| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * mm/truncate.c - code for taking down pages from address_spaces |
| 4 | * |
| 5 | * Copyright (C) 2002, Linus Torvalds |
| 6 | * |
| 7 | * 10Sep2002 Andrew Morton |
| 8 | * Initial version. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/kernel.h> |
| 12 | #include <linux/backing-dev.h> |
| 13 | #include <linux/dax.h> |
| 14 | #include <linux/gfp.h> |
| 15 | #include <linux/mm.h> |
| 16 | #include <linux/swap.h> |
| 17 | #include <linux/export.h> |
| 18 | #include <linux/pagemap.h> |
| 19 | #include <linux/highmem.h> |
| 20 | #include <linux/pagevec.h> |
| 21 | #include <linux/task_io_accounting_ops.h> |
| 22 | #include <linux/shmem_fs.h> |
| 23 | #include <linux/rmap.h> |
| 24 | #include "internal.h" |
| 25 | |
| 26 | static void clear_shadow_entries(struct address_space *mapping, |
| 27 | unsigned long start, unsigned long max) |
| 28 | { |
| 29 | XA_STATE(xas, &mapping->i_pages, start); |
| 30 | struct folio *folio; |
| 31 | |
| 32 | /* Handled by shmem itself, or for DAX we do nothing. */ |
| 33 | if (shmem_mapping(mapping) || dax_mapping(mapping)) |
| 34 | return; |
| 35 | |
| 36 | xas_set_update(xas: &xas, update: workingset_update_node); |
| 37 | |
| 38 | spin_lock(lock: &mapping->host->i_lock); |
| 39 | xas_lock_irq(&xas); |
| 40 | |
| 41 | /* Clear all shadow entries from start to max */ |
| 42 | xas_for_each(&xas, folio, max) { |
| 43 | if (xa_is_value(entry: folio)) |
| 44 | xas_store(&xas, NULL); |
| 45 | } |
| 46 | |
| 47 | xas_unlock_irq(&xas); |
| 48 | if (mapping_shrinkable(mapping)) |
| 49 | inode_add_lru(inode: mapping->host); |
| 50 | spin_unlock(lock: &mapping->host->i_lock); |
| 51 | } |
| 52 | |
| 53 | /* |
| 54 | * Unconditionally remove exceptional entries. Usually called from truncate |
| 55 | * path. Note that the folio_batch may be altered by this function by removing |
| 56 | * exceptional entries similar to what folio_batch_remove_exceptionals() does. |
| 57 | * Please note that indices[] has entries in ascending order as guaranteed by |
| 58 | * either find_get_entries() or find_lock_entries(). |
| 59 | */ |
| 60 | static void truncate_folio_batch_exceptionals(struct address_space *mapping, |
| 61 | struct folio_batch *fbatch, pgoff_t *indices) |
| 62 | { |
| 63 | XA_STATE(xas, &mapping->i_pages, indices[0]); |
| 64 | int nr = folio_batch_count(fbatch); |
| 65 | struct folio *folio; |
| 66 | int i, j; |
| 67 | |
| 68 | /* Handled by shmem itself */ |
| 69 | if (shmem_mapping(mapping)) |
| 70 | return; |
| 71 | |
| 72 | for (j = 0; j < nr; j++) |
| 73 | if (xa_is_value(entry: fbatch->folios[j])) |
| 74 | break; |
| 75 | |
| 76 | if (j == nr) |
| 77 | return; |
| 78 | |
| 79 | if (dax_mapping(mapping)) { |
| 80 | for (i = j; i < nr; i++) { |
| 81 | if (xa_is_value(entry: fbatch->folios[i])) { |
| 82 | /* |
| 83 | * File systems should already have called |
| 84 | * dax_break_layout_entry() to remove all DAX |
| 85 | * entries while holding a lock to prevent |
| 86 | * establishing new entries. Therefore we |
| 87 | * shouldn't find any here. |
| 88 | */ |
| 89 | WARN_ON_ONCE(1); |
| 90 | |
| 91 | /* |
| 92 | * Delete the mapping so truncate_pagecache() |
| 93 | * doesn't loop forever. |
| 94 | */ |
| 95 | dax_delete_mapping_entry(mapping, index: indices[i]); |
| 96 | } |
| 97 | } |
| 98 | goto out; |
| 99 | } |
| 100 | |
| 101 | xas_set(xas: &xas, index: indices[j]); |
| 102 | xas_set_update(xas: &xas, update: workingset_update_node); |
| 103 | |
| 104 | spin_lock(lock: &mapping->host->i_lock); |
| 105 | xas_lock_irq(&xas); |
| 106 | |
| 107 | xas_for_each(&xas, folio, indices[nr-1]) { |
| 108 | if (xa_is_value(entry: folio)) |
| 109 | xas_store(&xas, NULL); |
| 110 | } |
| 111 | |
| 112 | xas_unlock_irq(&xas); |
| 113 | if (mapping_shrinkable(mapping)) |
| 114 | inode_add_lru(inode: mapping->host); |
| 115 | spin_unlock(lock: &mapping->host->i_lock); |
| 116 | out: |
| 117 | folio_batch_remove_exceptionals(fbatch); |
| 118 | } |
| 119 | |
| 120 | /** |
| 121 | * folio_invalidate - Invalidate part or all of a folio. |
| 122 | * @folio: The folio which is affected. |
| 123 | * @offset: start of the range to invalidate |
| 124 | * @length: length of the range to invalidate |
| 125 | * |
| 126 | * folio_invalidate() is called when all or part of the folio has become |
| 127 | * invalidated by a truncate operation. |
| 128 | * |
| 129 | * folio_invalidate() does not have to release all buffers, but it must |
| 130 | * ensure that no dirty buffer is left outside @offset and that no I/O |
| 131 | * is underway against any of the blocks which are outside the truncation |
| 132 | * point. Because the caller is about to free (and possibly reuse) those |
| 133 | * blocks on-disk. |
| 134 | */ |
| 135 | void folio_invalidate(struct folio *folio, size_t offset, size_t length) |
| 136 | { |
| 137 | const struct address_space_operations *aops = folio->mapping->a_ops; |
| 138 | |
| 139 | if (aops->invalidate_folio) |
| 140 | aops->invalidate_folio(folio, offset, length); |
| 141 | } |
| 142 | EXPORT_SYMBOL_GPL(folio_invalidate); |
| 143 | |
| 144 | /* |
| 145 | * If truncate cannot remove the fs-private metadata from the page, the page |
| 146 | * becomes orphaned. It will be left on the LRU and may even be mapped into |
| 147 | * user pagetables if we're racing with filemap_fault(). |
| 148 | * |
| 149 | * We need to bail out if page->mapping is no longer equal to the original |
| 150 | * mapping. This happens a) when the VM reclaimed the page while we waited on |
| 151 | * its lock, b) when a concurrent invalidate_mapping_pages got there first and |
| 152 | * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. |
| 153 | */ |
| 154 | static void truncate_cleanup_folio(struct folio *folio) |
| 155 | { |
| 156 | if (folio_mapped(folio)) |
| 157 | unmap_mapping_folio(folio); |
| 158 | |
| 159 | if (folio_needs_release(folio)) |
| 160 | folio_invalidate(folio, 0, folio_size(folio)); |
| 161 | |
| 162 | /* |
| 163 | * Some filesystems seem to re-dirty the page even after |
| 164 | * the VM has canceled the dirty bit (eg ext3 journaling). |
| 165 | * Hence dirty accounting check is placed after invalidation. |
| 166 | */ |
| 167 | folio_cancel_dirty(folio); |
| 168 | } |
| 169 | |
| 170 | int truncate_inode_folio(struct address_space *mapping, struct folio *folio) |
| 171 | { |
| 172 | if (folio->mapping != mapping) |
| 173 | return -EIO; |
| 174 | |
| 175 | truncate_cleanup_folio(folio); |
| 176 | filemap_remove_folio(folio); |
| 177 | return 0; |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * Handle partial folios. The folio may be entirely within the |
| 182 | * range if a split has raced with us. If not, we zero the part of the |
| 183 | * folio that's within the [start, end] range, and then split the folio if |
| 184 | * it's large. split_page_range() will discard pages which now lie beyond |
| 185 | * i_size, and we rely on the caller to discard pages which lie within a |
| 186 | * newly created hole. |
| 187 | * |
| 188 | * Returns false if splitting failed so the caller can avoid |
| 189 | * discarding the entire folio which is stubbornly unsplit. |
| 190 | */ |
| 191 | bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) |
| 192 | { |
| 193 | loff_t pos = folio_pos(folio); |
| 194 | size_t size = folio_size(folio); |
| 195 | unsigned int offset, length; |
| 196 | struct page *split_at, *split_at2; |
| 197 | |
| 198 | if (pos < start) |
| 199 | offset = start - pos; |
| 200 | else |
| 201 | offset = 0; |
| 202 | if (pos + size <= (u64)end) |
| 203 | length = size - offset; |
| 204 | else |
| 205 | length = end + 1 - pos - offset; |
| 206 | |
| 207 | folio_wait_writeback(folio); |
| 208 | if (length == size) { |
| 209 | truncate_inode_folio(mapping: folio->mapping, folio); |
| 210 | return true; |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * We may be zeroing pages we're about to discard, but it avoids |
| 215 | * doing a complex calculation here, and then doing the zeroing |
| 216 | * anyway if the page split fails. |
| 217 | */ |
| 218 | if (!mapping_inaccessible(mapping: folio->mapping)) |
| 219 | folio_zero_range(folio, start: offset, length); |
| 220 | |
| 221 | if (folio_needs_release(folio)) |
| 222 | folio_invalidate(folio, offset, length); |
| 223 | if (!folio_test_large(folio)) |
| 224 | return true; |
| 225 | |
| 226 | split_at = folio_page(folio, PAGE_ALIGN_DOWN(offset) / PAGE_SIZE); |
| 227 | if (!try_folio_split(folio, page: split_at, NULL)) { |
| 228 | /* |
| 229 | * try to split at offset + length to make sure folios within |
| 230 | * the range can be dropped, especially to avoid memory waste |
| 231 | * for shmem truncate |
| 232 | */ |
| 233 | struct folio *folio2; |
| 234 | |
| 235 | if (offset + length == size) |
| 236 | goto no_split; |
| 237 | |
| 238 | split_at2 = folio_page(folio, |
| 239 | PAGE_ALIGN_DOWN(offset + length) / PAGE_SIZE); |
| 240 | folio2 = page_folio(split_at2); |
| 241 | |
| 242 | if (!folio_try_get(folio: folio2)) |
| 243 | goto no_split; |
| 244 | |
| 245 | if (!folio_test_large(folio: folio2)) |
| 246 | goto out; |
| 247 | |
| 248 | if (!folio_trylock(folio: folio2)) |
| 249 | goto out; |
| 250 | |
| 251 | /* |
| 252 | * make sure folio2 is large and does not change its mapping. |
| 253 | * Its split result does not matter here. |
| 254 | */ |
| 255 | if (folio_test_large(folio: folio2) && |
| 256 | folio2->mapping == folio->mapping) |
| 257 | try_folio_split(folio: folio2, page: split_at2, NULL); |
| 258 | |
| 259 | folio_unlock(folio: folio2); |
| 260 | out: |
| 261 | folio_put(folio: folio2); |
| 262 | no_split: |
| 263 | return true; |
| 264 | } |
| 265 | if (folio_test_dirty(folio)) |
| 266 | return false; |
| 267 | truncate_inode_folio(mapping: folio->mapping, folio); |
| 268 | return true; |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * Used to get rid of pages on hardware memory corruption. |
| 273 | */ |
| 274 | int generic_error_remove_folio(struct address_space *mapping, |
| 275 | struct folio *folio) |
| 276 | { |
| 277 | if (!mapping) |
| 278 | return -EINVAL; |
| 279 | /* |
| 280 | * Only punch for normal data pages for now. |
| 281 | * Handling other types like directories would need more auditing. |
| 282 | */ |
| 283 | if (!S_ISREG(mapping->host->i_mode)) |
| 284 | return -EIO; |
| 285 | return truncate_inode_folio(mapping, folio); |
| 286 | } |
| 287 | EXPORT_SYMBOL(generic_error_remove_folio); |
| 288 | |
| 289 | /** |
| 290 | * mapping_evict_folio() - Remove an unused folio from the page-cache. |
| 291 | * @mapping: The mapping this folio belongs to. |
| 292 | * @folio: The folio to remove. |
| 293 | * |
| 294 | * Safely remove one folio from the page cache. |
| 295 | * It only drops clean, unused folios. |
| 296 | * |
| 297 | * Context: Folio must be locked. |
| 298 | * Return: The number of pages successfully removed. |
| 299 | */ |
| 300 | long mapping_evict_folio(struct address_space *mapping, struct folio *folio) |
| 301 | { |
| 302 | /* The page may have been truncated before it was locked */ |
| 303 | if (!mapping) |
| 304 | return 0; |
| 305 | if (folio_test_dirty(folio) || folio_test_writeback(folio)) |
| 306 | return 0; |
| 307 | /* The refcount will be elevated if any page in the folio is mapped */ |
| 308 | if (folio_ref_count(folio) > |
| 309 | folio_nr_pages(folio) + folio_has_private(folio) + 1) |
| 310 | return 0; |
| 311 | if (!filemap_release_folio(folio, gfp: 0)) |
| 312 | return 0; |
| 313 | |
| 314 | return remove_mapping(mapping, folio); |
| 315 | } |
| 316 | |
| 317 | /** |
| 318 | * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets |
| 319 | * @mapping: mapping to truncate |
| 320 | * @lstart: offset from which to truncate |
| 321 | * @lend: offset to which to truncate (inclusive) |
| 322 | * |
| 323 | * Truncate the page cache, removing the pages that are between |
| 324 | * specified offsets (and zeroing out partial pages |
| 325 | * if lstart or lend + 1 is not page aligned). |
| 326 | * |
| 327 | * Truncate takes two passes - the first pass is nonblocking. It will not |
| 328 | * block on page locks and it will not block on writeback. The second pass |
| 329 | * will wait. This is to prevent as much IO as possible in the affected region. |
| 330 | * The first pass will remove most pages, so the search cost of the second pass |
| 331 | * is low. |
| 332 | * |
| 333 | * We pass down the cache-hot hint to the page freeing code. Even if the |
| 334 | * mapping is large, it is probably the case that the final pages are the most |
| 335 | * recently touched, and freeing happens in ascending file offset order. |
| 336 | * |
| 337 | * Note that since ->invalidate_folio() accepts range to invalidate |
| 338 | * truncate_inode_pages_range is able to handle cases where lend + 1 is not |
| 339 | * page aligned properly. |
| 340 | */ |
| 341 | void truncate_inode_pages_range(struct address_space *mapping, |
| 342 | loff_t lstart, loff_t lend) |
| 343 | { |
| 344 | pgoff_t start; /* inclusive */ |
| 345 | pgoff_t end; /* exclusive */ |
| 346 | struct folio_batch fbatch; |
| 347 | pgoff_t indices[PAGEVEC_SIZE]; |
| 348 | pgoff_t index; |
| 349 | int i; |
| 350 | struct folio *folio; |
| 351 | bool same_folio; |
| 352 | |
| 353 | if (mapping_empty(mapping)) |
| 354 | return; |
| 355 | |
| 356 | /* |
| 357 | * 'start' and 'end' always covers the range of pages to be fully |
| 358 | * truncated. Partial pages are covered with 'partial_start' at the |
| 359 | * start of the range and 'partial_end' at the end of the range. |
| 360 | * Note that 'end' is exclusive while 'lend' is inclusive. |
| 361 | */ |
| 362 | start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 363 | if (lend == -1) |
| 364 | /* |
| 365 | * lend == -1 indicates end-of-file so we have to set 'end' |
| 366 | * to the highest possible pgoff_t and since the type is |
| 367 | * unsigned we're using -1. |
| 368 | */ |
| 369 | end = -1; |
| 370 | else |
| 371 | end = (lend + 1) >> PAGE_SHIFT; |
| 372 | |
| 373 | folio_batch_init(fbatch: &fbatch); |
| 374 | index = start; |
| 375 | while (index < end && find_lock_entries(mapping, start: &index, end: end - 1, |
| 376 | fbatch: &fbatch, indices)) { |
| 377 | truncate_folio_batch_exceptionals(mapping, fbatch: &fbatch, indices); |
| 378 | for (i = 0; i < folio_batch_count(fbatch: &fbatch); i++) |
| 379 | truncate_cleanup_folio(folio: fbatch.folios[i]); |
| 380 | delete_from_page_cache_batch(mapping, fbatch: &fbatch); |
| 381 | for (i = 0; i < folio_batch_count(fbatch: &fbatch); i++) |
| 382 | folio_unlock(folio: fbatch.folios[i]); |
| 383 | folio_batch_release(fbatch: &fbatch); |
| 384 | cond_resched(); |
| 385 | } |
| 386 | |
| 387 | same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); |
| 388 | folio = __filemap_get_folio(mapping, index: lstart >> PAGE_SHIFT, FGP_LOCK, gfp: 0); |
| 389 | if (!IS_ERR(ptr: folio)) { |
| 390 | same_folio = lend < folio_pos(folio) + folio_size(folio); |
| 391 | if (!truncate_inode_partial_folio(folio, start: lstart, end: lend)) { |
| 392 | start = folio_next_index(folio); |
| 393 | if (same_folio) |
| 394 | end = folio->index; |
| 395 | } |
| 396 | folio_unlock(folio); |
| 397 | folio_put(folio); |
| 398 | folio = NULL; |
| 399 | } |
| 400 | |
| 401 | if (!same_folio) { |
| 402 | folio = __filemap_get_folio(mapping, index: lend >> PAGE_SHIFT, |
| 403 | FGP_LOCK, gfp: 0); |
| 404 | if (!IS_ERR(ptr: folio)) { |
| 405 | if (!truncate_inode_partial_folio(folio, start: lstart, end: lend)) |
| 406 | end = folio->index; |
| 407 | folio_unlock(folio); |
| 408 | folio_put(folio); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | index = start; |
| 413 | while (index < end) { |
| 414 | cond_resched(); |
| 415 | if (!find_get_entries(mapping, start: &index, end: end - 1, fbatch: &fbatch, |
| 416 | indices)) { |
| 417 | /* If all gone from start onwards, we're done */ |
| 418 | if (index == start) |
| 419 | break; |
| 420 | /* Otherwise restart to make sure all gone */ |
| 421 | index = start; |
| 422 | continue; |
| 423 | } |
| 424 | |
| 425 | for (i = 0; i < folio_batch_count(fbatch: &fbatch); i++) { |
| 426 | struct folio *folio = fbatch.folios[i]; |
| 427 | |
| 428 | /* We rely upon deletion not changing folio->index */ |
| 429 | |
| 430 | if (xa_is_value(entry: folio)) |
| 431 | continue; |
| 432 | |
| 433 | folio_lock(folio); |
| 434 | VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); |
| 435 | folio_wait_writeback(folio); |
| 436 | truncate_inode_folio(mapping, folio); |
| 437 | folio_unlock(folio); |
| 438 | } |
| 439 | truncate_folio_batch_exceptionals(mapping, fbatch: &fbatch, indices); |
| 440 | folio_batch_release(fbatch: &fbatch); |
| 441 | } |
| 442 | } |
| 443 | EXPORT_SYMBOL(truncate_inode_pages_range); |
| 444 | |
| 445 | /** |
| 446 | * truncate_inode_pages - truncate *all* the pages from an offset |
| 447 | * @mapping: mapping to truncate |
| 448 | * @lstart: offset from which to truncate |
| 449 | * |
| 450 | * Called under (and serialised by) inode->i_rwsem and |
| 451 | * mapping->invalidate_lock. |
| 452 | * |
| 453 | * Note: When this function returns, there can be a page in the process of |
| 454 | * deletion (inside __filemap_remove_folio()) in the specified range. Thus |
| 455 | * mapping->nrpages can be non-zero when this function returns even after |
| 456 | * truncation of the whole mapping. |
| 457 | */ |
| 458 | void truncate_inode_pages(struct address_space *mapping, loff_t lstart) |
| 459 | { |
| 460 | truncate_inode_pages_range(mapping, lstart, (loff_t)-1); |
| 461 | } |
| 462 | EXPORT_SYMBOL(truncate_inode_pages); |
| 463 | |
| 464 | /** |
| 465 | * truncate_inode_pages_final - truncate *all* pages before inode dies |
| 466 | * @mapping: mapping to truncate |
| 467 | * |
| 468 | * Called under (and serialized by) inode->i_rwsem. |
| 469 | * |
| 470 | * Filesystems have to use this in the .evict_inode path to inform the |
| 471 | * VM that this is the final truncate and the inode is going away. |
| 472 | */ |
| 473 | void truncate_inode_pages_final(struct address_space *mapping) |
| 474 | { |
| 475 | /* |
| 476 | * Page reclaim can not participate in regular inode lifetime |
| 477 | * management (can't call iput()) and thus can race with the |
| 478 | * inode teardown. Tell it when the address space is exiting, |
| 479 | * so that it does not install eviction information after the |
| 480 | * final truncate has begun. |
| 481 | */ |
| 482 | mapping_set_exiting(mapping); |
| 483 | |
| 484 | if (!mapping_empty(mapping)) { |
| 485 | /* |
| 486 | * As truncation uses a lockless tree lookup, cycle |
| 487 | * the tree lock to make sure any ongoing tree |
| 488 | * modification that does not see AS_EXITING is |
| 489 | * completed before starting the final truncate. |
| 490 | */ |
| 491 | xa_lock_irq(&mapping->i_pages); |
| 492 | xa_unlock_irq(&mapping->i_pages); |
| 493 | } |
| 494 | |
| 495 | truncate_inode_pages(mapping, 0); |
| 496 | } |
| 497 | EXPORT_SYMBOL(truncate_inode_pages_final); |
| 498 | |
| 499 | /** |
| 500 | * mapping_try_invalidate - Invalidate all the evictable folios of one inode |
| 501 | * @mapping: the address_space which holds the folios to invalidate |
| 502 | * @start: the offset 'from' which to invalidate |
| 503 | * @end: the offset 'to' which to invalidate (inclusive) |
| 504 | * @nr_failed: How many folio invalidations failed |
| 505 | * |
| 506 | * This function is similar to invalidate_mapping_pages(), except that it |
| 507 | * returns the number of folios which could not be evicted in @nr_failed. |
| 508 | */ |
| 509 | unsigned long mapping_try_invalidate(struct address_space *mapping, |
| 510 | pgoff_t start, pgoff_t end, unsigned long *nr_failed) |
| 511 | { |
| 512 | pgoff_t indices[PAGEVEC_SIZE]; |
| 513 | struct folio_batch fbatch; |
| 514 | pgoff_t index = start; |
| 515 | unsigned long ret; |
| 516 | unsigned long count = 0; |
| 517 | int i; |
| 518 | |
| 519 | folio_batch_init(fbatch: &fbatch); |
| 520 | while (find_lock_entries(mapping, start: &index, end, fbatch: &fbatch, indices)) { |
| 521 | bool xa_has_values = false; |
| 522 | int nr = folio_batch_count(fbatch: &fbatch); |
| 523 | |
| 524 | for (i = 0; i < nr; i++) { |
| 525 | struct folio *folio = fbatch.folios[i]; |
| 526 | |
| 527 | /* We rely upon deletion not changing folio->index */ |
| 528 | |
| 529 | if (xa_is_value(entry: folio)) { |
| 530 | xa_has_values = true; |
| 531 | count++; |
| 532 | continue; |
| 533 | } |
| 534 | |
| 535 | ret = mapping_evict_folio(mapping, folio); |
| 536 | folio_unlock(folio); |
| 537 | /* |
| 538 | * Invalidation is a hint that the folio is no longer |
| 539 | * of interest and try to speed up its reclaim. |
| 540 | */ |
| 541 | if (!ret) { |
| 542 | deactivate_file_folio(folio); |
| 543 | /* Likely in the lru cache of a remote CPU */ |
| 544 | if (nr_failed) |
| 545 | (*nr_failed)++; |
| 546 | } |
| 547 | count += ret; |
| 548 | } |
| 549 | |
| 550 | if (xa_has_values) |
| 551 | clear_shadow_entries(mapping, start: indices[0], max: indices[nr-1]); |
| 552 | |
| 553 | folio_batch_remove_exceptionals(fbatch: &fbatch); |
| 554 | folio_batch_release(fbatch: &fbatch); |
| 555 | cond_resched(); |
| 556 | } |
| 557 | return count; |
| 558 | } |
| 559 | |
| 560 | /** |
| 561 | * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode |
| 562 | * @mapping: the address_space which holds the cache to invalidate |
| 563 | * @start: the offset 'from' which to invalidate |
| 564 | * @end: the offset 'to' which to invalidate (inclusive) |
| 565 | * |
| 566 | * This function removes pages that are clean, unmapped and unlocked, |
| 567 | * as well as shadow entries. It will not block on IO activity. |
| 568 | * |
| 569 | * If you want to remove all the pages of one inode, regardless of |
| 570 | * their use and writeback state, use truncate_inode_pages(). |
| 571 | * |
| 572 | * Return: The number of indices that had their contents invalidated |
| 573 | */ |
| 574 | unsigned long invalidate_mapping_pages(struct address_space *mapping, |
| 575 | pgoff_t start, pgoff_t end) |
| 576 | { |
| 577 | return mapping_try_invalidate(mapping, start, end, NULL); |
| 578 | } |
| 579 | EXPORT_SYMBOL(invalidate_mapping_pages); |
| 580 | |
| 581 | static int folio_launder(struct address_space *mapping, struct folio *folio) |
| 582 | { |
| 583 | if (!folio_test_dirty(folio)) |
| 584 | return 0; |
| 585 | if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) |
| 586 | return 0; |
| 587 | return mapping->a_ops->launder_folio(folio); |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * This is like mapping_evict_folio(), except it ignores the folio's |
| 592 | * refcount. We do this because invalidate_inode_pages2() needs stronger |
| 593 | * invalidation guarantees, and cannot afford to leave folios behind because |
| 594 | * shrink_folio_list() has a temp ref on them, or because they're transiently |
| 595 | * sitting in the folio_add_lru() caches. |
| 596 | */ |
| 597 | int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio, |
| 598 | gfp_t gfp) |
| 599 | { |
| 600 | int ret; |
| 601 | |
| 602 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
| 603 | |
| 604 | if (folio_mapped(folio)) |
| 605 | unmap_mapping_folio(folio); |
| 606 | BUG_ON(folio_mapped(folio)); |
| 607 | |
| 608 | ret = folio_launder(mapping, folio); |
| 609 | if (ret) |
| 610 | return ret; |
| 611 | if (folio->mapping != mapping) |
| 612 | return -EBUSY; |
| 613 | if (!filemap_release_folio(folio, gfp)) |
| 614 | return -EBUSY; |
| 615 | |
| 616 | spin_lock(lock: &mapping->host->i_lock); |
| 617 | xa_lock_irq(&mapping->i_pages); |
| 618 | if (folio_test_dirty(folio)) |
| 619 | goto failed; |
| 620 | |
| 621 | BUG_ON(folio_has_private(folio)); |
| 622 | __filemap_remove_folio(folio, NULL); |
| 623 | xa_unlock_irq(&mapping->i_pages); |
| 624 | if (mapping_shrinkable(mapping)) |
| 625 | inode_add_lru(inode: mapping->host); |
| 626 | spin_unlock(lock: &mapping->host->i_lock); |
| 627 | |
| 628 | filemap_free_folio(mapping, folio); |
| 629 | return 1; |
| 630 | failed: |
| 631 | xa_unlock_irq(&mapping->i_pages); |
| 632 | spin_unlock(lock: &mapping->host->i_lock); |
| 633 | return -EBUSY; |
| 634 | } |
| 635 | |
| 636 | /** |
| 637 | * invalidate_inode_pages2_range - remove range of pages from an address_space |
| 638 | * @mapping: the address_space |
| 639 | * @start: the page offset 'from' which to invalidate |
| 640 | * @end: the page offset 'to' which to invalidate (inclusive) |
| 641 | * |
| 642 | * Any pages which are found to be mapped into pagetables are unmapped prior to |
| 643 | * invalidation. |
| 644 | * |
| 645 | * Return: -EBUSY if any pages could not be invalidated. |
| 646 | */ |
| 647 | int invalidate_inode_pages2_range(struct address_space *mapping, |
| 648 | pgoff_t start, pgoff_t end) |
| 649 | { |
| 650 | pgoff_t indices[PAGEVEC_SIZE]; |
| 651 | struct folio_batch fbatch; |
| 652 | pgoff_t index; |
| 653 | int i; |
| 654 | int ret = 0; |
| 655 | int ret2 = 0; |
| 656 | int did_range_unmap = 0; |
| 657 | |
| 658 | if (mapping_empty(mapping)) |
| 659 | return 0; |
| 660 | |
| 661 | folio_batch_init(fbatch: &fbatch); |
| 662 | index = start; |
| 663 | while (find_get_entries(mapping, start: &index, end, fbatch: &fbatch, indices)) { |
| 664 | bool xa_has_values = false; |
| 665 | int nr = folio_batch_count(fbatch: &fbatch); |
| 666 | |
| 667 | for (i = 0; i < nr; i++) { |
| 668 | struct folio *folio = fbatch.folios[i]; |
| 669 | |
| 670 | /* We rely upon deletion not changing folio->index */ |
| 671 | |
| 672 | if (xa_is_value(entry: folio)) { |
| 673 | xa_has_values = true; |
| 674 | if (dax_mapping(mapping) && |
| 675 | !dax_invalidate_mapping_entry_sync(mapping, index: indices[i])) |
| 676 | ret = -EBUSY; |
| 677 | continue; |
| 678 | } |
| 679 | |
| 680 | if (!did_range_unmap && folio_mapped(folio)) { |
| 681 | /* |
| 682 | * If folio is mapped, before taking its lock, |
| 683 | * zap the rest of the file in one hit. |
| 684 | */ |
| 685 | unmap_mapping_pages(mapping, start: indices[i], |
| 686 | nr: (1 + end - indices[i]), even_cows: false); |
| 687 | did_range_unmap = 1; |
| 688 | } |
| 689 | |
| 690 | folio_lock(folio); |
| 691 | if (unlikely(folio->mapping != mapping)) { |
| 692 | folio_unlock(folio); |
| 693 | continue; |
| 694 | } |
| 695 | VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); |
| 696 | folio_wait_writeback(folio); |
| 697 | ret2 = folio_unmap_invalidate(mapping, folio, GFP_KERNEL); |
| 698 | if (ret2 < 0) |
| 699 | ret = ret2; |
| 700 | folio_unlock(folio); |
| 701 | } |
| 702 | |
| 703 | if (xa_has_values) |
| 704 | clear_shadow_entries(mapping, start: indices[0], max: indices[nr-1]); |
| 705 | |
| 706 | folio_batch_remove_exceptionals(fbatch: &fbatch); |
| 707 | folio_batch_release(fbatch: &fbatch); |
| 708 | cond_resched(); |
| 709 | } |
| 710 | /* |
| 711 | * For DAX we invalidate page tables after invalidating page cache. We |
| 712 | * could invalidate page tables while invalidating each entry however |
| 713 | * that would be expensive. And doing range unmapping before doesn't |
| 714 | * work as we have no cheap way to find whether page cache entry didn't |
| 715 | * get remapped later. |
| 716 | */ |
| 717 | if (dax_mapping(mapping)) { |
| 718 | unmap_mapping_pages(mapping, start, nr: end - start + 1, even_cows: false); |
| 719 | } |
| 720 | return ret; |
| 721 | } |
| 722 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); |
| 723 | |
| 724 | /** |
| 725 | * invalidate_inode_pages2 - remove all pages from an address_space |
| 726 | * @mapping: the address_space |
| 727 | * |
| 728 | * Any pages which are found to be mapped into pagetables are unmapped prior to |
| 729 | * invalidation. |
| 730 | * |
| 731 | * Return: -EBUSY if any pages could not be invalidated. |
| 732 | */ |
| 733 | int invalidate_inode_pages2(struct address_space *mapping) |
| 734 | { |
| 735 | return invalidate_inode_pages2_range(mapping, 0, -1); |
| 736 | } |
| 737 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2); |
| 738 | |
| 739 | /** |
| 740 | * truncate_pagecache - unmap and remove pagecache that has been truncated |
| 741 | * @inode: inode |
| 742 | * @newsize: new file size |
| 743 | * |
| 744 | * inode's new i_size must already be written before truncate_pagecache |
| 745 | * is called. |
| 746 | * |
| 747 | * This function should typically be called before the filesystem |
| 748 | * releases resources associated with the freed range (eg. deallocates |
| 749 | * blocks). This way, pagecache will always stay logically coherent |
| 750 | * with on-disk format, and the filesystem would not have to deal with |
| 751 | * situations such as writepage being called for a page that has already |
| 752 | * had its underlying blocks deallocated. |
| 753 | */ |
| 754 | void truncate_pagecache(struct inode *inode, loff_t newsize) |
| 755 | { |
| 756 | struct address_space *mapping = inode->i_mapping; |
| 757 | loff_t holebegin = round_up(newsize, PAGE_SIZE); |
| 758 | |
| 759 | /* |
| 760 | * unmap_mapping_range is called twice, first simply for |
| 761 | * efficiency so that truncate_inode_pages does fewer |
| 762 | * single-page unmaps. However after this first call, and |
| 763 | * before truncate_inode_pages finishes, it is possible for |
| 764 | * private pages to be COWed, which remain after |
| 765 | * truncate_inode_pages finishes, hence the second |
| 766 | * unmap_mapping_range call must be made for correctness. |
| 767 | */ |
| 768 | unmap_mapping_range(mapping, holebegin, holelen: 0, even_cows: 1); |
| 769 | truncate_inode_pages(mapping, newsize); |
| 770 | unmap_mapping_range(mapping, holebegin, holelen: 0, even_cows: 1); |
| 771 | } |
| 772 | EXPORT_SYMBOL(truncate_pagecache); |
| 773 | |
| 774 | /** |
| 775 | * truncate_setsize - update inode and pagecache for a new file size |
| 776 | * @inode: inode |
| 777 | * @newsize: new file size |
| 778 | * |
| 779 | * truncate_setsize updates i_size and performs pagecache truncation (if |
| 780 | * necessary) to @newsize. It will be typically be called from the filesystem's |
| 781 | * setattr function when ATTR_SIZE is passed in. |
| 782 | * |
| 783 | * Must be called with a lock serializing truncates and writes (generally |
| 784 | * i_rwsem but e.g. xfs uses a different lock) and before all filesystem |
| 785 | * specific block truncation has been performed. |
| 786 | */ |
| 787 | void truncate_setsize(struct inode *inode, loff_t newsize) |
| 788 | { |
| 789 | loff_t oldsize = inode->i_size; |
| 790 | |
| 791 | i_size_write(inode, i_size: newsize); |
| 792 | if (newsize > oldsize) |
| 793 | pagecache_isize_extended(inode, from: oldsize, to: newsize); |
| 794 | truncate_pagecache(inode, newsize); |
| 795 | } |
| 796 | EXPORT_SYMBOL(truncate_setsize); |
| 797 | |
| 798 | /** |
| 799 | * pagecache_isize_extended - update pagecache after extension of i_size |
| 800 | * @inode: inode for which i_size was extended |
| 801 | * @from: original inode size |
| 802 | * @to: new inode size |
| 803 | * |
| 804 | * Handle extension of inode size either caused by extending truncate or |
| 805 | * by write starting after current i_size. We mark the page straddling |
| 806 | * current i_size RO so that page_mkwrite() is called on the first |
| 807 | * write access to the page. The filesystem will update its per-block |
| 808 | * information before user writes to the page via mmap after the i_size |
| 809 | * has been changed. |
| 810 | * |
| 811 | * The function must be called after i_size is updated so that page fault |
| 812 | * coming after we unlock the folio will already see the new i_size. |
| 813 | * The function must be called while we still hold i_rwsem - this not only |
| 814 | * makes sure i_size is stable but also that userspace cannot observe new |
| 815 | * i_size value before we are prepared to store mmap writes at new inode size. |
| 816 | */ |
| 817 | void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) |
| 818 | { |
| 819 | int bsize = i_blocksize(node: inode); |
| 820 | loff_t rounded_from; |
| 821 | struct folio *folio; |
| 822 | |
| 823 | WARN_ON(to > inode->i_size); |
| 824 | |
| 825 | if (from >= to || bsize >= PAGE_SIZE) |
| 826 | return; |
| 827 | /* Page straddling @from will not have any hole block created? */ |
| 828 | rounded_from = round_up(from, bsize); |
| 829 | if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) |
| 830 | return; |
| 831 | |
| 832 | folio = filemap_lock_folio(mapping: inode->i_mapping, index: from / PAGE_SIZE); |
| 833 | /* Folio not cached? Nothing to do */ |
| 834 | if (IS_ERR(ptr: folio)) |
| 835 | return; |
| 836 | /* |
| 837 | * See folio_clear_dirty_for_io() for details why folio_mark_dirty() |
| 838 | * is needed. |
| 839 | */ |
| 840 | if (folio_mkclean(folio)) |
| 841 | folio_mark_dirty(folio); |
| 842 | |
| 843 | /* |
| 844 | * The post-eof range of the folio must be zeroed before it is exposed |
| 845 | * to the file. Writeback normally does this, but since i_size has been |
| 846 | * increased we handle it here. |
| 847 | */ |
| 848 | if (folio_test_dirty(folio)) { |
| 849 | unsigned int offset, end; |
| 850 | |
| 851 | offset = from - folio_pos(folio); |
| 852 | end = min_t(unsigned int, to - folio_pos(folio), |
| 853 | folio_size(folio)); |
| 854 | folio_zero_segment(folio, start: offset, xend: end); |
| 855 | } |
| 856 | |
| 857 | folio_unlock(folio); |
| 858 | folio_put(folio); |
| 859 | } |
| 860 | EXPORT_SYMBOL(pagecache_isize_extended); |
| 861 | |
| 862 | /** |
| 863 | * truncate_pagecache_range - unmap and remove pagecache that is hole-punched |
| 864 | * @inode: inode |
| 865 | * @lstart: offset of beginning of hole |
| 866 | * @lend: offset of last byte of hole |
| 867 | * |
| 868 | * This function should typically be called before the filesystem |
| 869 | * releases resources associated with the freed range (eg. deallocates |
| 870 | * blocks). This way, pagecache will always stay logically coherent |
| 871 | * with on-disk format, and the filesystem would not have to deal with |
| 872 | * situations such as writepage being called for a page that has already |
| 873 | * had its underlying blocks deallocated. |
| 874 | */ |
| 875 | void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) |
| 876 | { |
| 877 | struct address_space *mapping = inode->i_mapping; |
| 878 | loff_t unmap_start = round_up(lstart, PAGE_SIZE); |
| 879 | loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; |
| 880 | /* |
| 881 | * This rounding is currently just for example: unmap_mapping_range |
| 882 | * expands its hole outwards, whereas we want it to contract the hole |
| 883 | * inwards. However, existing callers of truncate_pagecache_range are |
| 884 | * doing their own page rounding first. Note that unmap_mapping_range |
| 885 | * allows holelen 0 for all, and we allow lend -1 for end of file. |
| 886 | */ |
| 887 | |
| 888 | /* |
| 889 | * Unlike in truncate_pagecache, unmap_mapping_range is called only |
| 890 | * once (before truncating pagecache), and without "even_cows" flag: |
| 891 | * hole-punching should not remove private COWed pages from the hole. |
| 892 | */ |
| 893 | if ((u64)unmap_end > (u64)unmap_start) |
| 894 | unmap_mapping_range(mapping, holebegin: unmap_start, |
| 895 | holelen: 1 + unmap_end - unmap_start, even_cows: 0); |
| 896 | truncate_inode_pages_range(mapping, lstart, lend); |
| 897 | } |
| 898 | EXPORT_SYMBOL(truncate_pagecache_range); |
| 899 | |