1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include <linux/errno.h>
5#include <linux/kernel.h>
6#include <linux/mm.h>
7#include <linux/smp.h>
8#include <linux/cpu.h>
9#include <linux/prctl.h>
10#include <linux/slab.h>
11#include <linux/sched.h>
12#include <linux/sched/idle.h>
13#include <linux/sched/debug.h>
14#include <linux/sched/task.h>
15#include <linux/sched/task_stack.h>
16#include <linux/init.h>
17#include <linux/export.h>
18#include <linux/pm.h>
19#include <linux/tick.h>
20#include <linux/random.h>
21#include <linux/user-return-notifier.h>
22#include <linux/dmi.h>
23#include <linux/utsname.h>
24#include <linux/stackprotector.h>
25#include <linux/cpuidle.h>
26#include <linux/acpi.h>
27#include <linux/elf-randomize.h>
28#include <linux/static_call.h>
29#include <trace/events/power.h>
30#include <linux/hw_breakpoint.h>
31#include <linux/entry-common.h>
32#include <asm/cpu.h>
33#include <asm/cpuid/api.h>
34#include <asm/apic.h>
35#include <linux/uaccess.h>
36#include <asm/mwait.h>
37#include <asm/fpu/api.h>
38#include <asm/fpu/sched.h>
39#include <asm/fpu/xstate.h>
40#include <asm/debugreg.h>
41#include <asm/nmi.h>
42#include <asm/tlbflush.h>
43#include <asm/mce.h>
44#include <asm/vm86.h>
45#include <asm/switch_to.h>
46#include <asm/desc.h>
47#include <asm/prctl.h>
48#include <asm/spec-ctrl.h>
49#include <asm/io_bitmap.h>
50#include <asm/proto.h>
51#include <asm/frame.h>
52#include <asm/unwind.h>
53#include <asm/tdx.h>
54#include <asm/mmu_context.h>
55#include <asm/msr.h>
56#include <asm/shstk.h>
57
58#include "process.h"
59
60/*
61 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
62 * no more per-task TSS's. The TSS size is kept cacheline-aligned
63 * so they are allowed to end up in the .data..cacheline_aligned
64 * section. Since TSS's are completely CPU-local, we want them
65 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
66 */
67__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
68 .x86_tss = {
69 /*
70 * .sp0 is only used when entering ring 0 from a lower
71 * privilege level. Since the init task never runs anything
72 * but ring 0 code, there is no need for a valid value here.
73 * Poison it.
74 */
75 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
76
77#ifdef CONFIG_X86_32
78 .sp1 = TOP_OF_INIT_STACK,
79
80 .ss0 = __KERNEL_DS,
81 .ss1 = __KERNEL_CS,
82#endif
83 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
84 },
85};
86EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
87
88DEFINE_PER_CPU(bool, __tss_limit_invalid);
89EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
90
91/*
92 * The cache may be in an incoherent state and needs flushing during kexec.
93 * E.g., on SME/TDX platforms, dirty cacheline aliases with and without
94 * encryption bit(s) can coexist and the cache needs to be flushed before
95 * booting to the new kernel to avoid the silent memory corruption due to
96 * dirty cachelines with different encryption property being written back
97 * to the memory.
98 */
99DEFINE_PER_CPU(bool, cache_state_incoherent);
100
101/*
102 * this gets called so that we can store lazy state into memory and copy the
103 * current task into the new thread.
104 */
105int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
106{
107 /* fpu_clone() will initialize the "dst_fpu" memory */
108 memcpy_and_pad(dest: dst, dest_len: arch_task_struct_size, src, count: sizeof(*dst), pad: 0);
109
110#ifdef CONFIG_VM86
111 dst->thread.vm86 = NULL;
112#endif
113
114 return 0;
115}
116
117#ifdef CONFIG_X86_64
118void arch_release_task_struct(struct task_struct *tsk)
119{
120 if (fpu_state_size_dynamic() && !(tsk->flags & (PF_KTHREAD | PF_USER_WORKER)))
121 fpstate_free(fpu: x86_task_fpu(task: tsk));
122}
123#endif
124
125/*
126 * Free thread data structures etc..
127 */
128void exit_thread(struct task_struct *tsk)
129{
130 struct thread_struct *t = &tsk->thread;
131
132 if (test_thread_flag(TIF_IO_BITMAP))
133 io_bitmap_exit(tsk);
134
135 free_vm86(t);
136
137 shstk_free(p: tsk);
138 fpu__drop(tsk);
139}
140
141static int set_new_tls(struct task_struct *p, unsigned long tls)
142{
143 struct user_desc __user *utls = (struct user_desc __user *)tls;
144
145 if (in_ia32_syscall())
146 return do_set_thread_area(p, idx: -1, info: utls, can_allocate: 0);
147 else
148 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
149}
150
151__visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
152 int (*fn)(void *), void *fn_arg)
153{
154 schedule_tail(prev);
155
156 /* Is this a kernel thread? */
157 if (unlikely(fn)) {
158 fn(fn_arg);
159 /*
160 * A kernel thread is allowed to return here after successfully
161 * calling kernel_execve(). Exit to userspace to complete the
162 * execve() syscall.
163 */
164 regs->ax = 0;
165 }
166
167 syscall_exit_to_user_mode(regs);
168}
169
170int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
171{
172 u64 clone_flags = args->flags;
173 unsigned long sp = args->stack;
174 unsigned long tls = args->tls;
175 struct inactive_task_frame *frame;
176 struct fork_frame *fork_frame;
177 struct pt_regs *childregs;
178 unsigned long new_ssp;
179 int ret = 0;
180
181 childregs = task_pt_regs(p);
182 fork_frame = container_of(childregs, struct fork_frame, regs);
183 frame = &fork_frame->frame;
184
185 frame->bp = encode_frame_pointer(regs: childregs);
186 frame->ret_addr = (unsigned long) ret_from_fork_asm;
187 p->thread.sp = (unsigned long) fork_frame;
188 p->thread.io_bitmap = NULL;
189 clear_tsk_thread_flag(tsk: p, TIF_IO_BITMAP);
190 p->thread.iopl_warn = 0;
191 memset(s: p->thread.ptrace_bps, c: 0, n: sizeof(p->thread.ptrace_bps));
192
193#ifdef CONFIG_X86_64
194 current_save_fsgs();
195 p->thread.fsindex = current->thread.fsindex;
196 p->thread.fsbase = current->thread.fsbase;
197 p->thread.gsindex = current->thread.gsindex;
198 p->thread.gsbase = current->thread.gsbase;
199
200 savesegment(es, p->thread.es);
201 savesegment(ds, p->thread.ds);
202
203 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
204 set_bit(MM_CONTEXT_LOCK_LAM, addr: &p->mm->context.flags);
205#else
206 p->thread.sp0 = (unsigned long) (childregs + 1);
207 savesegment(gs, p->thread.gs);
208 /*
209 * Clear all status flags including IF and set fixed bit. 64bit
210 * does not have this initialization as the frame does not contain
211 * flags. The flags consistency (especially vs. AC) is there
212 * ensured via objtool, which lacks 32bit support.
213 */
214 frame->flags = X86_EFLAGS_FIXED;
215#endif
216
217 /*
218 * Allocate a new shadow stack for thread if needed. If shadow stack,
219 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
220 * update it.
221 */
222 new_ssp = shstk_alloc_thread_stack(p, clone_flags, stack_size: args->stack_size);
223 if (IS_ERR_VALUE(new_ssp))
224 return PTR_ERR(ptr: (void *)new_ssp);
225
226 fpu_clone(dst: p, clone_flags, minimal: args->fn, shstk_addr: new_ssp);
227
228 /* Kernel thread ? */
229 if (unlikely(p->flags & PF_KTHREAD)) {
230 p->thread.pkru = pkru_get_init_value();
231 memset(s: childregs, c: 0, n: sizeof(struct pt_regs));
232 kthread_frame_init(frame, fun: args->fn, arg: args->fn_arg);
233 return 0;
234 }
235
236 /*
237 * Clone current's PKRU value from hardware. tsk->thread.pkru
238 * is only valid when scheduled out.
239 */
240 p->thread.pkru = read_pkru();
241
242 frame->bx = 0;
243 *childregs = *current_pt_regs();
244 childregs->ax = 0;
245 if (sp)
246 childregs->sp = sp;
247
248 if (unlikely(args->fn)) {
249 /*
250 * A user space thread, but it doesn't return to
251 * ret_after_fork().
252 *
253 * In order to indicate that to tools like gdb,
254 * we reset the stack and instruction pointers.
255 *
256 * It does the same kernel frame setup to return to a kernel
257 * function that a kernel thread does.
258 */
259 childregs->sp = 0;
260 childregs->ip = 0;
261 kthread_frame_init(frame, fun: args->fn, arg: args->fn_arg);
262 return 0;
263 }
264
265 /* Set a new TLS for the child thread? */
266 if (clone_flags & CLONE_SETTLS)
267 ret = set_new_tls(p, tls);
268
269 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
270 io_bitmap_share(tsk: p);
271
272 return ret;
273}
274
275static void pkru_flush_thread(void)
276{
277 /*
278 * If PKRU is enabled the default PKRU value has to be loaded into
279 * the hardware right here (similar to context switch).
280 */
281 pkru_write_default();
282}
283
284void flush_thread(void)
285{
286 struct task_struct *tsk = current;
287
288 flush_ptrace_hw_breakpoint(tsk);
289 memset(s: tsk->thread.tls_array, c: 0, n: sizeof(tsk->thread.tls_array));
290
291 fpu_flush_thread();
292 pkru_flush_thread();
293}
294
295void disable_TSC(void)
296{
297 preempt_disable();
298 if (!test_and_set_thread_flag(TIF_NOTSC))
299 /*
300 * Must flip the CPU state synchronously with
301 * TIF_NOTSC in the current running context.
302 */
303 cr4_set_bits(X86_CR4_TSD);
304 preempt_enable();
305}
306
307static void enable_TSC(void)
308{
309 preempt_disable();
310 if (test_and_clear_thread_flag(TIF_NOTSC))
311 /*
312 * Must flip the CPU state synchronously with
313 * TIF_NOTSC in the current running context.
314 */
315 cr4_clear_bits(X86_CR4_TSD);
316 preempt_enable();
317}
318
319int get_tsc_mode(unsigned long adr)
320{
321 unsigned int val;
322
323 if (test_thread_flag(TIF_NOTSC))
324 val = PR_TSC_SIGSEGV;
325 else
326 val = PR_TSC_ENABLE;
327
328 return put_user(val, (unsigned int __user *)adr);
329}
330
331int set_tsc_mode(unsigned int val)
332{
333 if (val == PR_TSC_SIGSEGV)
334 disable_TSC();
335 else if (val == PR_TSC_ENABLE)
336 enable_TSC();
337 else
338 return -EINVAL;
339
340 return 0;
341}
342
343DEFINE_PER_CPU(u64, msr_misc_features_shadow);
344
345static void set_cpuid_faulting(bool on)
346{
347
348 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
349 u64 msrval;
350
351 msrval = this_cpu_read(msr_misc_features_shadow);
352 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
353 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
354 this_cpu_write(msr_misc_features_shadow, msrval);
355 wrmsrq(MSR_MISC_FEATURES_ENABLES, val: msrval);
356 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
357 if (on)
358 msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_CPUID_USER_DIS_BIT);
359 else
360 msr_clear_bit(MSR_K7_HWCR, MSR_K7_HWCR_CPUID_USER_DIS_BIT);
361 }
362}
363
364static void disable_cpuid(void)
365{
366 preempt_disable();
367 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
368 /*
369 * Must flip the CPU state synchronously with
370 * TIF_NOCPUID in the current running context.
371 */
372 set_cpuid_faulting(true);
373 }
374 preempt_enable();
375}
376
377static void enable_cpuid(void)
378{
379 preempt_disable();
380 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
381 /*
382 * Must flip the CPU state synchronously with
383 * TIF_NOCPUID in the current running context.
384 */
385 set_cpuid_faulting(false);
386 }
387 preempt_enable();
388}
389
390static int get_cpuid_mode(void)
391{
392 return !test_thread_flag(TIF_NOCPUID);
393}
394
395static int set_cpuid_mode(unsigned long cpuid_enabled)
396{
397 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
398 return -ENODEV;
399
400 if (cpuid_enabled)
401 enable_cpuid();
402 else
403 disable_cpuid();
404
405 return 0;
406}
407
408/*
409 * Called immediately after a successful exec.
410 */
411void arch_setup_new_exec(void)
412{
413 /* If cpuid was previously disabled for this task, re-enable it. */
414 if (test_thread_flag(TIF_NOCPUID))
415 enable_cpuid();
416
417 /*
418 * Don't inherit TIF_SSBD across exec boundary when
419 * PR_SPEC_DISABLE_NOEXEC is used.
420 */
421 if (test_thread_flag(TIF_SSBD) &&
422 task_spec_ssb_noexec(current)) {
423 clear_thread_flag(TIF_SSBD);
424 task_clear_spec_ssb_disable(current);
425 task_clear_spec_ssb_noexec(current);
426 speculation_ctrl_update(read_thread_flags());
427 }
428
429 mm_reset_untag_mask(current->mm);
430}
431
432#ifdef CONFIG_X86_IOPL_IOPERM
433static inline void switch_to_bitmap(unsigned long tifp)
434{
435 /*
436 * Invalidate I/O bitmap if the previous task used it. This prevents
437 * any possible leakage of an active I/O bitmap.
438 *
439 * If the next task has an I/O bitmap it will handle it on exit to
440 * user mode.
441 */
442 if (tifp & _TIF_IO_BITMAP)
443 tss_invalidate_io_bitmap();
444}
445
446static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
447{
448 /*
449 * Copy at least the byte range of the incoming tasks bitmap which
450 * covers the permitted I/O ports.
451 *
452 * If the previous task which used an I/O bitmap had more bits
453 * permitted, then the copy needs to cover those as well so they
454 * get turned off.
455 */
456 memcpy(to: tss->io_bitmap.bitmap, from: iobm->bitmap,
457 max(tss->io_bitmap.prev_max, iobm->max));
458
459 /*
460 * Store the new max and the sequence number of this bitmap
461 * and a pointer to the bitmap itself.
462 */
463 tss->io_bitmap.prev_max = iobm->max;
464 tss->io_bitmap.prev_sequence = iobm->sequence;
465}
466
467/**
468 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
469 */
470void native_tss_update_io_bitmap(void)
471{
472 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
473 struct thread_struct *t = &current->thread;
474 u16 *base = &tss->x86_tss.io_bitmap_base;
475
476 if (!test_thread_flag(TIF_IO_BITMAP)) {
477 native_tss_invalidate_io_bitmap();
478 return;
479 }
480
481 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
482 *base = IO_BITMAP_OFFSET_VALID_ALL;
483 } else {
484 struct io_bitmap *iobm = t->io_bitmap;
485
486 if (WARN_ON_ONCE(!iobm)) {
487 clear_thread_flag(TIF_IO_BITMAP);
488 native_tss_invalidate_io_bitmap();
489 }
490
491 /*
492 * Only copy bitmap data when the sequence number differs. The
493 * update time is accounted to the incoming task.
494 */
495 if (tss->io_bitmap.prev_sequence != iobm->sequence)
496 tss_copy_io_bitmap(tss, iobm);
497
498 /* Enable the bitmap */
499 *base = IO_BITMAP_OFFSET_VALID_MAP;
500 }
501
502 /*
503 * Make sure that the TSS limit is covering the IO bitmap. It might have
504 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
505 * access from user space to trigger a #GP because the bitmap is outside
506 * the TSS limit.
507 */
508 refresh_tss_limit();
509}
510#else /* CONFIG_X86_IOPL_IOPERM */
511static inline void switch_to_bitmap(unsigned long tifp) { }
512#endif
513
514#ifdef CONFIG_SMP
515
516struct ssb_state {
517 struct ssb_state *shared_state;
518 raw_spinlock_t lock;
519 unsigned int disable_state;
520 unsigned long local_state;
521};
522
523#define LSTATE_SSB 0
524
525static DEFINE_PER_CPU(struct ssb_state, ssb_state);
526
527void speculative_store_bypass_ht_init(void)
528{
529 struct ssb_state *st = this_cpu_ptr(&ssb_state);
530 unsigned int this_cpu = smp_processor_id();
531 unsigned int cpu;
532
533 st->local_state = 0;
534
535 /*
536 * Shared state setup happens once on the first bringup
537 * of the CPU. It's not destroyed on CPU hotunplug.
538 */
539 if (st->shared_state)
540 return;
541
542 raw_spin_lock_init(&st->lock);
543
544 /*
545 * Go over HT siblings and check whether one of them has set up the
546 * shared state pointer already.
547 */
548 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
549 if (cpu == this_cpu)
550 continue;
551
552 if (!per_cpu(ssb_state, cpu).shared_state)
553 continue;
554
555 /* Link it to the state of the sibling: */
556 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
557 return;
558 }
559
560 /*
561 * First HT sibling to come up on the core. Link shared state of
562 * the first HT sibling to itself. The siblings on the same core
563 * which come up later will see the shared state pointer and link
564 * themselves to the state of this CPU.
565 */
566 st->shared_state = st;
567}
568
569/*
570 * Logic is: First HT sibling enables SSBD for both siblings in the core
571 * and last sibling to disable it, disables it for the whole core. This how
572 * MSR_SPEC_CTRL works in "hardware":
573 *
574 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
575 */
576static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
577{
578 struct ssb_state *st = this_cpu_ptr(&ssb_state);
579 u64 msr = x86_amd_ls_cfg_base;
580
581 if (!static_cpu_has(X86_FEATURE_ZEN)) {
582 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
583 wrmsrq(MSR_AMD64_LS_CFG, val: msr);
584 return;
585 }
586
587 if (tifn & _TIF_SSBD) {
588 /*
589 * Since this can race with prctl(), block reentry on the
590 * same CPU.
591 */
592 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
593 return;
594
595 msr |= x86_amd_ls_cfg_ssbd_mask;
596
597 raw_spin_lock(&st->shared_state->lock);
598 /* First sibling enables SSBD: */
599 if (!st->shared_state->disable_state)
600 wrmsrq(MSR_AMD64_LS_CFG, val: msr);
601 st->shared_state->disable_state++;
602 raw_spin_unlock(&st->shared_state->lock);
603 } else {
604 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
605 return;
606
607 raw_spin_lock(&st->shared_state->lock);
608 st->shared_state->disable_state--;
609 if (!st->shared_state->disable_state)
610 wrmsrq(MSR_AMD64_LS_CFG, val: msr);
611 raw_spin_unlock(&st->shared_state->lock);
612 }
613}
614#else
615static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
616{
617 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
618
619 wrmsrq(MSR_AMD64_LS_CFG, msr);
620}
621#endif
622
623static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
624{
625 /*
626 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
627 * so ssbd_tif_to_spec_ctrl() just works.
628 */
629 wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, val: ssbd_tif_to_spec_ctrl(tifn));
630}
631
632/*
633 * Update the MSRs managing speculation control, during context switch.
634 *
635 * tifp: Previous task's thread flags
636 * tifn: Next task's thread flags
637 */
638static __always_inline void __speculation_ctrl_update(unsigned long tifp,
639 unsigned long tifn)
640{
641 unsigned long tif_diff = tifp ^ tifn;
642 u64 msr = x86_spec_ctrl_base;
643 bool updmsr = false;
644
645 lockdep_assert_irqs_disabled();
646
647 /* Handle change of TIF_SSBD depending on the mitigation method. */
648 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
649 if (tif_diff & _TIF_SSBD)
650 amd_set_ssb_virt_state(tifn);
651 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
652 if (tif_diff & _TIF_SSBD)
653 amd_set_core_ssb_state(tifn);
654 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
655 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
656 updmsr |= !!(tif_diff & _TIF_SSBD);
657 msr |= ssbd_tif_to_spec_ctrl(tifn);
658 }
659
660 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
661 if (IS_ENABLED(CONFIG_SMP) &&
662 static_branch_unlikely(&switch_to_cond_stibp)) {
663 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
664 msr |= stibp_tif_to_spec_ctrl(tifn);
665 }
666
667 if (updmsr)
668 update_spec_ctrl_cond(val: msr);
669}
670
671static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
672{
673 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
674 if (task_spec_ssb_disable(p: tsk))
675 set_tsk_thread_flag(tsk, TIF_SSBD);
676 else
677 clear_tsk_thread_flag(tsk, TIF_SSBD);
678
679 if (task_spec_ib_disable(p: tsk))
680 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
681 else
682 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
683 }
684 /* Return the updated threadinfo flags*/
685 return read_task_thread_flags(tsk);
686}
687
688void speculation_ctrl_update(unsigned long tif)
689{
690 unsigned long flags;
691
692 /* Forced update. Make sure all relevant TIF flags are different */
693 local_irq_save(flags);
694 __speculation_ctrl_update(tifp: ~tif, tifn: tif);
695 local_irq_restore(flags);
696}
697
698/* Called from seccomp/prctl update */
699void speculation_ctrl_update_current(void)
700{
701 preempt_disable();
702 speculation_ctrl_update(tif: speculation_ctrl_update_tif(current));
703 preempt_enable();
704}
705
706static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
707{
708 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
709
710 newval = cr4 ^ mask;
711 if (newval != cr4) {
712 this_cpu_write(cpu_tlbstate.cr4, newval);
713 __write_cr4(x: newval);
714 }
715}
716
717void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
718{
719 unsigned long tifp, tifn;
720
721 tifn = read_task_thread_flags(next_p);
722 tifp = read_task_thread_flags(prev_p);
723
724 switch_to_bitmap(tifp);
725
726 propagate_user_return_notify(prev: prev_p, next: next_p);
727
728 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
729 arch_has_block_step()) {
730 unsigned long debugctl, msk;
731
732 rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
733 debugctl &= ~DEBUGCTLMSR_BTF;
734 msk = tifn & _TIF_BLOCKSTEP;
735 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
736 wrmsrq(MSR_IA32_DEBUGCTLMSR, val: debugctl);
737 }
738
739 if ((tifp ^ tifn) & _TIF_NOTSC)
740 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
741
742 if ((tifp ^ tifn) & _TIF_NOCPUID)
743 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
744
745 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
746 __speculation_ctrl_update(tifp, tifn);
747 } else {
748 speculation_ctrl_update_tif(tsk: prev_p);
749 tifn = speculation_ctrl_update_tif(tsk: next_p);
750
751 /* Enforce MSR update to ensure consistent state */
752 __speculation_ctrl_update(tifp: ~tifn, tifn);
753 }
754}
755
756/*
757 * Idle related variables and functions
758 */
759unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
760EXPORT_SYMBOL(boot_option_idle_override);
761
762/*
763 * We use this if we don't have any better idle routine..
764 */
765void __cpuidle default_idle(void)
766{
767 raw_safe_halt();
768 raw_local_irq_disable();
769}
770#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
771EXPORT_SYMBOL(default_idle);
772#endif
773
774DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
775
776static bool x86_idle_set(void)
777{
778 return !!static_call_query(x86_idle);
779}
780
781#ifndef CONFIG_SMP
782static inline void __noreturn play_dead(void)
783{
784 BUG();
785}
786#endif
787
788void arch_cpu_idle_enter(void)
789{
790 tsc_verify_tsc_adjust(resume: false);
791 local_touch_nmi();
792}
793
794void __noreturn arch_cpu_idle_dead(void)
795{
796 play_dead();
797}
798
799/*
800 * Called from the generic idle code.
801 */
802void __cpuidle arch_cpu_idle(void)
803{
804 static_call(x86_idle)();
805}
806EXPORT_SYMBOL_GPL(arch_cpu_idle);
807
808#ifdef CONFIG_XEN
809bool xen_set_default_idle(void)
810{
811 bool ret = x86_idle_set();
812
813 static_call_update(x86_idle, default_idle);
814
815 return ret;
816}
817#endif
818
819struct cpumask cpus_stop_mask;
820
821void __noreturn stop_this_cpu(void *dummy)
822{
823 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
824 unsigned int cpu = smp_processor_id();
825
826 local_irq_disable();
827
828 /*
829 * Remove this CPU from the online mask and disable it
830 * unconditionally. This might be redundant in case that the reboot
831 * vector was handled late and stop_other_cpus() sent an NMI.
832 *
833 * According to SDM and APM NMIs can be accepted even after soft
834 * disabling the local APIC.
835 */
836 set_cpu_online(cpu, online: false);
837 disable_local_APIC();
838 mcheck_cpu_clear(c);
839
840 if (this_cpu_read(cache_state_incoherent))
841 wbinvd();
842
843 /*
844 * This brings a cache line back and dirties it, but
845 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
846 * observed that all CPUs reported stop. This write will invalidate
847 * the related cache line on this CPU.
848 */
849 cpumask_clear_cpu(cpu, dstp: &cpus_stop_mask);
850
851#ifdef CONFIG_SMP
852 if (smp_ops.stop_this_cpu) {
853 smp_ops.stop_this_cpu();
854 BUG();
855 }
856#endif
857
858 for (;;) {
859 /*
860 * Use native_halt() so that memory contents don't change
861 * (stack usage and variables) after possibly issuing the
862 * wbinvd() above.
863 */
864 native_halt();
865 }
866}
867
868/*
869 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
870 * exists and whenever MONITOR/MWAIT extensions are present there is at
871 * least one C1 substate.
872 *
873 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
874 * is passed to kernel commandline parameter.
875 */
876static __init bool prefer_mwait_c1_over_halt(void)
877{
878 const struct cpuinfo_x86 *c = &boot_cpu_data;
879 u32 eax, ebx, ecx, edx;
880
881 /* If override is enforced on the command line, fall back to HALT. */
882 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
883 return false;
884
885 /* MWAIT is not supported on this platform. Fallback to HALT */
886 if (!cpu_has(c, X86_FEATURE_MWAIT))
887 return false;
888
889 /* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
890 if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
891 return false;
892
893 cpuid(CPUID_LEAF_MWAIT, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
894
895 /*
896 * If MWAIT extensions are not available, it is safe to use MWAIT
897 * with EAX=0, ECX=0.
898 */
899 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
900 return true;
901
902 /*
903 * If MWAIT extensions are available, there should be at least one
904 * MWAIT C1 substate present.
905 */
906 return !!(edx & MWAIT_C1_SUBSTATE_MASK);
907}
908
909/*
910 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
911 * with interrupts enabled and no flags, which is backwards compatible with the
912 * original MWAIT implementation.
913 */
914static __cpuidle void mwait_idle(void)
915{
916 if (need_resched())
917 return;
918
919 x86_idle_clear_cpu_buffers();
920
921 if (!current_set_polling_and_test()) {
922 const void *addr = &current_thread_info()->flags;
923
924 alternative_input("", "clflush (%[addr])", X86_BUG_CLFLUSH_MONITOR, [addr] "a" (addr));
925 __monitor(eax: addr, ecx: 0, edx: 0);
926 if (need_resched())
927 goto out;
928
929 __sti_mwait(eax: 0, ecx: 0);
930 raw_local_irq_disable();
931 }
932
933out:
934 __current_clr_polling();
935}
936
937void __init select_idle_routine(void)
938{
939 if (boot_option_idle_override == IDLE_POLL) {
940 if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
941 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
942 return;
943 }
944
945 /* Required to guard against xen_set_default_idle() */
946 if (x86_idle_set())
947 return;
948
949 if (prefer_mwait_c1_over_halt()) {
950 pr_info("using mwait in idle threads\n");
951 static_call_update(x86_idle, mwait_idle);
952 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
953 pr_info("using TDX aware idle routine\n");
954 static_call_update(x86_idle, tdx_halt);
955 } else {
956 static_call_update(x86_idle, default_idle);
957 }
958}
959
960void amd_e400_c1e_apic_setup(void)
961{
962 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
963 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
964 local_irq_disable();
965 tick_broadcast_force();
966 local_irq_enable();
967 }
968}
969
970void __init arch_post_acpi_subsys_init(void)
971{
972 u32 lo, hi;
973
974 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
975 return;
976
977 /*
978 * AMD E400 detection needs to happen after ACPI has been enabled. If
979 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
980 * MSR_K8_INT_PENDING_MSG.
981 */
982 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
983 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
984 return;
985
986 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
987
988 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
989 mark_tsc_unstable(reason: "TSC halt in AMD C1E");
990
991 if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
992 static_branch_enable(&arch_needs_tick_broadcast);
993 pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
994}
995
996static int __init idle_setup(char *str)
997{
998 if (!str)
999 return -EINVAL;
1000
1001 if (!strcmp(str, "poll")) {
1002 pr_info("using polling idle threads\n");
1003 boot_option_idle_override = IDLE_POLL;
1004 cpu_idle_poll_ctrl(enable: true);
1005 } else if (!strcmp(str, "halt")) {
1006 /* 'idle=halt' HALT for idle. C-states are disabled. */
1007 boot_option_idle_override = IDLE_HALT;
1008 } else if (!strcmp(str, "nomwait")) {
1009 /* 'idle=nomwait' disables MWAIT for idle */
1010 boot_option_idle_override = IDLE_NOMWAIT;
1011 } else {
1012 return -EINVAL;
1013 }
1014
1015 return 0;
1016}
1017early_param("idle", idle_setup);
1018
1019unsigned long arch_align_stack(unsigned long sp)
1020{
1021 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1022 sp -= get_random_u32_below(ceil: 8192);
1023 return sp & ~0xf;
1024}
1025
1026unsigned long arch_randomize_brk(struct mm_struct *mm)
1027{
1028 if (mmap_is_ia32())
1029 return randomize_page(start: mm->brk, SZ_32M);
1030
1031 return randomize_page(start: mm->brk, SZ_1G);
1032}
1033
1034/*
1035 * Called from fs/proc with a reference on @p to find the function
1036 * which called into schedule(). This needs to be done carefully
1037 * because the task might wake up and we might look at a stack
1038 * changing under us.
1039 */
1040unsigned long __get_wchan(struct task_struct *p)
1041{
1042 struct unwind_state state;
1043 unsigned long addr = 0;
1044
1045 if (!try_get_task_stack(tsk: p))
1046 return 0;
1047
1048 for (unwind_start(state: &state, task: p, NULL, NULL); !unwind_done(state: &state);
1049 unwind_next_frame(state: &state)) {
1050 addr = unwind_get_return_address(state: &state);
1051 if (!addr)
1052 break;
1053 if (in_sched_functions(addr))
1054 continue;
1055 break;
1056 }
1057
1058 put_task_stack(tsk: p);
1059
1060 return addr;
1061}
1062
1063SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
1064{
1065 switch (option) {
1066 case ARCH_GET_CPUID:
1067 return get_cpuid_mode();
1068 case ARCH_SET_CPUID:
1069 return set_cpuid_mode(arg2);
1070 case ARCH_GET_XCOMP_SUPP:
1071 case ARCH_GET_XCOMP_PERM:
1072 case ARCH_REQ_XCOMP_PERM:
1073 case ARCH_GET_XCOMP_GUEST_PERM:
1074 case ARCH_REQ_XCOMP_GUEST_PERM:
1075 return fpu_xstate_prctl(option, arg2);
1076 }
1077
1078 if (!in_ia32_syscall())
1079 return do_arch_prctl_64(current, option, arg2);
1080
1081 return -EINVAL;
1082}
1083
1084SYSCALL_DEFINE0(ni_syscall)
1085{
1086 return -ENOSYS;
1087}
1088