 1636 | (*pages)[k++] = bv.bv_page; |
| 1637 | size += bv.bv_len; |
| 1638 | |
| 1639 | if (k >= maxpages) |
| 1640 | break; |
| 1641 | |
| 1642 | /* |
| 1643 | * We are done when the end of the bvec doesn't align to a page |
| 1644 | * boundary as that would create a hole in the returned space. |
| 1645 | * The caller will handle this with another call to |
| 1646 | * iov_iter_extract_pages. |
| 1647 | */ |
| 1648 | if (bv.bv_offset + bv.bv_len != PAGE_SIZE) |
| 1649 | break; |
| 1650 | |
| 1651 | bvec_iter_advance_single(bv: i->bvec, iter: &bi, bytes: bv.bv_len); |
| 1652 | } |
| 1653 | |
| 1654 | iov_iter_advance(i, size); |
| 1655 | return size; |
| 1656 | } |
| 1657 | |
| 1658 | /* |
| 1659 | * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. |
| 1660 | * This does not get references on the pages, nor does it get a pin on them. |
| 1661 | */ |
| 1662 | static ssize_t (struct iov_iter *i, |
| 1663 | struct page ***pages, size_t maxsize, |
| 1664 | unsigned int maxpages, |
| 1665 | iov_iter_extraction_t , |
| 1666 | size_t *offset0) |
| 1667 | { |
| 1668 | struct page **p, *page; |
| 1669 | const void *kaddr; |
| 1670 | size_t skip = i->iov_offset, offset, len, size; |
| 1671 | int k; |
| 1672 | |
| 1673 | for (;;) { |
| 1674 | if (i->nr_segs == 0) |
| 1675 | return 0; |
| 1676 | size = min(maxsize, i->kvec->iov_len - skip); |
| 1677 | if (size) |
| 1678 | break; |
| 1679 | i->iov_offset = 0; |
| 1680 | i->nr_segs--; |
| 1681 | i->kvec++; |
| 1682 | skip = 0; |
| 1683 | } |
| 1684 | |
| 1685 | kaddr = i->kvec->iov_base + skip; |
| 1686 | offset = (unsigned long)kaddr & ~PAGE_MASK; |
| 1687 | *offset0 = offset; |
| 1688 | |
| 1689 | maxpages = want_pages_array(res: pages, size, start: offset, maxpages); |
| 1690 | if (!maxpages) |
| 1691 | return -ENOMEM; |
| 1692 | p = *pages; |
| 1693 | |
| 1694 | kaddr -= offset; |
| 1695 | len = offset + size; |
| 1696 | for (k = 0; k < maxpages; k++) { |
| 1697 | size_t seg = min_t(size_t, len, PAGE_SIZE); |
| 1698 | |
| 1699 | if (is_vmalloc_or_module_addr(x: kaddr)) |
| 1700 | page = vmalloc_to_page(addr: kaddr); |
| 1701 | else |
| 1702 | page = virt_to_page(kaddr); |
| 1703 | |
| 1704 | p[k] = page; |
| 1705 | len -= seg; |
| 1706 | kaddr += PAGE_SIZE; |
| 1707 | } |
| 1708 | |
| 1709 | size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); |
| 1710 | iov_iter_advance(i, size); |
| 1711 | return size; |
| 1712 | } |
| 1713 | |
| 1714 | /* |
| 1715 | * Extract a list of contiguous pages from a user iterator and get a pin on |
| 1716 | * each of them. This should only be used if the iterator is user-backed |
| 1717 | * (IOBUF/UBUF). |
| 1718 | * |
| 1719 | * It does not get refs on the pages, but the pages must be unpinned by the |
| 1720 | * caller once the transfer is complete. |
| 1721 | * |
| 1722 | * This is safe to be used where background IO/DMA *is* going to be modifying |
| 1723 | * the buffer; using a pin rather than a ref makes forces fork() to give the |
| 1724 | * child a copy of the page. |
| 1725 | */ |
| 1726 | static ssize_t (struct iov_iter *i, |
| 1727 | struct page ***pages, |
| 1728 | size_t maxsize, |
| 1729 | unsigned int maxpages, |
| 1730 | iov_iter_extraction_t , |
| 1731 | size_t *offset0) |
| 1732 | { |
| 1733 | unsigned long addr; |
| 1734 | unsigned int gup_flags = 0; |
| 1735 | size_t offset; |
| 1736 | int res; |
| 1737 | |
| 1738 | if (i->data_source == ITER_DEST) |
| 1739 | gup_flags |= FOLL_WRITE; |
| 1740 | if (extraction_flags & ITER_ALLOW_P2PDMA) |
| 1741 | gup_flags |= FOLL_PCI_P2PDMA; |
| 1742 | if (i->nofault) |
| 1743 | gup_flags |= FOLL_NOFAULT; |
| 1744 | |
| 1745 | addr = first_iovec_segment(i, size: &maxsize); |
| 1746 | *offset0 = offset = addr % PAGE_SIZE; |
| 1747 | addr &= PAGE_MASK; |
| 1748 | maxpages = want_pages_array(res: pages, size: maxsize, start: offset, maxpages); |
| 1749 | if (!maxpages) |
| 1750 | return -ENOMEM; |
| 1751 | res = pin_user_pages_fast(start: addr, nr_pages: maxpages, gup_flags, pages: *pages); |
| 1752 | if (unlikely(res <= 0)) |
| 1753 | return res; |
| 1754 | maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); |
| 1755 | iov_iter_advance(i, maxsize); |
| 1756 | return maxsize; |
| 1757 | } |
| 1758 | |
| 1759 | /** |
| 1760 | * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator |
| 1761 | * @i: The iterator to extract from |
| 1762 | * @pages: Where to return the list of pages |
| 1763 | * @maxsize: The maximum amount of iterator to extract |
| 1764 | * @maxpages: The maximum size of the list of pages |
| 1765 | * @extraction_flags: Flags to qualify request |
| 1766 | * @offset0: Where to return the starting offset into (*@pages)[0] |
| 1767 | * |
| 1768 | * Extract a list of contiguous pages from the current point of the iterator, |
| 1769 | * advancing the iterator. The maximum number of pages and the maximum amount |
| 1770 | * of page contents can be set. |
| 1771 | * |
| 1772 | * If *@pages is NULL, a page list will be allocated to the required size and |
| 1773 | * *@pages will be set to its base. If *@pages is not NULL, it will be assumed |
| 1774 | * that the caller allocated a page list at least @maxpages in size and this |
| 1775 | * will be filled in. |
| 1776 | * |
| 1777 | * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA |
| 1778 | * be allowed on the pages extracted. |
| 1779 | * |
| 1780 | * The iov_iter_extract_will_pin() function can be used to query how cleanup |
| 1781 | * should be performed. |
| 1782 | * |
| 1783 | * Extra refs or pins on the pages may be obtained as follows: |
| 1784 | * |
| 1785 | * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be |
| 1786 | * added to the pages, but refs will not be taken. |
| 1787 | * iov_iter_extract_will_pin() will return true. |
| 1788 | * |
| 1789 | * (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the |
| 1790 | * pages are merely listed; no extra refs or pins are obtained. |
| 1791 | * iov_iter_extract_will_pin() will return 0. |
| 1792 | * |
| 1793 | * Note also: |
| 1794 | * |
| 1795 | * (*) Use with ITER_DISCARD is not supported as that has no content. |
| 1796 | * |
| 1797 | * On success, the function sets *@pages to the new pagelist, if allocated, and |
| 1798 | * sets *offset0 to the offset into the first page. |
| 1799 | * |
| 1800 | * It may also return -ENOMEM and -EFAULT. |
| 1801 | */ |
| 1802 | ssize_t (struct iov_iter *i, |
| 1803 | struct page ***pages, |
| 1804 | size_t maxsize, |
| 1805 | unsigned int maxpages, |
| 1806 | iov_iter_extraction_t , |
| 1807 | size_t *offset0) |
| 1808 | { |
| 1809 | maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); |
| 1810 | if (!maxsize) |
| 1811 | return 0; |
| 1812 | |
| 1813 | if (likely(user_backed_iter(i))) |
| 1814 | return iov_iter_extract_user_pages(i, pages, maxsize, |
| 1815 | maxpages, extraction_flags, |
| 1816 | offset0); |
| 1817 | if (iov_iter_is_kvec(i)) |
| 1818 | return iov_iter_extract_kvec_pages(i, pages, maxsize, |
| 1819 | maxpages, extraction_flags, |
| 1820 | offset0); |
| 1821 | if (iov_iter_is_bvec(i)) |
| 1822 | return iov_iter_extract_bvec_pages(i, pages, maxsize, |
| 1823 | maxpages, extraction_flags, |
| 1824 | offset0); |
| 1825 | if (iov_iter_is_folioq(i)) |
| 1826 | return iov_iter_extract_folioq_pages(i, pages, maxsize, |
| 1827 | maxpages, extraction_flags, |
| 1828 | offset0); |
| 1829 | if (iov_iter_is_xarray(i)) |
| 1830 | return iov_iter_extract_xarray_pages(i, pages, maxsize, |
| 1831 | maxpages, extraction_flags, |
| 1832 | offset0); |
| 1833 | return -EFAULT; |
| 1834 | } |
| 1835 | EXPORT_SYMBOL_GPL(iov_iter_extract_pages); |
| 1836 | |