| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/mm/swap_state.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 6 | * Swap reorganised 29.12.95, Stephen Tweedie |
| 7 | * |
| 8 | * Rewritten to use page cache, (C) 1998 Stephen Tweedie |
| 9 | */ |
| 10 | #include <linux/mm.h> |
| 11 | #include <linux/gfp.h> |
| 12 | #include <linux/kernel_stat.h> |
| 13 | #include <linux/mempolicy.h> |
| 14 | #include <linux/swap.h> |
| 15 | #include <linux/swapops.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/pagemap.h> |
| 18 | #include <linux/pagevec.h> |
| 19 | #include <linux/backing-dev.h> |
| 20 | #include <linux/blkdev.h> |
| 21 | #include <linux/migrate.h> |
| 22 | #include <linux/vmalloc.h> |
| 23 | #include <linux/huge_mm.h> |
| 24 | #include <linux/shmem_fs.h> |
| 25 | #include "internal.h" |
| 26 | #include "swap_table.h" |
| 27 | #include "swap.h" |
| 28 | |
| 29 | /* |
| 30 | * swapper_space is a fiction, retained to simplify the path through |
| 31 | * vmscan's shrink_folio_list. |
| 32 | */ |
| 33 | static const struct address_space_operations swap_aops = { |
| 34 | .dirty_folio = noop_dirty_folio, |
| 35 | #ifdef CONFIG_MIGRATION |
| 36 | .migrate_folio = migrate_folio, |
| 37 | #endif |
| 38 | }; |
| 39 | |
| 40 | /* Set swap_space as read only as swap cache is handled by swap table */ |
| 41 | struct address_space swap_space __ro_after_init = { |
| 42 | .a_ops = &swap_aops, |
| 43 | }; |
| 44 | |
| 45 | static bool enable_vma_readahead __read_mostly = true; |
| 46 | |
| 47 | #define SWAP_RA_ORDER_CEILING 5 |
| 48 | |
| 49 | #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) |
| 50 | #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) |
| 51 | #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK |
| 52 | #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) |
| 53 | |
| 54 | #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) |
| 55 | #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) |
| 56 | #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) |
| 57 | |
| 58 | #define SWAP_RA_VAL(addr, win, hits) \ |
| 59 | (((addr) & PAGE_MASK) | \ |
| 60 | (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ |
| 61 | ((hits) & SWAP_RA_HITS_MASK)) |
| 62 | |
| 63 | /* Initial readahead hits is 4 to start up with a small window */ |
| 64 | #define GET_SWAP_RA_VAL(vma) \ |
| 65 | (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) |
| 66 | |
| 67 | static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); |
| 68 | |
| 69 | void show_swap_cache_info(void) |
| 70 | { |
| 71 | printk("%lu pages in swap cache\n" , total_swapcache_pages()); |
| 72 | printk("Free swap = %ldkB\n" , K(get_nr_swap_pages())); |
| 73 | printk("Total swap = %lukB\n" , K(total_swap_pages)); |
| 74 | } |
| 75 | |
| 76 | /** |
| 77 | * swap_cache_get_folio - Looks up a folio in the swap cache. |
| 78 | * @entry: swap entry used for the lookup. |
| 79 | * |
| 80 | * A found folio will be returned unlocked and with its refcount increased. |
| 81 | * |
| 82 | * Context: Caller must ensure @entry is valid and protect the swap device |
| 83 | * with reference count or locks. |
| 84 | * Return: Returns the found folio on success, NULL otherwise. The caller |
| 85 | * must lock nd check if the folio still matches the swap entry before |
| 86 | * use (e.g., folio_matches_swap_entry). |
| 87 | */ |
| 88 | struct folio *swap_cache_get_folio(swp_entry_t entry) |
| 89 | { |
| 90 | unsigned long swp_tb; |
| 91 | struct folio *folio; |
| 92 | |
| 93 | for (;;) { |
| 94 | swp_tb = swap_table_get(ci: __swap_entry_to_cluster(entry), |
| 95 | off: swp_cluster_offset(entry)); |
| 96 | if (!swp_tb_is_folio(swp_tb)) |
| 97 | return NULL; |
| 98 | folio = swp_tb_to_folio(swp_tb); |
| 99 | if (likely(folio_try_get(folio))) |
| 100 | return folio; |
| 101 | } |
| 102 | |
| 103 | return NULL; |
| 104 | } |
| 105 | |
| 106 | /** |
| 107 | * swap_cache_get_shadow - Looks up a shadow in the swap cache. |
| 108 | * @entry: swap entry used for the lookup. |
| 109 | * |
| 110 | * Context: Caller must ensure @entry is valid and protect the swap device |
| 111 | * with reference count or locks. |
| 112 | * Return: Returns either NULL or an XA_VALUE (shadow). |
| 113 | */ |
| 114 | void *swap_cache_get_shadow(swp_entry_t entry) |
| 115 | { |
| 116 | unsigned long swp_tb; |
| 117 | |
| 118 | swp_tb = swap_table_get(ci: __swap_entry_to_cluster(entry), |
| 119 | off: swp_cluster_offset(entry)); |
| 120 | if (swp_tb_is_shadow(swp_tb)) |
| 121 | return swp_tb_to_shadow(swp_tb); |
| 122 | return NULL; |
| 123 | } |
| 124 | |
| 125 | /** |
| 126 | * swap_cache_add_folio - Add a folio into the swap cache. |
| 127 | * @folio: The folio to be added. |
| 128 | * @entry: The swap entry corresponding to the folio. |
| 129 | * @gfp: gfp_mask for XArray node allocation. |
| 130 | * @shadowp: If a shadow is found, return the shadow. |
| 131 | * |
| 132 | * Context: Caller must ensure @entry is valid and protect the swap device |
| 133 | * with reference count or locks. |
| 134 | * The caller also needs to update the corresponding swap_map slots with |
| 135 | * SWAP_HAS_CACHE bit to avoid race or conflict. |
| 136 | */ |
| 137 | void swap_cache_add_folio(struct folio *folio, swp_entry_t entry, void **shadowp) |
| 138 | { |
| 139 | void *shadow = NULL; |
| 140 | unsigned long old_tb, new_tb; |
| 141 | struct swap_cluster_info *ci; |
| 142 | unsigned int ci_start, ci_off, ci_end; |
| 143 | unsigned long nr_pages = folio_nr_pages(folio); |
| 144 | |
| 145 | VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio); |
| 146 | VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio); |
| 147 | VM_WARN_ON_ONCE_FOLIO(!folio_test_swapbacked(folio), folio); |
| 148 | |
| 149 | new_tb = folio_to_swp_tb(folio); |
| 150 | ci_start = swp_cluster_offset(entry); |
| 151 | ci_end = ci_start + nr_pages; |
| 152 | ci_off = ci_start; |
| 153 | ci = swap_cluster_lock(si: __swap_entry_to_info(entry), offset: swp_offset(entry)); |
| 154 | do { |
| 155 | old_tb = __swap_table_xchg(ci, off: ci_off, swp_tb: new_tb); |
| 156 | WARN_ON_ONCE(swp_tb_is_folio(old_tb)); |
| 157 | if (swp_tb_is_shadow(swp_tb: old_tb)) |
| 158 | shadow = swp_tb_to_shadow(swp_tb: old_tb); |
| 159 | } while (++ci_off < ci_end); |
| 160 | |
| 161 | folio_ref_add(folio, nr: nr_pages); |
| 162 | folio_set_swapcache(folio); |
| 163 | folio->swap = entry; |
| 164 | swap_cluster_unlock(ci); |
| 165 | |
| 166 | node_stat_mod_folio(folio, item: NR_FILE_PAGES, nr: nr_pages); |
| 167 | lruvec_stat_mod_folio(folio, idx: NR_SWAPCACHE, val: nr_pages); |
| 168 | |
| 169 | if (shadowp) |
| 170 | *shadowp = shadow; |
| 171 | } |
| 172 | |
| 173 | /** |
| 174 | * __swap_cache_del_folio - Removes a folio from the swap cache. |
| 175 | * @ci: The locked swap cluster. |
| 176 | * @folio: The folio. |
| 177 | * @entry: The first swap entry that the folio corresponds to. |
| 178 | * @shadow: shadow value to be filled in the swap cache. |
| 179 | * |
| 180 | * Removes a folio from the swap cache and fills a shadow in place. |
| 181 | * This won't put the folio's refcount. The caller has to do that. |
| 182 | * |
| 183 | * Context: Caller must ensure the folio is locked and in the swap cache |
| 184 | * using the index of @entry, and lock the cluster that holds the entries. |
| 185 | */ |
| 186 | void __swap_cache_del_folio(struct swap_cluster_info *ci, struct folio *folio, |
| 187 | swp_entry_t entry, void *shadow) |
| 188 | { |
| 189 | unsigned long old_tb, new_tb; |
| 190 | unsigned int ci_start, ci_off, ci_end; |
| 191 | unsigned long nr_pages = folio_nr_pages(folio); |
| 192 | |
| 193 | VM_WARN_ON_ONCE(__swap_entry_to_cluster(entry) != ci); |
| 194 | VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio); |
| 195 | VM_WARN_ON_ONCE_FOLIO(!folio_test_swapcache(folio), folio); |
| 196 | VM_WARN_ON_ONCE_FOLIO(folio_test_writeback(folio), folio); |
| 197 | |
| 198 | new_tb = shadow_swp_to_tb(shadow); |
| 199 | ci_start = swp_cluster_offset(entry); |
| 200 | ci_end = ci_start + nr_pages; |
| 201 | ci_off = ci_start; |
| 202 | do { |
| 203 | /* If shadow is NULL, we sets an empty shadow */ |
| 204 | old_tb = __swap_table_xchg(ci, off: ci_off, swp_tb: new_tb); |
| 205 | WARN_ON_ONCE(!swp_tb_is_folio(old_tb) || |
| 206 | swp_tb_to_folio(old_tb) != folio); |
| 207 | } while (++ci_off < ci_end); |
| 208 | |
| 209 | folio->swap.val = 0; |
| 210 | folio_clear_swapcache(folio); |
| 211 | node_stat_mod_folio(folio, item: NR_FILE_PAGES, nr: -nr_pages); |
| 212 | lruvec_stat_mod_folio(folio, idx: NR_SWAPCACHE, val: -nr_pages); |
| 213 | } |
| 214 | |
| 215 | /** |
| 216 | * swap_cache_del_folio - Removes a folio from the swap cache. |
| 217 | * @folio: The folio. |
| 218 | * |
| 219 | * Same as __swap_cache_del_folio, but handles lock and refcount. The |
| 220 | * caller must ensure the folio is either clean or has a swap count |
| 221 | * equal to zero, or it may cause data loss. |
| 222 | * |
| 223 | * Context: Caller must ensure the folio is locked and in the swap cache. |
| 224 | */ |
| 225 | void swap_cache_del_folio(struct folio *folio) |
| 226 | { |
| 227 | struct swap_cluster_info *ci; |
| 228 | swp_entry_t entry = folio->swap; |
| 229 | |
| 230 | ci = swap_cluster_lock(si: __swap_entry_to_info(entry), offset: swp_offset(entry)); |
| 231 | __swap_cache_del_folio(ci, folio, entry, NULL); |
| 232 | swap_cluster_unlock(ci); |
| 233 | |
| 234 | put_swap_folio(folio, entry); |
| 235 | folio_ref_sub(folio, nr: folio_nr_pages(folio)); |
| 236 | } |
| 237 | |
| 238 | /** |
| 239 | * __swap_cache_replace_folio - Replace a folio in the swap cache. |
| 240 | * @ci: The locked swap cluster. |
| 241 | * @old: The old folio to be replaced. |
| 242 | * @new: The new folio. |
| 243 | * |
| 244 | * Replace an existing folio in the swap cache with a new folio. The |
| 245 | * caller is responsible for setting up the new folio's flag and swap |
| 246 | * entries. Replacement will take the new folio's swap entry value as |
| 247 | * the starting offset to override all slots covered by the new folio. |
| 248 | * |
| 249 | * Context: Caller must ensure both folios are locked, and lock the |
| 250 | * cluster that holds the old folio to be replaced. |
| 251 | */ |
| 252 | void __swap_cache_replace_folio(struct swap_cluster_info *ci, |
| 253 | struct folio *old, struct folio *new) |
| 254 | { |
| 255 | swp_entry_t entry = new->swap; |
| 256 | unsigned long nr_pages = folio_nr_pages(folio: new); |
| 257 | unsigned int ci_off = swp_cluster_offset(entry); |
| 258 | unsigned int ci_end = ci_off + nr_pages; |
| 259 | unsigned long old_tb, new_tb; |
| 260 | |
| 261 | VM_WARN_ON_ONCE(!folio_test_swapcache(old) || !folio_test_swapcache(new)); |
| 262 | VM_WARN_ON_ONCE(!folio_test_locked(old) || !folio_test_locked(new)); |
| 263 | VM_WARN_ON_ONCE(!entry.val); |
| 264 | |
| 265 | /* Swap cache still stores N entries instead of a high-order entry */ |
| 266 | new_tb = folio_to_swp_tb(folio: new); |
| 267 | do { |
| 268 | old_tb = __swap_table_xchg(ci, off: ci_off, swp_tb: new_tb); |
| 269 | WARN_ON_ONCE(!swp_tb_is_folio(old_tb) || swp_tb_to_folio(old_tb) != old); |
| 270 | } while (++ci_off < ci_end); |
| 271 | |
| 272 | /* |
| 273 | * If the old folio is partially replaced (e.g., splitting a large |
| 274 | * folio, the old folio is shrunk, and new split sub folios replace |
| 275 | * the shrunk part), ensure the new folio doesn't overlap it. |
| 276 | */ |
| 277 | if (IS_ENABLED(CONFIG_DEBUG_VM) && |
| 278 | folio_order(folio: old) != folio_order(folio: new)) { |
| 279 | ci_off = swp_cluster_offset(entry: old->swap); |
| 280 | ci_end = ci_off + folio_nr_pages(folio: old); |
| 281 | while (ci_off++ < ci_end) |
| 282 | WARN_ON_ONCE(swp_tb_to_folio(__swap_table_get(ci, ci_off)) != old); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | /** |
| 287 | * swap_cache_clear_shadow - Clears a set of shadows in the swap cache. |
| 288 | * @entry: The starting index entry. |
| 289 | * @nr_ents: How many slots need to be cleared. |
| 290 | * |
| 291 | * Context: Caller must ensure the range is valid, all in one single cluster, |
| 292 | * not occupied by any folio, and lock the cluster. |
| 293 | */ |
| 294 | void __swap_cache_clear_shadow(swp_entry_t entry, int nr_ents) |
| 295 | { |
| 296 | struct swap_cluster_info *ci = __swap_entry_to_cluster(entry); |
| 297 | unsigned int ci_off = swp_cluster_offset(entry), ci_end; |
| 298 | unsigned long old; |
| 299 | |
| 300 | ci_end = ci_off + nr_ents; |
| 301 | do { |
| 302 | old = __swap_table_xchg(ci, off: ci_off, swp_tb: null_to_swp_tb()); |
| 303 | WARN_ON_ONCE(swp_tb_is_folio(old)); |
| 304 | } while (++ci_off < ci_end); |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * If we are the only user, then try to free up the swap cache. |
| 309 | * |
| 310 | * Its ok to check the swapcache flag without the folio lock |
| 311 | * here because we are going to recheck again inside |
| 312 | * folio_free_swap() _with_ the lock. |
| 313 | * - Marcelo |
| 314 | */ |
| 315 | void free_swap_cache(struct folio *folio) |
| 316 | { |
| 317 | if (folio_test_swapcache(folio) && !folio_mapped(folio) && |
| 318 | folio_trylock(folio)) { |
| 319 | folio_free_swap(folio); |
| 320 | folio_unlock(folio); |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * Freeing a folio and also freeing any swap cache associated with |
| 326 | * this folio if it is the last user. |
| 327 | */ |
| 328 | void free_folio_and_swap_cache(struct folio *folio) |
| 329 | { |
| 330 | free_swap_cache(folio); |
| 331 | if (!is_huge_zero_folio(folio)) |
| 332 | folio_put(folio); |
| 333 | } |
| 334 | |
| 335 | /* |
| 336 | * Passed an array of pages, drop them all from swapcache and then release |
| 337 | * them. They are removed from the LRU and freed if this is their last use. |
| 338 | */ |
| 339 | void free_pages_and_swap_cache(struct encoded_page **pages, int nr) |
| 340 | { |
| 341 | struct folio_batch folios; |
| 342 | unsigned int refs[PAGEVEC_SIZE]; |
| 343 | |
| 344 | folio_batch_init(fbatch: &folios); |
| 345 | for (int i = 0; i < nr; i++) { |
| 346 | struct folio *folio = page_folio(encoded_page_ptr(pages[i])); |
| 347 | |
| 348 | free_swap_cache(folio); |
| 349 | refs[folios.nr] = 1; |
| 350 | if (unlikely(encoded_page_flags(pages[i]) & |
| 351 | ENCODED_PAGE_BIT_NR_PAGES_NEXT)) |
| 352 | refs[folios.nr] = encoded_nr_pages(page: pages[++i]); |
| 353 | |
| 354 | if (folio_batch_add(fbatch: &folios, folio) == 0) |
| 355 | folios_put_refs(folios: &folios, refs); |
| 356 | } |
| 357 | if (folios.nr) |
| 358 | folios_put_refs(folios: &folios, refs); |
| 359 | } |
| 360 | |
| 361 | static inline bool swap_use_vma_readahead(void) |
| 362 | { |
| 363 | return READ_ONCE(enable_vma_readahead) && !atomic_read(v: &nr_rotate_swap); |
| 364 | } |
| 365 | |
| 366 | /** |
| 367 | * swap_update_readahead - Update the readahead statistics of VMA or globally. |
| 368 | * @folio: the swap cache folio that just got hit. |
| 369 | * @vma: the VMA that should be updated, could be NULL for global update. |
| 370 | * @addr: the addr that triggered the swapin, ignored if @vma is NULL. |
| 371 | */ |
| 372 | void swap_update_readahead(struct folio *folio, struct vm_area_struct *vma, |
| 373 | unsigned long addr) |
| 374 | { |
| 375 | bool readahead, vma_ra = swap_use_vma_readahead(); |
| 376 | |
| 377 | /* |
| 378 | * At the moment, we don't support PG_readahead for anon THP |
| 379 | * so let's bail out rather than confusing the readahead stat. |
| 380 | */ |
| 381 | if (unlikely(folio_test_large(folio))) |
| 382 | return; |
| 383 | |
| 384 | readahead = folio_test_clear_readahead(folio); |
| 385 | if (vma && vma_ra) { |
| 386 | unsigned long ra_val; |
| 387 | int win, hits; |
| 388 | |
| 389 | ra_val = GET_SWAP_RA_VAL(vma); |
| 390 | win = SWAP_RA_WIN(ra_val); |
| 391 | hits = SWAP_RA_HITS(ra_val); |
| 392 | if (readahead) |
| 393 | hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); |
| 394 | atomic_long_set(v: &vma->swap_readahead_info, |
| 395 | SWAP_RA_VAL(addr, win, hits)); |
| 396 | } |
| 397 | |
| 398 | if (readahead) { |
| 399 | count_vm_event(item: SWAP_RA_HIT); |
| 400 | if (!vma || !vma_ra) |
| 401 | atomic_inc(v: &swapin_readahead_hits); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, |
| 406 | struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated, |
| 407 | bool skip_if_exists) |
| 408 | { |
| 409 | struct swap_info_struct *si = __swap_entry_to_info(entry); |
| 410 | struct folio *folio; |
| 411 | struct folio *new_folio = NULL; |
| 412 | struct folio *result = NULL; |
| 413 | void *shadow = NULL; |
| 414 | |
| 415 | *new_page_allocated = false; |
| 416 | for (;;) { |
| 417 | int err; |
| 418 | |
| 419 | /* |
| 420 | * Check the swap cache first, if a cached folio is found, |
| 421 | * return it unlocked. The caller will lock and check it. |
| 422 | */ |
| 423 | folio = swap_cache_get_folio(entry); |
| 424 | if (folio) |
| 425 | goto got_folio; |
| 426 | |
| 427 | /* |
| 428 | * Just skip read ahead for unused swap slot. |
| 429 | */ |
| 430 | if (!swap_entry_swapped(si, entry)) |
| 431 | goto put_and_return; |
| 432 | |
| 433 | /* |
| 434 | * Get a new folio to read into from swap. Allocate it now if |
| 435 | * new_folio not exist, before marking swap_map SWAP_HAS_CACHE, |
| 436 | * when -EEXIST will cause any racers to loop around until we |
| 437 | * add it to cache. |
| 438 | */ |
| 439 | if (!new_folio) { |
| 440 | new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id()); |
| 441 | if (!new_folio) |
| 442 | goto put_and_return; |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Swap entry may have been freed since our caller observed it. |
| 447 | */ |
| 448 | err = swapcache_prepare(entry, nr: 1); |
| 449 | if (!err) |
| 450 | break; |
| 451 | else if (err != -EEXIST) |
| 452 | goto put_and_return; |
| 453 | |
| 454 | /* |
| 455 | * Protect against a recursive call to __read_swap_cache_async() |
| 456 | * on the same entry waiting forever here because SWAP_HAS_CACHE |
| 457 | * is set but the folio is not the swap cache yet. This can |
| 458 | * happen today if mem_cgroup_swapin_charge_folio() below |
| 459 | * triggers reclaim through zswap, which may call |
| 460 | * __read_swap_cache_async() in the writeback path. |
| 461 | */ |
| 462 | if (skip_if_exists) |
| 463 | goto put_and_return; |
| 464 | |
| 465 | /* |
| 466 | * We might race against __swap_cache_del_folio(), and |
| 467 | * stumble across a swap_map entry whose SWAP_HAS_CACHE |
| 468 | * has not yet been cleared. Or race against another |
| 469 | * __read_swap_cache_async(), which has set SWAP_HAS_CACHE |
| 470 | * in swap_map, but not yet added its folio to swap cache. |
| 471 | */ |
| 472 | schedule_timeout_uninterruptible(timeout: 1); |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * The swap entry is ours to swap in. Prepare the new folio. |
| 477 | */ |
| 478 | __folio_set_locked(folio: new_folio); |
| 479 | __folio_set_swapbacked(folio: new_folio); |
| 480 | |
| 481 | if (mem_cgroup_swapin_charge_folio(folio: new_folio, NULL, gfp: gfp_mask, entry)) |
| 482 | goto fail_unlock; |
| 483 | |
| 484 | swap_cache_add_folio(folio: new_folio, entry, shadowp: &shadow); |
| 485 | memcg1_swapin(entry, nr_pages: 1); |
| 486 | |
| 487 | if (shadow) |
| 488 | workingset_refault(folio: new_folio, shadow); |
| 489 | |
| 490 | /* Caller will initiate read into locked new_folio */ |
| 491 | folio_add_lru(new_folio); |
| 492 | *new_page_allocated = true; |
| 493 | folio = new_folio; |
| 494 | got_folio: |
| 495 | result = folio; |
| 496 | goto put_and_return; |
| 497 | |
| 498 | fail_unlock: |
| 499 | put_swap_folio(folio: new_folio, entry); |
| 500 | folio_unlock(folio: new_folio); |
| 501 | put_and_return: |
| 502 | if (!(*new_page_allocated) && new_folio) |
| 503 | folio_put(folio: new_folio); |
| 504 | return result; |
| 505 | } |
| 506 | |
| 507 | /* |
| 508 | * Locate a page of swap in physical memory, reserving swap cache space |
| 509 | * and reading the disk if it is not already cached. |
| 510 | * A failure return means that either the page allocation failed or that |
| 511 | * the swap entry is no longer in use. |
| 512 | * |
| 513 | * get/put_swap_device() aren't needed to call this function, because |
| 514 | * __read_swap_cache_async() call them and swap_read_folio() holds the |
| 515 | * swap cache folio lock. |
| 516 | */ |
| 517 | struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, |
| 518 | struct vm_area_struct *vma, unsigned long addr, |
| 519 | struct swap_iocb **plug) |
| 520 | { |
| 521 | struct swap_info_struct *si; |
| 522 | bool page_allocated; |
| 523 | struct mempolicy *mpol; |
| 524 | pgoff_t ilx; |
| 525 | struct folio *folio; |
| 526 | |
| 527 | si = get_swap_device(entry); |
| 528 | if (!si) |
| 529 | return NULL; |
| 530 | |
| 531 | mpol = get_vma_policy(vma, addr, order: 0, ilx: &ilx); |
| 532 | folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, |
| 533 | new_page_allocated: &page_allocated, skip_if_exists: false); |
| 534 | mpol_cond_put(pol: mpol); |
| 535 | |
| 536 | if (page_allocated) |
| 537 | swap_read_folio(folio, plug); |
| 538 | |
| 539 | put_swap_device(si); |
| 540 | return folio; |
| 541 | } |
| 542 | |
| 543 | static unsigned int __swapin_nr_pages(unsigned long prev_offset, |
| 544 | unsigned long offset, |
| 545 | int hits, |
| 546 | int max_pages, |
| 547 | int prev_win) |
| 548 | { |
| 549 | unsigned int pages, last_ra; |
| 550 | |
| 551 | /* |
| 552 | * This heuristic has been found to work well on both sequential and |
| 553 | * random loads, swapping to hard disk or to SSD: please don't ask |
| 554 | * what the "+ 2" means, it just happens to work well, that's all. |
| 555 | */ |
| 556 | pages = hits + 2; |
| 557 | if (pages == 2) { |
| 558 | /* |
| 559 | * We can have no readahead hits to judge by: but must not get |
| 560 | * stuck here forever, so check for an adjacent offset instead |
| 561 | * (and don't even bother to check whether swap type is same). |
| 562 | */ |
| 563 | if (offset != prev_offset + 1 && offset != prev_offset - 1) |
| 564 | pages = 1; |
| 565 | } else { |
| 566 | unsigned int roundup = 4; |
| 567 | while (roundup < pages) |
| 568 | roundup <<= 1; |
| 569 | pages = roundup; |
| 570 | } |
| 571 | |
| 572 | if (pages > max_pages) |
| 573 | pages = max_pages; |
| 574 | |
| 575 | /* Don't shrink readahead too fast */ |
| 576 | last_ra = prev_win / 2; |
| 577 | if (pages < last_ra) |
| 578 | pages = last_ra; |
| 579 | |
| 580 | return pages; |
| 581 | } |
| 582 | |
| 583 | static unsigned long swapin_nr_pages(unsigned long offset) |
| 584 | { |
| 585 | static unsigned long prev_offset; |
| 586 | unsigned int hits, pages, max_pages; |
| 587 | static atomic_t last_readahead_pages; |
| 588 | |
| 589 | max_pages = 1 << READ_ONCE(page_cluster); |
| 590 | if (max_pages <= 1) |
| 591 | return 1; |
| 592 | |
| 593 | hits = atomic_xchg(v: &swapin_readahead_hits, new: 0); |
| 594 | pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, |
| 595 | max_pages, |
| 596 | prev_win: atomic_read(v: &last_readahead_pages)); |
| 597 | if (!hits) |
| 598 | WRITE_ONCE(prev_offset, offset); |
| 599 | atomic_set(v: &last_readahead_pages, i: pages); |
| 600 | |
| 601 | return pages; |
| 602 | } |
| 603 | |
| 604 | /** |
| 605 | * swap_cluster_readahead - swap in pages in hope we need them soon |
| 606 | * @entry: swap entry of this memory |
| 607 | * @gfp_mask: memory allocation flags |
| 608 | * @mpol: NUMA memory allocation policy to be applied |
| 609 | * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE |
| 610 | * |
| 611 | * Returns the struct folio for entry and addr, after queueing swapin. |
| 612 | * |
| 613 | * Primitive swap readahead code. We simply read an aligned block of |
| 614 | * (1 << page_cluster) entries in the swap area. This method is chosen |
| 615 | * because it doesn't cost us any seek time. We also make sure to queue |
| 616 | * the 'original' request together with the readahead ones... |
| 617 | * |
| 618 | * Note: it is intentional that the same NUMA policy and interleave index |
| 619 | * are used for every page of the readahead: neighbouring pages on swap |
| 620 | * are fairly likely to have been swapped out from the same node. |
| 621 | */ |
| 622 | struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, |
| 623 | struct mempolicy *mpol, pgoff_t ilx) |
| 624 | { |
| 625 | struct folio *folio; |
| 626 | unsigned long entry_offset = swp_offset(entry); |
| 627 | unsigned long offset = entry_offset; |
| 628 | unsigned long start_offset, end_offset; |
| 629 | unsigned long mask; |
| 630 | struct swap_info_struct *si = __swap_entry_to_info(entry); |
| 631 | struct blk_plug plug; |
| 632 | struct swap_iocb *splug = NULL; |
| 633 | bool page_allocated; |
| 634 | |
| 635 | mask = swapin_nr_pages(offset) - 1; |
| 636 | if (!mask) |
| 637 | goto skip; |
| 638 | |
| 639 | /* Read a page_cluster sized and aligned cluster around offset. */ |
| 640 | start_offset = offset & ~mask; |
| 641 | end_offset = offset | mask; |
| 642 | if (!start_offset) /* First page is swap header. */ |
| 643 | start_offset++; |
| 644 | if (end_offset >= si->max) |
| 645 | end_offset = si->max - 1; |
| 646 | |
| 647 | blk_start_plug(&plug); |
| 648 | for (offset = start_offset; offset <= end_offset ; offset++) { |
| 649 | /* Ok, do the async read-ahead now */ |
| 650 | folio = __read_swap_cache_async( |
| 651 | entry: swp_entry(type: swp_type(entry), offset), |
| 652 | gfp_mask, mpol, ilx, new_page_allocated: &page_allocated, skip_if_exists: false); |
| 653 | if (!folio) |
| 654 | continue; |
| 655 | if (page_allocated) { |
| 656 | swap_read_folio(folio, plug: &splug); |
| 657 | if (offset != entry_offset) { |
| 658 | folio_set_readahead(folio); |
| 659 | count_vm_event(item: SWAP_RA); |
| 660 | } |
| 661 | } |
| 662 | folio_put(folio); |
| 663 | } |
| 664 | blk_finish_plug(&plug); |
| 665 | swap_read_unplug(plug: splug); |
| 666 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
| 667 | skip: |
| 668 | /* The page was likely read above, so no need for plugging here */ |
| 669 | folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, |
| 670 | new_page_allocated: &page_allocated, skip_if_exists: false); |
| 671 | if (unlikely(page_allocated)) |
| 672 | swap_read_folio(folio, NULL); |
| 673 | return folio; |
| 674 | } |
| 675 | |
| 676 | static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start, |
| 677 | unsigned long *end) |
| 678 | { |
| 679 | struct vm_area_struct *vma = vmf->vma; |
| 680 | unsigned long ra_val; |
| 681 | unsigned long faddr, prev_faddr, left, right; |
| 682 | unsigned int max_win, hits, prev_win, win; |
| 683 | |
| 684 | max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING); |
| 685 | if (max_win == 1) |
| 686 | return 1; |
| 687 | |
| 688 | faddr = vmf->address; |
| 689 | ra_val = GET_SWAP_RA_VAL(vma); |
| 690 | prev_faddr = SWAP_RA_ADDR(ra_val); |
| 691 | prev_win = SWAP_RA_WIN(ra_val); |
| 692 | hits = SWAP_RA_HITS(ra_val); |
| 693 | win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits, |
| 694 | max_pages: max_win, prev_win); |
| 695 | atomic_long_set(v: &vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0)); |
| 696 | if (win == 1) |
| 697 | return 1; |
| 698 | |
| 699 | if (faddr == prev_faddr + PAGE_SIZE) |
| 700 | left = faddr; |
| 701 | else if (prev_faddr == faddr + PAGE_SIZE) |
| 702 | left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE; |
| 703 | else |
| 704 | left = faddr - (((win - 1) / 2) << PAGE_SHIFT); |
| 705 | right = left + (win << PAGE_SHIFT); |
| 706 | if ((long)left < 0) |
| 707 | left = 0; |
| 708 | *start = max3(left, vma->vm_start, faddr & PMD_MASK); |
| 709 | *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE); |
| 710 | |
| 711 | return win; |
| 712 | } |
| 713 | |
| 714 | /** |
| 715 | * swap_vma_readahead - swap in pages in hope we need them soon |
| 716 | * @targ_entry: swap entry of the targeted memory |
| 717 | * @gfp_mask: memory allocation flags |
| 718 | * @mpol: NUMA memory allocation policy to be applied |
| 719 | * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE |
| 720 | * @vmf: fault information |
| 721 | * |
| 722 | * Returns the struct folio for entry and addr, after queueing swapin. |
| 723 | * |
| 724 | * Primitive swap readahead code. We simply read in a few pages whose |
| 725 | * virtual addresses are around the fault address in the same vma. |
| 726 | * |
| 727 | * Caller must hold read mmap_lock if vmf->vma is not NULL. |
| 728 | * |
| 729 | */ |
| 730 | static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask, |
| 731 | struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf) |
| 732 | { |
| 733 | struct blk_plug plug; |
| 734 | struct swap_iocb *splug = NULL; |
| 735 | struct folio *folio; |
| 736 | pte_t *pte = NULL, pentry; |
| 737 | int win; |
| 738 | unsigned long start, end, addr; |
| 739 | swp_entry_t entry; |
| 740 | pgoff_t ilx; |
| 741 | bool page_allocated; |
| 742 | |
| 743 | win = swap_vma_ra_win(vmf, start: &start, end: &end); |
| 744 | if (win == 1) |
| 745 | goto skip; |
| 746 | |
| 747 | ilx = targ_ilx - PFN_DOWN(vmf->address - start); |
| 748 | |
| 749 | blk_start_plug(&plug); |
| 750 | for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) { |
| 751 | if (!pte++) { |
| 752 | pte = pte_offset_map(pmd: vmf->pmd, addr); |
| 753 | if (!pte) |
| 754 | break; |
| 755 | } |
| 756 | pentry = ptep_get_lockless(ptep: pte); |
| 757 | if (!is_swap_pte(pte: pentry)) |
| 758 | continue; |
| 759 | entry = pte_to_swp_entry(pte: pentry); |
| 760 | if (unlikely(non_swap_entry(entry))) |
| 761 | continue; |
| 762 | pte_unmap(pte); |
| 763 | pte = NULL; |
| 764 | folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, |
| 765 | new_page_allocated: &page_allocated, skip_if_exists: false); |
| 766 | if (!folio) |
| 767 | continue; |
| 768 | if (page_allocated) { |
| 769 | swap_read_folio(folio, plug: &splug); |
| 770 | if (addr != vmf->address) { |
| 771 | folio_set_readahead(folio); |
| 772 | count_vm_event(item: SWAP_RA); |
| 773 | } |
| 774 | } |
| 775 | folio_put(folio); |
| 776 | } |
| 777 | if (pte) |
| 778 | pte_unmap(pte); |
| 779 | blk_finish_plug(&plug); |
| 780 | swap_read_unplug(plug: splug); |
| 781 | lru_add_drain(); |
| 782 | skip: |
| 783 | /* The folio was likely read above, so no need for plugging here */ |
| 784 | folio = __read_swap_cache_async(entry: targ_entry, gfp_mask, mpol, ilx: targ_ilx, |
| 785 | new_page_allocated: &page_allocated, skip_if_exists: false); |
| 786 | if (unlikely(page_allocated)) |
| 787 | swap_read_folio(folio, NULL); |
| 788 | return folio; |
| 789 | } |
| 790 | |
| 791 | /** |
| 792 | * swapin_readahead - swap in pages in hope we need them soon |
| 793 | * @entry: swap entry of this memory |
| 794 | * @gfp_mask: memory allocation flags |
| 795 | * @vmf: fault information |
| 796 | * |
| 797 | * Returns the struct folio for entry and addr, after queueing swapin. |
| 798 | * |
| 799 | * It's a main entry function for swap readahead. By the configuration, |
| 800 | * it will read ahead blocks by cluster-based(ie, physical disk based) |
| 801 | * or vma-based(ie, virtual address based on faulty address) readahead. |
| 802 | */ |
| 803 | struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, |
| 804 | struct vm_fault *vmf) |
| 805 | { |
| 806 | struct mempolicy *mpol; |
| 807 | pgoff_t ilx; |
| 808 | struct folio *folio; |
| 809 | |
| 810 | mpol = get_vma_policy(vma: vmf->vma, addr: vmf->address, order: 0, ilx: &ilx); |
| 811 | folio = swap_use_vma_readahead() ? |
| 812 | swap_vma_readahead(targ_entry: entry, gfp_mask, mpol, targ_ilx: ilx, vmf) : |
| 813 | swap_cluster_readahead(entry, gfp_mask, mpol, ilx); |
| 814 | mpol_cond_put(pol: mpol); |
| 815 | |
| 816 | return folio; |
| 817 | } |
| 818 | |
| 819 | #ifdef CONFIG_SYSFS |
| 820 | static ssize_t vma_ra_enabled_show(struct kobject *kobj, |
| 821 | struct kobj_attribute *attr, char *buf) |
| 822 | { |
| 823 | return sysfs_emit(buf, fmt: "%s\n" , str_true_false(v: enable_vma_readahead)); |
| 824 | } |
| 825 | static ssize_t vma_ra_enabled_store(struct kobject *kobj, |
| 826 | struct kobj_attribute *attr, |
| 827 | const char *buf, size_t count) |
| 828 | { |
| 829 | ssize_t ret; |
| 830 | |
| 831 | ret = kstrtobool(s: buf, res: &enable_vma_readahead); |
| 832 | if (ret) |
| 833 | return ret; |
| 834 | |
| 835 | return count; |
| 836 | } |
| 837 | static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); |
| 838 | |
| 839 | static struct attribute *swap_attrs[] = { |
| 840 | &vma_ra_enabled_attr.attr, |
| 841 | NULL, |
| 842 | }; |
| 843 | |
| 844 | static const struct attribute_group swap_attr_group = { |
| 845 | .attrs = swap_attrs, |
| 846 | }; |
| 847 | |
| 848 | static int __init swap_init(void) |
| 849 | { |
| 850 | int err; |
| 851 | struct kobject *swap_kobj; |
| 852 | |
| 853 | swap_kobj = kobject_create_and_add(name: "swap" , parent: mm_kobj); |
| 854 | if (!swap_kobj) { |
| 855 | pr_err("failed to create swap kobject\n" ); |
| 856 | return -ENOMEM; |
| 857 | } |
| 858 | err = sysfs_create_group(kobj: swap_kobj, grp: &swap_attr_group); |
| 859 | if (err) { |
| 860 | pr_err("failed to register swap group\n" ); |
| 861 | goto delete_obj; |
| 862 | } |
| 863 | /* Swap cache writeback is LRU based, no tags for it */ |
| 864 | mapping_set_no_writeback_tags(mapping: &swap_space); |
| 865 | return 0; |
| 866 | |
| 867 | delete_obj: |
| 868 | kobject_put(kobj: swap_kobj); |
| 869 | return err; |
| 870 | } |
| 871 | subsys_initcall(swap_init); |
| 872 | #endif |
| 873 | |