| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * mm/mprotect.c |
| 4 | * |
| 5 | * (C) Copyright 1994 Linus Torvalds |
| 6 | * (C) Copyright 2002 Christoph Hellwig |
| 7 | * |
| 8 | * Address space accounting code <alan@lxorguk.ukuu.org.uk> |
| 9 | * (C) Copyright 2002 Red Hat Inc, All Rights Reserved |
| 10 | */ |
| 11 | |
| 12 | #include <linux/pagewalk.h> |
| 13 | #include <linux/hugetlb.h> |
| 14 | #include <linux/shm.h> |
| 15 | #include <linux/mman.h> |
| 16 | #include <linux/fs.h> |
| 17 | #include <linux/highmem.h> |
| 18 | #include <linux/security.h> |
| 19 | #include <linux/mempolicy.h> |
| 20 | #include <linux/personality.h> |
| 21 | #include <linux/syscalls.h> |
| 22 | #include <linux/swap.h> |
| 23 | #include <linux/swapops.h> |
| 24 | #include <linux/mmu_notifier.h> |
| 25 | #include <linux/migrate.h> |
| 26 | #include <linux/perf_event.h> |
| 27 | #include <linux/pkeys.h> |
| 28 | #include <linux/ksm.h> |
| 29 | #include <linux/uaccess.h> |
| 30 | #include <linux/mm_inline.h> |
| 31 | #include <linux/pgtable.h> |
| 32 | #include <linux/sched/sysctl.h> |
| 33 | #include <linux/userfaultfd_k.h> |
| 34 | #include <linux/memory-tiers.h> |
| 35 | #include <uapi/linux/mman.h> |
| 36 | #include <asm/cacheflush.h> |
| 37 | #include <asm/mmu_context.h> |
| 38 | #include <asm/tlbflush.h> |
| 39 | #include <asm/tlb.h> |
| 40 | |
| 41 | #include "internal.h" |
| 42 | |
| 43 | static bool maybe_change_pte_writable(struct vm_area_struct *vma, pte_t pte) |
| 44 | { |
| 45 | if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) |
| 46 | return false; |
| 47 | |
| 48 | /* Don't touch entries that are not even readable. */ |
| 49 | if (pte_protnone(pte)) |
| 50 | return false; |
| 51 | |
| 52 | /* Do we need write faults for softdirty tracking? */ |
| 53 | if (pte_needs_soft_dirty_wp(vma, pte)) |
| 54 | return false; |
| 55 | |
| 56 | /* Do we need write faults for uffd-wp tracking? */ |
| 57 | if (userfaultfd_pte_wp(vma, pte)) |
| 58 | return false; |
| 59 | |
| 60 | return true; |
| 61 | } |
| 62 | |
| 63 | static bool can_change_private_pte_writable(struct vm_area_struct *vma, |
| 64 | unsigned long addr, pte_t pte) |
| 65 | { |
| 66 | struct page *page; |
| 67 | |
| 68 | if (!maybe_change_pte_writable(vma, pte)) |
| 69 | return false; |
| 70 | |
| 71 | /* |
| 72 | * Writable MAP_PRIVATE mapping: We can only special-case on |
| 73 | * exclusive anonymous pages, because we know that our |
| 74 | * write-fault handler similarly would map them writable without |
| 75 | * any additional checks while holding the PT lock. |
| 76 | */ |
| 77 | page = vm_normal_page(vma, addr, pte); |
| 78 | return page && PageAnon(page) && PageAnonExclusive(page); |
| 79 | } |
| 80 | |
| 81 | static bool can_change_shared_pte_writable(struct vm_area_struct *vma, |
| 82 | pte_t pte) |
| 83 | { |
| 84 | if (!maybe_change_pte_writable(vma, pte)) |
| 85 | return false; |
| 86 | |
| 87 | VM_WARN_ON_ONCE(is_zero_pfn(pte_pfn(pte)) && pte_dirty(pte)); |
| 88 | |
| 89 | /* |
| 90 | * Writable MAP_SHARED mapping: "clean" might indicate that the FS still |
| 91 | * needs a real write-fault for writenotify |
| 92 | * (see vma_wants_writenotify()). If "dirty", the assumption is that the |
| 93 | * FS was already notified and we can simply mark the PTE writable |
| 94 | * just like the write-fault handler would do. |
| 95 | */ |
| 96 | return pte_dirty(pte); |
| 97 | } |
| 98 | |
| 99 | bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, |
| 100 | pte_t pte) |
| 101 | { |
| 102 | if (!(vma->vm_flags & VM_SHARED)) |
| 103 | return can_change_private_pte_writable(vma, addr, pte); |
| 104 | |
| 105 | return can_change_shared_pte_writable(vma, pte); |
| 106 | } |
| 107 | |
| 108 | static int mprotect_folio_pte_batch(struct folio *folio, pte_t *ptep, |
| 109 | pte_t pte, int max_nr_ptes, fpb_t flags) |
| 110 | { |
| 111 | /* No underlying folio, so cannot batch */ |
| 112 | if (!folio) |
| 113 | return 1; |
| 114 | |
| 115 | if (!folio_test_large(folio)) |
| 116 | return 1; |
| 117 | |
| 118 | return folio_pte_batch_flags(folio, NULL, ptep, ptentp: &pte, max_nr: max_nr_ptes, flags); |
| 119 | } |
| 120 | |
| 121 | static bool prot_numa_skip(struct vm_area_struct *vma, unsigned long addr, |
| 122 | pte_t oldpte, pte_t *pte, int target_node, |
| 123 | struct folio *folio) |
| 124 | { |
| 125 | bool ret = true; |
| 126 | bool toptier; |
| 127 | int nid; |
| 128 | |
| 129 | /* Avoid TLB flush if possible */ |
| 130 | if (pte_protnone(pte: oldpte)) |
| 131 | goto skip; |
| 132 | |
| 133 | if (!folio) |
| 134 | goto skip; |
| 135 | |
| 136 | if (folio_is_zone_device(folio) || folio_test_ksm(folio)) |
| 137 | goto skip; |
| 138 | |
| 139 | /* Also skip shared copy-on-write pages */ |
| 140 | if (is_cow_mapping(flags: vma->vm_flags) && |
| 141 | (folio_maybe_dma_pinned(folio) || folio_maybe_mapped_shared(folio))) |
| 142 | goto skip; |
| 143 | |
| 144 | /* |
| 145 | * While migration can move some dirty pages, |
| 146 | * it cannot move them all from MIGRATE_ASYNC |
| 147 | * context. |
| 148 | */ |
| 149 | if (folio_is_file_lru(folio) && folio_test_dirty(folio)) |
| 150 | goto skip; |
| 151 | |
| 152 | /* |
| 153 | * Don't mess with PTEs if page is already on the node |
| 154 | * a single-threaded process is running on. |
| 155 | */ |
| 156 | nid = folio_nid(folio); |
| 157 | if (target_node == nid) |
| 158 | goto skip; |
| 159 | |
| 160 | toptier = node_is_toptier(node: nid); |
| 161 | |
| 162 | /* |
| 163 | * Skip scanning top tier node if normal numa |
| 164 | * balancing is disabled |
| 165 | */ |
| 166 | if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && toptier) |
| 167 | goto skip; |
| 168 | |
| 169 | ret = false; |
| 170 | if (folio_use_access_time(folio)) |
| 171 | folio_xchg_access_time(folio, time: jiffies_to_msecs(j: jiffies)); |
| 172 | |
| 173 | skip: |
| 174 | return ret; |
| 175 | } |
| 176 | |
| 177 | /* Set nr_ptes number of ptes, starting from idx */ |
| 178 | static void prot_commit_flush_ptes(struct vm_area_struct *vma, unsigned long addr, |
| 179 | pte_t *ptep, pte_t oldpte, pte_t ptent, int nr_ptes, |
| 180 | int idx, bool set_write, struct mmu_gather *tlb) |
| 181 | { |
| 182 | /* |
| 183 | * Advance the position in the batch by idx; note that if idx > 0, |
| 184 | * then the nr_ptes passed here is <= batch size - idx. |
| 185 | */ |
| 186 | addr += idx * PAGE_SIZE; |
| 187 | ptep += idx; |
| 188 | oldpte = pte_advance_pfn(pte: oldpte, nr: idx); |
| 189 | ptent = pte_advance_pfn(pte: ptent, nr: idx); |
| 190 | |
| 191 | if (set_write) |
| 192 | ptent = pte_mkwrite(pte: ptent, vma); |
| 193 | |
| 194 | modify_prot_commit_ptes(vma, addr, ptep, old_pte: oldpte, pte: ptent, nr: nr_ptes); |
| 195 | if (pte_needs_flush(oldpte, newpte: ptent)) |
| 196 | tlb_flush_pte_range(tlb, address: addr, size: nr_ptes * PAGE_SIZE); |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Get max length of consecutive ptes pointing to PageAnonExclusive() pages or |
| 201 | * !PageAnonExclusive() pages, starting from start_idx. Caller must enforce |
| 202 | * that the ptes point to consecutive pages of the same anon large folio. |
| 203 | */ |
| 204 | static int page_anon_exclusive_sub_batch(int start_idx, int max_len, |
| 205 | struct page *first_page, bool expected_anon_exclusive) |
| 206 | { |
| 207 | int idx; |
| 208 | |
| 209 | for (idx = start_idx + 1; idx < start_idx + max_len; ++idx) { |
| 210 | if (expected_anon_exclusive != PageAnonExclusive(page: first_page + idx)) |
| 211 | break; |
| 212 | } |
| 213 | return idx - start_idx; |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * This function is a result of trying our very best to retain the |
| 218 | * "avoid the write-fault handler" optimization. In can_change_pte_writable(), |
| 219 | * if the vma is a private vma, and we cannot determine whether to change |
| 220 | * the pte to writable just from the vma and the pte, we then need to look |
| 221 | * at the actual page pointed to by the pte. Unfortunately, if we have a |
| 222 | * batch of ptes pointing to consecutive pages of the same anon large folio, |
| 223 | * the anon-exclusivity (or the negation) of the first page does not guarantee |
| 224 | * the anon-exclusivity (or the negation) of the other pages corresponding to |
| 225 | * the pte batch; hence in this case it is incorrect to decide to change or |
| 226 | * not change the ptes to writable just by using information from the first |
| 227 | * pte of the batch. Therefore, we must individually check all pages and |
| 228 | * retrieve sub-batches. |
| 229 | */ |
| 230 | static void commit_anon_folio_batch(struct vm_area_struct *vma, |
| 231 | struct folio *folio, struct page *first_page, unsigned long addr, pte_t *ptep, |
| 232 | pte_t oldpte, pte_t ptent, int nr_ptes, struct mmu_gather *tlb) |
| 233 | { |
| 234 | bool expected_anon_exclusive; |
| 235 | int sub_batch_idx = 0; |
| 236 | int len; |
| 237 | |
| 238 | while (nr_ptes) { |
| 239 | expected_anon_exclusive = PageAnonExclusive(page: first_page + sub_batch_idx); |
| 240 | len = page_anon_exclusive_sub_batch(start_idx: sub_batch_idx, max_len: nr_ptes, |
| 241 | first_page, expected_anon_exclusive); |
| 242 | prot_commit_flush_ptes(vma, addr, ptep, oldpte, ptent, nr_ptes: len, |
| 243 | idx: sub_batch_idx, set_write: expected_anon_exclusive, tlb); |
| 244 | sub_batch_idx += len; |
| 245 | nr_ptes -= len; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | static void set_write_prot_commit_flush_ptes(struct vm_area_struct *vma, |
| 250 | struct folio *folio, struct page *page, unsigned long addr, pte_t *ptep, |
| 251 | pte_t oldpte, pte_t ptent, int nr_ptes, struct mmu_gather *tlb) |
| 252 | { |
| 253 | bool set_write; |
| 254 | |
| 255 | if (vma->vm_flags & VM_SHARED) { |
| 256 | set_write = can_change_shared_pte_writable(vma, pte: ptent); |
| 257 | prot_commit_flush_ptes(vma, addr, ptep, oldpte, ptent, nr_ptes, |
| 258 | /* idx = */ 0, set_write, tlb); |
| 259 | return; |
| 260 | } |
| 261 | |
| 262 | set_write = maybe_change_pte_writable(vma, pte: ptent) && |
| 263 | (folio && folio_test_anon(folio)); |
| 264 | if (!set_write) { |
| 265 | prot_commit_flush_ptes(vma, addr, ptep, oldpte, ptent, nr_ptes, |
| 266 | /* idx = */ 0, set_write, tlb); |
| 267 | return; |
| 268 | } |
| 269 | commit_anon_folio_batch(vma, folio, first_page: page, addr, ptep, oldpte, ptent, nr_ptes, tlb); |
| 270 | } |
| 271 | |
| 272 | static long change_pte_range(struct mmu_gather *tlb, |
| 273 | struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, |
| 274 | unsigned long end, pgprot_t newprot, unsigned long cp_flags) |
| 275 | { |
| 276 | pte_t *pte, oldpte; |
| 277 | spinlock_t *ptl; |
| 278 | long pages = 0; |
| 279 | int target_node = NUMA_NO_NODE; |
| 280 | bool prot_numa = cp_flags & MM_CP_PROT_NUMA; |
| 281 | bool uffd_wp = cp_flags & MM_CP_UFFD_WP; |
| 282 | bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; |
| 283 | int nr_ptes; |
| 284 | |
| 285 | tlb_change_page_size(tlb, PAGE_SIZE); |
| 286 | pte = pte_offset_map_lock(mm: vma->vm_mm, pmd, addr, ptlp: &ptl); |
| 287 | if (!pte) |
| 288 | return -EAGAIN; |
| 289 | |
| 290 | /* Get target node for single threaded private VMAs */ |
| 291 | if (prot_numa && !(vma->vm_flags & VM_SHARED) && |
| 292 | atomic_read(v: &vma->vm_mm->mm_users) == 1) |
| 293 | target_node = numa_node_id(); |
| 294 | |
| 295 | flush_tlb_batched_pending(mm: vma->vm_mm); |
| 296 | arch_enter_lazy_mmu_mode(); |
| 297 | do { |
| 298 | nr_ptes = 1; |
| 299 | oldpte = ptep_get(ptep: pte); |
| 300 | if (pte_present(a: oldpte)) { |
| 301 | const fpb_t flags = FPB_RESPECT_SOFT_DIRTY | FPB_RESPECT_WRITE; |
| 302 | int max_nr_ptes = (end - addr) >> PAGE_SHIFT; |
| 303 | struct folio *folio = NULL; |
| 304 | struct page *page; |
| 305 | pte_t ptent; |
| 306 | |
| 307 | page = vm_normal_page(vma, addr, pte: oldpte); |
| 308 | if (page) |
| 309 | folio = page_folio(page); |
| 310 | /* |
| 311 | * Avoid trapping faults against the zero or KSM |
| 312 | * pages. See similar comment in change_huge_pmd. |
| 313 | */ |
| 314 | if (prot_numa) { |
| 315 | int ret = prot_numa_skip(vma, addr, oldpte, pte, |
| 316 | target_node, folio); |
| 317 | if (ret) { |
| 318 | |
| 319 | /* determine batch to skip */ |
| 320 | nr_ptes = mprotect_folio_pte_batch(folio, |
| 321 | ptep: pte, pte: oldpte, max_nr_ptes, /* flags = */ 0); |
| 322 | continue; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | nr_ptes = mprotect_folio_pte_batch(folio, ptep: pte, pte: oldpte, max_nr_ptes, flags); |
| 327 | |
| 328 | oldpte = modify_prot_start_ptes(vma, addr, ptep: pte, nr: nr_ptes); |
| 329 | ptent = pte_modify(pte: oldpte, newprot); |
| 330 | |
| 331 | if (uffd_wp) |
| 332 | ptent = pte_mkuffd_wp(pte: ptent); |
| 333 | else if (uffd_wp_resolve) |
| 334 | ptent = pte_clear_uffd_wp(pte: ptent); |
| 335 | |
| 336 | /* |
| 337 | * In some writable, shared mappings, we might want |
| 338 | * to catch actual write access -- see |
| 339 | * vma_wants_writenotify(). |
| 340 | * |
| 341 | * In all writable, private mappings, we have to |
| 342 | * properly handle COW. |
| 343 | * |
| 344 | * In both cases, we can sometimes still change PTEs |
| 345 | * writable and avoid the write-fault handler, for |
| 346 | * example, if a PTE is already dirty and no other |
| 347 | * COW or special handling is required. |
| 348 | */ |
| 349 | if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && |
| 350 | !pte_write(pte: ptent)) |
| 351 | set_write_prot_commit_flush_ptes(vma, folio, page, |
| 352 | addr, ptep: pte, oldpte, ptent, nr_ptes, tlb); |
| 353 | else |
| 354 | prot_commit_flush_ptes(vma, addr, ptep: pte, oldpte, ptent, |
| 355 | nr_ptes, /* idx = */ 0, /* set_write = */ false, tlb); |
| 356 | pages += nr_ptes; |
| 357 | } else if (is_swap_pte(pte: oldpte)) { |
| 358 | swp_entry_t entry = pte_to_swp_entry(pte: oldpte); |
| 359 | pte_t newpte; |
| 360 | |
| 361 | if (is_writable_migration_entry(entry)) { |
| 362 | struct folio *folio = pfn_swap_entry_folio(entry); |
| 363 | |
| 364 | /* |
| 365 | * A protection check is difficult so |
| 366 | * just be safe and disable write |
| 367 | */ |
| 368 | if (folio_test_anon(folio)) |
| 369 | entry = make_readable_exclusive_migration_entry( |
| 370 | offset: swp_offset(entry)); |
| 371 | else |
| 372 | entry = make_readable_migration_entry(offset: swp_offset(entry)); |
| 373 | newpte = swp_entry_to_pte(entry); |
| 374 | if (pte_swp_soft_dirty(pte: oldpte)) |
| 375 | newpte = pte_swp_mksoft_dirty(pte: newpte); |
| 376 | } else if (is_writable_device_private_entry(entry)) { |
| 377 | /* |
| 378 | * We do not preserve soft-dirtiness. See |
| 379 | * copy_nonpresent_pte() for explanation. |
| 380 | */ |
| 381 | entry = make_readable_device_private_entry( |
| 382 | offset: swp_offset(entry)); |
| 383 | newpte = swp_entry_to_pte(entry); |
| 384 | if (pte_swp_uffd_wp(pte: oldpte)) |
| 385 | newpte = pte_swp_mkuffd_wp(pte: newpte); |
| 386 | } else if (is_pte_marker_entry(entry)) { |
| 387 | /* |
| 388 | * Ignore error swap entries unconditionally, |
| 389 | * because any access should sigbus/sigsegv |
| 390 | * anyway. |
| 391 | */ |
| 392 | if (is_poisoned_swp_entry(entry) || |
| 393 | is_guard_swp_entry(entry)) |
| 394 | continue; |
| 395 | /* |
| 396 | * If this is uffd-wp pte marker and we'd like |
| 397 | * to unprotect it, drop it; the next page |
| 398 | * fault will trigger without uffd trapping. |
| 399 | */ |
| 400 | if (uffd_wp_resolve) { |
| 401 | pte_clear(vma->vm_mm, addr, pte); |
| 402 | pages++; |
| 403 | } |
| 404 | continue; |
| 405 | } else { |
| 406 | newpte = oldpte; |
| 407 | } |
| 408 | |
| 409 | if (uffd_wp) |
| 410 | newpte = pte_swp_mkuffd_wp(pte: newpte); |
| 411 | else if (uffd_wp_resolve) |
| 412 | newpte = pte_swp_clear_uffd_wp(pte: newpte); |
| 413 | |
| 414 | if (!pte_same(a: oldpte, b: newpte)) { |
| 415 | set_pte_at(vma->vm_mm, addr, pte, newpte); |
| 416 | pages++; |
| 417 | } |
| 418 | } else { |
| 419 | /* It must be an none page, or what else?.. */ |
| 420 | WARN_ON_ONCE(!pte_none(oldpte)); |
| 421 | |
| 422 | /* |
| 423 | * Nobody plays with any none ptes besides |
| 424 | * userfaultfd when applying the protections. |
| 425 | */ |
| 426 | if (likely(!uffd_wp)) |
| 427 | continue; |
| 428 | |
| 429 | if (userfaultfd_wp_use_markers(vma)) { |
| 430 | /* |
| 431 | * For file-backed mem, we need to be able to |
| 432 | * wr-protect a none pte, because even if the |
| 433 | * pte is none, the page/swap cache could |
| 434 | * exist. Doing that by install a marker. |
| 435 | */ |
| 436 | set_pte_at(vma->vm_mm, addr, pte, |
| 437 | make_pte_marker(PTE_MARKER_UFFD_WP)); |
| 438 | pages++; |
| 439 | } |
| 440 | } |
| 441 | } while (pte += nr_ptes, addr += nr_ptes * PAGE_SIZE, addr != end); |
| 442 | arch_leave_lazy_mmu_mode(); |
| 443 | pte_unmap_unlock(pte - 1, ptl); |
| 444 | |
| 445 | return pages; |
| 446 | } |
| 447 | |
| 448 | /* |
| 449 | * Return true if we want to split THPs into PTE mappings in change |
| 450 | * protection procedure, false otherwise. |
| 451 | */ |
| 452 | static inline bool |
| 453 | pgtable_split_needed(struct vm_area_struct *vma, unsigned long cp_flags) |
| 454 | { |
| 455 | /* |
| 456 | * pte markers only resides in pte level, if we need pte markers, |
| 457 | * we need to split. For example, we cannot wr-protect a file thp |
| 458 | * (e.g. 2M shmem) because file thp is handled differently when |
| 459 | * split by erasing the pmd so far. |
| 460 | */ |
| 461 | return (cp_flags & MM_CP_UFFD_WP) && !vma_is_anonymous(vma); |
| 462 | } |
| 463 | |
| 464 | /* |
| 465 | * Return true if we want to populate pgtables in change protection |
| 466 | * procedure, false otherwise |
| 467 | */ |
| 468 | static inline bool |
| 469 | pgtable_populate_needed(struct vm_area_struct *vma, unsigned long cp_flags) |
| 470 | { |
| 471 | /* If not within ioctl(UFFDIO_WRITEPROTECT), then don't bother */ |
| 472 | if (!(cp_flags & MM_CP_UFFD_WP)) |
| 473 | return false; |
| 474 | |
| 475 | /* Populate if the userfaultfd mode requires pte markers */ |
| 476 | return userfaultfd_wp_use_markers(vma); |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * Populate the pgtable underneath for whatever reason if requested. |
| 481 | * When {pte|pmd|...}_alloc() failed we treat it the same way as pgtable |
| 482 | * allocation failures during page faults by kicking OOM and returning |
| 483 | * error. |
| 484 | */ |
| 485 | #define change_pmd_prepare(vma, pmd, cp_flags) \ |
| 486 | ({ \ |
| 487 | long err = 0; \ |
| 488 | if (unlikely(pgtable_populate_needed(vma, cp_flags))) { \ |
| 489 | if (pte_alloc(vma->vm_mm, pmd)) \ |
| 490 | err = -ENOMEM; \ |
| 491 | } \ |
| 492 | err; \ |
| 493 | }) |
| 494 | |
| 495 | /* |
| 496 | * This is the general pud/p4d/pgd version of change_pmd_prepare(). We need to |
| 497 | * have separate change_pmd_prepare() because pte_alloc() returns 0 on success, |
| 498 | * while {pmd|pud|p4d}_alloc() returns the valid pointer on success. |
| 499 | */ |
| 500 | #define change_prepare(vma, high, low, addr, cp_flags) \ |
| 501 | ({ \ |
| 502 | long err = 0; \ |
| 503 | if (unlikely(pgtable_populate_needed(vma, cp_flags))) { \ |
| 504 | low##_t *p = low##_alloc(vma->vm_mm, high, addr); \ |
| 505 | if (p == NULL) \ |
| 506 | err = -ENOMEM; \ |
| 507 | } \ |
| 508 | err; \ |
| 509 | }) |
| 510 | |
| 511 | static inline long change_pmd_range(struct mmu_gather *tlb, |
| 512 | struct vm_area_struct *vma, pud_t *pud, unsigned long addr, |
| 513 | unsigned long end, pgprot_t newprot, unsigned long cp_flags) |
| 514 | { |
| 515 | pmd_t *pmd; |
| 516 | unsigned long next; |
| 517 | long pages = 0; |
| 518 | unsigned long nr_huge_updates = 0; |
| 519 | |
| 520 | pmd = pmd_offset(pud, address: addr); |
| 521 | do { |
| 522 | long ret; |
| 523 | pmd_t _pmd; |
| 524 | again: |
| 525 | next = pmd_addr_end(addr, end); |
| 526 | |
| 527 | ret = change_pmd_prepare(vma, pmd, cp_flags); |
| 528 | if (ret) { |
| 529 | pages = ret; |
| 530 | break; |
| 531 | } |
| 532 | |
| 533 | if (pmd_none(pmd: *pmd)) |
| 534 | goto next; |
| 535 | |
| 536 | _pmd = pmdp_get_lockless(pmdp: pmd); |
| 537 | if (is_swap_pmd(pmd: _pmd) || pmd_trans_huge(pmd: _pmd)) { |
| 538 | if ((next - addr != HPAGE_PMD_SIZE) || |
| 539 | pgtable_split_needed(vma, cp_flags)) { |
| 540 | __split_huge_pmd(vma, pmd, address: addr, freeze: false); |
| 541 | /* |
| 542 | * For file-backed, the pmd could have been |
| 543 | * cleared; make sure pmd populated if |
| 544 | * necessary, then fall-through to pte level. |
| 545 | */ |
| 546 | ret = change_pmd_prepare(vma, pmd, cp_flags); |
| 547 | if (ret) { |
| 548 | pages = ret; |
| 549 | break; |
| 550 | } |
| 551 | } else { |
| 552 | ret = change_huge_pmd(tlb, vma, pmd, |
| 553 | addr, newprot, cp_flags); |
| 554 | if (ret) { |
| 555 | if (ret == HPAGE_PMD_NR) { |
| 556 | pages += HPAGE_PMD_NR; |
| 557 | nr_huge_updates++; |
| 558 | } |
| 559 | |
| 560 | /* huge pmd was handled */ |
| 561 | goto next; |
| 562 | } |
| 563 | } |
| 564 | /* fall through, the trans huge pmd just split */ |
| 565 | } |
| 566 | |
| 567 | ret = change_pte_range(tlb, vma, pmd, addr, end: next, newprot, |
| 568 | cp_flags); |
| 569 | if (ret < 0) |
| 570 | goto again; |
| 571 | pages += ret; |
| 572 | next: |
| 573 | cond_resched(); |
| 574 | } while (pmd++, addr = next, addr != end); |
| 575 | |
| 576 | if (nr_huge_updates) |
| 577 | count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates); |
| 578 | return pages; |
| 579 | } |
| 580 | |
| 581 | static inline long change_pud_range(struct mmu_gather *tlb, |
| 582 | struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, |
| 583 | unsigned long end, pgprot_t newprot, unsigned long cp_flags) |
| 584 | { |
| 585 | struct mmu_notifier_range range; |
| 586 | pud_t *pudp, pud; |
| 587 | unsigned long next; |
| 588 | long pages = 0, ret; |
| 589 | |
| 590 | range.start = 0; |
| 591 | |
| 592 | pudp = pud_offset(p4d, address: addr); |
| 593 | do { |
| 594 | again: |
| 595 | next = pud_addr_end(addr, end); |
| 596 | ret = change_prepare(vma, pudp, pmd, addr, cp_flags); |
| 597 | if (ret) { |
| 598 | pages = ret; |
| 599 | break; |
| 600 | } |
| 601 | |
| 602 | pud = READ_ONCE(*pudp); |
| 603 | if (pud_none(pud)) |
| 604 | continue; |
| 605 | |
| 606 | if (!range.start) { |
| 607 | mmu_notifier_range_init(range: &range, |
| 608 | event: MMU_NOTIFY_PROTECTION_VMA, flags: 0, |
| 609 | mm: vma->vm_mm, start: addr, end); |
| 610 | mmu_notifier_invalidate_range_start(range: &range); |
| 611 | } |
| 612 | |
| 613 | if (pud_leaf(pud)) { |
| 614 | if ((next - addr != PUD_SIZE) || |
| 615 | pgtable_split_needed(vma, cp_flags)) { |
| 616 | __split_huge_pud(vma, pud: pudp, address: addr); |
| 617 | goto again; |
| 618 | } else { |
| 619 | ret = change_huge_pud(tlb, vma, pudp, |
| 620 | addr, newprot, cp_flags); |
| 621 | if (ret == 0) |
| 622 | goto again; |
| 623 | /* huge pud was handled */ |
| 624 | if (ret == HPAGE_PUD_NR) |
| 625 | pages += HPAGE_PUD_NR; |
| 626 | continue; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | pages += change_pmd_range(tlb, vma, pud: pudp, addr, end: next, newprot, |
| 631 | cp_flags); |
| 632 | } while (pudp++, addr = next, addr != end); |
| 633 | |
| 634 | if (range.start) |
| 635 | mmu_notifier_invalidate_range_end(range: &range); |
| 636 | |
| 637 | return pages; |
| 638 | } |
| 639 | |
| 640 | static inline long change_p4d_range(struct mmu_gather *tlb, |
| 641 | struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, |
| 642 | unsigned long end, pgprot_t newprot, unsigned long cp_flags) |
| 643 | { |
| 644 | p4d_t *p4d; |
| 645 | unsigned long next; |
| 646 | long pages = 0, ret; |
| 647 | |
| 648 | p4d = p4d_offset(pgd, address: addr); |
| 649 | do { |
| 650 | next = p4d_addr_end(addr, end); |
| 651 | ret = change_prepare(vma, p4d, pud, addr, cp_flags); |
| 652 | if (ret) |
| 653 | return ret; |
| 654 | if (p4d_none_or_clear_bad(p4d)) |
| 655 | continue; |
| 656 | pages += change_pud_range(tlb, vma, p4d, addr, end: next, newprot, |
| 657 | cp_flags); |
| 658 | } while (p4d++, addr = next, addr != end); |
| 659 | |
| 660 | return pages; |
| 661 | } |
| 662 | |
| 663 | static long change_protection_range(struct mmu_gather *tlb, |
| 664 | struct vm_area_struct *vma, unsigned long addr, |
| 665 | unsigned long end, pgprot_t newprot, unsigned long cp_flags) |
| 666 | { |
| 667 | struct mm_struct *mm = vma->vm_mm; |
| 668 | pgd_t *pgd; |
| 669 | unsigned long next; |
| 670 | long pages = 0, ret; |
| 671 | |
| 672 | BUG_ON(addr >= end); |
| 673 | pgd = pgd_offset(mm, addr); |
| 674 | tlb_start_vma(tlb, vma); |
| 675 | do { |
| 676 | next = pgd_addr_end(addr, end); |
| 677 | ret = change_prepare(vma, pgd, p4d, addr, cp_flags); |
| 678 | if (ret) { |
| 679 | pages = ret; |
| 680 | break; |
| 681 | } |
| 682 | if (pgd_none_or_clear_bad(pgd)) |
| 683 | continue; |
| 684 | pages += change_p4d_range(tlb, vma, pgd, addr, end: next, newprot, |
| 685 | cp_flags); |
| 686 | } while (pgd++, addr = next, addr != end); |
| 687 | |
| 688 | tlb_end_vma(tlb, vma); |
| 689 | |
| 690 | return pages; |
| 691 | } |
| 692 | |
| 693 | long change_protection(struct mmu_gather *tlb, |
| 694 | struct vm_area_struct *vma, unsigned long start, |
| 695 | unsigned long end, unsigned long cp_flags) |
| 696 | { |
| 697 | pgprot_t newprot = vma->vm_page_prot; |
| 698 | long pages; |
| 699 | |
| 700 | BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL); |
| 701 | |
| 702 | #ifdef CONFIG_NUMA_BALANCING |
| 703 | /* |
| 704 | * Ordinary protection updates (mprotect, uffd-wp, softdirty tracking) |
| 705 | * are expected to reflect their requirements via VMA flags such that |
| 706 | * vma_set_page_prot() will adjust vma->vm_page_prot accordingly. |
| 707 | */ |
| 708 | if (cp_flags & MM_CP_PROT_NUMA) |
| 709 | newprot = PAGE_NONE; |
| 710 | #else |
| 711 | WARN_ON_ONCE(cp_flags & MM_CP_PROT_NUMA); |
| 712 | #endif |
| 713 | |
| 714 | if (is_vm_hugetlb_page(vma)) |
| 715 | pages = hugetlb_change_protection(vma, address: start, end, newprot, |
| 716 | cp_flags); |
| 717 | else |
| 718 | pages = change_protection_range(tlb, vma, addr: start, end, newprot, |
| 719 | cp_flags); |
| 720 | |
| 721 | return pages; |
| 722 | } |
| 723 | |
| 724 | static int prot_none_pte_entry(pte_t *pte, unsigned long addr, |
| 725 | unsigned long next, struct mm_walk *walk) |
| 726 | { |
| 727 | return pfn_modify_allowed(pfn: pte_pfn(pte: ptep_get(ptep: pte)), |
| 728 | prot: *(pgprot_t *)(walk->private)) ? |
| 729 | 0 : -EACCES; |
| 730 | } |
| 731 | |
| 732 | static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask, |
| 733 | unsigned long addr, unsigned long next, |
| 734 | struct mm_walk *walk) |
| 735 | { |
| 736 | return pfn_modify_allowed(pfn: pte_pfn(pte: ptep_get(ptep: pte)), |
| 737 | prot: *(pgprot_t *)(walk->private)) ? |
| 738 | 0 : -EACCES; |
| 739 | } |
| 740 | |
| 741 | static int prot_none_test(unsigned long addr, unsigned long next, |
| 742 | struct mm_walk *walk) |
| 743 | { |
| 744 | return 0; |
| 745 | } |
| 746 | |
| 747 | static const struct mm_walk_ops prot_none_walk_ops = { |
| 748 | .pte_entry = prot_none_pte_entry, |
| 749 | .hugetlb_entry = prot_none_hugetlb_entry, |
| 750 | .test_walk = prot_none_test, |
| 751 | .walk_lock = PGWALK_WRLOCK, |
| 752 | }; |
| 753 | |
| 754 | int |
| 755 | mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, |
| 756 | struct vm_area_struct *vma, struct vm_area_struct **pprev, |
| 757 | unsigned long start, unsigned long end, vm_flags_t newflags) |
| 758 | { |
| 759 | struct mm_struct *mm = vma->vm_mm; |
| 760 | vm_flags_t oldflags = READ_ONCE(vma->vm_flags); |
| 761 | long nrpages = (end - start) >> PAGE_SHIFT; |
| 762 | unsigned int mm_cp_flags = 0; |
| 763 | unsigned long charged = 0; |
| 764 | int error; |
| 765 | |
| 766 | if (vma_is_sealed(vma)) |
| 767 | return -EPERM; |
| 768 | |
| 769 | if (newflags == oldflags) { |
| 770 | *pprev = vma; |
| 771 | return 0; |
| 772 | } |
| 773 | |
| 774 | /* |
| 775 | * Do PROT_NONE PFN permission checks here when we can still |
| 776 | * bail out without undoing a lot of state. This is a rather |
| 777 | * uncommon case, so doesn't need to be very optimized. |
| 778 | */ |
| 779 | if (arch_has_pfn_modify_check() && |
| 780 | (oldflags & (VM_PFNMAP|VM_MIXEDMAP)) && |
| 781 | (newflags & VM_ACCESS_FLAGS) == 0) { |
| 782 | pgprot_t new_pgprot = vm_get_page_prot(vm_flags: newflags); |
| 783 | |
| 784 | error = walk_page_range(current->mm, start, end, |
| 785 | ops: &prot_none_walk_ops, private: &new_pgprot); |
| 786 | if (error) |
| 787 | return error; |
| 788 | } |
| 789 | |
| 790 | /* |
| 791 | * If we make a private mapping writable we increase our commit; |
| 792 | * but (without finer accounting) cannot reduce our commit if we |
| 793 | * make it unwritable again except in the anonymous case where no |
| 794 | * anon_vma has yet to be assigned. |
| 795 | * |
| 796 | * hugetlb mapping were accounted for even if read-only so there is |
| 797 | * no need to account for them here. |
| 798 | */ |
| 799 | if (newflags & VM_WRITE) { |
| 800 | /* Check space limits when area turns into data. */ |
| 801 | if (!may_expand_vm(mm, newflags, npages: nrpages) && |
| 802 | may_expand_vm(mm, oldflags, npages: nrpages)) |
| 803 | return -ENOMEM; |
| 804 | if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB| |
| 805 | VM_SHARED|VM_NORESERVE))) { |
| 806 | charged = nrpages; |
| 807 | if (security_vm_enough_memory_mm(mm, pages: charged)) |
| 808 | return -ENOMEM; |
| 809 | newflags |= VM_ACCOUNT; |
| 810 | } |
| 811 | } else if ((oldflags & VM_ACCOUNT) && vma_is_anonymous(vma) && |
| 812 | !vma->anon_vma) { |
| 813 | newflags &= ~VM_ACCOUNT; |
| 814 | } |
| 815 | |
| 816 | vma = vma_modify_flags(vmi, prev: *pprev, vma, start, end, vm_flags: newflags); |
| 817 | if (IS_ERR(ptr: vma)) { |
| 818 | error = PTR_ERR(ptr: vma); |
| 819 | goto fail; |
| 820 | } |
| 821 | |
| 822 | *pprev = vma; |
| 823 | |
| 824 | /* |
| 825 | * vm_flags and vm_page_prot are protected by the mmap_lock |
| 826 | * held in write mode. |
| 827 | */ |
| 828 | vma_start_write(vma); |
| 829 | vm_flags_reset_once(vma, flags: newflags); |
| 830 | if (vma_wants_manual_pte_write_upgrade(vma)) |
| 831 | mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE; |
| 832 | vma_set_page_prot(vma); |
| 833 | |
| 834 | change_protection(tlb, vma, start, end, cp_flags: mm_cp_flags); |
| 835 | |
| 836 | if ((oldflags & VM_ACCOUNT) && !(newflags & VM_ACCOUNT)) |
| 837 | vm_unacct_memory(pages: nrpages); |
| 838 | |
| 839 | /* |
| 840 | * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major |
| 841 | * fault on access. |
| 842 | */ |
| 843 | if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED && |
| 844 | (newflags & VM_WRITE)) { |
| 845 | populate_vma_page_range(vma, start, end, NULL); |
| 846 | } |
| 847 | |
| 848 | vm_stat_account(mm, oldflags, npages: -nrpages); |
| 849 | vm_stat_account(mm, newflags, npages: nrpages); |
| 850 | perf_event_mmap(vma); |
| 851 | return 0; |
| 852 | |
| 853 | fail: |
| 854 | vm_unacct_memory(pages: charged); |
| 855 | return error; |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | * pkey==-1 when doing a legacy mprotect() |
| 860 | */ |
| 861 | static int do_mprotect_pkey(unsigned long start, size_t len, |
| 862 | unsigned long prot, int pkey) |
| 863 | { |
| 864 | unsigned long nstart, end, tmp, reqprot; |
| 865 | struct vm_area_struct *vma, *prev; |
| 866 | int error; |
| 867 | const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP); |
| 868 | const bool rier = (current->personality & READ_IMPLIES_EXEC) && |
| 869 | (prot & PROT_READ); |
| 870 | struct mmu_gather tlb; |
| 871 | struct vma_iterator vmi; |
| 872 | |
| 873 | start = untagged_addr(start); |
| 874 | |
| 875 | prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP); |
| 876 | if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */ |
| 877 | return -EINVAL; |
| 878 | |
| 879 | if (start & ~PAGE_MASK) |
| 880 | return -EINVAL; |
| 881 | if (!len) |
| 882 | return 0; |
| 883 | len = PAGE_ALIGN(len); |
| 884 | end = start + len; |
| 885 | if (end <= start) |
| 886 | return -ENOMEM; |
| 887 | if (!arch_validate_prot(prot, addr: start)) |
| 888 | return -EINVAL; |
| 889 | |
| 890 | reqprot = prot; |
| 891 | |
| 892 | if (mmap_write_lock_killable(current->mm)) |
| 893 | return -EINTR; |
| 894 | |
| 895 | /* |
| 896 | * If userspace did not allocate the pkey, do not let |
| 897 | * them use it here. |
| 898 | */ |
| 899 | error = -EINVAL; |
| 900 | if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey)) |
| 901 | goto out; |
| 902 | |
| 903 | vma_iter_init(vmi: &vmi, current->mm, addr: start); |
| 904 | vma = vma_find(vmi: &vmi, max: end); |
| 905 | error = -ENOMEM; |
| 906 | if (!vma) |
| 907 | goto out; |
| 908 | |
| 909 | if (unlikely(grows & PROT_GROWSDOWN)) { |
| 910 | if (vma->vm_start >= end) |
| 911 | goto out; |
| 912 | start = vma->vm_start; |
| 913 | error = -EINVAL; |
| 914 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
| 915 | goto out; |
| 916 | } else { |
| 917 | if (vma->vm_start > start) |
| 918 | goto out; |
| 919 | if (unlikely(grows & PROT_GROWSUP)) { |
| 920 | end = vma->vm_end; |
| 921 | error = -EINVAL; |
| 922 | if (!(vma->vm_flags & VM_GROWSUP)) |
| 923 | goto out; |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | prev = vma_prev(vmi: &vmi); |
| 928 | if (start > vma->vm_start) |
| 929 | prev = vma; |
| 930 | |
| 931 | tlb_gather_mmu(tlb: &tlb, current->mm); |
| 932 | nstart = start; |
| 933 | tmp = vma->vm_start; |
| 934 | for_each_vma_range(vmi, vma, end) { |
| 935 | vm_flags_t mask_off_old_flags; |
| 936 | vm_flags_t newflags; |
| 937 | int new_vma_pkey; |
| 938 | |
| 939 | if (vma->vm_start != tmp) { |
| 940 | error = -ENOMEM; |
| 941 | break; |
| 942 | } |
| 943 | |
| 944 | /* Does the application expect PROT_READ to imply PROT_EXEC */ |
| 945 | if (rier && (vma->vm_flags & VM_MAYEXEC)) |
| 946 | prot |= PROT_EXEC; |
| 947 | |
| 948 | /* |
| 949 | * Each mprotect() call explicitly passes r/w/x permissions. |
| 950 | * If a permission is not passed to mprotect(), it must be |
| 951 | * cleared from the VMA. |
| 952 | */ |
| 953 | mask_off_old_flags = VM_ACCESS_FLAGS | VM_FLAGS_CLEAR; |
| 954 | |
| 955 | new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey); |
| 956 | newflags = calc_vm_prot_bits(prot, pkey: new_vma_pkey); |
| 957 | newflags |= (vma->vm_flags & ~mask_off_old_flags); |
| 958 | |
| 959 | /* newflags >> 4 shift VM_MAY% in place of VM_% */ |
| 960 | if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) { |
| 961 | error = -EACCES; |
| 962 | break; |
| 963 | } |
| 964 | |
| 965 | if (map_deny_write_exec(old: vma->vm_flags, new: newflags)) { |
| 966 | error = -EACCES; |
| 967 | break; |
| 968 | } |
| 969 | |
| 970 | /* Allow architectures to sanity-check the new flags */ |
| 971 | if (!arch_validate_flags(flags: newflags)) { |
| 972 | error = -EINVAL; |
| 973 | break; |
| 974 | } |
| 975 | |
| 976 | error = security_file_mprotect(vma, reqprot, prot); |
| 977 | if (error) |
| 978 | break; |
| 979 | |
| 980 | tmp = vma->vm_end; |
| 981 | if (tmp > end) |
| 982 | tmp = end; |
| 983 | |
| 984 | if (vma->vm_ops && vma->vm_ops->mprotect) { |
| 985 | error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags); |
| 986 | if (error) |
| 987 | break; |
| 988 | } |
| 989 | |
| 990 | error = mprotect_fixup(vmi: &vmi, tlb: &tlb, vma, pprev: &prev, start: nstart, end: tmp, newflags); |
| 991 | if (error) |
| 992 | break; |
| 993 | |
| 994 | tmp = vma_iter_end(vmi: &vmi); |
| 995 | nstart = tmp; |
| 996 | prot = reqprot; |
| 997 | } |
| 998 | tlb_finish_mmu(tlb: &tlb); |
| 999 | |
| 1000 | if (!error && tmp < end) |
| 1001 | error = -ENOMEM; |
| 1002 | |
| 1003 | out: |
| 1004 | mmap_write_unlock(current->mm); |
| 1005 | return error; |
| 1006 | } |
| 1007 | |
| 1008 | SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len, |
| 1009 | unsigned long, prot) |
| 1010 | { |
| 1011 | return do_mprotect_pkey(start, len, prot, pkey: -1); |
| 1012 | } |
| 1013 | |
| 1014 | #ifdef CONFIG_ARCH_HAS_PKEYS |
| 1015 | |
| 1016 | SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len, |
| 1017 | unsigned long, prot, int, pkey) |
| 1018 | { |
| 1019 | return do_mprotect_pkey(start, len, prot, pkey); |
| 1020 | } |
| 1021 | |
| 1022 | SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val) |
| 1023 | { |
| 1024 | int pkey; |
| 1025 | int ret; |
| 1026 | |
| 1027 | /* No flags supported yet. */ |
| 1028 | if (flags) |
| 1029 | return -EINVAL; |
| 1030 | /* check for unsupported init values */ |
| 1031 | if (init_val & ~PKEY_ACCESS_MASK) |
| 1032 | return -EINVAL; |
| 1033 | |
| 1034 | mmap_write_lock(current->mm); |
| 1035 | pkey = mm_pkey_alloc(current->mm); |
| 1036 | |
| 1037 | ret = -ENOSPC; |
| 1038 | if (pkey == -1) |
| 1039 | goto out; |
| 1040 | |
| 1041 | ret = arch_set_user_pkey_access(current, pkey, init_val); |
| 1042 | if (ret) { |
| 1043 | mm_pkey_free(current->mm, pkey); |
| 1044 | goto out; |
| 1045 | } |
| 1046 | ret = pkey; |
| 1047 | out: |
| 1048 | mmap_write_unlock(current->mm); |
| 1049 | return ret; |
| 1050 | } |
| 1051 | |
| 1052 | SYSCALL_DEFINE1(pkey_free, int, pkey) |
| 1053 | { |
| 1054 | int ret; |
| 1055 | |
| 1056 | mmap_write_lock(current->mm); |
| 1057 | ret = mm_pkey_free(current->mm, pkey); |
| 1058 | mmap_write_unlock(current->mm); |
| 1059 | |
| 1060 | /* |
| 1061 | * We could provide warnings or errors if any VMA still |
| 1062 | * has the pkey set here. |
| 1063 | */ |
| 1064 | return ret; |
| 1065 | } |
| 1066 | |
| 1067 | #endif /* CONFIG_ARCH_HAS_PKEYS */ |
| 1068 | |