| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/mm/swapfile.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 6 | * Swap reorganised 29.12.95, Stephen Tweedie |
| 7 | */ |
| 8 | |
| 9 | #include <linux/blkdev.h> |
| 10 | #include <linux/mm.h> |
| 11 | #include <linux/sched/mm.h> |
| 12 | #include <linux/sched/task.h> |
| 13 | #include <linux/hugetlb.h> |
| 14 | #include <linux/mman.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/kernel_stat.h> |
| 17 | #include <linux/swap.h> |
| 18 | #include <linux/vmalloc.h> |
| 19 | #include <linux/pagemap.h> |
| 20 | #include <linux/namei.h> |
| 21 | #include <linux/shmem_fs.h> |
| 22 | #include <linux/blk-cgroup.h> |
| 23 | #include <linux/random.h> |
| 24 | #include <linux/writeback.h> |
| 25 | #include <linux/proc_fs.h> |
| 26 | #include <linux/seq_file.h> |
| 27 | #include <linux/init.h> |
| 28 | #include <linux/ksm.h> |
| 29 | #include <linux/rmap.h> |
| 30 | #include <linux/security.h> |
| 31 | #include <linux/backing-dev.h> |
| 32 | #include <linux/mutex.h> |
| 33 | #include <linux/capability.h> |
| 34 | #include <linux/syscalls.h> |
| 35 | #include <linux/memcontrol.h> |
| 36 | #include <linux/poll.h> |
| 37 | #include <linux/oom.h> |
| 38 | #include <linux/swapfile.h> |
| 39 | #include <linux/export.h> |
| 40 | #include <linux/sort.h> |
| 41 | #include <linux/completion.h> |
| 42 | #include <linux/suspend.h> |
| 43 | #include <linux/zswap.h> |
| 44 | #include <linux/plist.h> |
| 45 | |
| 46 | #include <asm/tlbflush.h> |
| 47 | #include <linux/swapops.h> |
| 48 | #include <linux/swap_cgroup.h> |
| 49 | #include "swap_table.h" |
| 50 | #include "internal.h" |
| 51 | #include "swap.h" |
| 52 | |
| 53 | static bool swap_count_continued(struct swap_info_struct *, pgoff_t, |
| 54 | unsigned char); |
| 55 | static void free_swap_count_continuations(struct swap_info_struct *); |
| 56 | static void swap_entries_free(struct swap_info_struct *si, |
| 57 | struct swap_cluster_info *ci, |
| 58 | swp_entry_t entry, unsigned int nr_pages); |
| 59 | static void swap_range_alloc(struct swap_info_struct *si, |
| 60 | unsigned int nr_entries); |
| 61 | static bool folio_swapcache_freeable(struct folio *folio); |
| 62 | static void move_cluster(struct swap_info_struct *si, |
| 63 | struct swap_cluster_info *ci, struct list_head *list, |
| 64 | enum swap_cluster_flags new_flags); |
| 65 | |
| 66 | static DEFINE_SPINLOCK(swap_lock); |
| 67 | static unsigned int nr_swapfiles; |
| 68 | atomic_long_t nr_swap_pages; |
| 69 | /* |
| 70 | * Some modules use swappable objects and may try to swap them out under |
| 71 | * memory pressure (via the shrinker). Before doing so, they may wish to |
| 72 | * check to see if any swap space is available. |
| 73 | */ |
| 74 | EXPORT_SYMBOL_GPL(nr_swap_pages); |
| 75 | /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ |
| 76 | long total_swap_pages; |
| 77 | static int least_priority = -1; |
| 78 | unsigned long swapfile_maximum_size; |
| 79 | #ifdef CONFIG_MIGRATION |
| 80 | bool swap_migration_ad_supported; |
| 81 | #endif /* CONFIG_MIGRATION */ |
| 82 | |
| 83 | static const char Bad_file[] = "Bad swap file entry " ; |
| 84 | static const char Unused_file[] = "Unused swap file entry " ; |
| 85 | static const char Bad_offset[] = "Bad swap offset entry " ; |
| 86 | static const char Unused_offset[] = "Unused swap offset entry " ; |
| 87 | |
| 88 | /* |
| 89 | * all active swap_info_structs |
| 90 | * protected with swap_lock, and ordered by priority. |
| 91 | */ |
| 92 | static PLIST_HEAD(swap_active_head); |
| 93 | |
| 94 | /* |
| 95 | * all available (active, not full) swap_info_structs |
| 96 | * protected with swap_avail_lock, ordered by priority. |
| 97 | * This is used by folio_alloc_swap() instead of swap_active_head |
| 98 | * because swap_active_head includes all swap_info_structs, |
| 99 | * but folio_alloc_swap() doesn't need to look at full ones. |
| 100 | * This uses its own lock instead of swap_lock because when a |
| 101 | * swap_info_struct changes between not-full/full, it needs to |
| 102 | * add/remove itself to/from this list, but the swap_info_struct->lock |
| 103 | * is held and the locking order requires swap_lock to be taken |
| 104 | * before any swap_info_struct->lock. |
| 105 | */ |
| 106 | static struct plist_head *swap_avail_heads; |
| 107 | static DEFINE_SPINLOCK(swap_avail_lock); |
| 108 | |
| 109 | struct swap_info_struct *swap_info[MAX_SWAPFILES]; |
| 110 | |
| 111 | static struct kmem_cache *swap_table_cachep; |
| 112 | |
| 113 | static DEFINE_MUTEX(swapon_mutex); |
| 114 | |
| 115 | static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); |
| 116 | /* Activity counter to indicate that a swapon or swapoff has occurred */ |
| 117 | static atomic_t proc_poll_event = ATOMIC_INIT(0); |
| 118 | |
| 119 | atomic_t nr_rotate_swap = ATOMIC_INIT(0); |
| 120 | |
| 121 | struct percpu_swap_cluster { |
| 122 | struct swap_info_struct *si[SWAP_NR_ORDERS]; |
| 123 | unsigned long offset[SWAP_NR_ORDERS]; |
| 124 | local_lock_t lock; |
| 125 | }; |
| 126 | |
| 127 | static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = { |
| 128 | .si = { NULL }, |
| 129 | .offset = { SWAP_ENTRY_INVALID }, |
| 130 | .lock = INIT_LOCAL_LOCK(), |
| 131 | }; |
| 132 | |
| 133 | /* May return NULL on invalid type, caller must check for NULL return */ |
| 134 | static struct swap_info_struct *swap_type_to_info(int type) |
| 135 | { |
| 136 | if (type >= MAX_SWAPFILES) |
| 137 | return NULL; |
| 138 | return READ_ONCE(swap_info[type]); /* rcu_dereference() */ |
| 139 | } |
| 140 | |
| 141 | /* May return NULL on invalid entry, caller must check for NULL return */ |
| 142 | static struct swap_info_struct *swap_entry_to_info(swp_entry_t entry) |
| 143 | { |
| 144 | return swap_type_to_info(type: swp_type(entry)); |
| 145 | } |
| 146 | |
| 147 | static inline unsigned char swap_count(unsigned char ent) |
| 148 | { |
| 149 | return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ |
| 150 | } |
| 151 | |
| 152 | /* |
| 153 | * Use the second highest bit of inuse_pages counter as the indicator |
| 154 | * if one swap device is on the available plist, so the atomic can |
| 155 | * still be updated arithmetically while having special data embedded. |
| 156 | * |
| 157 | * inuse_pages counter is the only thing indicating if a device should |
| 158 | * be on avail_lists or not (except swapon / swapoff). By embedding the |
| 159 | * off-list bit in the atomic counter, updates no longer need any lock |
| 160 | * to check the list status. |
| 161 | * |
| 162 | * This bit will be set if the device is not on the plist and not |
| 163 | * usable, will be cleared if the device is on the plist. |
| 164 | */ |
| 165 | #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2)) |
| 166 | #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT) |
| 167 | static long swap_usage_in_pages(struct swap_info_struct *si) |
| 168 | { |
| 169 | return atomic_long_read(v: &si->inuse_pages) & SWAP_USAGE_COUNTER_MASK; |
| 170 | } |
| 171 | |
| 172 | /* Reclaim the swap entry anyway if possible */ |
| 173 | #define TTRS_ANYWAY 0x1 |
| 174 | /* |
| 175 | * Reclaim the swap entry if there are no more mappings of the |
| 176 | * corresponding page |
| 177 | */ |
| 178 | #define TTRS_UNMAPPED 0x2 |
| 179 | /* Reclaim the swap entry if swap is getting full */ |
| 180 | #define TTRS_FULL 0x4 |
| 181 | |
| 182 | static bool swap_only_has_cache(struct swap_info_struct *si, |
| 183 | unsigned long offset, int nr_pages) |
| 184 | { |
| 185 | unsigned char *map = si->swap_map + offset; |
| 186 | unsigned char *map_end = map + nr_pages; |
| 187 | |
| 188 | do { |
| 189 | VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); |
| 190 | if (*map != SWAP_HAS_CACHE) |
| 191 | return false; |
| 192 | } while (++map < map_end); |
| 193 | |
| 194 | return true; |
| 195 | } |
| 196 | |
| 197 | static bool swap_is_last_map(struct swap_info_struct *si, |
| 198 | unsigned long offset, int nr_pages, bool *has_cache) |
| 199 | { |
| 200 | unsigned char *map = si->swap_map + offset; |
| 201 | unsigned char *map_end = map + nr_pages; |
| 202 | unsigned char count = *map; |
| 203 | |
| 204 | if (swap_count(ent: count) != 1 && swap_count(ent: count) != SWAP_MAP_SHMEM) |
| 205 | return false; |
| 206 | |
| 207 | while (++map < map_end) { |
| 208 | if (*map != count) |
| 209 | return false; |
| 210 | } |
| 211 | |
| 212 | *has_cache = !!(count & SWAP_HAS_CACHE); |
| 213 | return true; |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * returns number of pages in the folio that backs the swap entry. If positive, |
| 218 | * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no |
| 219 | * folio was associated with the swap entry. |
| 220 | */ |
| 221 | static int __try_to_reclaim_swap(struct swap_info_struct *si, |
| 222 | unsigned long offset, unsigned long flags) |
| 223 | { |
| 224 | const swp_entry_t entry = swp_entry(type: si->type, offset); |
| 225 | struct swap_cluster_info *ci; |
| 226 | struct folio *folio; |
| 227 | int ret, nr_pages; |
| 228 | bool need_reclaim; |
| 229 | |
| 230 | again: |
| 231 | folio = swap_cache_get_folio(entry); |
| 232 | if (!folio) |
| 233 | return 0; |
| 234 | |
| 235 | nr_pages = folio_nr_pages(folio); |
| 236 | ret = -nr_pages; |
| 237 | |
| 238 | /* |
| 239 | * When this function is called from scan_swap_map_slots() and it's |
| 240 | * called by vmscan.c at reclaiming folios. So we hold a folio lock |
| 241 | * here. We have to use trylock for avoiding deadlock. This is a special |
| 242 | * case and you should use folio_free_swap() with explicit folio_lock() |
| 243 | * in usual operations. |
| 244 | */ |
| 245 | if (!folio_trylock(folio)) |
| 246 | goto out; |
| 247 | |
| 248 | /* |
| 249 | * Offset could point to the middle of a large folio, or folio |
| 250 | * may no longer point to the expected offset before it's locked. |
| 251 | */ |
| 252 | if (!folio_matches_swap_entry(folio, entry)) { |
| 253 | folio_unlock(folio); |
| 254 | folio_put(folio); |
| 255 | goto again; |
| 256 | } |
| 257 | offset = swp_offset(entry: folio->swap); |
| 258 | |
| 259 | need_reclaim = ((flags & TTRS_ANYWAY) || |
| 260 | ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || |
| 261 | ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); |
| 262 | if (!need_reclaim || !folio_swapcache_freeable(folio)) |
| 263 | goto out_unlock; |
| 264 | |
| 265 | /* |
| 266 | * It's safe to delete the folio from swap cache only if the folio's |
| 267 | * swap_map is HAS_CACHE only, which means the slots have no page table |
| 268 | * reference or pending writeback, and can't be allocated to others. |
| 269 | */ |
| 270 | ci = swap_cluster_lock(si, offset); |
| 271 | need_reclaim = swap_only_has_cache(si, offset, nr_pages); |
| 272 | swap_cluster_unlock(ci); |
| 273 | if (!need_reclaim) |
| 274 | goto out_unlock; |
| 275 | |
| 276 | swap_cache_del_folio(folio); |
| 277 | folio_set_dirty(folio); |
| 278 | ret = nr_pages; |
| 279 | out_unlock: |
| 280 | folio_unlock(folio); |
| 281 | out: |
| 282 | folio_put(folio); |
| 283 | return ret; |
| 284 | } |
| 285 | |
| 286 | static inline struct swap_extent *first_se(struct swap_info_struct *sis) |
| 287 | { |
| 288 | struct rb_node *rb = rb_first(&sis->swap_extent_root); |
| 289 | return rb_entry(rb, struct swap_extent, rb_node); |
| 290 | } |
| 291 | |
| 292 | static inline struct swap_extent *next_se(struct swap_extent *se) |
| 293 | { |
| 294 | struct rb_node *rb = rb_next(&se->rb_node); |
| 295 | return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * swapon tell device that all the old swap contents can be discarded, |
| 300 | * to allow the swap device to optimize its wear-levelling. |
| 301 | */ |
| 302 | static int discard_swap(struct swap_info_struct *si) |
| 303 | { |
| 304 | struct swap_extent *se; |
| 305 | sector_t start_block; |
| 306 | sector_t nr_blocks; |
| 307 | int err = 0; |
| 308 | |
| 309 | /* Do not discard the swap header page! */ |
| 310 | se = first_se(sis: si); |
| 311 | start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); |
| 312 | nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); |
| 313 | if (nr_blocks) { |
| 314 | err = blkdev_issue_discard(bdev: si->bdev, sector: start_block, |
| 315 | nr_sects: nr_blocks, GFP_KERNEL); |
| 316 | if (err) |
| 317 | return err; |
| 318 | cond_resched(); |
| 319 | } |
| 320 | |
| 321 | for (se = next_se(se); se; se = next_se(se)) { |
| 322 | start_block = se->start_block << (PAGE_SHIFT - 9); |
| 323 | nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); |
| 324 | |
| 325 | err = blkdev_issue_discard(bdev: si->bdev, sector: start_block, |
| 326 | nr_sects: nr_blocks, GFP_KERNEL); |
| 327 | if (err) |
| 328 | break; |
| 329 | |
| 330 | cond_resched(); |
| 331 | } |
| 332 | return err; /* That will often be -EOPNOTSUPP */ |
| 333 | } |
| 334 | |
| 335 | static struct swap_extent * |
| 336 | offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) |
| 337 | { |
| 338 | struct swap_extent *se; |
| 339 | struct rb_node *rb; |
| 340 | |
| 341 | rb = sis->swap_extent_root.rb_node; |
| 342 | while (rb) { |
| 343 | se = rb_entry(rb, struct swap_extent, rb_node); |
| 344 | if (offset < se->start_page) |
| 345 | rb = rb->rb_left; |
| 346 | else if (offset >= se->start_page + se->nr_pages) |
| 347 | rb = rb->rb_right; |
| 348 | else |
| 349 | return se; |
| 350 | } |
| 351 | /* It *must* be present */ |
| 352 | BUG(); |
| 353 | } |
| 354 | |
| 355 | sector_t swap_folio_sector(struct folio *folio) |
| 356 | { |
| 357 | struct swap_info_struct *sis = __swap_entry_to_info(entry: folio->swap); |
| 358 | struct swap_extent *se; |
| 359 | sector_t sector; |
| 360 | pgoff_t offset; |
| 361 | |
| 362 | offset = swp_offset(entry: folio->swap); |
| 363 | se = offset_to_swap_extent(sis, offset); |
| 364 | sector = se->start_block + (offset - se->start_page); |
| 365 | return sector << (PAGE_SHIFT - 9); |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * swap allocation tell device that a cluster of swap can now be discarded, |
| 370 | * to allow the swap device to optimize its wear-levelling. |
| 371 | */ |
| 372 | static void discard_swap_cluster(struct swap_info_struct *si, |
| 373 | pgoff_t start_page, pgoff_t nr_pages) |
| 374 | { |
| 375 | struct swap_extent *se = offset_to_swap_extent(sis: si, offset: start_page); |
| 376 | |
| 377 | while (nr_pages) { |
| 378 | pgoff_t offset = start_page - se->start_page; |
| 379 | sector_t start_block = se->start_block + offset; |
| 380 | sector_t nr_blocks = se->nr_pages - offset; |
| 381 | |
| 382 | if (nr_blocks > nr_pages) |
| 383 | nr_blocks = nr_pages; |
| 384 | start_page += nr_blocks; |
| 385 | nr_pages -= nr_blocks; |
| 386 | |
| 387 | start_block <<= PAGE_SHIFT - 9; |
| 388 | nr_blocks <<= PAGE_SHIFT - 9; |
| 389 | if (blkdev_issue_discard(bdev: si->bdev, sector: start_block, |
| 390 | nr_sects: nr_blocks, GFP_NOIO)) |
| 391 | break; |
| 392 | |
| 393 | se = next_se(se); |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | #define LATENCY_LIMIT 256 |
| 398 | |
| 399 | static inline bool cluster_is_empty(struct swap_cluster_info *info) |
| 400 | { |
| 401 | return info->count == 0; |
| 402 | } |
| 403 | |
| 404 | static inline bool cluster_is_discard(struct swap_cluster_info *info) |
| 405 | { |
| 406 | return info->flags == CLUSTER_FLAG_DISCARD; |
| 407 | } |
| 408 | |
| 409 | static inline bool cluster_table_is_alloced(struct swap_cluster_info *ci) |
| 410 | { |
| 411 | return rcu_dereference_protected(ci->table, lockdep_is_held(&ci->lock)); |
| 412 | } |
| 413 | |
| 414 | static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order) |
| 415 | { |
| 416 | if (unlikely(ci->flags > CLUSTER_FLAG_USABLE)) |
| 417 | return false; |
| 418 | if (!cluster_table_is_alloced(ci)) |
| 419 | return false; |
| 420 | if (!order) |
| 421 | return true; |
| 422 | return cluster_is_empty(info: ci) || order == ci->order; |
| 423 | } |
| 424 | |
| 425 | static inline unsigned int cluster_index(struct swap_info_struct *si, |
| 426 | struct swap_cluster_info *ci) |
| 427 | { |
| 428 | return ci - si->cluster_info; |
| 429 | } |
| 430 | |
| 431 | static inline unsigned int cluster_offset(struct swap_info_struct *si, |
| 432 | struct swap_cluster_info *ci) |
| 433 | { |
| 434 | return cluster_index(si, ci) * SWAPFILE_CLUSTER; |
| 435 | } |
| 436 | |
| 437 | static struct swap_table *swap_table_alloc(gfp_t gfp) |
| 438 | { |
| 439 | struct folio *folio; |
| 440 | |
| 441 | if (!SWP_TABLE_USE_PAGE) |
| 442 | return kmem_cache_zalloc(swap_table_cachep, gfp); |
| 443 | |
| 444 | folio = folio_alloc(gfp | __GFP_ZERO, 0); |
| 445 | if (folio) |
| 446 | return folio_address(folio); |
| 447 | return NULL; |
| 448 | } |
| 449 | |
| 450 | static void swap_table_free_folio_rcu_cb(struct rcu_head *head) |
| 451 | { |
| 452 | struct folio *folio; |
| 453 | |
| 454 | folio = page_folio(container_of(head, struct page, rcu_head)); |
| 455 | folio_put(folio); |
| 456 | } |
| 457 | |
| 458 | static void swap_table_free(struct swap_table *table) |
| 459 | { |
| 460 | if (!SWP_TABLE_USE_PAGE) { |
| 461 | kmem_cache_free(s: swap_table_cachep, objp: table); |
| 462 | return; |
| 463 | } |
| 464 | |
| 465 | call_rcu(head: &(folio_page(virt_to_folio(table), 0)->rcu_head), |
| 466 | func: swap_table_free_folio_rcu_cb); |
| 467 | } |
| 468 | |
| 469 | static void swap_cluster_free_table(struct swap_cluster_info *ci) |
| 470 | { |
| 471 | unsigned int ci_off; |
| 472 | struct swap_table *table; |
| 473 | |
| 474 | /* Only empty cluster's table is allow to be freed */ |
| 475 | lockdep_assert_held(&ci->lock); |
| 476 | VM_WARN_ON_ONCE(!cluster_is_empty(ci)); |
| 477 | for (ci_off = 0; ci_off < SWAPFILE_CLUSTER; ci_off++) |
| 478 | VM_WARN_ON_ONCE(!swp_tb_is_null(__swap_table_get(ci, ci_off))); |
| 479 | table = (void *)rcu_dereference_protected(ci->table, true); |
| 480 | rcu_assign_pointer(ci->table, NULL); |
| 481 | |
| 482 | swap_table_free(table); |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * Allocate swap table for one cluster. Attempt an atomic allocation first, |
| 487 | * then fallback to sleeping allocation. |
| 488 | */ |
| 489 | static struct swap_cluster_info * |
| 490 | swap_cluster_alloc_table(struct swap_info_struct *si, |
| 491 | struct swap_cluster_info *ci) |
| 492 | { |
| 493 | struct swap_table *table; |
| 494 | |
| 495 | /* |
| 496 | * Only cluster isolation from the allocator does table allocation. |
| 497 | * Swap allocator uses percpu clusters and holds the local lock. |
| 498 | */ |
| 499 | lockdep_assert_held(&ci->lock); |
| 500 | lockdep_assert_held(&this_cpu_ptr(&percpu_swap_cluster)->lock); |
| 501 | |
| 502 | /* The cluster must be free and was just isolated from the free list. */ |
| 503 | VM_WARN_ON_ONCE(ci->flags || !cluster_is_empty(ci)); |
| 504 | |
| 505 | table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| 506 | if (table) { |
| 507 | rcu_assign_pointer(ci->table, table); |
| 508 | return ci; |
| 509 | } |
| 510 | |
| 511 | /* |
| 512 | * Try a sleep allocation. Each isolated free cluster may cause |
| 513 | * a sleep allocation, but there is a limited number of them, so |
| 514 | * the potential recursive allocation is limited. |
| 515 | */ |
| 516 | spin_unlock(lock: &ci->lock); |
| 517 | if (!(si->flags & SWP_SOLIDSTATE)) |
| 518 | spin_unlock(lock: &si->global_cluster_lock); |
| 519 | local_unlock(&percpu_swap_cluster.lock); |
| 520 | |
| 521 | table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | GFP_KERNEL); |
| 522 | |
| 523 | /* |
| 524 | * Back to atomic context. We might have migrated to a new CPU with a |
| 525 | * usable percpu cluster. But just keep using the isolated cluster to |
| 526 | * make things easier. Migration indicates a slight change of workload |
| 527 | * so using a new free cluster might not be a bad idea, and the worst |
| 528 | * could happen with ignoring the percpu cluster is fragmentation, |
| 529 | * which is acceptable since this fallback and race is rare. |
| 530 | */ |
| 531 | local_lock(&percpu_swap_cluster.lock); |
| 532 | if (!(si->flags & SWP_SOLIDSTATE)) |
| 533 | spin_lock(lock: &si->global_cluster_lock); |
| 534 | spin_lock(lock: &ci->lock); |
| 535 | |
| 536 | /* Nothing except this helper should touch a dangling empty cluster. */ |
| 537 | if (WARN_ON_ONCE(cluster_table_is_alloced(ci))) { |
| 538 | if (table) |
| 539 | swap_table_free(table); |
| 540 | return ci; |
| 541 | } |
| 542 | |
| 543 | if (!table) { |
| 544 | move_cluster(si, ci, list: &si->free_clusters, new_flags: CLUSTER_FLAG_FREE); |
| 545 | spin_unlock(lock: &ci->lock); |
| 546 | return NULL; |
| 547 | } |
| 548 | |
| 549 | rcu_assign_pointer(ci->table, table); |
| 550 | return ci; |
| 551 | } |
| 552 | |
| 553 | static void move_cluster(struct swap_info_struct *si, |
| 554 | struct swap_cluster_info *ci, struct list_head *list, |
| 555 | enum swap_cluster_flags new_flags) |
| 556 | { |
| 557 | VM_WARN_ON(ci->flags == new_flags); |
| 558 | |
| 559 | BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX); |
| 560 | lockdep_assert_held(&ci->lock); |
| 561 | |
| 562 | spin_lock(lock: &si->lock); |
| 563 | if (ci->flags == CLUSTER_FLAG_NONE) |
| 564 | list_add_tail(new: &ci->list, head: list); |
| 565 | else |
| 566 | list_move_tail(list: &ci->list, head: list); |
| 567 | spin_unlock(lock: &si->lock); |
| 568 | ci->flags = new_flags; |
| 569 | } |
| 570 | |
| 571 | /* Add a cluster to discard list and schedule it to do discard */ |
| 572 | static void swap_cluster_schedule_discard(struct swap_info_struct *si, |
| 573 | struct swap_cluster_info *ci) |
| 574 | { |
| 575 | VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); |
| 576 | move_cluster(si, ci, list: &si->discard_clusters, new_flags: CLUSTER_FLAG_DISCARD); |
| 577 | schedule_work(work: &si->discard_work); |
| 578 | } |
| 579 | |
| 580 | static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) |
| 581 | { |
| 582 | swap_cluster_free_table(ci); |
| 583 | move_cluster(si, ci, list: &si->free_clusters, new_flags: CLUSTER_FLAG_FREE); |
| 584 | ci->order = 0; |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * Isolate and lock the first cluster that is not contented on a list, |
| 589 | * clean its flag before taken off-list. Cluster flag must be in sync |
| 590 | * with list status, so cluster updaters can always know the cluster |
| 591 | * list status without touching si lock. |
| 592 | * |
| 593 | * Note it's possible that all clusters on a list are contented so |
| 594 | * this returns NULL for an non-empty list. |
| 595 | */ |
| 596 | static struct swap_cluster_info *isolate_lock_cluster( |
| 597 | struct swap_info_struct *si, struct list_head *list, int order) |
| 598 | { |
| 599 | struct swap_cluster_info *ci, *found = NULL; |
| 600 | |
| 601 | spin_lock(lock: &si->lock); |
| 602 | list_for_each_entry(ci, list, list) { |
| 603 | if (!spin_trylock(lock: &ci->lock)) |
| 604 | continue; |
| 605 | |
| 606 | /* We may only isolate and clear flags of following lists */ |
| 607 | VM_BUG_ON(!ci->flags); |
| 608 | VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE && |
| 609 | ci->flags != CLUSTER_FLAG_FULL); |
| 610 | |
| 611 | list_del(entry: &ci->list); |
| 612 | ci->flags = CLUSTER_FLAG_NONE; |
| 613 | found = ci; |
| 614 | break; |
| 615 | } |
| 616 | spin_unlock(lock: &si->lock); |
| 617 | |
| 618 | if (found && !cluster_table_is_alloced(ci: found)) { |
| 619 | /* Only an empty free cluster's swap table can be freed. */ |
| 620 | VM_WARN_ON_ONCE(list != &si->free_clusters); |
| 621 | VM_WARN_ON_ONCE(!cluster_is_empty(found)); |
| 622 | return swap_cluster_alloc_table(si, ci: found); |
| 623 | } |
| 624 | |
| 625 | return found; |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * Doing discard actually. After a cluster discard is finished, the cluster |
| 630 | * will be added to free cluster list. Discard cluster is a bit special as |
| 631 | * they don't participate in allocation or reclaim, so clusters marked as |
| 632 | * CLUSTER_FLAG_DISCARD must remain off-list or on discard list. |
| 633 | */ |
| 634 | static bool swap_do_scheduled_discard(struct swap_info_struct *si) |
| 635 | { |
| 636 | struct swap_cluster_info *ci; |
| 637 | bool ret = false; |
| 638 | unsigned int idx; |
| 639 | |
| 640 | spin_lock(lock: &si->lock); |
| 641 | while (!list_empty(head: &si->discard_clusters)) { |
| 642 | ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); |
| 643 | /* |
| 644 | * Delete the cluster from list to prepare for discard, but keep |
| 645 | * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be |
| 646 | * pointing to it, or ran into by relocate_cluster. |
| 647 | */ |
| 648 | list_del(entry: &ci->list); |
| 649 | idx = cluster_index(si, ci); |
| 650 | spin_unlock(lock: &si->lock); |
| 651 | discard_swap_cluster(si, start_page: idx * SWAPFILE_CLUSTER, |
| 652 | SWAPFILE_CLUSTER); |
| 653 | |
| 654 | spin_lock(lock: &ci->lock); |
| 655 | /* |
| 656 | * Discard is done, clear its flags as it's off-list, then |
| 657 | * return the cluster to allocation list. |
| 658 | */ |
| 659 | ci->flags = CLUSTER_FLAG_NONE; |
| 660 | __free_cluster(si, ci); |
| 661 | spin_unlock(lock: &ci->lock); |
| 662 | ret = true; |
| 663 | spin_lock(lock: &si->lock); |
| 664 | } |
| 665 | spin_unlock(lock: &si->lock); |
| 666 | return ret; |
| 667 | } |
| 668 | |
| 669 | static void swap_discard_work(struct work_struct *work) |
| 670 | { |
| 671 | struct swap_info_struct *si; |
| 672 | |
| 673 | si = container_of(work, struct swap_info_struct, discard_work); |
| 674 | |
| 675 | swap_do_scheduled_discard(si); |
| 676 | } |
| 677 | |
| 678 | static void swap_users_ref_free(struct percpu_ref *ref) |
| 679 | { |
| 680 | struct swap_info_struct *si; |
| 681 | |
| 682 | si = container_of(ref, struct swap_info_struct, users); |
| 683 | complete(&si->comp); |
| 684 | } |
| 685 | |
| 686 | /* |
| 687 | * Must be called after freeing if ci->count == 0, moves the cluster to free |
| 688 | * or discard list. |
| 689 | */ |
| 690 | static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) |
| 691 | { |
| 692 | VM_BUG_ON(ci->count != 0); |
| 693 | VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); |
| 694 | lockdep_assert_held(&ci->lock); |
| 695 | |
| 696 | /* |
| 697 | * If the swap is discardable, prepare discard the cluster |
| 698 | * instead of free it immediately. The cluster will be freed |
| 699 | * after discard. |
| 700 | */ |
| 701 | if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == |
| 702 | (SWP_WRITEOK | SWP_PAGE_DISCARD)) { |
| 703 | swap_cluster_schedule_discard(si, ci); |
| 704 | return; |
| 705 | } |
| 706 | |
| 707 | __free_cluster(si, ci); |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | * Must be called after freeing if ci->count != 0, moves the cluster to |
| 712 | * nonfull list. |
| 713 | */ |
| 714 | static void partial_free_cluster(struct swap_info_struct *si, |
| 715 | struct swap_cluster_info *ci) |
| 716 | { |
| 717 | VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER); |
| 718 | lockdep_assert_held(&ci->lock); |
| 719 | |
| 720 | if (ci->flags != CLUSTER_FLAG_NONFULL) |
| 721 | move_cluster(si, ci, list: &si->nonfull_clusters[ci->order], |
| 722 | new_flags: CLUSTER_FLAG_NONFULL); |
| 723 | } |
| 724 | |
| 725 | /* |
| 726 | * Must be called after allocation, moves the cluster to full or frag list. |
| 727 | * Note: allocation doesn't acquire si lock, and may drop the ci lock for |
| 728 | * reclaim, so the cluster could be any where when called. |
| 729 | */ |
| 730 | static void relocate_cluster(struct swap_info_struct *si, |
| 731 | struct swap_cluster_info *ci) |
| 732 | { |
| 733 | lockdep_assert_held(&ci->lock); |
| 734 | |
| 735 | /* Discard cluster must remain off-list or on discard list */ |
| 736 | if (cluster_is_discard(info: ci)) |
| 737 | return; |
| 738 | |
| 739 | if (!ci->count) { |
| 740 | if (ci->flags != CLUSTER_FLAG_FREE) |
| 741 | free_cluster(si, ci); |
| 742 | } else if (ci->count != SWAPFILE_CLUSTER) { |
| 743 | if (ci->flags != CLUSTER_FLAG_FRAG) |
| 744 | move_cluster(si, ci, list: &si->frag_clusters[ci->order], |
| 745 | new_flags: CLUSTER_FLAG_FRAG); |
| 746 | } else { |
| 747 | if (ci->flags != CLUSTER_FLAG_FULL) |
| 748 | move_cluster(si, ci, list: &si->full_clusters, |
| 749 | new_flags: CLUSTER_FLAG_FULL); |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | /* |
| 754 | * The cluster corresponding to page_nr will be used. The cluster will not be |
| 755 | * added to free cluster list and its usage counter will be increased by 1. |
| 756 | * Only used for initialization. |
| 757 | */ |
| 758 | static int inc_cluster_info_page(struct swap_info_struct *si, |
| 759 | struct swap_cluster_info *cluster_info, unsigned long page_nr) |
| 760 | { |
| 761 | unsigned long idx = page_nr / SWAPFILE_CLUSTER; |
| 762 | struct swap_table *table; |
| 763 | struct swap_cluster_info *ci; |
| 764 | |
| 765 | ci = cluster_info + idx; |
| 766 | if (!ci->table) { |
| 767 | table = swap_table_alloc(GFP_KERNEL); |
| 768 | if (!table) |
| 769 | return -ENOMEM; |
| 770 | rcu_assign_pointer(ci->table, table); |
| 771 | } |
| 772 | |
| 773 | ci->count++; |
| 774 | |
| 775 | VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); |
| 776 | VM_BUG_ON(ci->flags); |
| 777 | |
| 778 | return 0; |
| 779 | } |
| 780 | |
| 781 | static bool cluster_reclaim_range(struct swap_info_struct *si, |
| 782 | struct swap_cluster_info *ci, |
| 783 | unsigned long start, unsigned long end) |
| 784 | { |
| 785 | unsigned char *map = si->swap_map; |
| 786 | unsigned long offset = start; |
| 787 | int nr_reclaim; |
| 788 | |
| 789 | spin_unlock(lock: &ci->lock); |
| 790 | do { |
| 791 | switch (READ_ONCE(map[offset])) { |
| 792 | case 0: |
| 793 | offset++; |
| 794 | break; |
| 795 | case SWAP_HAS_CACHE: |
| 796 | nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); |
| 797 | if (nr_reclaim > 0) |
| 798 | offset += nr_reclaim; |
| 799 | else |
| 800 | goto out; |
| 801 | break; |
| 802 | default: |
| 803 | goto out; |
| 804 | } |
| 805 | } while (offset < end); |
| 806 | out: |
| 807 | spin_lock(lock: &ci->lock); |
| 808 | /* |
| 809 | * Recheck the range no matter reclaim succeeded or not, the slot |
| 810 | * could have been be freed while we are not holding the lock. |
| 811 | */ |
| 812 | for (offset = start; offset < end; offset++) |
| 813 | if (READ_ONCE(map[offset])) |
| 814 | return false; |
| 815 | |
| 816 | return true; |
| 817 | } |
| 818 | |
| 819 | static bool cluster_scan_range(struct swap_info_struct *si, |
| 820 | struct swap_cluster_info *ci, |
| 821 | unsigned long start, unsigned int nr_pages, |
| 822 | bool *need_reclaim) |
| 823 | { |
| 824 | unsigned long offset, end = start + nr_pages; |
| 825 | unsigned char *map = si->swap_map; |
| 826 | |
| 827 | if (cluster_is_empty(info: ci)) |
| 828 | return true; |
| 829 | |
| 830 | for (offset = start; offset < end; offset++) { |
| 831 | switch (READ_ONCE(map[offset])) { |
| 832 | case 0: |
| 833 | continue; |
| 834 | case SWAP_HAS_CACHE: |
| 835 | if (!vm_swap_full()) |
| 836 | return false; |
| 837 | *need_reclaim = true; |
| 838 | continue; |
| 839 | default: |
| 840 | return false; |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | return true; |
| 845 | } |
| 846 | |
| 847 | /* |
| 848 | * Currently, the swap table is not used for count tracking, just |
| 849 | * do a sanity check here to ensure nothing leaked, so the swap |
| 850 | * table should be empty upon freeing. |
| 851 | */ |
| 852 | static void swap_cluster_assert_table_empty(struct swap_cluster_info *ci, |
| 853 | unsigned int start, unsigned int nr) |
| 854 | { |
| 855 | unsigned int ci_off = start % SWAPFILE_CLUSTER; |
| 856 | unsigned int ci_end = ci_off + nr; |
| 857 | unsigned long swp_tb; |
| 858 | |
| 859 | if (IS_ENABLED(CONFIG_DEBUG_VM)) { |
| 860 | do { |
| 861 | swp_tb = __swap_table_get(ci, off: ci_off); |
| 862 | VM_WARN_ON_ONCE(!swp_tb_is_null(swp_tb)); |
| 863 | } while (++ci_off < ci_end); |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, |
| 868 | unsigned int start, unsigned char usage, |
| 869 | unsigned int order) |
| 870 | { |
| 871 | unsigned int nr_pages = 1 << order; |
| 872 | |
| 873 | lockdep_assert_held(&ci->lock); |
| 874 | |
| 875 | if (!(si->flags & SWP_WRITEOK)) |
| 876 | return false; |
| 877 | |
| 878 | /* |
| 879 | * The first allocation in a cluster makes the |
| 880 | * cluster exclusive to this order |
| 881 | */ |
| 882 | if (cluster_is_empty(info: ci)) |
| 883 | ci->order = order; |
| 884 | |
| 885 | memset(s: si->swap_map + start, c: usage, n: nr_pages); |
| 886 | swap_cluster_assert_table_empty(ci, start, nr: nr_pages); |
| 887 | swap_range_alloc(si, nr_entries: nr_pages); |
| 888 | ci->count += nr_pages; |
| 889 | |
| 890 | return true; |
| 891 | } |
| 892 | |
| 893 | /* Try use a new cluster for current CPU and allocate from it. */ |
| 894 | static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, |
| 895 | struct swap_cluster_info *ci, |
| 896 | unsigned long offset, |
| 897 | unsigned int order, |
| 898 | unsigned char usage) |
| 899 | { |
| 900 | unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; |
| 901 | unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER); |
| 902 | unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); |
| 903 | unsigned int nr_pages = 1 << order; |
| 904 | bool need_reclaim, ret; |
| 905 | |
| 906 | lockdep_assert_held(&ci->lock); |
| 907 | |
| 908 | if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER) |
| 909 | goto out; |
| 910 | |
| 911 | for (end -= nr_pages; offset <= end; offset += nr_pages) { |
| 912 | need_reclaim = false; |
| 913 | if (!cluster_scan_range(si, ci, start: offset, nr_pages, need_reclaim: &need_reclaim)) |
| 914 | continue; |
| 915 | if (need_reclaim) { |
| 916 | ret = cluster_reclaim_range(si, ci, start: offset, end: offset + nr_pages); |
| 917 | /* |
| 918 | * Reclaim drops ci->lock and cluster could be used |
| 919 | * by another order. Not checking flag as off-list |
| 920 | * cluster has no flag set, and change of list |
| 921 | * won't cause fragmentation. |
| 922 | */ |
| 923 | if (!cluster_is_usable(ci, order)) |
| 924 | goto out; |
| 925 | if (cluster_is_empty(info: ci)) |
| 926 | offset = start; |
| 927 | /* Reclaim failed but cluster is usable, try next */ |
| 928 | if (!ret) |
| 929 | continue; |
| 930 | } |
| 931 | if (!cluster_alloc_range(si, ci, start: offset, usage, order)) |
| 932 | break; |
| 933 | found = offset; |
| 934 | offset += nr_pages; |
| 935 | if (ci->count < SWAPFILE_CLUSTER && offset <= end) |
| 936 | next = offset; |
| 937 | break; |
| 938 | } |
| 939 | out: |
| 940 | relocate_cluster(si, ci); |
| 941 | swap_cluster_unlock(ci); |
| 942 | if (si->flags & SWP_SOLIDSTATE) { |
| 943 | this_cpu_write(percpu_swap_cluster.offset[order], next); |
| 944 | this_cpu_write(percpu_swap_cluster.si[order], si); |
| 945 | } else { |
| 946 | si->global_cluster->next[order] = next; |
| 947 | } |
| 948 | return found; |
| 949 | } |
| 950 | |
| 951 | static unsigned int alloc_swap_scan_list(struct swap_info_struct *si, |
| 952 | struct list_head *list, |
| 953 | unsigned int order, |
| 954 | unsigned char usage, |
| 955 | bool scan_all) |
| 956 | { |
| 957 | unsigned int found = SWAP_ENTRY_INVALID; |
| 958 | |
| 959 | do { |
| 960 | struct swap_cluster_info *ci = isolate_lock_cluster(si, list, order); |
| 961 | unsigned long offset; |
| 962 | |
| 963 | if (!ci) |
| 964 | break; |
| 965 | offset = cluster_offset(si, ci); |
| 966 | found = alloc_swap_scan_cluster(si, ci, offset, order, usage); |
| 967 | if (found) |
| 968 | break; |
| 969 | } while (scan_all); |
| 970 | |
| 971 | return found; |
| 972 | } |
| 973 | |
| 974 | static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) |
| 975 | { |
| 976 | long to_scan = 1; |
| 977 | unsigned long offset, end; |
| 978 | struct swap_cluster_info *ci; |
| 979 | unsigned char *map = si->swap_map; |
| 980 | int nr_reclaim; |
| 981 | |
| 982 | if (force) |
| 983 | to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER; |
| 984 | |
| 985 | while ((ci = isolate_lock_cluster(si, list: &si->full_clusters, order: 0))) { |
| 986 | offset = cluster_offset(si, ci); |
| 987 | end = min(si->max, offset + SWAPFILE_CLUSTER); |
| 988 | to_scan--; |
| 989 | |
| 990 | while (offset < end) { |
| 991 | if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { |
| 992 | spin_unlock(lock: &ci->lock); |
| 993 | nr_reclaim = __try_to_reclaim_swap(si, offset, |
| 994 | TTRS_ANYWAY); |
| 995 | spin_lock(lock: &ci->lock); |
| 996 | if (nr_reclaim) { |
| 997 | offset += abs(nr_reclaim); |
| 998 | continue; |
| 999 | } |
| 1000 | } |
| 1001 | offset++; |
| 1002 | } |
| 1003 | |
| 1004 | /* in case no swap cache is reclaimed */ |
| 1005 | if (ci->flags == CLUSTER_FLAG_NONE) |
| 1006 | relocate_cluster(si, ci); |
| 1007 | |
| 1008 | swap_cluster_unlock(ci); |
| 1009 | if (to_scan <= 0) |
| 1010 | break; |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | static void swap_reclaim_work(struct work_struct *work) |
| 1015 | { |
| 1016 | struct swap_info_struct *si; |
| 1017 | |
| 1018 | si = container_of(work, struct swap_info_struct, reclaim_work); |
| 1019 | |
| 1020 | swap_reclaim_full_clusters(si, force: true); |
| 1021 | } |
| 1022 | |
| 1023 | /* |
| 1024 | * Try to allocate swap entries with specified order and try set a new |
| 1025 | * cluster for current CPU too. |
| 1026 | */ |
| 1027 | static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, |
| 1028 | unsigned char usage) |
| 1029 | { |
| 1030 | struct swap_cluster_info *ci; |
| 1031 | unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; |
| 1032 | |
| 1033 | /* |
| 1034 | * Swapfile is not block device so unable |
| 1035 | * to allocate large entries. |
| 1036 | */ |
| 1037 | if (order && !(si->flags & SWP_BLKDEV)) |
| 1038 | return 0; |
| 1039 | |
| 1040 | if (!(si->flags & SWP_SOLIDSTATE)) { |
| 1041 | /* Serialize HDD SWAP allocation for each device. */ |
| 1042 | spin_lock(lock: &si->global_cluster_lock); |
| 1043 | offset = si->global_cluster->next[order]; |
| 1044 | if (offset == SWAP_ENTRY_INVALID) |
| 1045 | goto new_cluster; |
| 1046 | |
| 1047 | ci = swap_cluster_lock(si, offset); |
| 1048 | /* Cluster could have been used by another order */ |
| 1049 | if (cluster_is_usable(ci, order)) { |
| 1050 | if (cluster_is_empty(info: ci)) |
| 1051 | offset = cluster_offset(si, ci); |
| 1052 | found = alloc_swap_scan_cluster(si, ci, offset, |
| 1053 | order, usage); |
| 1054 | } else { |
| 1055 | swap_cluster_unlock(ci); |
| 1056 | } |
| 1057 | if (found) |
| 1058 | goto done; |
| 1059 | } |
| 1060 | |
| 1061 | new_cluster: |
| 1062 | /* |
| 1063 | * If the device need discard, prefer new cluster over nonfull |
| 1064 | * to spread out the writes. |
| 1065 | */ |
| 1066 | if (si->flags & SWP_PAGE_DISCARD) { |
| 1067 | found = alloc_swap_scan_list(si, list: &si->free_clusters, order, usage, |
| 1068 | scan_all: false); |
| 1069 | if (found) |
| 1070 | goto done; |
| 1071 | } |
| 1072 | |
| 1073 | if (order < PMD_ORDER) { |
| 1074 | found = alloc_swap_scan_list(si, list: &si->nonfull_clusters[order], |
| 1075 | order, usage, scan_all: true); |
| 1076 | if (found) |
| 1077 | goto done; |
| 1078 | } |
| 1079 | |
| 1080 | if (!(si->flags & SWP_PAGE_DISCARD)) { |
| 1081 | found = alloc_swap_scan_list(si, list: &si->free_clusters, order, usage, |
| 1082 | scan_all: false); |
| 1083 | if (found) |
| 1084 | goto done; |
| 1085 | } |
| 1086 | |
| 1087 | /* Try reclaim full clusters if free and nonfull lists are drained */ |
| 1088 | if (vm_swap_full()) |
| 1089 | swap_reclaim_full_clusters(si, force: false); |
| 1090 | |
| 1091 | if (order < PMD_ORDER) { |
| 1092 | /* |
| 1093 | * Scan only one fragment cluster is good enough. Order 0 |
| 1094 | * allocation will surely success, and large allocation |
| 1095 | * failure is not critical. Scanning one cluster still |
| 1096 | * keeps the list rotated and reclaimed (for HAS_CACHE). |
| 1097 | */ |
| 1098 | found = alloc_swap_scan_list(si, list: &si->frag_clusters[order], order, |
| 1099 | usage, scan_all: false); |
| 1100 | if (found) |
| 1101 | goto done; |
| 1102 | } |
| 1103 | |
| 1104 | /* |
| 1105 | * We don't have free cluster but have some clusters in discarding, |
| 1106 | * do discard now and reclaim them. |
| 1107 | */ |
| 1108 | if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si)) |
| 1109 | goto new_cluster; |
| 1110 | |
| 1111 | if (order) |
| 1112 | goto done; |
| 1113 | |
| 1114 | /* Order 0 stealing from higher order */ |
| 1115 | for (int o = 1; o < SWAP_NR_ORDERS; o++) { |
| 1116 | /* |
| 1117 | * Clusters here have at least one usable slots and can't fail order 0 |
| 1118 | * allocation, but reclaim may drop si->lock and race with another user. |
| 1119 | */ |
| 1120 | found = alloc_swap_scan_list(si, list: &si->frag_clusters[o], |
| 1121 | order: 0, usage, scan_all: true); |
| 1122 | if (found) |
| 1123 | goto done; |
| 1124 | |
| 1125 | found = alloc_swap_scan_list(si, list: &si->nonfull_clusters[o], |
| 1126 | order: 0, usage, scan_all: true); |
| 1127 | if (found) |
| 1128 | goto done; |
| 1129 | } |
| 1130 | done: |
| 1131 | if (!(si->flags & SWP_SOLIDSTATE)) |
| 1132 | spin_unlock(lock: &si->global_cluster_lock); |
| 1133 | |
| 1134 | return found; |
| 1135 | } |
| 1136 | |
| 1137 | /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */ |
| 1138 | static void del_from_avail_list(struct swap_info_struct *si, bool swapoff) |
| 1139 | { |
| 1140 | int nid; |
| 1141 | unsigned long pages; |
| 1142 | |
| 1143 | spin_lock(lock: &swap_avail_lock); |
| 1144 | |
| 1145 | if (swapoff) { |
| 1146 | /* |
| 1147 | * Forcefully remove it. Clear the SWP_WRITEOK flags for |
| 1148 | * swapoff here so it's synchronized by both si->lock and |
| 1149 | * swap_avail_lock, to ensure the result can be seen by |
| 1150 | * add_to_avail_list. |
| 1151 | */ |
| 1152 | lockdep_assert_held(&si->lock); |
| 1153 | si->flags &= ~SWP_WRITEOK; |
| 1154 | atomic_long_or(SWAP_USAGE_OFFLIST_BIT, v: &si->inuse_pages); |
| 1155 | } else { |
| 1156 | /* |
| 1157 | * If not called by swapoff, take it off-list only if it's |
| 1158 | * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly |
| 1159 | * si->inuse_pages == pages), any concurrent slot freeing, |
| 1160 | * or device already removed from plist by someone else |
| 1161 | * will make this return false. |
| 1162 | */ |
| 1163 | pages = si->pages; |
| 1164 | if (!atomic_long_try_cmpxchg(v: &si->inuse_pages, old: &pages, |
| 1165 | new: pages | SWAP_USAGE_OFFLIST_BIT)) |
| 1166 | goto skip; |
| 1167 | } |
| 1168 | |
| 1169 | for_each_node(nid) |
| 1170 | plist_del(node: &si->avail_lists[nid], head: &swap_avail_heads[nid]); |
| 1171 | |
| 1172 | skip: |
| 1173 | spin_unlock(lock: &swap_avail_lock); |
| 1174 | } |
| 1175 | |
| 1176 | /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */ |
| 1177 | static void add_to_avail_list(struct swap_info_struct *si, bool swapon) |
| 1178 | { |
| 1179 | int nid; |
| 1180 | long val; |
| 1181 | unsigned long pages; |
| 1182 | |
| 1183 | spin_lock(lock: &swap_avail_lock); |
| 1184 | |
| 1185 | /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */ |
| 1186 | if (swapon) { |
| 1187 | lockdep_assert_held(&si->lock); |
| 1188 | si->flags |= SWP_WRITEOK; |
| 1189 | } else { |
| 1190 | if (!(READ_ONCE(si->flags) & SWP_WRITEOK)) |
| 1191 | goto skip; |
| 1192 | } |
| 1193 | |
| 1194 | if (!(atomic_long_read(v: &si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT)) |
| 1195 | goto skip; |
| 1196 | |
| 1197 | val = atomic_long_fetch_and_relaxed(i: ~SWAP_USAGE_OFFLIST_BIT, v: &si->inuse_pages); |
| 1198 | |
| 1199 | /* |
| 1200 | * When device is full and device is on the plist, only one updater will |
| 1201 | * see (inuse_pages == si->pages) and will call del_from_avail_list. If |
| 1202 | * that updater happen to be here, just skip adding. |
| 1203 | */ |
| 1204 | pages = si->pages; |
| 1205 | if (val == pages) { |
| 1206 | /* Just like the cmpxchg in del_from_avail_list */ |
| 1207 | if (atomic_long_try_cmpxchg(v: &si->inuse_pages, old: &pages, |
| 1208 | new: pages | SWAP_USAGE_OFFLIST_BIT)) |
| 1209 | goto skip; |
| 1210 | } |
| 1211 | |
| 1212 | for_each_node(nid) |
| 1213 | plist_add(node: &si->avail_lists[nid], head: &swap_avail_heads[nid]); |
| 1214 | |
| 1215 | skip: |
| 1216 | spin_unlock(lock: &swap_avail_lock); |
| 1217 | } |
| 1218 | |
| 1219 | /* |
| 1220 | * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock |
| 1221 | * within each cluster, so the total contribution to the global counter should |
| 1222 | * always be positive and cannot exceed the total number of usable slots. |
| 1223 | */ |
| 1224 | static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries) |
| 1225 | { |
| 1226 | long val = atomic_long_add_return_relaxed(i: nr_entries, v: &si->inuse_pages); |
| 1227 | |
| 1228 | /* |
| 1229 | * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set, |
| 1230 | * remove it from the plist. |
| 1231 | */ |
| 1232 | if (unlikely(val == si->pages)) { |
| 1233 | del_from_avail_list(si, swapoff: false); |
| 1234 | return true; |
| 1235 | } |
| 1236 | |
| 1237 | return false; |
| 1238 | } |
| 1239 | |
| 1240 | static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries) |
| 1241 | { |
| 1242 | long val = atomic_long_sub_return_relaxed(i: nr_entries, v: &si->inuse_pages); |
| 1243 | |
| 1244 | /* |
| 1245 | * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set, |
| 1246 | * add it to the plist. |
| 1247 | */ |
| 1248 | if (unlikely(val & SWAP_USAGE_OFFLIST_BIT)) |
| 1249 | add_to_avail_list(si, swapon: false); |
| 1250 | } |
| 1251 | |
| 1252 | static void swap_range_alloc(struct swap_info_struct *si, |
| 1253 | unsigned int nr_entries) |
| 1254 | { |
| 1255 | if (swap_usage_add(si, nr_entries)) { |
| 1256 | if (vm_swap_full()) |
| 1257 | schedule_work(work: &si->reclaim_work); |
| 1258 | } |
| 1259 | atomic_long_sub(i: nr_entries, v: &nr_swap_pages); |
| 1260 | } |
| 1261 | |
| 1262 | static void swap_range_free(struct swap_info_struct *si, unsigned long offset, |
| 1263 | unsigned int nr_entries) |
| 1264 | { |
| 1265 | unsigned long begin = offset; |
| 1266 | unsigned long end = offset + nr_entries - 1; |
| 1267 | void (*swap_slot_free_notify)(struct block_device *, unsigned long); |
| 1268 | unsigned int i; |
| 1269 | |
| 1270 | /* |
| 1271 | * Use atomic clear_bit operations only on zeromap instead of non-atomic |
| 1272 | * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. |
| 1273 | */ |
| 1274 | for (i = 0; i < nr_entries; i++) { |
| 1275 | clear_bit(nr: offset + i, addr: si->zeromap); |
| 1276 | zswap_invalidate(swp: swp_entry(type: si->type, offset: offset + i)); |
| 1277 | } |
| 1278 | |
| 1279 | if (si->flags & SWP_BLKDEV) |
| 1280 | swap_slot_free_notify = |
| 1281 | si->bdev->bd_disk->fops->swap_slot_free_notify; |
| 1282 | else |
| 1283 | swap_slot_free_notify = NULL; |
| 1284 | while (offset <= end) { |
| 1285 | arch_swap_invalidate_page(type: si->type, offset); |
| 1286 | if (swap_slot_free_notify) |
| 1287 | swap_slot_free_notify(si->bdev, offset); |
| 1288 | offset++; |
| 1289 | } |
| 1290 | __swap_cache_clear_shadow(entry: swp_entry(type: si->type, offset: begin), nr_ents: nr_entries); |
| 1291 | |
| 1292 | /* |
| 1293 | * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 |
| 1294 | * only after the above cleanups are done. |
| 1295 | */ |
| 1296 | smp_wmb(); |
| 1297 | atomic_long_add(i: nr_entries, v: &nr_swap_pages); |
| 1298 | swap_usage_sub(si, nr_entries); |
| 1299 | } |
| 1300 | |
| 1301 | static bool get_swap_device_info(struct swap_info_struct *si) |
| 1302 | { |
| 1303 | if (!percpu_ref_tryget_live(ref: &si->users)) |
| 1304 | return false; |
| 1305 | /* |
| 1306 | * Guarantee the si->users are checked before accessing other |
| 1307 | * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is |
| 1308 | * up to dated. |
| 1309 | * |
| 1310 | * Paired with the spin_unlock() after setup_swap_info() in |
| 1311 | * enable_swap_info(), and smp_wmb() in swapoff. |
| 1312 | */ |
| 1313 | smp_rmb(); |
| 1314 | return true; |
| 1315 | } |
| 1316 | |
| 1317 | /* |
| 1318 | * Fast path try to get swap entries with specified order from current |
| 1319 | * CPU's swap entry pool (a cluster). |
| 1320 | */ |
| 1321 | static bool swap_alloc_fast(swp_entry_t *entry, |
| 1322 | int order) |
| 1323 | { |
| 1324 | struct swap_cluster_info *ci; |
| 1325 | struct swap_info_struct *si; |
| 1326 | unsigned int offset, found = SWAP_ENTRY_INVALID; |
| 1327 | |
| 1328 | /* |
| 1329 | * Once allocated, swap_info_struct will never be completely freed, |
| 1330 | * so checking it's liveness by get_swap_device_info is enough. |
| 1331 | */ |
| 1332 | si = this_cpu_read(percpu_swap_cluster.si[order]); |
| 1333 | offset = this_cpu_read(percpu_swap_cluster.offset[order]); |
| 1334 | if (!si || !offset || !get_swap_device_info(si)) |
| 1335 | return false; |
| 1336 | |
| 1337 | ci = swap_cluster_lock(si, offset); |
| 1338 | if (cluster_is_usable(ci, order)) { |
| 1339 | if (cluster_is_empty(info: ci)) |
| 1340 | offset = cluster_offset(si, ci); |
| 1341 | found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE); |
| 1342 | if (found) |
| 1343 | *entry = swp_entry(type: si->type, offset: found); |
| 1344 | } else { |
| 1345 | swap_cluster_unlock(ci); |
| 1346 | } |
| 1347 | |
| 1348 | put_swap_device(si); |
| 1349 | return !!found; |
| 1350 | } |
| 1351 | |
| 1352 | /* Rotate the device and switch to a new cluster */ |
| 1353 | static bool swap_alloc_slow(swp_entry_t *entry, |
| 1354 | int order) |
| 1355 | { |
| 1356 | int node; |
| 1357 | unsigned long offset; |
| 1358 | struct swap_info_struct *si, *next; |
| 1359 | |
| 1360 | node = numa_node_id(); |
| 1361 | spin_lock(lock: &swap_avail_lock); |
| 1362 | start_over: |
| 1363 | plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { |
| 1364 | /* Rotate the device and switch to a new cluster */ |
| 1365 | plist_requeue(node: &si->avail_lists[node], head: &swap_avail_heads[node]); |
| 1366 | spin_unlock(lock: &swap_avail_lock); |
| 1367 | if (get_swap_device_info(si)) { |
| 1368 | offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE); |
| 1369 | put_swap_device(si); |
| 1370 | if (offset) { |
| 1371 | *entry = swp_entry(type: si->type, offset); |
| 1372 | return true; |
| 1373 | } |
| 1374 | if (order) |
| 1375 | return false; |
| 1376 | } |
| 1377 | |
| 1378 | spin_lock(lock: &swap_avail_lock); |
| 1379 | /* |
| 1380 | * if we got here, it's likely that si was almost full before, |
| 1381 | * and since scan_swap_map_slots() can drop the si->lock, |
| 1382 | * multiple callers probably all tried to get a page from the |
| 1383 | * same si and it filled up before we could get one; or, the si |
| 1384 | * filled up between us dropping swap_avail_lock and taking |
| 1385 | * si->lock. Since we dropped the swap_avail_lock, the |
| 1386 | * swap_avail_head list may have been modified; so if next is |
| 1387 | * still in the swap_avail_head list then try it, otherwise |
| 1388 | * start over if we have not gotten any slots. |
| 1389 | */ |
| 1390 | if (plist_node_empty(node: &next->avail_lists[node])) |
| 1391 | goto start_over; |
| 1392 | } |
| 1393 | spin_unlock(lock: &swap_avail_lock); |
| 1394 | return false; |
| 1395 | } |
| 1396 | |
| 1397 | /** |
| 1398 | * folio_alloc_swap - allocate swap space for a folio |
| 1399 | * @folio: folio we want to move to swap |
| 1400 | * @gfp: gfp mask for shadow nodes |
| 1401 | * |
| 1402 | * Allocate swap space for the folio and add the folio to the |
| 1403 | * swap cache. |
| 1404 | * |
| 1405 | * Context: Caller needs to hold the folio lock. |
| 1406 | * Return: Whether the folio was added to the swap cache. |
| 1407 | */ |
| 1408 | int folio_alloc_swap(struct folio *folio, gfp_t gfp) |
| 1409 | { |
| 1410 | unsigned int order = folio_order(folio); |
| 1411 | unsigned int size = 1 << order; |
| 1412 | swp_entry_t entry = {}; |
| 1413 | |
| 1414 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
| 1415 | VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); |
| 1416 | |
| 1417 | if (order) { |
| 1418 | /* |
| 1419 | * Reject large allocation when THP_SWAP is disabled, |
| 1420 | * the caller should split the folio and try again. |
| 1421 | */ |
| 1422 | if (!IS_ENABLED(CONFIG_THP_SWAP)) |
| 1423 | return -EAGAIN; |
| 1424 | |
| 1425 | /* |
| 1426 | * Allocation size should never exceed cluster size |
| 1427 | * (HPAGE_PMD_SIZE). |
| 1428 | */ |
| 1429 | if (size > SWAPFILE_CLUSTER) { |
| 1430 | VM_WARN_ON_ONCE(1); |
| 1431 | return -EINVAL; |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | local_lock(&percpu_swap_cluster.lock); |
| 1436 | if (!swap_alloc_fast(entry: &entry, order)) |
| 1437 | swap_alloc_slow(entry: &entry, order); |
| 1438 | local_unlock(&percpu_swap_cluster.lock); |
| 1439 | |
| 1440 | /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */ |
| 1441 | if (mem_cgroup_try_charge_swap(folio, entry)) |
| 1442 | goto out_free; |
| 1443 | |
| 1444 | if (!entry.val) |
| 1445 | return -ENOMEM; |
| 1446 | |
| 1447 | swap_cache_add_folio(folio, entry, NULL); |
| 1448 | |
| 1449 | return 0; |
| 1450 | |
| 1451 | out_free: |
| 1452 | put_swap_folio(folio, entry); |
| 1453 | return -ENOMEM; |
| 1454 | } |
| 1455 | |
| 1456 | static struct swap_info_struct *_swap_info_get(swp_entry_t entry) |
| 1457 | { |
| 1458 | struct swap_info_struct *si; |
| 1459 | unsigned long offset; |
| 1460 | |
| 1461 | if (!entry.val) |
| 1462 | goto out; |
| 1463 | si = swap_entry_to_info(entry); |
| 1464 | if (!si) |
| 1465 | goto bad_nofile; |
| 1466 | if (data_race(!(si->flags & SWP_USED))) |
| 1467 | goto bad_device; |
| 1468 | offset = swp_offset(entry); |
| 1469 | if (offset >= si->max) |
| 1470 | goto bad_offset; |
| 1471 | if (data_race(!si->swap_map[swp_offset(entry)])) |
| 1472 | goto bad_free; |
| 1473 | return si; |
| 1474 | |
| 1475 | bad_free: |
| 1476 | pr_err("%s: %s%08lx\n" , __func__, Unused_offset, entry.val); |
| 1477 | goto out; |
| 1478 | bad_offset: |
| 1479 | pr_err("%s: %s%08lx\n" , __func__, Bad_offset, entry.val); |
| 1480 | goto out; |
| 1481 | bad_device: |
| 1482 | pr_err("%s: %s%08lx\n" , __func__, Unused_file, entry.val); |
| 1483 | goto out; |
| 1484 | bad_nofile: |
| 1485 | pr_err("%s: %s%08lx\n" , __func__, Bad_file, entry.val); |
| 1486 | out: |
| 1487 | return NULL; |
| 1488 | } |
| 1489 | |
| 1490 | static unsigned char swap_entry_put_locked(struct swap_info_struct *si, |
| 1491 | struct swap_cluster_info *ci, |
| 1492 | swp_entry_t entry, |
| 1493 | unsigned char usage) |
| 1494 | { |
| 1495 | unsigned long offset = swp_offset(entry); |
| 1496 | unsigned char count; |
| 1497 | unsigned char has_cache; |
| 1498 | |
| 1499 | count = si->swap_map[offset]; |
| 1500 | |
| 1501 | has_cache = count & SWAP_HAS_CACHE; |
| 1502 | count &= ~SWAP_HAS_CACHE; |
| 1503 | |
| 1504 | if (usage == SWAP_HAS_CACHE) { |
| 1505 | VM_BUG_ON(!has_cache); |
| 1506 | has_cache = 0; |
| 1507 | } else if (count == SWAP_MAP_SHMEM) { |
| 1508 | /* |
| 1509 | * Or we could insist on shmem.c using a special |
| 1510 | * swap_shmem_free() and free_shmem_swap_and_cache()... |
| 1511 | */ |
| 1512 | count = 0; |
| 1513 | } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { |
| 1514 | if (count == COUNT_CONTINUED) { |
| 1515 | if (swap_count_continued(si, offset, count)) |
| 1516 | count = SWAP_MAP_MAX | COUNT_CONTINUED; |
| 1517 | else |
| 1518 | count = SWAP_MAP_MAX; |
| 1519 | } else |
| 1520 | count--; |
| 1521 | } |
| 1522 | |
| 1523 | usage = count | has_cache; |
| 1524 | if (usage) |
| 1525 | WRITE_ONCE(si->swap_map[offset], usage); |
| 1526 | else |
| 1527 | swap_entries_free(si, ci, entry, nr_pages: 1); |
| 1528 | |
| 1529 | return usage; |
| 1530 | } |
| 1531 | |
| 1532 | /* |
| 1533 | * When we get a swap entry, if there aren't some other ways to |
| 1534 | * prevent swapoff, such as the folio in swap cache is locked, RCU |
| 1535 | * reader side is locked, etc., the swap entry may become invalid |
| 1536 | * because of swapoff. Then, we need to enclose all swap related |
| 1537 | * functions with get_swap_device() and put_swap_device(), unless the |
| 1538 | * swap functions call get/put_swap_device() by themselves. |
| 1539 | * |
| 1540 | * RCU reader side lock (including any spinlock) is sufficient to |
| 1541 | * prevent swapoff, because synchronize_rcu() is called in swapoff() |
| 1542 | * before freeing data structures. |
| 1543 | * |
| 1544 | * Check whether swap entry is valid in the swap device. If so, |
| 1545 | * return pointer to swap_info_struct, and keep the swap entry valid |
| 1546 | * via preventing the swap device from being swapoff, until |
| 1547 | * put_swap_device() is called. Otherwise return NULL. |
| 1548 | * |
| 1549 | * Notice that swapoff or swapoff+swapon can still happen before the |
| 1550 | * percpu_ref_tryget_live() in get_swap_device() or after the |
| 1551 | * percpu_ref_put() in put_swap_device() if there isn't any other way |
| 1552 | * to prevent swapoff. The caller must be prepared for that. For |
| 1553 | * example, the following situation is possible. |
| 1554 | * |
| 1555 | * CPU1 CPU2 |
| 1556 | * do_swap_page() |
| 1557 | * ... swapoff+swapon |
| 1558 | * __read_swap_cache_async() |
| 1559 | * swapcache_prepare() |
| 1560 | * __swap_duplicate() |
| 1561 | * // check swap_map |
| 1562 | * // verify PTE not changed |
| 1563 | * |
| 1564 | * In __swap_duplicate(), the swap_map need to be checked before |
| 1565 | * changing partly because the specified swap entry may be for another |
| 1566 | * swap device which has been swapoff. And in do_swap_page(), after |
| 1567 | * the page is read from the swap device, the PTE is verified not |
| 1568 | * changed with the page table locked to check whether the swap device |
| 1569 | * has been swapoff or swapoff+swapon. |
| 1570 | */ |
| 1571 | struct swap_info_struct *get_swap_device(swp_entry_t entry) |
| 1572 | { |
| 1573 | struct swap_info_struct *si; |
| 1574 | unsigned long offset; |
| 1575 | |
| 1576 | if (!entry.val) |
| 1577 | goto out; |
| 1578 | si = swap_entry_to_info(entry); |
| 1579 | if (!si) |
| 1580 | goto bad_nofile; |
| 1581 | if (!get_swap_device_info(si)) |
| 1582 | goto out; |
| 1583 | offset = swp_offset(entry); |
| 1584 | if (offset >= si->max) |
| 1585 | goto put_out; |
| 1586 | |
| 1587 | return si; |
| 1588 | bad_nofile: |
| 1589 | pr_err("%s: %s%08lx\n" , __func__, Bad_file, entry.val); |
| 1590 | out: |
| 1591 | return NULL; |
| 1592 | put_out: |
| 1593 | pr_err("%s: %s%08lx\n" , __func__, Bad_offset, entry.val); |
| 1594 | percpu_ref_put(ref: &si->users); |
| 1595 | return NULL; |
| 1596 | } |
| 1597 | |
| 1598 | static void swap_entries_put_cache(struct swap_info_struct *si, |
| 1599 | swp_entry_t entry, int nr) |
| 1600 | { |
| 1601 | unsigned long offset = swp_offset(entry); |
| 1602 | struct swap_cluster_info *ci; |
| 1603 | |
| 1604 | ci = swap_cluster_lock(si, offset); |
| 1605 | if (swap_only_has_cache(si, offset, nr_pages: nr)) { |
| 1606 | swap_entries_free(si, ci, entry, nr_pages: nr); |
| 1607 | } else { |
| 1608 | for (int i = 0; i < nr; i++, entry.val++) |
| 1609 | swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE); |
| 1610 | } |
| 1611 | swap_cluster_unlock(ci); |
| 1612 | } |
| 1613 | |
| 1614 | static bool swap_entries_put_map(struct swap_info_struct *si, |
| 1615 | swp_entry_t entry, int nr) |
| 1616 | { |
| 1617 | unsigned long offset = swp_offset(entry); |
| 1618 | struct swap_cluster_info *ci; |
| 1619 | bool has_cache = false; |
| 1620 | unsigned char count; |
| 1621 | int i; |
| 1622 | |
| 1623 | if (nr <= 1) |
| 1624 | goto fallback; |
| 1625 | count = swap_count(data_race(si->swap_map[offset])); |
| 1626 | if (count != 1 && count != SWAP_MAP_SHMEM) |
| 1627 | goto fallback; |
| 1628 | |
| 1629 | ci = swap_cluster_lock(si, offset); |
| 1630 | if (!swap_is_last_map(si, offset, nr_pages: nr, has_cache: &has_cache)) { |
| 1631 | goto locked_fallback; |
| 1632 | } |
| 1633 | if (!has_cache) |
| 1634 | swap_entries_free(si, ci, entry, nr_pages: nr); |
| 1635 | else |
| 1636 | for (i = 0; i < nr; i++) |
| 1637 | WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); |
| 1638 | swap_cluster_unlock(ci); |
| 1639 | |
| 1640 | return has_cache; |
| 1641 | |
| 1642 | fallback: |
| 1643 | ci = swap_cluster_lock(si, offset); |
| 1644 | locked_fallback: |
| 1645 | for (i = 0; i < nr; i++, entry.val++) { |
| 1646 | count = swap_entry_put_locked(si, ci, entry, usage: 1); |
| 1647 | if (count == SWAP_HAS_CACHE) |
| 1648 | has_cache = true; |
| 1649 | } |
| 1650 | swap_cluster_unlock(ci); |
| 1651 | return has_cache; |
| 1652 | } |
| 1653 | |
| 1654 | /* |
| 1655 | * Only functions with "_nr" suffix are able to free entries spanning |
| 1656 | * cross multi clusters, so ensure the range is within a single cluster |
| 1657 | * when freeing entries with functions without "_nr" suffix. |
| 1658 | */ |
| 1659 | static bool swap_entries_put_map_nr(struct swap_info_struct *si, |
| 1660 | swp_entry_t entry, int nr) |
| 1661 | { |
| 1662 | int cluster_nr, cluster_rest; |
| 1663 | unsigned long offset = swp_offset(entry); |
| 1664 | bool has_cache = false; |
| 1665 | |
| 1666 | cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER; |
| 1667 | while (nr) { |
| 1668 | cluster_nr = min(nr, cluster_rest); |
| 1669 | has_cache |= swap_entries_put_map(si, entry, nr: cluster_nr); |
| 1670 | cluster_rest = SWAPFILE_CLUSTER; |
| 1671 | nr -= cluster_nr; |
| 1672 | entry.val += cluster_nr; |
| 1673 | } |
| 1674 | |
| 1675 | return has_cache; |
| 1676 | } |
| 1677 | |
| 1678 | /* |
| 1679 | * Check if it's the last ref of swap entry in the freeing path. |
| 1680 | * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM. |
| 1681 | */ |
| 1682 | static inline bool __maybe_unused swap_is_last_ref(unsigned char count) |
| 1683 | { |
| 1684 | return (count == SWAP_HAS_CACHE) || (count == 1) || |
| 1685 | (count == SWAP_MAP_SHMEM); |
| 1686 | } |
| 1687 | |
| 1688 | /* |
| 1689 | * Drop the last ref of swap entries, caller have to ensure all entries |
| 1690 | * belong to the same cgroup and cluster. |
| 1691 | */ |
| 1692 | static void swap_entries_free(struct swap_info_struct *si, |
| 1693 | struct swap_cluster_info *ci, |
| 1694 | swp_entry_t entry, unsigned int nr_pages) |
| 1695 | { |
| 1696 | unsigned long offset = swp_offset(entry); |
| 1697 | unsigned char *map = si->swap_map + offset; |
| 1698 | unsigned char *map_end = map + nr_pages; |
| 1699 | |
| 1700 | /* It should never free entries across different clusters */ |
| 1701 | VM_BUG_ON(ci != __swap_offset_to_cluster(si, offset + nr_pages - 1)); |
| 1702 | VM_BUG_ON(cluster_is_empty(ci)); |
| 1703 | VM_BUG_ON(ci->count < nr_pages); |
| 1704 | |
| 1705 | ci->count -= nr_pages; |
| 1706 | do { |
| 1707 | VM_BUG_ON(!swap_is_last_ref(*map)); |
| 1708 | *map = 0; |
| 1709 | } while (++map < map_end); |
| 1710 | |
| 1711 | mem_cgroup_uncharge_swap(entry, nr_pages); |
| 1712 | swap_range_free(si, offset, nr_entries: nr_pages); |
| 1713 | swap_cluster_assert_table_empty(ci, start: offset, nr: nr_pages); |
| 1714 | |
| 1715 | if (!ci->count) |
| 1716 | free_cluster(si, ci); |
| 1717 | else |
| 1718 | partial_free_cluster(si, ci); |
| 1719 | } |
| 1720 | |
| 1721 | /* |
| 1722 | * Caller has made sure that the swap device corresponding to entry |
| 1723 | * is still around or has not been recycled. |
| 1724 | */ |
| 1725 | void swap_free_nr(swp_entry_t entry, int nr_pages) |
| 1726 | { |
| 1727 | int nr; |
| 1728 | struct swap_info_struct *sis; |
| 1729 | unsigned long offset = swp_offset(entry); |
| 1730 | |
| 1731 | sis = _swap_info_get(entry); |
| 1732 | if (!sis) |
| 1733 | return; |
| 1734 | |
| 1735 | while (nr_pages) { |
| 1736 | nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); |
| 1737 | swap_entries_put_map(si: sis, entry: swp_entry(type: sis->type, offset), nr); |
| 1738 | offset += nr; |
| 1739 | nr_pages -= nr; |
| 1740 | } |
| 1741 | } |
| 1742 | |
| 1743 | /* |
| 1744 | * Called after dropping swapcache to decrease refcnt to swap entries. |
| 1745 | */ |
| 1746 | void put_swap_folio(struct folio *folio, swp_entry_t entry) |
| 1747 | { |
| 1748 | struct swap_info_struct *si; |
| 1749 | int size = 1 << swap_entry_order(folio_order(folio)); |
| 1750 | |
| 1751 | si = _swap_info_get(entry); |
| 1752 | if (!si) |
| 1753 | return; |
| 1754 | |
| 1755 | swap_entries_put_cache(si, entry, nr: size); |
| 1756 | } |
| 1757 | |
| 1758 | int __swap_count(swp_entry_t entry) |
| 1759 | { |
| 1760 | struct swap_info_struct *si = __swap_entry_to_info(entry); |
| 1761 | pgoff_t offset = swp_offset(entry); |
| 1762 | |
| 1763 | return swap_count(ent: si->swap_map[offset]); |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * How many references to @entry are currently swapped out? |
| 1768 | * This does not give an exact answer when swap count is continued, |
| 1769 | * but does include the high COUNT_CONTINUED flag to allow for that. |
| 1770 | */ |
| 1771 | bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry) |
| 1772 | { |
| 1773 | pgoff_t offset = swp_offset(entry); |
| 1774 | struct swap_cluster_info *ci; |
| 1775 | int count; |
| 1776 | |
| 1777 | ci = swap_cluster_lock(si, offset); |
| 1778 | count = swap_count(ent: si->swap_map[offset]); |
| 1779 | swap_cluster_unlock(ci); |
| 1780 | return !!count; |
| 1781 | } |
| 1782 | |
| 1783 | /* |
| 1784 | * How many references to @entry are currently swapped out? |
| 1785 | * This considers COUNT_CONTINUED so it returns exact answer. |
| 1786 | */ |
| 1787 | int swp_swapcount(swp_entry_t entry) |
| 1788 | { |
| 1789 | int count, tmp_count, n; |
| 1790 | struct swap_info_struct *si; |
| 1791 | struct swap_cluster_info *ci; |
| 1792 | struct page *page; |
| 1793 | pgoff_t offset; |
| 1794 | unsigned char *map; |
| 1795 | |
| 1796 | si = _swap_info_get(entry); |
| 1797 | if (!si) |
| 1798 | return 0; |
| 1799 | |
| 1800 | offset = swp_offset(entry); |
| 1801 | |
| 1802 | ci = swap_cluster_lock(si, offset); |
| 1803 | |
| 1804 | count = swap_count(ent: si->swap_map[offset]); |
| 1805 | if (!(count & COUNT_CONTINUED)) |
| 1806 | goto out; |
| 1807 | |
| 1808 | count &= ~COUNT_CONTINUED; |
| 1809 | n = SWAP_MAP_MAX + 1; |
| 1810 | |
| 1811 | page = vmalloc_to_page(addr: si->swap_map + offset); |
| 1812 | offset &= ~PAGE_MASK; |
| 1813 | VM_BUG_ON(page_private(page) != SWP_CONTINUED); |
| 1814 | |
| 1815 | do { |
| 1816 | page = list_next_entry(page, lru); |
| 1817 | map = kmap_local_page(page); |
| 1818 | tmp_count = map[offset]; |
| 1819 | kunmap_local(map); |
| 1820 | |
| 1821 | count += (tmp_count & ~COUNT_CONTINUED) * n; |
| 1822 | n *= (SWAP_CONT_MAX + 1); |
| 1823 | } while (tmp_count & COUNT_CONTINUED); |
| 1824 | out: |
| 1825 | swap_cluster_unlock(ci); |
| 1826 | return count; |
| 1827 | } |
| 1828 | |
| 1829 | static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, |
| 1830 | swp_entry_t entry, int order) |
| 1831 | { |
| 1832 | struct swap_cluster_info *ci; |
| 1833 | unsigned char *map = si->swap_map; |
| 1834 | unsigned int nr_pages = 1 << order; |
| 1835 | unsigned long roffset = swp_offset(entry); |
| 1836 | unsigned long offset = round_down(roffset, nr_pages); |
| 1837 | int i; |
| 1838 | bool ret = false; |
| 1839 | |
| 1840 | ci = swap_cluster_lock(si, offset); |
| 1841 | if (nr_pages == 1) { |
| 1842 | if (swap_count(ent: map[roffset])) |
| 1843 | ret = true; |
| 1844 | goto unlock_out; |
| 1845 | } |
| 1846 | for (i = 0; i < nr_pages; i++) { |
| 1847 | if (swap_count(ent: map[offset + i])) { |
| 1848 | ret = true; |
| 1849 | break; |
| 1850 | } |
| 1851 | } |
| 1852 | unlock_out: |
| 1853 | swap_cluster_unlock(ci); |
| 1854 | return ret; |
| 1855 | } |
| 1856 | |
| 1857 | static bool folio_swapped(struct folio *folio) |
| 1858 | { |
| 1859 | swp_entry_t entry = folio->swap; |
| 1860 | struct swap_info_struct *si = _swap_info_get(entry); |
| 1861 | |
| 1862 | if (!si) |
| 1863 | return false; |
| 1864 | |
| 1865 | if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) |
| 1866 | return swap_entry_swapped(si, entry); |
| 1867 | |
| 1868 | return swap_page_trans_huge_swapped(si, entry, order: folio_order(folio)); |
| 1869 | } |
| 1870 | |
| 1871 | static bool folio_swapcache_freeable(struct folio *folio) |
| 1872 | { |
| 1873 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
| 1874 | |
| 1875 | if (!folio_test_swapcache(folio)) |
| 1876 | return false; |
| 1877 | if (folio_test_writeback(folio)) |
| 1878 | return false; |
| 1879 | |
| 1880 | /* |
| 1881 | * Once hibernation has begun to create its image of memory, |
| 1882 | * there's a danger that one of the calls to folio_free_swap() |
| 1883 | * - most probably a call from __try_to_reclaim_swap() while |
| 1884 | * hibernation is allocating its own swap pages for the image, |
| 1885 | * but conceivably even a call from memory reclaim - will free |
| 1886 | * the swap from a folio which has already been recorded in the |
| 1887 | * image as a clean swapcache folio, and then reuse its swap for |
| 1888 | * another page of the image. On waking from hibernation, the |
| 1889 | * original folio might be freed under memory pressure, then |
| 1890 | * later read back in from swap, now with the wrong data. |
| 1891 | * |
| 1892 | * Hibernation suspends storage while it is writing the image |
| 1893 | * to disk so check that here. |
| 1894 | */ |
| 1895 | if (pm_suspended_storage()) |
| 1896 | return false; |
| 1897 | |
| 1898 | return true; |
| 1899 | } |
| 1900 | |
| 1901 | /** |
| 1902 | * folio_free_swap() - Free the swap space used for this folio. |
| 1903 | * @folio: The folio to remove. |
| 1904 | * |
| 1905 | * If swap is getting full, or if there are no more mappings of this folio, |
| 1906 | * then call folio_free_swap to free its swap space. |
| 1907 | * |
| 1908 | * Return: true if we were able to release the swap space. |
| 1909 | */ |
| 1910 | bool folio_free_swap(struct folio *folio) |
| 1911 | { |
| 1912 | if (!folio_swapcache_freeable(folio)) |
| 1913 | return false; |
| 1914 | if (folio_swapped(folio)) |
| 1915 | return false; |
| 1916 | |
| 1917 | swap_cache_del_folio(folio); |
| 1918 | folio_set_dirty(folio); |
| 1919 | return true; |
| 1920 | } |
| 1921 | |
| 1922 | /** |
| 1923 | * free_swap_and_cache_nr() - Release reference on range of swap entries and |
| 1924 | * reclaim their cache if no more references remain. |
| 1925 | * @entry: First entry of range. |
| 1926 | * @nr: Number of entries in range. |
| 1927 | * |
| 1928 | * For each swap entry in the contiguous range, release a reference. If any swap |
| 1929 | * entries become free, try to reclaim their underlying folios, if present. The |
| 1930 | * offset range is defined by [entry.offset, entry.offset + nr). |
| 1931 | */ |
| 1932 | void free_swap_and_cache_nr(swp_entry_t entry, int nr) |
| 1933 | { |
| 1934 | const unsigned long start_offset = swp_offset(entry); |
| 1935 | const unsigned long end_offset = start_offset + nr; |
| 1936 | struct swap_info_struct *si; |
| 1937 | bool any_only_cache = false; |
| 1938 | unsigned long offset; |
| 1939 | |
| 1940 | si = get_swap_device(entry); |
| 1941 | if (!si) |
| 1942 | return; |
| 1943 | |
| 1944 | if (WARN_ON(end_offset > si->max)) |
| 1945 | goto out; |
| 1946 | |
| 1947 | /* |
| 1948 | * First free all entries in the range. |
| 1949 | */ |
| 1950 | any_only_cache = swap_entries_put_map_nr(si, entry, nr); |
| 1951 | |
| 1952 | /* |
| 1953 | * Short-circuit the below loop if none of the entries had their |
| 1954 | * reference drop to zero. |
| 1955 | */ |
| 1956 | if (!any_only_cache) |
| 1957 | goto out; |
| 1958 | |
| 1959 | /* |
| 1960 | * Now go back over the range trying to reclaim the swap cache. |
| 1961 | */ |
| 1962 | for (offset = start_offset; offset < end_offset; offset += nr) { |
| 1963 | nr = 1; |
| 1964 | if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { |
| 1965 | /* |
| 1966 | * Folios are always naturally aligned in swap so |
| 1967 | * advance forward to the next boundary. Zero means no |
| 1968 | * folio was found for the swap entry, so advance by 1 |
| 1969 | * in this case. Negative value means folio was found |
| 1970 | * but could not be reclaimed. Here we can still advance |
| 1971 | * to the next boundary. |
| 1972 | */ |
| 1973 | nr = __try_to_reclaim_swap(si, offset, |
| 1974 | TTRS_UNMAPPED | TTRS_FULL); |
| 1975 | if (nr == 0) |
| 1976 | nr = 1; |
| 1977 | else if (nr < 0) |
| 1978 | nr = -nr; |
| 1979 | nr = ALIGN(offset + 1, nr) - offset; |
| 1980 | } |
| 1981 | } |
| 1982 | |
| 1983 | out: |
| 1984 | put_swap_device(si); |
| 1985 | } |
| 1986 | |
| 1987 | #ifdef CONFIG_HIBERNATION |
| 1988 | |
| 1989 | swp_entry_t get_swap_page_of_type(int type) |
| 1990 | { |
| 1991 | struct swap_info_struct *si = swap_type_to_info(type); |
| 1992 | unsigned long offset; |
| 1993 | swp_entry_t entry = {0}; |
| 1994 | |
| 1995 | if (!si) |
| 1996 | goto fail; |
| 1997 | |
| 1998 | /* This is called for allocating swap entry, not cache */ |
| 1999 | if (get_swap_device_info(si)) { |
| 2000 | if (si->flags & SWP_WRITEOK) { |
| 2001 | /* |
| 2002 | * Grab the local lock to be complaint |
| 2003 | * with swap table allocation. |
| 2004 | */ |
| 2005 | local_lock(&percpu_swap_cluster.lock); |
| 2006 | offset = cluster_alloc_swap_entry(si, order: 0, usage: 1); |
| 2007 | local_unlock(&percpu_swap_cluster.lock); |
| 2008 | if (offset) { |
| 2009 | entry = swp_entry(type: si->type, offset); |
| 2010 | atomic_long_dec(v: &nr_swap_pages); |
| 2011 | } |
| 2012 | } |
| 2013 | put_swap_device(si); |
| 2014 | } |
| 2015 | fail: |
| 2016 | return entry; |
| 2017 | } |
| 2018 | |
| 2019 | /* |
| 2020 | * Find the swap type that corresponds to given device (if any). |
| 2021 | * |
| 2022 | * @offset - number of the PAGE_SIZE-sized block of the device, starting |
| 2023 | * from 0, in which the swap header is expected to be located. |
| 2024 | * |
| 2025 | * This is needed for the suspend to disk (aka swsusp). |
| 2026 | */ |
| 2027 | int swap_type_of(dev_t device, sector_t offset) |
| 2028 | { |
| 2029 | int type; |
| 2030 | |
| 2031 | if (!device) |
| 2032 | return -1; |
| 2033 | |
| 2034 | spin_lock(lock: &swap_lock); |
| 2035 | for (type = 0; type < nr_swapfiles; type++) { |
| 2036 | struct swap_info_struct *sis = swap_info[type]; |
| 2037 | |
| 2038 | if (!(sis->flags & SWP_WRITEOK)) |
| 2039 | continue; |
| 2040 | |
| 2041 | if (device == sis->bdev->bd_dev) { |
| 2042 | struct swap_extent *se = first_se(sis); |
| 2043 | |
| 2044 | if (se->start_block == offset) { |
| 2045 | spin_unlock(lock: &swap_lock); |
| 2046 | return type; |
| 2047 | } |
| 2048 | } |
| 2049 | } |
| 2050 | spin_unlock(lock: &swap_lock); |
| 2051 | return -ENODEV; |
| 2052 | } |
| 2053 | |
| 2054 | int find_first_swap(dev_t *device) |
| 2055 | { |
| 2056 | int type; |
| 2057 | |
| 2058 | spin_lock(lock: &swap_lock); |
| 2059 | for (type = 0; type < nr_swapfiles; type++) { |
| 2060 | struct swap_info_struct *sis = swap_info[type]; |
| 2061 | |
| 2062 | if (!(sis->flags & SWP_WRITEOK)) |
| 2063 | continue; |
| 2064 | *device = sis->bdev->bd_dev; |
| 2065 | spin_unlock(lock: &swap_lock); |
| 2066 | return type; |
| 2067 | } |
| 2068 | spin_unlock(lock: &swap_lock); |
| 2069 | return -ENODEV; |
| 2070 | } |
| 2071 | |
| 2072 | /* |
| 2073 | * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev |
| 2074 | * corresponding to given index in swap_info (swap type). |
| 2075 | */ |
| 2076 | sector_t swapdev_block(int type, pgoff_t offset) |
| 2077 | { |
| 2078 | struct swap_info_struct *si = swap_type_to_info(type); |
| 2079 | struct swap_extent *se; |
| 2080 | |
| 2081 | if (!si || !(si->flags & SWP_WRITEOK)) |
| 2082 | return 0; |
| 2083 | se = offset_to_swap_extent(sis: si, offset); |
| 2084 | return se->start_block + (offset - se->start_page); |
| 2085 | } |
| 2086 | |
| 2087 | /* |
| 2088 | * Return either the total number of swap pages of given type, or the number |
| 2089 | * of free pages of that type (depending on @free) |
| 2090 | * |
| 2091 | * This is needed for software suspend |
| 2092 | */ |
| 2093 | unsigned int count_swap_pages(int type, int free) |
| 2094 | { |
| 2095 | unsigned int n = 0; |
| 2096 | |
| 2097 | spin_lock(lock: &swap_lock); |
| 2098 | if ((unsigned int)type < nr_swapfiles) { |
| 2099 | struct swap_info_struct *sis = swap_info[type]; |
| 2100 | |
| 2101 | spin_lock(lock: &sis->lock); |
| 2102 | if (sis->flags & SWP_WRITEOK) { |
| 2103 | n = sis->pages; |
| 2104 | if (free) |
| 2105 | n -= swap_usage_in_pages(si: sis); |
| 2106 | } |
| 2107 | spin_unlock(lock: &sis->lock); |
| 2108 | } |
| 2109 | spin_unlock(lock: &swap_lock); |
| 2110 | return n; |
| 2111 | } |
| 2112 | #endif /* CONFIG_HIBERNATION */ |
| 2113 | |
| 2114 | static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) |
| 2115 | { |
| 2116 | return pte_same(a: pte_swp_clear_flags(pte), b: swp_pte); |
| 2117 | } |
| 2118 | |
| 2119 | /* |
| 2120 | * No need to decide whether this PTE shares the swap entry with others, |
| 2121 | * just let do_wp_page work it out if a write is requested later - to |
| 2122 | * force COW, vm_page_prot omits write permission from any private vma. |
| 2123 | */ |
| 2124 | static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, |
| 2125 | unsigned long addr, swp_entry_t entry, struct folio *folio) |
| 2126 | { |
| 2127 | struct page *page; |
| 2128 | struct folio *swapcache; |
| 2129 | spinlock_t *ptl; |
| 2130 | pte_t *pte, new_pte, old_pte; |
| 2131 | bool hwpoisoned = false; |
| 2132 | int ret = 1; |
| 2133 | |
| 2134 | /* |
| 2135 | * If the folio is removed from swap cache by others, continue to |
| 2136 | * unuse other PTEs. try_to_unuse may try again if we missed this one. |
| 2137 | */ |
| 2138 | if (!folio_matches_swap_entry(folio, entry)) |
| 2139 | return 0; |
| 2140 | |
| 2141 | swapcache = folio; |
| 2142 | folio = ksm_might_need_to_copy(folio, vma, addr); |
| 2143 | if (unlikely(!folio)) |
| 2144 | return -ENOMEM; |
| 2145 | else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { |
| 2146 | hwpoisoned = true; |
| 2147 | folio = swapcache; |
| 2148 | } |
| 2149 | |
| 2150 | page = folio_file_page(folio, index: swp_offset(entry)); |
| 2151 | if (PageHWPoison(page)) |
| 2152 | hwpoisoned = true; |
| 2153 | |
| 2154 | pte = pte_offset_map_lock(mm: vma->vm_mm, pmd, addr, ptlp: &ptl); |
| 2155 | if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), |
| 2156 | swp_entry_to_pte(entry)))) { |
| 2157 | ret = 0; |
| 2158 | goto out; |
| 2159 | } |
| 2160 | |
| 2161 | old_pte = ptep_get(ptep: pte); |
| 2162 | |
| 2163 | if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { |
| 2164 | swp_entry_t swp_entry; |
| 2165 | |
| 2166 | dec_mm_counter(mm: vma->vm_mm, member: MM_SWAPENTS); |
| 2167 | if (hwpoisoned) { |
| 2168 | swp_entry = make_hwpoison_entry(page); |
| 2169 | } else { |
| 2170 | swp_entry = make_poisoned_swp_entry(); |
| 2171 | } |
| 2172 | new_pte = swp_entry_to_pte(entry: swp_entry); |
| 2173 | ret = 0; |
| 2174 | goto setpte; |
| 2175 | } |
| 2176 | |
| 2177 | /* |
| 2178 | * Some architectures may have to restore extra metadata to the page |
| 2179 | * when reading from swap. This metadata may be indexed by swap entry |
| 2180 | * so this must be called before swap_free(). |
| 2181 | */ |
| 2182 | arch_swap_restore(entry: folio_swap(entry, folio), folio); |
| 2183 | |
| 2184 | dec_mm_counter(mm: vma->vm_mm, member: MM_SWAPENTS); |
| 2185 | inc_mm_counter(mm: vma->vm_mm, member: MM_ANONPAGES); |
| 2186 | folio_get(folio); |
| 2187 | if (folio == swapcache) { |
| 2188 | rmap_t rmap_flags = RMAP_NONE; |
| 2189 | |
| 2190 | /* |
| 2191 | * See do_swap_page(): writeback would be problematic. |
| 2192 | * However, we do a folio_wait_writeback() just before this |
| 2193 | * call and have the folio locked. |
| 2194 | */ |
| 2195 | VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); |
| 2196 | if (pte_swp_exclusive(pte: old_pte)) |
| 2197 | rmap_flags |= RMAP_EXCLUSIVE; |
| 2198 | /* |
| 2199 | * We currently only expect small !anon folios, which are either |
| 2200 | * fully exclusive or fully shared. If we ever get large folios |
| 2201 | * here, we have to be careful. |
| 2202 | */ |
| 2203 | if (!folio_test_anon(folio)) { |
| 2204 | VM_WARN_ON_ONCE(folio_test_large(folio)); |
| 2205 | VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); |
| 2206 | folio_add_new_anon_rmap(folio, vma, address: addr, flags: rmap_flags); |
| 2207 | } else { |
| 2208 | folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); |
| 2209 | } |
| 2210 | } else { /* ksm created a completely new copy */ |
| 2211 | folio_add_new_anon_rmap(folio, vma, address: addr, RMAP_EXCLUSIVE); |
| 2212 | folio_add_lru_vma(folio, vma); |
| 2213 | } |
| 2214 | new_pte = pte_mkold(pte: mk_pte(page, pgprot: vma->vm_page_prot)); |
| 2215 | if (pte_swp_soft_dirty(pte: old_pte)) |
| 2216 | new_pte = pte_mksoft_dirty(pte: new_pte); |
| 2217 | if (pte_swp_uffd_wp(pte: old_pte)) |
| 2218 | new_pte = pte_mkuffd_wp(pte: new_pte); |
| 2219 | setpte: |
| 2220 | set_pte_at(vma->vm_mm, addr, pte, new_pte); |
| 2221 | swap_free(entry); |
| 2222 | out: |
| 2223 | if (pte) |
| 2224 | pte_unmap_unlock(pte, ptl); |
| 2225 | if (folio != swapcache) { |
| 2226 | folio_unlock(folio); |
| 2227 | folio_put(folio); |
| 2228 | } |
| 2229 | return ret; |
| 2230 | } |
| 2231 | |
| 2232 | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, |
| 2233 | unsigned long addr, unsigned long end, |
| 2234 | unsigned int type) |
| 2235 | { |
| 2236 | pte_t *pte = NULL; |
| 2237 | struct swap_info_struct *si; |
| 2238 | |
| 2239 | si = swap_info[type]; |
| 2240 | do { |
| 2241 | struct folio *folio; |
| 2242 | unsigned long offset; |
| 2243 | unsigned char swp_count; |
| 2244 | swp_entry_t entry; |
| 2245 | int ret; |
| 2246 | pte_t ptent; |
| 2247 | |
| 2248 | if (!pte++) { |
| 2249 | pte = pte_offset_map(pmd, addr); |
| 2250 | if (!pte) |
| 2251 | break; |
| 2252 | } |
| 2253 | |
| 2254 | ptent = ptep_get_lockless(ptep: pte); |
| 2255 | |
| 2256 | if (!is_swap_pte(pte: ptent)) |
| 2257 | continue; |
| 2258 | |
| 2259 | entry = pte_to_swp_entry(pte: ptent); |
| 2260 | if (swp_type(entry) != type) |
| 2261 | continue; |
| 2262 | |
| 2263 | offset = swp_offset(entry); |
| 2264 | pte_unmap(pte); |
| 2265 | pte = NULL; |
| 2266 | |
| 2267 | folio = swap_cache_get_folio(entry); |
| 2268 | if (!folio) { |
| 2269 | struct vm_fault vmf = { |
| 2270 | .vma = vma, |
| 2271 | .address = addr, |
| 2272 | .real_address = addr, |
| 2273 | .pmd = pmd, |
| 2274 | }; |
| 2275 | |
| 2276 | folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, |
| 2277 | vmf: &vmf); |
| 2278 | } |
| 2279 | if (!folio) { |
| 2280 | swp_count = READ_ONCE(si->swap_map[offset]); |
| 2281 | if (swp_count == 0 || swp_count == SWAP_MAP_BAD) |
| 2282 | continue; |
| 2283 | return -ENOMEM; |
| 2284 | } |
| 2285 | |
| 2286 | folio_lock(folio); |
| 2287 | folio_wait_writeback(folio); |
| 2288 | ret = unuse_pte(vma, pmd, addr, entry, folio); |
| 2289 | if (ret < 0) { |
| 2290 | folio_unlock(folio); |
| 2291 | folio_put(folio); |
| 2292 | return ret; |
| 2293 | } |
| 2294 | |
| 2295 | folio_free_swap(folio); |
| 2296 | folio_unlock(folio); |
| 2297 | folio_put(folio); |
| 2298 | } while (addr += PAGE_SIZE, addr != end); |
| 2299 | |
| 2300 | if (pte) |
| 2301 | pte_unmap(pte); |
| 2302 | return 0; |
| 2303 | } |
| 2304 | |
| 2305 | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, |
| 2306 | unsigned long addr, unsigned long end, |
| 2307 | unsigned int type) |
| 2308 | { |
| 2309 | pmd_t *pmd; |
| 2310 | unsigned long next; |
| 2311 | int ret; |
| 2312 | |
| 2313 | pmd = pmd_offset(pud, address: addr); |
| 2314 | do { |
| 2315 | cond_resched(); |
| 2316 | next = pmd_addr_end(addr, end); |
| 2317 | ret = unuse_pte_range(vma, pmd, addr, end: next, type); |
| 2318 | if (ret) |
| 2319 | return ret; |
| 2320 | } while (pmd++, addr = next, addr != end); |
| 2321 | return 0; |
| 2322 | } |
| 2323 | |
| 2324 | static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, |
| 2325 | unsigned long addr, unsigned long end, |
| 2326 | unsigned int type) |
| 2327 | { |
| 2328 | pud_t *pud; |
| 2329 | unsigned long next; |
| 2330 | int ret; |
| 2331 | |
| 2332 | pud = pud_offset(p4d, address: addr); |
| 2333 | do { |
| 2334 | next = pud_addr_end(addr, end); |
| 2335 | if (pud_none_or_clear_bad(pud)) |
| 2336 | continue; |
| 2337 | ret = unuse_pmd_range(vma, pud, addr, end: next, type); |
| 2338 | if (ret) |
| 2339 | return ret; |
| 2340 | } while (pud++, addr = next, addr != end); |
| 2341 | return 0; |
| 2342 | } |
| 2343 | |
| 2344 | static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, |
| 2345 | unsigned long addr, unsigned long end, |
| 2346 | unsigned int type) |
| 2347 | { |
| 2348 | p4d_t *p4d; |
| 2349 | unsigned long next; |
| 2350 | int ret; |
| 2351 | |
| 2352 | p4d = p4d_offset(pgd, address: addr); |
| 2353 | do { |
| 2354 | next = p4d_addr_end(addr, end); |
| 2355 | if (p4d_none_or_clear_bad(p4d)) |
| 2356 | continue; |
| 2357 | ret = unuse_pud_range(vma, p4d, addr, end: next, type); |
| 2358 | if (ret) |
| 2359 | return ret; |
| 2360 | } while (p4d++, addr = next, addr != end); |
| 2361 | return 0; |
| 2362 | } |
| 2363 | |
| 2364 | static int unuse_vma(struct vm_area_struct *vma, unsigned int type) |
| 2365 | { |
| 2366 | pgd_t *pgd; |
| 2367 | unsigned long addr, end, next; |
| 2368 | int ret; |
| 2369 | |
| 2370 | addr = vma->vm_start; |
| 2371 | end = vma->vm_end; |
| 2372 | |
| 2373 | pgd = pgd_offset(vma->vm_mm, addr); |
| 2374 | do { |
| 2375 | next = pgd_addr_end(addr, end); |
| 2376 | if (pgd_none_or_clear_bad(pgd)) |
| 2377 | continue; |
| 2378 | ret = unuse_p4d_range(vma, pgd, addr, end: next, type); |
| 2379 | if (ret) |
| 2380 | return ret; |
| 2381 | } while (pgd++, addr = next, addr != end); |
| 2382 | return 0; |
| 2383 | } |
| 2384 | |
| 2385 | static int unuse_mm(struct mm_struct *mm, unsigned int type) |
| 2386 | { |
| 2387 | struct vm_area_struct *vma; |
| 2388 | int ret = 0; |
| 2389 | VMA_ITERATOR(vmi, mm, 0); |
| 2390 | |
| 2391 | mmap_read_lock(mm); |
| 2392 | if (check_stable_address_space(mm)) |
| 2393 | goto unlock; |
| 2394 | for_each_vma(vmi, vma) { |
| 2395 | if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { |
| 2396 | ret = unuse_vma(vma, type); |
| 2397 | if (ret) |
| 2398 | break; |
| 2399 | } |
| 2400 | |
| 2401 | cond_resched(); |
| 2402 | } |
| 2403 | unlock: |
| 2404 | mmap_read_unlock(mm); |
| 2405 | return ret; |
| 2406 | } |
| 2407 | |
| 2408 | /* |
| 2409 | * Scan swap_map from current position to next entry still in use. |
| 2410 | * Return 0 if there are no inuse entries after prev till end of |
| 2411 | * the map. |
| 2412 | */ |
| 2413 | static unsigned int find_next_to_unuse(struct swap_info_struct *si, |
| 2414 | unsigned int prev) |
| 2415 | { |
| 2416 | unsigned int i; |
| 2417 | unsigned char count; |
| 2418 | |
| 2419 | /* |
| 2420 | * No need for swap_lock here: we're just looking |
| 2421 | * for whether an entry is in use, not modifying it; false |
| 2422 | * hits are okay, and sys_swapoff() has already prevented new |
| 2423 | * allocations from this area (while holding swap_lock). |
| 2424 | */ |
| 2425 | for (i = prev + 1; i < si->max; i++) { |
| 2426 | count = READ_ONCE(si->swap_map[i]); |
| 2427 | if (count && swap_count(ent: count) != SWAP_MAP_BAD) |
| 2428 | break; |
| 2429 | if ((i % LATENCY_LIMIT) == 0) |
| 2430 | cond_resched(); |
| 2431 | } |
| 2432 | |
| 2433 | if (i == si->max) |
| 2434 | i = 0; |
| 2435 | |
| 2436 | return i; |
| 2437 | } |
| 2438 | |
| 2439 | static int try_to_unuse(unsigned int type) |
| 2440 | { |
| 2441 | struct mm_struct *prev_mm; |
| 2442 | struct mm_struct *mm; |
| 2443 | struct list_head *p; |
| 2444 | int retval = 0; |
| 2445 | struct swap_info_struct *si = swap_info[type]; |
| 2446 | struct folio *folio; |
| 2447 | swp_entry_t entry; |
| 2448 | unsigned int i; |
| 2449 | |
| 2450 | if (!swap_usage_in_pages(si)) |
| 2451 | goto success; |
| 2452 | |
| 2453 | retry: |
| 2454 | retval = shmem_unuse(type); |
| 2455 | if (retval) |
| 2456 | return retval; |
| 2457 | |
| 2458 | prev_mm = &init_mm; |
| 2459 | mmget(mm: prev_mm); |
| 2460 | |
| 2461 | spin_lock(lock: &mmlist_lock); |
| 2462 | p = &init_mm.mmlist; |
| 2463 | while (swap_usage_in_pages(si) && |
| 2464 | !signal_pending(current) && |
| 2465 | (p = p->next) != &init_mm.mmlist) { |
| 2466 | |
| 2467 | mm = list_entry(p, struct mm_struct, mmlist); |
| 2468 | if (!mmget_not_zero(mm)) |
| 2469 | continue; |
| 2470 | spin_unlock(lock: &mmlist_lock); |
| 2471 | mmput(prev_mm); |
| 2472 | prev_mm = mm; |
| 2473 | retval = unuse_mm(mm, type); |
| 2474 | if (retval) { |
| 2475 | mmput(prev_mm); |
| 2476 | return retval; |
| 2477 | } |
| 2478 | |
| 2479 | /* |
| 2480 | * Make sure that we aren't completely killing |
| 2481 | * interactive performance. |
| 2482 | */ |
| 2483 | cond_resched(); |
| 2484 | spin_lock(lock: &mmlist_lock); |
| 2485 | } |
| 2486 | spin_unlock(lock: &mmlist_lock); |
| 2487 | |
| 2488 | mmput(prev_mm); |
| 2489 | |
| 2490 | i = 0; |
| 2491 | while (swap_usage_in_pages(si) && |
| 2492 | !signal_pending(current) && |
| 2493 | (i = find_next_to_unuse(si, prev: i)) != 0) { |
| 2494 | |
| 2495 | entry = swp_entry(type, offset: i); |
| 2496 | folio = swap_cache_get_folio(entry); |
| 2497 | if (!folio) |
| 2498 | continue; |
| 2499 | |
| 2500 | /* |
| 2501 | * It is conceivable that a racing task removed this folio from |
| 2502 | * swap cache just before we acquired the page lock. The folio |
| 2503 | * might even be back in swap cache on another swap area. But |
| 2504 | * that is okay, folio_free_swap() only removes stale folios. |
| 2505 | */ |
| 2506 | folio_lock(folio); |
| 2507 | folio_wait_writeback(folio); |
| 2508 | folio_free_swap(folio); |
| 2509 | folio_unlock(folio); |
| 2510 | folio_put(folio); |
| 2511 | } |
| 2512 | |
| 2513 | /* |
| 2514 | * Lets check again to see if there are still swap entries in the map. |
| 2515 | * If yes, we would need to do retry the unuse logic again. |
| 2516 | * Under global memory pressure, swap entries can be reinserted back |
| 2517 | * into process space after the mmlist loop above passes over them. |
| 2518 | * |
| 2519 | * Limit the number of retries? No: when mmget_not_zero() |
| 2520 | * above fails, that mm is likely to be freeing swap from |
| 2521 | * exit_mmap(), which proceeds at its own independent pace; |
| 2522 | * and even shmem_writeout() could have been preempted after |
| 2523 | * folio_alloc_swap(), temporarily hiding that swap. It's easy |
| 2524 | * and robust (though cpu-intensive) just to keep retrying. |
| 2525 | */ |
| 2526 | if (swap_usage_in_pages(si)) { |
| 2527 | if (!signal_pending(current)) |
| 2528 | goto retry; |
| 2529 | return -EINTR; |
| 2530 | } |
| 2531 | |
| 2532 | success: |
| 2533 | /* |
| 2534 | * Make sure that further cleanups after try_to_unuse() returns happen |
| 2535 | * after swap_range_free() reduces si->inuse_pages to 0. |
| 2536 | */ |
| 2537 | smp_mb(); |
| 2538 | return 0; |
| 2539 | } |
| 2540 | |
| 2541 | /* |
| 2542 | * After a successful try_to_unuse, if no swap is now in use, we know |
| 2543 | * we can empty the mmlist. swap_lock must be held on entry and exit. |
| 2544 | * Note that mmlist_lock nests inside swap_lock, and an mm must be |
| 2545 | * added to the mmlist just after page_duplicate - before would be racy. |
| 2546 | */ |
| 2547 | static void drain_mmlist(void) |
| 2548 | { |
| 2549 | struct list_head *p, *next; |
| 2550 | unsigned int type; |
| 2551 | |
| 2552 | for (type = 0; type < nr_swapfiles; type++) |
| 2553 | if (swap_usage_in_pages(si: swap_info[type])) |
| 2554 | return; |
| 2555 | spin_lock(lock: &mmlist_lock); |
| 2556 | list_for_each_safe(p, next, &init_mm.mmlist) |
| 2557 | list_del_init(entry: p); |
| 2558 | spin_unlock(lock: &mmlist_lock); |
| 2559 | } |
| 2560 | |
| 2561 | /* |
| 2562 | * Free all of a swapdev's extent information |
| 2563 | */ |
| 2564 | static void destroy_swap_extents(struct swap_info_struct *sis) |
| 2565 | { |
| 2566 | while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { |
| 2567 | struct rb_node *rb = sis->swap_extent_root.rb_node; |
| 2568 | struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); |
| 2569 | |
| 2570 | rb_erase(rb, &sis->swap_extent_root); |
| 2571 | kfree(objp: se); |
| 2572 | } |
| 2573 | |
| 2574 | if (sis->flags & SWP_ACTIVATED) { |
| 2575 | struct file *swap_file = sis->swap_file; |
| 2576 | struct address_space *mapping = swap_file->f_mapping; |
| 2577 | |
| 2578 | sis->flags &= ~SWP_ACTIVATED; |
| 2579 | if (mapping->a_ops->swap_deactivate) |
| 2580 | mapping->a_ops->swap_deactivate(swap_file); |
| 2581 | } |
| 2582 | } |
| 2583 | |
| 2584 | /* |
| 2585 | * Add a block range (and the corresponding page range) into this swapdev's |
| 2586 | * extent tree. |
| 2587 | * |
| 2588 | * This function rather assumes that it is called in ascending page order. |
| 2589 | */ |
| 2590 | int |
| 2591 | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, |
| 2592 | unsigned long nr_pages, sector_t start_block) |
| 2593 | { |
| 2594 | struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; |
| 2595 | struct swap_extent *se; |
| 2596 | struct swap_extent *new_se; |
| 2597 | |
| 2598 | /* |
| 2599 | * place the new node at the right most since the |
| 2600 | * function is called in ascending page order. |
| 2601 | */ |
| 2602 | while (*link) { |
| 2603 | parent = *link; |
| 2604 | link = &parent->rb_right; |
| 2605 | } |
| 2606 | |
| 2607 | if (parent) { |
| 2608 | se = rb_entry(parent, struct swap_extent, rb_node); |
| 2609 | BUG_ON(se->start_page + se->nr_pages != start_page); |
| 2610 | if (se->start_block + se->nr_pages == start_block) { |
| 2611 | /* Merge it */ |
| 2612 | se->nr_pages += nr_pages; |
| 2613 | return 0; |
| 2614 | } |
| 2615 | } |
| 2616 | |
| 2617 | /* No merge, insert a new extent. */ |
| 2618 | new_se = kmalloc(sizeof(*se), GFP_KERNEL); |
| 2619 | if (new_se == NULL) |
| 2620 | return -ENOMEM; |
| 2621 | new_se->start_page = start_page; |
| 2622 | new_se->nr_pages = nr_pages; |
| 2623 | new_se->start_block = start_block; |
| 2624 | |
| 2625 | rb_link_node(node: &new_se->rb_node, parent, rb_link: link); |
| 2626 | rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); |
| 2627 | return 1; |
| 2628 | } |
| 2629 | EXPORT_SYMBOL_GPL(add_swap_extent); |
| 2630 | |
| 2631 | /* |
| 2632 | * A `swap extent' is a simple thing which maps a contiguous range of pages |
| 2633 | * onto a contiguous range of disk blocks. A rbtree of swap extents is |
| 2634 | * built at swapon time and is then used at swap_writepage/swap_read_folio |
| 2635 | * time for locating where on disk a page belongs. |
| 2636 | * |
| 2637 | * If the swapfile is an S_ISBLK block device, a single extent is installed. |
| 2638 | * This is done so that the main operating code can treat S_ISBLK and S_ISREG |
| 2639 | * swap files identically. |
| 2640 | * |
| 2641 | * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap |
| 2642 | * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK |
| 2643 | * swapfiles are handled *identically* after swapon time. |
| 2644 | * |
| 2645 | * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks |
| 2646 | * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray |
| 2647 | * blocks are found which do not fall within the PAGE_SIZE alignment |
| 2648 | * requirements, they are simply tossed out - we will never use those blocks |
| 2649 | * for swapping. |
| 2650 | * |
| 2651 | * For all swap devices we set S_SWAPFILE across the life of the swapon. This |
| 2652 | * prevents users from writing to the swap device, which will corrupt memory. |
| 2653 | * |
| 2654 | * The amount of disk space which a single swap extent represents varies. |
| 2655 | * Typically it is in the 1-4 megabyte range. So we can have hundreds of |
| 2656 | * extents in the rbtree. - akpm. |
| 2657 | */ |
| 2658 | static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) |
| 2659 | { |
| 2660 | struct file *swap_file = sis->swap_file; |
| 2661 | struct address_space *mapping = swap_file->f_mapping; |
| 2662 | struct inode *inode = mapping->host; |
| 2663 | int ret; |
| 2664 | |
| 2665 | if (S_ISBLK(inode->i_mode)) { |
| 2666 | ret = add_swap_extent(sis, 0, sis->max, 0); |
| 2667 | *span = sis->pages; |
| 2668 | return ret; |
| 2669 | } |
| 2670 | |
| 2671 | if (mapping->a_ops->swap_activate) { |
| 2672 | ret = mapping->a_ops->swap_activate(sis, swap_file, span); |
| 2673 | if (ret < 0) |
| 2674 | return ret; |
| 2675 | sis->flags |= SWP_ACTIVATED; |
| 2676 | if ((sis->flags & SWP_FS_OPS) && |
| 2677 | sio_pool_init() != 0) { |
| 2678 | destroy_swap_extents(sis); |
| 2679 | return -ENOMEM; |
| 2680 | } |
| 2681 | return ret; |
| 2682 | } |
| 2683 | |
| 2684 | return generic_swapfile_activate(sis, swap_file, span); |
| 2685 | } |
| 2686 | |
| 2687 | static int swap_node(struct swap_info_struct *si) |
| 2688 | { |
| 2689 | struct block_device *bdev; |
| 2690 | |
| 2691 | if (si->bdev) |
| 2692 | bdev = si->bdev; |
| 2693 | else |
| 2694 | bdev = si->swap_file->f_inode->i_sb->s_bdev; |
| 2695 | |
| 2696 | return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; |
| 2697 | } |
| 2698 | |
| 2699 | static void setup_swap_info(struct swap_info_struct *si, int prio, |
| 2700 | unsigned char *swap_map, |
| 2701 | struct swap_cluster_info *cluster_info, |
| 2702 | unsigned long *zeromap) |
| 2703 | { |
| 2704 | int i; |
| 2705 | |
| 2706 | if (prio >= 0) |
| 2707 | si->prio = prio; |
| 2708 | else |
| 2709 | si->prio = --least_priority; |
| 2710 | /* |
| 2711 | * the plist prio is negated because plist ordering is |
| 2712 | * low-to-high, while swap ordering is high-to-low |
| 2713 | */ |
| 2714 | si->list.prio = -si->prio; |
| 2715 | for_each_node(i) { |
| 2716 | if (si->prio >= 0) |
| 2717 | si->avail_lists[i].prio = -si->prio; |
| 2718 | else { |
| 2719 | if (swap_node(si) == i) |
| 2720 | si->avail_lists[i].prio = 1; |
| 2721 | else |
| 2722 | si->avail_lists[i].prio = -si->prio; |
| 2723 | } |
| 2724 | } |
| 2725 | si->swap_map = swap_map; |
| 2726 | si->cluster_info = cluster_info; |
| 2727 | si->zeromap = zeromap; |
| 2728 | } |
| 2729 | |
| 2730 | static void _enable_swap_info(struct swap_info_struct *si) |
| 2731 | { |
| 2732 | atomic_long_add(i: si->pages, v: &nr_swap_pages); |
| 2733 | total_swap_pages += si->pages; |
| 2734 | |
| 2735 | assert_spin_locked(&swap_lock); |
| 2736 | /* |
| 2737 | * both lists are plists, and thus priority ordered. |
| 2738 | * swap_active_head needs to be priority ordered for swapoff(), |
| 2739 | * which on removal of any swap_info_struct with an auto-assigned |
| 2740 | * (i.e. negative) priority increments the auto-assigned priority |
| 2741 | * of any lower-priority swap_info_structs. |
| 2742 | * swap_avail_head needs to be priority ordered for folio_alloc_swap(), |
| 2743 | * which allocates swap pages from the highest available priority |
| 2744 | * swap_info_struct. |
| 2745 | */ |
| 2746 | plist_add(node: &si->list, head: &swap_active_head); |
| 2747 | |
| 2748 | /* Add back to available list */ |
| 2749 | add_to_avail_list(si, swapon: true); |
| 2750 | } |
| 2751 | |
| 2752 | static void enable_swap_info(struct swap_info_struct *si, int prio, |
| 2753 | unsigned char *swap_map, |
| 2754 | struct swap_cluster_info *cluster_info, |
| 2755 | unsigned long *zeromap) |
| 2756 | { |
| 2757 | spin_lock(lock: &swap_lock); |
| 2758 | spin_lock(lock: &si->lock); |
| 2759 | setup_swap_info(si, prio, swap_map, cluster_info, zeromap); |
| 2760 | spin_unlock(lock: &si->lock); |
| 2761 | spin_unlock(lock: &swap_lock); |
| 2762 | /* |
| 2763 | * Finished initializing swap device, now it's safe to reference it. |
| 2764 | */ |
| 2765 | percpu_ref_resurrect(ref: &si->users); |
| 2766 | spin_lock(lock: &swap_lock); |
| 2767 | spin_lock(lock: &si->lock); |
| 2768 | _enable_swap_info(si); |
| 2769 | spin_unlock(lock: &si->lock); |
| 2770 | spin_unlock(lock: &swap_lock); |
| 2771 | } |
| 2772 | |
| 2773 | static void reinsert_swap_info(struct swap_info_struct *si) |
| 2774 | { |
| 2775 | spin_lock(lock: &swap_lock); |
| 2776 | spin_lock(lock: &si->lock); |
| 2777 | setup_swap_info(si, prio: si->prio, swap_map: si->swap_map, cluster_info: si->cluster_info, zeromap: si->zeromap); |
| 2778 | _enable_swap_info(si); |
| 2779 | spin_unlock(lock: &si->lock); |
| 2780 | spin_unlock(lock: &swap_lock); |
| 2781 | } |
| 2782 | |
| 2783 | /* |
| 2784 | * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range |
| 2785 | * see the updated flags, so there will be no more allocations. |
| 2786 | */ |
| 2787 | static void wait_for_allocation(struct swap_info_struct *si) |
| 2788 | { |
| 2789 | unsigned long offset; |
| 2790 | unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER); |
| 2791 | struct swap_cluster_info *ci; |
| 2792 | |
| 2793 | BUG_ON(si->flags & SWP_WRITEOK); |
| 2794 | |
| 2795 | for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) { |
| 2796 | ci = swap_cluster_lock(si, offset); |
| 2797 | swap_cluster_unlock(ci); |
| 2798 | } |
| 2799 | } |
| 2800 | |
| 2801 | static void free_cluster_info(struct swap_cluster_info *cluster_info, |
| 2802 | unsigned long maxpages) |
| 2803 | { |
| 2804 | struct swap_cluster_info *ci; |
| 2805 | int i, nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); |
| 2806 | |
| 2807 | if (!cluster_info) |
| 2808 | return; |
| 2809 | for (i = 0; i < nr_clusters; i++) { |
| 2810 | ci = cluster_info + i; |
| 2811 | /* Cluster with bad marks count will have a remaining table */ |
| 2812 | spin_lock(lock: &ci->lock); |
| 2813 | if (rcu_dereference_protected(ci->table, true)) { |
| 2814 | ci->count = 0; |
| 2815 | swap_cluster_free_table(ci); |
| 2816 | } |
| 2817 | spin_unlock(lock: &ci->lock); |
| 2818 | } |
| 2819 | kvfree(addr: cluster_info); |
| 2820 | } |
| 2821 | |
| 2822 | /* |
| 2823 | * Called after swap device's reference count is dead, so |
| 2824 | * neither scan nor allocation will use it. |
| 2825 | */ |
| 2826 | static void flush_percpu_swap_cluster(struct swap_info_struct *si) |
| 2827 | { |
| 2828 | int cpu, i; |
| 2829 | struct swap_info_struct **pcp_si; |
| 2830 | |
| 2831 | for_each_possible_cpu(cpu) { |
| 2832 | pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu); |
| 2833 | /* |
| 2834 | * Invalidate the percpu swap cluster cache, si->users |
| 2835 | * is dead, so no new user will point to it, just flush |
| 2836 | * any existing user. |
| 2837 | */ |
| 2838 | for (i = 0; i < SWAP_NR_ORDERS; i++) |
| 2839 | cmpxchg(&pcp_si[i], si, NULL); |
| 2840 | } |
| 2841 | } |
| 2842 | |
| 2843 | |
| 2844 | SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) |
| 2845 | { |
| 2846 | struct swap_info_struct *p = NULL; |
| 2847 | unsigned char *swap_map; |
| 2848 | unsigned long *zeromap; |
| 2849 | struct swap_cluster_info *cluster_info; |
| 2850 | struct file *swap_file, *victim; |
| 2851 | struct address_space *mapping; |
| 2852 | struct inode *inode; |
| 2853 | struct filename *pathname; |
| 2854 | unsigned int maxpages; |
| 2855 | int err, found = 0; |
| 2856 | |
| 2857 | if (!capable(CAP_SYS_ADMIN)) |
| 2858 | return -EPERM; |
| 2859 | |
| 2860 | BUG_ON(!current->mm); |
| 2861 | |
| 2862 | pathname = getname(name: specialfile); |
| 2863 | if (IS_ERR(ptr: pathname)) |
| 2864 | return PTR_ERR(ptr: pathname); |
| 2865 | |
| 2866 | victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); |
| 2867 | err = PTR_ERR(ptr: victim); |
| 2868 | if (IS_ERR(ptr: victim)) |
| 2869 | goto out; |
| 2870 | |
| 2871 | mapping = victim->f_mapping; |
| 2872 | spin_lock(lock: &swap_lock); |
| 2873 | plist_for_each_entry(p, &swap_active_head, list) { |
| 2874 | if (p->flags & SWP_WRITEOK) { |
| 2875 | if (p->swap_file->f_mapping == mapping) { |
| 2876 | found = 1; |
| 2877 | break; |
| 2878 | } |
| 2879 | } |
| 2880 | } |
| 2881 | if (!found) { |
| 2882 | err = -EINVAL; |
| 2883 | spin_unlock(lock: &swap_lock); |
| 2884 | goto out_dput; |
| 2885 | } |
| 2886 | if (!security_vm_enough_memory_mm(current->mm, pages: p->pages)) |
| 2887 | vm_unacct_memory(pages: p->pages); |
| 2888 | else { |
| 2889 | err = -ENOMEM; |
| 2890 | spin_unlock(lock: &swap_lock); |
| 2891 | goto out_dput; |
| 2892 | } |
| 2893 | spin_lock(lock: &p->lock); |
| 2894 | del_from_avail_list(si: p, swapoff: true); |
| 2895 | if (p->prio < 0) { |
| 2896 | struct swap_info_struct *si = p; |
| 2897 | int nid; |
| 2898 | |
| 2899 | plist_for_each_entry_continue(si, &swap_active_head, list) { |
| 2900 | si->prio++; |
| 2901 | si->list.prio--; |
| 2902 | for_each_node(nid) { |
| 2903 | if (si->avail_lists[nid].prio != 1) |
| 2904 | si->avail_lists[nid].prio--; |
| 2905 | } |
| 2906 | } |
| 2907 | least_priority++; |
| 2908 | } |
| 2909 | plist_del(node: &p->list, head: &swap_active_head); |
| 2910 | atomic_long_sub(i: p->pages, v: &nr_swap_pages); |
| 2911 | total_swap_pages -= p->pages; |
| 2912 | spin_unlock(lock: &p->lock); |
| 2913 | spin_unlock(lock: &swap_lock); |
| 2914 | |
| 2915 | wait_for_allocation(si: p); |
| 2916 | |
| 2917 | set_current_oom_origin(); |
| 2918 | err = try_to_unuse(type: p->type); |
| 2919 | clear_current_oom_origin(); |
| 2920 | |
| 2921 | if (err) { |
| 2922 | /* re-insert swap space back into swap_list */ |
| 2923 | reinsert_swap_info(si: p); |
| 2924 | goto out_dput; |
| 2925 | } |
| 2926 | |
| 2927 | /* |
| 2928 | * Wait for swap operations protected by get/put_swap_device() |
| 2929 | * to complete. Because of synchronize_rcu() here, all swap |
| 2930 | * operations protected by RCU reader side lock (including any |
| 2931 | * spinlock) will be waited too. This makes it easy to |
| 2932 | * prevent folio_test_swapcache() and the following swap cache |
| 2933 | * operations from racing with swapoff. |
| 2934 | */ |
| 2935 | percpu_ref_kill(ref: &p->users); |
| 2936 | synchronize_rcu(); |
| 2937 | wait_for_completion(&p->comp); |
| 2938 | |
| 2939 | flush_work(work: &p->discard_work); |
| 2940 | flush_work(work: &p->reclaim_work); |
| 2941 | flush_percpu_swap_cluster(si: p); |
| 2942 | |
| 2943 | destroy_swap_extents(sis: p); |
| 2944 | if (p->flags & SWP_CONTINUED) |
| 2945 | free_swap_count_continuations(p); |
| 2946 | |
| 2947 | if (!p->bdev || !bdev_nonrot(bdev: p->bdev)) |
| 2948 | atomic_dec(v: &nr_rotate_swap); |
| 2949 | |
| 2950 | mutex_lock(lock: &swapon_mutex); |
| 2951 | spin_lock(lock: &swap_lock); |
| 2952 | spin_lock(lock: &p->lock); |
| 2953 | drain_mmlist(); |
| 2954 | |
| 2955 | swap_file = p->swap_file; |
| 2956 | p->swap_file = NULL; |
| 2957 | swap_map = p->swap_map; |
| 2958 | p->swap_map = NULL; |
| 2959 | zeromap = p->zeromap; |
| 2960 | p->zeromap = NULL; |
| 2961 | maxpages = p->max; |
| 2962 | cluster_info = p->cluster_info; |
| 2963 | p->max = 0; |
| 2964 | p->cluster_info = NULL; |
| 2965 | spin_unlock(lock: &p->lock); |
| 2966 | spin_unlock(lock: &swap_lock); |
| 2967 | arch_swap_invalidate_area(type: p->type); |
| 2968 | zswap_swapoff(type: p->type); |
| 2969 | mutex_unlock(lock: &swapon_mutex); |
| 2970 | kfree(objp: p->global_cluster); |
| 2971 | p->global_cluster = NULL; |
| 2972 | vfree(addr: swap_map); |
| 2973 | kvfree(addr: zeromap); |
| 2974 | free_cluster_info(cluster_info, maxpages); |
| 2975 | /* Destroy swap account information */ |
| 2976 | swap_cgroup_swapoff(type: p->type); |
| 2977 | |
| 2978 | inode = mapping->host; |
| 2979 | |
| 2980 | inode_lock(inode); |
| 2981 | inode->i_flags &= ~S_SWAPFILE; |
| 2982 | inode_unlock(inode); |
| 2983 | filp_close(swap_file, NULL); |
| 2984 | |
| 2985 | /* |
| 2986 | * Clear the SWP_USED flag after all resources are freed so that swapon |
| 2987 | * can reuse this swap_info in alloc_swap_info() safely. It is ok to |
| 2988 | * not hold p->lock after we cleared its SWP_WRITEOK. |
| 2989 | */ |
| 2990 | spin_lock(lock: &swap_lock); |
| 2991 | p->flags = 0; |
| 2992 | spin_unlock(lock: &swap_lock); |
| 2993 | |
| 2994 | err = 0; |
| 2995 | atomic_inc(v: &proc_poll_event); |
| 2996 | wake_up_interruptible(&proc_poll_wait); |
| 2997 | |
| 2998 | out_dput: |
| 2999 | filp_close(victim, NULL); |
| 3000 | out: |
| 3001 | putname(name: pathname); |
| 3002 | return err; |
| 3003 | } |
| 3004 | |
| 3005 | #ifdef CONFIG_PROC_FS |
| 3006 | static __poll_t swaps_poll(struct file *file, poll_table *wait) |
| 3007 | { |
| 3008 | struct seq_file *seq = file->private_data; |
| 3009 | |
| 3010 | poll_wait(filp: file, wait_address: &proc_poll_wait, p: wait); |
| 3011 | |
| 3012 | if (seq->poll_event != atomic_read(v: &proc_poll_event)) { |
| 3013 | seq->poll_event = atomic_read(v: &proc_poll_event); |
| 3014 | return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; |
| 3015 | } |
| 3016 | |
| 3017 | return EPOLLIN | EPOLLRDNORM; |
| 3018 | } |
| 3019 | |
| 3020 | /* iterator */ |
| 3021 | static void *swap_start(struct seq_file *swap, loff_t *pos) |
| 3022 | { |
| 3023 | struct swap_info_struct *si; |
| 3024 | int type; |
| 3025 | loff_t l = *pos; |
| 3026 | |
| 3027 | mutex_lock(lock: &swapon_mutex); |
| 3028 | |
| 3029 | if (!l) |
| 3030 | return SEQ_START_TOKEN; |
| 3031 | |
| 3032 | for (type = 0; (si = swap_type_to_info(type)); type++) { |
| 3033 | if (!(si->flags & SWP_USED) || !si->swap_map) |
| 3034 | continue; |
| 3035 | if (!--l) |
| 3036 | return si; |
| 3037 | } |
| 3038 | |
| 3039 | return NULL; |
| 3040 | } |
| 3041 | |
| 3042 | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) |
| 3043 | { |
| 3044 | struct swap_info_struct *si = v; |
| 3045 | int type; |
| 3046 | |
| 3047 | if (v == SEQ_START_TOKEN) |
| 3048 | type = 0; |
| 3049 | else |
| 3050 | type = si->type + 1; |
| 3051 | |
| 3052 | ++(*pos); |
| 3053 | for (; (si = swap_type_to_info(type)); type++) { |
| 3054 | if (!(si->flags & SWP_USED) || !si->swap_map) |
| 3055 | continue; |
| 3056 | return si; |
| 3057 | } |
| 3058 | |
| 3059 | return NULL; |
| 3060 | } |
| 3061 | |
| 3062 | static void swap_stop(struct seq_file *swap, void *v) |
| 3063 | { |
| 3064 | mutex_unlock(lock: &swapon_mutex); |
| 3065 | } |
| 3066 | |
| 3067 | static int swap_show(struct seq_file *swap, void *v) |
| 3068 | { |
| 3069 | struct swap_info_struct *si = v; |
| 3070 | struct file *file; |
| 3071 | int len; |
| 3072 | unsigned long bytes, inuse; |
| 3073 | |
| 3074 | if (si == SEQ_START_TOKEN) { |
| 3075 | seq_puts(m: swap, s: "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n" ); |
| 3076 | return 0; |
| 3077 | } |
| 3078 | |
| 3079 | bytes = K(si->pages); |
| 3080 | inuse = K(swap_usage_in_pages(si)); |
| 3081 | |
| 3082 | file = si->swap_file; |
| 3083 | len = seq_file_path(swap, file, " \t\n\\" ); |
| 3084 | seq_printf(m: swap, fmt: "%*s%s\t%lu\t%s%lu\t%s%d\n" , |
| 3085 | len < 40 ? 40 - len : 1, " " , |
| 3086 | S_ISBLK(file_inode(file)->i_mode) ? |
| 3087 | "partition" : "file\t" , |
| 3088 | bytes, bytes < 10000000 ? "\t" : "" , |
| 3089 | inuse, inuse < 10000000 ? "\t" : "" , |
| 3090 | si->prio); |
| 3091 | return 0; |
| 3092 | } |
| 3093 | |
| 3094 | static const struct seq_operations swaps_op = { |
| 3095 | .start = swap_start, |
| 3096 | .next = swap_next, |
| 3097 | .stop = swap_stop, |
| 3098 | .show = swap_show |
| 3099 | }; |
| 3100 | |
| 3101 | static int swaps_open(struct inode *inode, struct file *file) |
| 3102 | { |
| 3103 | struct seq_file *seq; |
| 3104 | int ret; |
| 3105 | |
| 3106 | ret = seq_open(file, &swaps_op); |
| 3107 | if (ret) |
| 3108 | return ret; |
| 3109 | |
| 3110 | seq = file->private_data; |
| 3111 | seq->poll_event = atomic_read(v: &proc_poll_event); |
| 3112 | return 0; |
| 3113 | } |
| 3114 | |
| 3115 | static const struct proc_ops swaps_proc_ops = { |
| 3116 | .proc_flags = PROC_ENTRY_PERMANENT, |
| 3117 | .proc_open = swaps_open, |
| 3118 | .proc_read = seq_read, |
| 3119 | .proc_lseek = seq_lseek, |
| 3120 | .proc_release = seq_release, |
| 3121 | .proc_poll = swaps_poll, |
| 3122 | }; |
| 3123 | |
| 3124 | static int __init procswaps_init(void) |
| 3125 | { |
| 3126 | proc_create(name: "swaps" , mode: 0, NULL, proc_ops: &swaps_proc_ops); |
| 3127 | return 0; |
| 3128 | } |
| 3129 | __initcall(procswaps_init); |
| 3130 | #endif /* CONFIG_PROC_FS */ |
| 3131 | |
| 3132 | #ifdef MAX_SWAPFILES_CHECK |
| 3133 | static int __init max_swapfiles_check(void) |
| 3134 | { |
| 3135 | MAX_SWAPFILES_CHECK(); |
| 3136 | return 0; |
| 3137 | } |
| 3138 | late_initcall(max_swapfiles_check); |
| 3139 | #endif |
| 3140 | |
| 3141 | static struct swap_info_struct *alloc_swap_info(void) |
| 3142 | { |
| 3143 | struct swap_info_struct *p; |
| 3144 | struct swap_info_struct *defer = NULL; |
| 3145 | unsigned int type; |
| 3146 | int i; |
| 3147 | |
| 3148 | p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); |
| 3149 | if (!p) |
| 3150 | return ERR_PTR(error: -ENOMEM); |
| 3151 | |
| 3152 | if (percpu_ref_init(ref: &p->users, release: swap_users_ref_free, |
| 3153 | flags: PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { |
| 3154 | kvfree(addr: p); |
| 3155 | return ERR_PTR(error: -ENOMEM); |
| 3156 | } |
| 3157 | |
| 3158 | spin_lock(lock: &swap_lock); |
| 3159 | for (type = 0; type < nr_swapfiles; type++) { |
| 3160 | if (!(swap_info[type]->flags & SWP_USED)) |
| 3161 | break; |
| 3162 | } |
| 3163 | if (type >= MAX_SWAPFILES) { |
| 3164 | spin_unlock(lock: &swap_lock); |
| 3165 | percpu_ref_exit(ref: &p->users); |
| 3166 | kvfree(addr: p); |
| 3167 | return ERR_PTR(error: -EPERM); |
| 3168 | } |
| 3169 | if (type >= nr_swapfiles) { |
| 3170 | p->type = type; |
| 3171 | /* |
| 3172 | * Publish the swap_info_struct after initializing it. |
| 3173 | * Note that kvzalloc() above zeroes all its fields. |
| 3174 | */ |
| 3175 | smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ |
| 3176 | nr_swapfiles++; |
| 3177 | } else { |
| 3178 | defer = p; |
| 3179 | p = swap_info[type]; |
| 3180 | /* |
| 3181 | * Do not memset this entry: a racing procfs swap_next() |
| 3182 | * would be relying on p->type to remain valid. |
| 3183 | */ |
| 3184 | } |
| 3185 | p->swap_extent_root = RB_ROOT; |
| 3186 | plist_node_init(node: &p->list, prio: 0); |
| 3187 | for_each_node(i) |
| 3188 | plist_node_init(node: &p->avail_lists[i], prio: 0); |
| 3189 | p->flags = SWP_USED; |
| 3190 | spin_unlock(lock: &swap_lock); |
| 3191 | if (defer) { |
| 3192 | percpu_ref_exit(ref: &defer->users); |
| 3193 | kvfree(addr: defer); |
| 3194 | } |
| 3195 | spin_lock_init(&p->lock); |
| 3196 | spin_lock_init(&p->cont_lock); |
| 3197 | atomic_long_set(v: &p->inuse_pages, SWAP_USAGE_OFFLIST_BIT); |
| 3198 | init_completion(x: &p->comp); |
| 3199 | |
| 3200 | return p; |
| 3201 | } |
| 3202 | |
| 3203 | static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) |
| 3204 | { |
| 3205 | if (S_ISBLK(inode->i_mode)) { |
| 3206 | si->bdev = I_BDEV(inode); |
| 3207 | /* |
| 3208 | * Zoned block devices contain zones that have a sequential |
| 3209 | * write only restriction. Hence zoned block devices are not |
| 3210 | * suitable for swapping. Disallow them here. |
| 3211 | */ |
| 3212 | if (bdev_is_zoned(bdev: si->bdev)) |
| 3213 | return -EINVAL; |
| 3214 | si->flags |= SWP_BLKDEV; |
| 3215 | } else if (S_ISREG(inode->i_mode)) { |
| 3216 | si->bdev = inode->i_sb->s_bdev; |
| 3217 | } |
| 3218 | |
| 3219 | return 0; |
| 3220 | } |
| 3221 | |
| 3222 | |
| 3223 | /* |
| 3224 | * Find out how many pages are allowed for a single swap device. There |
| 3225 | * are two limiting factors: |
| 3226 | * 1) the number of bits for the swap offset in the swp_entry_t type, and |
| 3227 | * 2) the number of bits in the swap pte, as defined by the different |
| 3228 | * architectures. |
| 3229 | * |
| 3230 | * In order to find the largest possible bit mask, a swap entry with |
| 3231 | * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, |
| 3232 | * decoded to a swp_entry_t again, and finally the swap offset is |
| 3233 | * extracted. |
| 3234 | * |
| 3235 | * This will mask all the bits from the initial ~0UL mask that can't |
| 3236 | * be encoded in either the swp_entry_t or the architecture definition |
| 3237 | * of a swap pte. |
| 3238 | */ |
| 3239 | unsigned long generic_max_swapfile_size(void) |
| 3240 | { |
| 3241 | return swp_offset(entry: pte_to_swp_entry( |
| 3242 | pte: swp_entry_to_pte(entry: swp_entry(type: 0, offset: ~0UL)))) + 1; |
| 3243 | } |
| 3244 | |
| 3245 | /* Can be overridden by an architecture for additional checks. */ |
| 3246 | __weak unsigned long arch_max_swapfile_size(void) |
| 3247 | { |
| 3248 | return generic_max_swapfile_size(); |
| 3249 | } |
| 3250 | |
| 3251 | static unsigned long (struct swap_info_struct *si, |
| 3252 | union swap_header *, |
| 3253 | struct inode *inode) |
| 3254 | { |
| 3255 | int i; |
| 3256 | unsigned long maxpages; |
| 3257 | unsigned long swapfilepages; |
| 3258 | unsigned long last_page; |
| 3259 | |
| 3260 | if (memcmp("SWAPSPACE2" , swap_header->magic.magic, 10)) { |
| 3261 | pr_err("Unable to find swap-space signature\n" ); |
| 3262 | return 0; |
| 3263 | } |
| 3264 | |
| 3265 | /* swap partition endianness hack... */ |
| 3266 | if (swab32(swap_header->info.version) == 1) { |
| 3267 | swab32s(p: &swap_header->info.version); |
| 3268 | swab32s(p: &swap_header->info.last_page); |
| 3269 | swab32s(p: &swap_header->info.nr_badpages); |
| 3270 | if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) |
| 3271 | return 0; |
| 3272 | for (i = 0; i < swap_header->info.nr_badpages; i++) |
| 3273 | swab32s(p: &swap_header->info.badpages[i]); |
| 3274 | } |
| 3275 | /* Check the swap header's sub-version */ |
| 3276 | if (swap_header->info.version != 1) { |
| 3277 | pr_warn("Unable to handle swap header version %d\n" , |
| 3278 | swap_header->info.version); |
| 3279 | return 0; |
| 3280 | } |
| 3281 | |
| 3282 | maxpages = swapfile_maximum_size; |
| 3283 | last_page = swap_header->info.last_page; |
| 3284 | if (!last_page) { |
| 3285 | pr_warn("Empty swap-file\n" ); |
| 3286 | return 0; |
| 3287 | } |
| 3288 | if (last_page > maxpages) { |
| 3289 | pr_warn("Truncating oversized swap area, only using %luk out of %luk\n" , |
| 3290 | K(maxpages), K(last_page)); |
| 3291 | } |
| 3292 | if (maxpages > last_page) { |
| 3293 | maxpages = last_page + 1; |
| 3294 | /* p->max is an unsigned int: don't overflow it */ |
| 3295 | if ((unsigned int)maxpages == 0) |
| 3296 | maxpages = UINT_MAX; |
| 3297 | } |
| 3298 | |
| 3299 | if (!maxpages) |
| 3300 | return 0; |
| 3301 | swapfilepages = i_size_read(inode) >> PAGE_SHIFT; |
| 3302 | if (swapfilepages && maxpages > swapfilepages) { |
| 3303 | pr_warn("Swap area shorter than signature indicates\n" ); |
| 3304 | return 0; |
| 3305 | } |
| 3306 | if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) |
| 3307 | return 0; |
| 3308 | if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) |
| 3309 | return 0; |
| 3310 | |
| 3311 | return maxpages; |
| 3312 | } |
| 3313 | |
| 3314 | static int setup_swap_map(struct swap_info_struct *si, |
| 3315 | union swap_header *, |
| 3316 | unsigned char *swap_map, |
| 3317 | unsigned long maxpages) |
| 3318 | { |
| 3319 | unsigned long i; |
| 3320 | |
| 3321 | swap_map[0] = SWAP_MAP_BAD; /* omit header page */ |
| 3322 | for (i = 0; i < swap_header->info.nr_badpages; i++) { |
| 3323 | unsigned int page_nr = swap_header->info.badpages[i]; |
| 3324 | if (page_nr == 0 || page_nr > swap_header->info.last_page) |
| 3325 | return -EINVAL; |
| 3326 | if (page_nr < maxpages) { |
| 3327 | swap_map[page_nr] = SWAP_MAP_BAD; |
| 3328 | si->pages--; |
| 3329 | } |
| 3330 | } |
| 3331 | |
| 3332 | if (!si->pages) { |
| 3333 | pr_warn("Empty swap-file\n" ); |
| 3334 | return -EINVAL; |
| 3335 | } |
| 3336 | |
| 3337 | return 0; |
| 3338 | } |
| 3339 | |
| 3340 | static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, |
| 3341 | union swap_header *, |
| 3342 | unsigned long maxpages) |
| 3343 | { |
| 3344 | unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); |
| 3345 | struct swap_cluster_info *cluster_info; |
| 3346 | int err = -ENOMEM; |
| 3347 | unsigned long i; |
| 3348 | |
| 3349 | cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); |
| 3350 | if (!cluster_info) |
| 3351 | goto err; |
| 3352 | |
| 3353 | for (i = 0; i < nr_clusters; i++) |
| 3354 | spin_lock_init(&cluster_info[i].lock); |
| 3355 | |
| 3356 | if (!(si->flags & SWP_SOLIDSTATE)) { |
| 3357 | si->global_cluster = kmalloc(sizeof(*si->global_cluster), |
| 3358 | GFP_KERNEL); |
| 3359 | if (!si->global_cluster) |
| 3360 | goto err_free; |
| 3361 | for (i = 0; i < SWAP_NR_ORDERS; i++) |
| 3362 | si->global_cluster->next[i] = SWAP_ENTRY_INVALID; |
| 3363 | spin_lock_init(&si->global_cluster_lock); |
| 3364 | } |
| 3365 | |
| 3366 | /* |
| 3367 | * Mark unusable pages as unavailable. The clusters aren't |
| 3368 | * marked free yet, so no list operations are involved yet. |
| 3369 | * |
| 3370 | * See setup_swap_map(): header page, bad pages, |
| 3371 | * and the EOF part of the last cluster. |
| 3372 | */ |
| 3373 | err = inc_cluster_info_page(si, cluster_info, page_nr: 0); |
| 3374 | if (err) |
| 3375 | goto err; |
| 3376 | for (i = 0; i < swap_header->info.nr_badpages; i++) { |
| 3377 | unsigned int page_nr = swap_header->info.badpages[i]; |
| 3378 | |
| 3379 | if (page_nr >= maxpages) |
| 3380 | continue; |
| 3381 | err = inc_cluster_info_page(si, cluster_info, page_nr); |
| 3382 | if (err) |
| 3383 | goto err; |
| 3384 | } |
| 3385 | for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) { |
| 3386 | err = inc_cluster_info_page(si, cluster_info, page_nr: i); |
| 3387 | if (err) |
| 3388 | goto err; |
| 3389 | } |
| 3390 | |
| 3391 | INIT_LIST_HEAD(list: &si->free_clusters); |
| 3392 | INIT_LIST_HEAD(list: &si->full_clusters); |
| 3393 | INIT_LIST_HEAD(list: &si->discard_clusters); |
| 3394 | |
| 3395 | for (i = 0; i < SWAP_NR_ORDERS; i++) { |
| 3396 | INIT_LIST_HEAD(list: &si->nonfull_clusters[i]); |
| 3397 | INIT_LIST_HEAD(list: &si->frag_clusters[i]); |
| 3398 | } |
| 3399 | |
| 3400 | for (i = 0; i < nr_clusters; i++) { |
| 3401 | struct swap_cluster_info *ci = &cluster_info[i]; |
| 3402 | |
| 3403 | if (ci->count) { |
| 3404 | ci->flags = CLUSTER_FLAG_NONFULL; |
| 3405 | list_add_tail(new: &ci->list, head: &si->nonfull_clusters[0]); |
| 3406 | } else { |
| 3407 | ci->flags = CLUSTER_FLAG_FREE; |
| 3408 | list_add_tail(new: &ci->list, head: &si->free_clusters); |
| 3409 | } |
| 3410 | } |
| 3411 | |
| 3412 | return cluster_info; |
| 3413 | err_free: |
| 3414 | free_cluster_info(cluster_info, maxpages); |
| 3415 | err: |
| 3416 | return ERR_PTR(error: err); |
| 3417 | } |
| 3418 | |
| 3419 | SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) |
| 3420 | { |
| 3421 | struct swap_info_struct *si; |
| 3422 | struct filename *name; |
| 3423 | struct file *swap_file = NULL; |
| 3424 | struct address_space *mapping; |
| 3425 | struct dentry *dentry; |
| 3426 | int prio; |
| 3427 | int error; |
| 3428 | union swap_header *; |
| 3429 | int nr_extents; |
| 3430 | sector_t span; |
| 3431 | unsigned long maxpages; |
| 3432 | unsigned char *swap_map = NULL; |
| 3433 | unsigned long *zeromap = NULL; |
| 3434 | struct swap_cluster_info *cluster_info = NULL; |
| 3435 | struct folio *folio = NULL; |
| 3436 | struct inode *inode = NULL; |
| 3437 | bool inced_nr_rotate_swap = false; |
| 3438 | |
| 3439 | if (swap_flags & ~SWAP_FLAGS_VALID) |
| 3440 | return -EINVAL; |
| 3441 | |
| 3442 | if (!capable(CAP_SYS_ADMIN)) |
| 3443 | return -EPERM; |
| 3444 | |
| 3445 | if (!swap_avail_heads) |
| 3446 | return -ENOMEM; |
| 3447 | |
| 3448 | si = alloc_swap_info(); |
| 3449 | if (IS_ERR(ptr: si)) |
| 3450 | return PTR_ERR(ptr: si); |
| 3451 | |
| 3452 | INIT_WORK(&si->discard_work, swap_discard_work); |
| 3453 | INIT_WORK(&si->reclaim_work, swap_reclaim_work); |
| 3454 | |
| 3455 | name = getname(name: specialfile); |
| 3456 | if (IS_ERR(ptr: name)) { |
| 3457 | error = PTR_ERR(ptr: name); |
| 3458 | name = NULL; |
| 3459 | goto bad_swap; |
| 3460 | } |
| 3461 | swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); |
| 3462 | if (IS_ERR(ptr: swap_file)) { |
| 3463 | error = PTR_ERR(ptr: swap_file); |
| 3464 | swap_file = NULL; |
| 3465 | goto bad_swap; |
| 3466 | } |
| 3467 | |
| 3468 | si->swap_file = swap_file; |
| 3469 | mapping = swap_file->f_mapping; |
| 3470 | dentry = swap_file->f_path.dentry; |
| 3471 | inode = mapping->host; |
| 3472 | |
| 3473 | error = claim_swapfile(si, inode); |
| 3474 | if (unlikely(error)) |
| 3475 | goto bad_swap; |
| 3476 | |
| 3477 | inode_lock(inode); |
| 3478 | if (d_unlinked(dentry) || cant_mount(dentry)) { |
| 3479 | error = -ENOENT; |
| 3480 | goto bad_swap_unlock_inode; |
| 3481 | } |
| 3482 | if (IS_SWAPFILE(inode)) { |
| 3483 | error = -EBUSY; |
| 3484 | goto bad_swap_unlock_inode; |
| 3485 | } |
| 3486 | |
| 3487 | /* |
| 3488 | * The swap subsystem needs a major overhaul to support this. |
| 3489 | * It doesn't work yet so just disable it for now. |
| 3490 | */ |
| 3491 | if (mapping_min_folio_order(mapping) > 0) { |
| 3492 | error = -EINVAL; |
| 3493 | goto bad_swap_unlock_inode; |
| 3494 | } |
| 3495 | |
| 3496 | /* |
| 3497 | * Read the swap header. |
| 3498 | */ |
| 3499 | if (!mapping->a_ops->read_folio) { |
| 3500 | error = -EINVAL; |
| 3501 | goto bad_swap_unlock_inode; |
| 3502 | } |
| 3503 | folio = read_mapping_folio(mapping, index: 0, file: swap_file); |
| 3504 | if (IS_ERR(ptr: folio)) { |
| 3505 | error = PTR_ERR(ptr: folio); |
| 3506 | goto bad_swap_unlock_inode; |
| 3507 | } |
| 3508 | swap_header = kmap_local_folio(folio, offset: 0); |
| 3509 | |
| 3510 | maxpages = read_swap_header(si, swap_header, inode); |
| 3511 | if (unlikely(!maxpages)) { |
| 3512 | error = -EINVAL; |
| 3513 | goto bad_swap_unlock_inode; |
| 3514 | } |
| 3515 | |
| 3516 | si->max = maxpages; |
| 3517 | si->pages = maxpages - 1; |
| 3518 | nr_extents = setup_swap_extents(sis: si, span: &span); |
| 3519 | if (nr_extents < 0) { |
| 3520 | error = nr_extents; |
| 3521 | goto bad_swap_unlock_inode; |
| 3522 | } |
| 3523 | if (si->pages != si->max - 1) { |
| 3524 | pr_err("swap:%u != (max:%u - 1)\n" , si->pages, si->max); |
| 3525 | error = -EINVAL; |
| 3526 | goto bad_swap_unlock_inode; |
| 3527 | } |
| 3528 | |
| 3529 | maxpages = si->max; |
| 3530 | |
| 3531 | /* OK, set up the swap map and apply the bad block list */ |
| 3532 | swap_map = vzalloc(maxpages); |
| 3533 | if (!swap_map) { |
| 3534 | error = -ENOMEM; |
| 3535 | goto bad_swap_unlock_inode; |
| 3536 | } |
| 3537 | |
| 3538 | error = swap_cgroup_swapon(type: si->type, max_pages: maxpages); |
| 3539 | if (error) |
| 3540 | goto bad_swap_unlock_inode; |
| 3541 | |
| 3542 | error = setup_swap_map(si, swap_header, swap_map, maxpages); |
| 3543 | if (error) |
| 3544 | goto bad_swap_unlock_inode; |
| 3545 | |
| 3546 | /* |
| 3547 | * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might |
| 3548 | * be above MAX_PAGE_ORDER incase of a large swap file. |
| 3549 | */ |
| 3550 | zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), |
| 3551 | GFP_KERNEL | __GFP_ZERO); |
| 3552 | if (!zeromap) { |
| 3553 | error = -ENOMEM; |
| 3554 | goto bad_swap_unlock_inode; |
| 3555 | } |
| 3556 | |
| 3557 | if (si->bdev && bdev_stable_writes(bdev: si->bdev)) |
| 3558 | si->flags |= SWP_STABLE_WRITES; |
| 3559 | |
| 3560 | if (si->bdev && bdev_synchronous(bdev: si->bdev)) |
| 3561 | si->flags |= SWP_SYNCHRONOUS_IO; |
| 3562 | |
| 3563 | if (si->bdev && bdev_nonrot(bdev: si->bdev)) { |
| 3564 | si->flags |= SWP_SOLIDSTATE; |
| 3565 | } else { |
| 3566 | atomic_inc(v: &nr_rotate_swap); |
| 3567 | inced_nr_rotate_swap = true; |
| 3568 | } |
| 3569 | |
| 3570 | cluster_info = setup_clusters(si, swap_header, maxpages); |
| 3571 | if (IS_ERR(ptr: cluster_info)) { |
| 3572 | error = PTR_ERR(ptr: cluster_info); |
| 3573 | cluster_info = NULL; |
| 3574 | goto bad_swap_unlock_inode; |
| 3575 | } |
| 3576 | |
| 3577 | if ((swap_flags & SWAP_FLAG_DISCARD) && |
| 3578 | si->bdev && bdev_max_discard_sectors(bdev: si->bdev)) { |
| 3579 | /* |
| 3580 | * When discard is enabled for swap with no particular |
| 3581 | * policy flagged, we set all swap discard flags here in |
| 3582 | * order to sustain backward compatibility with older |
| 3583 | * swapon(8) releases. |
| 3584 | */ |
| 3585 | si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | |
| 3586 | SWP_PAGE_DISCARD); |
| 3587 | |
| 3588 | /* |
| 3589 | * By flagging sys_swapon, a sysadmin can tell us to |
| 3590 | * either do single-time area discards only, or to just |
| 3591 | * perform discards for released swap page-clusters. |
| 3592 | * Now it's time to adjust the p->flags accordingly. |
| 3593 | */ |
| 3594 | if (swap_flags & SWAP_FLAG_DISCARD_ONCE) |
| 3595 | si->flags &= ~SWP_PAGE_DISCARD; |
| 3596 | else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) |
| 3597 | si->flags &= ~SWP_AREA_DISCARD; |
| 3598 | |
| 3599 | /* issue a swapon-time discard if it's still required */ |
| 3600 | if (si->flags & SWP_AREA_DISCARD) { |
| 3601 | int err = discard_swap(si); |
| 3602 | if (unlikely(err)) |
| 3603 | pr_err("swapon: discard_swap(%p): %d\n" , |
| 3604 | si, err); |
| 3605 | } |
| 3606 | } |
| 3607 | |
| 3608 | error = zswap_swapon(type: si->type, nr_pages: maxpages); |
| 3609 | if (error) |
| 3610 | goto bad_swap_unlock_inode; |
| 3611 | |
| 3612 | /* |
| 3613 | * Flush any pending IO and dirty mappings before we start using this |
| 3614 | * swap device. |
| 3615 | */ |
| 3616 | inode->i_flags |= S_SWAPFILE; |
| 3617 | error = inode_drain_writes(inode); |
| 3618 | if (error) { |
| 3619 | inode->i_flags &= ~S_SWAPFILE; |
| 3620 | goto free_swap_zswap; |
| 3621 | } |
| 3622 | |
| 3623 | mutex_lock(lock: &swapon_mutex); |
| 3624 | prio = -1; |
| 3625 | if (swap_flags & SWAP_FLAG_PREFER) |
| 3626 | prio = swap_flags & SWAP_FLAG_PRIO_MASK; |
| 3627 | enable_swap_info(si, prio, swap_map, cluster_info, zeromap); |
| 3628 | |
| 3629 | pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n" , |
| 3630 | K(si->pages), name->name, si->prio, nr_extents, |
| 3631 | K((unsigned long long)span), |
| 3632 | (si->flags & SWP_SOLIDSTATE) ? "SS" : "" , |
| 3633 | (si->flags & SWP_DISCARDABLE) ? "D" : "" , |
| 3634 | (si->flags & SWP_AREA_DISCARD) ? "s" : "" , |
| 3635 | (si->flags & SWP_PAGE_DISCARD) ? "c" : "" ); |
| 3636 | |
| 3637 | mutex_unlock(lock: &swapon_mutex); |
| 3638 | atomic_inc(v: &proc_poll_event); |
| 3639 | wake_up_interruptible(&proc_poll_wait); |
| 3640 | |
| 3641 | error = 0; |
| 3642 | goto out; |
| 3643 | free_swap_zswap: |
| 3644 | zswap_swapoff(type: si->type); |
| 3645 | bad_swap_unlock_inode: |
| 3646 | inode_unlock(inode); |
| 3647 | bad_swap: |
| 3648 | kfree(objp: si->global_cluster); |
| 3649 | si->global_cluster = NULL; |
| 3650 | inode = NULL; |
| 3651 | destroy_swap_extents(sis: si); |
| 3652 | swap_cgroup_swapoff(type: si->type); |
| 3653 | spin_lock(lock: &swap_lock); |
| 3654 | si->swap_file = NULL; |
| 3655 | si->flags = 0; |
| 3656 | spin_unlock(lock: &swap_lock); |
| 3657 | vfree(addr: swap_map); |
| 3658 | kvfree(addr: zeromap); |
| 3659 | if (cluster_info) |
| 3660 | free_cluster_info(cluster_info, maxpages); |
| 3661 | if (inced_nr_rotate_swap) |
| 3662 | atomic_dec(v: &nr_rotate_swap); |
| 3663 | if (swap_file) |
| 3664 | filp_close(swap_file, NULL); |
| 3665 | out: |
| 3666 | if (!IS_ERR_OR_NULL(ptr: folio)) |
| 3667 | folio_release_kmap(folio, addr: swap_header); |
| 3668 | if (name) |
| 3669 | putname(name); |
| 3670 | if (inode) |
| 3671 | inode_unlock(inode); |
| 3672 | return error; |
| 3673 | } |
| 3674 | |
| 3675 | void si_swapinfo(struct sysinfo *val) |
| 3676 | { |
| 3677 | unsigned int type; |
| 3678 | unsigned long nr_to_be_unused = 0; |
| 3679 | |
| 3680 | spin_lock(lock: &swap_lock); |
| 3681 | for (type = 0; type < nr_swapfiles; type++) { |
| 3682 | struct swap_info_struct *si = swap_info[type]; |
| 3683 | |
| 3684 | if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) |
| 3685 | nr_to_be_unused += swap_usage_in_pages(si); |
| 3686 | } |
| 3687 | val->freeswap = atomic_long_read(v: &nr_swap_pages) + nr_to_be_unused; |
| 3688 | val->totalswap = total_swap_pages + nr_to_be_unused; |
| 3689 | spin_unlock(lock: &swap_lock); |
| 3690 | } |
| 3691 | |
| 3692 | /* |
| 3693 | * Verify that nr swap entries are valid and increment their swap map counts. |
| 3694 | * |
| 3695 | * Returns error code in following case. |
| 3696 | * - success -> 0 |
| 3697 | * - swp_entry is invalid -> EINVAL |
| 3698 | * - swap-cache reference is requested but there is already one. -> EEXIST |
| 3699 | * - swap-cache reference is requested but the entry is not used. -> ENOENT |
| 3700 | * - swap-mapped reference requested but needs continued swap count. -> ENOMEM |
| 3701 | */ |
| 3702 | static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) |
| 3703 | { |
| 3704 | struct swap_info_struct *si; |
| 3705 | struct swap_cluster_info *ci; |
| 3706 | unsigned long offset; |
| 3707 | unsigned char count; |
| 3708 | unsigned char has_cache; |
| 3709 | int err, i; |
| 3710 | |
| 3711 | si = swap_entry_to_info(entry); |
| 3712 | if (WARN_ON_ONCE(!si)) { |
| 3713 | pr_err("%s%08lx\n" , Bad_file, entry.val); |
| 3714 | return -EINVAL; |
| 3715 | } |
| 3716 | |
| 3717 | offset = swp_offset(entry); |
| 3718 | VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); |
| 3719 | VM_WARN_ON(usage == 1 && nr > 1); |
| 3720 | ci = swap_cluster_lock(si, offset); |
| 3721 | |
| 3722 | err = 0; |
| 3723 | for (i = 0; i < nr; i++) { |
| 3724 | count = si->swap_map[offset + i]; |
| 3725 | |
| 3726 | /* |
| 3727 | * swapin_readahead() doesn't check if a swap entry is valid, so the |
| 3728 | * swap entry could be SWAP_MAP_BAD. Check here with lock held. |
| 3729 | */ |
| 3730 | if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { |
| 3731 | err = -ENOENT; |
| 3732 | goto unlock_out; |
| 3733 | } |
| 3734 | |
| 3735 | has_cache = count & SWAP_HAS_CACHE; |
| 3736 | count &= ~SWAP_HAS_CACHE; |
| 3737 | |
| 3738 | if (!count && !has_cache) { |
| 3739 | err = -ENOENT; |
| 3740 | } else if (usage == SWAP_HAS_CACHE) { |
| 3741 | if (has_cache) |
| 3742 | err = -EEXIST; |
| 3743 | } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { |
| 3744 | err = -EINVAL; |
| 3745 | } |
| 3746 | |
| 3747 | if (err) |
| 3748 | goto unlock_out; |
| 3749 | } |
| 3750 | |
| 3751 | for (i = 0; i < nr; i++) { |
| 3752 | count = si->swap_map[offset + i]; |
| 3753 | has_cache = count & SWAP_HAS_CACHE; |
| 3754 | count &= ~SWAP_HAS_CACHE; |
| 3755 | |
| 3756 | if (usage == SWAP_HAS_CACHE) |
| 3757 | has_cache = SWAP_HAS_CACHE; |
| 3758 | else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) |
| 3759 | count += usage; |
| 3760 | else if (swap_count_continued(si, offset + i, count)) |
| 3761 | count = COUNT_CONTINUED; |
| 3762 | else { |
| 3763 | /* |
| 3764 | * Don't need to rollback changes, because if |
| 3765 | * usage == 1, there must be nr == 1. |
| 3766 | */ |
| 3767 | err = -ENOMEM; |
| 3768 | goto unlock_out; |
| 3769 | } |
| 3770 | |
| 3771 | WRITE_ONCE(si->swap_map[offset + i], count | has_cache); |
| 3772 | } |
| 3773 | |
| 3774 | unlock_out: |
| 3775 | swap_cluster_unlock(ci); |
| 3776 | return err; |
| 3777 | } |
| 3778 | |
| 3779 | /* |
| 3780 | * Help swapoff by noting that swap entry belongs to shmem/tmpfs |
| 3781 | * (in which case its reference count is never incremented). |
| 3782 | */ |
| 3783 | void swap_shmem_alloc(swp_entry_t entry, int nr) |
| 3784 | { |
| 3785 | __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); |
| 3786 | } |
| 3787 | |
| 3788 | /* |
| 3789 | * Increase reference count of swap entry by 1. |
| 3790 | * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required |
| 3791 | * but could not be atomically allocated. Returns 0, just as if it succeeded, |
| 3792 | * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which |
| 3793 | * might occur if a page table entry has got corrupted. |
| 3794 | */ |
| 3795 | int swap_duplicate(swp_entry_t entry) |
| 3796 | { |
| 3797 | int err = 0; |
| 3798 | |
| 3799 | while (!err && __swap_duplicate(entry, usage: 1, nr: 1) == -ENOMEM) |
| 3800 | err = add_swap_count_continuation(entry, GFP_ATOMIC); |
| 3801 | return err; |
| 3802 | } |
| 3803 | |
| 3804 | /* |
| 3805 | * @entry: first swap entry from which we allocate nr swap cache. |
| 3806 | * |
| 3807 | * Called when allocating swap cache for existing swap entries, |
| 3808 | * This can return error codes. Returns 0 at success. |
| 3809 | * -EEXIST means there is a swap cache. |
| 3810 | * Note: return code is different from swap_duplicate(). |
| 3811 | */ |
| 3812 | int swapcache_prepare(swp_entry_t entry, int nr) |
| 3813 | { |
| 3814 | return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); |
| 3815 | } |
| 3816 | |
| 3817 | /* |
| 3818 | * Caller should ensure entries belong to the same folio so |
| 3819 | * the entries won't span cross cluster boundary. |
| 3820 | */ |
| 3821 | void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) |
| 3822 | { |
| 3823 | swap_entries_put_cache(si, entry, nr); |
| 3824 | } |
| 3825 | |
| 3826 | /* |
| 3827 | * add_swap_count_continuation - called when a swap count is duplicated |
| 3828 | * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's |
| 3829 | * page of the original vmalloc'ed swap_map, to hold the continuation count |
| 3830 | * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called |
| 3831 | * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. |
| 3832 | * |
| 3833 | * These continuation pages are seldom referenced: the common paths all work |
| 3834 | * on the original swap_map, only referring to a continuation page when the |
| 3835 | * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. |
| 3836 | * |
| 3837 | * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding |
| 3838 | * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) |
| 3839 | * can be called after dropping locks. |
| 3840 | */ |
| 3841 | int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) |
| 3842 | { |
| 3843 | struct swap_info_struct *si; |
| 3844 | struct swap_cluster_info *ci; |
| 3845 | struct page *head; |
| 3846 | struct page *page; |
| 3847 | struct page *list_page; |
| 3848 | pgoff_t offset; |
| 3849 | unsigned char count; |
| 3850 | int ret = 0; |
| 3851 | |
| 3852 | /* |
| 3853 | * When debugging, it's easier to use __GFP_ZERO here; but it's better |
| 3854 | * for latency not to zero a page while GFP_ATOMIC and holding locks. |
| 3855 | */ |
| 3856 | page = alloc_page(gfp_mask | __GFP_HIGHMEM); |
| 3857 | |
| 3858 | si = get_swap_device(entry); |
| 3859 | if (!si) { |
| 3860 | /* |
| 3861 | * An acceptable race has occurred since the failing |
| 3862 | * __swap_duplicate(): the swap device may be swapoff |
| 3863 | */ |
| 3864 | goto outer; |
| 3865 | } |
| 3866 | |
| 3867 | offset = swp_offset(entry); |
| 3868 | |
| 3869 | ci = swap_cluster_lock(si, offset); |
| 3870 | |
| 3871 | count = swap_count(ent: si->swap_map[offset]); |
| 3872 | |
| 3873 | if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { |
| 3874 | /* |
| 3875 | * The higher the swap count, the more likely it is that tasks |
| 3876 | * will race to add swap count continuation: we need to avoid |
| 3877 | * over-provisioning. |
| 3878 | */ |
| 3879 | goto out; |
| 3880 | } |
| 3881 | |
| 3882 | if (!page) { |
| 3883 | ret = -ENOMEM; |
| 3884 | goto out; |
| 3885 | } |
| 3886 | |
| 3887 | head = vmalloc_to_page(addr: si->swap_map + offset); |
| 3888 | offset &= ~PAGE_MASK; |
| 3889 | |
| 3890 | spin_lock(lock: &si->cont_lock); |
| 3891 | /* |
| 3892 | * Page allocation does not initialize the page's lru field, |
| 3893 | * but it does always reset its private field. |
| 3894 | */ |
| 3895 | if (!page_private(head)) { |
| 3896 | BUG_ON(count & COUNT_CONTINUED); |
| 3897 | INIT_LIST_HEAD(list: &head->lru); |
| 3898 | set_page_private(page: head, private: SWP_CONTINUED); |
| 3899 | si->flags |= SWP_CONTINUED; |
| 3900 | } |
| 3901 | |
| 3902 | list_for_each_entry(list_page, &head->lru, lru) { |
| 3903 | unsigned char *map; |
| 3904 | |
| 3905 | /* |
| 3906 | * If the previous map said no continuation, but we've found |
| 3907 | * a continuation page, free our allocation and use this one. |
| 3908 | */ |
| 3909 | if (!(count & COUNT_CONTINUED)) |
| 3910 | goto out_unlock_cont; |
| 3911 | |
| 3912 | map = kmap_local_page(page: list_page) + offset; |
| 3913 | count = *map; |
| 3914 | kunmap_local(map); |
| 3915 | |
| 3916 | /* |
| 3917 | * If this continuation count now has some space in it, |
| 3918 | * free our allocation and use this one. |
| 3919 | */ |
| 3920 | if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) |
| 3921 | goto out_unlock_cont; |
| 3922 | } |
| 3923 | |
| 3924 | list_add_tail(new: &page->lru, head: &head->lru); |
| 3925 | page = NULL; /* now it's attached, don't free it */ |
| 3926 | out_unlock_cont: |
| 3927 | spin_unlock(lock: &si->cont_lock); |
| 3928 | out: |
| 3929 | swap_cluster_unlock(ci); |
| 3930 | put_swap_device(si); |
| 3931 | outer: |
| 3932 | if (page) |
| 3933 | __free_page(page); |
| 3934 | return ret; |
| 3935 | } |
| 3936 | |
| 3937 | /* |
| 3938 | * swap_count_continued - when the original swap_map count is incremented |
| 3939 | * from SWAP_MAP_MAX, check if there is already a continuation page to carry |
| 3940 | * into, carry if so, or else fail until a new continuation page is allocated; |
| 3941 | * when the original swap_map count is decremented from 0 with continuation, |
| 3942 | * borrow from the continuation and report whether it still holds more. |
| 3943 | * Called while __swap_duplicate() or caller of swap_entry_put_locked() |
| 3944 | * holds cluster lock. |
| 3945 | */ |
| 3946 | static bool swap_count_continued(struct swap_info_struct *si, |
| 3947 | pgoff_t offset, unsigned char count) |
| 3948 | { |
| 3949 | struct page *head; |
| 3950 | struct page *page; |
| 3951 | unsigned char *map; |
| 3952 | bool ret; |
| 3953 | |
| 3954 | head = vmalloc_to_page(addr: si->swap_map + offset); |
| 3955 | if (page_private(head) != SWP_CONTINUED) { |
| 3956 | BUG_ON(count & COUNT_CONTINUED); |
| 3957 | return false; /* need to add count continuation */ |
| 3958 | } |
| 3959 | |
| 3960 | spin_lock(lock: &si->cont_lock); |
| 3961 | offset &= ~PAGE_MASK; |
| 3962 | page = list_next_entry(head, lru); |
| 3963 | map = kmap_local_page(page) + offset; |
| 3964 | |
| 3965 | if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ |
| 3966 | goto init_map; /* jump over SWAP_CONT_MAX checks */ |
| 3967 | |
| 3968 | if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ |
| 3969 | /* |
| 3970 | * Think of how you add 1 to 999 |
| 3971 | */ |
| 3972 | while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { |
| 3973 | kunmap_local(map); |
| 3974 | page = list_next_entry(page, lru); |
| 3975 | BUG_ON(page == head); |
| 3976 | map = kmap_local_page(page) + offset; |
| 3977 | } |
| 3978 | if (*map == SWAP_CONT_MAX) { |
| 3979 | kunmap_local(map); |
| 3980 | page = list_next_entry(page, lru); |
| 3981 | if (page == head) { |
| 3982 | ret = false; /* add count continuation */ |
| 3983 | goto out; |
| 3984 | } |
| 3985 | map = kmap_local_page(page) + offset; |
| 3986 | init_map: *map = 0; /* we didn't zero the page */ |
| 3987 | } |
| 3988 | *map += 1; |
| 3989 | kunmap_local(map); |
| 3990 | while ((page = list_prev_entry(page, lru)) != head) { |
| 3991 | map = kmap_local_page(page) + offset; |
| 3992 | *map = COUNT_CONTINUED; |
| 3993 | kunmap_local(map); |
| 3994 | } |
| 3995 | ret = true; /* incremented */ |
| 3996 | |
| 3997 | } else { /* decrementing */ |
| 3998 | /* |
| 3999 | * Think of how you subtract 1 from 1000 |
| 4000 | */ |
| 4001 | BUG_ON(count != COUNT_CONTINUED); |
| 4002 | while (*map == COUNT_CONTINUED) { |
| 4003 | kunmap_local(map); |
| 4004 | page = list_next_entry(page, lru); |
| 4005 | BUG_ON(page == head); |
| 4006 | map = kmap_local_page(page) + offset; |
| 4007 | } |
| 4008 | BUG_ON(*map == 0); |
| 4009 | *map -= 1; |
| 4010 | if (*map == 0) |
| 4011 | count = 0; |
| 4012 | kunmap_local(map); |
| 4013 | while ((page = list_prev_entry(page, lru)) != head) { |
| 4014 | map = kmap_local_page(page) + offset; |
| 4015 | *map = SWAP_CONT_MAX | count; |
| 4016 | count = COUNT_CONTINUED; |
| 4017 | kunmap_local(map); |
| 4018 | } |
| 4019 | ret = count == COUNT_CONTINUED; |
| 4020 | } |
| 4021 | out: |
| 4022 | spin_unlock(lock: &si->cont_lock); |
| 4023 | return ret; |
| 4024 | } |
| 4025 | |
| 4026 | /* |
| 4027 | * free_swap_count_continuations - swapoff free all the continuation pages |
| 4028 | * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. |
| 4029 | */ |
| 4030 | static void free_swap_count_continuations(struct swap_info_struct *si) |
| 4031 | { |
| 4032 | pgoff_t offset; |
| 4033 | |
| 4034 | for (offset = 0; offset < si->max; offset += PAGE_SIZE) { |
| 4035 | struct page *head; |
| 4036 | head = vmalloc_to_page(addr: si->swap_map + offset); |
| 4037 | if (page_private(head)) { |
| 4038 | struct page *page, *next; |
| 4039 | |
| 4040 | list_for_each_entry_safe(page, next, &head->lru, lru) { |
| 4041 | list_del(entry: &page->lru); |
| 4042 | __free_page(page); |
| 4043 | } |
| 4044 | } |
| 4045 | } |
| 4046 | } |
| 4047 | |
| 4048 | #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) |
| 4049 | static bool __has_usable_swap(void) |
| 4050 | { |
| 4051 | return !plist_head_empty(&swap_active_head); |
| 4052 | } |
| 4053 | |
| 4054 | void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) |
| 4055 | { |
| 4056 | struct swap_info_struct *si, *next; |
| 4057 | int nid = folio_nid(folio); |
| 4058 | |
| 4059 | if (!(gfp & __GFP_IO)) |
| 4060 | return; |
| 4061 | |
| 4062 | if (!__has_usable_swap()) |
| 4063 | return; |
| 4064 | |
| 4065 | if (!blk_cgroup_congested()) |
| 4066 | return; |
| 4067 | |
| 4068 | /* |
| 4069 | * We've already scheduled a throttle, avoid taking the global swap |
| 4070 | * lock. |
| 4071 | */ |
| 4072 | if (current->throttle_disk) |
| 4073 | return; |
| 4074 | |
| 4075 | spin_lock(&swap_avail_lock); |
| 4076 | plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], |
| 4077 | avail_lists[nid]) { |
| 4078 | if (si->bdev) { |
| 4079 | blkcg_schedule_throttle(si->bdev->bd_disk, true); |
| 4080 | break; |
| 4081 | } |
| 4082 | } |
| 4083 | spin_unlock(&swap_avail_lock); |
| 4084 | } |
| 4085 | #endif |
| 4086 | |
| 4087 | static int __init swapfile_init(void) |
| 4088 | { |
| 4089 | int nid; |
| 4090 | |
| 4091 | swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), |
| 4092 | GFP_KERNEL); |
| 4093 | if (!swap_avail_heads) { |
| 4094 | pr_emerg("Not enough memory for swap heads, swap is disabled\n" ); |
| 4095 | return -ENOMEM; |
| 4096 | } |
| 4097 | |
| 4098 | for_each_node(nid) |
| 4099 | plist_head_init(head: &swap_avail_heads[nid]); |
| 4100 | |
| 4101 | swapfile_maximum_size = arch_max_swapfile_size(); |
| 4102 | |
| 4103 | /* |
| 4104 | * Once a cluster is freed, it's swap table content is read |
| 4105 | * only, and all swap cache readers (swap_cache_*) verifies |
| 4106 | * the content before use. So it's safe to use RCU slab here. |
| 4107 | */ |
| 4108 | if (!SWP_TABLE_USE_PAGE) |
| 4109 | swap_table_cachep = kmem_cache_create("swap_table" , |
| 4110 | sizeof(struct swap_table), |
| 4111 | 0, SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, NULL); |
| 4112 | |
| 4113 | #ifdef CONFIG_MIGRATION |
| 4114 | if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) |
| 4115 | swap_migration_ad_supported = true; |
| 4116 | #endif /* CONFIG_MIGRATION */ |
| 4117 | |
| 4118 | return 0; |
| 4119 | } |
| 4120 | subsys_initcall(swapfile_init); |
| 4121 | |