| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/mm/madvise.c |
| 4 | * |
| 5 | * Copyright (C) 1999 Linus Torvalds |
| 6 | * Copyright (C) 2002 Christoph Hellwig |
| 7 | */ |
| 8 | |
| 9 | #include <linux/mman.h> |
| 10 | #include <linux/pagemap.h> |
| 11 | #include <linux/syscalls.h> |
| 12 | #include <linux/mempolicy.h> |
| 13 | #include <linux/page-isolation.h> |
| 14 | #include <linux/page_idle.h> |
| 15 | #include <linux/userfaultfd_k.h> |
| 16 | #include <linux/hugetlb.h> |
| 17 | #include <linux/falloc.h> |
| 18 | #include <linux/fadvise.h> |
| 19 | #include <linux/sched.h> |
| 20 | #include <linux/sched/mm.h> |
| 21 | #include <linux/mm_inline.h> |
| 22 | #include <linux/mmu_context.h> |
| 23 | #include <linux/string.h> |
| 24 | #include <linux/uio.h> |
| 25 | #include <linux/ksm.h> |
| 26 | #include <linux/fs.h> |
| 27 | #include <linux/file.h> |
| 28 | #include <linux/blkdev.h> |
| 29 | #include <linux/backing-dev.h> |
| 30 | #include <linux/pagewalk.h> |
| 31 | #include <linux/swap.h> |
| 32 | #include <linux/swapops.h> |
| 33 | #include <linux/shmem_fs.h> |
| 34 | #include <linux/mmu_notifier.h> |
| 35 | |
| 36 | #include <asm/tlb.h> |
| 37 | |
| 38 | #include "internal.h" |
| 39 | #include "swap.h" |
| 40 | |
| 41 | #define __MADV_SET_ANON_VMA_NAME (-1) |
| 42 | |
| 43 | /* |
| 44 | * Maximum number of attempts we make to install guard pages before we give up |
| 45 | * and return -ERESTARTNOINTR to have userspace try again. |
| 46 | */ |
| 47 | #define MAX_MADVISE_GUARD_RETRIES 3 |
| 48 | |
| 49 | struct madvise_walk_private { |
| 50 | struct mmu_gather *tlb; |
| 51 | bool pageout; |
| 52 | }; |
| 53 | |
| 54 | enum madvise_lock_mode { |
| 55 | MADVISE_NO_LOCK, |
| 56 | MADVISE_MMAP_READ_LOCK, |
| 57 | MADVISE_MMAP_WRITE_LOCK, |
| 58 | MADVISE_VMA_READ_LOCK, |
| 59 | }; |
| 60 | |
| 61 | struct madvise_behavior_range { |
| 62 | unsigned long start; |
| 63 | unsigned long end; |
| 64 | }; |
| 65 | |
| 66 | struct madvise_behavior { |
| 67 | struct mm_struct *mm; |
| 68 | int behavior; |
| 69 | struct mmu_gather *tlb; |
| 70 | enum madvise_lock_mode lock_mode; |
| 71 | struct anon_vma_name *anon_name; |
| 72 | |
| 73 | /* |
| 74 | * The range over which the behaviour is currently being applied. If |
| 75 | * traversing multiple VMAs, this is updated for each. |
| 76 | */ |
| 77 | struct madvise_behavior_range range; |
| 78 | /* The VMA and VMA preceding it (if applicable) currently targeted. */ |
| 79 | struct vm_area_struct *prev; |
| 80 | struct vm_area_struct *vma; |
| 81 | bool lock_dropped; |
| 82 | }; |
| 83 | |
| 84 | #ifdef CONFIG_ANON_VMA_NAME |
| 85 | static int madvise_walk_vmas(struct madvise_behavior *madv_behavior); |
| 86 | |
| 87 | struct anon_vma_name *anon_vma_name_alloc(const char *name) |
| 88 | { |
| 89 | struct anon_vma_name *anon_name; |
| 90 | size_t count; |
| 91 | |
| 92 | /* Add 1 for NUL terminator at the end of the anon_name->name */ |
| 93 | count = strlen(name) + 1; |
| 94 | anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL); |
| 95 | if (anon_name) { |
| 96 | kref_init(&anon_name->kref); |
| 97 | memcpy(anon_name->name, name, count); |
| 98 | } |
| 99 | |
| 100 | return anon_name; |
| 101 | } |
| 102 | |
| 103 | void anon_vma_name_free(struct kref *kref) |
| 104 | { |
| 105 | struct anon_vma_name *anon_name = |
| 106 | container_of(kref, struct anon_vma_name, kref); |
| 107 | kfree(anon_name); |
| 108 | } |
| 109 | |
| 110 | struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) |
| 111 | { |
| 112 | if (!rwsem_is_locked(&vma->vm_mm->mmap_lock)) |
| 113 | vma_assert_locked(vma); |
| 114 | |
| 115 | return vma->anon_name; |
| 116 | } |
| 117 | |
| 118 | /* mmap_lock should be write-locked */ |
| 119 | static int replace_anon_vma_name(struct vm_area_struct *vma, |
| 120 | struct anon_vma_name *anon_name) |
| 121 | { |
| 122 | struct anon_vma_name *orig_name = anon_vma_name(vma); |
| 123 | |
| 124 | if (!anon_name) { |
| 125 | vma->anon_name = NULL; |
| 126 | anon_vma_name_put(orig_name); |
| 127 | return 0; |
| 128 | } |
| 129 | |
| 130 | if (anon_vma_name_eq(orig_name, anon_name)) |
| 131 | return 0; |
| 132 | |
| 133 | vma->anon_name = anon_vma_name_reuse(anon_name); |
| 134 | anon_vma_name_put(orig_name); |
| 135 | |
| 136 | return 0; |
| 137 | } |
| 138 | #else /* CONFIG_ANON_VMA_NAME */ |
| 139 | static int replace_anon_vma_name(struct vm_area_struct *vma, |
| 140 | struct anon_vma_name *anon_name) |
| 141 | { |
| 142 | if (anon_name) |
| 143 | return -EINVAL; |
| 144 | |
| 145 | return 0; |
| 146 | } |
| 147 | #endif /* CONFIG_ANON_VMA_NAME */ |
| 148 | /* |
| 149 | * Update the vm_flags or anon_name on region of a vma, splitting it or merging |
| 150 | * it as necessary. Must be called with mmap_lock held for writing. |
| 151 | */ |
| 152 | static int madvise_update_vma(vm_flags_t new_flags, |
| 153 | struct madvise_behavior *madv_behavior) |
| 154 | { |
| 155 | struct vm_area_struct *vma = madv_behavior->vma; |
| 156 | struct madvise_behavior_range *range = &madv_behavior->range; |
| 157 | struct anon_vma_name *anon_name = madv_behavior->anon_name; |
| 158 | bool set_new_anon_name = madv_behavior->behavior == __MADV_SET_ANON_VMA_NAME; |
| 159 | VMA_ITERATOR(vmi, madv_behavior->mm, range->start); |
| 160 | |
| 161 | if (new_flags == vma->vm_flags && (!set_new_anon_name || |
| 162 | anon_vma_name_eq(anon_name1: anon_vma_name(vma), anon_name2: anon_name))) |
| 163 | return 0; |
| 164 | |
| 165 | if (set_new_anon_name) |
| 166 | vma = vma_modify_name(vmi: &vmi, prev: madv_behavior->prev, vma, |
| 167 | start: range->start, end: range->end, new_name: anon_name); |
| 168 | else |
| 169 | vma = vma_modify_flags(vmi: &vmi, prev: madv_behavior->prev, vma, |
| 170 | start: range->start, end: range->end, vm_flags: new_flags); |
| 171 | |
| 172 | if (IS_ERR(ptr: vma)) |
| 173 | return PTR_ERR(ptr: vma); |
| 174 | |
| 175 | madv_behavior->vma = vma; |
| 176 | |
| 177 | /* vm_flags is protected by the mmap_lock held in write mode. */ |
| 178 | vma_start_write(vma); |
| 179 | vm_flags_reset(vma, flags: new_flags); |
| 180 | if (set_new_anon_name) |
| 181 | return replace_anon_vma_name(vma, anon_name); |
| 182 | |
| 183 | return 0; |
| 184 | } |
| 185 | |
| 186 | #ifdef CONFIG_SWAP |
| 187 | static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, |
| 188 | unsigned long end, struct mm_walk *walk) |
| 189 | { |
| 190 | struct vm_area_struct *vma = walk->private; |
| 191 | struct swap_iocb *splug = NULL; |
| 192 | pte_t *ptep = NULL; |
| 193 | spinlock_t *ptl; |
| 194 | unsigned long addr; |
| 195 | |
| 196 | for (addr = start; addr < end; addr += PAGE_SIZE) { |
| 197 | pte_t pte; |
| 198 | swp_entry_t entry; |
| 199 | struct folio *folio; |
| 200 | |
| 201 | if (!ptep++) { |
| 202 | ptep = pte_offset_map_lock(mm: vma->vm_mm, pmd, addr, ptlp: &ptl); |
| 203 | if (!ptep) |
| 204 | break; |
| 205 | } |
| 206 | |
| 207 | pte = ptep_get(ptep); |
| 208 | if (!is_swap_pte(pte)) |
| 209 | continue; |
| 210 | entry = pte_to_swp_entry(pte); |
| 211 | if (unlikely(non_swap_entry(entry))) |
| 212 | continue; |
| 213 | |
| 214 | pte_unmap_unlock(ptep, ptl); |
| 215 | ptep = NULL; |
| 216 | |
| 217 | folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, |
| 218 | vma, addr, plug: &splug); |
| 219 | if (folio) |
| 220 | folio_put(folio); |
| 221 | } |
| 222 | |
| 223 | if (ptep) |
| 224 | pte_unmap_unlock(ptep, ptl); |
| 225 | swap_read_unplug(plug: splug); |
| 226 | cond_resched(); |
| 227 | |
| 228 | return 0; |
| 229 | } |
| 230 | |
| 231 | static const struct mm_walk_ops swapin_walk_ops = { |
| 232 | .pmd_entry = swapin_walk_pmd_entry, |
| 233 | .walk_lock = PGWALK_RDLOCK, |
| 234 | }; |
| 235 | |
| 236 | static void shmem_swapin_range(struct vm_area_struct *vma, |
| 237 | unsigned long start, unsigned long end, |
| 238 | struct address_space *mapping) |
| 239 | { |
| 240 | XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); |
| 241 | pgoff_t end_index = linear_page_index(vma, address: end) - 1; |
| 242 | struct folio *folio; |
| 243 | struct swap_iocb *splug = NULL; |
| 244 | |
| 245 | rcu_read_lock(); |
| 246 | xas_for_each(&xas, folio, end_index) { |
| 247 | unsigned long addr; |
| 248 | swp_entry_t entry; |
| 249 | |
| 250 | if (!xa_is_value(entry: folio)) |
| 251 | continue; |
| 252 | entry = radix_to_swp_entry(arg: folio); |
| 253 | /* There might be swapin error entries in shmem mapping. */ |
| 254 | if (non_swap_entry(entry)) |
| 255 | continue; |
| 256 | |
| 257 | addr = vma->vm_start + |
| 258 | ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT); |
| 259 | xas_pause(&xas); |
| 260 | rcu_read_unlock(); |
| 261 | |
| 262 | folio = read_swap_cache_async(entry, gfp_mask: mapping_gfp_mask(mapping), |
| 263 | vma, addr, plug: &splug); |
| 264 | if (folio) |
| 265 | folio_put(folio); |
| 266 | |
| 267 | rcu_read_lock(); |
| 268 | } |
| 269 | rcu_read_unlock(); |
| 270 | swap_read_unplug(plug: splug); |
| 271 | } |
| 272 | #endif /* CONFIG_SWAP */ |
| 273 | |
| 274 | static void mark_mmap_lock_dropped(struct madvise_behavior *madv_behavior) |
| 275 | { |
| 276 | VM_WARN_ON_ONCE(madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK); |
| 277 | madv_behavior->lock_dropped = true; |
| 278 | } |
| 279 | |
| 280 | /* |
| 281 | * Schedule all required I/O operations. Do not wait for completion. |
| 282 | */ |
| 283 | static long madvise_willneed(struct madvise_behavior *madv_behavior) |
| 284 | { |
| 285 | struct vm_area_struct *vma = madv_behavior->vma; |
| 286 | struct mm_struct *mm = madv_behavior->mm; |
| 287 | struct file *file = vma->vm_file; |
| 288 | unsigned long start = madv_behavior->range.start; |
| 289 | unsigned long end = madv_behavior->range.end; |
| 290 | loff_t offset; |
| 291 | |
| 292 | #ifdef CONFIG_SWAP |
| 293 | if (!file) { |
| 294 | walk_page_range_vma(vma, start, end, ops: &swapin_walk_ops, private: vma); |
| 295 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
| 296 | return 0; |
| 297 | } |
| 298 | |
| 299 | if (shmem_mapping(mapping: file->f_mapping)) { |
| 300 | shmem_swapin_range(vma, start, end, mapping: file->f_mapping); |
| 301 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
| 302 | return 0; |
| 303 | } |
| 304 | #else |
| 305 | if (!file) |
| 306 | return -EBADF; |
| 307 | #endif |
| 308 | |
| 309 | if (IS_DAX(file_inode(file))) { |
| 310 | /* no bad return value, but ignore advice */ |
| 311 | return 0; |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * Filesystem's fadvise may need to take various locks. We need to |
| 316 | * explicitly grab a reference because the vma (and hence the |
| 317 | * vma's reference to the file) can go away as soon as we drop |
| 318 | * mmap_lock. |
| 319 | */ |
| 320 | mark_mmap_lock_dropped(madv_behavior); |
| 321 | get_file(f: file); |
| 322 | offset = (loff_t)(start - vma->vm_start) |
| 323 | + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); |
| 324 | mmap_read_unlock(mm); |
| 325 | vfs_fadvise(file, offset, len: end - start, POSIX_FADV_WILLNEED); |
| 326 | fput(file); |
| 327 | mmap_read_lock(mm); |
| 328 | return 0; |
| 329 | } |
| 330 | |
| 331 | static inline bool can_do_file_pageout(struct vm_area_struct *vma) |
| 332 | { |
| 333 | if (!vma->vm_file) |
| 334 | return false; |
| 335 | /* |
| 336 | * paging out pagecache only for non-anonymous mappings that correspond |
| 337 | * to the files the calling process could (if tried) open for writing; |
| 338 | * otherwise we'd be including shared non-exclusive mappings, which |
| 339 | * opens a side channel. |
| 340 | */ |
| 341 | return inode_owner_or_capable(idmap: &nop_mnt_idmap, |
| 342 | inode: file_inode(f: vma->vm_file)) || |
| 343 | file_permission(file: vma->vm_file, MAY_WRITE) == 0; |
| 344 | } |
| 345 | |
| 346 | static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end, |
| 347 | struct folio *folio, pte_t *ptep, |
| 348 | pte_t *ptentp) |
| 349 | { |
| 350 | int max_nr = (end - addr) / PAGE_SIZE; |
| 351 | |
| 352 | return folio_pte_batch_flags(folio, NULL, ptep, ptentp, max_nr, |
| 353 | FPB_MERGE_YOUNG_DIRTY); |
| 354 | } |
| 355 | |
| 356 | static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, |
| 357 | unsigned long addr, unsigned long end, |
| 358 | struct mm_walk *walk) |
| 359 | { |
| 360 | struct madvise_walk_private *private = walk->private; |
| 361 | struct mmu_gather *tlb = private->tlb; |
| 362 | bool pageout = private->pageout; |
| 363 | struct mm_struct *mm = tlb->mm; |
| 364 | struct vm_area_struct *vma = walk->vma; |
| 365 | pte_t *start_pte, *pte, ptent; |
| 366 | spinlock_t *ptl; |
| 367 | struct folio *folio = NULL; |
| 368 | LIST_HEAD(folio_list); |
| 369 | bool pageout_anon_only_filter; |
| 370 | unsigned int batch_count = 0; |
| 371 | int nr; |
| 372 | |
| 373 | if (fatal_signal_pending(current)) |
| 374 | return -EINTR; |
| 375 | |
| 376 | pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) && |
| 377 | !can_do_file_pageout(vma); |
| 378 | |
| 379 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 380 | if (pmd_trans_huge(*pmd)) { |
| 381 | pmd_t orig_pmd; |
| 382 | unsigned long next = pmd_addr_end(addr, end); |
| 383 | |
| 384 | tlb_change_page_size(tlb, HPAGE_PMD_SIZE); |
| 385 | ptl = pmd_trans_huge_lock(pmd, vma); |
| 386 | if (!ptl) |
| 387 | return 0; |
| 388 | |
| 389 | orig_pmd = *pmd; |
| 390 | if (is_huge_zero_pmd(orig_pmd)) |
| 391 | goto huge_unlock; |
| 392 | |
| 393 | if (unlikely(!pmd_present(orig_pmd))) { |
| 394 | VM_BUG_ON(thp_migration_supported() && |
| 395 | !is_pmd_migration_entry(orig_pmd)); |
| 396 | goto huge_unlock; |
| 397 | } |
| 398 | |
| 399 | folio = pmd_folio(orig_pmd); |
| 400 | |
| 401 | /* Do not interfere with other mappings of this folio */ |
| 402 | if (folio_maybe_mapped_shared(folio)) |
| 403 | goto huge_unlock; |
| 404 | |
| 405 | if (pageout_anon_only_filter && !folio_test_anon(folio)) |
| 406 | goto huge_unlock; |
| 407 | |
| 408 | if (next - addr != HPAGE_PMD_SIZE) { |
| 409 | int err; |
| 410 | |
| 411 | folio_get(folio); |
| 412 | spin_unlock(ptl); |
| 413 | folio_lock(folio); |
| 414 | err = split_folio(folio); |
| 415 | folio_unlock(folio); |
| 416 | folio_put(folio); |
| 417 | if (!err) |
| 418 | goto regular_folio; |
| 419 | return 0; |
| 420 | } |
| 421 | |
| 422 | if (!pageout && pmd_young(orig_pmd)) { |
| 423 | pmdp_invalidate(vma, addr, pmd); |
| 424 | orig_pmd = pmd_mkold(orig_pmd); |
| 425 | |
| 426 | set_pmd_at(mm, addr, pmd, orig_pmd); |
| 427 | tlb_remove_pmd_tlb_entry(tlb, pmd, addr); |
| 428 | } |
| 429 | |
| 430 | folio_clear_referenced(folio); |
| 431 | folio_test_clear_young(folio); |
| 432 | if (folio_test_active(folio)) |
| 433 | folio_set_workingset(folio); |
| 434 | if (pageout) { |
| 435 | if (folio_isolate_lru(folio)) { |
| 436 | if (folio_test_unevictable(folio)) |
| 437 | folio_putback_lru(folio); |
| 438 | else |
| 439 | list_add(&folio->lru, &folio_list); |
| 440 | } |
| 441 | } else |
| 442 | folio_deactivate(folio); |
| 443 | huge_unlock: |
| 444 | spin_unlock(ptl); |
| 445 | if (pageout) |
| 446 | reclaim_pages(&folio_list); |
| 447 | return 0; |
| 448 | } |
| 449 | |
| 450 | regular_folio: |
| 451 | #endif |
| 452 | tlb_change_page_size(tlb, PAGE_SIZE); |
| 453 | restart: |
| 454 | start_pte = pte = pte_offset_map_lock(mm: vma->vm_mm, pmd, addr, ptlp: &ptl); |
| 455 | if (!start_pte) |
| 456 | return 0; |
| 457 | flush_tlb_batched_pending(mm); |
| 458 | arch_enter_lazy_mmu_mode(); |
| 459 | for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) { |
| 460 | nr = 1; |
| 461 | ptent = ptep_get(ptep: pte); |
| 462 | |
| 463 | if (++batch_count == SWAP_CLUSTER_MAX) { |
| 464 | batch_count = 0; |
| 465 | if (need_resched()) { |
| 466 | arch_leave_lazy_mmu_mode(); |
| 467 | pte_unmap_unlock(start_pte, ptl); |
| 468 | cond_resched(); |
| 469 | goto restart; |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | if (pte_none(pte: ptent)) |
| 474 | continue; |
| 475 | |
| 476 | if (!pte_present(a: ptent)) |
| 477 | continue; |
| 478 | |
| 479 | folio = vm_normal_folio(vma, addr, pte: ptent); |
| 480 | if (!folio || folio_is_zone_device(folio)) |
| 481 | continue; |
| 482 | |
| 483 | /* |
| 484 | * If we encounter a large folio, only split it if it is not |
| 485 | * fully mapped within the range we are operating on. Otherwise |
| 486 | * leave it as is so that it can be swapped out whole. If we |
| 487 | * fail to split a folio, leave it in place and advance to the |
| 488 | * next pte in the range. |
| 489 | */ |
| 490 | if (folio_test_large(folio)) { |
| 491 | nr = madvise_folio_pte_batch(addr, end, folio, ptep: pte, ptentp: &ptent); |
| 492 | if (nr < folio_nr_pages(folio)) { |
| 493 | int err; |
| 494 | |
| 495 | if (folio_maybe_mapped_shared(folio)) |
| 496 | continue; |
| 497 | if (pageout_anon_only_filter && !folio_test_anon(folio)) |
| 498 | continue; |
| 499 | if (!folio_trylock(folio)) |
| 500 | continue; |
| 501 | folio_get(folio); |
| 502 | arch_leave_lazy_mmu_mode(); |
| 503 | pte_unmap_unlock(start_pte, ptl); |
| 504 | start_pte = NULL; |
| 505 | err = split_folio(folio); |
| 506 | folio_unlock(folio); |
| 507 | folio_put(folio); |
| 508 | start_pte = pte = |
| 509 | pte_offset_map_lock(mm, pmd, addr, ptlp: &ptl); |
| 510 | if (!start_pte) |
| 511 | break; |
| 512 | flush_tlb_batched_pending(mm); |
| 513 | arch_enter_lazy_mmu_mode(); |
| 514 | if (!err) |
| 515 | nr = 0; |
| 516 | continue; |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | /* |
| 521 | * Do not interfere with other mappings of this folio and |
| 522 | * non-LRU folio. If we have a large folio at this point, we |
| 523 | * know it is fully mapped so if its mapcount is the same as its |
| 524 | * number of pages, it must be exclusive. |
| 525 | */ |
| 526 | if (!folio_test_lru(folio) || |
| 527 | folio_mapcount(folio) != folio_nr_pages(folio)) |
| 528 | continue; |
| 529 | |
| 530 | if (pageout_anon_only_filter && !folio_test_anon(folio)) |
| 531 | continue; |
| 532 | |
| 533 | if (!pageout && pte_young(pte: ptent)) { |
| 534 | clear_young_dirty_ptes(vma, addr, ptep: pte, nr, |
| 535 | CYDP_CLEAR_YOUNG); |
| 536 | tlb_remove_tlb_entries(tlb, ptep: pte, nr, address: addr); |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * We are deactivating a folio for accelerating reclaiming. |
| 541 | * VM couldn't reclaim the folio unless we clear PG_young. |
| 542 | * As a side effect, it makes confuse idle-page tracking |
| 543 | * because they will miss recent referenced history. |
| 544 | */ |
| 545 | folio_clear_referenced(folio); |
| 546 | folio_test_clear_young(folio); |
| 547 | if (folio_test_active(folio)) |
| 548 | folio_set_workingset(folio); |
| 549 | if (pageout) { |
| 550 | if (folio_isolate_lru(folio)) { |
| 551 | if (folio_test_unevictable(folio)) |
| 552 | folio_putback_lru(folio); |
| 553 | else |
| 554 | list_add(new: &folio->lru, head: &folio_list); |
| 555 | } |
| 556 | } else |
| 557 | folio_deactivate(folio); |
| 558 | } |
| 559 | |
| 560 | if (start_pte) { |
| 561 | arch_leave_lazy_mmu_mode(); |
| 562 | pte_unmap_unlock(start_pte, ptl); |
| 563 | } |
| 564 | if (pageout) |
| 565 | reclaim_pages(folio_list: &folio_list); |
| 566 | cond_resched(); |
| 567 | |
| 568 | return 0; |
| 569 | } |
| 570 | |
| 571 | static const struct mm_walk_ops cold_walk_ops = { |
| 572 | .pmd_entry = madvise_cold_or_pageout_pte_range, |
| 573 | .walk_lock = PGWALK_RDLOCK, |
| 574 | }; |
| 575 | |
| 576 | static void madvise_cold_page_range(struct mmu_gather *tlb, |
| 577 | struct madvise_behavior *madv_behavior) |
| 578 | |
| 579 | { |
| 580 | struct vm_area_struct *vma = madv_behavior->vma; |
| 581 | struct madvise_behavior_range *range = &madv_behavior->range; |
| 582 | struct madvise_walk_private walk_private = { |
| 583 | .pageout = false, |
| 584 | .tlb = tlb, |
| 585 | }; |
| 586 | |
| 587 | tlb_start_vma(tlb, vma); |
| 588 | walk_page_range_vma(vma, start: range->start, end: range->end, ops: &cold_walk_ops, |
| 589 | private: &walk_private); |
| 590 | tlb_end_vma(tlb, vma); |
| 591 | } |
| 592 | |
| 593 | static inline bool can_madv_lru_vma(struct vm_area_struct *vma) |
| 594 | { |
| 595 | return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB)); |
| 596 | } |
| 597 | |
| 598 | static long madvise_cold(struct madvise_behavior *madv_behavior) |
| 599 | { |
| 600 | struct vm_area_struct *vma = madv_behavior->vma; |
| 601 | struct mmu_gather tlb; |
| 602 | |
| 603 | if (!can_madv_lru_vma(vma)) |
| 604 | return -EINVAL; |
| 605 | |
| 606 | lru_add_drain(); |
| 607 | tlb_gather_mmu(tlb: &tlb, mm: madv_behavior->mm); |
| 608 | madvise_cold_page_range(tlb: &tlb, madv_behavior); |
| 609 | tlb_finish_mmu(tlb: &tlb); |
| 610 | |
| 611 | return 0; |
| 612 | } |
| 613 | |
| 614 | static void madvise_pageout_page_range(struct mmu_gather *tlb, |
| 615 | struct vm_area_struct *vma, |
| 616 | struct madvise_behavior_range *range) |
| 617 | { |
| 618 | struct madvise_walk_private walk_private = { |
| 619 | .pageout = true, |
| 620 | .tlb = tlb, |
| 621 | }; |
| 622 | |
| 623 | tlb_start_vma(tlb, vma); |
| 624 | walk_page_range_vma(vma, start: range->start, end: range->end, ops: &cold_walk_ops, |
| 625 | private: &walk_private); |
| 626 | tlb_end_vma(tlb, vma); |
| 627 | } |
| 628 | |
| 629 | static long madvise_pageout(struct madvise_behavior *madv_behavior) |
| 630 | { |
| 631 | struct mmu_gather tlb; |
| 632 | struct vm_area_struct *vma = madv_behavior->vma; |
| 633 | |
| 634 | if (!can_madv_lru_vma(vma)) |
| 635 | return -EINVAL; |
| 636 | |
| 637 | /* |
| 638 | * If the VMA belongs to a private file mapping, there can be private |
| 639 | * dirty pages which can be paged out if even this process is neither |
| 640 | * owner nor write capable of the file. We allow private file mappings |
| 641 | * further to pageout dirty anon pages. |
| 642 | */ |
| 643 | if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) && |
| 644 | (vma->vm_flags & VM_MAYSHARE))) |
| 645 | return 0; |
| 646 | |
| 647 | lru_add_drain(); |
| 648 | tlb_gather_mmu(tlb: &tlb, mm: madv_behavior->mm); |
| 649 | madvise_pageout_page_range(tlb: &tlb, vma, range: &madv_behavior->range); |
| 650 | tlb_finish_mmu(tlb: &tlb); |
| 651 | |
| 652 | return 0; |
| 653 | } |
| 654 | |
| 655 | static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, |
| 656 | unsigned long end, struct mm_walk *walk) |
| 657 | |
| 658 | { |
| 659 | const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY; |
| 660 | struct mmu_gather *tlb = walk->private; |
| 661 | struct mm_struct *mm = tlb->mm; |
| 662 | struct vm_area_struct *vma = walk->vma; |
| 663 | spinlock_t *ptl; |
| 664 | pte_t *start_pte, *pte, ptent; |
| 665 | struct folio *folio; |
| 666 | int nr_swap = 0; |
| 667 | unsigned long next; |
| 668 | int nr, max_nr; |
| 669 | |
| 670 | next = pmd_addr_end(addr, end); |
| 671 | if (pmd_trans_huge(pmd: *pmd)) |
| 672 | if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) |
| 673 | return 0; |
| 674 | |
| 675 | tlb_change_page_size(tlb, PAGE_SIZE); |
| 676 | start_pte = pte = pte_offset_map_lock(mm, pmd, addr, ptlp: &ptl); |
| 677 | if (!start_pte) |
| 678 | return 0; |
| 679 | flush_tlb_batched_pending(mm); |
| 680 | arch_enter_lazy_mmu_mode(); |
| 681 | for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) { |
| 682 | nr = 1; |
| 683 | ptent = ptep_get(ptep: pte); |
| 684 | |
| 685 | if (pte_none(pte: ptent)) |
| 686 | continue; |
| 687 | /* |
| 688 | * If the pte has swp_entry, just clear page table to |
| 689 | * prevent swap-in which is more expensive rather than |
| 690 | * (page allocation + zeroing). |
| 691 | */ |
| 692 | if (!pte_present(a: ptent)) { |
| 693 | swp_entry_t entry; |
| 694 | |
| 695 | entry = pte_to_swp_entry(pte: ptent); |
| 696 | if (!non_swap_entry(entry)) { |
| 697 | max_nr = (end - addr) / PAGE_SIZE; |
| 698 | nr = swap_pte_batch(start_ptep: pte, max_nr, pte: ptent); |
| 699 | nr_swap -= nr; |
| 700 | free_swap_and_cache_nr(entry, nr); |
| 701 | clear_not_present_full_ptes(mm, addr, ptep: pte, nr, full: tlb->fullmm); |
| 702 | } else if (is_hwpoison_entry(swp: entry) || |
| 703 | is_poisoned_swp_entry(entry)) { |
| 704 | pte_clear_not_present_full(mm, address: addr, ptep: pte, full: tlb->fullmm); |
| 705 | } |
| 706 | continue; |
| 707 | } |
| 708 | |
| 709 | folio = vm_normal_folio(vma, addr, pte: ptent); |
| 710 | if (!folio || folio_is_zone_device(folio)) |
| 711 | continue; |
| 712 | |
| 713 | /* |
| 714 | * If we encounter a large folio, only split it if it is not |
| 715 | * fully mapped within the range we are operating on. Otherwise |
| 716 | * leave it as is so that it can be marked as lazyfree. If we |
| 717 | * fail to split a folio, leave it in place and advance to the |
| 718 | * next pte in the range. |
| 719 | */ |
| 720 | if (folio_test_large(folio)) { |
| 721 | nr = madvise_folio_pte_batch(addr, end, folio, ptep: pte, ptentp: &ptent); |
| 722 | if (nr < folio_nr_pages(folio)) { |
| 723 | int err; |
| 724 | |
| 725 | if (folio_maybe_mapped_shared(folio)) |
| 726 | continue; |
| 727 | if (!folio_trylock(folio)) |
| 728 | continue; |
| 729 | folio_get(folio); |
| 730 | arch_leave_lazy_mmu_mode(); |
| 731 | pte_unmap_unlock(start_pte, ptl); |
| 732 | start_pte = NULL; |
| 733 | err = split_folio(folio); |
| 734 | folio_unlock(folio); |
| 735 | folio_put(folio); |
| 736 | pte = pte_offset_map_lock(mm, pmd, addr, ptlp: &ptl); |
| 737 | start_pte = pte; |
| 738 | if (!start_pte) |
| 739 | break; |
| 740 | flush_tlb_batched_pending(mm); |
| 741 | arch_enter_lazy_mmu_mode(); |
| 742 | if (!err) |
| 743 | nr = 0; |
| 744 | continue; |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | if (folio_test_swapcache(folio) || folio_test_dirty(folio)) { |
| 749 | if (!folio_trylock(folio)) |
| 750 | continue; |
| 751 | /* |
| 752 | * If we have a large folio at this point, we know it is |
| 753 | * fully mapped so if its mapcount is the same as its |
| 754 | * number of pages, it must be exclusive. |
| 755 | */ |
| 756 | if (folio_mapcount(folio) != folio_nr_pages(folio)) { |
| 757 | folio_unlock(folio); |
| 758 | continue; |
| 759 | } |
| 760 | |
| 761 | if (folio_test_swapcache(folio) && |
| 762 | !folio_free_swap(folio)) { |
| 763 | folio_unlock(folio); |
| 764 | continue; |
| 765 | } |
| 766 | |
| 767 | folio_clear_dirty(folio); |
| 768 | folio_unlock(folio); |
| 769 | } |
| 770 | |
| 771 | if (pte_young(pte: ptent) || pte_dirty(pte: ptent)) { |
| 772 | clear_young_dirty_ptes(vma, addr, ptep: pte, nr, flags: cydp_flags); |
| 773 | tlb_remove_tlb_entries(tlb, ptep: pte, nr, address: addr); |
| 774 | } |
| 775 | folio_mark_lazyfree(folio); |
| 776 | } |
| 777 | |
| 778 | if (nr_swap) |
| 779 | add_mm_counter(mm, member: MM_SWAPENTS, value: nr_swap); |
| 780 | if (start_pte) { |
| 781 | arch_leave_lazy_mmu_mode(); |
| 782 | pte_unmap_unlock(start_pte, ptl); |
| 783 | } |
| 784 | cond_resched(); |
| 785 | |
| 786 | return 0; |
| 787 | } |
| 788 | |
| 789 | static inline enum page_walk_lock get_walk_lock(enum madvise_lock_mode mode) |
| 790 | { |
| 791 | switch (mode) { |
| 792 | case MADVISE_VMA_READ_LOCK: |
| 793 | return PGWALK_VMA_RDLOCK_VERIFY; |
| 794 | case MADVISE_MMAP_READ_LOCK: |
| 795 | return PGWALK_RDLOCK; |
| 796 | default: |
| 797 | /* Other modes don't require fixing up the walk_lock */ |
| 798 | WARN_ON_ONCE(1); |
| 799 | return PGWALK_RDLOCK; |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | static int madvise_free_single_vma(struct madvise_behavior *madv_behavior) |
| 804 | { |
| 805 | struct mm_struct *mm = madv_behavior->mm; |
| 806 | struct vm_area_struct *vma = madv_behavior->vma; |
| 807 | unsigned long start_addr = madv_behavior->range.start; |
| 808 | unsigned long end_addr = madv_behavior->range.end; |
| 809 | struct mmu_notifier_range range; |
| 810 | struct mmu_gather *tlb = madv_behavior->tlb; |
| 811 | struct mm_walk_ops walk_ops = { |
| 812 | .pmd_entry = madvise_free_pte_range, |
| 813 | }; |
| 814 | |
| 815 | /* MADV_FREE works for only anon vma at the moment */ |
| 816 | if (!vma_is_anonymous(vma)) |
| 817 | return -EINVAL; |
| 818 | |
| 819 | range.start = max(vma->vm_start, start_addr); |
| 820 | if (range.start >= vma->vm_end) |
| 821 | return -EINVAL; |
| 822 | range.end = min(vma->vm_end, end_addr); |
| 823 | if (range.end <= vma->vm_start) |
| 824 | return -EINVAL; |
| 825 | mmu_notifier_range_init(range: &range, event: MMU_NOTIFY_CLEAR, flags: 0, mm, |
| 826 | start: range.start, end: range.end); |
| 827 | |
| 828 | lru_add_drain(); |
| 829 | update_hiwater_rss(mm); |
| 830 | |
| 831 | mmu_notifier_invalidate_range_start(range: &range); |
| 832 | tlb_start_vma(tlb, vma); |
| 833 | walk_ops.walk_lock = get_walk_lock(mode: madv_behavior->lock_mode); |
| 834 | walk_page_range_vma(vma, start: range.start, end: range.end, |
| 835 | ops: &walk_ops, private: tlb); |
| 836 | tlb_end_vma(tlb, vma); |
| 837 | mmu_notifier_invalidate_range_end(range: &range); |
| 838 | return 0; |
| 839 | } |
| 840 | |
| 841 | /* |
| 842 | * Application no longer needs these pages. If the pages are dirty, |
| 843 | * it's OK to just throw them away. The app will be more careful about |
| 844 | * data it wants to keep. Be sure to free swap resources too. The |
| 845 | * zap_page_range_single call sets things up for shrink_active_list to actually |
| 846 | * free these pages later if no one else has touched them in the meantime, |
| 847 | * although we could add these pages to a global reuse list for |
| 848 | * shrink_active_list to pick up before reclaiming other pages. |
| 849 | * |
| 850 | * NB: This interface discards data rather than pushes it out to swap, |
| 851 | * as some implementations do. This has performance implications for |
| 852 | * applications like large transactional databases which want to discard |
| 853 | * pages in anonymous maps after committing to backing store the data |
| 854 | * that was kept in them. There is no reason to write this data out to |
| 855 | * the swap area if the application is discarding it. |
| 856 | * |
| 857 | * An interface that causes the system to free clean pages and flush |
| 858 | * dirty pages is already available as msync(MS_INVALIDATE). |
| 859 | */ |
| 860 | static long madvise_dontneed_single_vma(struct madvise_behavior *madv_behavior) |
| 861 | |
| 862 | { |
| 863 | struct madvise_behavior_range *range = &madv_behavior->range; |
| 864 | struct zap_details details = { |
| 865 | .reclaim_pt = true, |
| 866 | .even_cows = true, |
| 867 | }; |
| 868 | |
| 869 | zap_page_range_single_batched( |
| 870 | tlb: madv_behavior->tlb, vma: madv_behavior->vma, addr: range->start, |
| 871 | size: range->end - range->start, details: &details); |
| 872 | return 0; |
| 873 | } |
| 874 | |
| 875 | static |
| 876 | bool madvise_dontneed_free_valid_vma(struct madvise_behavior *madv_behavior) |
| 877 | { |
| 878 | struct vm_area_struct *vma = madv_behavior->vma; |
| 879 | int behavior = madv_behavior->behavior; |
| 880 | struct madvise_behavior_range *range = &madv_behavior->range; |
| 881 | |
| 882 | if (!is_vm_hugetlb_page(vma)) { |
| 883 | unsigned int forbidden = VM_PFNMAP; |
| 884 | |
| 885 | if (behavior != MADV_DONTNEED_LOCKED) |
| 886 | forbidden |= VM_LOCKED; |
| 887 | |
| 888 | return !(vma->vm_flags & forbidden); |
| 889 | } |
| 890 | |
| 891 | if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED) |
| 892 | return false; |
| 893 | if (range->start & ~huge_page_mask(h: hstate_vma(vma))) |
| 894 | return false; |
| 895 | |
| 896 | /* |
| 897 | * Madvise callers expect the length to be rounded up to PAGE_SIZE |
| 898 | * boundaries, and may be unaware that this VMA uses huge pages. |
| 899 | * Avoid unexpected data loss by rounding down the number of |
| 900 | * huge pages freed. |
| 901 | */ |
| 902 | range->end = ALIGN_DOWN(range->end, huge_page_size(hstate_vma(vma))); |
| 903 | |
| 904 | return true; |
| 905 | } |
| 906 | |
| 907 | static long madvise_dontneed_free(struct madvise_behavior *madv_behavior) |
| 908 | { |
| 909 | struct mm_struct *mm = madv_behavior->mm; |
| 910 | struct madvise_behavior_range *range = &madv_behavior->range; |
| 911 | int behavior = madv_behavior->behavior; |
| 912 | |
| 913 | if (!madvise_dontneed_free_valid_vma(madv_behavior)) |
| 914 | return -EINVAL; |
| 915 | |
| 916 | if (range->start == range->end) |
| 917 | return 0; |
| 918 | |
| 919 | if (!userfaultfd_remove(vma: madv_behavior->vma, start: range->start, end: range->end)) { |
| 920 | struct vm_area_struct *vma; |
| 921 | |
| 922 | mark_mmap_lock_dropped(madv_behavior); |
| 923 | mmap_read_lock(mm); |
| 924 | madv_behavior->vma = vma = vma_lookup(mm, addr: range->start); |
| 925 | if (!vma) |
| 926 | return -ENOMEM; |
| 927 | /* |
| 928 | * Potential end adjustment for hugetlb vma is OK as |
| 929 | * the check below keeps end within vma. |
| 930 | */ |
| 931 | if (!madvise_dontneed_free_valid_vma(madv_behavior)) |
| 932 | return -EINVAL; |
| 933 | if (range->end > vma->vm_end) { |
| 934 | /* |
| 935 | * Don't fail if end > vma->vm_end. If the old |
| 936 | * vma was split while the mmap_lock was |
| 937 | * released the effect of the concurrent |
| 938 | * operation may not cause madvise() to |
| 939 | * have an undefined result. There may be an |
| 940 | * adjacent next vma that we'll walk |
| 941 | * next. userfaultfd_remove() will generate an |
| 942 | * UFFD_EVENT_REMOVE repetition on the |
| 943 | * end-vma->vm_end range, but the manager can |
| 944 | * handle a repetition fine. |
| 945 | */ |
| 946 | range->end = vma->vm_end; |
| 947 | } |
| 948 | /* |
| 949 | * If the memory region between start and end was |
| 950 | * originally backed by 4kB pages and then remapped to |
| 951 | * be backed by hugepages while mmap_lock was dropped, |
| 952 | * the adjustment for hugetlb vma above may have rounded |
| 953 | * end down to the start address. |
| 954 | */ |
| 955 | if (range->start == range->end) |
| 956 | return 0; |
| 957 | VM_WARN_ON(range->start > range->end); |
| 958 | } |
| 959 | |
| 960 | if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED) |
| 961 | return madvise_dontneed_single_vma(madv_behavior); |
| 962 | else if (behavior == MADV_FREE) |
| 963 | return madvise_free_single_vma(madv_behavior); |
| 964 | else |
| 965 | return -EINVAL; |
| 966 | } |
| 967 | |
| 968 | static long madvise_populate(struct madvise_behavior *madv_behavior) |
| 969 | { |
| 970 | struct mm_struct *mm = madv_behavior->mm; |
| 971 | const bool write = madv_behavior->behavior == MADV_POPULATE_WRITE; |
| 972 | int locked = 1; |
| 973 | unsigned long start = madv_behavior->range.start; |
| 974 | unsigned long end = madv_behavior->range.end; |
| 975 | long pages; |
| 976 | |
| 977 | while (start < end) { |
| 978 | /* Populate (prefault) page tables readable/writable. */ |
| 979 | pages = faultin_page_range(mm, start, end, write, locked: &locked); |
| 980 | if (!locked) { |
| 981 | mmap_read_lock(mm); |
| 982 | locked = 1; |
| 983 | } |
| 984 | if (pages < 0) { |
| 985 | switch (pages) { |
| 986 | case -EINTR: |
| 987 | return -EINTR; |
| 988 | case -EINVAL: /* Incompatible mappings / permissions. */ |
| 989 | return -EINVAL; |
| 990 | case -EHWPOISON: |
| 991 | return -EHWPOISON; |
| 992 | case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */ |
| 993 | return -EFAULT; |
| 994 | default: |
| 995 | pr_warn_once("%s: unhandled return value: %ld\n" , |
| 996 | __func__, pages); |
| 997 | fallthrough; |
| 998 | case -ENOMEM: /* No VMA or out of memory. */ |
| 999 | return -ENOMEM; |
| 1000 | } |
| 1001 | } |
| 1002 | start += pages * PAGE_SIZE; |
| 1003 | } |
| 1004 | return 0; |
| 1005 | } |
| 1006 | |
| 1007 | /* |
| 1008 | * Application wants to free up the pages and associated backing store. |
| 1009 | * This is effectively punching a hole into the middle of a file. |
| 1010 | */ |
| 1011 | static long madvise_remove(struct madvise_behavior *madv_behavior) |
| 1012 | { |
| 1013 | loff_t offset; |
| 1014 | int error; |
| 1015 | struct file *f; |
| 1016 | struct mm_struct *mm = madv_behavior->mm; |
| 1017 | struct vm_area_struct *vma = madv_behavior->vma; |
| 1018 | unsigned long start = madv_behavior->range.start; |
| 1019 | unsigned long end = madv_behavior->range.end; |
| 1020 | |
| 1021 | mark_mmap_lock_dropped(madv_behavior); |
| 1022 | |
| 1023 | if (vma->vm_flags & VM_LOCKED) |
| 1024 | return -EINVAL; |
| 1025 | |
| 1026 | f = vma->vm_file; |
| 1027 | |
| 1028 | if (!f || !f->f_mapping || !f->f_mapping->host) { |
| 1029 | return -EINVAL; |
| 1030 | } |
| 1031 | |
| 1032 | if (!vma_is_shared_maywrite(vma)) |
| 1033 | return -EACCES; |
| 1034 | |
| 1035 | offset = (loff_t)(start - vma->vm_start) |
| 1036 | + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); |
| 1037 | |
| 1038 | /* |
| 1039 | * Filesystem's fallocate may need to take i_rwsem. We need to |
| 1040 | * explicitly grab a reference because the vma (and hence the |
| 1041 | * vma's reference to the file) can go away as soon as we drop |
| 1042 | * mmap_lock. |
| 1043 | */ |
| 1044 | get_file(f); |
| 1045 | if (userfaultfd_remove(vma, start, end)) { |
| 1046 | /* mmap_lock was not released by userfaultfd_remove() */ |
| 1047 | mmap_read_unlock(mm); |
| 1048 | } |
| 1049 | error = vfs_fallocate(file: f, |
| 1050 | FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, |
| 1051 | offset, len: end - start); |
| 1052 | fput(f); |
| 1053 | mmap_read_lock(mm); |
| 1054 | return error; |
| 1055 | } |
| 1056 | |
| 1057 | static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked) |
| 1058 | { |
| 1059 | vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB; |
| 1060 | |
| 1061 | /* |
| 1062 | * A user could lock after setting a guard range but that's fine, as |
| 1063 | * they'd not be able to fault in. The issue arises when we try to zap |
| 1064 | * existing locked VMAs. We don't want to do that. |
| 1065 | */ |
| 1066 | if (!allow_locked) |
| 1067 | disallowed |= VM_LOCKED; |
| 1068 | |
| 1069 | return !(vma->vm_flags & disallowed); |
| 1070 | } |
| 1071 | |
| 1072 | static bool is_guard_pte_marker(pte_t ptent) |
| 1073 | { |
| 1074 | return is_swap_pte(pte: ptent) && |
| 1075 | is_guard_swp_entry(entry: pte_to_swp_entry(pte: ptent)); |
| 1076 | } |
| 1077 | |
| 1078 | static int guard_install_pud_entry(pud_t *pud, unsigned long addr, |
| 1079 | unsigned long next, struct mm_walk *walk) |
| 1080 | { |
| 1081 | pud_t pudval = pudp_get(pudp: pud); |
| 1082 | |
| 1083 | /* If huge return >0 so we abort the operation + zap. */ |
| 1084 | return pud_trans_huge(pud: pudval); |
| 1085 | } |
| 1086 | |
| 1087 | static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr, |
| 1088 | unsigned long next, struct mm_walk *walk) |
| 1089 | { |
| 1090 | pmd_t pmdval = pmdp_get(pmdp: pmd); |
| 1091 | |
| 1092 | /* If huge return >0 so we abort the operation + zap. */ |
| 1093 | return pmd_trans_huge(pmd: pmdval); |
| 1094 | } |
| 1095 | |
| 1096 | static int guard_install_pte_entry(pte_t *pte, unsigned long addr, |
| 1097 | unsigned long next, struct mm_walk *walk) |
| 1098 | { |
| 1099 | pte_t pteval = ptep_get(ptep: pte); |
| 1100 | unsigned long *nr_pages = (unsigned long *)walk->private; |
| 1101 | |
| 1102 | /* If there is already a guard page marker, we have nothing to do. */ |
| 1103 | if (is_guard_pte_marker(ptent: pteval)) { |
| 1104 | (*nr_pages)++; |
| 1105 | |
| 1106 | return 0; |
| 1107 | } |
| 1108 | |
| 1109 | /* If populated return >0 so we abort the operation + zap. */ |
| 1110 | return 1; |
| 1111 | } |
| 1112 | |
| 1113 | static int guard_install_set_pte(unsigned long addr, unsigned long next, |
| 1114 | pte_t *ptep, struct mm_walk *walk) |
| 1115 | { |
| 1116 | unsigned long *nr_pages = (unsigned long *)walk->private; |
| 1117 | |
| 1118 | /* Simply install a PTE marker, this causes segfault on access. */ |
| 1119 | *ptep = make_pte_marker(PTE_MARKER_GUARD); |
| 1120 | (*nr_pages)++; |
| 1121 | |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
| 1125 | static const struct mm_walk_ops guard_install_walk_ops = { |
| 1126 | .pud_entry = guard_install_pud_entry, |
| 1127 | .pmd_entry = guard_install_pmd_entry, |
| 1128 | .pte_entry = guard_install_pte_entry, |
| 1129 | .install_pte = guard_install_set_pte, |
| 1130 | .walk_lock = PGWALK_RDLOCK, |
| 1131 | }; |
| 1132 | |
| 1133 | static long madvise_guard_install(struct madvise_behavior *madv_behavior) |
| 1134 | { |
| 1135 | struct vm_area_struct *vma = madv_behavior->vma; |
| 1136 | struct madvise_behavior_range *range = &madv_behavior->range; |
| 1137 | long err; |
| 1138 | int i; |
| 1139 | |
| 1140 | if (!is_valid_guard_vma(vma, /* allow_locked = */false)) |
| 1141 | return -EINVAL; |
| 1142 | |
| 1143 | /* |
| 1144 | * If we install guard markers, then the range is no longer |
| 1145 | * empty from a page table perspective and therefore it's |
| 1146 | * appropriate to have an anon_vma. |
| 1147 | * |
| 1148 | * This ensures that on fork, we copy page tables correctly. |
| 1149 | */ |
| 1150 | err = anon_vma_prepare(vma); |
| 1151 | if (err) |
| 1152 | return err; |
| 1153 | |
| 1154 | /* |
| 1155 | * Optimistically try to install the guard marker pages first. If any |
| 1156 | * non-guard pages are encountered, give up and zap the range before |
| 1157 | * trying again. |
| 1158 | * |
| 1159 | * We try a few times before giving up and releasing back to userland to |
| 1160 | * loop around, releasing locks in the process to avoid contention. This |
| 1161 | * would only happen if there was a great many racing page faults. |
| 1162 | * |
| 1163 | * In most cases we should simply install the guard markers immediately |
| 1164 | * with no zap or looping. |
| 1165 | */ |
| 1166 | for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) { |
| 1167 | unsigned long nr_pages = 0; |
| 1168 | |
| 1169 | /* Returns < 0 on error, == 0 if success, > 0 if zap needed. */ |
| 1170 | err = walk_page_range_mm(mm: vma->vm_mm, start: range->start, end: range->end, |
| 1171 | ops: &guard_install_walk_ops, private: &nr_pages); |
| 1172 | if (err < 0) |
| 1173 | return err; |
| 1174 | |
| 1175 | if (err == 0) { |
| 1176 | unsigned long nr_expected_pages = |
| 1177 | PHYS_PFN(range->end - range->start); |
| 1178 | |
| 1179 | VM_WARN_ON(nr_pages != nr_expected_pages); |
| 1180 | return 0; |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * OK some of the range have non-guard pages mapped, zap |
| 1185 | * them. This leaves existing guard pages in place. |
| 1186 | */ |
| 1187 | zap_page_range_single(vma, address: range->start, |
| 1188 | size: range->end - range->start, NULL); |
| 1189 | } |
| 1190 | |
| 1191 | /* |
| 1192 | * We were unable to install the guard pages due to being raced by page |
| 1193 | * faults. This should not happen ordinarily. We return to userspace and |
| 1194 | * immediately retry, relieving lock contention. |
| 1195 | */ |
| 1196 | return restart_syscall(); |
| 1197 | } |
| 1198 | |
| 1199 | static int guard_remove_pud_entry(pud_t *pud, unsigned long addr, |
| 1200 | unsigned long next, struct mm_walk *walk) |
| 1201 | { |
| 1202 | pud_t pudval = pudp_get(pudp: pud); |
| 1203 | |
| 1204 | /* If huge, cannot have guard pages present, so no-op - skip. */ |
| 1205 | if (pud_trans_huge(pud: pudval)) |
| 1206 | walk->action = ACTION_CONTINUE; |
| 1207 | |
| 1208 | return 0; |
| 1209 | } |
| 1210 | |
| 1211 | static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr, |
| 1212 | unsigned long next, struct mm_walk *walk) |
| 1213 | { |
| 1214 | pmd_t pmdval = pmdp_get(pmdp: pmd); |
| 1215 | |
| 1216 | /* If huge, cannot have guard pages present, so no-op - skip. */ |
| 1217 | if (pmd_trans_huge(pmd: pmdval)) |
| 1218 | walk->action = ACTION_CONTINUE; |
| 1219 | |
| 1220 | return 0; |
| 1221 | } |
| 1222 | |
| 1223 | static int guard_remove_pte_entry(pte_t *pte, unsigned long addr, |
| 1224 | unsigned long next, struct mm_walk *walk) |
| 1225 | { |
| 1226 | pte_t ptent = ptep_get(ptep: pte); |
| 1227 | |
| 1228 | if (is_guard_pte_marker(ptent)) { |
| 1229 | /* Simply clear the PTE marker. */ |
| 1230 | pte_clear_not_present_full(mm: walk->mm, address: addr, ptep: pte, full: false); |
| 1231 | update_mmu_cache(vma: walk->vma, addr, ptep: pte); |
| 1232 | } |
| 1233 | |
| 1234 | return 0; |
| 1235 | } |
| 1236 | |
| 1237 | static const struct mm_walk_ops guard_remove_walk_ops = { |
| 1238 | .pud_entry = guard_remove_pud_entry, |
| 1239 | .pmd_entry = guard_remove_pmd_entry, |
| 1240 | .pte_entry = guard_remove_pte_entry, |
| 1241 | .walk_lock = PGWALK_RDLOCK, |
| 1242 | }; |
| 1243 | |
| 1244 | static long madvise_guard_remove(struct madvise_behavior *madv_behavior) |
| 1245 | { |
| 1246 | struct vm_area_struct *vma = madv_behavior->vma; |
| 1247 | struct madvise_behavior_range *range = &madv_behavior->range; |
| 1248 | |
| 1249 | /* |
| 1250 | * We're ok with removing guards in mlock()'d ranges, as this is a |
| 1251 | * non-destructive action. |
| 1252 | */ |
| 1253 | if (!is_valid_guard_vma(vma, /* allow_locked = */true)) |
| 1254 | return -EINVAL; |
| 1255 | |
| 1256 | return walk_page_range_vma(vma, start: range->start, end: range->end, |
| 1257 | ops: &guard_remove_walk_ops, NULL); |
| 1258 | } |
| 1259 | |
| 1260 | #ifdef CONFIG_64BIT |
| 1261 | /* Does the madvise operation result in discarding of mapped data? */ |
| 1262 | static bool is_discard(int behavior) |
| 1263 | { |
| 1264 | switch (behavior) { |
| 1265 | case MADV_FREE: |
| 1266 | case MADV_DONTNEED: |
| 1267 | case MADV_DONTNEED_LOCKED: |
| 1268 | case MADV_REMOVE: |
| 1269 | case MADV_DONTFORK: |
| 1270 | case MADV_WIPEONFORK: |
| 1271 | case MADV_GUARD_INSTALL: |
| 1272 | return true; |
| 1273 | } |
| 1274 | |
| 1275 | return false; |
| 1276 | } |
| 1277 | |
| 1278 | /* |
| 1279 | * We are restricted from madvise()'ing mseal()'d VMAs only in very particular |
| 1280 | * circumstances - discarding of data from read-only anonymous SEALED mappings. |
| 1281 | * |
| 1282 | * This is because users cannot trivally discard data from these VMAs, and may |
| 1283 | * only do so via an appropriate madvise() call. |
| 1284 | */ |
| 1285 | static bool can_madvise_modify(struct madvise_behavior *madv_behavior) |
| 1286 | { |
| 1287 | struct vm_area_struct *vma = madv_behavior->vma; |
| 1288 | |
| 1289 | /* If the VMA isn't sealed we're good. */ |
| 1290 | if (!vma_is_sealed(vma)) |
| 1291 | return true; |
| 1292 | |
| 1293 | /* For a sealed VMA, we only care about discard operations. */ |
| 1294 | if (!is_discard(behavior: madv_behavior->behavior)) |
| 1295 | return true; |
| 1296 | |
| 1297 | /* |
| 1298 | * We explicitly permit all file-backed mappings, whether MAP_SHARED or |
| 1299 | * MAP_PRIVATE. |
| 1300 | * |
| 1301 | * The latter causes some complications. Because now, one can mmap() |
| 1302 | * read/write a MAP_PRIVATE mapping, write to it, then mprotect() |
| 1303 | * read-only, mseal() and a discard will be permitted. |
| 1304 | * |
| 1305 | * However, in order to avoid issues with potential use of madvise(..., |
| 1306 | * MADV_DONTNEED) of mseal()'d .text mappings we, for the time being, |
| 1307 | * permit this. |
| 1308 | */ |
| 1309 | if (!vma_is_anonymous(vma)) |
| 1310 | return true; |
| 1311 | |
| 1312 | /* If the user could write to the mapping anyway, then this is fine. */ |
| 1313 | if ((vma->vm_flags & VM_WRITE) && |
| 1314 | arch_vma_access_permitted(vma, /* write= */ true, |
| 1315 | /* execute= */ false, /* foreign= */ false)) |
| 1316 | return true; |
| 1317 | |
| 1318 | /* Otherwise, we are not permitted to perform this operation. */ |
| 1319 | return false; |
| 1320 | } |
| 1321 | #else |
| 1322 | static bool can_madvise_modify(struct madvise_behavior *madv_behavior) |
| 1323 | { |
| 1324 | return true; |
| 1325 | } |
| 1326 | #endif |
| 1327 | |
| 1328 | /* |
| 1329 | * Apply an madvise behavior to a region of a vma. madvise_update_vma |
| 1330 | * will handle splitting a vm area into separate areas, each area with its own |
| 1331 | * behavior. |
| 1332 | */ |
| 1333 | static int madvise_vma_behavior(struct madvise_behavior *madv_behavior) |
| 1334 | { |
| 1335 | int behavior = madv_behavior->behavior; |
| 1336 | struct vm_area_struct *vma = madv_behavior->vma; |
| 1337 | vm_flags_t new_flags = vma->vm_flags; |
| 1338 | struct madvise_behavior_range *range = &madv_behavior->range; |
| 1339 | int error; |
| 1340 | |
| 1341 | if (unlikely(!can_madvise_modify(madv_behavior))) |
| 1342 | return -EPERM; |
| 1343 | |
| 1344 | switch (behavior) { |
| 1345 | case MADV_REMOVE: |
| 1346 | return madvise_remove(madv_behavior); |
| 1347 | case MADV_WILLNEED: |
| 1348 | return madvise_willneed(madv_behavior); |
| 1349 | case MADV_COLD: |
| 1350 | return madvise_cold(madv_behavior); |
| 1351 | case MADV_PAGEOUT: |
| 1352 | return madvise_pageout(madv_behavior); |
| 1353 | case MADV_FREE: |
| 1354 | case MADV_DONTNEED: |
| 1355 | case MADV_DONTNEED_LOCKED: |
| 1356 | return madvise_dontneed_free(madv_behavior); |
| 1357 | case MADV_COLLAPSE: |
| 1358 | return madvise_collapse(vma, start: range->start, end: range->end, |
| 1359 | lock_dropped: &madv_behavior->lock_dropped); |
| 1360 | case MADV_GUARD_INSTALL: |
| 1361 | return madvise_guard_install(madv_behavior); |
| 1362 | case MADV_GUARD_REMOVE: |
| 1363 | return madvise_guard_remove(madv_behavior); |
| 1364 | |
| 1365 | /* The below behaviours update VMAs via madvise_update_vma(). */ |
| 1366 | |
| 1367 | case MADV_NORMAL: |
| 1368 | new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; |
| 1369 | break; |
| 1370 | case MADV_SEQUENTIAL: |
| 1371 | new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; |
| 1372 | break; |
| 1373 | case MADV_RANDOM: |
| 1374 | new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; |
| 1375 | break; |
| 1376 | case MADV_DONTFORK: |
| 1377 | new_flags |= VM_DONTCOPY; |
| 1378 | break; |
| 1379 | case MADV_DOFORK: |
| 1380 | if (new_flags & VM_IO) |
| 1381 | return -EINVAL; |
| 1382 | new_flags &= ~VM_DONTCOPY; |
| 1383 | break; |
| 1384 | case MADV_WIPEONFORK: |
| 1385 | /* MADV_WIPEONFORK is only supported on anonymous memory. */ |
| 1386 | if (vma->vm_file || new_flags & VM_SHARED) |
| 1387 | return -EINVAL; |
| 1388 | new_flags |= VM_WIPEONFORK; |
| 1389 | break; |
| 1390 | case MADV_KEEPONFORK: |
| 1391 | if (new_flags & VM_DROPPABLE) |
| 1392 | return -EINVAL; |
| 1393 | new_flags &= ~VM_WIPEONFORK; |
| 1394 | break; |
| 1395 | case MADV_DONTDUMP: |
| 1396 | new_flags |= VM_DONTDUMP; |
| 1397 | break; |
| 1398 | case MADV_DODUMP: |
| 1399 | if ((!is_vm_hugetlb_page(vma) && (new_flags & VM_SPECIAL)) || |
| 1400 | (new_flags & VM_DROPPABLE)) |
| 1401 | return -EINVAL; |
| 1402 | new_flags &= ~VM_DONTDUMP; |
| 1403 | break; |
| 1404 | case MADV_MERGEABLE: |
| 1405 | case MADV_UNMERGEABLE: |
| 1406 | error = ksm_madvise(vma, start: range->start, end: range->end, |
| 1407 | advice: behavior, vm_flags: &new_flags); |
| 1408 | if (error) |
| 1409 | goto out; |
| 1410 | break; |
| 1411 | case MADV_HUGEPAGE: |
| 1412 | case MADV_NOHUGEPAGE: |
| 1413 | error = hugepage_madvise(vma, vm_flags: &new_flags, advice: behavior); |
| 1414 | if (error) |
| 1415 | goto out; |
| 1416 | break; |
| 1417 | case __MADV_SET_ANON_VMA_NAME: |
| 1418 | /* Only anonymous mappings can be named */ |
| 1419 | if (vma->vm_file && !vma_is_anon_shmem(vma)) |
| 1420 | return -EBADF; |
| 1421 | break; |
| 1422 | } |
| 1423 | |
| 1424 | /* This is a write operation.*/ |
| 1425 | VM_WARN_ON_ONCE(madv_behavior->lock_mode != MADVISE_MMAP_WRITE_LOCK); |
| 1426 | |
| 1427 | error = madvise_update_vma(new_flags, madv_behavior); |
| 1428 | out: |
| 1429 | /* |
| 1430 | * madvise() returns EAGAIN if kernel resources, such as |
| 1431 | * slab, are temporarily unavailable. |
| 1432 | */ |
| 1433 | if (error == -ENOMEM) |
| 1434 | error = -EAGAIN; |
| 1435 | return error; |
| 1436 | } |
| 1437 | |
| 1438 | #ifdef CONFIG_MEMORY_FAILURE |
| 1439 | /* |
| 1440 | * Error injection support for memory error handling. |
| 1441 | */ |
| 1442 | static int madvise_inject_error(struct madvise_behavior *madv_behavior) |
| 1443 | { |
| 1444 | unsigned long size; |
| 1445 | unsigned long start = madv_behavior->range.start; |
| 1446 | unsigned long end = madv_behavior->range.end; |
| 1447 | |
| 1448 | if (!capable(CAP_SYS_ADMIN)) |
| 1449 | return -EPERM; |
| 1450 | |
| 1451 | for (; start < end; start += size) { |
| 1452 | unsigned long pfn; |
| 1453 | struct page *page; |
| 1454 | int ret; |
| 1455 | |
| 1456 | ret = get_user_pages_fast(start, 1, 0, &page); |
| 1457 | if (ret != 1) |
| 1458 | return ret; |
| 1459 | pfn = page_to_pfn(page); |
| 1460 | |
| 1461 | /* |
| 1462 | * When soft offlining hugepages, after migrating the page |
| 1463 | * we dissolve it, therefore in the second loop "page" will |
| 1464 | * no longer be a compound page. |
| 1465 | */ |
| 1466 | size = page_size(compound_head(page)); |
| 1467 | |
| 1468 | if (madv_behavior->behavior == MADV_SOFT_OFFLINE) { |
| 1469 | pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n" , |
| 1470 | pfn, start); |
| 1471 | ret = soft_offline_page(pfn, MF_COUNT_INCREASED); |
| 1472 | } else { |
| 1473 | pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n" , |
| 1474 | pfn, start); |
| 1475 | ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED); |
| 1476 | if (ret == -EOPNOTSUPP) |
| 1477 | ret = 0; |
| 1478 | } |
| 1479 | |
| 1480 | if (ret) |
| 1481 | return ret; |
| 1482 | } |
| 1483 | |
| 1484 | return 0; |
| 1485 | } |
| 1486 | |
| 1487 | static bool is_memory_failure(struct madvise_behavior *madv_behavior) |
| 1488 | { |
| 1489 | switch (madv_behavior->behavior) { |
| 1490 | case MADV_HWPOISON: |
| 1491 | case MADV_SOFT_OFFLINE: |
| 1492 | return true; |
| 1493 | default: |
| 1494 | return false; |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | #else |
| 1499 | |
| 1500 | static int madvise_inject_error(struct madvise_behavior *madv_behavior) |
| 1501 | { |
| 1502 | return 0; |
| 1503 | } |
| 1504 | |
| 1505 | static bool is_memory_failure(struct madvise_behavior *madv_behavior) |
| 1506 | { |
| 1507 | return false; |
| 1508 | } |
| 1509 | |
| 1510 | #endif /* CONFIG_MEMORY_FAILURE */ |
| 1511 | |
| 1512 | static bool |
| 1513 | madvise_behavior_valid(int behavior) |
| 1514 | { |
| 1515 | switch (behavior) { |
| 1516 | case MADV_DOFORK: |
| 1517 | case MADV_DONTFORK: |
| 1518 | case MADV_NORMAL: |
| 1519 | case MADV_SEQUENTIAL: |
| 1520 | case MADV_RANDOM: |
| 1521 | case MADV_REMOVE: |
| 1522 | case MADV_WILLNEED: |
| 1523 | case MADV_DONTNEED: |
| 1524 | case MADV_DONTNEED_LOCKED: |
| 1525 | case MADV_FREE: |
| 1526 | case MADV_COLD: |
| 1527 | case MADV_PAGEOUT: |
| 1528 | case MADV_POPULATE_READ: |
| 1529 | case MADV_POPULATE_WRITE: |
| 1530 | #ifdef CONFIG_KSM |
| 1531 | case MADV_MERGEABLE: |
| 1532 | case MADV_UNMERGEABLE: |
| 1533 | #endif |
| 1534 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1535 | case MADV_HUGEPAGE: |
| 1536 | case MADV_NOHUGEPAGE: |
| 1537 | case MADV_COLLAPSE: |
| 1538 | #endif |
| 1539 | case MADV_DONTDUMP: |
| 1540 | case MADV_DODUMP: |
| 1541 | case MADV_WIPEONFORK: |
| 1542 | case MADV_KEEPONFORK: |
| 1543 | case MADV_GUARD_INSTALL: |
| 1544 | case MADV_GUARD_REMOVE: |
| 1545 | #ifdef CONFIG_MEMORY_FAILURE |
| 1546 | case MADV_SOFT_OFFLINE: |
| 1547 | case MADV_HWPOISON: |
| 1548 | #endif |
| 1549 | return true; |
| 1550 | |
| 1551 | default: |
| 1552 | return false; |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | /* Can we invoke process_madvise() on a remote mm for the specified behavior? */ |
| 1557 | static bool process_madvise_remote_valid(int behavior) |
| 1558 | { |
| 1559 | switch (behavior) { |
| 1560 | case MADV_COLD: |
| 1561 | case MADV_PAGEOUT: |
| 1562 | case MADV_WILLNEED: |
| 1563 | case MADV_COLLAPSE: |
| 1564 | return true; |
| 1565 | default: |
| 1566 | return false; |
| 1567 | } |
| 1568 | } |
| 1569 | |
| 1570 | /* |
| 1571 | * Try to acquire a VMA read lock if possible. |
| 1572 | * |
| 1573 | * We only support this lock over a single VMA, which the input range must |
| 1574 | * span either partially or fully. |
| 1575 | * |
| 1576 | * This function always returns with an appropriate lock held. If a VMA read |
| 1577 | * lock could be acquired, we return true and set madv_behavior state |
| 1578 | * accordingly. |
| 1579 | * |
| 1580 | * If a VMA read lock could not be acquired, we return false and expect caller to |
| 1581 | * fallback to mmap lock behaviour. |
| 1582 | */ |
| 1583 | static bool try_vma_read_lock(struct madvise_behavior *madv_behavior) |
| 1584 | { |
| 1585 | struct mm_struct *mm = madv_behavior->mm; |
| 1586 | struct vm_area_struct *vma; |
| 1587 | |
| 1588 | vma = lock_vma_under_rcu(mm, address: madv_behavior->range.start); |
| 1589 | if (!vma) |
| 1590 | goto take_mmap_read_lock; |
| 1591 | /* |
| 1592 | * Must span only a single VMA; uffd and remote processes are |
| 1593 | * unsupported. |
| 1594 | */ |
| 1595 | if (madv_behavior->range.end > vma->vm_end || current->mm != mm || |
| 1596 | userfaultfd_armed(vma)) { |
| 1597 | vma_end_read(vma); |
| 1598 | goto take_mmap_read_lock; |
| 1599 | } |
| 1600 | madv_behavior->vma = vma; |
| 1601 | return true; |
| 1602 | |
| 1603 | take_mmap_read_lock: |
| 1604 | mmap_read_lock(mm); |
| 1605 | madv_behavior->lock_mode = MADVISE_MMAP_READ_LOCK; |
| 1606 | return false; |
| 1607 | } |
| 1608 | |
| 1609 | /* |
| 1610 | * Walk the vmas in range [start,end), and call the madvise_vma_behavior |
| 1611 | * function on each one. The function will get start and end parameters that |
| 1612 | * cover the overlap between the current vma and the original range. Any |
| 1613 | * unmapped regions in the original range will result in this function returning |
| 1614 | * -ENOMEM while still calling the madvise_vma_behavior function on all of the |
| 1615 | * existing vmas in the range. Must be called with the mmap_lock held for |
| 1616 | * reading or writing. |
| 1617 | */ |
| 1618 | static |
| 1619 | int madvise_walk_vmas(struct madvise_behavior *madv_behavior) |
| 1620 | { |
| 1621 | struct mm_struct *mm = madv_behavior->mm; |
| 1622 | struct madvise_behavior_range *range = &madv_behavior->range; |
| 1623 | /* range is updated to span each VMA, so store end of entire range. */ |
| 1624 | unsigned long last_end = range->end; |
| 1625 | int unmapped_error = 0; |
| 1626 | int error; |
| 1627 | struct vm_area_struct *prev, *vma; |
| 1628 | |
| 1629 | /* |
| 1630 | * If VMA read lock is supported, apply madvise to a single VMA |
| 1631 | * tentatively, avoiding walking VMAs. |
| 1632 | */ |
| 1633 | if (madv_behavior->lock_mode == MADVISE_VMA_READ_LOCK && |
| 1634 | try_vma_read_lock(madv_behavior)) { |
| 1635 | error = madvise_vma_behavior(madv_behavior); |
| 1636 | vma_end_read(vma: madv_behavior->vma); |
| 1637 | return error; |
| 1638 | } |
| 1639 | |
| 1640 | vma = find_vma_prev(mm, addr: range->start, pprev: &prev); |
| 1641 | if (vma && range->start > vma->vm_start) |
| 1642 | prev = vma; |
| 1643 | |
| 1644 | for (;;) { |
| 1645 | /* Still start < end. */ |
| 1646 | if (!vma) |
| 1647 | return -ENOMEM; |
| 1648 | |
| 1649 | /* Here start < (last_end|vma->vm_end). */ |
| 1650 | if (range->start < vma->vm_start) { |
| 1651 | /* |
| 1652 | * This indicates a gap between VMAs in the input |
| 1653 | * range. This does not cause the operation to abort, |
| 1654 | * rather we simply return -ENOMEM to indicate that this |
| 1655 | * has happened, but carry on. |
| 1656 | */ |
| 1657 | unmapped_error = -ENOMEM; |
| 1658 | range->start = vma->vm_start; |
| 1659 | if (range->start >= last_end) |
| 1660 | break; |
| 1661 | } |
| 1662 | |
| 1663 | /* Here vma->vm_start <= range->start < (last_end|vma->vm_end) */ |
| 1664 | range->end = min(vma->vm_end, last_end); |
| 1665 | |
| 1666 | /* Here vma->vm_start <= range->start < range->end <= (last_end|vma->vm_end). */ |
| 1667 | madv_behavior->prev = prev; |
| 1668 | madv_behavior->vma = vma; |
| 1669 | error = madvise_vma_behavior(madv_behavior); |
| 1670 | if (error) |
| 1671 | return error; |
| 1672 | if (madv_behavior->lock_dropped) { |
| 1673 | /* We dropped the mmap lock, we can't ref the VMA. */ |
| 1674 | prev = NULL; |
| 1675 | vma = NULL; |
| 1676 | madv_behavior->lock_dropped = false; |
| 1677 | } else { |
| 1678 | vma = madv_behavior->vma; |
| 1679 | prev = vma; |
| 1680 | } |
| 1681 | |
| 1682 | if (vma && range->end < vma->vm_end) |
| 1683 | range->end = vma->vm_end; |
| 1684 | if (range->end >= last_end) |
| 1685 | break; |
| 1686 | |
| 1687 | vma = find_vma(mm, addr: vma ? vma->vm_end : range->end); |
| 1688 | range->start = range->end; |
| 1689 | } |
| 1690 | |
| 1691 | return unmapped_error; |
| 1692 | } |
| 1693 | |
| 1694 | /* |
| 1695 | * Any behaviour which results in changes to the vma->vm_flags needs to |
| 1696 | * take mmap_lock for writing. Others, which simply traverse vmas, need |
| 1697 | * to only take it for reading. |
| 1698 | */ |
| 1699 | static enum madvise_lock_mode get_lock_mode(struct madvise_behavior *madv_behavior) |
| 1700 | { |
| 1701 | if (is_memory_failure(madv_behavior)) |
| 1702 | return MADVISE_NO_LOCK; |
| 1703 | |
| 1704 | switch (madv_behavior->behavior) { |
| 1705 | case MADV_REMOVE: |
| 1706 | case MADV_WILLNEED: |
| 1707 | case MADV_COLD: |
| 1708 | case MADV_PAGEOUT: |
| 1709 | case MADV_POPULATE_READ: |
| 1710 | case MADV_POPULATE_WRITE: |
| 1711 | case MADV_COLLAPSE: |
| 1712 | case MADV_GUARD_INSTALL: |
| 1713 | case MADV_GUARD_REMOVE: |
| 1714 | return MADVISE_MMAP_READ_LOCK; |
| 1715 | case MADV_DONTNEED: |
| 1716 | case MADV_DONTNEED_LOCKED: |
| 1717 | case MADV_FREE: |
| 1718 | return MADVISE_VMA_READ_LOCK; |
| 1719 | default: |
| 1720 | return MADVISE_MMAP_WRITE_LOCK; |
| 1721 | } |
| 1722 | } |
| 1723 | |
| 1724 | static int madvise_lock(struct madvise_behavior *madv_behavior) |
| 1725 | { |
| 1726 | struct mm_struct *mm = madv_behavior->mm; |
| 1727 | enum madvise_lock_mode lock_mode = get_lock_mode(madv_behavior); |
| 1728 | |
| 1729 | switch (lock_mode) { |
| 1730 | case MADVISE_NO_LOCK: |
| 1731 | break; |
| 1732 | case MADVISE_MMAP_WRITE_LOCK: |
| 1733 | if (mmap_write_lock_killable(mm)) |
| 1734 | return -EINTR; |
| 1735 | break; |
| 1736 | case MADVISE_MMAP_READ_LOCK: |
| 1737 | mmap_read_lock(mm); |
| 1738 | break; |
| 1739 | case MADVISE_VMA_READ_LOCK: |
| 1740 | /* We will acquire the lock per-VMA in madvise_walk_vmas(). */ |
| 1741 | break; |
| 1742 | } |
| 1743 | |
| 1744 | madv_behavior->lock_mode = lock_mode; |
| 1745 | return 0; |
| 1746 | } |
| 1747 | |
| 1748 | static void madvise_unlock(struct madvise_behavior *madv_behavior) |
| 1749 | { |
| 1750 | struct mm_struct *mm = madv_behavior->mm; |
| 1751 | |
| 1752 | switch (madv_behavior->lock_mode) { |
| 1753 | case MADVISE_NO_LOCK: |
| 1754 | return; |
| 1755 | case MADVISE_MMAP_WRITE_LOCK: |
| 1756 | mmap_write_unlock(mm); |
| 1757 | break; |
| 1758 | case MADVISE_MMAP_READ_LOCK: |
| 1759 | mmap_read_unlock(mm); |
| 1760 | break; |
| 1761 | case MADVISE_VMA_READ_LOCK: |
| 1762 | /* We will drop the lock per-VMA in madvise_walk_vmas(). */ |
| 1763 | break; |
| 1764 | } |
| 1765 | |
| 1766 | madv_behavior->lock_mode = MADVISE_NO_LOCK; |
| 1767 | } |
| 1768 | |
| 1769 | static bool madvise_batch_tlb_flush(int behavior) |
| 1770 | { |
| 1771 | switch (behavior) { |
| 1772 | case MADV_DONTNEED: |
| 1773 | case MADV_DONTNEED_LOCKED: |
| 1774 | case MADV_FREE: |
| 1775 | return true; |
| 1776 | default: |
| 1777 | return false; |
| 1778 | } |
| 1779 | } |
| 1780 | |
| 1781 | static void madvise_init_tlb(struct madvise_behavior *madv_behavior) |
| 1782 | { |
| 1783 | if (madvise_batch_tlb_flush(behavior: madv_behavior->behavior)) |
| 1784 | tlb_gather_mmu(tlb: madv_behavior->tlb, mm: madv_behavior->mm); |
| 1785 | } |
| 1786 | |
| 1787 | static void madvise_finish_tlb(struct madvise_behavior *madv_behavior) |
| 1788 | { |
| 1789 | if (madvise_batch_tlb_flush(behavior: madv_behavior->behavior)) |
| 1790 | tlb_finish_mmu(tlb: madv_behavior->tlb); |
| 1791 | } |
| 1792 | |
| 1793 | static bool is_valid_madvise(unsigned long start, size_t len_in, int behavior) |
| 1794 | { |
| 1795 | size_t len; |
| 1796 | |
| 1797 | if (!madvise_behavior_valid(behavior)) |
| 1798 | return false; |
| 1799 | |
| 1800 | if (!PAGE_ALIGNED(start)) |
| 1801 | return false; |
| 1802 | len = PAGE_ALIGN(len_in); |
| 1803 | |
| 1804 | /* Check to see whether len was rounded up from small -ve to zero */ |
| 1805 | if (len_in && !len) |
| 1806 | return false; |
| 1807 | |
| 1808 | if (start + len < start) |
| 1809 | return false; |
| 1810 | |
| 1811 | return true; |
| 1812 | } |
| 1813 | |
| 1814 | /* |
| 1815 | * madvise_should_skip() - Return if the request is invalid or nothing. |
| 1816 | * @start: Start address of madvise-requested address range. |
| 1817 | * @len_in: Length of madvise-requested address range. |
| 1818 | * @behavior: Requested madvise behavor. |
| 1819 | * @err: Pointer to store an error code from the check. |
| 1820 | * |
| 1821 | * If the specified behaviour is invalid or nothing would occur, we skip the |
| 1822 | * operation. This function returns true in the cases, otherwise false. In |
| 1823 | * the former case we store an error on @err. |
| 1824 | */ |
| 1825 | static bool madvise_should_skip(unsigned long start, size_t len_in, |
| 1826 | int behavior, int *err) |
| 1827 | { |
| 1828 | if (!is_valid_madvise(start, len_in, behavior)) { |
| 1829 | *err = -EINVAL; |
| 1830 | return true; |
| 1831 | } |
| 1832 | if (start + PAGE_ALIGN(len_in) == start) { |
| 1833 | *err = 0; |
| 1834 | return true; |
| 1835 | } |
| 1836 | return false; |
| 1837 | } |
| 1838 | |
| 1839 | static bool is_madvise_populate(struct madvise_behavior *madv_behavior) |
| 1840 | { |
| 1841 | switch (madv_behavior->behavior) { |
| 1842 | case MADV_POPULATE_READ: |
| 1843 | case MADV_POPULATE_WRITE: |
| 1844 | return true; |
| 1845 | default: |
| 1846 | return false; |
| 1847 | } |
| 1848 | } |
| 1849 | |
| 1850 | /* |
| 1851 | * untagged_addr_remote() assumes mmap_lock is already held. On |
| 1852 | * architectures like x86 and RISC-V, tagging is tricky because each |
| 1853 | * mm may have a different tagging mask. However, we might only hold |
| 1854 | * the per-VMA lock (currently only local processes are supported), |
| 1855 | * so untagged_addr is used to avoid the mmap_lock assertion for |
| 1856 | * local processes. |
| 1857 | */ |
| 1858 | static inline unsigned long get_untagged_addr(struct mm_struct *mm, |
| 1859 | unsigned long start) |
| 1860 | { |
| 1861 | return current->mm == mm ? untagged_addr(start) : |
| 1862 | untagged_addr_remote(mm, start); |
| 1863 | } |
| 1864 | |
| 1865 | static int madvise_do_behavior(unsigned long start, size_t len_in, |
| 1866 | struct madvise_behavior *madv_behavior) |
| 1867 | { |
| 1868 | struct blk_plug plug; |
| 1869 | int error; |
| 1870 | struct madvise_behavior_range *range = &madv_behavior->range; |
| 1871 | |
| 1872 | if (is_memory_failure(madv_behavior)) { |
| 1873 | range->start = start; |
| 1874 | range->end = start + len_in; |
| 1875 | return madvise_inject_error(madv_behavior); |
| 1876 | } |
| 1877 | |
| 1878 | range->start = get_untagged_addr(mm: madv_behavior->mm, start); |
| 1879 | range->end = range->start + PAGE_ALIGN(len_in); |
| 1880 | |
| 1881 | blk_start_plug(&plug); |
| 1882 | if (is_madvise_populate(madv_behavior)) |
| 1883 | error = madvise_populate(madv_behavior); |
| 1884 | else |
| 1885 | error = madvise_walk_vmas(madv_behavior); |
| 1886 | blk_finish_plug(&plug); |
| 1887 | return error; |
| 1888 | } |
| 1889 | |
| 1890 | /* |
| 1891 | * The madvise(2) system call. |
| 1892 | * |
| 1893 | * Applications can use madvise() to advise the kernel how it should |
| 1894 | * handle paging I/O in this VM area. The idea is to help the kernel |
| 1895 | * use appropriate read-ahead and caching techniques. The information |
| 1896 | * provided is advisory only, and can be safely disregarded by the |
| 1897 | * kernel without affecting the correct operation of the application. |
| 1898 | * |
| 1899 | * behavior values: |
| 1900 | * MADV_NORMAL - the default behavior is to read clusters. This |
| 1901 | * results in some read-ahead and read-behind. |
| 1902 | * MADV_RANDOM - the system should read the minimum amount of data |
| 1903 | * on any access, since it is unlikely that the appli- |
| 1904 | * cation will need more than what it asks for. |
| 1905 | * MADV_SEQUENTIAL - pages in the given range will probably be accessed |
| 1906 | * once, so they can be aggressively read ahead, and |
| 1907 | * can be freed soon after they are accessed. |
| 1908 | * MADV_WILLNEED - the application is notifying the system to read |
| 1909 | * some pages ahead. |
| 1910 | * MADV_DONTNEED - the application is finished with the given range, |
| 1911 | * so the kernel can free resources associated with it. |
| 1912 | * MADV_FREE - the application marks pages in the given range as lazy free, |
| 1913 | * where actual purges are postponed until memory pressure happens. |
| 1914 | * MADV_REMOVE - the application wants to free up the given range of |
| 1915 | * pages and associated backing store. |
| 1916 | * MADV_DONTFORK - omit this area from child's address space when forking: |
| 1917 | * typically, to avoid COWing pages pinned by get_user_pages(). |
| 1918 | * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. |
| 1919 | * MADV_WIPEONFORK - present the child process with zero-filled memory in this |
| 1920 | * range after a fork. |
| 1921 | * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK |
| 1922 | * MADV_HWPOISON - trigger memory error handler as if the given memory range |
| 1923 | * were corrupted by unrecoverable hardware memory failure. |
| 1924 | * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. |
| 1925 | * MADV_MERGEABLE - the application recommends that KSM try to merge pages in |
| 1926 | * this area with pages of identical content from other such areas. |
| 1927 | * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. |
| 1928 | * MADV_HUGEPAGE - the application wants to back the given range by transparent |
| 1929 | * huge pages in the future. Existing pages might be coalesced and |
| 1930 | * new pages might be allocated as THP. |
| 1931 | * MADV_NOHUGEPAGE - mark the given range as not worth being backed by |
| 1932 | * transparent huge pages so the existing pages will not be |
| 1933 | * coalesced into THP and new pages will not be allocated as THP. |
| 1934 | * MADV_COLLAPSE - synchronously coalesce pages into new THP. |
| 1935 | * MADV_DONTDUMP - the application wants to prevent pages in the given range |
| 1936 | * from being included in its core dump. |
| 1937 | * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. |
| 1938 | * MADV_COLD - the application is not expected to use this memory soon, |
| 1939 | * deactivate pages in this range so that they can be reclaimed |
| 1940 | * easily if memory pressure happens. |
| 1941 | * MADV_PAGEOUT - the application is not expected to use this memory soon, |
| 1942 | * page out the pages in this range immediately. |
| 1943 | * MADV_POPULATE_READ - populate (prefault) page tables readable by |
| 1944 | * triggering read faults if required |
| 1945 | * MADV_POPULATE_WRITE - populate (prefault) page tables writable by |
| 1946 | * triggering write faults if required |
| 1947 | * |
| 1948 | * return values: |
| 1949 | * zero - success |
| 1950 | * -EINVAL - start + len < 0, start is not page-aligned, |
| 1951 | * "behavior" is not a valid value, or application |
| 1952 | * is attempting to release locked or shared pages, |
| 1953 | * or the specified address range includes file, Huge TLB, |
| 1954 | * MAP_SHARED or VMPFNMAP range. |
| 1955 | * -ENOMEM - addresses in the specified range are not currently |
| 1956 | * mapped, or are outside the AS of the process. |
| 1957 | * -EIO - an I/O error occurred while paging in data. |
| 1958 | * -EBADF - map exists, but area maps something that isn't a file. |
| 1959 | * -EAGAIN - a kernel resource was temporarily unavailable. |
| 1960 | * -EPERM - memory is sealed. |
| 1961 | */ |
| 1962 | int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior) |
| 1963 | { |
| 1964 | int error; |
| 1965 | struct mmu_gather tlb; |
| 1966 | struct madvise_behavior madv_behavior = { |
| 1967 | .mm = mm, |
| 1968 | .behavior = behavior, |
| 1969 | .tlb = &tlb, |
| 1970 | }; |
| 1971 | |
| 1972 | if (madvise_should_skip(start, len_in, behavior, err: &error)) |
| 1973 | return error; |
| 1974 | error = madvise_lock(madv_behavior: &madv_behavior); |
| 1975 | if (error) |
| 1976 | return error; |
| 1977 | madvise_init_tlb(madv_behavior: &madv_behavior); |
| 1978 | error = madvise_do_behavior(start, len_in, madv_behavior: &madv_behavior); |
| 1979 | madvise_finish_tlb(madv_behavior: &madv_behavior); |
| 1980 | madvise_unlock(madv_behavior: &madv_behavior); |
| 1981 | |
| 1982 | return error; |
| 1983 | } |
| 1984 | |
| 1985 | SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) |
| 1986 | { |
| 1987 | return do_madvise(current->mm, start, len_in, behavior); |
| 1988 | } |
| 1989 | |
| 1990 | /* Perform an madvise operation over a vector of addresses and lengths. */ |
| 1991 | static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter, |
| 1992 | int behavior) |
| 1993 | { |
| 1994 | ssize_t ret = 0; |
| 1995 | size_t total_len; |
| 1996 | struct mmu_gather tlb; |
| 1997 | struct madvise_behavior madv_behavior = { |
| 1998 | .mm = mm, |
| 1999 | .behavior = behavior, |
| 2000 | .tlb = &tlb, |
| 2001 | }; |
| 2002 | |
| 2003 | total_len = iov_iter_count(i: iter); |
| 2004 | |
| 2005 | ret = madvise_lock(madv_behavior: &madv_behavior); |
| 2006 | if (ret) |
| 2007 | return ret; |
| 2008 | madvise_init_tlb(madv_behavior: &madv_behavior); |
| 2009 | |
| 2010 | while (iov_iter_count(i: iter)) { |
| 2011 | unsigned long start = (unsigned long)iter_iov_addr(iter); |
| 2012 | size_t len_in = iter_iov_len(i: iter); |
| 2013 | int error; |
| 2014 | |
| 2015 | if (madvise_should_skip(start, len_in, behavior, err: &error)) |
| 2016 | ret = error; |
| 2017 | else |
| 2018 | ret = madvise_do_behavior(start, len_in, madv_behavior: &madv_behavior); |
| 2019 | /* |
| 2020 | * An madvise operation is attempting to restart the syscall, |
| 2021 | * but we cannot proceed as it would not be correct to repeat |
| 2022 | * the operation in aggregate, and would be surprising to the |
| 2023 | * user. |
| 2024 | * |
| 2025 | * We drop and reacquire locks so it is safe to just loop and |
| 2026 | * try again. We check for fatal signals in case we need exit |
| 2027 | * early anyway. |
| 2028 | */ |
| 2029 | if (ret == -ERESTARTNOINTR) { |
| 2030 | if (fatal_signal_pending(current)) { |
| 2031 | ret = -EINTR; |
| 2032 | break; |
| 2033 | } |
| 2034 | |
| 2035 | /* Drop and reacquire lock to unwind race. */ |
| 2036 | madvise_finish_tlb(madv_behavior: &madv_behavior); |
| 2037 | madvise_unlock(madv_behavior: &madv_behavior); |
| 2038 | ret = madvise_lock(madv_behavior: &madv_behavior); |
| 2039 | if (ret) |
| 2040 | goto out; |
| 2041 | madvise_init_tlb(madv_behavior: &madv_behavior); |
| 2042 | continue; |
| 2043 | } |
| 2044 | if (ret < 0) |
| 2045 | break; |
| 2046 | iov_iter_advance(i: iter, bytes: iter_iov_len(i: iter)); |
| 2047 | } |
| 2048 | madvise_finish_tlb(madv_behavior: &madv_behavior); |
| 2049 | madvise_unlock(madv_behavior: &madv_behavior); |
| 2050 | |
| 2051 | out: |
| 2052 | ret = (total_len - iov_iter_count(i: iter)) ? : ret; |
| 2053 | |
| 2054 | return ret; |
| 2055 | } |
| 2056 | |
| 2057 | SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, |
| 2058 | size_t, vlen, int, behavior, unsigned int, flags) |
| 2059 | { |
| 2060 | ssize_t ret; |
| 2061 | struct iovec iovstack[UIO_FASTIOV]; |
| 2062 | struct iovec *iov = iovstack; |
| 2063 | struct iov_iter iter; |
| 2064 | struct task_struct *task; |
| 2065 | struct mm_struct *mm; |
| 2066 | unsigned int f_flags; |
| 2067 | |
| 2068 | if (flags != 0) { |
| 2069 | ret = -EINVAL; |
| 2070 | goto out; |
| 2071 | } |
| 2072 | |
| 2073 | ret = import_iovec(ITER_DEST, uvec: vec, nr_segs: vlen, ARRAY_SIZE(iovstack), iovp: &iov, i: &iter); |
| 2074 | if (ret < 0) |
| 2075 | goto out; |
| 2076 | |
| 2077 | task = pidfd_get_task(pidfd, flags: &f_flags); |
| 2078 | if (IS_ERR(ptr: task)) { |
| 2079 | ret = PTR_ERR(ptr: task); |
| 2080 | goto free_iov; |
| 2081 | } |
| 2082 | |
| 2083 | /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ |
| 2084 | mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); |
| 2085 | if (IS_ERR(ptr: mm)) { |
| 2086 | ret = PTR_ERR(ptr: mm); |
| 2087 | goto release_task; |
| 2088 | } |
| 2089 | |
| 2090 | /* |
| 2091 | * We need only perform this check if we are attempting to manipulate a |
| 2092 | * remote process's address space. |
| 2093 | */ |
| 2094 | if (mm != current->mm && !process_madvise_remote_valid(behavior)) { |
| 2095 | ret = -EINVAL; |
| 2096 | goto release_mm; |
| 2097 | } |
| 2098 | |
| 2099 | /* |
| 2100 | * Require CAP_SYS_NICE for influencing process performance. Note that |
| 2101 | * only non-destructive hints are currently supported for remote |
| 2102 | * processes. |
| 2103 | */ |
| 2104 | if (mm != current->mm && !capable(CAP_SYS_NICE)) { |
| 2105 | ret = -EPERM; |
| 2106 | goto release_mm; |
| 2107 | } |
| 2108 | |
| 2109 | ret = vector_madvise(mm, iter: &iter, behavior); |
| 2110 | |
| 2111 | release_mm: |
| 2112 | mmput(mm); |
| 2113 | release_task: |
| 2114 | put_task_struct(t: task); |
| 2115 | free_iov: |
| 2116 | kfree(objp: iov); |
| 2117 | out: |
| 2118 | return ret; |
| 2119 | } |
| 2120 | |
| 2121 | #ifdef CONFIG_ANON_VMA_NAME |
| 2122 | |
| 2123 | #define ANON_VMA_NAME_MAX_LEN 80 |
| 2124 | #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]" |
| 2125 | |
| 2126 | static inline bool is_valid_name_char(char ch) |
| 2127 | { |
| 2128 | /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */ |
| 2129 | return ch > 0x1f && ch < 0x7f && |
| 2130 | !strchr(ANON_VMA_NAME_INVALID_CHARS, ch); |
| 2131 | } |
| 2132 | |
| 2133 | static int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, |
| 2134 | unsigned long len_in, struct anon_vma_name *anon_name) |
| 2135 | { |
| 2136 | unsigned long end; |
| 2137 | unsigned long len; |
| 2138 | int error; |
| 2139 | struct madvise_behavior madv_behavior = { |
| 2140 | .mm = mm, |
| 2141 | .behavior = __MADV_SET_ANON_VMA_NAME, |
| 2142 | .anon_name = anon_name, |
| 2143 | }; |
| 2144 | |
| 2145 | if (start & ~PAGE_MASK) |
| 2146 | return -EINVAL; |
| 2147 | len = (len_in + ~PAGE_MASK) & PAGE_MASK; |
| 2148 | |
| 2149 | /* Check to see whether len was rounded up from small -ve to zero */ |
| 2150 | if (len_in && !len) |
| 2151 | return -EINVAL; |
| 2152 | |
| 2153 | end = start + len; |
| 2154 | if (end < start) |
| 2155 | return -EINVAL; |
| 2156 | |
| 2157 | if (end == start) |
| 2158 | return 0; |
| 2159 | |
| 2160 | madv_behavior.range.start = start; |
| 2161 | madv_behavior.range.end = end; |
| 2162 | |
| 2163 | error = madvise_lock(&madv_behavior); |
| 2164 | if (error) |
| 2165 | return error; |
| 2166 | error = madvise_walk_vmas(&madv_behavior); |
| 2167 | madvise_unlock(&madv_behavior); |
| 2168 | |
| 2169 | return error; |
| 2170 | } |
| 2171 | |
| 2172 | int set_anon_vma_name(unsigned long addr, unsigned long size, |
| 2173 | const char __user *uname) |
| 2174 | { |
| 2175 | struct anon_vma_name *anon_name = NULL; |
| 2176 | struct mm_struct *mm = current->mm; |
| 2177 | int error; |
| 2178 | |
| 2179 | if (uname) { |
| 2180 | char *name, *pch; |
| 2181 | |
| 2182 | name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN); |
| 2183 | if (IS_ERR(name)) |
| 2184 | return PTR_ERR(name); |
| 2185 | |
| 2186 | for (pch = name; *pch != '\0'; pch++) { |
| 2187 | if (!is_valid_name_char(*pch)) { |
| 2188 | kfree(name); |
| 2189 | return -EINVAL; |
| 2190 | } |
| 2191 | } |
| 2192 | /* anon_vma has its own copy */ |
| 2193 | anon_name = anon_vma_name_alloc(name); |
| 2194 | kfree(name); |
| 2195 | if (!anon_name) |
| 2196 | return -ENOMEM; |
| 2197 | } |
| 2198 | |
| 2199 | error = madvise_set_anon_name(mm, addr, size, anon_name); |
| 2200 | anon_vma_name_put(anon_name); |
| 2201 | |
| 2202 | return error; |
| 2203 | } |
| 2204 | #endif |
| 2205 | |