| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/mm/mincore.c |
| 4 | * |
| 5 | * Copyright (C) 1994-2006 Linus Torvalds |
| 6 | */ |
| 7 | |
| 8 | /* |
| 9 | * The mincore() system call. |
| 10 | */ |
| 11 | #include <linux/pagemap.h> |
| 12 | #include <linux/gfp.h> |
| 13 | #include <linux/pagewalk.h> |
| 14 | #include <linux/mman.h> |
| 15 | #include <linux/syscalls.h> |
| 16 | #include <linux/swap.h> |
| 17 | #include <linux/swapops.h> |
| 18 | #include <linux/shmem_fs.h> |
| 19 | #include <linux/hugetlb.h> |
| 20 | #include <linux/pgtable.h> |
| 21 | |
| 22 | #include <linux/uaccess.h> |
| 23 | #include "swap.h" |
| 24 | #include "internal.h" |
| 25 | |
| 26 | static int mincore_hugetlb(pte_t *pte, unsigned long hmask, unsigned long addr, |
| 27 | unsigned long end, struct mm_walk *walk) |
| 28 | { |
| 29 | #ifdef CONFIG_HUGETLB_PAGE |
| 30 | unsigned char present; |
| 31 | unsigned char *vec = walk->private; |
| 32 | spinlock_t *ptl; |
| 33 | |
| 34 | ptl = huge_pte_lock(h: hstate_vma(vma: walk->vma), mm: walk->mm, pte); |
| 35 | /* |
| 36 | * Hugepages under user process are always in RAM and never |
| 37 | * swapped out, but theoretically it needs to be checked. |
| 38 | */ |
| 39 | present = pte && !huge_pte_none_mostly(pte: huge_ptep_get(mm: walk->mm, addr, ptep: pte)); |
| 40 | for (; addr != end; vec++, addr += PAGE_SIZE) |
| 41 | *vec = present; |
| 42 | walk->private = vec; |
| 43 | spin_unlock(lock: ptl); |
| 44 | #else |
| 45 | BUG(); |
| 46 | #endif |
| 47 | return 0; |
| 48 | } |
| 49 | |
| 50 | static unsigned char mincore_swap(swp_entry_t entry, bool shmem) |
| 51 | { |
| 52 | struct swap_info_struct *si; |
| 53 | struct folio *folio = NULL; |
| 54 | unsigned char present = 0; |
| 55 | |
| 56 | if (!IS_ENABLED(CONFIG_SWAP)) { |
| 57 | WARN_ON(1); |
| 58 | return 0; |
| 59 | } |
| 60 | |
| 61 | /* |
| 62 | * Shmem mapping may contain swapin error entries, which are |
| 63 | * absent. Page table may contain migration or hwpoison |
| 64 | * entries which are always uptodate. |
| 65 | */ |
| 66 | if (non_swap_entry(entry)) |
| 67 | return !shmem; |
| 68 | |
| 69 | /* |
| 70 | * Shmem mapping lookup is lockless, so we need to grab the swap |
| 71 | * device. mincore page table walk locks the PTL, and the swap |
| 72 | * device is stable, avoid touching the si for better performance. |
| 73 | */ |
| 74 | if (shmem) { |
| 75 | si = get_swap_device(entry); |
| 76 | if (!si) |
| 77 | return 0; |
| 78 | } |
| 79 | folio = swap_cache_get_folio(entry); |
| 80 | if (shmem) |
| 81 | put_swap_device(si); |
| 82 | /* The swap cache space contains either folio, shadow or NULL */ |
| 83 | if (folio && !xa_is_value(entry: folio)) { |
| 84 | present = folio_test_uptodate(folio); |
| 85 | folio_put(folio); |
| 86 | } |
| 87 | |
| 88 | return present; |
| 89 | } |
| 90 | |
| 91 | /* |
| 92 | * Later we can get more picky about what "in core" means precisely. |
| 93 | * For now, simply check to see if the page is in the page cache, |
| 94 | * and is up to date; i.e. that no page-in operation would be required |
| 95 | * at this time if an application were to map and access this page. |
| 96 | */ |
| 97 | static unsigned char mincore_page(struct address_space *mapping, pgoff_t index) |
| 98 | { |
| 99 | unsigned char present = 0; |
| 100 | struct folio *folio; |
| 101 | |
| 102 | /* |
| 103 | * When tmpfs swaps out a page from a file, any process mapping that |
| 104 | * file will not get a swp_entry_t in its pte, but rather it is like |
| 105 | * any other file mapping (ie. marked !present and faulted in with |
| 106 | * tmpfs's .fault). So swapped out tmpfs mappings are tested here. |
| 107 | */ |
| 108 | folio = filemap_get_entry(mapping, index); |
| 109 | if (folio) { |
| 110 | if (xa_is_value(entry: folio)) { |
| 111 | if (shmem_mapping(mapping)) |
| 112 | return mincore_swap(entry: radix_to_swp_entry(arg: folio), |
| 113 | shmem: true); |
| 114 | else |
| 115 | return 0; |
| 116 | } |
| 117 | present = folio_test_uptodate(folio); |
| 118 | folio_put(folio); |
| 119 | } |
| 120 | |
| 121 | return present; |
| 122 | } |
| 123 | |
| 124 | static int __mincore_unmapped_range(unsigned long addr, unsigned long end, |
| 125 | struct vm_area_struct *vma, unsigned char *vec) |
| 126 | { |
| 127 | unsigned long nr = (end - addr) >> PAGE_SHIFT; |
| 128 | int i; |
| 129 | |
| 130 | if (vma->vm_file) { |
| 131 | pgoff_t pgoff; |
| 132 | |
| 133 | pgoff = linear_page_index(vma, address: addr); |
| 134 | for (i = 0; i < nr; i++, pgoff++) |
| 135 | vec[i] = mincore_page(mapping: vma->vm_file->f_mapping, index: pgoff); |
| 136 | } else { |
| 137 | for (i = 0; i < nr; i++) |
| 138 | vec[i] = 0; |
| 139 | } |
| 140 | return nr; |
| 141 | } |
| 142 | |
| 143 | static int mincore_unmapped_range(unsigned long addr, unsigned long end, |
| 144 | __always_unused int depth, |
| 145 | struct mm_walk *walk) |
| 146 | { |
| 147 | walk->private += __mincore_unmapped_range(addr, end, |
| 148 | vma: walk->vma, vec: walk->private); |
| 149 | return 0; |
| 150 | } |
| 151 | |
| 152 | static int mincore_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| 153 | struct mm_walk *walk) |
| 154 | { |
| 155 | spinlock_t *ptl; |
| 156 | struct vm_area_struct *vma = walk->vma; |
| 157 | pte_t *ptep; |
| 158 | unsigned char *vec = walk->private; |
| 159 | int nr = (end - addr) >> PAGE_SHIFT; |
| 160 | int step, i; |
| 161 | |
| 162 | ptl = pmd_trans_huge_lock(pmd, vma); |
| 163 | if (ptl) { |
| 164 | memset(s: vec, c: 1, n: nr); |
| 165 | spin_unlock(lock: ptl); |
| 166 | goto out; |
| 167 | } |
| 168 | |
| 169 | ptep = pte_offset_map_lock(mm: walk->mm, pmd, addr, ptlp: &ptl); |
| 170 | if (!ptep) { |
| 171 | walk->action = ACTION_AGAIN; |
| 172 | return 0; |
| 173 | } |
| 174 | for (; addr != end; ptep += step, addr += step * PAGE_SIZE) { |
| 175 | pte_t pte = ptep_get(ptep); |
| 176 | |
| 177 | step = 1; |
| 178 | /* We need to do cache lookup too for pte markers */ |
| 179 | if (pte_none_mostly(pte)) |
| 180 | __mincore_unmapped_range(addr, end: addr + PAGE_SIZE, |
| 181 | vma, vec); |
| 182 | else if (pte_present(a: pte)) { |
| 183 | unsigned int batch = pte_batch_hint(ptep, pte); |
| 184 | |
| 185 | if (batch > 1) { |
| 186 | unsigned int max_nr = (end - addr) >> PAGE_SHIFT; |
| 187 | |
| 188 | step = min_t(unsigned int, batch, max_nr); |
| 189 | } |
| 190 | |
| 191 | for (i = 0; i < step; i++) |
| 192 | vec[i] = 1; |
| 193 | } else { /* pte is a swap entry */ |
| 194 | *vec = mincore_swap(entry: pte_to_swp_entry(pte), shmem: false); |
| 195 | } |
| 196 | vec += step; |
| 197 | } |
| 198 | pte_unmap_unlock(ptep - 1, ptl); |
| 199 | out: |
| 200 | walk->private += nr; |
| 201 | cond_resched(); |
| 202 | return 0; |
| 203 | } |
| 204 | |
| 205 | static inline bool can_do_mincore(struct vm_area_struct *vma) |
| 206 | { |
| 207 | if (vma_is_anonymous(vma)) |
| 208 | return true; |
| 209 | if (!vma->vm_file) |
| 210 | return false; |
| 211 | /* |
| 212 | * Reveal pagecache information only for non-anonymous mappings that |
| 213 | * correspond to the files the calling process could (if tried) open |
| 214 | * for writing; otherwise we'd be including shared non-exclusive |
| 215 | * mappings, which opens a side channel. |
| 216 | */ |
| 217 | return inode_owner_or_capable(idmap: &nop_mnt_idmap, |
| 218 | inode: file_inode(f: vma->vm_file)) || |
| 219 | file_permission(file: vma->vm_file, MAY_WRITE) == 0; |
| 220 | } |
| 221 | |
| 222 | static const struct mm_walk_ops mincore_walk_ops = { |
| 223 | .pmd_entry = mincore_pte_range, |
| 224 | .pte_hole = mincore_unmapped_range, |
| 225 | .hugetlb_entry = mincore_hugetlb, |
| 226 | .walk_lock = PGWALK_RDLOCK, |
| 227 | }; |
| 228 | |
| 229 | /* |
| 230 | * Do a chunk of "sys_mincore()". We've already checked |
| 231 | * all the arguments, we hold the mmap semaphore: we should |
| 232 | * just return the amount of info we're asked for. |
| 233 | */ |
| 234 | static long do_mincore(unsigned long addr, unsigned long pages, unsigned char *vec) |
| 235 | { |
| 236 | struct vm_area_struct *vma; |
| 237 | unsigned long end; |
| 238 | int err; |
| 239 | |
| 240 | vma = vma_lookup(current->mm, addr); |
| 241 | if (!vma) |
| 242 | return -ENOMEM; |
| 243 | end = min(vma->vm_end, addr + (pages << PAGE_SHIFT)); |
| 244 | if (!can_do_mincore(vma)) { |
| 245 | unsigned long pages = DIV_ROUND_UP(end - addr, PAGE_SIZE); |
| 246 | memset(s: vec, c: 1, n: pages); |
| 247 | return pages; |
| 248 | } |
| 249 | err = walk_page_range(mm: vma->vm_mm, start: addr, end, ops: &mincore_walk_ops, private: vec); |
| 250 | if (err < 0) |
| 251 | return err; |
| 252 | return (end - addr) >> PAGE_SHIFT; |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * The mincore(2) system call. |
| 257 | * |
| 258 | * mincore() returns the memory residency status of the pages in the |
| 259 | * current process's address space specified by [addr, addr + len). |
| 260 | * The status is returned in a vector of bytes. The least significant |
| 261 | * bit of each byte is 1 if the referenced page is in memory, otherwise |
| 262 | * it is zero. |
| 263 | * |
| 264 | * Because the status of a page can change after mincore() checks it |
| 265 | * but before it returns to the application, the returned vector may |
| 266 | * contain stale information. Only locked pages are guaranteed to |
| 267 | * remain in memory. |
| 268 | * |
| 269 | * return values: |
| 270 | * zero - success |
| 271 | * -EFAULT - vec points to an illegal address |
| 272 | * -EINVAL - addr is not a multiple of PAGE_SIZE |
| 273 | * -ENOMEM - Addresses in the range [addr, addr + len] are |
| 274 | * invalid for the address space of this process, or |
| 275 | * specify one or more pages which are not currently |
| 276 | * mapped |
| 277 | * -EAGAIN - A kernel resource was temporarily unavailable. |
| 278 | */ |
| 279 | SYSCALL_DEFINE3(mincore, unsigned long, start, size_t, len, |
| 280 | unsigned char __user *, vec) |
| 281 | { |
| 282 | long retval; |
| 283 | unsigned long pages; |
| 284 | unsigned char *tmp; |
| 285 | |
| 286 | start = untagged_addr(start); |
| 287 | |
| 288 | /* Check the start address: needs to be page-aligned.. */ |
| 289 | if (unlikely(start & ~PAGE_MASK)) |
| 290 | return -EINVAL; |
| 291 | |
| 292 | /* ..and we need to be passed a valid user-space range */ |
| 293 | if (!access_ok((void __user *) start, len)) |
| 294 | return -ENOMEM; |
| 295 | |
| 296 | /* This also avoids any overflows on PAGE_ALIGN */ |
| 297 | pages = len >> PAGE_SHIFT; |
| 298 | pages += (offset_in_page(len)) != 0; |
| 299 | |
| 300 | if (!access_ok(vec, pages)) |
| 301 | return -EFAULT; |
| 302 | |
| 303 | tmp = (void *) __get_free_page(GFP_USER); |
| 304 | if (!tmp) |
| 305 | return -EAGAIN; |
| 306 | |
| 307 | retval = 0; |
| 308 | while (pages) { |
| 309 | /* |
| 310 | * Do at most PAGE_SIZE entries per iteration, due to |
| 311 | * the temporary buffer size. |
| 312 | */ |
| 313 | mmap_read_lock(current->mm); |
| 314 | retval = do_mincore(addr: start, min(pages, PAGE_SIZE), vec: tmp); |
| 315 | mmap_read_unlock(current->mm); |
| 316 | |
| 317 | if (retval <= 0) |
| 318 | break; |
| 319 | if (copy_to_user(to: vec, from: tmp, n: retval)) { |
| 320 | retval = -EFAULT; |
| 321 | break; |
| 322 | } |
| 323 | pages -= retval; |
| 324 | vec += retval; |
| 325 | start += retval << PAGE_SHIFT; |
| 326 | retval = 0; |
| 327 | } |
| 328 | free_page((unsigned long) tmp); |
| 329 | return retval; |
| 330 | } |
| 331 | |