| 1 | // SPDX-License-Identifier: 0BSD | 
|---|
| 2 |  | 
|---|
| 3 | /* | 
|---|
| 4 | * LZMA2 decoder | 
|---|
| 5 | * | 
|---|
| 6 | * Authors: Lasse Collin <lasse.collin@tukaani.org> | 
|---|
| 7 | *          Igor Pavlov <https://7-zip.org/> | 
|---|
| 8 | */ | 
|---|
| 9 |  | 
|---|
| 10 | #include "xz_private.h" | 
|---|
| 11 | #include "xz_lzma2.h" | 
|---|
| 12 |  | 
|---|
| 13 | /* | 
|---|
| 14 | * Range decoder initialization eats the first five bytes of each LZMA chunk. | 
|---|
| 15 | */ | 
|---|
| 16 | #define RC_INIT_BYTES 5 | 
|---|
| 17 |  | 
|---|
| 18 | /* | 
|---|
| 19 | * Minimum number of usable input buffer to safely decode one LZMA symbol. | 
|---|
| 20 | * The worst case is that we decode 22 bits using probabilities and 26 | 
|---|
| 21 | * direct bits. This may decode at maximum of 20 bytes of input. However, | 
|---|
| 22 | * lzma_main() does an extra normalization before returning, thus we | 
|---|
| 23 | * need to put 21 here. | 
|---|
| 24 | */ | 
|---|
| 25 | #define LZMA_IN_REQUIRED 21 | 
|---|
| 26 |  | 
|---|
| 27 | /* | 
|---|
| 28 | * Dictionary (history buffer) | 
|---|
| 29 | * | 
|---|
| 30 | * These are always true: | 
|---|
| 31 | *    start <= pos <= full <= end | 
|---|
| 32 | *    pos <= limit <= end | 
|---|
| 33 | * | 
|---|
| 34 | * In multi-call mode, also these are true: | 
|---|
| 35 | *    end == size | 
|---|
| 36 | *    size <= size_max | 
|---|
| 37 | *    allocated <= size | 
|---|
| 38 | * | 
|---|
| 39 | * Most of these variables are size_t to support single-call mode, | 
|---|
| 40 | * in which the dictionary variables address the actual output | 
|---|
| 41 | * buffer directly. | 
|---|
| 42 | */ | 
|---|
| 43 | struct dictionary { | 
|---|
| 44 | /* Beginning of the history buffer */ | 
|---|
| 45 | uint8_t *buf; | 
|---|
| 46 |  | 
|---|
| 47 | /* Old position in buf (before decoding more data) */ | 
|---|
| 48 | size_t start; | 
|---|
| 49 |  | 
|---|
| 50 | /* Position in buf */ | 
|---|
| 51 | size_t pos; | 
|---|
| 52 |  | 
|---|
| 53 | /* | 
|---|
| 54 | * How full dictionary is. This is used to detect corrupt input that | 
|---|
| 55 | * would read beyond the beginning of the uncompressed stream. | 
|---|
| 56 | */ | 
|---|
| 57 | size_t full; | 
|---|
| 58 |  | 
|---|
| 59 | /* Write limit; we don't write to buf[limit] or later bytes. */ | 
|---|
| 60 | size_t limit; | 
|---|
| 61 |  | 
|---|
| 62 | /* | 
|---|
| 63 | * End of the dictionary buffer. In multi-call mode, this is | 
|---|
| 64 | * the same as the dictionary size. In single-call mode, this | 
|---|
| 65 | * indicates the size of the output buffer. | 
|---|
| 66 | */ | 
|---|
| 67 | size_t end; | 
|---|
| 68 |  | 
|---|
| 69 | /* | 
|---|
| 70 | * Size of the dictionary as specified in Block Header. This is used | 
|---|
| 71 | * together with "full" to detect corrupt input that would make us | 
|---|
| 72 | * read beyond the beginning of the uncompressed stream. | 
|---|
| 73 | */ | 
|---|
| 74 | uint32_t size; | 
|---|
| 75 |  | 
|---|
| 76 | /* | 
|---|
| 77 | * Maximum allowed dictionary size in multi-call mode. | 
|---|
| 78 | * This is ignored in single-call mode. | 
|---|
| 79 | */ | 
|---|
| 80 | uint32_t size_max; | 
|---|
| 81 |  | 
|---|
| 82 | /* | 
|---|
| 83 | * Amount of memory currently allocated for the dictionary. | 
|---|
| 84 | * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC, | 
|---|
| 85 | * size_max is always the same as the allocated size.) | 
|---|
| 86 | */ | 
|---|
| 87 | uint32_t allocated; | 
|---|
| 88 |  | 
|---|
| 89 | /* Operation mode */ | 
|---|
| 90 | enum xz_mode mode; | 
|---|
| 91 | }; | 
|---|
| 92 |  | 
|---|
| 93 | /* Range decoder */ | 
|---|
| 94 | struct rc_dec { | 
|---|
| 95 | uint32_t range; | 
|---|
| 96 | uint32_t code; | 
|---|
| 97 |  | 
|---|
| 98 | /* | 
|---|
| 99 | * Number of initializing bytes remaining to be read | 
|---|
| 100 | * by rc_read_init(). | 
|---|
| 101 | */ | 
|---|
| 102 | uint32_t init_bytes_left; | 
|---|
| 103 |  | 
|---|
| 104 | /* | 
|---|
| 105 | * Buffer from which we read our input. It can be either | 
|---|
| 106 | * temp.buf or the caller-provided input buffer. | 
|---|
| 107 | */ | 
|---|
| 108 | const uint8_t *in; | 
|---|
| 109 | size_t in_pos; | 
|---|
| 110 | size_t in_limit; | 
|---|
| 111 | }; | 
|---|
| 112 |  | 
|---|
| 113 | /* Probabilities for a length decoder. */ | 
|---|
| 114 | struct lzma_len_dec { | 
|---|
| 115 | /* Probability of match length being at least 10 */ | 
|---|
| 116 | uint16_t choice; | 
|---|
| 117 |  | 
|---|
| 118 | /* Probability of match length being at least 18 */ | 
|---|
| 119 | uint16_t choice2; | 
|---|
| 120 |  | 
|---|
| 121 | /* Probabilities for match lengths 2-9 */ | 
|---|
| 122 | uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS]; | 
|---|
| 123 |  | 
|---|
| 124 | /* Probabilities for match lengths 10-17 */ | 
|---|
| 125 | uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS]; | 
|---|
| 126 |  | 
|---|
| 127 | /* Probabilities for match lengths 18-273 */ | 
|---|
| 128 | uint16_t high[LEN_HIGH_SYMBOLS]; | 
|---|
| 129 | }; | 
|---|
| 130 |  | 
|---|
| 131 | struct lzma_dec { | 
|---|
| 132 | /* Distances of latest four matches */ | 
|---|
| 133 | uint32_t rep0; | 
|---|
| 134 | uint32_t rep1; | 
|---|
| 135 | uint32_t rep2; | 
|---|
| 136 | uint32_t rep3; | 
|---|
| 137 |  | 
|---|
| 138 | /* Types of the most recently seen LZMA symbols */ | 
|---|
| 139 | enum lzma_state state; | 
|---|
| 140 |  | 
|---|
| 141 | /* | 
|---|
| 142 | * Length of a match. This is updated so that dict_repeat can | 
|---|
| 143 | * be called again to finish repeating the whole match. | 
|---|
| 144 | */ | 
|---|
| 145 | uint32_t len; | 
|---|
| 146 |  | 
|---|
| 147 | /* | 
|---|
| 148 | * LZMA properties or related bit masks (number of literal | 
|---|
| 149 | * context bits, a mask derived from the number of literal | 
|---|
| 150 | * position bits, and a mask derived from the number | 
|---|
| 151 | * position bits) | 
|---|
| 152 | */ | 
|---|
| 153 | uint32_t lc; | 
|---|
| 154 | uint32_t literal_pos_mask; /* (1 << lp) - 1 */ | 
|---|
| 155 | uint32_t pos_mask;         /* (1 << pb) - 1 */ | 
|---|
| 156 |  | 
|---|
| 157 | /* If 1, it's a match. Otherwise it's a single 8-bit literal. */ | 
|---|
| 158 | uint16_t is_match[STATES][POS_STATES_MAX]; | 
|---|
| 159 |  | 
|---|
| 160 | /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */ | 
|---|
| 161 | uint16_t is_rep[STATES]; | 
|---|
| 162 |  | 
|---|
| 163 | /* | 
|---|
| 164 | * If 0, distance of a repeated match is rep0. | 
|---|
| 165 | * Otherwise check is_rep1. | 
|---|
| 166 | */ | 
|---|
| 167 | uint16_t is_rep0[STATES]; | 
|---|
| 168 |  | 
|---|
| 169 | /* | 
|---|
| 170 | * If 0, distance of a repeated match is rep1. | 
|---|
| 171 | * Otherwise check is_rep2. | 
|---|
| 172 | */ | 
|---|
| 173 | uint16_t is_rep1[STATES]; | 
|---|
| 174 |  | 
|---|
| 175 | /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */ | 
|---|
| 176 | uint16_t is_rep2[STATES]; | 
|---|
| 177 |  | 
|---|
| 178 | /* | 
|---|
| 179 | * If 1, the repeated match has length of one byte. Otherwise | 
|---|
| 180 | * the length is decoded from rep_len_decoder. | 
|---|
| 181 | */ | 
|---|
| 182 | uint16_t is_rep0_long[STATES][POS_STATES_MAX]; | 
|---|
| 183 |  | 
|---|
| 184 | /* | 
|---|
| 185 | * Probability tree for the highest two bits of the match | 
|---|
| 186 | * distance. There is a separate probability tree for match | 
|---|
| 187 | * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273]. | 
|---|
| 188 | */ | 
|---|
| 189 | uint16_t dist_slot[DIST_STATES][DIST_SLOTS]; | 
|---|
| 190 |  | 
|---|
| 191 | /* | 
|---|
| 192 | * Probility trees for additional bits for match distance | 
|---|
| 193 | * when the distance is in the range [4, 127]. | 
|---|
| 194 | */ | 
|---|
| 195 | uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END]; | 
|---|
| 196 |  | 
|---|
| 197 | /* | 
|---|
| 198 | * Probability tree for the lowest four bits of a match | 
|---|
| 199 | * distance that is equal to or greater than 128. | 
|---|
| 200 | */ | 
|---|
| 201 | uint16_t dist_align[ALIGN_SIZE]; | 
|---|
| 202 |  | 
|---|
| 203 | /* Length of a normal match */ | 
|---|
| 204 | struct lzma_len_dec match_len_dec; | 
|---|
| 205 |  | 
|---|
| 206 | /* Length of a repeated match */ | 
|---|
| 207 | struct lzma_len_dec rep_len_dec; | 
|---|
| 208 |  | 
|---|
| 209 | /* Probabilities of literals */ | 
|---|
| 210 | uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE]; | 
|---|
| 211 | }; | 
|---|
| 212 |  | 
|---|
| 213 | struct lzma2_dec { | 
|---|
| 214 | /* Position in xz_dec_lzma2_run(). */ | 
|---|
| 215 | enum lzma2_seq { | 
|---|
| 216 | SEQ_CONTROL, | 
|---|
| 217 | SEQ_UNCOMPRESSED_1, | 
|---|
| 218 | SEQ_UNCOMPRESSED_2, | 
|---|
| 219 | SEQ_COMPRESSED_0, | 
|---|
| 220 | SEQ_COMPRESSED_1, | 
|---|
| 221 | SEQ_PROPERTIES, | 
|---|
| 222 | SEQ_LZMA_PREPARE, | 
|---|
| 223 | SEQ_LZMA_RUN, | 
|---|
| 224 | SEQ_COPY | 
|---|
| 225 | } sequence; | 
|---|
| 226 |  | 
|---|
| 227 | /* Next position after decoding the compressed size of the chunk. */ | 
|---|
| 228 | enum lzma2_seq next_sequence; | 
|---|
| 229 |  | 
|---|
| 230 | /* Uncompressed size of LZMA chunk (2 MiB at maximum) */ | 
|---|
| 231 | uint32_t uncompressed; | 
|---|
| 232 |  | 
|---|
| 233 | /* | 
|---|
| 234 | * Compressed size of LZMA chunk or compressed/uncompressed | 
|---|
| 235 | * size of uncompressed chunk (64 KiB at maximum) | 
|---|
| 236 | */ | 
|---|
| 237 | uint32_t compressed; | 
|---|
| 238 |  | 
|---|
| 239 | /* | 
|---|
| 240 | * True if dictionary reset is needed. This is false before | 
|---|
| 241 | * the first chunk (LZMA or uncompressed). | 
|---|
| 242 | */ | 
|---|
| 243 | bool need_dict_reset; | 
|---|
| 244 |  | 
|---|
| 245 | /* | 
|---|
| 246 | * True if new LZMA properties are needed. This is false | 
|---|
| 247 | * before the first LZMA chunk. | 
|---|
| 248 | */ | 
|---|
| 249 | bool need_props; | 
|---|
| 250 |  | 
|---|
| 251 | #ifdef XZ_DEC_MICROLZMA | 
|---|
| 252 | bool pedantic_microlzma; | 
|---|
| 253 | #endif | 
|---|
| 254 | }; | 
|---|
| 255 |  | 
|---|
| 256 | struct xz_dec_lzma2 { | 
|---|
| 257 | /* | 
|---|
| 258 | * The order below is important on x86 to reduce code size and | 
|---|
| 259 | * it shouldn't hurt on other platforms. Everything up to and | 
|---|
| 260 | * including lzma.pos_mask are in the first 128 bytes on x86-32, | 
|---|
| 261 | * which allows using smaller instructions to access those | 
|---|
| 262 | * variables. On x86-64, fewer variables fit into the first 128 | 
|---|
| 263 | * bytes, but this is still the best order without sacrificing | 
|---|
| 264 | * the readability by splitting the structures. | 
|---|
| 265 | */ | 
|---|
| 266 | struct rc_dec rc; | 
|---|
| 267 | struct dictionary dict; | 
|---|
| 268 | struct lzma2_dec lzma2; | 
|---|
| 269 | struct lzma_dec lzma; | 
|---|
| 270 |  | 
|---|
| 271 | /* | 
|---|
| 272 | * Temporary buffer which holds small number of input bytes between | 
|---|
| 273 | * decoder calls. See lzma2_lzma() for details. | 
|---|
| 274 | */ | 
|---|
| 275 | struct { | 
|---|
| 276 | uint32_t size; | 
|---|
| 277 | uint8_t buf[3 * LZMA_IN_REQUIRED]; | 
|---|
| 278 | } temp; | 
|---|
| 279 | }; | 
|---|
| 280 |  | 
|---|
| 281 | /************** | 
|---|
| 282 | * Dictionary * | 
|---|
| 283 | **************/ | 
|---|
| 284 |  | 
|---|
| 285 | /* | 
|---|
| 286 | * Reset the dictionary state. When in single-call mode, set up the beginning | 
|---|
| 287 | * of the dictionary to point to the actual output buffer. | 
|---|
| 288 | */ | 
|---|
| 289 | static void dict_reset(struct dictionary *dict, struct xz_buf *b) | 
|---|
| 290 | { | 
|---|
| 291 | if (DEC_IS_SINGLE(dict->mode)) { | 
|---|
| 292 | dict->buf = b->out + b->out_pos; | 
|---|
| 293 | dict->end = b->out_size - b->out_pos; | 
|---|
| 294 | } | 
|---|
| 295 |  | 
|---|
| 296 | dict->start = 0; | 
|---|
| 297 | dict->pos = 0; | 
|---|
| 298 | dict->limit = 0; | 
|---|
| 299 | dict->full = 0; | 
|---|
| 300 | } | 
|---|
| 301 |  | 
|---|
| 302 | /* Set dictionary write limit */ | 
|---|
| 303 | static void dict_limit(struct dictionary *dict, size_t out_max) | 
|---|
| 304 | { | 
|---|
| 305 | if (dict->end - dict->pos <= out_max) | 
|---|
| 306 | dict->limit = dict->end; | 
|---|
| 307 | else | 
|---|
| 308 | dict->limit = dict->pos + out_max; | 
|---|
| 309 | } | 
|---|
| 310 |  | 
|---|
| 311 | /* Return true if at least one byte can be written into the dictionary. */ | 
|---|
| 312 | static inline bool dict_has_space(const struct dictionary *dict) | 
|---|
| 313 | { | 
|---|
| 314 | return dict->pos < dict->limit; | 
|---|
| 315 | } | 
|---|
| 316 |  | 
|---|
| 317 | /* | 
|---|
| 318 | * Get a byte from the dictionary at the given distance. The distance is | 
|---|
| 319 | * assumed to valid, or as a special case, zero when the dictionary is | 
|---|
| 320 | * still empty. This special case is needed for single-call decoding to | 
|---|
| 321 | * avoid writing a '\0' to the end of the destination buffer. | 
|---|
| 322 | */ | 
|---|
| 323 | static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist) | 
|---|
| 324 | { | 
|---|
| 325 | size_t offset = dict->pos - dist - 1; | 
|---|
| 326 |  | 
|---|
| 327 | if (dist >= dict->pos) | 
|---|
| 328 | offset += dict->end; | 
|---|
| 329 |  | 
|---|
| 330 | return dict->full > 0 ? dict->buf[offset] : 0; | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | /* | 
|---|
| 334 | * Put one byte into the dictionary. It is assumed that there is space for it. | 
|---|
| 335 | */ | 
|---|
| 336 | static inline void dict_put(struct dictionary *dict, uint8_t byte) | 
|---|
| 337 | { | 
|---|
| 338 | dict->buf[dict->pos++] = byte; | 
|---|
| 339 |  | 
|---|
| 340 | if (dict->full < dict->pos) | 
|---|
| 341 | dict->full = dict->pos; | 
|---|
| 342 | } | 
|---|
| 343 |  | 
|---|
| 344 | /* | 
|---|
| 345 | * Repeat given number of bytes from the given distance. If the distance is | 
|---|
| 346 | * invalid, false is returned. On success, true is returned and *len is | 
|---|
| 347 | * updated to indicate how many bytes were left to be repeated. | 
|---|
| 348 | */ | 
|---|
| 349 | static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist) | 
|---|
| 350 | { | 
|---|
| 351 | size_t back; | 
|---|
| 352 | uint32_t left; | 
|---|
| 353 |  | 
|---|
| 354 | if (dist >= dict->full || dist >= dict->size) | 
|---|
| 355 | return false; | 
|---|
| 356 |  | 
|---|
| 357 | left = min_t(size_t, dict->limit - dict->pos, *len); | 
|---|
| 358 | *len -= left; | 
|---|
| 359 |  | 
|---|
| 360 | back = dict->pos - dist - 1; | 
|---|
| 361 | if (dist >= dict->pos) | 
|---|
| 362 | back += dict->end; | 
|---|
| 363 |  | 
|---|
| 364 | do { | 
|---|
| 365 | dict->buf[dict->pos++] = dict->buf[back++]; | 
|---|
| 366 | if (back == dict->end) | 
|---|
| 367 | back = 0; | 
|---|
| 368 | } while (--left > 0); | 
|---|
| 369 |  | 
|---|
| 370 | if (dict->full < dict->pos) | 
|---|
| 371 | dict->full = dict->pos; | 
|---|
| 372 |  | 
|---|
| 373 | return true; | 
|---|
| 374 | } | 
|---|
| 375 |  | 
|---|
| 376 | /* Copy uncompressed data as is from input to dictionary and output buffers. */ | 
|---|
| 377 | static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b, | 
|---|
| 378 | uint32_t *left) | 
|---|
| 379 | { | 
|---|
| 380 | size_t copy_size; | 
|---|
| 381 |  | 
|---|
| 382 | while (*left > 0 && b->in_pos < b->in_size | 
|---|
| 383 | && b->out_pos < b->out_size) { | 
|---|
| 384 | copy_size = min(b->in_size - b->in_pos, | 
|---|
| 385 | b->out_size - b->out_pos); | 
|---|
| 386 | if (copy_size > dict->end - dict->pos) | 
|---|
| 387 | copy_size = dict->end - dict->pos; | 
|---|
| 388 | if (copy_size > *left) | 
|---|
| 389 | copy_size = *left; | 
|---|
| 390 |  | 
|---|
| 391 | *left -= copy_size; | 
|---|
| 392 |  | 
|---|
| 393 | /* | 
|---|
| 394 | * If doing in-place decompression in single-call mode and the | 
|---|
| 395 | * uncompressed size of the file is larger than the caller | 
|---|
| 396 | * thought (i.e. it is invalid input!), the buffers below may | 
|---|
| 397 | * overlap and cause undefined behavior with memcpy(). | 
|---|
| 398 | * With valid inputs memcpy() would be fine here. | 
|---|
| 399 | */ | 
|---|
| 400 | memmove(dest: dict->buf + dict->pos, src: b->in + b->in_pos, count: copy_size); | 
|---|
| 401 | dict->pos += copy_size; | 
|---|
| 402 |  | 
|---|
| 403 | if (dict->full < dict->pos) | 
|---|
| 404 | dict->full = dict->pos; | 
|---|
| 405 |  | 
|---|
| 406 | if (DEC_IS_MULTI(dict->mode)) { | 
|---|
| 407 | if (dict->pos == dict->end) | 
|---|
| 408 | dict->pos = 0; | 
|---|
| 409 |  | 
|---|
| 410 | /* | 
|---|
| 411 | * Like above but for multi-call mode: use memmove() | 
|---|
| 412 | * to avoid undefined behavior with invalid input. | 
|---|
| 413 | */ | 
|---|
| 414 | memmove(dest: b->out + b->out_pos, src: b->in + b->in_pos, | 
|---|
| 415 | count: copy_size); | 
|---|
| 416 | } | 
|---|
| 417 |  | 
|---|
| 418 | dict->start = dict->pos; | 
|---|
| 419 |  | 
|---|
| 420 | b->out_pos += copy_size; | 
|---|
| 421 | b->in_pos += copy_size; | 
|---|
| 422 | } | 
|---|
| 423 | } | 
|---|
| 424 |  | 
|---|
| 425 | #ifdef XZ_DEC_MICROLZMA | 
|---|
| 426 | #	define DICT_FLUSH_SUPPORTS_SKIPPING true | 
|---|
| 427 | #else | 
|---|
| 428 | #	define DICT_FLUSH_SUPPORTS_SKIPPING false | 
|---|
| 429 | #endif | 
|---|
| 430 |  | 
|---|
| 431 | /* | 
|---|
| 432 | * Flush pending data from dictionary to b->out. It is assumed that there is | 
|---|
| 433 | * enough space in b->out. This is guaranteed because caller uses dict_limit() | 
|---|
| 434 | * before decoding data into the dictionary. | 
|---|
| 435 | */ | 
|---|
| 436 | static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b) | 
|---|
| 437 | { | 
|---|
| 438 | size_t copy_size = dict->pos - dict->start; | 
|---|
| 439 |  | 
|---|
| 440 | if (DEC_IS_MULTI(dict->mode)) { | 
|---|
| 441 | if (dict->pos == dict->end) | 
|---|
| 442 | dict->pos = 0; | 
|---|
| 443 |  | 
|---|
| 444 | /* | 
|---|
| 445 | * These buffers cannot overlap even if doing in-place | 
|---|
| 446 | * decompression because in multi-call mode dict->buf | 
|---|
| 447 | * has been allocated by us in this file; it's not | 
|---|
| 448 | * provided by the caller like in single-call mode. | 
|---|
| 449 | * | 
|---|
| 450 | * With MicroLZMA, b->out can be NULL to skip bytes that | 
|---|
| 451 | * the caller doesn't need. This cannot be done with XZ | 
|---|
| 452 | * because it would break BCJ filters. | 
|---|
| 453 | */ | 
|---|
| 454 | if (!DICT_FLUSH_SUPPORTS_SKIPPING || b->out != NULL) | 
|---|
| 455 | memcpy(to: b->out + b->out_pos, from: dict->buf + dict->start, | 
|---|
| 456 | len: copy_size); | 
|---|
| 457 | } | 
|---|
| 458 |  | 
|---|
| 459 | dict->start = dict->pos; | 
|---|
| 460 | b->out_pos += copy_size; | 
|---|
| 461 | return copy_size; | 
|---|
| 462 | } | 
|---|
| 463 |  | 
|---|
| 464 | /***************** | 
|---|
| 465 | * Range decoder * | 
|---|
| 466 | *****************/ | 
|---|
| 467 |  | 
|---|
| 468 | /* Reset the range decoder. */ | 
|---|
| 469 | static void rc_reset(struct rc_dec *rc) | 
|---|
| 470 | { | 
|---|
| 471 | rc->range = (uint32_t)-1; | 
|---|
| 472 | rc->code = 0; | 
|---|
| 473 | rc->init_bytes_left = RC_INIT_BYTES; | 
|---|
| 474 | } | 
|---|
| 475 |  | 
|---|
| 476 | /* | 
|---|
| 477 | * Read the first five initial bytes into rc->code if they haven't been | 
|---|
| 478 | * read already. (Yes, the first byte gets completely ignored.) | 
|---|
| 479 | */ | 
|---|
| 480 | static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b) | 
|---|
| 481 | { | 
|---|
| 482 | while (rc->init_bytes_left > 0) { | 
|---|
| 483 | if (b->in_pos == b->in_size) | 
|---|
| 484 | return false; | 
|---|
| 485 |  | 
|---|
| 486 | rc->code = (rc->code << 8) + b->in[b->in_pos++]; | 
|---|
| 487 | --rc->init_bytes_left; | 
|---|
| 488 | } | 
|---|
| 489 |  | 
|---|
| 490 | return true; | 
|---|
| 491 | } | 
|---|
| 492 |  | 
|---|
| 493 | /* Return true if there may not be enough input for the next decoding loop. */ | 
|---|
| 494 | static inline bool rc_limit_exceeded(const struct rc_dec *rc) | 
|---|
| 495 | { | 
|---|
| 496 | return rc->in_pos > rc->in_limit; | 
|---|
| 497 | } | 
|---|
| 498 |  | 
|---|
| 499 | /* | 
|---|
| 500 | * Return true if it is possible (from point of view of range decoder) that | 
|---|
| 501 | * we have reached the end of the LZMA chunk. | 
|---|
| 502 | */ | 
|---|
| 503 | static inline bool rc_is_finished(const struct rc_dec *rc) | 
|---|
| 504 | { | 
|---|
| 505 | return rc->code == 0; | 
|---|
| 506 | } | 
|---|
| 507 |  | 
|---|
| 508 | /* Read the next input byte if needed. */ | 
|---|
| 509 | static __always_inline void rc_normalize(struct rc_dec *rc) | 
|---|
| 510 | { | 
|---|
| 511 | if (rc->range < RC_TOP_VALUE) { | 
|---|
| 512 | rc->range <<= RC_SHIFT_BITS; | 
|---|
| 513 | rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++]; | 
|---|
| 514 | } | 
|---|
| 515 | } | 
|---|
| 516 |  | 
|---|
| 517 | /* | 
|---|
| 518 | * Decode one bit. In some versions, this function has been split in three | 
|---|
| 519 | * functions so that the compiler is supposed to be able to more easily avoid | 
|---|
| 520 | * an extra branch. In this particular version of the LZMA decoder, this | 
|---|
| 521 | * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3 | 
|---|
| 522 | * on x86). Using a non-split version results in nicer looking code too. | 
|---|
| 523 | * | 
|---|
| 524 | * NOTE: This must return an int. Do not make it return a bool or the speed | 
|---|
| 525 | * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care, | 
|---|
| 526 | * and it generates 10-20 % faster code than GCC 3.x from this file anyway.) | 
|---|
| 527 | */ | 
|---|
| 528 | static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob) | 
|---|
| 529 | { | 
|---|
| 530 | uint32_t bound; | 
|---|
| 531 | int bit; | 
|---|
| 532 |  | 
|---|
| 533 | rc_normalize(rc); | 
|---|
| 534 | bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob; | 
|---|
| 535 | if (rc->code < bound) { | 
|---|
| 536 | rc->range = bound; | 
|---|
| 537 | *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS; | 
|---|
| 538 | bit = 0; | 
|---|
| 539 | } else { | 
|---|
| 540 | rc->range -= bound; | 
|---|
| 541 | rc->code -= bound; | 
|---|
| 542 | *prob -= *prob >> RC_MOVE_BITS; | 
|---|
| 543 | bit = 1; | 
|---|
| 544 | } | 
|---|
| 545 |  | 
|---|
| 546 | return bit; | 
|---|
| 547 | } | 
|---|
| 548 |  | 
|---|
| 549 | /* Decode a bittree starting from the most significant bit. */ | 
|---|
| 550 | static __always_inline uint32_t rc_bittree(struct rc_dec *rc, | 
|---|
| 551 | uint16_t *probs, uint32_t limit) | 
|---|
| 552 | { | 
|---|
| 553 | uint32_t symbol = 1; | 
|---|
| 554 |  | 
|---|
| 555 | do { | 
|---|
| 556 | if (rc_bit(rc, prob: &probs[symbol])) | 
|---|
| 557 | symbol = (symbol << 1) + 1; | 
|---|
| 558 | else | 
|---|
| 559 | symbol <<= 1; | 
|---|
| 560 | } while (symbol < limit); | 
|---|
| 561 |  | 
|---|
| 562 | return symbol; | 
|---|
| 563 | } | 
|---|
| 564 |  | 
|---|
| 565 | /* Decode a bittree starting from the least significant bit. */ | 
|---|
| 566 | static __always_inline void rc_bittree_reverse(struct rc_dec *rc, | 
|---|
| 567 | uint16_t *probs, | 
|---|
| 568 | uint32_t *dest, uint32_t limit) | 
|---|
| 569 | { | 
|---|
| 570 | uint32_t symbol = 1; | 
|---|
| 571 | uint32_t i = 0; | 
|---|
| 572 |  | 
|---|
| 573 | do { | 
|---|
| 574 | if (rc_bit(rc, prob: &probs[symbol])) { | 
|---|
| 575 | symbol = (symbol << 1) + 1; | 
|---|
| 576 | *dest += 1 << i; | 
|---|
| 577 | } else { | 
|---|
| 578 | symbol <<= 1; | 
|---|
| 579 | } | 
|---|
| 580 | } while (++i < limit); | 
|---|
| 581 | } | 
|---|
| 582 |  | 
|---|
| 583 | /* Decode direct bits (fixed fifty-fifty probability) */ | 
|---|
| 584 | static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit) | 
|---|
| 585 | { | 
|---|
| 586 | uint32_t mask; | 
|---|
| 587 |  | 
|---|
| 588 | do { | 
|---|
| 589 | rc_normalize(rc); | 
|---|
| 590 | rc->range >>= 1; | 
|---|
| 591 | rc->code -= rc->range; | 
|---|
| 592 | mask = (uint32_t)0 - (rc->code >> 31); | 
|---|
| 593 | rc->code += rc->range & mask; | 
|---|
| 594 | *dest = (*dest << 1) + (mask + 1); | 
|---|
| 595 | } while (--limit > 0); | 
|---|
| 596 | } | 
|---|
| 597 |  | 
|---|
| 598 | /******** | 
|---|
| 599 | * LZMA * | 
|---|
| 600 | ********/ | 
|---|
| 601 |  | 
|---|
| 602 | /* Get pointer to literal coder probability array. */ | 
|---|
| 603 | static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s) | 
|---|
| 604 | { | 
|---|
| 605 | uint32_t prev_byte = dict_get(dict: &s->dict, dist: 0); | 
|---|
| 606 | uint32_t low = prev_byte >> (8 - s->lzma.lc); | 
|---|
| 607 | uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc; | 
|---|
| 608 | return s->lzma.literal[low + high]; | 
|---|
| 609 | } | 
|---|
| 610 |  | 
|---|
| 611 | /* Decode a literal (one 8-bit byte) */ | 
|---|
| 612 | static void lzma_literal(struct xz_dec_lzma2 *s) | 
|---|
| 613 | { | 
|---|
| 614 | uint16_t *probs; | 
|---|
| 615 | uint32_t symbol; | 
|---|
| 616 | uint32_t match_byte; | 
|---|
| 617 | uint32_t match_bit; | 
|---|
| 618 | uint32_t offset; | 
|---|
| 619 | uint32_t i; | 
|---|
| 620 |  | 
|---|
| 621 | probs = lzma_literal_probs(s); | 
|---|
| 622 |  | 
|---|
| 623 | if (lzma_state_is_literal(state: s->lzma.state)) { | 
|---|
| 624 | symbol = rc_bittree(rc: &s->rc, probs, limit: 0x100); | 
|---|
| 625 | } else { | 
|---|
| 626 | symbol = 1; | 
|---|
| 627 | match_byte = dict_get(dict: &s->dict, dist: s->lzma.rep0) << 1; | 
|---|
| 628 | offset = 0x100; | 
|---|
| 629 |  | 
|---|
| 630 | do { | 
|---|
| 631 | match_bit = match_byte & offset; | 
|---|
| 632 | match_byte <<= 1; | 
|---|
| 633 | i = offset + match_bit + symbol; | 
|---|
| 634 |  | 
|---|
| 635 | if (rc_bit(rc: &s->rc, prob: &probs[i])) { | 
|---|
| 636 | symbol = (symbol << 1) + 1; | 
|---|
| 637 | offset &= match_bit; | 
|---|
| 638 | } else { | 
|---|
| 639 | symbol <<= 1; | 
|---|
| 640 | offset &= ~match_bit; | 
|---|
| 641 | } | 
|---|
| 642 | } while (symbol < 0x100); | 
|---|
| 643 | } | 
|---|
| 644 |  | 
|---|
| 645 | dict_put(dict: &s->dict, byte: (uint8_t)symbol); | 
|---|
| 646 | lzma_state_literal(state: &s->lzma.state); | 
|---|
| 647 | } | 
|---|
| 648 |  | 
|---|
| 649 | /* Decode the length of the match into s->lzma.len. */ | 
|---|
| 650 | static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l, | 
|---|
| 651 | uint32_t pos_state) | 
|---|
| 652 | { | 
|---|
| 653 | uint16_t *probs; | 
|---|
| 654 | uint32_t limit; | 
|---|
| 655 |  | 
|---|
| 656 | if (!rc_bit(rc: &s->rc, prob: &l->choice)) { | 
|---|
| 657 | probs = l->low[pos_state]; | 
|---|
| 658 | limit = LEN_LOW_SYMBOLS; | 
|---|
| 659 | s->lzma.len = MATCH_LEN_MIN; | 
|---|
| 660 | } else { | 
|---|
| 661 | if (!rc_bit(rc: &s->rc, prob: &l->choice2)) { | 
|---|
| 662 | probs = l->mid[pos_state]; | 
|---|
| 663 | limit = LEN_MID_SYMBOLS; | 
|---|
| 664 | s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; | 
|---|
| 665 | } else { | 
|---|
| 666 | probs = l->high; | 
|---|
| 667 | limit = LEN_HIGH_SYMBOLS; | 
|---|
| 668 | s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS | 
|---|
| 669 | + LEN_MID_SYMBOLS; | 
|---|
| 670 | } | 
|---|
| 671 | } | 
|---|
| 672 |  | 
|---|
| 673 | s->lzma.len += rc_bittree(rc: &s->rc, probs, limit) - limit; | 
|---|
| 674 | } | 
|---|
| 675 |  | 
|---|
| 676 | /* Decode a match. The distance will be stored in s->lzma.rep0. */ | 
|---|
| 677 | static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state) | 
|---|
| 678 | { | 
|---|
| 679 | uint16_t *probs; | 
|---|
| 680 | uint32_t dist_slot; | 
|---|
| 681 | uint32_t limit; | 
|---|
| 682 |  | 
|---|
| 683 | lzma_state_match(state: &s->lzma.state); | 
|---|
| 684 |  | 
|---|
| 685 | s->lzma.rep3 = s->lzma.rep2; | 
|---|
| 686 | s->lzma.rep2 = s->lzma.rep1; | 
|---|
| 687 | s->lzma.rep1 = s->lzma.rep0; | 
|---|
| 688 |  | 
|---|
| 689 | lzma_len(s, l: &s->lzma.match_len_dec, pos_state); | 
|---|
| 690 |  | 
|---|
| 691 | probs = s->lzma.dist_slot[lzma_get_dist_state(len: s->lzma.len)]; | 
|---|
| 692 | dist_slot = rc_bittree(rc: &s->rc, probs, DIST_SLOTS) - DIST_SLOTS; | 
|---|
| 693 |  | 
|---|
| 694 | if (dist_slot < DIST_MODEL_START) { | 
|---|
| 695 | s->lzma.rep0 = dist_slot; | 
|---|
| 696 | } else { | 
|---|
| 697 | limit = (dist_slot >> 1) - 1; | 
|---|
| 698 | s->lzma.rep0 = 2 + (dist_slot & 1); | 
|---|
| 699 |  | 
|---|
| 700 | if (dist_slot < DIST_MODEL_END) { | 
|---|
| 701 | s->lzma.rep0 <<= limit; | 
|---|
| 702 | probs = s->lzma.dist_special + s->lzma.rep0 | 
|---|
| 703 | - dist_slot - 1; | 
|---|
| 704 | rc_bittree_reverse(rc: &s->rc, probs, | 
|---|
| 705 | dest: &s->lzma.rep0, limit); | 
|---|
| 706 | } else { | 
|---|
| 707 | rc_direct(rc: &s->rc, dest: &s->lzma.rep0, limit: limit - ALIGN_BITS); | 
|---|
| 708 | s->lzma.rep0 <<= ALIGN_BITS; | 
|---|
| 709 | rc_bittree_reverse(rc: &s->rc, probs: s->lzma.dist_align, | 
|---|
| 710 | dest: &s->lzma.rep0, ALIGN_BITS); | 
|---|
| 711 | } | 
|---|
| 712 | } | 
|---|
| 713 | } | 
|---|
| 714 |  | 
|---|
| 715 | /* | 
|---|
| 716 | * Decode a repeated match. The distance is one of the four most recently | 
|---|
| 717 | * seen matches. The distance will be stored in s->lzma.rep0. | 
|---|
| 718 | */ | 
|---|
| 719 | static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state) | 
|---|
| 720 | { | 
|---|
| 721 | uint32_t tmp; | 
|---|
| 722 |  | 
|---|
| 723 | if (!rc_bit(rc: &s->rc, prob: &s->lzma.is_rep0[s->lzma.state])) { | 
|---|
| 724 | if (!rc_bit(rc: &s->rc, prob: &s->lzma.is_rep0_long[ | 
|---|
| 725 | s->lzma.state][pos_state])) { | 
|---|
| 726 | lzma_state_short_rep(state: &s->lzma.state); | 
|---|
| 727 | s->lzma.len = 1; | 
|---|
| 728 | return; | 
|---|
| 729 | } | 
|---|
| 730 | } else { | 
|---|
| 731 | if (!rc_bit(rc: &s->rc, prob: &s->lzma.is_rep1[s->lzma.state])) { | 
|---|
| 732 | tmp = s->lzma.rep1; | 
|---|
| 733 | } else { | 
|---|
| 734 | if (!rc_bit(rc: &s->rc, prob: &s->lzma.is_rep2[s->lzma.state])) { | 
|---|
| 735 | tmp = s->lzma.rep2; | 
|---|
| 736 | } else { | 
|---|
| 737 | tmp = s->lzma.rep3; | 
|---|
| 738 | s->lzma.rep3 = s->lzma.rep2; | 
|---|
| 739 | } | 
|---|
| 740 |  | 
|---|
| 741 | s->lzma.rep2 = s->lzma.rep1; | 
|---|
| 742 | } | 
|---|
| 743 |  | 
|---|
| 744 | s->lzma.rep1 = s->lzma.rep0; | 
|---|
| 745 | s->lzma.rep0 = tmp; | 
|---|
| 746 | } | 
|---|
| 747 |  | 
|---|
| 748 | lzma_state_long_rep(state: &s->lzma.state); | 
|---|
| 749 | lzma_len(s, l: &s->lzma.rep_len_dec, pos_state); | 
|---|
| 750 | } | 
|---|
| 751 |  | 
|---|
| 752 | /* LZMA decoder core */ | 
|---|
| 753 | static bool lzma_main(struct xz_dec_lzma2 *s) | 
|---|
| 754 | { | 
|---|
| 755 | uint32_t pos_state; | 
|---|
| 756 |  | 
|---|
| 757 | /* | 
|---|
| 758 | * If the dictionary was reached during the previous call, try to | 
|---|
| 759 | * finish the possibly pending repeat in the dictionary. | 
|---|
| 760 | */ | 
|---|
| 761 | if (dict_has_space(dict: &s->dict) && s->lzma.len > 0) | 
|---|
| 762 | dict_repeat(dict: &s->dict, len: &s->lzma.len, dist: s->lzma.rep0); | 
|---|
| 763 |  | 
|---|
| 764 | /* | 
|---|
| 765 | * Decode more LZMA symbols. One iteration may consume up to | 
|---|
| 766 | * LZMA_IN_REQUIRED - 1 bytes. | 
|---|
| 767 | */ | 
|---|
| 768 | while (dict_has_space(dict: &s->dict) && !rc_limit_exceeded(rc: &s->rc)) { | 
|---|
| 769 | pos_state = s->dict.pos & s->lzma.pos_mask; | 
|---|
| 770 |  | 
|---|
| 771 | if (!rc_bit(rc: &s->rc, prob: &s->lzma.is_match[ | 
|---|
| 772 | s->lzma.state][pos_state])) { | 
|---|
| 773 | lzma_literal(s); | 
|---|
| 774 | } else { | 
|---|
| 775 | if (rc_bit(rc: &s->rc, prob: &s->lzma.is_rep[s->lzma.state])) | 
|---|
| 776 | lzma_rep_match(s, pos_state); | 
|---|
| 777 | else | 
|---|
| 778 | lzma_match(s, pos_state); | 
|---|
| 779 |  | 
|---|
| 780 | if (!dict_repeat(dict: &s->dict, len: &s->lzma.len, dist: s->lzma.rep0)) | 
|---|
| 781 | return false; | 
|---|
| 782 | } | 
|---|
| 783 | } | 
|---|
| 784 |  | 
|---|
| 785 | /* | 
|---|
| 786 | * Having the range decoder always normalized when we are outside | 
|---|
| 787 | * this function makes it easier to correctly handle end of the chunk. | 
|---|
| 788 | */ | 
|---|
| 789 | rc_normalize(rc: &s->rc); | 
|---|
| 790 |  | 
|---|
| 791 | return true; | 
|---|
| 792 | } | 
|---|
| 793 |  | 
|---|
| 794 | /* | 
|---|
| 795 | * Reset the LZMA decoder and range decoder state. Dictionary is not reset | 
|---|
| 796 | * here, because LZMA state may be reset without resetting the dictionary. | 
|---|
| 797 | */ | 
|---|
| 798 | static void lzma_reset(struct xz_dec_lzma2 *s) | 
|---|
| 799 | { | 
|---|
| 800 | uint16_t *probs; | 
|---|
| 801 | size_t i; | 
|---|
| 802 |  | 
|---|
| 803 | s->lzma.state = STATE_LIT_LIT; | 
|---|
| 804 | s->lzma.rep0 = 0; | 
|---|
| 805 | s->lzma.rep1 = 0; | 
|---|
| 806 | s->lzma.rep2 = 0; | 
|---|
| 807 | s->lzma.rep3 = 0; | 
|---|
| 808 | s->lzma.len = 0; | 
|---|
| 809 |  | 
|---|
| 810 | /* | 
|---|
| 811 | * All probabilities are initialized to the same value. This hack | 
|---|
| 812 | * makes the code smaller by avoiding a separate loop for each | 
|---|
| 813 | * probability array. | 
|---|
| 814 | * | 
|---|
| 815 | * This could be optimized so that only that part of literal | 
|---|
| 816 | * probabilities that are actually required. In the common case | 
|---|
| 817 | * we would write 12 KiB less. | 
|---|
| 818 | */ | 
|---|
| 819 | probs = s->lzma.is_match[0]; | 
|---|
| 820 | for (i = 0; i < PROBS_TOTAL; ++i) | 
|---|
| 821 | probs[i] = RC_BIT_MODEL_TOTAL / 2; | 
|---|
| 822 |  | 
|---|
| 823 | rc_reset(rc: &s->rc); | 
|---|
| 824 | } | 
|---|
| 825 |  | 
|---|
| 826 | /* | 
|---|
| 827 | * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks | 
|---|
| 828 | * from the decoded lp and pb values. On success, the LZMA decoder state is | 
|---|
| 829 | * reset and true is returned. | 
|---|
| 830 | */ | 
|---|
| 831 | static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props) | 
|---|
| 832 | { | 
|---|
| 833 | if (props > (4 * 5 + 4) * 9 + 8) | 
|---|
| 834 | return false; | 
|---|
| 835 |  | 
|---|
| 836 | s->lzma.pos_mask = 0; | 
|---|
| 837 | while (props >= 9 * 5) { | 
|---|
| 838 | props -= 9 * 5; | 
|---|
| 839 | ++s->lzma.pos_mask; | 
|---|
| 840 | } | 
|---|
| 841 |  | 
|---|
| 842 | s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1; | 
|---|
| 843 |  | 
|---|
| 844 | s->lzma.literal_pos_mask = 0; | 
|---|
| 845 | while (props >= 9) { | 
|---|
| 846 | props -= 9; | 
|---|
| 847 | ++s->lzma.literal_pos_mask; | 
|---|
| 848 | } | 
|---|
| 849 |  | 
|---|
| 850 | s->lzma.lc = props; | 
|---|
| 851 |  | 
|---|
| 852 | if (s->lzma.lc + s->lzma.literal_pos_mask > 4) | 
|---|
| 853 | return false; | 
|---|
| 854 |  | 
|---|
| 855 | s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1; | 
|---|
| 856 |  | 
|---|
| 857 | lzma_reset(s); | 
|---|
| 858 |  | 
|---|
| 859 | return true; | 
|---|
| 860 | } | 
|---|
| 861 |  | 
|---|
| 862 | /********* | 
|---|
| 863 | * LZMA2 * | 
|---|
| 864 | *********/ | 
|---|
| 865 |  | 
|---|
| 866 | /* | 
|---|
| 867 | * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't | 
|---|
| 868 | * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This | 
|---|
| 869 | * wrapper function takes care of making the LZMA decoder's assumption safe. | 
|---|
| 870 | * | 
|---|
| 871 | * As long as there is plenty of input left to be decoded in the current LZMA | 
|---|
| 872 | * chunk, we decode directly from the caller-supplied input buffer until | 
|---|
| 873 | * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into | 
|---|
| 874 | * s->temp.buf, which (hopefully) gets filled on the next call to this | 
|---|
| 875 | * function. We decode a few bytes from the temporary buffer so that we can | 
|---|
| 876 | * continue decoding from the caller-supplied input buffer again. | 
|---|
| 877 | */ | 
|---|
| 878 | static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b) | 
|---|
| 879 | { | 
|---|
| 880 | size_t in_avail; | 
|---|
| 881 | uint32_t tmp; | 
|---|
| 882 |  | 
|---|
| 883 | in_avail = b->in_size - b->in_pos; | 
|---|
| 884 | if (s->temp.size > 0 || s->lzma2.compressed == 0) { | 
|---|
| 885 | tmp = 2 * LZMA_IN_REQUIRED - s->temp.size; | 
|---|
| 886 | if (tmp > s->lzma2.compressed - s->temp.size) | 
|---|
| 887 | tmp = s->lzma2.compressed - s->temp.size; | 
|---|
| 888 | if (tmp > in_avail) | 
|---|
| 889 | tmp = in_avail; | 
|---|
| 890 |  | 
|---|
| 891 | memcpy(to: s->temp.buf + s->temp.size, from: b->in + b->in_pos, len: tmp); | 
|---|
| 892 |  | 
|---|
| 893 | if (s->temp.size + tmp == s->lzma2.compressed) { | 
|---|
| 894 | memzero(s->temp.buf + s->temp.size + tmp, | 
|---|
| 895 | sizeof(s->temp.buf) | 
|---|
| 896 | - s->temp.size - tmp); | 
|---|
| 897 | s->rc.in_limit = s->temp.size + tmp; | 
|---|
| 898 | } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) { | 
|---|
| 899 | s->temp.size += tmp; | 
|---|
| 900 | b->in_pos += tmp; | 
|---|
| 901 | return true; | 
|---|
| 902 | } else { | 
|---|
| 903 | s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED; | 
|---|
| 904 | } | 
|---|
| 905 |  | 
|---|
| 906 | s->rc.in = s->temp.buf; | 
|---|
| 907 | s->rc.in_pos = 0; | 
|---|
| 908 |  | 
|---|
| 909 | if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp) | 
|---|
| 910 | return false; | 
|---|
| 911 |  | 
|---|
| 912 | s->lzma2.compressed -= s->rc.in_pos; | 
|---|
| 913 |  | 
|---|
| 914 | if (s->rc.in_pos < s->temp.size) { | 
|---|
| 915 | s->temp.size -= s->rc.in_pos; | 
|---|
| 916 | memmove(dest: s->temp.buf, src: s->temp.buf + s->rc.in_pos, | 
|---|
| 917 | count: s->temp.size); | 
|---|
| 918 | return true; | 
|---|
| 919 | } | 
|---|
| 920 |  | 
|---|
| 921 | b->in_pos += s->rc.in_pos - s->temp.size; | 
|---|
| 922 | s->temp.size = 0; | 
|---|
| 923 | } | 
|---|
| 924 |  | 
|---|
| 925 | in_avail = b->in_size - b->in_pos; | 
|---|
| 926 | if (in_avail >= LZMA_IN_REQUIRED) { | 
|---|
| 927 | s->rc.in = b->in; | 
|---|
| 928 | s->rc.in_pos = b->in_pos; | 
|---|
| 929 |  | 
|---|
| 930 | if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED) | 
|---|
| 931 | s->rc.in_limit = b->in_pos + s->lzma2.compressed; | 
|---|
| 932 | else | 
|---|
| 933 | s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED; | 
|---|
| 934 |  | 
|---|
| 935 | if (!lzma_main(s)) | 
|---|
| 936 | return false; | 
|---|
| 937 |  | 
|---|
| 938 | in_avail = s->rc.in_pos - b->in_pos; | 
|---|
| 939 | if (in_avail > s->lzma2.compressed) | 
|---|
| 940 | return false; | 
|---|
| 941 |  | 
|---|
| 942 | s->lzma2.compressed -= in_avail; | 
|---|
| 943 | b->in_pos = s->rc.in_pos; | 
|---|
| 944 | } | 
|---|
| 945 |  | 
|---|
| 946 | in_avail = b->in_size - b->in_pos; | 
|---|
| 947 | if (in_avail < LZMA_IN_REQUIRED) { | 
|---|
| 948 | if (in_avail > s->lzma2.compressed) | 
|---|
| 949 | in_avail = s->lzma2.compressed; | 
|---|
| 950 |  | 
|---|
| 951 | memcpy(to: s->temp.buf, from: b->in + b->in_pos, len: in_avail); | 
|---|
| 952 | s->temp.size = in_avail; | 
|---|
| 953 | b->in_pos += in_avail; | 
|---|
| 954 | } | 
|---|
| 955 |  | 
|---|
| 956 | return true; | 
|---|
| 957 | } | 
|---|
| 958 |  | 
|---|
| 959 | /* | 
|---|
| 960 | * Take care of the LZMA2 control layer, and forward the job of actual LZMA | 
|---|
| 961 | * decoding or copying of uncompressed chunks to other functions. | 
|---|
| 962 | */ | 
|---|
| 963 | enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, struct xz_buf *b) | 
|---|
| 964 | { | 
|---|
| 965 | uint32_t tmp; | 
|---|
| 966 |  | 
|---|
| 967 | while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) { | 
|---|
| 968 | switch (s->lzma2.sequence) { | 
|---|
| 969 | case SEQ_CONTROL: | 
|---|
| 970 | /* | 
|---|
| 971 | * LZMA2 control byte | 
|---|
| 972 | * | 
|---|
| 973 | * Exact values: | 
|---|
| 974 | *   0x00   End marker | 
|---|
| 975 | *   0x01   Dictionary reset followed by | 
|---|
| 976 | *          an uncompressed chunk | 
|---|
| 977 | *   0x02   Uncompressed chunk (no dictionary reset) | 
|---|
| 978 | * | 
|---|
| 979 | * Highest three bits (s->control & 0xE0): | 
|---|
| 980 | *   0xE0   Dictionary reset, new properties and state | 
|---|
| 981 | *          reset, followed by LZMA compressed chunk | 
|---|
| 982 | *   0xC0   New properties and state reset, followed | 
|---|
| 983 | *          by LZMA compressed chunk (no dictionary | 
|---|
| 984 | *          reset) | 
|---|
| 985 | *   0xA0   State reset using old properties, | 
|---|
| 986 | *          followed by LZMA compressed chunk (no | 
|---|
| 987 | *          dictionary reset) | 
|---|
| 988 | *   0x80   LZMA chunk (no dictionary or state reset) | 
|---|
| 989 | * | 
|---|
| 990 | * For LZMA compressed chunks, the lowest five bits | 
|---|
| 991 | * (s->control & 1F) are the highest bits of the | 
|---|
| 992 | * uncompressed size (bits 16-20). | 
|---|
| 993 | * | 
|---|
| 994 | * A new LZMA2 stream must begin with a dictionary | 
|---|
| 995 | * reset. The first LZMA chunk must set new | 
|---|
| 996 | * properties and reset the LZMA state. | 
|---|
| 997 | * | 
|---|
| 998 | * Values that don't match anything described above | 
|---|
| 999 | * are invalid and we return XZ_DATA_ERROR. | 
|---|
| 1000 | */ | 
|---|
| 1001 | tmp = b->in[b->in_pos++]; | 
|---|
| 1002 |  | 
|---|
| 1003 | if (tmp == 0x00) | 
|---|
| 1004 | return XZ_STREAM_END; | 
|---|
| 1005 |  | 
|---|
| 1006 | if (tmp >= 0xE0 || tmp == 0x01) { | 
|---|
| 1007 | s->lzma2.need_props = true; | 
|---|
| 1008 | s->lzma2.need_dict_reset = false; | 
|---|
| 1009 | dict_reset(dict: &s->dict, b); | 
|---|
| 1010 | } else if (s->lzma2.need_dict_reset) { | 
|---|
| 1011 | return XZ_DATA_ERROR; | 
|---|
| 1012 | } | 
|---|
| 1013 |  | 
|---|
| 1014 | if (tmp >= 0x80) { | 
|---|
| 1015 | s->lzma2.uncompressed = (tmp & 0x1F) << 16; | 
|---|
| 1016 | s->lzma2.sequence = SEQ_UNCOMPRESSED_1; | 
|---|
| 1017 |  | 
|---|
| 1018 | if (tmp >= 0xC0) { | 
|---|
| 1019 | /* | 
|---|
| 1020 | * When there are new properties, | 
|---|
| 1021 | * state reset is done at | 
|---|
| 1022 | * SEQ_PROPERTIES. | 
|---|
| 1023 | */ | 
|---|
| 1024 | s->lzma2.need_props = false; | 
|---|
| 1025 | s->lzma2.next_sequence | 
|---|
| 1026 | = SEQ_PROPERTIES; | 
|---|
| 1027 |  | 
|---|
| 1028 | } else if (s->lzma2.need_props) { | 
|---|
| 1029 | return XZ_DATA_ERROR; | 
|---|
| 1030 |  | 
|---|
| 1031 | } else { | 
|---|
| 1032 | s->lzma2.next_sequence | 
|---|
| 1033 | = SEQ_LZMA_PREPARE; | 
|---|
| 1034 | if (tmp >= 0xA0) | 
|---|
| 1035 | lzma_reset(s); | 
|---|
| 1036 | } | 
|---|
| 1037 | } else { | 
|---|
| 1038 | if (tmp > 0x02) | 
|---|
| 1039 | return XZ_DATA_ERROR; | 
|---|
| 1040 |  | 
|---|
| 1041 | s->lzma2.sequence = SEQ_COMPRESSED_0; | 
|---|
| 1042 | s->lzma2.next_sequence = SEQ_COPY; | 
|---|
| 1043 | } | 
|---|
| 1044 |  | 
|---|
| 1045 | break; | 
|---|
| 1046 |  | 
|---|
| 1047 | case SEQ_UNCOMPRESSED_1: | 
|---|
| 1048 | s->lzma2.uncompressed | 
|---|
| 1049 | += (uint32_t)b->in[b->in_pos++] << 8; | 
|---|
| 1050 | s->lzma2.sequence = SEQ_UNCOMPRESSED_2; | 
|---|
| 1051 | break; | 
|---|
| 1052 |  | 
|---|
| 1053 | case SEQ_UNCOMPRESSED_2: | 
|---|
| 1054 | s->lzma2.uncompressed | 
|---|
| 1055 | += (uint32_t)b->in[b->in_pos++] + 1; | 
|---|
| 1056 | s->lzma2.sequence = SEQ_COMPRESSED_0; | 
|---|
| 1057 | break; | 
|---|
| 1058 |  | 
|---|
| 1059 | case SEQ_COMPRESSED_0: | 
|---|
| 1060 | s->lzma2.compressed | 
|---|
| 1061 | = (uint32_t)b->in[b->in_pos++] << 8; | 
|---|
| 1062 | s->lzma2.sequence = SEQ_COMPRESSED_1; | 
|---|
| 1063 | break; | 
|---|
| 1064 |  | 
|---|
| 1065 | case SEQ_COMPRESSED_1: | 
|---|
| 1066 | s->lzma2.compressed | 
|---|
| 1067 | += (uint32_t)b->in[b->in_pos++] + 1; | 
|---|
| 1068 | s->lzma2.sequence = s->lzma2.next_sequence; | 
|---|
| 1069 | break; | 
|---|
| 1070 |  | 
|---|
| 1071 | case SEQ_PROPERTIES: | 
|---|
| 1072 | if (!lzma_props(s, props: b->in[b->in_pos++])) | 
|---|
| 1073 | return XZ_DATA_ERROR; | 
|---|
| 1074 |  | 
|---|
| 1075 | s->lzma2.sequence = SEQ_LZMA_PREPARE; | 
|---|
| 1076 |  | 
|---|
| 1077 | fallthrough; | 
|---|
| 1078 |  | 
|---|
| 1079 | case SEQ_LZMA_PREPARE: | 
|---|
| 1080 | if (s->lzma2.compressed < RC_INIT_BYTES) | 
|---|
| 1081 | return XZ_DATA_ERROR; | 
|---|
| 1082 |  | 
|---|
| 1083 | if (!rc_read_init(rc: &s->rc, b)) | 
|---|
| 1084 | return XZ_OK; | 
|---|
| 1085 |  | 
|---|
| 1086 | s->lzma2.compressed -= RC_INIT_BYTES; | 
|---|
| 1087 | s->lzma2.sequence = SEQ_LZMA_RUN; | 
|---|
| 1088 |  | 
|---|
| 1089 | fallthrough; | 
|---|
| 1090 |  | 
|---|
| 1091 | case SEQ_LZMA_RUN: | 
|---|
| 1092 | /* | 
|---|
| 1093 | * Set dictionary limit to indicate how much we want | 
|---|
| 1094 | * to be encoded at maximum. Decode new data into the | 
|---|
| 1095 | * dictionary. Flush the new data from dictionary to | 
|---|
| 1096 | * b->out. Check if we finished decoding this chunk. | 
|---|
| 1097 | * In case the dictionary got full but we didn't fill | 
|---|
| 1098 | * the output buffer yet, we may run this loop | 
|---|
| 1099 | * multiple times without changing s->lzma2.sequence. | 
|---|
| 1100 | */ | 
|---|
| 1101 | dict_limit(dict: &s->dict, min_t(size_t, | 
|---|
| 1102 | b->out_size - b->out_pos, | 
|---|
| 1103 | s->lzma2.uncompressed)); | 
|---|
| 1104 | if (!lzma2_lzma(s, b)) | 
|---|
| 1105 | return XZ_DATA_ERROR; | 
|---|
| 1106 |  | 
|---|
| 1107 | s->lzma2.uncompressed -= dict_flush(dict: &s->dict, b); | 
|---|
| 1108 |  | 
|---|
| 1109 | if (s->lzma2.uncompressed == 0) { | 
|---|
| 1110 | if (s->lzma2.compressed > 0 || s->lzma.len > 0 | 
|---|
| 1111 | || !rc_is_finished(rc: &s->rc)) | 
|---|
| 1112 | return XZ_DATA_ERROR; | 
|---|
| 1113 |  | 
|---|
| 1114 | rc_reset(rc: &s->rc); | 
|---|
| 1115 | s->lzma2.sequence = SEQ_CONTROL; | 
|---|
| 1116 |  | 
|---|
| 1117 | } else if (b->out_pos == b->out_size | 
|---|
| 1118 | || (b->in_pos == b->in_size | 
|---|
| 1119 | && s->temp.size | 
|---|
| 1120 | < s->lzma2.compressed)) { | 
|---|
| 1121 | return XZ_OK; | 
|---|
| 1122 | } | 
|---|
| 1123 |  | 
|---|
| 1124 | break; | 
|---|
| 1125 |  | 
|---|
| 1126 | case SEQ_COPY: | 
|---|
| 1127 | dict_uncompressed(dict: &s->dict, b, left: &s->lzma2.compressed); | 
|---|
| 1128 | if (s->lzma2.compressed > 0) | 
|---|
| 1129 | return XZ_OK; | 
|---|
| 1130 |  | 
|---|
| 1131 | s->lzma2.sequence = SEQ_CONTROL; | 
|---|
| 1132 | break; | 
|---|
| 1133 | } | 
|---|
| 1134 | } | 
|---|
| 1135 |  | 
|---|
| 1136 | return XZ_OK; | 
|---|
| 1137 | } | 
|---|
| 1138 |  | 
|---|
| 1139 | struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode, uint32_t dict_max) | 
|---|
| 1140 | { | 
|---|
| 1141 | struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL); | 
|---|
| 1142 | if (s == NULL) | 
|---|
| 1143 | return NULL; | 
|---|
| 1144 |  | 
|---|
| 1145 | s->dict.mode = mode; | 
|---|
| 1146 | s->dict.size_max = dict_max; | 
|---|
| 1147 |  | 
|---|
| 1148 | if (DEC_IS_PREALLOC(mode)) { | 
|---|
| 1149 | s->dict.buf = vmalloc(dict_max); | 
|---|
| 1150 | if (s->dict.buf == NULL) { | 
|---|
| 1151 | kfree(objp: s); | 
|---|
| 1152 | return NULL; | 
|---|
| 1153 | } | 
|---|
| 1154 | } else if (DEC_IS_DYNALLOC(mode)) { | 
|---|
| 1155 | s->dict.buf = NULL; | 
|---|
| 1156 | s->dict.allocated = 0; | 
|---|
| 1157 | } | 
|---|
| 1158 |  | 
|---|
| 1159 | return s; | 
|---|
| 1160 | } | 
|---|
| 1161 |  | 
|---|
| 1162 | enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props) | 
|---|
| 1163 | { | 
|---|
| 1164 | /* This limits dictionary size to 3 GiB to keep parsing simpler. */ | 
|---|
| 1165 | if (props > 39) | 
|---|
| 1166 | return XZ_OPTIONS_ERROR; | 
|---|
| 1167 |  | 
|---|
| 1168 | s->dict.size = 2 + (props & 1); | 
|---|
| 1169 | s->dict.size <<= (props >> 1) + 11; | 
|---|
| 1170 |  | 
|---|
| 1171 | if (DEC_IS_MULTI(s->dict.mode)) { | 
|---|
| 1172 | if (s->dict.size > s->dict.size_max) | 
|---|
| 1173 | return XZ_MEMLIMIT_ERROR; | 
|---|
| 1174 |  | 
|---|
| 1175 | s->dict.end = s->dict.size; | 
|---|
| 1176 |  | 
|---|
| 1177 | if (DEC_IS_DYNALLOC(s->dict.mode)) { | 
|---|
| 1178 | if (s->dict.allocated < s->dict.size) { | 
|---|
| 1179 | s->dict.allocated = s->dict.size; | 
|---|
| 1180 | vfree(addr: s->dict.buf); | 
|---|
| 1181 | s->dict.buf = vmalloc(s->dict.size); | 
|---|
| 1182 | if (s->dict.buf == NULL) { | 
|---|
| 1183 | s->dict.allocated = 0; | 
|---|
| 1184 | return XZ_MEM_ERROR; | 
|---|
| 1185 | } | 
|---|
| 1186 | } | 
|---|
| 1187 | } | 
|---|
| 1188 | } | 
|---|
| 1189 |  | 
|---|
| 1190 | s->lzma2.sequence = SEQ_CONTROL; | 
|---|
| 1191 | s->lzma2.need_dict_reset = true; | 
|---|
| 1192 |  | 
|---|
| 1193 | s->temp.size = 0; | 
|---|
| 1194 |  | 
|---|
| 1195 | return XZ_OK; | 
|---|
| 1196 | } | 
|---|
| 1197 |  | 
|---|
| 1198 | void xz_dec_lzma2_end(struct xz_dec_lzma2 *s) | 
|---|
| 1199 | { | 
|---|
| 1200 | if (DEC_IS_MULTI(s->dict.mode)) | 
|---|
| 1201 | vfree(addr: s->dict.buf); | 
|---|
| 1202 |  | 
|---|
| 1203 | kfree(objp: s); | 
|---|
| 1204 | } | 
|---|
| 1205 |  | 
|---|
| 1206 | #ifdef XZ_DEC_MICROLZMA | 
|---|
| 1207 | /* This is a wrapper struct to have a nice struct name in the public API. */ | 
|---|
| 1208 | struct xz_dec_microlzma { | 
|---|
| 1209 | struct xz_dec_lzma2 s; | 
|---|
| 1210 | }; | 
|---|
| 1211 |  | 
|---|
| 1212 | enum xz_ret xz_dec_microlzma_run(struct xz_dec_microlzma *s_ptr, | 
|---|
| 1213 | struct xz_buf *b) | 
|---|
| 1214 | { | 
|---|
| 1215 | struct xz_dec_lzma2 *s = &s_ptr->s; | 
|---|
| 1216 |  | 
|---|
| 1217 | /* | 
|---|
| 1218 | * sequence is SEQ_PROPERTIES before the first input byte, | 
|---|
| 1219 | * SEQ_LZMA_PREPARE until a total of five bytes have been read, | 
|---|
| 1220 | * and SEQ_LZMA_RUN for the rest of the input stream. | 
|---|
| 1221 | */ | 
|---|
| 1222 | if (s->lzma2.sequence != SEQ_LZMA_RUN) { | 
|---|
| 1223 | if (s->lzma2.sequence == SEQ_PROPERTIES) { | 
|---|
| 1224 | /* One byte is needed for the props. */ | 
|---|
| 1225 | if (b->in_pos >= b->in_size) | 
|---|
| 1226 | return XZ_OK; | 
|---|
| 1227 |  | 
|---|
| 1228 | /* | 
|---|
| 1229 | * Don't increment b->in_pos here. The same byte is | 
|---|
| 1230 | * also passed to rc_read_init() which will ignore it. | 
|---|
| 1231 | */ | 
|---|
| 1232 | if (!lzma_props(s, ~b->in[b->in_pos])) | 
|---|
| 1233 | return XZ_DATA_ERROR; | 
|---|
| 1234 |  | 
|---|
| 1235 | s->lzma2.sequence = SEQ_LZMA_PREPARE; | 
|---|
| 1236 | } | 
|---|
| 1237 |  | 
|---|
| 1238 | /* | 
|---|
| 1239 | * xz_dec_microlzma_reset() doesn't validate the compressed | 
|---|
| 1240 | * size so we do it here. We have to limit the maximum size | 
|---|
| 1241 | * to avoid integer overflows in lzma2_lzma(). 3 GiB is a nice | 
|---|
| 1242 | * round number and much more than users of this code should | 
|---|
| 1243 | * ever need. | 
|---|
| 1244 | */ | 
|---|
| 1245 | if (s->lzma2.compressed < RC_INIT_BYTES | 
|---|
| 1246 | || s->lzma2.compressed > (3U << 30)) | 
|---|
| 1247 | return XZ_DATA_ERROR; | 
|---|
| 1248 |  | 
|---|
| 1249 | if (!rc_read_init(&s->rc, b)) | 
|---|
| 1250 | return XZ_OK; | 
|---|
| 1251 |  | 
|---|
| 1252 | s->lzma2.compressed -= RC_INIT_BYTES; | 
|---|
| 1253 | s->lzma2.sequence = SEQ_LZMA_RUN; | 
|---|
| 1254 |  | 
|---|
| 1255 | dict_reset(&s->dict, b); | 
|---|
| 1256 | } | 
|---|
| 1257 |  | 
|---|
| 1258 | /* This is to allow increasing b->out_size between calls. */ | 
|---|
| 1259 | if (DEC_IS_SINGLE(s->dict.mode)) | 
|---|
| 1260 | s->dict.end = b->out_size - b->out_pos; | 
|---|
| 1261 |  | 
|---|
| 1262 | while (true) { | 
|---|
| 1263 | dict_limit(&s->dict, min_t(size_t, b->out_size - b->out_pos, | 
|---|
| 1264 | s->lzma2.uncompressed)); | 
|---|
| 1265 |  | 
|---|
| 1266 | if (!lzma2_lzma(s, b)) | 
|---|
| 1267 | return XZ_DATA_ERROR; | 
|---|
| 1268 |  | 
|---|
| 1269 | s->lzma2.uncompressed -= dict_flush(&s->dict, b); | 
|---|
| 1270 |  | 
|---|
| 1271 | if (s->lzma2.uncompressed == 0) { | 
|---|
| 1272 | if (s->lzma2.pedantic_microlzma) { | 
|---|
| 1273 | if (s->lzma2.compressed > 0 || s->lzma.len > 0 | 
|---|
| 1274 | || !rc_is_finished(&s->rc)) | 
|---|
| 1275 | return XZ_DATA_ERROR; | 
|---|
| 1276 | } | 
|---|
| 1277 |  | 
|---|
| 1278 | return XZ_STREAM_END; | 
|---|
| 1279 | } | 
|---|
| 1280 |  | 
|---|
| 1281 | if (b->out_pos == b->out_size) | 
|---|
| 1282 | return XZ_OK; | 
|---|
| 1283 |  | 
|---|
| 1284 | if (b->in_pos == b->in_size | 
|---|
| 1285 | && s->temp.size < s->lzma2.compressed) | 
|---|
| 1286 | return XZ_OK; | 
|---|
| 1287 | } | 
|---|
| 1288 | } | 
|---|
| 1289 |  | 
|---|
| 1290 | struct xz_dec_microlzma *xz_dec_microlzma_alloc(enum xz_mode mode, | 
|---|
| 1291 | uint32_t dict_size) | 
|---|
| 1292 | { | 
|---|
| 1293 | struct xz_dec_microlzma *s; | 
|---|
| 1294 |  | 
|---|
| 1295 | /* Restrict dict_size to the same range as in the LZMA2 code. */ | 
|---|
| 1296 | if (dict_size < 4096 || dict_size > (3U << 30)) | 
|---|
| 1297 | return NULL; | 
|---|
| 1298 |  | 
|---|
| 1299 | s = kmalloc(sizeof(*s), GFP_KERNEL); | 
|---|
| 1300 | if (s == NULL) | 
|---|
| 1301 | return NULL; | 
|---|
| 1302 |  | 
|---|
| 1303 | s->s.dict.mode = mode; | 
|---|
| 1304 | s->s.dict.size = dict_size; | 
|---|
| 1305 |  | 
|---|
| 1306 | if (DEC_IS_MULTI(mode)) { | 
|---|
| 1307 | s->s.dict.end = dict_size; | 
|---|
| 1308 |  | 
|---|
| 1309 | s->s.dict.buf = vmalloc(dict_size); | 
|---|
| 1310 | if (s->s.dict.buf == NULL) { | 
|---|
| 1311 | kfree(s); | 
|---|
| 1312 | return NULL; | 
|---|
| 1313 | } | 
|---|
| 1314 | } | 
|---|
| 1315 |  | 
|---|
| 1316 | return s; | 
|---|
| 1317 | } | 
|---|
| 1318 |  | 
|---|
| 1319 | void xz_dec_microlzma_reset(struct xz_dec_microlzma *s, uint32_t comp_size, | 
|---|
| 1320 | uint32_t uncomp_size, int uncomp_size_is_exact) | 
|---|
| 1321 | { | 
|---|
| 1322 | /* | 
|---|
| 1323 | * comp_size is validated in xz_dec_microlzma_run(). | 
|---|
| 1324 | * uncomp_size can safely be anything. | 
|---|
| 1325 | */ | 
|---|
| 1326 | s->s.lzma2.compressed = comp_size; | 
|---|
| 1327 | s->s.lzma2.uncompressed = uncomp_size; | 
|---|
| 1328 | s->s.lzma2.pedantic_microlzma = uncomp_size_is_exact; | 
|---|
| 1329 |  | 
|---|
| 1330 | s->s.lzma2.sequence = SEQ_PROPERTIES; | 
|---|
| 1331 | s->s.temp.size = 0; | 
|---|
| 1332 | } | 
|---|
| 1333 |  | 
|---|
| 1334 | void xz_dec_microlzma_end(struct xz_dec_microlzma *s) | 
|---|
| 1335 | { | 
|---|
| 1336 | if (DEC_IS_MULTI(s->s.dict.mode)) | 
|---|
| 1337 | vfree(s->s.dict.buf); | 
|---|
| 1338 |  | 
|---|
| 1339 | kfree(s); | 
|---|
| 1340 | } | 
|---|
| 1341 | #endif | 
|---|
| 1342 |  | 
|---|