1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2025 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/device/faux.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <linux/units.h>
61
62#include <net/cfg80211.h>
63#include "core.h"
64#include "reg.h"
65#include "rdev-ops.h"
66#include "nl80211.h"
67
68/*
69 * Grace period we give before making sure all current interfaces reside on
70 * channels allowed by the current regulatory domain.
71 */
72#define REG_ENFORCE_GRACE_MS 60000
73
74/**
75 * enum reg_request_treatment - regulatory request treatment
76 *
77 * @REG_REQ_OK: continue processing the regulatory request
78 * @REG_REQ_IGNORE: ignore the regulatory request
79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80 * be intersected with the current one.
81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82 * regulatory settings, and no further processing is required.
83 */
84enum reg_request_treatment {
85 REG_REQ_OK,
86 REG_REQ_IGNORE,
87 REG_REQ_INTERSECT,
88 REG_REQ_ALREADY_SET,
89};
90
91static struct regulatory_request core_request_world = {
92 .initiator = NL80211_REGDOM_SET_BY_CORE,
93 .alpha2[0] = '0',
94 .alpha2[1] = '0',
95 .intersect = false,
96 .processed = true,
97 .country_ie_env = ENVIRON_ANY,
98};
99
100/*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104static struct regulatory_request __rcu *last_request =
105 (void __force __rcu *)&core_request_world;
106
107/* To trigger userspace events and load firmware */
108static struct faux_device *reg_fdev;
109
110/*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118/*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123static int reg_num_devs_support_basehint;
124
125/*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 */
130static bool reg_is_indoor;
131static DEFINE_SPINLOCK(reg_indoor_lock);
132
133/* Used to track the userspace process controlling the indoor setting */
134static u32 reg_is_indoor_portid;
135
136static void restore_regulatory_settings(bool reset_user, bool cached);
137static void print_regdomain(const struct ieee80211_regdomain *rd);
138static void reg_process_hint(struct regulatory_request *reg_request);
139
140static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141{
142 return rcu_dereference_rtnl(cfg80211_regdomain);
143}
144
145/*
146 * Returns the regulatory domain associated with the wiphy.
147 *
148 * Requires any of RTNL, wiphy mutex or RCU protection.
149 */
150const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151{
152 return rcu_dereference_check(wiphy->regd,
153 lockdep_is_held(&wiphy->mtx) ||
154 lockdep_rtnl_is_held());
155}
156EXPORT_SYMBOL(get_wiphy_regdom);
157
158static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159{
160 switch (dfs_region) {
161 case NL80211_DFS_UNSET:
162 return "unset";
163 case NL80211_DFS_FCC:
164 return "FCC";
165 case NL80211_DFS_ETSI:
166 return "ETSI";
167 case NL80211_DFS_JP:
168 return "JP";
169 }
170 return "Unknown";
171}
172
173enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174{
175 const struct ieee80211_regdomain *regd = NULL;
176 const struct ieee80211_regdomain *wiphy_regd = NULL;
177 enum nl80211_dfs_regions dfs_region;
178
179 rcu_read_lock();
180 regd = get_cfg80211_regdom();
181 dfs_region = regd->dfs_region;
182
183 if (!wiphy)
184 goto out;
185
186 wiphy_regd = get_wiphy_regdom(wiphy);
187 if (!wiphy_regd)
188 goto out;
189
190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191 dfs_region = wiphy_regd->dfs_region;
192 goto out;
193 }
194
195 if (wiphy_regd->dfs_region == regd->dfs_region)
196 goto out;
197
198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 dev_name(&wiphy->dev),
200 reg_dfs_region_str(wiphy_regd->dfs_region),
201 reg_dfs_region_str(regd->dfs_region));
202
203out:
204 rcu_read_unlock();
205
206 return dfs_region;
207}
208
209static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210{
211 if (!r)
212 return;
213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214}
215
216static struct regulatory_request *get_last_request(void)
217{
218 return rcu_dereference_rtnl(last_request);
219}
220
221/* Used to queue up regulatory hints */
222static LIST_HEAD(reg_requests_list);
223static DEFINE_SPINLOCK(reg_requests_lock);
224
225/* Used to queue up beacon hints for review */
226static LIST_HEAD(reg_pending_beacons);
227static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228
229/* Used to keep track of processed beacon hints */
230static LIST_HEAD(reg_beacon_list);
231
232struct reg_beacon {
233 struct list_head list;
234 struct ieee80211_channel chan;
235};
236
237static void reg_check_chans_work(struct work_struct *work);
238static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239
240static void reg_todo(struct work_struct *work);
241static DECLARE_WORK(reg_work, reg_todo);
242
243/* We keep a static world regulatory domain in case of the absence of CRDA */
244static const struct ieee80211_regdomain world_regdom = {
245 .n_reg_rules = 8,
246 .alpha2 = "00",
247 .reg_rules = {
248 /* IEEE 802.11b/g, channels 1..11 */
249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 /* IEEE 802.11b/g, channels 12..13. */
251 REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253 /* IEEE 802.11 channel 14 - Only JP enables
254 * this and for 802.11b only */
255 REG_RULE(2484-10, 2484+10, 20, 6, 20,
256 NL80211_RRF_NO_IR |
257 NL80211_RRF_NO_OFDM),
258 /* IEEE 802.11a, channel 36..48 */
259 REG_RULE(5180-10, 5240+10, 80, 6, 20,
260 NL80211_RRF_NO_IR |
261 NL80211_RRF_AUTO_BW),
262
263 /* IEEE 802.11a, channel 52..64 - DFS required */
264 REG_RULE(5260-10, 5320+10, 80, 6, 20,
265 NL80211_RRF_NO_IR |
266 NL80211_RRF_AUTO_BW |
267 NL80211_RRF_DFS),
268
269 /* IEEE 802.11a, channel 100..144 - DFS required */
270 REG_RULE(5500-10, 5720+10, 160, 6, 20,
271 NL80211_RRF_NO_IR |
272 NL80211_RRF_DFS),
273
274 /* IEEE 802.11a, channel 149..165 */
275 REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 NL80211_RRF_NO_IR),
277
278 /* IEEE 802.11ad (60GHz), channels 1..3 */
279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280 }
281};
282
283/* protected by RTNL */
284static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 &world_regdom;
286
287static char *ieee80211_regdom = "00";
288static char user_alpha2[2];
289static const struct ieee80211_regdomain *cfg80211_user_regdom;
290
291module_param(ieee80211_regdom, charp, 0444);
292MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293
294static void reg_free_request(struct regulatory_request *request)
295{
296 if (request == &core_request_world)
297 return;
298
299 if (request != get_last_request())
300 kfree(objp: request);
301}
302
303static void reg_free_last_request(void)
304{
305 struct regulatory_request *lr = get_last_request();
306
307 if (lr != &core_request_world && lr)
308 kfree_rcu(lr, rcu_head);
309}
310
311static void reg_update_last_request(struct regulatory_request *request)
312{
313 struct regulatory_request *lr;
314
315 lr = get_last_request();
316 if (lr == request)
317 return;
318
319 reg_free_last_request();
320 rcu_assign_pointer(last_request, request);
321}
322
323static void reset_regdomains(bool full_reset,
324 const struct ieee80211_regdomain *new_regdom)
325{
326 const struct ieee80211_regdomain *r;
327
328 ASSERT_RTNL();
329
330 r = get_cfg80211_regdom();
331
332 /* avoid freeing static information or freeing something twice */
333 if (r == cfg80211_world_regdom)
334 r = NULL;
335 if (cfg80211_world_regdom == &world_regdom)
336 cfg80211_world_regdom = NULL;
337 if (r == &world_regdom)
338 r = NULL;
339
340 rcu_free_regdom(r);
341 rcu_free_regdom(r: cfg80211_world_regdom);
342
343 cfg80211_world_regdom = &world_regdom;
344 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345
346 if (!full_reset)
347 return;
348
349 reg_update_last_request(request: &core_request_world);
350}
351
352/*
353 * Dynamic world regulatory domain requested by the wireless
354 * core upon initialization
355 */
356static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357{
358 struct regulatory_request *lr;
359
360 lr = get_last_request();
361
362 WARN_ON(!lr);
363
364 reset_regdomains(full_reset: false, new_regdom: rd);
365
366 cfg80211_world_regdom = rd;
367}
368
369bool is_world_regdom(const char *alpha2)
370{
371 if (!alpha2)
372 return false;
373 return alpha2[0] == '0' && alpha2[1] == '0';
374}
375
376static bool is_alpha2_set(const char *alpha2)
377{
378 if (!alpha2)
379 return false;
380 return alpha2[0] && alpha2[1];
381}
382
383static bool is_unknown_alpha2(const char *alpha2)
384{
385 if (!alpha2)
386 return false;
387 /*
388 * Special case where regulatory domain was built by driver
389 * but a specific alpha2 cannot be determined
390 */
391 return alpha2[0] == '9' && alpha2[1] == '9';
392}
393
394static bool is_intersected_alpha2(const char *alpha2)
395{
396 if (!alpha2)
397 return false;
398 /*
399 * Special case where regulatory domain is the
400 * result of an intersection between two regulatory domain
401 * structures
402 */
403 return alpha2[0] == '9' && alpha2[1] == '8';
404}
405
406static bool is_an_alpha2(const char *alpha2)
407{
408 if (!alpha2)
409 return false;
410 return isascii(alpha2[0]) && isalpha(alpha2[0]) &&
411 isascii(alpha2[1]) && isalpha(alpha2[1]);
412}
413
414static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
415{
416 if (!alpha2_x || !alpha2_y)
417 return false;
418 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
419}
420
421static bool regdom_changes(const char *alpha2)
422{
423 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
424
425 if (!r)
426 return true;
427 return !alpha2_equal(alpha2_x: r->alpha2, alpha2_y: alpha2);
428}
429
430/*
431 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
432 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
433 * has ever been issued.
434 */
435static bool is_user_regdom_saved(void)
436{
437 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
438 return false;
439
440 /* This would indicate a mistake on the design */
441 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
442 "Unexpected user alpha2: %c%c\n",
443 user_alpha2[0], user_alpha2[1]))
444 return false;
445
446 return true;
447}
448
449static const struct ieee80211_regdomain *
450reg_copy_regd(const struct ieee80211_regdomain *src_regd)
451{
452 struct ieee80211_regdomain *regd;
453 unsigned int i;
454
455 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
456 GFP_KERNEL);
457 if (!regd)
458 return ERR_PTR(error: -ENOMEM);
459
460 memcpy(to: regd, from: src_regd, len: sizeof(struct ieee80211_regdomain));
461
462 for (i = 0; i < src_regd->n_reg_rules; i++)
463 memcpy(to: &regd->reg_rules[i], from: &src_regd->reg_rules[i],
464 len: sizeof(struct ieee80211_reg_rule));
465
466 return regd;
467}
468
469static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
470{
471 ASSERT_RTNL();
472
473 if (!IS_ERR(ptr: cfg80211_user_regdom))
474 kfree(objp: cfg80211_user_regdom);
475 cfg80211_user_regdom = reg_copy_regd(src_regd: rd);
476}
477
478struct reg_regdb_apply_request {
479 struct list_head list;
480 const struct ieee80211_regdomain *regdom;
481};
482
483static LIST_HEAD(reg_regdb_apply_list);
484static DEFINE_MUTEX(reg_regdb_apply_mutex);
485
486static void reg_regdb_apply(struct work_struct *work)
487{
488 struct reg_regdb_apply_request *request;
489
490 rtnl_lock();
491
492 mutex_lock(lock: &reg_regdb_apply_mutex);
493 while (!list_empty(head: &reg_regdb_apply_list)) {
494 request = list_first_entry(&reg_regdb_apply_list,
495 struct reg_regdb_apply_request,
496 list);
497 list_del(entry: &request->list);
498
499 set_regdom(rd: request->regdom, regd_src: REGD_SOURCE_INTERNAL_DB);
500 kfree(objp: request);
501 }
502 mutex_unlock(lock: &reg_regdb_apply_mutex);
503
504 rtnl_unlock();
505}
506
507static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
508
509static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
510{
511 struct reg_regdb_apply_request *request;
512
513 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
514 if (!request) {
515 kfree(objp: regdom);
516 return -ENOMEM;
517 }
518
519 request->regdom = regdom;
520
521 mutex_lock(lock: &reg_regdb_apply_mutex);
522 list_add_tail(new: &request->list, head: &reg_regdb_apply_list);
523 mutex_unlock(lock: &reg_regdb_apply_mutex);
524
525 schedule_work(work: &reg_regdb_work);
526 return 0;
527}
528
529#ifdef CONFIG_CFG80211_CRDA_SUPPORT
530/* Max number of consecutive attempts to communicate with CRDA */
531#define REG_MAX_CRDA_TIMEOUTS 10
532
533static u32 reg_crda_timeouts;
534
535static void crda_timeout_work(struct work_struct *work);
536static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
537
538static void crda_timeout_work(struct work_struct *work)
539{
540 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
541 rtnl_lock();
542 reg_crda_timeouts++;
543 restore_regulatory_settings(reset_user: true, cached: false);
544 rtnl_unlock();
545}
546
547static void cancel_crda_timeout(void)
548{
549 cancel_delayed_work(dwork: &crda_timeout);
550}
551
552static void cancel_crda_timeout_sync(void)
553{
554 cancel_delayed_work_sync(dwork: &crda_timeout);
555}
556
557static void reset_crda_timeouts(void)
558{
559 reg_crda_timeouts = 0;
560}
561
562/*
563 * This lets us keep regulatory code which is updated on a regulatory
564 * basis in userspace.
565 */
566static int call_crda(const char *alpha2)
567{
568 char country[12];
569 char *env[] = { country, NULL };
570 int ret;
571
572 snprintf(buf: country, size: sizeof(country), fmt: "COUNTRY=%c%c",
573 alpha2[0], alpha2[1]);
574
575 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
576 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
577 return -EINVAL;
578 }
579
580 if (!is_world_regdom(alpha2: (char *) alpha2))
581 pr_debug("Calling CRDA for country: %c%c\n",
582 alpha2[0], alpha2[1]);
583 else
584 pr_debug("Calling CRDA to update world regulatory domain\n");
585
586 ret = kobject_uevent_env(kobj: &reg_fdev->dev.kobj, action: KOBJ_CHANGE, envp: env);
587 if (ret)
588 return ret;
589
590 queue_delayed_work(wq: system_power_efficient_wq,
591 dwork: &crda_timeout, delay: msecs_to_jiffies(m: 3142));
592 return 0;
593}
594#else
595static inline void cancel_crda_timeout(void) {}
596static inline void cancel_crda_timeout_sync(void) {}
597static inline void reset_crda_timeouts(void) {}
598static inline int call_crda(const char *alpha2)
599{
600 return -ENODATA;
601}
602#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
603
604/* code to directly load a firmware database through request_firmware */
605static const struct fwdb_header *regdb;
606
607struct fwdb_country {
608 u8 alpha2[2];
609 __be16 coll_ptr;
610 /* this struct cannot be extended */
611} __packed __aligned(4);
612
613struct fwdb_collection {
614 u8 len;
615 u8 n_rules;
616 u8 dfs_region;
617 /* no optional data yet */
618 /* aligned to 2, then followed by __be16 array of rule pointers */
619} __packed __aligned(4);
620
621enum fwdb_flags {
622 FWDB_FLAG_NO_OFDM = BIT(0),
623 FWDB_FLAG_NO_OUTDOOR = BIT(1),
624 FWDB_FLAG_DFS = BIT(2),
625 FWDB_FLAG_NO_IR = BIT(3),
626 FWDB_FLAG_AUTO_BW = BIT(4),
627};
628
629struct fwdb_wmm_ac {
630 u8 ecw;
631 u8 aifsn;
632 __be16 cot;
633} __packed;
634
635struct fwdb_wmm_rule {
636 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
637 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
638} __packed;
639
640struct fwdb_rule {
641 u8 len;
642 u8 flags;
643 __be16 max_eirp;
644 __be32 start, end, max_bw;
645 /* start of optional data */
646 __be16 cac_timeout;
647 __be16 wmm_ptr;
648} __packed __aligned(4);
649
650#define FWDB_MAGIC 0x52474442
651#define FWDB_VERSION 20
652
653struct fwdb_header {
654 __be32 magic;
655 __be32 version;
656 struct fwdb_country country[];
657} __packed __aligned(4);
658
659static int ecw2cw(int ecw)
660{
661 return (1 << ecw) - 1;
662}
663
664static bool valid_wmm(struct fwdb_wmm_rule *rule)
665{
666 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
667 int i;
668
669 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
670 u16 cw_min = ecw2cw(ecw: (ac[i].ecw & 0xf0) >> 4);
671 u16 cw_max = ecw2cw(ecw: ac[i].ecw & 0x0f);
672 u8 aifsn = ac[i].aifsn;
673
674 if (cw_min >= cw_max)
675 return false;
676
677 if (aifsn < 1)
678 return false;
679 }
680
681 return true;
682}
683
684static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
685{
686 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
687
688 if ((u8 *)rule + sizeof(rule->len) > data + size)
689 return false;
690
691 /* mandatory fields */
692 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
693 return false;
694 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
695 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
696 struct fwdb_wmm_rule *wmm;
697
698 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
699 return false;
700
701 wmm = (void *)(data + wmm_ptr);
702
703 if (!valid_wmm(rule: wmm))
704 return false;
705 }
706 return true;
707}
708
709static bool valid_country(const u8 *data, unsigned int size,
710 const struct fwdb_country *country)
711{
712 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
713 struct fwdb_collection *coll = (void *)(data + ptr);
714 __be16 *rules_ptr;
715 unsigned int i;
716
717 /* make sure we can read len/n_rules */
718 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
719 return false;
720
721 /* make sure base struct and all rules fit */
722 if ((u8 *)coll + ALIGN(coll->len, 2) +
723 (coll->n_rules * 2) > data + size)
724 return false;
725
726 /* mandatory fields must exist */
727 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
728 return false;
729
730 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
731
732 for (i = 0; i < coll->n_rules; i++) {
733 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
734
735 if (!valid_rule(data, size, rule_ptr))
736 return false;
737 }
738
739 return true;
740}
741
742#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
743#include <keys/asymmetric-type.h>
744
745static struct key *builtin_regdb_keys;
746
747static int __init load_builtin_regdb_keys(void)
748{
749 builtin_regdb_keys =
750 keyring_alloc(description: ".builtin_regdb_keys",
751 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
752 perm: ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
753 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
754 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
755 if (IS_ERR(builtin_regdb_keys))
756 return PTR_ERR(builtin_regdb_keys);
757
758 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
759
760#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
761 x509_load_certificate_list(shipped_regdb_certs,
762 shipped_regdb_certs_len,
763 builtin_regdb_keys);
764#endif
765#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
766 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
767 x509_load_certificate_list(extra_regdb_certs,
768 extra_regdb_certs_len,
769 builtin_regdb_keys);
770#endif
771
772 return 0;
773}
774
775MODULE_FIRMWARE("regulatory.db.p7s");
776
777static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
778{
779 const struct firmware *sig;
780 bool result;
781
782 if (request_firmware(fw: &sig, name: "regulatory.db.p7s", device: &reg_fdev->dev))
783 return false;
784
785 result = verify_pkcs7_signature(data, len: size, raw_pkcs7: sig->data, pkcs7_len: sig->size,
786 trusted_keys: builtin_regdb_keys,
787 usage: VERIFYING_UNSPECIFIED_SIGNATURE,
788 NULL, NULL) == 0;
789
790 release_firmware(fw: sig);
791
792 return result;
793}
794
795static void free_regdb_keyring(void)
796{
797 key_put(key: builtin_regdb_keys);
798}
799#else
800static int load_builtin_regdb_keys(void)
801{
802 return 0;
803}
804
805static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
806{
807 return true;
808}
809
810static void free_regdb_keyring(void)
811{
812}
813#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
814
815static bool valid_regdb(const u8 *data, unsigned int size)
816{
817 const struct fwdb_header *hdr = (void *)data;
818 const struct fwdb_country *country;
819
820 if (size < sizeof(*hdr))
821 return false;
822
823 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
824 return false;
825
826 if (hdr->version != cpu_to_be32(FWDB_VERSION))
827 return false;
828
829 if (!regdb_has_valid_signature(data, size))
830 return false;
831
832 country = &hdr->country[0];
833 while ((u8 *)(country + 1) <= data + size) {
834 if (!country->coll_ptr)
835 break;
836 if (!valid_country(data, size, country))
837 return false;
838 country++;
839 }
840
841 return true;
842}
843
844static void set_wmm_rule(const struct fwdb_header *db,
845 const struct fwdb_country *country,
846 const struct fwdb_rule *rule,
847 struct ieee80211_reg_rule *rrule)
848{
849 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
850 struct fwdb_wmm_rule *wmm;
851 unsigned int i, wmm_ptr;
852
853 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
854 wmm = (void *)((u8 *)db + wmm_ptr);
855
856 if (!valid_wmm(rule: wmm)) {
857 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
858 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
859 country->alpha2[0], country->alpha2[1]);
860 return;
861 }
862
863 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
864 wmm_rule->client[i].cw_min =
865 ecw2cw(ecw: (wmm->client[i].ecw & 0xf0) >> 4);
866 wmm_rule->client[i].cw_max = ecw2cw(ecw: wmm->client[i].ecw & 0x0f);
867 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
868 wmm_rule->client[i].cot =
869 1000 * be16_to_cpu(wmm->client[i].cot);
870 wmm_rule->ap[i].cw_min = ecw2cw(ecw: (wmm->ap[i].ecw & 0xf0) >> 4);
871 wmm_rule->ap[i].cw_max = ecw2cw(ecw: wmm->ap[i].ecw & 0x0f);
872 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
873 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
874 }
875
876 rrule->has_wmm = true;
877}
878
879static int __regdb_query_wmm(const struct fwdb_header *db,
880 const struct fwdb_country *country, int freq,
881 struct ieee80211_reg_rule *rrule)
882{
883 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
884 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
885 int i;
886
887 for (i = 0; i < coll->n_rules; i++) {
888 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
889 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
890 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
891
892 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
893 continue;
894
895 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
896 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
897 set_wmm_rule(db, country, rule, rrule);
898 return 0;
899 }
900 }
901
902 return -ENODATA;
903}
904
905int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
906{
907 const struct fwdb_header *hdr = regdb;
908 const struct fwdb_country *country;
909
910 if (!regdb)
911 return -ENODATA;
912
913 if (IS_ERR(ptr: regdb))
914 return PTR_ERR(ptr: regdb);
915
916 country = &hdr->country[0];
917 while (country->coll_ptr) {
918 if (alpha2_equal(alpha2_x: alpha2, alpha2_y: country->alpha2))
919 return __regdb_query_wmm(db: regdb, country, freq, rrule: rule);
920
921 country++;
922 }
923
924 return -ENODATA;
925}
926EXPORT_SYMBOL(reg_query_regdb_wmm);
927
928static int regdb_query_country(const struct fwdb_header *db,
929 const struct fwdb_country *country)
930{
931 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
932 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
933 struct ieee80211_regdomain *regdom;
934 unsigned int i;
935
936 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
937 GFP_KERNEL);
938 if (!regdom)
939 return -ENOMEM;
940
941 regdom->n_reg_rules = coll->n_rules;
942 regdom->alpha2[0] = country->alpha2[0];
943 regdom->alpha2[1] = country->alpha2[1];
944 regdom->dfs_region = coll->dfs_region;
945
946 for (i = 0; i < regdom->n_reg_rules; i++) {
947 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
948 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
949 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
950 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
951
952 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
953 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
954 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
955
956 rrule->power_rule.max_antenna_gain = 0;
957 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
958
959 rrule->flags = 0;
960 if (rule->flags & FWDB_FLAG_NO_OFDM)
961 rrule->flags |= NL80211_RRF_NO_OFDM;
962 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
963 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
964 if (rule->flags & FWDB_FLAG_DFS)
965 rrule->flags |= NL80211_RRF_DFS;
966 if (rule->flags & FWDB_FLAG_NO_IR)
967 rrule->flags |= NL80211_RRF_NO_IR;
968 if (rule->flags & FWDB_FLAG_AUTO_BW)
969 rrule->flags |= NL80211_RRF_AUTO_BW;
970
971 rrule->dfs_cac_ms = 0;
972
973 /* handle optional data */
974 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
975 rrule->dfs_cac_ms =
976 1000 * be16_to_cpu(rule->cac_timeout);
977 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
978 set_wmm_rule(db, country, rule, rrule);
979 }
980
981 return reg_schedule_apply(regdom);
982}
983
984static int query_regdb(const char *alpha2)
985{
986 const struct fwdb_header *hdr = regdb;
987 const struct fwdb_country *country;
988
989 ASSERT_RTNL();
990
991 if (IS_ERR(ptr: regdb))
992 return PTR_ERR(ptr: regdb);
993
994 country = &hdr->country[0];
995 while (country->coll_ptr) {
996 if (alpha2_equal(alpha2_x: alpha2, alpha2_y: country->alpha2))
997 return regdb_query_country(db: regdb, country);
998 country++;
999 }
1000
1001 return -ENODATA;
1002}
1003
1004static void regdb_fw_cb(const struct firmware *fw, void *context)
1005{
1006 int set_error = 0;
1007 bool restore = true;
1008 void *db;
1009
1010 if (!fw) {
1011 pr_info("failed to load regulatory.db\n");
1012 set_error = -ENODATA;
1013 } else if (!valid_regdb(data: fw->data, size: fw->size)) {
1014 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1015 set_error = -EINVAL;
1016 }
1017
1018 rtnl_lock();
1019 if (regdb && !IS_ERR(ptr: regdb)) {
1020 /* negative case - a bug
1021 * positive case - can happen due to race in case of multiple cb's in
1022 * queue, due to usage of asynchronous callback
1023 *
1024 * Either case, just restore and free new db.
1025 */
1026 } else if (set_error) {
1027 regdb = ERR_PTR(error: set_error);
1028 } else if (fw) {
1029 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1030 if (db) {
1031 regdb = db;
1032 restore = context && query_regdb(alpha2: context);
1033 } else {
1034 restore = true;
1035 }
1036 }
1037
1038 if (restore)
1039 restore_regulatory_settings(reset_user: true, cached: false);
1040
1041 rtnl_unlock();
1042
1043 kfree(objp: context);
1044
1045 release_firmware(fw);
1046}
1047
1048MODULE_FIRMWARE("regulatory.db");
1049
1050static int query_regdb_file(const char *alpha2)
1051{
1052 int err;
1053
1054 ASSERT_RTNL();
1055
1056 if (regdb)
1057 return query_regdb(alpha2);
1058
1059 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1060 if (!alpha2)
1061 return -ENOMEM;
1062
1063 err = request_firmware_nowait(THIS_MODULE, uevent: true, name: "regulatory.db",
1064 device: &reg_fdev->dev, GFP_KERNEL,
1065 context: (void *)alpha2, cont: regdb_fw_cb);
1066 if (err)
1067 kfree(objp: alpha2);
1068
1069 return err;
1070}
1071
1072int reg_reload_regdb(void)
1073{
1074 const struct firmware *fw;
1075 void *db;
1076 int err;
1077 const struct ieee80211_regdomain *current_regdomain;
1078 struct regulatory_request *request;
1079
1080 err = request_firmware(fw: &fw, name: "regulatory.db", device: &reg_fdev->dev);
1081 if (err)
1082 return err;
1083
1084 if (!valid_regdb(data: fw->data, size: fw->size)) {
1085 err = -ENODATA;
1086 goto out;
1087 }
1088
1089 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1090 if (!db) {
1091 err = -ENOMEM;
1092 goto out;
1093 }
1094
1095 rtnl_lock();
1096 if (!IS_ERR_OR_NULL(ptr: regdb))
1097 kfree(objp: regdb);
1098 regdb = db;
1099
1100 /* reset regulatory domain */
1101 current_regdomain = get_cfg80211_regdom();
1102
1103 request = kzalloc(sizeof(*request), GFP_KERNEL);
1104 if (!request) {
1105 err = -ENOMEM;
1106 goto out_unlock;
1107 }
1108
1109 request->wiphy_idx = WIPHY_IDX_INVALID;
1110 request->alpha2[0] = current_regdomain->alpha2[0];
1111 request->alpha2[1] = current_regdomain->alpha2[1];
1112 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1113 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1114
1115 reg_process_hint(reg_request: request);
1116
1117out_unlock:
1118 rtnl_unlock();
1119 out:
1120 release_firmware(fw);
1121 return err;
1122}
1123
1124static bool reg_query_database(struct regulatory_request *request)
1125{
1126 if (query_regdb_file(alpha2: request->alpha2) == 0)
1127 return true;
1128
1129 if (call_crda(alpha2: request->alpha2) == 0)
1130 return true;
1131
1132 return false;
1133}
1134
1135bool reg_is_valid_request(const char *alpha2)
1136{
1137 struct regulatory_request *lr = get_last_request();
1138
1139 if (!lr || lr->processed)
1140 return false;
1141
1142 return alpha2_equal(alpha2_x: lr->alpha2, alpha2_y: alpha2);
1143}
1144
1145static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1146{
1147 struct regulatory_request *lr = get_last_request();
1148
1149 /*
1150 * Follow the driver's regulatory domain, if present, unless a country
1151 * IE has been processed or a user wants to help compliance further
1152 */
1153 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1154 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1155 wiphy->regd)
1156 return get_wiphy_regdom(wiphy);
1157
1158 return get_cfg80211_regdom();
1159}
1160
1161static unsigned int
1162reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1163 const struct ieee80211_reg_rule *rule)
1164{
1165 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1166 const struct ieee80211_freq_range *freq_range_tmp;
1167 const struct ieee80211_reg_rule *tmp;
1168 u32 start_freq, end_freq, idx, no;
1169
1170 for (idx = 0; idx < rd->n_reg_rules; idx++)
1171 if (rule == &rd->reg_rules[idx])
1172 break;
1173
1174 if (idx == rd->n_reg_rules)
1175 return 0;
1176
1177 /* get start_freq */
1178 no = idx;
1179
1180 while (no) {
1181 tmp = &rd->reg_rules[--no];
1182 freq_range_tmp = &tmp->freq_range;
1183
1184 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1185 break;
1186
1187 freq_range = freq_range_tmp;
1188 }
1189
1190 start_freq = freq_range->start_freq_khz;
1191
1192 /* get end_freq */
1193 freq_range = &rule->freq_range;
1194 no = idx;
1195
1196 while (no < rd->n_reg_rules - 1) {
1197 tmp = &rd->reg_rules[++no];
1198 freq_range_tmp = &tmp->freq_range;
1199
1200 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1201 break;
1202
1203 freq_range = freq_range_tmp;
1204 }
1205
1206 end_freq = freq_range->end_freq_khz;
1207
1208 return end_freq - start_freq;
1209}
1210
1211unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1212 const struct ieee80211_reg_rule *rule)
1213{
1214 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1215
1216 if (rule->flags & NL80211_RRF_NO_320MHZ)
1217 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1218 if (rule->flags & NL80211_RRF_NO_160MHZ)
1219 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1220 if (rule->flags & NL80211_RRF_NO_80MHZ)
1221 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1222
1223 /*
1224 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1225 * are not allowed.
1226 */
1227 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1228 rule->flags & NL80211_RRF_NO_HT40PLUS)
1229 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1230
1231 return bw;
1232}
1233
1234/* Sanity check on a regulatory rule */
1235static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1236{
1237 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1238 u32 freq_diff;
1239
1240 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1241 return false;
1242
1243 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1244 return false;
1245
1246 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1247
1248 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1249 freq_range->max_bandwidth_khz > freq_diff)
1250 return false;
1251
1252 return true;
1253}
1254
1255static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1256{
1257 const struct ieee80211_reg_rule *reg_rule = NULL;
1258 unsigned int i;
1259
1260 if (!rd->n_reg_rules)
1261 return false;
1262
1263 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1264 return false;
1265
1266 for (i = 0; i < rd->n_reg_rules; i++) {
1267 reg_rule = &rd->reg_rules[i];
1268 if (!is_valid_reg_rule(rule: reg_rule))
1269 return false;
1270 }
1271
1272 return true;
1273}
1274
1275/**
1276 * freq_in_rule_band - tells us if a frequency is in a frequency band
1277 * @freq_range: frequency rule we want to query
1278 * @freq_khz: frequency we are inquiring about
1279 *
1280 * This lets us know if a specific frequency rule is or is not relevant to
1281 * a specific frequency's band. Bands are device specific and artificial
1282 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1283 * however it is safe for now to assume that a frequency rule should not be
1284 * part of a frequency's band if the start freq or end freq are off by more
1285 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1286 * 60 GHz band.
1287 * This resolution can be lowered and should be considered as we add
1288 * regulatory rule support for other "bands".
1289 *
1290 * Returns: whether or not the frequency is in the range
1291 */
1292static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1293 u32 freq_khz)
1294{
1295 /*
1296 * From 802.11ad: directional multi-gigabit (DMG):
1297 * Pertaining to operation in a frequency band containing a channel
1298 * with the Channel starting frequency above 45 GHz.
1299 */
1300 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1301 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1302 return true;
1303 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1304 return true;
1305 return false;
1306}
1307
1308/*
1309 * Later on we can perhaps use the more restrictive DFS
1310 * region but we don't have information for that yet so
1311 * for now simply disallow conflicts.
1312 */
1313static enum nl80211_dfs_regions
1314reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1315 const enum nl80211_dfs_regions dfs_region2)
1316{
1317 if (dfs_region1 != dfs_region2)
1318 return NL80211_DFS_UNSET;
1319 return dfs_region1;
1320}
1321
1322static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1323 const struct ieee80211_wmm_ac *wmm_ac2,
1324 struct ieee80211_wmm_ac *intersect)
1325{
1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1330}
1331
1332/*
1333 * Helper for regdom_intersect(), this does the real
1334 * mathematical intersection fun
1335 */
1336static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1337 const struct ieee80211_regdomain *rd2,
1338 const struct ieee80211_reg_rule *rule1,
1339 const struct ieee80211_reg_rule *rule2,
1340 struct ieee80211_reg_rule *intersected_rule)
1341{
1342 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1343 struct ieee80211_freq_range *freq_range;
1344 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1345 struct ieee80211_power_rule *power_rule;
1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1347 struct ieee80211_wmm_rule *wmm_rule;
1348 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1349
1350 freq_range1 = &rule1->freq_range;
1351 freq_range2 = &rule2->freq_range;
1352 freq_range = &intersected_rule->freq_range;
1353
1354 power_rule1 = &rule1->power_rule;
1355 power_rule2 = &rule2->power_rule;
1356 power_rule = &intersected_rule->power_rule;
1357
1358 wmm_rule1 = &rule1->wmm_rule;
1359 wmm_rule2 = &rule2->wmm_rule;
1360 wmm_rule = &intersected_rule->wmm_rule;
1361
1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1363 freq_range2->start_freq_khz);
1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1365 freq_range2->end_freq_khz);
1366
1367 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1368 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1369
1370 if (rule1->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth1 = reg_get_max_bandwidth(rd: rd1, rule: rule1);
1372 if (rule2->flags & NL80211_RRF_AUTO_BW)
1373 max_bandwidth2 = reg_get_max_bandwidth(rd: rd2, rule: rule2);
1374
1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1376
1377 intersected_rule->flags = rule1->flags | rule2->flags;
1378
1379 /*
1380 * In case NL80211_RRF_AUTO_BW requested for both rules
1381 * set AUTO_BW in intersected rule also. Next we will
1382 * calculate BW correctly in handle_channel function.
1383 * In other case remove AUTO_BW flag while we calculate
1384 * maximum bandwidth correctly and auto calculation is
1385 * not required.
1386 */
1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1388 (rule2->flags & NL80211_RRF_AUTO_BW))
1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1390 else
1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1392
1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1394 if (freq_range->max_bandwidth_khz > freq_diff)
1395 freq_range->max_bandwidth_khz = freq_diff;
1396
1397 power_rule->max_eirp = min(power_rule1->max_eirp,
1398 power_rule2->max_eirp);
1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1400 power_rule2->max_antenna_gain);
1401
1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1403 rule2->dfs_cac_ms);
1404
1405 if (rule1->has_wmm && rule2->has_wmm) {
1406 u8 ac;
1407
1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1409 reg_wmm_rules_intersect(wmm_ac1: &wmm_rule1->client[ac],
1410 wmm_ac2: &wmm_rule2->client[ac],
1411 intersect: &wmm_rule->client[ac]);
1412 reg_wmm_rules_intersect(wmm_ac1: &wmm_rule1->ap[ac],
1413 wmm_ac2: &wmm_rule2->ap[ac],
1414 intersect: &wmm_rule->ap[ac]);
1415 }
1416
1417 intersected_rule->has_wmm = true;
1418 } else if (rule1->has_wmm) {
1419 *wmm_rule = *wmm_rule1;
1420 intersected_rule->has_wmm = true;
1421 } else if (rule2->has_wmm) {
1422 *wmm_rule = *wmm_rule2;
1423 intersected_rule->has_wmm = true;
1424 } else {
1425 intersected_rule->has_wmm = false;
1426 }
1427
1428 if (!is_valid_reg_rule(rule: intersected_rule))
1429 return -EINVAL;
1430
1431 return 0;
1432}
1433
1434/* check whether old rule contains new rule */
1435static bool rule_contains(struct ieee80211_reg_rule *r1,
1436 struct ieee80211_reg_rule *r2)
1437{
1438 /* for simplicity, currently consider only same flags */
1439 if (r1->flags != r2->flags)
1440 return false;
1441
1442 /* verify r1 is more restrictive */
1443 if ((r1->power_rule.max_antenna_gain >
1444 r2->power_rule.max_antenna_gain) ||
1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1446 return false;
1447
1448 /* make sure r2's range is contained within r1 */
1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1451 return false;
1452
1453 /* and finally verify that r1.max_bw >= r2.max_bw */
1454 if (r1->freq_range.max_bandwidth_khz <
1455 r2->freq_range.max_bandwidth_khz)
1456 return false;
1457
1458 return true;
1459}
1460
1461/* add or extend current rules. do nothing if rule is already contained */
1462static void add_rule(struct ieee80211_reg_rule *rule,
1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1464{
1465 struct ieee80211_reg_rule *tmp_rule;
1466 int i;
1467
1468 for (i = 0; i < *n_rules; i++) {
1469 tmp_rule = &reg_rules[i];
1470 /* rule is already contained - do nothing */
1471 if (rule_contains(r1: tmp_rule, r2: rule))
1472 return;
1473
1474 /* extend rule if possible */
1475 if (rule_contains(r1: rule, r2: tmp_rule)) {
1476 memcpy(to: tmp_rule, from: rule, len: sizeof(*rule));
1477 return;
1478 }
1479 }
1480
1481 memcpy(to: &reg_rules[*n_rules], from: rule, len: sizeof(*rule));
1482 (*n_rules)++;
1483}
1484
1485/**
1486 * regdom_intersect - do the intersection between two regulatory domains
1487 * @rd1: first regulatory domain
1488 * @rd2: second regulatory domain
1489 *
1490 * Use this function to get the intersection between two regulatory domains.
1491 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1492 * as no one single alpha2 can represent this regulatory domain.
1493 *
1494 * Returns a pointer to the regulatory domain structure which will hold the
1495 * resulting intersection of rules between rd1 and rd2. We will
1496 * kzalloc() this structure for you.
1497 *
1498 * Returns: the intersected regdomain
1499 */
1500static struct ieee80211_regdomain *
1501regdom_intersect(const struct ieee80211_regdomain *rd1,
1502 const struct ieee80211_regdomain *rd2)
1503{
1504 int r;
1505 unsigned int x, y;
1506 unsigned int num_rules = 0;
1507 const struct ieee80211_reg_rule *rule1, *rule2;
1508 struct ieee80211_reg_rule intersected_rule;
1509 struct ieee80211_regdomain *rd;
1510
1511 if (!rd1 || !rd2)
1512 return NULL;
1513
1514 /*
1515 * First we get a count of the rules we'll need, then we actually
1516 * build them. This is to so we can malloc() and free() a
1517 * regdomain once. The reason we use reg_rules_intersect() here
1518 * is it will return -EINVAL if the rule computed makes no sense.
1519 * All rules that do check out OK are valid.
1520 */
1521
1522 for (x = 0; x < rd1->n_reg_rules; x++) {
1523 rule1 = &rd1->reg_rules[x];
1524 for (y = 0; y < rd2->n_reg_rules; y++) {
1525 rule2 = &rd2->reg_rules[y];
1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1527 intersected_rule: &intersected_rule))
1528 num_rules++;
1529 }
1530 }
1531
1532 if (!num_rules)
1533 return NULL;
1534
1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1536 if (!rd)
1537 return NULL;
1538
1539 for (x = 0; x < rd1->n_reg_rules; x++) {
1540 rule1 = &rd1->reg_rules[x];
1541 for (y = 0; y < rd2->n_reg_rules; y++) {
1542 rule2 = &rd2->reg_rules[y];
1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1544 intersected_rule: &intersected_rule);
1545 /*
1546 * No need to memset here the intersected rule here as
1547 * we're not using the stack anymore
1548 */
1549 if (r)
1550 continue;
1551
1552 add_rule(rule: &intersected_rule, reg_rules: rd->reg_rules,
1553 n_rules: &rd->n_reg_rules);
1554 }
1555 }
1556
1557 rd->alpha2[0] = '9';
1558 rd->alpha2[1] = '8';
1559 rd->dfs_region = reg_intersect_dfs_region(dfs_region1: rd1->dfs_region,
1560 dfs_region2: rd2->dfs_region);
1561
1562 return rd;
1563}
1564
1565/*
1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1567 * want to just have the channel structure use these
1568 */
1569static u32 map_regdom_flags(u32 rd_flags)
1570{
1571 u32 channel_flags = 0;
1572 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1573 channel_flags |= IEEE80211_CHAN_NO_IR;
1574 if (rd_flags & NL80211_RRF_DFS)
1575 channel_flags |= IEEE80211_CHAN_RADAR;
1576 if (rd_flags & NL80211_RRF_NO_OFDM)
1577 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1586 if (rd_flags & NL80211_RRF_NO_80MHZ)
1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1588 if (rd_flags & NL80211_RRF_NO_160MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1590 if (rd_flags & NL80211_RRF_NO_HE)
1591 channel_flags |= IEEE80211_CHAN_NO_HE;
1592 if (rd_flags & NL80211_RRF_NO_320MHZ)
1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1594 if (rd_flags & NL80211_RRF_NO_EHT)
1595 channel_flags |= IEEE80211_CHAN_NO_EHT;
1596 if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1597 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1598 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1599 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1600 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1601 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1602 if (rd_flags & NL80211_RRF_PSD)
1603 channel_flags |= IEEE80211_CHAN_PSD;
1604 if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP)
1605 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1606 if (rd_flags & NL80211_RRF_ALLOW_20MHZ_ACTIVITY)
1607 channel_flags |= IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY;
1608 return channel_flags;
1609}
1610
1611static const struct ieee80211_reg_rule *
1612freq_reg_info_regd(u32 center_freq,
1613 const struct ieee80211_regdomain *regd, u32 bw)
1614{
1615 int i;
1616 bool band_rule_found = false;
1617 bool bw_fits = false;
1618
1619 if (!regd)
1620 return ERR_PTR(error: -EINVAL);
1621
1622 for (i = 0; i < regd->n_reg_rules; i++) {
1623 const struct ieee80211_reg_rule *rr;
1624 const struct ieee80211_freq_range *fr = NULL;
1625
1626 rr = &regd->reg_rules[i];
1627 fr = &rr->freq_range;
1628
1629 /*
1630 * We only need to know if one frequency rule was
1631 * in center_freq's band, that's enough, so let's
1632 * not overwrite it once found
1633 */
1634 if (!band_rule_found)
1635 band_rule_found = freq_in_rule_band(freq_range: fr, freq_khz: center_freq);
1636
1637 bw_fits = cfg80211_does_bw_fit_range(freq_range: fr, center_freq_khz: center_freq, bw_khz: bw);
1638
1639 if (band_rule_found && bw_fits)
1640 return rr;
1641 }
1642
1643 if (!band_rule_found)
1644 return ERR_PTR(error: -ERANGE);
1645
1646 return ERR_PTR(error: -EINVAL);
1647}
1648
1649static const struct ieee80211_reg_rule *
1650__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1651{
1652 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1653 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1654 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(error: -ERANGE);
1655 int i = ARRAY_SIZE(bws) - 1;
1656 u32 bw;
1657
1658 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1659 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1660 if (!IS_ERR(ptr: reg_rule))
1661 return reg_rule;
1662 }
1663
1664 return reg_rule;
1665}
1666
1667const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1668 u32 center_freq)
1669{
1670 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1671
1672 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1673}
1674EXPORT_SYMBOL(freq_reg_info);
1675
1676const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1677{
1678 switch (initiator) {
1679 case NL80211_REGDOM_SET_BY_CORE:
1680 return "core";
1681 case NL80211_REGDOM_SET_BY_USER:
1682 return "user";
1683 case NL80211_REGDOM_SET_BY_DRIVER:
1684 return "driver";
1685 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1686 return "country element";
1687 default:
1688 WARN_ON(1);
1689 return "bug";
1690 }
1691}
1692EXPORT_SYMBOL(reg_initiator_name);
1693
1694static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1695 const struct ieee80211_reg_rule *reg_rule,
1696 const struct ieee80211_channel *chan)
1697{
1698 const struct ieee80211_freq_range *freq_range = NULL;
1699 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1700 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1701
1702 freq_range = &reg_rule->freq_range;
1703
1704 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1705 center_freq_khz = ieee80211_channel_to_khz(chan);
1706 /* Check if auto calculation requested */
1707 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1708 max_bandwidth_khz = reg_get_max_bandwidth(rd: regd, rule: reg_rule);
1709
1710 if (is_s1g) {
1711 if (max_bandwidth_khz < MHZ_TO_KHZ(16))
1712 bw_flags |= IEEE80211_CHAN_NO_16MHZ;
1713 if (max_bandwidth_khz < MHZ_TO_KHZ(8))
1714 bw_flags |= IEEE80211_CHAN_NO_8MHZ;
1715 if (max_bandwidth_khz < MHZ_TO_KHZ(4))
1716 bw_flags |= IEEE80211_CHAN_NO_4MHZ;
1717 return bw_flags;
1718 }
1719
1720 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1721 if (!cfg80211_does_bw_fit_range(freq_range,
1722 center_freq_khz,
1723 MHZ_TO_KHZ(10)))
1724 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1725 if (!cfg80211_does_bw_fit_range(freq_range,
1726 center_freq_khz,
1727 MHZ_TO_KHZ(20)))
1728 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1729
1730 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1731 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1732 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1733 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1734 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1735 bw_flags |= IEEE80211_CHAN_NO_HT40;
1736 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1737 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1738 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1739 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1740 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1741 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1742
1743 return bw_flags;
1744}
1745
1746static void handle_channel_single_rule(struct wiphy *wiphy,
1747 enum nl80211_reg_initiator initiator,
1748 struct ieee80211_channel *chan,
1749 u32 flags,
1750 struct regulatory_request *lr,
1751 struct wiphy *request_wiphy,
1752 const struct ieee80211_reg_rule *reg_rule)
1753{
1754 u32 bw_flags = 0;
1755 const struct ieee80211_power_rule *power_rule = NULL;
1756 const struct ieee80211_regdomain *regd;
1757
1758 regd = reg_get_regdomain(wiphy);
1759
1760 power_rule = &reg_rule->power_rule;
1761 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1762
1763 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1764 request_wiphy && request_wiphy == wiphy &&
1765 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1766 /*
1767 * This guarantees the driver's requested regulatory domain
1768 * will always be used as a base for further regulatory
1769 * settings
1770 */
1771 chan->flags = chan->orig_flags =
1772 map_regdom_flags(rd_flags: reg_rule->flags) | bw_flags;
1773 chan->max_antenna_gain = chan->orig_mag =
1774 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1775 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1776 (int) MBM_TO_DBM(power_rule->max_eirp);
1777
1778 if (chan->flags & IEEE80211_CHAN_RADAR) {
1779 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1780 if (reg_rule->dfs_cac_ms)
1781 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1782 }
1783
1784 if (chan->flags & IEEE80211_CHAN_PSD)
1785 chan->psd = reg_rule->psd;
1786
1787 return;
1788 }
1789
1790 chan->dfs_state = NL80211_DFS_USABLE;
1791 chan->dfs_state_entered = jiffies;
1792
1793 chan->beacon_found = false;
1794 chan->flags = flags | bw_flags | map_regdom_flags(rd_flags: reg_rule->flags);
1795 chan->max_antenna_gain =
1796 min_t(int, chan->orig_mag,
1797 MBI_TO_DBI(power_rule->max_antenna_gain));
1798 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1799
1800 if (chan->flags & IEEE80211_CHAN_RADAR) {
1801 if (reg_rule->dfs_cac_ms)
1802 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1803 else
1804 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1805 }
1806
1807 if (chan->flags & IEEE80211_CHAN_PSD)
1808 chan->psd = reg_rule->psd;
1809
1810 if (chan->orig_mpwr) {
1811 /*
1812 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1813 * will always follow the passed country IE power settings.
1814 */
1815 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1816 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1817 chan->max_power = chan->max_reg_power;
1818 else
1819 chan->max_power = min(chan->orig_mpwr,
1820 chan->max_reg_power);
1821 } else
1822 chan->max_power = chan->max_reg_power;
1823}
1824
1825static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1826 enum nl80211_reg_initiator initiator,
1827 struct ieee80211_channel *chan,
1828 u32 flags,
1829 struct regulatory_request *lr,
1830 struct wiphy *request_wiphy,
1831 const struct ieee80211_reg_rule *rrule1,
1832 const struct ieee80211_reg_rule *rrule2,
1833 struct ieee80211_freq_range *comb_range)
1834{
1835 u32 bw_flags1 = 0;
1836 u32 bw_flags2 = 0;
1837 const struct ieee80211_power_rule *power_rule1 = NULL;
1838 const struct ieee80211_power_rule *power_rule2 = NULL;
1839 const struct ieee80211_regdomain *regd;
1840
1841 regd = reg_get_regdomain(wiphy);
1842
1843 power_rule1 = &rrule1->power_rule;
1844 power_rule2 = &rrule2->power_rule;
1845 bw_flags1 = reg_rule_to_chan_bw_flags(regd, reg_rule: rrule1, chan);
1846 bw_flags2 = reg_rule_to_chan_bw_flags(regd, reg_rule: rrule2, chan);
1847
1848 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1849 request_wiphy && request_wiphy == wiphy &&
1850 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1851 /* This guarantees the driver's requested regulatory domain
1852 * will always be used as a base for further regulatory
1853 * settings
1854 */
1855 chan->flags =
1856 map_regdom_flags(rd_flags: rrule1->flags) |
1857 map_regdom_flags(rd_flags: rrule2->flags) |
1858 bw_flags1 |
1859 bw_flags2;
1860 chan->orig_flags = chan->flags;
1861 chan->max_antenna_gain =
1862 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1863 MBI_TO_DBI(power_rule2->max_antenna_gain));
1864 chan->orig_mag = chan->max_antenna_gain;
1865 chan->max_reg_power =
1866 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1867 MBM_TO_DBM(power_rule2->max_eirp));
1868 chan->max_power = chan->max_reg_power;
1869 chan->orig_mpwr = chan->max_reg_power;
1870
1871 if (chan->flags & IEEE80211_CHAN_RADAR) {
1872 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1873 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1874 chan->dfs_cac_ms = max_t(unsigned int,
1875 rrule1->dfs_cac_ms,
1876 rrule2->dfs_cac_ms);
1877 }
1878
1879 if ((rrule1->flags & NL80211_RRF_PSD) &&
1880 (rrule2->flags & NL80211_RRF_PSD))
1881 chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1882 else
1883 chan->flags &= ~NL80211_RRF_PSD;
1884
1885 return;
1886 }
1887
1888 chan->dfs_state = NL80211_DFS_USABLE;
1889 chan->dfs_state_entered = jiffies;
1890
1891 chan->beacon_found = false;
1892 chan->flags = flags | bw_flags1 | bw_flags2 |
1893 map_regdom_flags(rd_flags: rrule1->flags) |
1894 map_regdom_flags(rd_flags: rrule2->flags);
1895
1896 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1897 * (otherwise no adj. rule case), recheck therefore
1898 */
1899 if (cfg80211_does_bw_fit_range(freq_range: comb_range,
1900 center_freq_khz: ieee80211_channel_to_khz(chan),
1901 MHZ_TO_KHZ(10)))
1902 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1903 if (cfg80211_does_bw_fit_range(freq_range: comb_range,
1904 center_freq_khz: ieee80211_channel_to_khz(chan),
1905 MHZ_TO_KHZ(20)))
1906 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1907
1908 chan->max_antenna_gain =
1909 min_t(int, chan->orig_mag,
1910 min_t(int,
1911 MBI_TO_DBI(power_rule1->max_antenna_gain),
1912 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1913 chan->max_reg_power = min_t(int,
1914 MBM_TO_DBM(power_rule1->max_eirp),
1915 MBM_TO_DBM(power_rule2->max_eirp));
1916
1917 if (chan->flags & IEEE80211_CHAN_RADAR) {
1918 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1919 chan->dfs_cac_ms = max_t(unsigned int,
1920 rrule1->dfs_cac_ms,
1921 rrule2->dfs_cac_ms);
1922 else
1923 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1924 }
1925
1926 if (chan->orig_mpwr) {
1927 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1928 * will always follow the passed country IE power settings.
1929 */
1930 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1931 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1932 chan->max_power = chan->max_reg_power;
1933 else
1934 chan->max_power = min(chan->orig_mpwr,
1935 chan->max_reg_power);
1936 } else {
1937 chan->max_power = chan->max_reg_power;
1938 }
1939}
1940
1941/* Note that right now we assume the desired channel bandwidth
1942 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1943 * per channel, the primary and the extension channel).
1944 */
1945static void handle_channel(struct wiphy *wiphy,
1946 enum nl80211_reg_initiator initiator,
1947 struct ieee80211_channel *chan)
1948{
1949 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1950 struct regulatory_request *lr = get_last_request();
1951 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: lr->wiphy_idx);
1952 const struct ieee80211_reg_rule *rrule = NULL;
1953 const struct ieee80211_reg_rule *rrule1 = NULL;
1954 const struct ieee80211_reg_rule *rrule2 = NULL;
1955
1956 u32 flags = chan->orig_flags;
1957
1958 rrule = freq_reg_info(wiphy, orig_chan_freq);
1959 if (IS_ERR(ptr: rrule)) {
1960 /* check for adjacent match, therefore get rules for
1961 * chan - 20 MHz and chan + 20 MHz and test
1962 * if reg rules are adjacent
1963 */
1964 rrule1 = freq_reg_info(wiphy,
1965 orig_chan_freq - MHZ_TO_KHZ(20));
1966 rrule2 = freq_reg_info(wiphy,
1967 orig_chan_freq + MHZ_TO_KHZ(20));
1968 if (!IS_ERR(ptr: rrule1) && !IS_ERR(ptr: rrule2)) {
1969 struct ieee80211_freq_range comb_range;
1970
1971 if (rrule1->freq_range.end_freq_khz !=
1972 rrule2->freq_range.start_freq_khz)
1973 goto disable_chan;
1974
1975 comb_range.start_freq_khz =
1976 rrule1->freq_range.start_freq_khz;
1977 comb_range.end_freq_khz =
1978 rrule2->freq_range.end_freq_khz;
1979 comb_range.max_bandwidth_khz =
1980 min_t(u32,
1981 rrule1->freq_range.max_bandwidth_khz,
1982 rrule2->freq_range.max_bandwidth_khz);
1983
1984 if (!cfg80211_does_bw_fit_range(freq_range: &comb_range,
1985 center_freq_khz: orig_chan_freq,
1986 MHZ_TO_KHZ(20)))
1987 goto disable_chan;
1988
1989 handle_channel_adjacent_rules(wiphy, initiator, chan,
1990 flags, lr, request_wiphy,
1991 rrule1, rrule2,
1992 comb_range: &comb_range);
1993 return;
1994 }
1995
1996disable_chan:
1997 /* We will disable all channels that do not match our
1998 * received regulatory rule unless the hint is coming
1999 * from a Country IE and the Country IE had no information
2000 * about a band. The IEEE 802.11 spec allows for an AP
2001 * to send only a subset of the regulatory rules allowed,
2002 * so an AP in the US that only supports 2.4 GHz may only send
2003 * a country IE with information for the 2.4 GHz band
2004 * while 5 GHz is still supported.
2005 */
2006 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2007 PTR_ERR(ptr: rrule) == -ERANGE)
2008 return;
2009
2010 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2011 request_wiphy && request_wiphy == wiphy &&
2012 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2013 pr_debug("Disabling freq %d.%03d MHz for good\n",
2014 chan->center_freq, chan->freq_offset);
2015 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2016 chan->flags = chan->orig_flags;
2017 } else {
2018 pr_debug("Disabling freq %d.%03d MHz\n",
2019 chan->center_freq, chan->freq_offset);
2020 chan->flags |= IEEE80211_CHAN_DISABLED;
2021 }
2022 return;
2023 }
2024
2025 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2026 request_wiphy, reg_rule: rrule);
2027}
2028
2029static void handle_band(struct wiphy *wiphy,
2030 enum nl80211_reg_initiator initiator,
2031 struct ieee80211_supported_band *sband)
2032{
2033 unsigned int i;
2034
2035 if (!sband)
2036 return;
2037
2038 for (i = 0; i < sband->n_channels; i++)
2039 handle_channel(wiphy, initiator, chan: &sband->channels[i]);
2040}
2041
2042static bool reg_request_cell_base(struct regulatory_request *request)
2043{
2044 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2045 return false;
2046 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2047}
2048
2049bool reg_last_request_cell_base(void)
2050{
2051 return reg_request_cell_base(request: get_last_request());
2052}
2053
2054#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2055/* Core specific check */
2056static enum reg_request_treatment
2057reg_ignore_cell_hint(struct regulatory_request *pending_request)
2058{
2059 struct regulatory_request *lr = get_last_request();
2060
2061 if (!reg_num_devs_support_basehint)
2062 return REG_REQ_IGNORE;
2063
2064 if (reg_request_cell_base(lr) &&
2065 !regdom_changes(pending_request->alpha2))
2066 return REG_REQ_ALREADY_SET;
2067
2068 return REG_REQ_OK;
2069}
2070
2071/* Device specific check */
2072static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2073{
2074 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2075}
2076#else
2077static enum reg_request_treatment
2078reg_ignore_cell_hint(struct regulatory_request *pending_request)
2079{
2080 return REG_REQ_IGNORE;
2081}
2082
2083static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2084{
2085 return true;
2086}
2087#endif
2088
2089static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2090{
2091 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2092 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2093 return true;
2094 return false;
2095}
2096
2097static bool ignore_reg_update(struct wiphy *wiphy,
2098 enum nl80211_reg_initiator initiator)
2099{
2100 struct regulatory_request *lr = get_last_request();
2101
2102 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2103 return true;
2104
2105 if (!lr) {
2106 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2107 reg_initiator_name(initiator));
2108 return true;
2109 }
2110
2111 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2112 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2113 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2114 reg_initiator_name(initiator));
2115 return true;
2116 }
2117
2118 /*
2119 * wiphy->regd will be set once the device has its own
2120 * desired regulatory domain set
2121 */
2122 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2123 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2124 !is_world_regdom(alpha2: lr->alpha2)) {
2125 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2126 reg_initiator_name(initiator));
2127 return true;
2128 }
2129
2130 if (reg_request_cell_base(request: lr))
2131 return reg_dev_ignore_cell_hint(wiphy);
2132
2133 return false;
2134}
2135
2136static bool reg_is_world_roaming(struct wiphy *wiphy)
2137{
2138 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2139 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2140 struct regulatory_request *lr = get_last_request();
2141
2142 if (is_world_regdom(alpha2: cr->alpha2) || (wr && is_world_regdom(alpha2: wr->alpha2)))
2143 return true;
2144
2145 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2147 return true;
2148
2149 return false;
2150}
2151
2152static void reg_call_notifier(struct wiphy *wiphy,
2153 struct regulatory_request *request)
2154{
2155 if (wiphy->reg_notifier)
2156 wiphy->reg_notifier(wiphy, request);
2157}
2158
2159static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2160 struct reg_beacon *reg_beacon)
2161{
2162 struct ieee80211_supported_band *sband;
2163 struct ieee80211_channel *chan;
2164 bool channel_changed = false;
2165 struct ieee80211_channel chan_before;
2166 struct regulatory_request *lr = get_last_request();
2167
2168 sband = wiphy->bands[reg_beacon->chan.band];
2169 chan = &sband->channels[chan_idx];
2170
2171 if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2172 return;
2173
2174 if (chan->beacon_found)
2175 return;
2176
2177 chan->beacon_found = true;
2178
2179 if (!reg_is_world_roaming(wiphy))
2180 return;
2181
2182 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2183 return;
2184
2185 chan_before = *chan;
2186
2187 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2188 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2189 channel_changed = true;
2190 }
2191
2192 if (channel_changed) {
2193 nl80211_send_beacon_hint_event(wiphy, channel_before: &chan_before, channel_after: chan);
2194 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2195 reg_call_notifier(wiphy, request: lr);
2196 }
2197}
2198
2199/*
2200 * Called when a scan on a wiphy finds a beacon on
2201 * new channel
2202 */
2203static void wiphy_update_new_beacon(struct wiphy *wiphy,
2204 struct reg_beacon *reg_beacon)
2205{
2206 unsigned int i;
2207 struct ieee80211_supported_band *sband;
2208
2209 if (!wiphy->bands[reg_beacon->chan.band])
2210 return;
2211
2212 sband = wiphy->bands[reg_beacon->chan.band];
2213
2214 for (i = 0; i < sband->n_channels; i++)
2215 handle_reg_beacon(wiphy, chan_idx: i, reg_beacon);
2216}
2217
2218/*
2219 * Called upon reg changes or a new wiphy is added
2220 */
2221static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2222{
2223 unsigned int i;
2224 struct ieee80211_supported_band *sband;
2225 struct reg_beacon *reg_beacon;
2226
2227 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2228 if (!wiphy->bands[reg_beacon->chan.band])
2229 continue;
2230 sband = wiphy->bands[reg_beacon->chan.band];
2231 for (i = 0; i < sband->n_channels; i++)
2232 handle_reg_beacon(wiphy, chan_idx: i, reg_beacon);
2233 }
2234}
2235
2236/* Reap the advantages of previously found beacons */
2237static void reg_process_beacons(struct wiphy *wiphy)
2238{
2239 /*
2240 * Means we are just firing up cfg80211, so no beacons would
2241 * have been processed yet.
2242 */
2243 if (!last_request)
2244 return;
2245 wiphy_update_beacon_reg(wiphy);
2246}
2247
2248static bool is_ht40_allowed(struct ieee80211_channel *chan)
2249{
2250 if (!chan)
2251 return false;
2252 if (chan->flags & IEEE80211_CHAN_DISABLED)
2253 return false;
2254 /* This would happen when regulatory rules disallow HT40 completely */
2255 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2256 return false;
2257 return true;
2258}
2259
2260static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2261 struct ieee80211_channel *channel)
2262{
2263 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2264 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2265 const struct ieee80211_regdomain *regd;
2266 unsigned int i;
2267 u32 flags;
2268
2269 if (!is_ht40_allowed(chan: channel)) {
2270 channel->flags |= IEEE80211_CHAN_NO_HT40;
2271 return;
2272 }
2273
2274 /*
2275 * We need to ensure the extension channels exist to
2276 * be able to use HT40- or HT40+, this finds them (or not)
2277 */
2278 for (i = 0; i < sband->n_channels; i++) {
2279 struct ieee80211_channel *c = &sband->channels[i];
2280
2281 if (c->center_freq == (channel->center_freq - 20))
2282 channel_before = c;
2283 if (c->center_freq == (channel->center_freq + 20))
2284 channel_after = c;
2285 }
2286
2287 flags = 0;
2288 regd = get_wiphy_regdom(wiphy);
2289 if (regd) {
2290 const struct ieee80211_reg_rule *reg_rule =
2291 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2292 regd, MHZ_TO_KHZ(20));
2293
2294 if (!IS_ERR(ptr: reg_rule))
2295 flags = reg_rule->flags;
2296 }
2297
2298 /*
2299 * Please note that this assumes target bandwidth is 20 MHz,
2300 * if that ever changes we also need to change the below logic
2301 * to include that as well.
2302 */
2303 if (!is_ht40_allowed(chan: channel_before) ||
2304 flags & NL80211_RRF_NO_HT40MINUS)
2305 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2306 else
2307 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2308
2309 if (!is_ht40_allowed(chan: channel_after) ||
2310 flags & NL80211_RRF_NO_HT40PLUS)
2311 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2312 else
2313 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2314}
2315
2316static void reg_process_ht_flags_band(struct wiphy *wiphy,
2317 struct ieee80211_supported_band *sband)
2318{
2319 unsigned int i;
2320
2321 if (!sband)
2322 return;
2323
2324 for (i = 0; i < sband->n_channels; i++)
2325 reg_process_ht_flags_channel(wiphy, channel: &sband->channels[i]);
2326}
2327
2328static void reg_process_ht_flags(struct wiphy *wiphy)
2329{
2330 enum nl80211_band band;
2331
2332 if (!wiphy)
2333 return;
2334
2335 for (band = 0; band < NUM_NL80211_BANDS; band++)
2336 reg_process_ht_flags_band(wiphy, sband: wiphy->bands[band]);
2337}
2338
2339static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2340{
2341 struct cfg80211_chan_def chandef = {};
2342 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2343 enum nl80211_iftype iftype;
2344 bool ret;
2345 int link;
2346
2347 iftype = wdev->iftype;
2348
2349 /* make sure the interface is active */
2350 if (!wdev->netdev || !netif_running(dev: wdev->netdev))
2351 return true;
2352
2353 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2354 struct ieee80211_channel *chan;
2355
2356 if (!wdev->valid_links && link > 0)
2357 break;
2358 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2359 continue;
2360 switch (iftype) {
2361 case NL80211_IFTYPE_AP:
2362 case NL80211_IFTYPE_P2P_GO:
2363 if (!wdev->links[link].ap.beacon_interval)
2364 continue;
2365 chandef = wdev->links[link].ap.chandef;
2366 break;
2367 case NL80211_IFTYPE_MESH_POINT:
2368 if (!wdev->u.mesh.beacon_interval)
2369 continue;
2370 chandef = wdev->u.mesh.chandef;
2371 break;
2372 case NL80211_IFTYPE_ADHOC:
2373 if (!wdev->u.ibss.ssid_len)
2374 continue;
2375 chandef = wdev->u.ibss.chandef;
2376 break;
2377 case NL80211_IFTYPE_STATION:
2378 case NL80211_IFTYPE_P2P_CLIENT:
2379 /* Maybe we could consider disabling that link only? */
2380 if (!wdev->links[link].client.current_bss)
2381 continue;
2382
2383 chan = wdev->links[link].client.current_bss->pub.channel;
2384 if (!chan)
2385 continue;
2386
2387 if (!rdev->ops->get_channel ||
2388 rdev_get_channel(rdev, wdev, link_id: link, chandef: &chandef))
2389 cfg80211_chandef_create(chandef: &chandef, channel: chan,
2390 chantype: NL80211_CHAN_NO_HT);
2391 break;
2392 case NL80211_IFTYPE_MONITOR:
2393 case NL80211_IFTYPE_AP_VLAN:
2394 case NL80211_IFTYPE_P2P_DEVICE:
2395 /* no enforcement required */
2396 break;
2397 case NL80211_IFTYPE_OCB:
2398 if (!wdev->u.ocb.chandef.chan)
2399 continue;
2400 chandef = wdev->u.ocb.chandef;
2401 break;
2402 case NL80211_IFTYPE_NAN:
2403 /* we have no info, but NAN is also pretty universal */
2404 continue;
2405 default:
2406 /* others not implemented for now */
2407 WARN_ON_ONCE(1);
2408 break;
2409 }
2410
2411 switch (iftype) {
2412 case NL80211_IFTYPE_AP:
2413 case NL80211_IFTYPE_P2P_GO:
2414 case NL80211_IFTYPE_ADHOC:
2415 case NL80211_IFTYPE_MESH_POINT:
2416 ret = cfg80211_reg_can_beacon_relax(wiphy, chandef: &chandef,
2417 iftype);
2418 if (!ret)
2419 return ret;
2420 break;
2421 case NL80211_IFTYPE_STATION:
2422 case NL80211_IFTYPE_P2P_CLIENT:
2423 ret = cfg80211_chandef_usable(wiphy, chandef: &chandef,
2424 prohibited_flags: IEEE80211_CHAN_DISABLED);
2425 if (!ret)
2426 return ret;
2427 break;
2428 default:
2429 break;
2430 }
2431 }
2432
2433 return true;
2434}
2435
2436static void reg_leave_invalid_chans(struct wiphy *wiphy)
2437{
2438 struct wireless_dev *wdev;
2439 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2440
2441 guard(wiphy)(T: wiphy);
2442
2443 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2444 if (!reg_wdev_chan_valid(wiphy, wdev))
2445 cfg80211_leave(rdev, wdev);
2446}
2447
2448static void reg_check_chans_work(struct work_struct *work)
2449{
2450 struct cfg80211_registered_device *rdev;
2451
2452 pr_debug("Verifying active interfaces after reg change\n");
2453 rtnl_lock();
2454
2455 for_each_rdev(rdev)
2456 reg_leave_invalid_chans(wiphy: &rdev->wiphy);
2457
2458 rtnl_unlock();
2459}
2460
2461void reg_check_channels(void)
2462{
2463 /*
2464 * Give usermode a chance to do something nicer (move to another
2465 * channel, orderly disconnection), before forcing a disconnection.
2466 */
2467 mod_delayed_work(wq: system_power_efficient_wq,
2468 dwork: &reg_check_chans,
2469 delay: msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2470}
2471
2472static void wiphy_update_regulatory(struct wiphy *wiphy,
2473 enum nl80211_reg_initiator initiator)
2474{
2475 enum nl80211_band band;
2476 struct regulatory_request *lr = get_last_request();
2477
2478 if (ignore_reg_update(wiphy, initiator)) {
2479 /*
2480 * Regulatory updates set by CORE are ignored for custom
2481 * regulatory cards. Let us notify the changes to the driver,
2482 * as some drivers used this to restore its orig_* reg domain.
2483 */
2484 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2485 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2486 !(wiphy->regulatory_flags &
2487 REGULATORY_WIPHY_SELF_MANAGED))
2488 reg_call_notifier(wiphy, request: lr);
2489 return;
2490 }
2491
2492 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2493
2494 for (band = 0; band < NUM_NL80211_BANDS; band++)
2495 handle_band(wiphy, initiator, sband: wiphy->bands[band]);
2496
2497 reg_process_beacons(wiphy);
2498 reg_process_ht_flags(wiphy);
2499 reg_call_notifier(wiphy, request: lr);
2500}
2501
2502static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2503{
2504 struct cfg80211_registered_device *rdev;
2505 struct wiphy *wiphy;
2506
2507 ASSERT_RTNL();
2508
2509 for_each_rdev(rdev) {
2510 wiphy = &rdev->wiphy;
2511 wiphy_update_regulatory(wiphy, initiator);
2512 }
2513
2514 reg_check_channels();
2515}
2516
2517static void handle_channel_custom(struct wiphy *wiphy,
2518 struct ieee80211_channel *chan,
2519 const struct ieee80211_regdomain *regd,
2520 u32 min_bw)
2521{
2522 u32 bw_flags = 0;
2523 const struct ieee80211_reg_rule *reg_rule = NULL;
2524 const struct ieee80211_power_rule *power_rule = NULL;
2525 u32 bw, center_freq_khz;
2526
2527 center_freq_khz = ieee80211_channel_to_khz(chan);
2528 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2529 reg_rule = freq_reg_info_regd(center_freq: center_freq_khz, regd, bw);
2530 if (!IS_ERR(ptr: reg_rule))
2531 break;
2532 }
2533
2534 if (IS_ERR_OR_NULL(ptr: reg_rule)) {
2535 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2536 chan->center_freq, chan->freq_offset);
2537 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2538 chan->flags |= IEEE80211_CHAN_DISABLED;
2539 } else {
2540 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2541 chan->flags = chan->orig_flags;
2542 }
2543 return;
2544 }
2545
2546 power_rule = &reg_rule->power_rule;
2547 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2548
2549 chan->dfs_state_entered = jiffies;
2550 chan->dfs_state = NL80211_DFS_USABLE;
2551
2552 chan->beacon_found = false;
2553
2554 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2555 chan->flags = chan->orig_flags | bw_flags |
2556 map_regdom_flags(rd_flags: reg_rule->flags);
2557 else
2558 chan->flags |= map_regdom_flags(rd_flags: reg_rule->flags) | bw_flags;
2559
2560 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2561 chan->max_reg_power = chan->max_power =
2562 (int) MBM_TO_DBM(power_rule->max_eirp);
2563
2564 if (chan->flags & IEEE80211_CHAN_RADAR) {
2565 if (reg_rule->dfs_cac_ms)
2566 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2567 else
2568 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2569 }
2570
2571 if (chan->flags & IEEE80211_CHAN_PSD)
2572 chan->psd = reg_rule->psd;
2573
2574 chan->max_power = chan->max_reg_power;
2575}
2576
2577static void handle_band_custom(struct wiphy *wiphy,
2578 struct ieee80211_supported_band *sband,
2579 const struct ieee80211_regdomain *regd)
2580{
2581 unsigned int i;
2582
2583 if (!sband)
2584 return;
2585
2586 /*
2587 * We currently assume that you always want at least 20 MHz,
2588 * otherwise channel 12 might get enabled if this rule is
2589 * compatible to US, which permits 2402 - 2472 MHz.
2590 */
2591 for (i = 0; i < sband->n_channels; i++)
2592 handle_channel_custom(wiphy, chan: &sband->channels[i], regd,
2593 MHZ_TO_KHZ(20));
2594}
2595
2596/* Used by drivers prior to wiphy registration */
2597void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2598 const struct ieee80211_regdomain *regd)
2599{
2600 const struct ieee80211_regdomain *new_regd, *tmp;
2601 enum nl80211_band band;
2602 unsigned int bands_set = 0;
2603
2604 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2605 "wiphy should have REGULATORY_CUSTOM_REG\n");
2606 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2607
2608 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2609 if (!wiphy->bands[band])
2610 continue;
2611 handle_band_custom(wiphy, sband: wiphy->bands[band], regd);
2612 bands_set++;
2613 }
2614
2615 /*
2616 * no point in calling this if it won't have any effect
2617 * on your device's supported bands.
2618 */
2619 WARN_ON(!bands_set);
2620 new_regd = reg_copy_regd(src_regd: regd);
2621 if (IS_ERR(ptr: new_regd))
2622 return;
2623
2624 rtnl_lock();
2625 scoped_guard(wiphy, wiphy) {
2626 tmp = get_wiphy_regdom(wiphy);
2627 rcu_assign_pointer(wiphy->regd, new_regd);
2628 rcu_free_regdom(r: tmp);
2629 }
2630 rtnl_unlock();
2631}
2632EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2633
2634static void reg_set_request_processed(void)
2635{
2636 bool need_more_processing = false;
2637 struct regulatory_request *lr = get_last_request();
2638
2639 lr->processed = true;
2640
2641 spin_lock(lock: &reg_requests_lock);
2642 if (!list_empty(head: &reg_requests_list))
2643 need_more_processing = true;
2644 spin_unlock(lock: &reg_requests_lock);
2645
2646 cancel_crda_timeout();
2647
2648 if (need_more_processing)
2649 schedule_work(work: &reg_work);
2650}
2651
2652/**
2653 * reg_process_hint_core - process core regulatory requests
2654 * @core_request: a pending core regulatory request
2655 *
2656 * The wireless subsystem can use this function to process
2657 * a regulatory request issued by the regulatory core.
2658 *
2659 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2660 * hint was processed or ignored
2661 */
2662static enum reg_request_treatment
2663reg_process_hint_core(struct regulatory_request *core_request)
2664{
2665 if (reg_query_database(request: core_request)) {
2666 core_request->intersect = false;
2667 core_request->processed = false;
2668 reg_update_last_request(request: core_request);
2669 return REG_REQ_OK;
2670 }
2671
2672 return REG_REQ_IGNORE;
2673}
2674
2675static enum reg_request_treatment
2676__reg_process_hint_user(struct regulatory_request *user_request)
2677{
2678 struct regulatory_request *lr = get_last_request();
2679
2680 if (reg_request_cell_base(request: user_request))
2681 return reg_ignore_cell_hint(pending_request: user_request);
2682
2683 if (reg_request_cell_base(request: lr))
2684 return REG_REQ_IGNORE;
2685
2686 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2687 return REG_REQ_INTERSECT;
2688 /*
2689 * If the user knows better the user should set the regdom
2690 * to their country before the IE is picked up
2691 */
2692 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2693 lr->intersect)
2694 return REG_REQ_IGNORE;
2695 /*
2696 * Process user requests only after previous user/driver/core
2697 * requests have been processed
2698 */
2699 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2700 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2701 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2702 regdom_changes(alpha2: lr->alpha2))
2703 return REG_REQ_IGNORE;
2704
2705 if (!regdom_changes(alpha2: user_request->alpha2))
2706 return REG_REQ_ALREADY_SET;
2707
2708 return REG_REQ_OK;
2709}
2710
2711/**
2712 * reg_process_hint_user - process user regulatory requests
2713 * @user_request: a pending user regulatory request
2714 *
2715 * The wireless subsystem can use this function to process
2716 * a regulatory request initiated by userspace.
2717 *
2718 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2719 * hint was processed or ignored
2720 */
2721static enum reg_request_treatment
2722reg_process_hint_user(struct regulatory_request *user_request)
2723{
2724 enum reg_request_treatment treatment;
2725
2726 treatment = __reg_process_hint_user(user_request);
2727 if (treatment == REG_REQ_IGNORE ||
2728 treatment == REG_REQ_ALREADY_SET)
2729 return REG_REQ_IGNORE;
2730
2731 user_request->intersect = treatment == REG_REQ_INTERSECT;
2732 user_request->processed = false;
2733
2734 if (reg_query_database(request: user_request)) {
2735 reg_update_last_request(request: user_request);
2736 user_alpha2[0] = user_request->alpha2[0];
2737 user_alpha2[1] = user_request->alpha2[1];
2738 return REG_REQ_OK;
2739 }
2740
2741 return REG_REQ_IGNORE;
2742}
2743
2744static enum reg_request_treatment
2745__reg_process_hint_driver(struct regulatory_request *driver_request)
2746{
2747 struct regulatory_request *lr = get_last_request();
2748
2749 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2750 if (regdom_changes(alpha2: driver_request->alpha2))
2751 return REG_REQ_OK;
2752 return REG_REQ_ALREADY_SET;
2753 }
2754
2755 /*
2756 * This would happen if you unplug and plug your card
2757 * back in or if you add a new device for which the previously
2758 * loaded card also agrees on the regulatory domain.
2759 */
2760 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2761 !regdom_changes(alpha2: driver_request->alpha2))
2762 return REG_REQ_ALREADY_SET;
2763
2764 return REG_REQ_INTERSECT;
2765}
2766
2767/**
2768 * reg_process_hint_driver - process driver regulatory requests
2769 * @wiphy: the wireless device for the regulatory request
2770 * @driver_request: a pending driver regulatory request
2771 *
2772 * The wireless subsystem can use this function to process
2773 * a regulatory request issued by an 802.11 driver.
2774 *
2775 * Returns: one of the different reg request treatment values.
2776 */
2777static enum reg_request_treatment
2778reg_process_hint_driver(struct wiphy *wiphy,
2779 struct regulatory_request *driver_request)
2780{
2781 const struct ieee80211_regdomain *regd, *tmp;
2782 enum reg_request_treatment treatment;
2783
2784 treatment = __reg_process_hint_driver(driver_request);
2785
2786 switch (treatment) {
2787 case REG_REQ_OK:
2788 break;
2789 case REG_REQ_IGNORE:
2790 return REG_REQ_IGNORE;
2791 case REG_REQ_INTERSECT:
2792 case REG_REQ_ALREADY_SET:
2793 regd = reg_copy_regd(src_regd: get_cfg80211_regdom());
2794 if (IS_ERR(ptr: regd))
2795 return REG_REQ_IGNORE;
2796
2797 tmp = get_wiphy_regdom(wiphy);
2798 ASSERT_RTNL();
2799 scoped_guard(wiphy, wiphy) {
2800 rcu_assign_pointer(wiphy->regd, regd);
2801 }
2802 rcu_free_regdom(r: tmp);
2803 }
2804
2805
2806 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2807 driver_request->processed = false;
2808
2809 /*
2810 * Since CRDA will not be called in this case as we already
2811 * have applied the requested regulatory domain before we just
2812 * inform userspace we have processed the request
2813 */
2814 if (treatment == REG_REQ_ALREADY_SET) {
2815 nl80211_send_reg_change_event(request: driver_request);
2816 reg_update_last_request(request: driver_request);
2817 reg_set_request_processed();
2818 return REG_REQ_ALREADY_SET;
2819 }
2820
2821 if (reg_query_database(request: driver_request)) {
2822 reg_update_last_request(request: driver_request);
2823 return REG_REQ_OK;
2824 }
2825
2826 return REG_REQ_IGNORE;
2827}
2828
2829static enum reg_request_treatment
2830__reg_process_hint_country_ie(struct wiphy *wiphy,
2831 struct regulatory_request *country_ie_request)
2832{
2833 struct wiphy *last_wiphy = NULL;
2834 struct regulatory_request *lr = get_last_request();
2835
2836 if (reg_request_cell_base(request: lr)) {
2837 /* Trust a Cell base station over the AP's country IE */
2838 if (regdom_changes(alpha2: country_ie_request->alpha2))
2839 return REG_REQ_IGNORE;
2840 return REG_REQ_ALREADY_SET;
2841 } else {
2842 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2843 return REG_REQ_IGNORE;
2844 }
2845
2846 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2847 return -EINVAL;
2848
2849 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2850 return REG_REQ_OK;
2851
2852 last_wiphy = wiphy_idx_to_wiphy(wiphy_idx: lr->wiphy_idx);
2853
2854 if (last_wiphy != wiphy) {
2855 /*
2856 * Two cards with two APs claiming different
2857 * Country IE alpha2s. We could
2858 * intersect them, but that seems unlikely
2859 * to be correct. Reject second one for now.
2860 */
2861 if (regdom_changes(alpha2: country_ie_request->alpha2))
2862 return REG_REQ_IGNORE;
2863 return REG_REQ_ALREADY_SET;
2864 }
2865
2866 if (regdom_changes(alpha2: country_ie_request->alpha2))
2867 return REG_REQ_OK;
2868 return REG_REQ_ALREADY_SET;
2869}
2870
2871/**
2872 * reg_process_hint_country_ie - process regulatory requests from country IEs
2873 * @wiphy: the wireless device for the regulatory request
2874 * @country_ie_request: a regulatory request from a country IE
2875 *
2876 * The wireless subsystem can use this function to process
2877 * a regulatory request issued by a country Information Element.
2878 *
2879 * Returns: one of the different reg request treatment values.
2880 */
2881static enum reg_request_treatment
2882reg_process_hint_country_ie(struct wiphy *wiphy,
2883 struct regulatory_request *country_ie_request)
2884{
2885 enum reg_request_treatment treatment;
2886
2887 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2888
2889 switch (treatment) {
2890 case REG_REQ_OK:
2891 break;
2892 case REG_REQ_IGNORE:
2893 return REG_REQ_IGNORE;
2894 case REG_REQ_ALREADY_SET:
2895 reg_free_request(request: country_ie_request);
2896 return REG_REQ_ALREADY_SET;
2897 case REG_REQ_INTERSECT:
2898 /*
2899 * This doesn't happen yet, not sure we
2900 * ever want to support it for this case.
2901 */
2902 WARN_ONCE(1, "Unexpected intersection for country elements");
2903 return REG_REQ_IGNORE;
2904 }
2905
2906 country_ie_request->intersect = false;
2907 country_ie_request->processed = false;
2908
2909 if (reg_query_database(request: country_ie_request)) {
2910 reg_update_last_request(request: country_ie_request);
2911 return REG_REQ_OK;
2912 }
2913
2914 return REG_REQ_IGNORE;
2915}
2916
2917bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2918{
2919 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2920 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2921 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2922 bool dfs_domain_same;
2923
2924 rcu_read_lock();
2925
2926 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2927 wiphy1_regd = rcu_dereference(wiphy1->regd);
2928 if (!wiphy1_regd)
2929 wiphy1_regd = cfg80211_regd;
2930
2931 wiphy2_regd = rcu_dereference(wiphy2->regd);
2932 if (!wiphy2_regd)
2933 wiphy2_regd = cfg80211_regd;
2934
2935 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2936
2937 rcu_read_unlock();
2938
2939 return dfs_domain_same;
2940}
2941
2942static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2943 struct ieee80211_channel *src_chan)
2944{
2945 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2946 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2947 return;
2948
2949 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2950 src_chan->flags & IEEE80211_CHAN_DISABLED)
2951 return;
2952
2953 if (src_chan->center_freq == dst_chan->center_freq &&
2954 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2955 dst_chan->dfs_state = src_chan->dfs_state;
2956 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2957 }
2958}
2959
2960static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2961 struct wiphy *src_wiphy)
2962{
2963 struct ieee80211_supported_band *src_sband, *dst_sband;
2964 struct ieee80211_channel *src_chan, *dst_chan;
2965 int i, j, band;
2966
2967 if (!reg_dfs_domain_same(wiphy1: dst_wiphy, wiphy2: src_wiphy))
2968 return;
2969
2970 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2971 dst_sband = dst_wiphy->bands[band];
2972 src_sband = src_wiphy->bands[band];
2973 if (!dst_sband || !src_sband)
2974 continue;
2975
2976 for (i = 0; i < dst_sband->n_channels; i++) {
2977 dst_chan = &dst_sband->channels[i];
2978 for (j = 0; j < src_sband->n_channels; j++) {
2979 src_chan = &src_sband->channels[j];
2980 reg_copy_dfs_chan_state(dst_chan, src_chan);
2981 }
2982 }
2983 }
2984}
2985
2986static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2987{
2988 struct cfg80211_registered_device *rdev;
2989
2990 ASSERT_RTNL();
2991
2992 for_each_rdev(rdev) {
2993 if (wiphy == &rdev->wiphy)
2994 continue;
2995 wiphy_share_dfs_chan_state(dst_wiphy: wiphy, src_wiphy: &rdev->wiphy);
2996 }
2997}
2998
2999/* This processes *all* regulatory hints */
3000static void reg_process_hint(struct regulatory_request *reg_request)
3001{
3002 struct wiphy *wiphy = NULL;
3003 enum reg_request_treatment treatment;
3004 enum nl80211_reg_initiator initiator = reg_request->initiator;
3005
3006 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3007 wiphy = wiphy_idx_to_wiphy(wiphy_idx: reg_request->wiphy_idx);
3008
3009 switch (initiator) {
3010 case NL80211_REGDOM_SET_BY_CORE:
3011 treatment = reg_process_hint_core(core_request: reg_request);
3012 break;
3013 case NL80211_REGDOM_SET_BY_USER:
3014 treatment = reg_process_hint_user(user_request: reg_request);
3015 break;
3016 case NL80211_REGDOM_SET_BY_DRIVER:
3017 if (!wiphy)
3018 goto out_free;
3019 treatment = reg_process_hint_driver(wiphy, driver_request: reg_request);
3020 break;
3021 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3022 if (!wiphy)
3023 goto out_free;
3024 treatment = reg_process_hint_country_ie(wiphy, country_ie_request: reg_request);
3025 break;
3026 default:
3027 WARN(1, "invalid initiator %d\n", initiator);
3028 goto out_free;
3029 }
3030
3031 if (treatment == REG_REQ_IGNORE)
3032 goto out_free;
3033
3034 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3035 "unexpected treatment value %d\n", treatment);
3036
3037 /* This is required so that the orig_* parameters are saved.
3038 * NOTE: treatment must be set for any case that reaches here!
3039 */
3040 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3041 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3042 wiphy_update_regulatory(wiphy, initiator);
3043 wiphy_all_share_dfs_chan_state(wiphy);
3044 reg_check_channels();
3045 }
3046
3047 return;
3048
3049out_free:
3050 reg_free_request(request: reg_request);
3051}
3052
3053static void notify_self_managed_wiphys(struct regulatory_request *request)
3054{
3055 struct cfg80211_registered_device *rdev;
3056 struct wiphy *wiphy;
3057
3058 for_each_rdev(rdev) {
3059 wiphy = &rdev->wiphy;
3060 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3061 request->initiator == NL80211_REGDOM_SET_BY_USER)
3062 reg_call_notifier(wiphy, request);
3063 }
3064}
3065
3066/*
3067 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3068 * Regulatory hints come on a first come first serve basis and we
3069 * must process each one atomically.
3070 */
3071static void reg_process_pending_hints(void)
3072{
3073 struct regulatory_request *reg_request, *lr;
3074
3075 lr = get_last_request();
3076
3077 /* When last_request->processed becomes true this will be rescheduled */
3078 if (lr && !lr->processed) {
3079 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3080 return;
3081 }
3082
3083 spin_lock(lock: &reg_requests_lock);
3084
3085 if (list_empty(head: &reg_requests_list)) {
3086 spin_unlock(lock: &reg_requests_lock);
3087 return;
3088 }
3089
3090 reg_request = list_first_entry(&reg_requests_list,
3091 struct regulatory_request,
3092 list);
3093 list_del_init(entry: &reg_request->list);
3094
3095 spin_unlock(lock: &reg_requests_lock);
3096
3097 notify_self_managed_wiphys(request: reg_request);
3098
3099 reg_process_hint(reg_request);
3100
3101 lr = get_last_request();
3102
3103 spin_lock(lock: &reg_requests_lock);
3104 if (!list_empty(head: &reg_requests_list) && lr && lr->processed)
3105 schedule_work(work: &reg_work);
3106 spin_unlock(lock: &reg_requests_lock);
3107}
3108
3109/* Processes beacon hints -- this has nothing to do with country IEs */
3110static void reg_process_pending_beacon_hints(void)
3111{
3112 struct cfg80211_registered_device *rdev;
3113 struct reg_beacon *pending_beacon, *tmp;
3114
3115 /* This goes through the _pending_ beacon list */
3116 spin_lock_bh(lock: &reg_pending_beacons_lock);
3117
3118 list_for_each_entry_safe(pending_beacon, tmp,
3119 &reg_pending_beacons, list) {
3120 list_del_init(entry: &pending_beacon->list);
3121
3122 /* Applies the beacon hint to current wiphys */
3123 for_each_rdev(rdev)
3124 wiphy_update_new_beacon(wiphy: &rdev->wiphy, reg_beacon: pending_beacon);
3125
3126 /* Remembers the beacon hint for new wiphys or reg changes */
3127 list_add_tail(new: &pending_beacon->list, head: &reg_beacon_list);
3128 }
3129
3130 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3131}
3132
3133static void reg_process_self_managed_hint(struct wiphy *wiphy)
3134{
3135 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3136 const struct ieee80211_regdomain *tmp;
3137 const struct ieee80211_regdomain *regd;
3138 enum nl80211_band band;
3139 struct regulatory_request request = {};
3140
3141 ASSERT_RTNL();
3142 lockdep_assert_wiphy(wiphy);
3143
3144 spin_lock(lock: &reg_requests_lock);
3145 regd = rdev->requested_regd;
3146 rdev->requested_regd = NULL;
3147 spin_unlock(lock: &reg_requests_lock);
3148
3149 if (!regd)
3150 return;
3151
3152 tmp = get_wiphy_regdom(wiphy);
3153 rcu_assign_pointer(wiphy->regd, regd);
3154 rcu_free_regdom(r: tmp);
3155
3156 for (band = 0; band < NUM_NL80211_BANDS; band++)
3157 handle_band_custom(wiphy, sband: wiphy->bands[band], regd);
3158
3159 reg_process_ht_flags(wiphy);
3160
3161 request.wiphy_idx = get_wiphy_idx(wiphy);
3162 request.alpha2[0] = regd->alpha2[0];
3163 request.alpha2[1] = regd->alpha2[1];
3164 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3165
3166 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3167 reg_call_notifier(wiphy, request: &request);
3168
3169 nl80211_send_wiphy_reg_change_event(request: &request);
3170}
3171
3172static void reg_process_self_managed_hints(void)
3173{
3174 struct cfg80211_registered_device *rdev;
3175
3176 ASSERT_RTNL();
3177
3178 for_each_rdev(rdev) {
3179 guard(wiphy)(T: &rdev->wiphy);
3180
3181 reg_process_self_managed_hint(wiphy: &rdev->wiphy);
3182 }
3183
3184 reg_check_channels();
3185}
3186
3187static void reg_todo(struct work_struct *work)
3188{
3189 rtnl_lock();
3190 reg_process_pending_hints();
3191 reg_process_pending_beacon_hints();
3192 reg_process_self_managed_hints();
3193 rtnl_unlock();
3194}
3195
3196static void queue_regulatory_request(struct regulatory_request *request)
3197{
3198 request->alpha2[0] = toupper(request->alpha2[0]);
3199 request->alpha2[1] = toupper(request->alpha2[1]);
3200
3201 spin_lock(lock: &reg_requests_lock);
3202 list_add_tail(new: &request->list, head: &reg_requests_list);
3203 spin_unlock(lock: &reg_requests_lock);
3204
3205 schedule_work(work: &reg_work);
3206}
3207
3208/*
3209 * Core regulatory hint -- happens during cfg80211_init()
3210 * and when we restore regulatory settings.
3211 */
3212static int regulatory_hint_core(const char *alpha2)
3213{
3214 struct regulatory_request *request;
3215
3216 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3217 if (!request)
3218 return -ENOMEM;
3219
3220 request->alpha2[0] = alpha2[0];
3221 request->alpha2[1] = alpha2[1];
3222 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3223 request->wiphy_idx = WIPHY_IDX_INVALID;
3224
3225 queue_regulatory_request(request);
3226
3227 return 0;
3228}
3229
3230/* User hints */
3231int regulatory_hint_user(const char *alpha2,
3232 enum nl80211_user_reg_hint_type user_reg_hint_type)
3233{
3234 struct regulatory_request *request;
3235
3236 if (WARN_ON(!alpha2))
3237 return -EINVAL;
3238
3239 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3240 return -EINVAL;
3241
3242 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3243 if (!request)
3244 return -ENOMEM;
3245
3246 request->wiphy_idx = WIPHY_IDX_INVALID;
3247 request->alpha2[0] = alpha2[0];
3248 request->alpha2[1] = alpha2[1];
3249 request->initiator = NL80211_REGDOM_SET_BY_USER;
3250 request->user_reg_hint_type = user_reg_hint_type;
3251
3252 /* Allow calling CRDA again */
3253 reset_crda_timeouts();
3254
3255 queue_regulatory_request(request);
3256
3257 return 0;
3258}
3259
3260void regulatory_hint_indoor(bool is_indoor, u32 portid)
3261{
3262 spin_lock(lock: &reg_indoor_lock);
3263
3264 /* It is possible that more than one user space process is trying to
3265 * configure the indoor setting. To handle such cases, clear the indoor
3266 * setting in case that some process does not think that the device
3267 * is operating in an indoor environment. In addition, if a user space
3268 * process indicates that it is controlling the indoor setting, save its
3269 * portid, i.e., make it the owner.
3270 */
3271 reg_is_indoor = is_indoor;
3272 if (reg_is_indoor) {
3273 if (!reg_is_indoor_portid)
3274 reg_is_indoor_portid = portid;
3275 } else {
3276 reg_is_indoor_portid = 0;
3277 }
3278
3279 spin_unlock(lock: &reg_indoor_lock);
3280
3281 if (!is_indoor)
3282 reg_check_channels();
3283}
3284
3285void regulatory_netlink_notify(u32 portid)
3286{
3287 spin_lock(lock: &reg_indoor_lock);
3288
3289 if (reg_is_indoor_portid != portid) {
3290 spin_unlock(lock: &reg_indoor_lock);
3291 return;
3292 }
3293
3294 reg_is_indoor = false;
3295 reg_is_indoor_portid = 0;
3296
3297 spin_unlock(lock: &reg_indoor_lock);
3298
3299 reg_check_channels();
3300}
3301
3302/* Driver hints */
3303int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3304{
3305 struct regulatory_request *request;
3306
3307 if (WARN_ON(!alpha2 || !wiphy))
3308 return -EINVAL;
3309
3310 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3311
3312 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3313 if (!request)
3314 return -ENOMEM;
3315
3316 request->wiphy_idx = get_wiphy_idx(wiphy);
3317
3318 request->alpha2[0] = alpha2[0];
3319 request->alpha2[1] = alpha2[1];
3320 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3321
3322 /* Allow calling CRDA again */
3323 reset_crda_timeouts();
3324
3325 queue_regulatory_request(request);
3326
3327 return 0;
3328}
3329EXPORT_SYMBOL(regulatory_hint);
3330
3331void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3332 const u8 *country_ie, u8 country_ie_len)
3333{
3334 char alpha2[2];
3335 enum environment_cap env = ENVIRON_ANY;
3336 struct regulatory_request *request = NULL, *lr;
3337
3338 /* IE len must be evenly divisible by 2 */
3339 if (country_ie_len & 0x01)
3340 return;
3341
3342 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3343 return;
3344
3345 request = kzalloc(sizeof(*request), GFP_KERNEL);
3346 if (!request)
3347 return;
3348
3349 alpha2[0] = country_ie[0];
3350 alpha2[1] = country_ie[1];
3351
3352 if (country_ie[2] == 'I')
3353 env = ENVIRON_INDOOR;
3354 else if (country_ie[2] == 'O')
3355 env = ENVIRON_OUTDOOR;
3356
3357 rcu_read_lock();
3358 lr = get_last_request();
3359
3360 if (unlikely(!lr))
3361 goto out;
3362
3363 /*
3364 * We will run this only upon a successful connection on cfg80211.
3365 * We leave conflict resolution to the workqueue, where can hold
3366 * the RTNL.
3367 */
3368 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3369 lr->wiphy_idx != WIPHY_IDX_INVALID)
3370 goto out;
3371
3372 request->wiphy_idx = get_wiphy_idx(wiphy);
3373 request->alpha2[0] = alpha2[0];
3374 request->alpha2[1] = alpha2[1];
3375 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3376 request->country_ie_env = env;
3377
3378 /* Allow calling CRDA again */
3379 reset_crda_timeouts();
3380
3381 queue_regulatory_request(request);
3382 request = NULL;
3383out:
3384 kfree(objp: request);
3385 rcu_read_unlock();
3386}
3387
3388static void restore_alpha2(char *alpha2, bool reset_user)
3389{
3390 /* indicates there is no alpha2 to consider for restoration */
3391 alpha2[0] = '9';
3392 alpha2[1] = '7';
3393
3394 /* The user setting has precedence over the module parameter */
3395 if (is_user_regdom_saved()) {
3396 /* Unless we're asked to ignore it and reset it */
3397 if (reset_user) {
3398 pr_debug("Restoring regulatory settings including user preference\n");
3399 user_alpha2[0] = '9';
3400 user_alpha2[1] = '7';
3401
3402 /*
3403 * If we're ignoring user settings, we still need to
3404 * check the module parameter to ensure we put things
3405 * back as they were for a full restore.
3406 */
3407 if (!is_world_regdom(alpha2: ieee80211_regdom)) {
3408 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3409 ieee80211_regdom[0], ieee80211_regdom[1]);
3410 alpha2[0] = ieee80211_regdom[0];
3411 alpha2[1] = ieee80211_regdom[1];
3412 }
3413 } else {
3414 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3415 user_alpha2[0], user_alpha2[1]);
3416 alpha2[0] = user_alpha2[0];
3417 alpha2[1] = user_alpha2[1];
3418 }
3419 } else if (!is_world_regdom(alpha2: ieee80211_regdom)) {
3420 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3421 ieee80211_regdom[0], ieee80211_regdom[1]);
3422 alpha2[0] = ieee80211_regdom[0];
3423 alpha2[1] = ieee80211_regdom[1];
3424 } else
3425 pr_debug("Restoring regulatory settings\n");
3426}
3427
3428static void restore_custom_reg_settings(struct wiphy *wiphy)
3429{
3430 struct ieee80211_supported_band *sband;
3431 enum nl80211_band band;
3432 struct ieee80211_channel *chan;
3433 int i;
3434
3435 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3436 sband = wiphy->bands[band];
3437 if (!sband)
3438 continue;
3439 for (i = 0; i < sband->n_channels; i++) {
3440 chan = &sband->channels[i];
3441 chan->flags = chan->orig_flags;
3442 chan->max_antenna_gain = chan->orig_mag;
3443 chan->max_power = chan->orig_mpwr;
3444 chan->beacon_found = false;
3445 }
3446 }
3447}
3448
3449/*
3450 * Restoring regulatory settings involves ignoring any
3451 * possibly stale country IE information and user regulatory
3452 * settings if so desired, this includes any beacon hints
3453 * learned as we could have traveled outside to another country
3454 * after disconnection. To restore regulatory settings we do
3455 * exactly what we did at bootup:
3456 *
3457 * - send a core regulatory hint
3458 * - send a user regulatory hint if applicable
3459 *
3460 * Device drivers that send a regulatory hint for a specific country
3461 * keep their own regulatory domain on wiphy->regd so that does
3462 * not need to be remembered.
3463 */
3464static void restore_regulatory_settings(bool reset_user, bool cached)
3465{
3466 char alpha2[2];
3467 char world_alpha2[2];
3468 struct reg_beacon *reg_beacon, *btmp;
3469 LIST_HEAD(tmp_reg_req_list);
3470 struct cfg80211_registered_device *rdev;
3471
3472 ASSERT_RTNL();
3473
3474 /*
3475 * Clear the indoor setting in case that it is not controlled by user
3476 * space, as otherwise there is no guarantee that the device is still
3477 * operating in an indoor environment.
3478 */
3479 spin_lock(lock: &reg_indoor_lock);
3480 if (reg_is_indoor && !reg_is_indoor_portid) {
3481 reg_is_indoor = false;
3482 reg_check_channels();
3483 }
3484 spin_unlock(lock: &reg_indoor_lock);
3485
3486 reset_regdomains(full_reset: true, new_regdom: &world_regdom);
3487 restore_alpha2(alpha2, reset_user);
3488
3489 /*
3490 * If there's any pending requests we simply
3491 * stash them to a temporary pending queue and
3492 * add then after we've restored regulatory
3493 * settings.
3494 */
3495 spin_lock(lock: &reg_requests_lock);
3496 list_splice_tail_init(list: &reg_requests_list, head: &tmp_reg_req_list);
3497 spin_unlock(lock: &reg_requests_lock);
3498
3499 /* Clear beacon hints */
3500 spin_lock_bh(lock: &reg_pending_beacons_lock);
3501 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3502 list_del(entry: &reg_beacon->list);
3503 kfree(objp: reg_beacon);
3504 }
3505 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3506
3507 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3508 list_del(entry: &reg_beacon->list);
3509 kfree(objp: reg_beacon);
3510 }
3511
3512 /* First restore to the basic regulatory settings */
3513 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3514 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3515
3516 for_each_rdev(rdev) {
3517 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3518 continue;
3519 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3520 restore_custom_reg_settings(wiphy: &rdev->wiphy);
3521 }
3522
3523 if (cached && (!is_an_alpha2(alpha2) ||
3524 !IS_ERR_OR_NULL(ptr: cfg80211_user_regdom))) {
3525 reset_regdomains(full_reset: false, new_regdom: cfg80211_world_regdom);
3526 update_all_wiphy_regulatory(initiator: NL80211_REGDOM_SET_BY_CORE);
3527 print_regdomain(rd: get_cfg80211_regdom());
3528 nl80211_send_reg_change_event(request: &core_request_world);
3529 reg_set_request_processed();
3530
3531 if (is_an_alpha2(alpha2) &&
3532 !regulatory_hint_user(alpha2, user_reg_hint_type: NL80211_USER_REG_HINT_USER)) {
3533 struct regulatory_request *ureq;
3534
3535 spin_lock(lock: &reg_requests_lock);
3536 ureq = list_last_entry(&reg_requests_list,
3537 struct regulatory_request,
3538 list);
3539 list_del(entry: &ureq->list);
3540 spin_unlock(lock: &reg_requests_lock);
3541
3542 notify_self_managed_wiphys(request: ureq);
3543 reg_update_last_request(request: ureq);
3544 set_regdom(rd: reg_copy_regd(src_regd: cfg80211_user_regdom),
3545 regd_src: REGD_SOURCE_CACHED);
3546 }
3547 } else {
3548 regulatory_hint_core(alpha2: world_alpha2);
3549
3550 /*
3551 * This restores the ieee80211_regdom module parameter
3552 * preference or the last user requested regulatory
3553 * settings, user regulatory settings takes precedence.
3554 */
3555 if (is_an_alpha2(alpha2))
3556 regulatory_hint_user(alpha2, user_reg_hint_type: NL80211_USER_REG_HINT_USER);
3557 }
3558
3559 spin_lock(lock: &reg_requests_lock);
3560 list_splice_tail_init(list: &tmp_reg_req_list, head: &reg_requests_list);
3561 spin_unlock(lock: &reg_requests_lock);
3562
3563 pr_debug("Kicking the queue\n");
3564
3565 schedule_work(work: &reg_work);
3566}
3567
3568static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3569{
3570 struct cfg80211_registered_device *rdev;
3571 struct wireless_dev *wdev;
3572
3573 for_each_rdev(rdev) {
3574 guard(wiphy)(T: &rdev->wiphy);
3575
3576 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3577 if (!(wdev->wiphy->regulatory_flags & flag))
3578 return false;
3579 }
3580 }
3581
3582 return true;
3583}
3584
3585void regulatory_hint_disconnect(void)
3586{
3587 /* Restore of regulatory settings is not required when wiphy(s)
3588 * ignore IE from connected access point but clearance of beacon hints
3589 * is required when wiphy(s) supports beacon hints.
3590 */
3591 if (is_wiphy_all_set_reg_flag(flag: REGULATORY_COUNTRY_IE_IGNORE)) {
3592 struct reg_beacon *reg_beacon, *btmp;
3593
3594 if (is_wiphy_all_set_reg_flag(flag: REGULATORY_DISABLE_BEACON_HINTS))
3595 return;
3596
3597 spin_lock_bh(lock: &reg_pending_beacons_lock);
3598 list_for_each_entry_safe(reg_beacon, btmp,
3599 &reg_pending_beacons, list) {
3600 list_del(entry: &reg_beacon->list);
3601 kfree(objp: reg_beacon);
3602 }
3603 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3604
3605 list_for_each_entry_safe(reg_beacon, btmp,
3606 &reg_beacon_list, list) {
3607 list_del(entry: &reg_beacon->list);
3608 kfree(objp: reg_beacon);
3609 }
3610
3611 return;
3612 }
3613
3614 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3615 restore_regulatory_settings(reset_user: false, cached: true);
3616}
3617
3618static bool freq_is_chan_12_13_14(u32 freq)
3619{
3620 if (freq == ieee80211_channel_to_frequency(chan: 12, band: NL80211_BAND_2GHZ) ||
3621 freq == ieee80211_channel_to_frequency(chan: 13, band: NL80211_BAND_2GHZ) ||
3622 freq == ieee80211_channel_to_frequency(chan: 14, band: NL80211_BAND_2GHZ))
3623 return true;
3624 return false;
3625}
3626
3627static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3628{
3629 struct reg_beacon *pending_beacon;
3630
3631 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3632 if (ieee80211_channel_equal(a: beacon_chan,
3633 b: &pending_beacon->chan))
3634 return true;
3635 return false;
3636}
3637
3638void regulatory_hint_found_beacon(struct wiphy *wiphy,
3639 struct ieee80211_channel *beacon_chan,
3640 gfp_t gfp)
3641{
3642 struct reg_beacon *reg_beacon;
3643 bool processing;
3644
3645 if (beacon_chan->beacon_found ||
3646 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3647 (beacon_chan->band == NL80211_BAND_2GHZ &&
3648 !freq_is_chan_12_13_14(freq: beacon_chan->center_freq)))
3649 return;
3650
3651 spin_lock_bh(lock: &reg_pending_beacons_lock);
3652 processing = pending_reg_beacon(beacon_chan);
3653 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3654
3655 if (processing)
3656 return;
3657
3658 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3659 if (!reg_beacon)
3660 return;
3661
3662 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3663 beacon_chan->center_freq, beacon_chan->freq_offset,
3664 ieee80211_freq_khz_to_channel(
3665 ieee80211_channel_to_khz(beacon_chan)),
3666 wiphy_name(wiphy));
3667
3668 memcpy(to: &reg_beacon->chan, from: beacon_chan,
3669 len: sizeof(struct ieee80211_channel));
3670
3671 /*
3672 * Since we can be called from BH or and non-BH context
3673 * we must use spin_lock_bh()
3674 */
3675 spin_lock_bh(lock: &reg_pending_beacons_lock);
3676 list_add_tail(new: &reg_beacon->list, head: &reg_pending_beacons);
3677 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3678
3679 schedule_work(work: &reg_work);
3680}
3681
3682static void print_rd_rules(const struct ieee80211_regdomain *rd)
3683{
3684 unsigned int i;
3685 const struct ieee80211_reg_rule *reg_rule = NULL;
3686 const struct ieee80211_freq_range *freq_range = NULL;
3687 const struct ieee80211_power_rule *power_rule = NULL;
3688 char bw[32], cac_time[32];
3689
3690 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3691
3692 for (i = 0; i < rd->n_reg_rules; i++) {
3693 reg_rule = &rd->reg_rules[i];
3694 freq_range = &reg_rule->freq_range;
3695 power_rule = &reg_rule->power_rule;
3696
3697 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3698 snprintf(buf: bw, size: sizeof(bw), fmt: "%d KHz, %u KHz AUTO",
3699 freq_range->max_bandwidth_khz,
3700 reg_get_max_bandwidth(rd, rule: reg_rule));
3701 else
3702 snprintf(buf: bw, size: sizeof(bw), fmt: "%d KHz",
3703 freq_range->max_bandwidth_khz);
3704
3705 if (reg_rule->flags & NL80211_RRF_DFS)
3706 scnprintf(buf: cac_time, size: sizeof(cac_time), fmt: "%u s",
3707 reg_rule->dfs_cac_ms/1000);
3708 else
3709 scnprintf(buf: cac_time, size: sizeof(cac_time), fmt: "N/A");
3710
3711
3712 /*
3713 * There may not be documentation for max antenna gain
3714 * in certain regions
3715 */
3716 if (power_rule->max_antenna_gain)
3717 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3718 freq_range->start_freq_khz,
3719 freq_range->end_freq_khz,
3720 bw,
3721 power_rule->max_antenna_gain,
3722 power_rule->max_eirp,
3723 cac_time);
3724 else
3725 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3726 freq_range->start_freq_khz,
3727 freq_range->end_freq_khz,
3728 bw,
3729 power_rule->max_eirp,
3730 cac_time);
3731 }
3732}
3733
3734bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3735{
3736 switch (dfs_region) {
3737 case NL80211_DFS_UNSET:
3738 case NL80211_DFS_FCC:
3739 case NL80211_DFS_ETSI:
3740 case NL80211_DFS_JP:
3741 return true;
3742 default:
3743 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3744 return false;
3745 }
3746}
3747
3748static void print_regdomain(const struct ieee80211_regdomain *rd)
3749{
3750 struct regulatory_request *lr = get_last_request();
3751
3752 if (is_intersected_alpha2(alpha2: rd->alpha2)) {
3753 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3754 struct cfg80211_registered_device *rdev;
3755 rdev = cfg80211_rdev_by_wiphy_idx(wiphy_idx: lr->wiphy_idx);
3756 if (rdev) {
3757 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3758 rdev->country_ie_alpha2[0],
3759 rdev->country_ie_alpha2[1]);
3760 } else
3761 pr_debug("Current regulatory domain intersected:\n");
3762 } else
3763 pr_debug("Current regulatory domain intersected:\n");
3764 } else if (is_world_regdom(alpha2: rd->alpha2)) {
3765 pr_debug("World regulatory domain updated:\n");
3766 } else {
3767 if (is_unknown_alpha2(alpha2: rd->alpha2))
3768 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3769 else {
3770 if (reg_request_cell_base(request: lr))
3771 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3772 rd->alpha2[0], rd->alpha2[1]);
3773 else
3774 pr_debug("Regulatory domain changed to country: %c%c\n",
3775 rd->alpha2[0], rd->alpha2[1]);
3776 }
3777 }
3778
3779 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3780 print_rd_rules(rd);
3781}
3782
3783static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3784{
3785 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3786 print_rd_rules(rd);
3787}
3788
3789static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3790{
3791 if (!is_world_regdom(alpha2: rd->alpha2))
3792 return -EINVAL;
3793 update_world_regdomain(rd);
3794 return 0;
3795}
3796
3797static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3798 struct regulatory_request *user_request)
3799{
3800 const struct ieee80211_regdomain *intersected_rd = NULL;
3801
3802 if (!regdom_changes(alpha2: rd->alpha2))
3803 return -EALREADY;
3804
3805 if (!is_valid_rd(rd)) {
3806 pr_err("Invalid regulatory domain detected: %c%c\n",
3807 rd->alpha2[0], rd->alpha2[1]);
3808 print_regdomain_info(rd);
3809 return -EINVAL;
3810 }
3811
3812 if (!user_request->intersect) {
3813 reset_regdomains(full_reset: false, new_regdom: rd);
3814 return 0;
3815 }
3816
3817 intersected_rd = regdom_intersect(rd1: rd, rd2: get_cfg80211_regdom());
3818 if (!intersected_rd)
3819 return -EINVAL;
3820
3821 kfree(objp: rd);
3822 rd = NULL;
3823 reset_regdomains(full_reset: false, new_regdom: intersected_rd);
3824
3825 return 0;
3826}
3827
3828static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3829 struct regulatory_request *driver_request)
3830{
3831 const struct ieee80211_regdomain *regd;
3832 const struct ieee80211_regdomain *intersected_rd = NULL;
3833 const struct ieee80211_regdomain *tmp = NULL;
3834 struct wiphy *request_wiphy;
3835
3836 if (is_world_regdom(alpha2: rd->alpha2))
3837 return -EINVAL;
3838
3839 if (!regdom_changes(alpha2: rd->alpha2))
3840 return -EALREADY;
3841
3842 if (!is_valid_rd(rd)) {
3843 pr_err("Invalid regulatory domain detected: %c%c\n",
3844 rd->alpha2[0], rd->alpha2[1]);
3845 print_regdomain_info(rd);
3846 return -EINVAL;
3847 }
3848
3849 request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: driver_request->wiphy_idx);
3850 if (!request_wiphy)
3851 return -ENODEV;
3852
3853 if (!driver_request->intersect) {
3854 ASSERT_RTNL();
3855 scoped_guard(wiphy, request_wiphy) {
3856 if (request_wiphy->regd)
3857 tmp = get_wiphy_regdom(request_wiphy);
3858
3859 regd = reg_copy_regd(src_regd: rd);
3860 if (IS_ERR(ptr: regd))
3861 return PTR_ERR(ptr: regd);
3862
3863 rcu_assign_pointer(request_wiphy->regd, regd);
3864 rcu_free_regdom(r: tmp);
3865 }
3866
3867 reset_regdomains(full_reset: false, new_regdom: rd);
3868 return 0;
3869 }
3870
3871 intersected_rd = regdom_intersect(rd1: rd, rd2: get_cfg80211_regdom());
3872 if (!intersected_rd)
3873 return -EINVAL;
3874
3875 /*
3876 * We can trash what CRDA provided now.
3877 * However if a driver requested this specific regulatory
3878 * domain we keep it for its private use
3879 */
3880 tmp = get_wiphy_regdom(request_wiphy);
3881 rcu_assign_pointer(request_wiphy->regd, rd);
3882 rcu_free_regdom(r: tmp);
3883
3884 rd = NULL;
3885
3886 reset_regdomains(full_reset: false, new_regdom: intersected_rd);
3887
3888 return 0;
3889}
3890
3891static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3892 struct regulatory_request *country_ie_request)
3893{
3894 struct wiphy *request_wiphy;
3895
3896 if (!is_alpha2_set(alpha2: rd->alpha2) && !is_an_alpha2(alpha2: rd->alpha2) &&
3897 !is_unknown_alpha2(alpha2: rd->alpha2))
3898 return -EINVAL;
3899
3900 /*
3901 * Lets only bother proceeding on the same alpha2 if the current
3902 * rd is non static (it means CRDA was present and was used last)
3903 * and the pending request came in from a country IE
3904 */
3905
3906 if (!is_valid_rd(rd)) {
3907 pr_err("Invalid regulatory domain detected: %c%c\n",
3908 rd->alpha2[0], rd->alpha2[1]);
3909 print_regdomain_info(rd);
3910 return -EINVAL;
3911 }
3912
3913 request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: country_ie_request->wiphy_idx);
3914 if (!request_wiphy)
3915 return -ENODEV;
3916
3917 if (country_ie_request->intersect)
3918 return -EINVAL;
3919
3920 reset_regdomains(full_reset: false, new_regdom: rd);
3921 return 0;
3922}
3923
3924/*
3925 * Use this call to set the current regulatory domain. Conflicts with
3926 * multiple drivers can be ironed out later. Caller must've already
3927 * kmalloc'd the rd structure.
3928 */
3929int set_regdom(const struct ieee80211_regdomain *rd,
3930 enum ieee80211_regd_source regd_src)
3931{
3932 struct regulatory_request *lr;
3933 bool user_reset = false;
3934 int r;
3935
3936 if (IS_ERR_OR_NULL(ptr: rd))
3937 return -ENODATA;
3938
3939 if (!reg_is_valid_request(alpha2: rd->alpha2)) {
3940 kfree(objp: rd);
3941 return -EINVAL;
3942 }
3943
3944 if (regd_src == REGD_SOURCE_CRDA)
3945 reset_crda_timeouts();
3946
3947 lr = get_last_request();
3948
3949 /* Note that this doesn't update the wiphys, this is done below */
3950 switch (lr->initiator) {
3951 case NL80211_REGDOM_SET_BY_CORE:
3952 r = reg_set_rd_core(rd);
3953 break;
3954 case NL80211_REGDOM_SET_BY_USER:
3955 cfg80211_save_user_regdom(rd);
3956 r = reg_set_rd_user(rd, user_request: lr);
3957 user_reset = true;
3958 break;
3959 case NL80211_REGDOM_SET_BY_DRIVER:
3960 r = reg_set_rd_driver(rd, driver_request: lr);
3961 break;
3962 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3963 r = reg_set_rd_country_ie(rd, country_ie_request: lr);
3964 break;
3965 default:
3966 WARN(1, "invalid initiator %d\n", lr->initiator);
3967 kfree(objp: rd);
3968 return -EINVAL;
3969 }
3970
3971 if (r) {
3972 switch (r) {
3973 case -EALREADY:
3974 reg_set_request_processed();
3975 break;
3976 default:
3977 /* Back to world regulatory in case of errors */
3978 restore_regulatory_settings(reset_user: user_reset, cached: false);
3979 }
3980
3981 kfree(objp: rd);
3982 return r;
3983 }
3984
3985 /* This would make this whole thing pointless */
3986 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3987 return -EINVAL;
3988
3989 /* update all wiphys now with the new established regulatory domain */
3990 update_all_wiphy_regulatory(initiator: lr->initiator);
3991
3992 print_regdomain(rd: get_cfg80211_regdom());
3993
3994 nl80211_send_reg_change_event(request: lr);
3995
3996 reg_set_request_processed();
3997
3998 return 0;
3999}
4000
4001static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4002 struct ieee80211_regdomain *rd)
4003{
4004 const struct ieee80211_regdomain *regd;
4005 const struct ieee80211_regdomain *prev_regd;
4006 struct cfg80211_registered_device *rdev;
4007
4008 if (WARN_ON(!wiphy || !rd))
4009 return -EINVAL;
4010
4011 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4012 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4013 return -EPERM;
4014
4015 if (WARN(!is_valid_rd(rd),
4016 "Invalid regulatory domain detected: %c%c\n",
4017 rd->alpha2[0], rd->alpha2[1])) {
4018 print_regdomain_info(rd);
4019 return -EINVAL;
4020 }
4021
4022 regd = reg_copy_regd(src_regd: rd);
4023 if (IS_ERR(ptr: regd))
4024 return PTR_ERR(ptr: regd);
4025
4026 rdev = wiphy_to_rdev(wiphy);
4027
4028 spin_lock(lock: &reg_requests_lock);
4029 prev_regd = rdev->requested_regd;
4030 rdev->requested_regd = regd;
4031 spin_unlock(lock: &reg_requests_lock);
4032
4033 kfree(objp: prev_regd);
4034 return 0;
4035}
4036
4037int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4038 struct ieee80211_regdomain *rd)
4039{
4040 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4041
4042 if (ret)
4043 return ret;
4044
4045 schedule_work(work: &reg_work);
4046 return 0;
4047}
4048EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4049
4050int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4051 struct ieee80211_regdomain *rd)
4052{
4053 int ret;
4054
4055 ASSERT_RTNL();
4056
4057 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4058 if (ret)
4059 return ret;
4060
4061 /* process the request immediately */
4062 reg_process_self_managed_hint(wiphy);
4063 reg_check_channels();
4064 return 0;
4065}
4066EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4067
4068void wiphy_regulatory_register(struct wiphy *wiphy)
4069{
4070 struct regulatory_request *lr = get_last_request();
4071
4072 /* self-managed devices ignore beacon hints and country IE */
4073 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4074 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4075 REGULATORY_COUNTRY_IE_IGNORE;
4076
4077 /*
4078 * The last request may have been received before this
4079 * registration call. Call the driver notifier if
4080 * initiator is USER.
4081 */
4082 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4083 reg_call_notifier(wiphy, request: lr);
4084 }
4085
4086 if (!reg_dev_ignore_cell_hint(wiphy))
4087 reg_num_devs_support_basehint++;
4088
4089 wiphy_update_regulatory(wiphy, initiator: lr->initiator);
4090 wiphy_all_share_dfs_chan_state(wiphy);
4091 reg_process_self_managed_hints();
4092}
4093
4094void wiphy_regulatory_deregister(struct wiphy *wiphy)
4095{
4096 struct wiphy *request_wiphy = NULL;
4097 struct regulatory_request *lr;
4098
4099 lr = get_last_request();
4100
4101 if (!reg_dev_ignore_cell_hint(wiphy))
4102 reg_num_devs_support_basehint--;
4103
4104 rcu_free_regdom(r: get_wiphy_regdom(wiphy));
4105 RCU_INIT_POINTER(wiphy->regd, NULL);
4106
4107 if (lr)
4108 request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: lr->wiphy_idx);
4109
4110 if (!request_wiphy || request_wiphy != wiphy)
4111 return;
4112
4113 lr->wiphy_idx = WIPHY_IDX_INVALID;
4114 lr->country_ie_env = ENVIRON_ANY;
4115}
4116
4117/*
4118 * See FCC notices for UNII band definitions
4119 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4120 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4121 */
4122int cfg80211_get_unii(int freq)
4123{
4124 /* UNII-1 */
4125 if (freq >= 5150 && freq <= 5250)
4126 return 0;
4127
4128 /* UNII-2A */
4129 if (freq > 5250 && freq <= 5350)
4130 return 1;
4131
4132 /* UNII-2B */
4133 if (freq > 5350 && freq <= 5470)
4134 return 2;
4135
4136 /* UNII-2C */
4137 if (freq > 5470 && freq <= 5725)
4138 return 3;
4139
4140 /* UNII-3 */
4141 if (freq > 5725 && freq <= 5825)
4142 return 4;
4143
4144 /* UNII-5 */
4145 if (freq > 5925 && freq <= 6425)
4146 return 5;
4147
4148 /* UNII-6 */
4149 if (freq > 6425 && freq <= 6525)
4150 return 6;
4151
4152 /* UNII-7 */
4153 if (freq > 6525 && freq <= 6875)
4154 return 7;
4155
4156 /* UNII-8 */
4157 if (freq > 6875 && freq <= 7125)
4158 return 8;
4159
4160 return -EINVAL;
4161}
4162
4163bool regulatory_indoor_allowed(void)
4164{
4165 return reg_is_indoor;
4166}
4167
4168bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4169{
4170 const struct ieee80211_regdomain *regd = NULL;
4171 const struct ieee80211_regdomain *wiphy_regd = NULL;
4172 bool pre_cac_allowed = false;
4173
4174 rcu_read_lock();
4175
4176 regd = rcu_dereference(cfg80211_regdomain);
4177 wiphy_regd = rcu_dereference(wiphy->regd);
4178 if (!wiphy_regd) {
4179 if (regd->dfs_region == NL80211_DFS_ETSI)
4180 pre_cac_allowed = true;
4181
4182 rcu_read_unlock();
4183
4184 return pre_cac_allowed;
4185 }
4186
4187 if (regd->dfs_region == wiphy_regd->dfs_region &&
4188 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4189 pre_cac_allowed = true;
4190
4191 rcu_read_unlock();
4192
4193 return pre_cac_allowed;
4194}
4195EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4196
4197static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4198{
4199 struct wireless_dev *wdev;
4200 unsigned int link_id;
4201
4202 guard(wiphy)(T: &rdev->wiphy);
4203
4204 /* If we finished CAC or received radar, we should end any
4205 * CAC running on the same channels.
4206 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4207 * either all channels are available - those the CAC_FINISHED
4208 * event has effected another wdev state, or there is a channel
4209 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4210 * event has effected another wdev state.
4211 * In both cases we should end the CAC on the wdev.
4212 */
4213 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4214 struct cfg80211_chan_def *chandef;
4215
4216 for_each_valid_link(wdev, link_id) {
4217 if (!wdev->links[link_id].cac_started)
4218 continue;
4219
4220 chandef = wdev_chandef(wdev, link_id);
4221 if (!chandef)
4222 continue;
4223
4224 if (!cfg80211_chandef_dfs_usable(wiphy: &rdev->wiphy, chandef))
4225 rdev_end_cac(rdev, dev: wdev->netdev, link_id);
4226 }
4227 }
4228}
4229
4230void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4231 struct cfg80211_chan_def *chandef,
4232 enum nl80211_dfs_state dfs_state,
4233 enum nl80211_radar_event event)
4234{
4235 struct cfg80211_registered_device *rdev;
4236
4237 ASSERT_RTNL();
4238
4239 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4240 return;
4241
4242 for_each_rdev(rdev) {
4243 if (wiphy == &rdev->wiphy)
4244 continue;
4245
4246 if (!reg_dfs_domain_same(wiphy1: wiphy, wiphy2: &rdev->wiphy))
4247 continue;
4248
4249 if (!ieee80211_get_channel(wiphy: &rdev->wiphy,
4250 freq: chandef->chan->center_freq))
4251 continue;
4252
4253 cfg80211_set_dfs_state(wiphy: &rdev->wiphy, chandef, dfs_state);
4254
4255 if (event == NL80211_RADAR_DETECTED ||
4256 event == NL80211_RADAR_CAC_FINISHED) {
4257 cfg80211_sched_dfs_chan_update(rdev);
4258 cfg80211_check_and_end_cac(rdev);
4259 }
4260
4261 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4262 }
4263}
4264
4265static int __init regulatory_init_db(void)
4266{
4267 int err;
4268
4269 /*
4270 * It's possible that - due to other bugs/issues - cfg80211
4271 * never called regulatory_init() below, or that it failed;
4272 * in that case, don't try to do any further work here as
4273 * it's doomed to lead to crashes.
4274 */
4275 if (!reg_fdev)
4276 return -EINVAL;
4277
4278 err = load_builtin_regdb_keys();
4279 if (err) {
4280 faux_device_destroy(faux_dev: reg_fdev);
4281 return err;
4282 }
4283
4284 /* We always try to get an update for the static regdomain */
4285 err = regulatory_hint_core(alpha2: cfg80211_world_regdom->alpha2);
4286 if (err) {
4287 if (err == -ENOMEM) {
4288 faux_device_destroy(faux_dev: reg_fdev);
4289 return err;
4290 }
4291 /*
4292 * N.B. kobject_uevent_env() can fail mainly for when we're out
4293 * memory which is handled and propagated appropriately above
4294 * but it can also fail during a netlink_broadcast() or during
4295 * early boot for call_usermodehelper(). For now treat these
4296 * errors as non-fatal.
4297 */
4298 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4299 }
4300
4301 /*
4302 * Finally, if the user set the module parameter treat it
4303 * as a user hint.
4304 */
4305 if (!is_world_regdom(alpha2: ieee80211_regdom))
4306 regulatory_hint_user(alpha2: ieee80211_regdom,
4307 user_reg_hint_type: NL80211_USER_REG_HINT_USER);
4308
4309 return 0;
4310}
4311#ifndef MODULE
4312late_initcall(regulatory_init_db);
4313#endif
4314
4315int __init regulatory_init(void)
4316{
4317 reg_fdev = faux_device_create(name: "regulatory", NULL, NULL);
4318 if (!reg_fdev)
4319 return -ENODEV;
4320
4321 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4322
4323 user_alpha2[0] = '9';
4324 user_alpha2[1] = '7';
4325
4326#ifdef MODULE
4327 return regulatory_init_db();
4328#else
4329 return 0;
4330#endif
4331}
4332
4333void regulatory_exit(void)
4334{
4335 struct regulatory_request *reg_request, *tmp;
4336 struct reg_beacon *reg_beacon, *btmp;
4337
4338 cancel_work_sync(work: &reg_work);
4339 cancel_crda_timeout_sync();
4340 cancel_delayed_work_sync(dwork: &reg_check_chans);
4341
4342 /* Lock to suppress warnings */
4343 rtnl_lock();
4344 reset_regdomains(full_reset: true, NULL);
4345 rtnl_unlock();
4346
4347 dev_set_uevent_suppress(dev: &reg_fdev->dev, val: true);
4348
4349 faux_device_destroy(faux_dev: reg_fdev);
4350
4351 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4352 list_del(entry: &reg_beacon->list);
4353 kfree(objp: reg_beacon);
4354 }
4355
4356 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4357 list_del(entry: &reg_beacon->list);
4358 kfree(objp: reg_beacon);
4359 }
4360
4361 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4362 list_del(entry: &reg_request->list);
4363 kfree(objp: reg_request);
4364 }
4365
4366 if (!IS_ERR_OR_NULL(ptr: regdb))
4367 kfree(objp: regdb);
4368 if (!IS_ERR_OR_NULL(ptr: cfg80211_user_regdom))
4369 kfree(objp: cfg80211_user_regdom);
4370
4371 free_regdb_keyring();
4372}
4373