| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * DMA Pool allocator |
| 4 | * |
| 5 | * Copyright 2001 David Brownell |
| 6 | * Copyright 2007 Intel Corporation |
| 7 | * Author: Matthew Wilcox <willy@linux.intel.com> |
| 8 | * |
| 9 | * This allocator returns small blocks of a given size which are DMA-able by |
| 10 | * the given device. It uses the dma_alloc_coherent page allocator to get |
| 11 | * new pages, then splits them up into blocks of the required size. |
| 12 | * Many older drivers still have their own code to do this. |
| 13 | * |
| 14 | * The current design of this allocator is fairly simple. The pool is |
| 15 | * represented by the 'struct dma_pool' which keeps a doubly-linked list of |
| 16 | * allocated pages. Each page in the page_list is split into blocks of at |
| 17 | * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked |
| 18 | * list of free blocks across all pages. Used blocks aren't tracked, but we |
| 19 | * keep a count of how many are currently allocated from each page. |
| 20 | */ |
| 21 | |
| 22 | #include <linux/device.h> |
| 23 | #include <linux/dma-mapping.h> |
| 24 | #include <linux/dmapool.h> |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/list.h> |
| 27 | #include <linux/export.h> |
| 28 | #include <linux/mutex.h> |
| 29 | #include <linux/poison.h> |
| 30 | #include <linux/sched.h> |
| 31 | #include <linux/sched/mm.h> |
| 32 | #include <linux/slab.h> |
| 33 | #include <linux/stat.h> |
| 34 | #include <linux/spinlock.h> |
| 35 | #include <linux/string.h> |
| 36 | #include <linux/types.h> |
| 37 | #include <linux/wait.h> |
| 38 | |
| 39 | #ifdef CONFIG_SLUB_DEBUG_ON |
| 40 | #define DMAPOOL_DEBUG 1 |
| 41 | #endif |
| 42 | |
| 43 | struct dma_block { |
| 44 | struct dma_block *next_block; |
| 45 | dma_addr_t dma; |
| 46 | }; |
| 47 | |
| 48 | struct dma_pool { /* the pool */ |
| 49 | struct list_head page_list; |
| 50 | spinlock_t lock; |
| 51 | struct dma_block *next_block; |
| 52 | size_t nr_blocks; |
| 53 | size_t nr_active; |
| 54 | size_t nr_pages; |
| 55 | struct device *dev; |
| 56 | unsigned int size; |
| 57 | unsigned int allocation; |
| 58 | unsigned int boundary; |
| 59 | int node; |
| 60 | char name[32]; |
| 61 | struct list_head pools; |
| 62 | }; |
| 63 | |
| 64 | struct dma_page { /* cacheable header for 'allocation' bytes */ |
| 65 | struct list_head page_list; |
| 66 | void *vaddr; |
| 67 | dma_addr_t dma; |
| 68 | }; |
| 69 | |
| 70 | static DEFINE_MUTEX(pools_lock); |
| 71 | static DEFINE_MUTEX(pools_reg_lock); |
| 72 | |
| 73 | static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf) |
| 74 | { |
| 75 | struct dma_pool *pool; |
| 76 | unsigned size; |
| 77 | |
| 78 | size = sysfs_emit(buf, fmt: "poolinfo - 0.1\n" ); |
| 79 | |
| 80 | mutex_lock(lock: &pools_lock); |
| 81 | list_for_each_entry(pool, &dev->dma_pools, pools) { |
| 82 | /* per-pool info, no real statistics yet */ |
| 83 | size += sysfs_emit_at(buf, at: size, fmt: "%-16s %4zu %4zu %4u %2zu\n" , |
| 84 | pool->name, pool->nr_active, |
| 85 | pool->nr_blocks, pool->size, |
| 86 | pool->nr_pages); |
| 87 | } |
| 88 | mutex_unlock(lock: &pools_lock); |
| 89 | |
| 90 | return size; |
| 91 | } |
| 92 | |
| 93 | static DEVICE_ATTR_RO(pools); |
| 94 | |
| 95 | #ifdef DMAPOOL_DEBUG |
| 96 | static void pool_check_block(struct dma_pool *pool, struct dma_block *block, |
| 97 | gfp_t mem_flags) |
| 98 | { |
| 99 | u8 *data = (void *)block; |
| 100 | int i; |
| 101 | |
| 102 | for (i = sizeof(struct dma_block); i < pool->size; i++) { |
| 103 | if (data[i] == POOL_POISON_FREED) |
| 104 | continue; |
| 105 | dev_err(pool->dev, "%s %s, %p (corrupted)\n" , __func__, |
| 106 | pool->name, block); |
| 107 | |
| 108 | /* |
| 109 | * Dump the first 4 bytes even if they are not |
| 110 | * POOL_POISON_FREED |
| 111 | */ |
| 112 | print_hex_dump(KERN_ERR, "" , DUMP_PREFIX_OFFSET, 16, 1, |
| 113 | data, pool->size, 1); |
| 114 | break; |
| 115 | } |
| 116 | |
| 117 | if (!want_init_on_alloc(mem_flags)) |
| 118 | memset(block, POOL_POISON_ALLOCATED, pool->size); |
| 119 | } |
| 120 | |
| 121 | static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) |
| 122 | { |
| 123 | struct dma_page *page; |
| 124 | |
| 125 | list_for_each_entry(page, &pool->page_list, page_list) { |
| 126 | if (dma < page->dma) |
| 127 | continue; |
| 128 | if ((dma - page->dma) < pool->allocation) |
| 129 | return page; |
| 130 | } |
| 131 | return NULL; |
| 132 | } |
| 133 | |
| 134 | static bool pool_block_err(struct dma_pool *pool, void *vaddr, dma_addr_t dma) |
| 135 | { |
| 136 | struct dma_block *block = pool->next_block; |
| 137 | struct dma_page *page; |
| 138 | |
| 139 | page = pool_find_page(pool, dma); |
| 140 | if (!page) { |
| 141 | dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n" , |
| 142 | __func__, pool->name, vaddr, &dma); |
| 143 | return true; |
| 144 | } |
| 145 | |
| 146 | while (block) { |
| 147 | if (block != vaddr) { |
| 148 | block = block->next_block; |
| 149 | continue; |
| 150 | } |
| 151 | dev_err(pool->dev, "%s %s, dma %pad already free\n" , |
| 152 | __func__, pool->name, &dma); |
| 153 | return true; |
| 154 | } |
| 155 | |
| 156 | memset(vaddr, POOL_POISON_FREED, pool->size); |
| 157 | return false; |
| 158 | } |
| 159 | |
| 160 | static void pool_init_page(struct dma_pool *pool, struct dma_page *page) |
| 161 | { |
| 162 | memset(page->vaddr, POOL_POISON_FREED, pool->allocation); |
| 163 | } |
| 164 | #else |
| 165 | static void pool_check_block(struct dma_pool *pool, struct dma_block *block, |
| 166 | gfp_t mem_flags) |
| 167 | { |
| 168 | } |
| 169 | |
| 170 | static bool pool_block_err(struct dma_pool *pool, void *vaddr, dma_addr_t dma) |
| 171 | { |
| 172 | if (want_init_on_free()) |
| 173 | memset(s: vaddr, c: 0, n: pool->size); |
| 174 | return false; |
| 175 | } |
| 176 | |
| 177 | static void pool_init_page(struct dma_pool *pool, struct dma_page *page) |
| 178 | { |
| 179 | } |
| 180 | #endif |
| 181 | |
| 182 | static struct dma_block *pool_block_pop(struct dma_pool *pool) |
| 183 | { |
| 184 | struct dma_block *block = pool->next_block; |
| 185 | |
| 186 | if (block) { |
| 187 | pool->next_block = block->next_block; |
| 188 | pool->nr_active++; |
| 189 | } |
| 190 | return block; |
| 191 | } |
| 192 | |
| 193 | static void pool_block_push(struct dma_pool *pool, struct dma_block *block, |
| 194 | dma_addr_t dma) |
| 195 | { |
| 196 | block->dma = dma; |
| 197 | block->next_block = pool->next_block; |
| 198 | pool->next_block = block; |
| 199 | } |
| 200 | |
| 201 | |
| 202 | /** |
| 203 | * dma_pool_create_node - Creates a pool of coherent DMA memory blocks. |
| 204 | * @name: name of pool, for diagnostics |
| 205 | * @dev: device that will be doing the DMA |
| 206 | * @size: size of the blocks in this pool. |
| 207 | * @align: alignment requirement for blocks; must be a power of two |
| 208 | * @boundary: returned blocks won't cross this power of two boundary |
| 209 | * @node: optional NUMA node to allocate structs 'dma_pool' and 'dma_page' on |
| 210 | * Context: not in_interrupt() |
| 211 | * |
| 212 | * Given one of these pools, dma_pool_alloc() |
| 213 | * may be used to allocate memory. Such memory will all have coherent |
| 214 | * DMA mappings, accessible by the device and its driver without using |
| 215 | * cache flushing primitives. The actual size of blocks allocated may be |
| 216 | * larger than requested because of alignment. |
| 217 | * |
| 218 | * If @boundary is nonzero, objects returned from dma_pool_alloc() won't |
| 219 | * cross that size boundary. This is useful for devices which have |
| 220 | * addressing restrictions on individual DMA transfers, such as not crossing |
| 221 | * boundaries of 4KBytes. |
| 222 | * |
| 223 | * Return: a dma allocation pool with the requested characteristics, or |
| 224 | * %NULL if one can't be created. |
| 225 | */ |
| 226 | struct dma_pool *dma_pool_create_node(const char *name, struct device *dev, |
| 227 | size_t size, size_t align, size_t boundary, int node) |
| 228 | { |
| 229 | struct dma_pool *retval; |
| 230 | size_t allocation; |
| 231 | bool empty; |
| 232 | |
| 233 | if (!dev) |
| 234 | return NULL; |
| 235 | |
| 236 | if (align == 0) |
| 237 | align = 1; |
| 238 | else if (align & (align - 1)) |
| 239 | return NULL; |
| 240 | |
| 241 | if (size == 0 || size > INT_MAX) |
| 242 | return NULL; |
| 243 | if (size < sizeof(struct dma_block)) |
| 244 | size = sizeof(struct dma_block); |
| 245 | |
| 246 | size = ALIGN(size, align); |
| 247 | allocation = max_t(size_t, size, PAGE_SIZE); |
| 248 | |
| 249 | if (!boundary) |
| 250 | boundary = allocation; |
| 251 | else if ((boundary < size) || (boundary & (boundary - 1))) |
| 252 | return NULL; |
| 253 | |
| 254 | boundary = min(boundary, allocation); |
| 255 | |
| 256 | retval = kzalloc_node(sizeof(*retval), GFP_KERNEL, node); |
| 257 | if (!retval) |
| 258 | return retval; |
| 259 | |
| 260 | strscpy(retval->name, name, sizeof(retval->name)); |
| 261 | |
| 262 | retval->dev = dev; |
| 263 | |
| 264 | INIT_LIST_HEAD(list: &retval->page_list); |
| 265 | spin_lock_init(&retval->lock); |
| 266 | retval->size = size; |
| 267 | retval->boundary = boundary; |
| 268 | retval->allocation = allocation; |
| 269 | retval->node = node; |
| 270 | INIT_LIST_HEAD(list: &retval->pools); |
| 271 | |
| 272 | /* |
| 273 | * pools_lock ensures that the ->dma_pools list does not get corrupted. |
| 274 | * pools_reg_lock ensures that there is not a race between |
| 275 | * dma_pool_create() and dma_pool_destroy() or within dma_pool_create() |
| 276 | * when the first invocation of dma_pool_create() failed on |
| 277 | * device_create_file() and the second assumes that it has been done (I |
| 278 | * know it is a short window). |
| 279 | */ |
| 280 | mutex_lock(lock: &pools_reg_lock); |
| 281 | mutex_lock(lock: &pools_lock); |
| 282 | empty = list_empty(head: &dev->dma_pools); |
| 283 | list_add(new: &retval->pools, head: &dev->dma_pools); |
| 284 | mutex_unlock(lock: &pools_lock); |
| 285 | if (empty) { |
| 286 | int err; |
| 287 | |
| 288 | err = device_create_file(device: dev, entry: &dev_attr_pools); |
| 289 | if (err) { |
| 290 | mutex_lock(lock: &pools_lock); |
| 291 | list_del(entry: &retval->pools); |
| 292 | mutex_unlock(lock: &pools_lock); |
| 293 | mutex_unlock(lock: &pools_reg_lock); |
| 294 | kfree(objp: retval); |
| 295 | return NULL; |
| 296 | } |
| 297 | } |
| 298 | mutex_unlock(lock: &pools_reg_lock); |
| 299 | return retval; |
| 300 | } |
| 301 | EXPORT_SYMBOL(dma_pool_create_node); |
| 302 | |
| 303 | static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) |
| 304 | { |
| 305 | unsigned int next_boundary = pool->boundary, offset = 0; |
| 306 | struct dma_block *block, *first = NULL, *last = NULL; |
| 307 | |
| 308 | pool_init_page(pool, page); |
| 309 | while (offset + pool->size <= pool->allocation) { |
| 310 | if (offset + pool->size > next_boundary) { |
| 311 | offset = next_boundary; |
| 312 | next_boundary += pool->boundary; |
| 313 | continue; |
| 314 | } |
| 315 | |
| 316 | block = page->vaddr + offset; |
| 317 | block->dma = page->dma + offset; |
| 318 | block->next_block = NULL; |
| 319 | |
| 320 | if (last) |
| 321 | last->next_block = block; |
| 322 | else |
| 323 | first = block; |
| 324 | last = block; |
| 325 | |
| 326 | offset += pool->size; |
| 327 | pool->nr_blocks++; |
| 328 | } |
| 329 | |
| 330 | last->next_block = pool->next_block; |
| 331 | pool->next_block = first; |
| 332 | |
| 333 | list_add(new: &page->page_list, head: &pool->page_list); |
| 334 | pool->nr_pages++; |
| 335 | } |
| 336 | |
| 337 | static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) |
| 338 | { |
| 339 | struct dma_page *page; |
| 340 | |
| 341 | page = kmalloc_node(sizeof(*page), mem_flags, pool->node); |
| 342 | if (!page) |
| 343 | return NULL; |
| 344 | |
| 345 | page->vaddr = dma_alloc_coherent(dev: pool->dev, size: pool->allocation, |
| 346 | dma_handle: &page->dma, gfp: mem_flags); |
| 347 | if (!page->vaddr) { |
| 348 | kfree(objp: page); |
| 349 | return NULL; |
| 350 | } |
| 351 | |
| 352 | return page; |
| 353 | } |
| 354 | |
| 355 | /** |
| 356 | * dma_pool_destroy - destroys a pool of dma memory blocks. |
| 357 | * @pool: dma pool that will be destroyed |
| 358 | * Context: !in_interrupt() |
| 359 | * |
| 360 | * Caller guarantees that no more memory from the pool is in use, |
| 361 | * and that nothing will try to use the pool after this call. |
| 362 | */ |
| 363 | void dma_pool_destroy(struct dma_pool *pool) |
| 364 | { |
| 365 | struct dma_page *page, *tmp; |
| 366 | bool empty, busy = false; |
| 367 | |
| 368 | if (unlikely(!pool)) |
| 369 | return; |
| 370 | |
| 371 | mutex_lock(lock: &pools_reg_lock); |
| 372 | mutex_lock(lock: &pools_lock); |
| 373 | list_del(entry: &pool->pools); |
| 374 | empty = list_empty(head: &pool->dev->dma_pools); |
| 375 | mutex_unlock(lock: &pools_lock); |
| 376 | if (empty) |
| 377 | device_remove_file(dev: pool->dev, attr: &dev_attr_pools); |
| 378 | mutex_unlock(lock: &pools_reg_lock); |
| 379 | |
| 380 | if (pool->nr_active) { |
| 381 | dev_err(pool->dev, "%s %s busy\n" , __func__, pool->name); |
| 382 | busy = true; |
| 383 | } |
| 384 | |
| 385 | list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) { |
| 386 | if (!busy) |
| 387 | dma_free_coherent(dev: pool->dev, size: pool->allocation, |
| 388 | cpu_addr: page->vaddr, dma_handle: page->dma); |
| 389 | list_del(entry: &page->page_list); |
| 390 | kfree(objp: page); |
| 391 | } |
| 392 | |
| 393 | kfree(objp: pool); |
| 394 | } |
| 395 | EXPORT_SYMBOL(dma_pool_destroy); |
| 396 | |
| 397 | /** |
| 398 | * dma_pool_alloc - get a block of coherent memory |
| 399 | * @pool: dma pool that will produce the block |
| 400 | * @mem_flags: GFP_* bitmask |
| 401 | * @handle: pointer to dma address of block |
| 402 | * |
| 403 | * Return: the kernel virtual address of a currently unused block, |
| 404 | * and reports its dma address through the handle. |
| 405 | * If such a memory block can't be allocated, %NULL is returned. |
| 406 | */ |
| 407 | void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, |
| 408 | dma_addr_t *handle) |
| 409 | { |
| 410 | struct dma_block *block; |
| 411 | struct dma_page *page; |
| 412 | unsigned long flags; |
| 413 | |
| 414 | might_alloc(gfp_mask: mem_flags); |
| 415 | |
| 416 | spin_lock_irqsave(&pool->lock, flags); |
| 417 | block = pool_block_pop(pool); |
| 418 | if (!block) { |
| 419 | /* |
| 420 | * pool_alloc_page() might sleep, so temporarily drop |
| 421 | * &pool->lock |
| 422 | */ |
| 423 | spin_unlock_irqrestore(lock: &pool->lock, flags); |
| 424 | |
| 425 | page = pool_alloc_page(pool, mem_flags: mem_flags & (~__GFP_ZERO)); |
| 426 | if (!page) |
| 427 | return NULL; |
| 428 | |
| 429 | spin_lock_irqsave(&pool->lock, flags); |
| 430 | pool_initialise_page(pool, page); |
| 431 | block = pool_block_pop(pool); |
| 432 | } |
| 433 | spin_unlock_irqrestore(lock: &pool->lock, flags); |
| 434 | |
| 435 | *handle = block->dma; |
| 436 | pool_check_block(pool, block, mem_flags); |
| 437 | if (want_init_on_alloc(flags: mem_flags)) |
| 438 | memset(s: block, c: 0, n: pool->size); |
| 439 | |
| 440 | return block; |
| 441 | } |
| 442 | EXPORT_SYMBOL(dma_pool_alloc); |
| 443 | |
| 444 | /** |
| 445 | * dma_pool_free - put block back into dma pool |
| 446 | * @pool: the dma pool holding the block |
| 447 | * @vaddr: virtual address of block |
| 448 | * @dma: dma address of block |
| 449 | * |
| 450 | * Caller promises neither device nor driver will again touch this block |
| 451 | * unless it is first re-allocated. |
| 452 | */ |
| 453 | void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) |
| 454 | { |
| 455 | struct dma_block *block = vaddr; |
| 456 | unsigned long flags; |
| 457 | |
| 458 | spin_lock_irqsave(&pool->lock, flags); |
| 459 | if (!pool_block_err(pool, vaddr, dma)) { |
| 460 | pool_block_push(pool, block, dma); |
| 461 | pool->nr_active--; |
| 462 | } |
| 463 | spin_unlock_irqrestore(lock: &pool->lock, flags); |
| 464 | } |
| 465 | EXPORT_SYMBOL(dma_pool_free); |
| 466 | |
| 467 | /* |
| 468 | * Managed DMA pool |
| 469 | */ |
| 470 | static void dmam_pool_release(struct device *dev, void *res) |
| 471 | { |
| 472 | struct dma_pool *pool = *(struct dma_pool **)res; |
| 473 | |
| 474 | dma_pool_destroy(pool); |
| 475 | } |
| 476 | |
| 477 | static int dmam_pool_match(struct device *dev, void *res, void *match_data) |
| 478 | { |
| 479 | return *(struct dma_pool **)res == match_data; |
| 480 | } |
| 481 | |
| 482 | /** |
| 483 | * dmam_pool_create - Managed dma_pool_create() |
| 484 | * @name: name of pool, for diagnostics |
| 485 | * @dev: device that will be doing the DMA |
| 486 | * @size: size of the blocks in this pool. |
| 487 | * @align: alignment requirement for blocks; must be a power of two |
| 488 | * @allocation: returned blocks won't cross this boundary (or zero) |
| 489 | * |
| 490 | * Managed dma_pool_create(). DMA pool created with this function is |
| 491 | * automatically destroyed on driver detach. |
| 492 | * |
| 493 | * Return: a managed dma allocation pool with the requested |
| 494 | * characteristics, or %NULL if one can't be created. |
| 495 | */ |
| 496 | struct dma_pool *dmam_pool_create(const char *name, struct device *dev, |
| 497 | size_t size, size_t align, size_t allocation) |
| 498 | { |
| 499 | struct dma_pool **ptr, *pool; |
| 500 | |
| 501 | ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); |
| 502 | if (!ptr) |
| 503 | return NULL; |
| 504 | |
| 505 | pool = *ptr = dma_pool_create(name, dev, size, align, boundary: allocation); |
| 506 | if (pool) |
| 507 | devres_add(dev, res: ptr); |
| 508 | else |
| 509 | devres_free(res: ptr); |
| 510 | |
| 511 | return pool; |
| 512 | } |
| 513 | EXPORT_SYMBOL(dmam_pool_create); |
| 514 | |
| 515 | /** |
| 516 | * dmam_pool_destroy - Managed dma_pool_destroy() |
| 517 | * @pool: dma pool that will be destroyed |
| 518 | * |
| 519 | * Managed dma_pool_destroy(). |
| 520 | */ |
| 521 | void dmam_pool_destroy(struct dma_pool *pool) |
| 522 | { |
| 523 | struct device *dev = pool->dev; |
| 524 | |
| 525 | WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool)); |
| 526 | } |
| 527 | EXPORT_SYMBOL(dmam_pool_destroy); |
| 528 | |