| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> | 
|---|
| 4 | * | 
|---|
| 5 | * Based on former do_div() implementation from asm-parisc/div64.h: | 
|---|
| 6 | *	Copyright (C) 1999 Hewlett-Packard Co | 
|---|
| 7 | *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> | 
|---|
| 8 | * | 
|---|
| 9 | * | 
|---|
| 10 | * Generic C version of 64bit/32bit division and modulo, with | 
|---|
| 11 | * 64bit result and 32bit remainder. | 
|---|
| 12 | * | 
|---|
| 13 | * The fast case for (n>>32 == 0) is handled inline by do_div(). | 
|---|
| 14 | * | 
|---|
| 15 | * Code generated for this function might be very inefficient | 
|---|
| 16 | * for some CPUs. __div64_32() can be overridden by linking arch-specific | 
|---|
| 17 | * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S | 
|---|
| 18 | * or by defining a preprocessor macro in arch/include/asm/div64.h. | 
|---|
| 19 | */ | 
|---|
| 20 |  | 
|---|
| 21 | #include <linux/bitops.h> | 
|---|
| 22 | #include <linux/export.h> | 
|---|
| 23 | #include <linux/math.h> | 
|---|
| 24 | #include <linux/math64.h> | 
|---|
| 25 | #include <linux/minmax.h> | 
|---|
| 26 | #include <linux/log2.h> | 
|---|
| 27 |  | 
|---|
| 28 | /* Not needed on 64bit architectures */ | 
|---|
| 29 | #if BITS_PER_LONG == 32 | 
|---|
| 30 |  | 
|---|
| 31 | #ifndef __div64_32 | 
|---|
| 32 | uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) | 
|---|
| 33 | { | 
|---|
| 34 | uint64_t rem = *n; | 
|---|
| 35 | uint64_t b = base; | 
|---|
| 36 | uint64_t res, d = 1; | 
|---|
| 37 | uint32_t high = rem >> 32; | 
|---|
| 38 |  | 
|---|
| 39 | /* Reduce the thing a bit first */ | 
|---|
| 40 | res = 0; | 
|---|
| 41 | if (high >= base) { | 
|---|
| 42 | high /= base; | 
|---|
| 43 | res = (uint64_t) high << 32; | 
|---|
| 44 | rem -= (uint64_t) (high*base) << 32; | 
|---|
| 45 | } | 
|---|
| 46 |  | 
|---|
| 47 | while ((int64_t)b > 0 && b < rem) { | 
|---|
| 48 | b = b+b; | 
|---|
| 49 | d = d+d; | 
|---|
| 50 | } | 
|---|
| 51 |  | 
|---|
| 52 | do { | 
|---|
| 53 | if (rem >= b) { | 
|---|
| 54 | rem -= b; | 
|---|
| 55 | res += d; | 
|---|
| 56 | } | 
|---|
| 57 | b >>= 1; | 
|---|
| 58 | d >>= 1; | 
|---|
| 59 | } while (d); | 
|---|
| 60 |  | 
|---|
| 61 | *n = res; | 
|---|
| 62 | return rem; | 
|---|
| 63 | } | 
|---|
| 64 | EXPORT_SYMBOL(__div64_32); | 
|---|
| 65 | #endif | 
|---|
| 66 |  | 
|---|
| 67 | #ifndef div_s64_rem | 
|---|
| 68 | s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) | 
|---|
| 69 | { | 
|---|
| 70 | u64 quotient; | 
|---|
| 71 |  | 
|---|
| 72 | if (dividend < 0) { | 
|---|
| 73 | quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); | 
|---|
| 74 | *remainder = -*remainder; | 
|---|
| 75 | if (divisor > 0) | 
|---|
| 76 | quotient = -quotient; | 
|---|
| 77 | } else { | 
|---|
| 78 | quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); | 
|---|
| 79 | if (divisor < 0) | 
|---|
| 80 | quotient = -quotient; | 
|---|
| 81 | } | 
|---|
| 82 | return quotient; | 
|---|
| 83 | } | 
|---|
| 84 | EXPORT_SYMBOL(div_s64_rem); | 
|---|
| 85 | #endif | 
|---|
| 86 |  | 
|---|
| 87 | /* | 
|---|
| 88 | * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder | 
|---|
| 89 | * @dividend:	64bit dividend | 
|---|
| 90 | * @divisor:	64bit divisor | 
|---|
| 91 | * @remainder:  64bit remainder | 
|---|
| 92 | * | 
|---|
| 93 | * This implementation is a comparable to algorithm used by div64_u64. | 
|---|
| 94 | * But this operation, which includes math for calculating the remainder, | 
|---|
| 95 | * is kept distinct to avoid slowing down the div64_u64 operation on 32bit | 
|---|
| 96 | * systems. | 
|---|
| 97 | */ | 
|---|
| 98 | #ifndef div64_u64_rem | 
|---|
| 99 | u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) | 
|---|
| 100 | { | 
|---|
| 101 | u32 high = divisor >> 32; | 
|---|
| 102 | u64 quot; | 
|---|
| 103 |  | 
|---|
| 104 | if (high == 0) { | 
|---|
| 105 | u32 rem32; | 
|---|
| 106 | quot = div_u64_rem(dividend, divisor, &rem32); | 
|---|
| 107 | *remainder = rem32; | 
|---|
| 108 | } else { | 
|---|
| 109 | int n = fls(high); | 
|---|
| 110 | quot = div_u64(dividend >> n, divisor >> n); | 
|---|
| 111 |  | 
|---|
| 112 | if (quot != 0) | 
|---|
| 113 | quot--; | 
|---|
| 114 |  | 
|---|
| 115 | *remainder = dividend - quot * divisor; | 
|---|
| 116 | if (*remainder >= divisor) { | 
|---|
| 117 | quot++; | 
|---|
| 118 | *remainder -= divisor; | 
|---|
| 119 | } | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | return quot; | 
|---|
| 123 | } | 
|---|
| 124 | EXPORT_SYMBOL(div64_u64_rem); | 
|---|
| 125 | #endif | 
|---|
| 126 |  | 
|---|
| 127 | /* | 
|---|
| 128 | * div64_u64 - unsigned 64bit divide with 64bit divisor | 
|---|
| 129 | * @dividend:	64bit dividend | 
|---|
| 130 | * @divisor:	64bit divisor | 
|---|
| 131 | * | 
|---|
| 132 | * This implementation is a modified version of the algorithm proposed | 
|---|
| 133 | * by the book 'Hacker's Delight'.  The original source and full proof | 
|---|
| 134 | * can be found here and is available for use without restriction. | 
|---|
| 135 | * | 
|---|
| 136 | * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' | 
|---|
| 137 | */ | 
|---|
| 138 | #ifndef div64_u64 | 
|---|
| 139 | u64 div64_u64(u64 dividend, u64 divisor) | 
|---|
| 140 | { | 
|---|
| 141 | u32 high = divisor >> 32; | 
|---|
| 142 | u64 quot; | 
|---|
| 143 |  | 
|---|
| 144 | if (high == 0) { | 
|---|
| 145 | quot = div_u64(dividend, divisor); | 
|---|
| 146 | } else { | 
|---|
| 147 | int n = fls(high); | 
|---|
| 148 | quot = div_u64(dividend >> n, divisor >> n); | 
|---|
| 149 |  | 
|---|
| 150 | if (quot != 0) | 
|---|
| 151 | quot--; | 
|---|
| 152 | if ((dividend - quot * divisor) >= divisor) | 
|---|
| 153 | quot++; | 
|---|
| 154 | } | 
|---|
| 155 |  | 
|---|
| 156 | return quot; | 
|---|
| 157 | } | 
|---|
| 158 | EXPORT_SYMBOL(div64_u64); | 
|---|
| 159 | #endif | 
|---|
| 160 |  | 
|---|
| 161 | #ifndef div64_s64 | 
|---|
| 162 | s64 div64_s64(s64 dividend, s64 divisor) | 
|---|
| 163 | { | 
|---|
| 164 | s64 quot, t; | 
|---|
| 165 |  | 
|---|
| 166 | quot = div64_u64(abs(dividend), abs(divisor)); | 
|---|
| 167 | t = (dividend ^ divisor) >> 63; | 
|---|
| 168 |  | 
|---|
| 169 | return (quot ^ t) - t; | 
|---|
| 170 | } | 
|---|
| 171 | EXPORT_SYMBOL(div64_s64); | 
|---|
| 172 | #endif | 
|---|
| 173 |  | 
|---|
| 174 | #endif /* BITS_PER_LONG == 32 */ | 
|---|
| 175 |  | 
|---|
| 176 | /* | 
|---|
| 177 | * Iterative div/mod for use when dividend is not expected to be much | 
|---|
| 178 | * bigger than divisor. | 
|---|
| 179 | */ | 
|---|
| 180 | u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) | 
|---|
| 181 | { | 
|---|
| 182 | return __iter_div_u64_rem(dividend, divisor, remainder); | 
|---|
| 183 | } | 
|---|
| 184 | EXPORT_SYMBOL(iter_div_u64_rem); | 
|---|
| 185 |  | 
|---|
| 186 | #ifndef mul_u64_u64_div_u64 | 
|---|
| 187 | u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) | 
|---|
| 188 | { | 
|---|
| 189 | if (ilog2(a) + ilog2(b) <= 62) | 
|---|
| 190 | return div64_u64(a * b, c); | 
|---|
| 191 |  | 
|---|
| 192 | #if defined(__SIZEOF_INT128__) | 
|---|
| 193 |  | 
|---|
| 194 | /* native 64x64=128 bits multiplication */ | 
|---|
| 195 | u128 prod = (u128)a * b; | 
|---|
| 196 | u64 n_lo = prod, n_hi = prod >> 64; | 
|---|
| 197 |  | 
|---|
| 198 | #else | 
|---|
| 199 |  | 
|---|
| 200 | /* perform a 64x64=128 bits multiplication manually */ | 
|---|
| 201 | u32 a_lo = a, a_hi = a >> 32, b_lo = b, b_hi = b >> 32; | 
|---|
| 202 | u64 x, y, z; | 
|---|
| 203 |  | 
|---|
| 204 | x = (u64)a_lo * b_lo; | 
|---|
| 205 | y = (u64)a_lo * b_hi + (u32)(x >> 32); | 
|---|
| 206 | z = (u64)a_hi * b_hi + (u32)(y >> 32); | 
|---|
| 207 | y = (u64)a_hi * b_lo + (u32)y; | 
|---|
| 208 | z += (u32)(y >> 32); | 
|---|
| 209 | x = (y << 32) + (u32)x; | 
|---|
| 210 |  | 
|---|
| 211 | u64 n_lo = x, n_hi = z; | 
|---|
| 212 |  | 
|---|
| 213 | #endif | 
|---|
| 214 |  | 
|---|
| 215 | /* make sure c is not zero, trigger runtime exception otherwise */ | 
|---|
| 216 | if (unlikely(c == 0)) { | 
|---|
| 217 | unsigned long zero = 0; | 
|---|
| 218 |  | 
|---|
| 219 | OPTIMIZER_HIDE_VAR(zero); | 
|---|
| 220 | return ~0UL/zero; | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | int shift = __builtin_ctzll(c); | 
|---|
| 224 |  | 
|---|
| 225 | /* try reducing the fraction in case the dividend becomes <= 64 bits */ | 
|---|
| 226 | if ((n_hi >> shift) == 0) { | 
|---|
| 227 | u64 n = shift ? (n_lo >> shift) | (n_hi << (64 - shift)) : n_lo; | 
|---|
| 228 |  | 
|---|
| 229 | return div64_u64(n, c >> shift); | 
|---|
| 230 | /* | 
|---|
| 231 | * The remainder value if needed would be: | 
|---|
| 232 | *   res = div64_u64_rem(n, c >> shift, &rem); | 
|---|
| 233 | *   rem = (rem << shift) + (n_lo - (n << shift)); | 
|---|
| 234 | */ | 
|---|
| 235 | } | 
|---|
| 236 |  | 
|---|
| 237 | if (n_hi >= c) { | 
|---|
| 238 | /* overflow: result is unrepresentable in a u64 */ | 
|---|
| 239 | return -1; | 
|---|
| 240 | } | 
|---|
| 241 |  | 
|---|
| 242 | /* Do the full 128 by 64 bits division */ | 
|---|
| 243 |  | 
|---|
| 244 | shift = __builtin_clzll(c); | 
|---|
| 245 | c <<= shift; | 
|---|
| 246 |  | 
|---|
| 247 | int p = 64 + shift; | 
|---|
| 248 | u64 res = 0; | 
|---|
| 249 | bool carry; | 
|---|
| 250 |  | 
|---|
| 251 | do { | 
|---|
| 252 | carry = n_hi >> 63; | 
|---|
| 253 | shift = carry ? 1 : __builtin_clzll(n_hi); | 
|---|
| 254 | if (p < shift) | 
|---|
| 255 | break; | 
|---|
| 256 | p -= shift; | 
|---|
| 257 | n_hi <<= shift; | 
|---|
| 258 | n_hi |= n_lo >> (64 - shift); | 
|---|
| 259 | n_lo <<= shift; | 
|---|
| 260 | if (carry || (n_hi >= c)) { | 
|---|
| 261 | n_hi -= c; | 
|---|
| 262 | res |= 1ULL << p; | 
|---|
| 263 | } | 
|---|
| 264 | } while (n_hi); | 
|---|
| 265 | /* The remainder value if needed would be n_hi << p */ | 
|---|
| 266 |  | 
|---|
| 267 | return res; | 
|---|
| 268 | } | 
|---|
| 269 | EXPORT_SYMBOL(mul_u64_u64_div_u64); | 
|---|
| 270 | #endif | 
|---|
| 271 |  | 
|---|