1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11#include <linux/acpi_iort.h>
12#include <linux/atomic.h>
13#include <linux/crash_dump.h>
14#include <linux/device.h>
15#include <linux/dma-direct.h>
16#include <linux/dma-map-ops.h>
17#include <linux/gfp.h>
18#include <linux/huge_mm.h>
19#include <linux/iommu.h>
20#include <linux/iommu-dma.h>
21#include <linux/iova.h>
22#include <linux/irq.h>
23#include <linux/list_sort.h>
24#include <linux/memremap.h>
25#include <linux/mm.h>
26#include <linux/mutex.h>
27#include <linux/msi.h>
28#include <linux/of_iommu.h>
29#include <linux/pci.h>
30#include <linux/pci-p2pdma.h>
31#include <linux/scatterlist.h>
32#include <linux/spinlock.h>
33#include <linux/swiotlb.h>
34#include <linux/vmalloc.h>
35#include <trace/events/swiotlb.h>
36
37#include "dma-iommu.h"
38#include "iommu-pages.h"
39
40struct iommu_dma_msi_page {
41 struct list_head list;
42 dma_addr_t iova;
43 phys_addr_t phys;
44};
45
46enum iommu_dma_queue_type {
47 IOMMU_DMA_OPTS_PER_CPU_QUEUE,
48 IOMMU_DMA_OPTS_SINGLE_QUEUE,
49};
50
51struct iommu_dma_options {
52 enum iommu_dma_queue_type qt;
53 size_t fq_size;
54 unsigned int fq_timeout;
55};
56
57struct iommu_dma_cookie {
58 struct iova_domain iovad;
59 struct list_head msi_page_list;
60 /* Flush queue */
61 union {
62 struct iova_fq *single_fq;
63 struct iova_fq __percpu *percpu_fq;
64 };
65 /* Number of TLB flushes that have been started */
66 atomic64_t fq_flush_start_cnt;
67 /* Number of TLB flushes that have been finished */
68 atomic64_t fq_flush_finish_cnt;
69 /* Timer to regularily empty the flush queues */
70 struct timer_list fq_timer;
71 /* 1 when timer is active, 0 when not */
72 atomic_t fq_timer_on;
73 /* Domain for flush queue callback; NULL if flush queue not in use */
74 struct iommu_domain *fq_domain;
75 /* Options for dma-iommu use */
76 struct iommu_dma_options options;
77};
78
79struct iommu_dma_msi_cookie {
80 dma_addr_t msi_iova;
81 struct list_head msi_page_list;
82};
83
84static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
85bool iommu_dma_forcedac __read_mostly;
86
87static int __init iommu_dma_forcedac_setup(char *str)
88{
89 int ret = kstrtobool(s: str, res: &iommu_dma_forcedac);
90
91 if (!ret && iommu_dma_forcedac)
92 pr_info("Forcing DAC for PCI devices\n");
93 return ret;
94}
95early_param("iommu.forcedac", iommu_dma_forcedac_setup);
96
97/* Number of entries per flush queue */
98#define IOVA_DEFAULT_FQ_SIZE 256
99#define IOVA_SINGLE_FQ_SIZE 32768
100
101/* Timeout (in ms) after which entries are flushed from the queue */
102#define IOVA_DEFAULT_FQ_TIMEOUT 10
103#define IOVA_SINGLE_FQ_TIMEOUT 1000
104
105/* Flush queue entry for deferred flushing */
106struct iova_fq_entry {
107 unsigned long iova_pfn;
108 unsigned long pages;
109 struct iommu_pages_list freelist;
110 u64 counter; /* Flush counter when this entry was added */
111};
112
113/* Per-CPU flush queue structure */
114struct iova_fq {
115 spinlock_t lock;
116 unsigned int head, tail;
117 unsigned int mod_mask;
118 struct iova_fq_entry entries[];
119};
120
121#define fq_ring_for_each(i, fq) \
122 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask)
123
124static inline bool fq_full(struct iova_fq *fq)
125{
126 assert_spin_locked(&fq->lock);
127 return (((fq->tail + 1) & fq->mod_mask) == fq->head);
128}
129
130static inline unsigned int fq_ring_add(struct iova_fq *fq)
131{
132 unsigned int idx = fq->tail;
133
134 assert_spin_locked(&fq->lock);
135
136 fq->tail = (idx + 1) & fq->mod_mask;
137
138 return idx;
139}
140
141static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
142{
143 u64 counter = atomic64_read(v: &cookie->fq_flush_finish_cnt);
144 unsigned int idx;
145
146 assert_spin_locked(&fq->lock);
147
148 fq_ring_for_each(idx, fq) {
149
150 if (fq->entries[idx].counter >= counter)
151 break;
152
153 iommu_put_pages_list(list: &fq->entries[idx].freelist);
154 free_iova_fast(iovad: &cookie->iovad,
155 pfn: fq->entries[idx].iova_pfn,
156 size: fq->entries[idx].pages);
157
158 fq->entries[idx].freelist =
159 IOMMU_PAGES_LIST_INIT(fq->entries[idx].freelist);
160 fq->head = (fq->head + 1) & fq->mod_mask;
161 }
162}
163
164static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
165{
166 unsigned long flags;
167
168 spin_lock_irqsave(&fq->lock, flags);
169 fq_ring_free_locked(cookie, fq);
170 spin_unlock_irqrestore(lock: &fq->lock, flags);
171}
172
173static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
174{
175 atomic64_inc(v: &cookie->fq_flush_start_cnt);
176 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
177 atomic64_inc(v: &cookie->fq_flush_finish_cnt);
178}
179
180static void fq_flush_timeout(struct timer_list *t)
181{
182 struct iommu_dma_cookie *cookie = timer_container_of(cookie, t,
183 fq_timer);
184 int cpu;
185
186 atomic_set(v: &cookie->fq_timer_on, i: 0);
187 fq_flush_iotlb(cookie);
188
189 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) {
190 fq_ring_free(cookie, fq: cookie->single_fq);
191 } else {
192 for_each_possible_cpu(cpu)
193 fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu));
194 }
195}
196
197static void queue_iova(struct iommu_dma_cookie *cookie,
198 unsigned long pfn, unsigned long pages,
199 struct iommu_pages_list *freelist)
200{
201 struct iova_fq *fq;
202 unsigned long flags;
203 unsigned int idx;
204
205 /*
206 * Order against the IOMMU driver's pagetable update from unmapping
207 * @pte, to guarantee that fq_flush_iotlb() observes that if called
208 * from a different CPU before we release the lock below. Full barrier
209 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
210 * written fq state here.
211 */
212 smp_mb();
213
214 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
215 fq = cookie->single_fq;
216 else
217 fq = raw_cpu_ptr(cookie->percpu_fq);
218
219 spin_lock_irqsave(&fq->lock, flags);
220
221 /*
222 * First remove all entries from the flush queue that have already been
223 * flushed out on another CPU. This makes the fq_full() check below less
224 * likely to be true.
225 */
226 fq_ring_free_locked(cookie, fq);
227
228 if (fq_full(fq)) {
229 fq_flush_iotlb(cookie);
230 fq_ring_free_locked(cookie, fq);
231 }
232
233 idx = fq_ring_add(fq);
234
235 fq->entries[idx].iova_pfn = pfn;
236 fq->entries[idx].pages = pages;
237 fq->entries[idx].counter = atomic64_read(v: &cookie->fq_flush_start_cnt);
238 iommu_pages_list_splice(from: freelist, to: &fq->entries[idx].freelist);
239
240 spin_unlock_irqrestore(lock: &fq->lock, flags);
241
242 /* Avoid false sharing as much as possible. */
243 if (!atomic_read(v: &cookie->fq_timer_on) &&
244 !atomic_xchg(v: &cookie->fq_timer_on, new: 1))
245 mod_timer(timer: &cookie->fq_timer,
246 expires: jiffies + msecs_to_jiffies(m: cookie->options.fq_timeout));
247}
248
249static void iommu_dma_free_fq_single(struct iova_fq *fq)
250{
251 int idx;
252
253 fq_ring_for_each(idx, fq)
254 iommu_put_pages_list(list: &fq->entries[idx].freelist);
255 vfree(addr: fq);
256}
257
258static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq)
259{
260 int cpu, idx;
261
262 /* The IOVAs will be torn down separately, so just free our queued pages */
263 for_each_possible_cpu(cpu) {
264 struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu);
265
266 fq_ring_for_each(idx, fq)
267 iommu_put_pages_list(list: &fq->entries[idx].freelist);
268 }
269
270 free_percpu(pdata: percpu_fq);
271}
272
273static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
274{
275 if (!cookie->fq_domain)
276 return;
277
278 timer_delete_sync(timer: &cookie->fq_timer);
279 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
280 iommu_dma_free_fq_single(fq: cookie->single_fq);
281 else
282 iommu_dma_free_fq_percpu(percpu_fq: cookie->percpu_fq);
283}
284
285static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size)
286{
287 int i;
288
289 fq->head = 0;
290 fq->tail = 0;
291 fq->mod_mask = fq_size - 1;
292
293 spin_lock_init(&fq->lock);
294
295 for (i = 0; i < fq_size; i++)
296 fq->entries[i].freelist =
297 IOMMU_PAGES_LIST_INIT(fq->entries[i].freelist);
298}
299
300static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie)
301{
302 size_t fq_size = cookie->options.fq_size;
303 struct iova_fq *queue;
304
305 queue = vmalloc(struct_size(queue, entries, fq_size));
306 if (!queue)
307 return -ENOMEM;
308 iommu_dma_init_one_fq(fq: queue, fq_size);
309 cookie->single_fq = queue;
310
311 return 0;
312}
313
314static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie)
315{
316 size_t fq_size = cookie->options.fq_size;
317 struct iova_fq __percpu *queue;
318 int cpu;
319
320 queue = __alloc_percpu(struct_size(queue, entries, fq_size),
321 __alignof__(*queue));
322 if (!queue)
323 return -ENOMEM;
324
325 for_each_possible_cpu(cpu)
326 iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size);
327 cookie->percpu_fq = queue;
328 return 0;
329}
330
331/* sysfs updates are serialised by the mutex of the group owning @domain */
332int iommu_dma_init_fq(struct iommu_domain *domain)
333{
334 struct iommu_dma_cookie *cookie = domain->iova_cookie;
335 int rc;
336
337 if (cookie->fq_domain)
338 return 0;
339
340 atomic64_set(v: &cookie->fq_flush_start_cnt, i: 0);
341 atomic64_set(v: &cookie->fq_flush_finish_cnt, i: 0);
342
343 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
344 rc = iommu_dma_init_fq_single(cookie);
345 else
346 rc = iommu_dma_init_fq_percpu(cookie);
347
348 if (rc) {
349 pr_warn("iova flush queue initialization failed\n");
350 return -ENOMEM;
351 }
352
353 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
354 atomic_set(v: &cookie->fq_timer_on, i: 0);
355 /*
356 * Prevent incomplete fq state being observable. Pairs with path from
357 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
358 */
359 smp_wmb();
360 WRITE_ONCE(cookie->fq_domain, domain);
361 return 0;
362}
363
364/**
365 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
366 * @domain: IOMMU domain to prepare for DMA-API usage
367 */
368int iommu_get_dma_cookie(struct iommu_domain *domain)
369{
370 struct iommu_dma_cookie *cookie;
371
372 if (domain->cookie_type != IOMMU_COOKIE_NONE)
373 return -EEXIST;
374
375 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
376 if (!cookie)
377 return -ENOMEM;
378
379 INIT_LIST_HEAD(list: &cookie->msi_page_list);
380 domain->cookie_type = IOMMU_COOKIE_DMA_IOVA;
381 domain->iova_cookie = cookie;
382 return 0;
383}
384
385/**
386 * iommu_get_msi_cookie - Acquire just MSI remapping resources
387 * @domain: IOMMU domain to prepare
388 * @base: Start address of IOVA region for MSI mappings
389 *
390 * Users who manage their own IOVA allocation and do not want DMA API support,
391 * but would still like to take advantage of automatic MSI remapping, can use
392 * this to initialise their own domain appropriately. Users should reserve a
393 * contiguous IOVA region, starting at @base, large enough to accommodate the
394 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
395 * used by the devices attached to @domain.
396 */
397int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
398{
399 struct iommu_dma_msi_cookie *cookie;
400
401 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
402 return -EINVAL;
403
404 if (domain->cookie_type != IOMMU_COOKIE_NONE)
405 return -EEXIST;
406
407 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
408 if (!cookie)
409 return -ENOMEM;
410
411 cookie->msi_iova = base;
412 INIT_LIST_HEAD(list: &cookie->msi_page_list);
413 domain->cookie_type = IOMMU_COOKIE_DMA_MSI;
414 domain->msi_cookie = cookie;
415 return 0;
416}
417EXPORT_SYMBOL(iommu_get_msi_cookie);
418
419/**
420 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
421 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
422 */
423void iommu_put_dma_cookie(struct iommu_domain *domain)
424{
425 struct iommu_dma_cookie *cookie = domain->iova_cookie;
426 struct iommu_dma_msi_page *msi, *tmp;
427
428 if (cookie->iovad.granule) {
429 iommu_dma_free_fq(cookie);
430 put_iova_domain(iovad: &cookie->iovad);
431 }
432 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list)
433 kfree(objp: msi);
434 kfree(objp: cookie);
435}
436
437/**
438 * iommu_put_msi_cookie - Release a domain's MSI mapping resources
439 * @domain: IOMMU domain previously prepared by iommu_get_msi_cookie()
440 */
441void iommu_put_msi_cookie(struct iommu_domain *domain)
442{
443 struct iommu_dma_msi_cookie *cookie = domain->msi_cookie;
444 struct iommu_dma_msi_page *msi, *tmp;
445
446 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list)
447 kfree(objp: msi);
448 kfree(objp: cookie);
449}
450
451/**
452 * iommu_dma_get_resv_regions - Reserved region driver helper
453 * @dev: Device from iommu_get_resv_regions()
454 * @list: Reserved region list from iommu_get_resv_regions()
455 *
456 * IOMMU drivers can use this to implement their .get_resv_regions callback
457 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
458 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
459 * reservation.
460 */
461void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
462{
463
464 if (!is_of_node(fwnode: dev_iommu_fwspec_get(dev)->iommu_fwnode))
465 iort_iommu_get_resv_regions(dev, head: list);
466
467 if (dev->of_node)
468 of_iommu_get_resv_regions(dev, list);
469}
470EXPORT_SYMBOL(iommu_dma_get_resv_regions);
471
472static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
473 phys_addr_t start, phys_addr_t end)
474{
475 struct iova_domain *iovad = &cookie->iovad;
476 struct iommu_dma_msi_page *msi_page;
477 int i, num_pages;
478
479 start -= iova_offset(iovad, iova: start);
480 num_pages = iova_align(iovad, size: end - start) >> iova_shift(iovad);
481
482 for (i = 0; i < num_pages; i++) {
483 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
484 if (!msi_page)
485 return -ENOMEM;
486
487 msi_page->phys = start;
488 msi_page->iova = start;
489 INIT_LIST_HEAD(list: &msi_page->list);
490 list_add(new: &msi_page->list, head: &cookie->msi_page_list);
491 start += iovad->granule;
492 }
493
494 return 0;
495}
496
497static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
498 const struct list_head *b)
499{
500 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
501 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
502
503 return res_a->res->start > res_b->res->start;
504}
505
506static int iova_reserve_pci_windows(struct pci_dev *dev,
507 struct iova_domain *iovad)
508{
509 struct pci_host_bridge *bridge = pci_find_host_bridge(bus: dev->bus);
510 struct resource_entry *window;
511 unsigned long lo, hi;
512 phys_addr_t start = 0, end;
513
514 resource_list_for_each_entry(window, &bridge->windows) {
515 if (resource_type(res: window->res) != IORESOURCE_MEM)
516 continue;
517
518 lo = iova_pfn(iovad, iova: window->res->start - window->offset);
519 hi = iova_pfn(iovad, iova: window->res->end - window->offset);
520 reserve_iova(iovad, pfn_lo: lo, pfn_hi: hi);
521 }
522
523 /* Get reserved DMA windows from host bridge */
524 list_sort(NULL, head: &bridge->dma_ranges, cmp: iommu_dma_ranges_sort);
525 resource_list_for_each_entry(window, &bridge->dma_ranges) {
526 end = window->res->start - window->offset;
527resv_iova:
528 if (end > start) {
529 lo = iova_pfn(iovad, iova: start);
530 hi = iova_pfn(iovad, iova: end);
531 reserve_iova(iovad, pfn_lo: lo, pfn_hi: hi);
532 } else if (end < start) {
533 /* DMA ranges should be non-overlapping */
534 dev_err(&dev->dev,
535 "Failed to reserve IOVA [%pa-%pa]\n",
536 &start, &end);
537 return -EINVAL;
538 }
539
540 start = window->res->end - window->offset + 1;
541 /* If window is last entry */
542 if (window->node.next == &bridge->dma_ranges &&
543 end != ~(phys_addr_t)0) {
544 end = ~(phys_addr_t)0;
545 goto resv_iova;
546 }
547 }
548
549 return 0;
550}
551
552static int iova_reserve_iommu_regions(struct device *dev,
553 struct iommu_domain *domain)
554{
555 struct iommu_dma_cookie *cookie = domain->iova_cookie;
556 struct iova_domain *iovad = &cookie->iovad;
557 struct iommu_resv_region *region;
558 LIST_HEAD(resv_regions);
559 int ret = 0;
560
561 if (dev_is_pci(dev)) {
562 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
563 if (ret)
564 return ret;
565 }
566
567 iommu_get_resv_regions(dev, list: &resv_regions);
568 list_for_each_entry(region, &resv_regions, list) {
569 unsigned long lo, hi;
570
571 /* We ARE the software that manages these! */
572 if (region->type == IOMMU_RESV_SW_MSI)
573 continue;
574
575 lo = iova_pfn(iovad, iova: region->start);
576 hi = iova_pfn(iovad, iova: region->start + region->length - 1);
577 reserve_iova(iovad, pfn_lo: lo, pfn_hi: hi);
578
579 if (region->type == IOMMU_RESV_MSI)
580 ret = cookie_init_hw_msi_region(cookie, start: region->start,
581 end: region->start + region->length);
582 if (ret)
583 break;
584 }
585 iommu_put_resv_regions(dev, list: &resv_regions);
586
587 return ret;
588}
589
590static bool dev_is_untrusted(struct device *dev)
591{
592 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
593}
594
595static bool dev_use_swiotlb(struct device *dev, size_t size,
596 enum dma_data_direction dir)
597{
598 return IS_ENABLED(CONFIG_SWIOTLB) &&
599 (dev_is_untrusted(dev) ||
600 dma_kmalloc_needs_bounce(dev, size, dir));
601}
602
603static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
604 int nents, enum dma_data_direction dir)
605{
606 struct scatterlist *s;
607 int i;
608
609 if (!IS_ENABLED(CONFIG_SWIOTLB))
610 return false;
611
612 if (dev_is_untrusted(dev))
613 return true;
614
615 /*
616 * If kmalloc() buffers are not DMA-safe for this device and
617 * direction, check the individual lengths in the sg list. If any
618 * element is deemed unsafe, use the swiotlb for bouncing.
619 */
620 if (!dma_kmalloc_safe(dev, dir)) {
621 for_each_sg(sg, s, nents, i)
622 if (!dma_kmalloc_size_aligned(size: s->length))
623 return true;
624 }
625
626 return false;
627}
628
629/**
630 * iommu_dma_init_options - Initialize dma-iommu options
631 * @options: The options to be initialized
632 * @dev: Device the options are set for
633 *
634 * This allows tuning dma-iommu specific to device properties
635 */
636static void iommu_dma_init_options(struct iommu_dma_options *options,
637 struct device *dev)
638{
639 /* Shadowing IOTLB flushes do better with a single large queue */
640 if (dev->iommu->shadow_on_flush) {
641 options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE;
642 options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT;
643 options->fq_size = IOVA_SINGLE_FQ_SIZE;
644 } else {
645 options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE;
646 options->fq_size = IOVA_DEFAULT_FQ_SIZE;
647 options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT;
648 }
649}
650
651/**
652 * iommu_dma_init_domain - Initialise a DMA mapping domain
653 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
654 * @dev: Device the domain is being initialised for
655 *
656 * If the geometry and dma_range_map include address 0, we reserve that page
657 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
658 * any change which could make prior IOVAs invalid will fail.
659 */
660static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev)
661{
662 struct iommu_dma_cookie *cookie = domain->iova_cookie;
663 const struct bus_dma_region *map = dev->dma_range_map;
664 unsigned long order, base_pfn;
665 struct iova_domain *iovad;
666 int ret;
667
668 if (!cookie || domain->cookie_type != IOMMU_COOKIE_DMA_IOVA)
669 return -EINVAL;
670
671 iovad = &cookie->iovad;
672
673 /* Use the smallest supported page size for IOVA granularity */
674 order = __ffs(domain->pgsize_bitmap);
675 base_pfn = 1;
676
677 /* Check the domain allows at least some access to the device... */
678 if (map) {
679 if (dma_range_map_min(map) > domain->geometry.aperture_end ||
680 dma_range_map_max(map) < domain->geometry.aperture_start) {
681 pr_warn("specified DMA range outside IOMMU capability\n");
682 return -EFAULT;
683 }
684 }
685 /* ...then finally give it a kicking to make sure it fits */
686 base_pfn = max_t(unsigned long, base_pfn,
687 domain->geometry.aperture_start >> order);
688
689 /* start_pfn is always nonzero for an already-initialised domain */
690 if (iovad->start_pfn) {
691 if (1UL << order != iovad->granule ||
692 base_pfn != iovad->start_pfn) {
693 pr_warn("Incompatible range for DMA domain\n");
694 return -EFAULT;
695 }
696
697 return 0;
698 }
699
700 init_iova_domain(iovad, granule: 1UL << order, start_pfn: base_pfn);
701 ret = iova_domain_init_rcaches(iovad);
702 if (ret)
703 return ret;
704
705 iommu_dma_init_options(options: &cookie->options, dev);
706
707 /* If the FQ fails we can simply fall back to strict mode */
708 if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
709 (!device_iommu_capable(dev, cap: IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
710 domain->type = IOMMU_DOMAIN_DMA;
711
712 return iova_reserve_iommu_regions(dev, domain);
713}
714
715/**
716 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
717 * page flags.
718 * @dir: Direction of DMA transfer
719 * @coherent: Is the DMA master cache-coherent?
720 * @attrs: DMA attributes for the mapping
721 *
722 * Return: corresponding IOMMU API page protection flags
723 */
724static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
725 unsigned long attrs)
726{
727 int prot;
728
729 if (attrs & DMA_ATTR_MMIO)
730 prot = IOMMU_MMIO;
731 else
732 prot = coherent ? IOMMU_CACHE : 0;
733
734 if (attrs & DMA_ATTR_PRIVILEGED)
735 prot |= IOMMU_PRIV;
736
737 switch (dir) {
738 case DMA_BIDIRECTIONAL:
739 return prot | IOMMU_READ | IOMMU_WRITE;
740 case DMA_TO_DEVICE:
741 return prot | IOMMU_READ;
742 case DMA_FROM_DEVICE:
743 return prot | IOMMU_WRITE;
744 default:
745 return 0;
746 }
747}
748
749static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
750 size_t size, u64 dma_limit, struct device *dev)
751{
752 struct iommu_dma_cookie *cookie = domain->iova_cookie;
753 struct iova_domain *iovad = &cookie->iovad;
754 unsigned long shift, iova_len, iova;
755
756 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) {
757 domain->msi_cookie->msi_iova += size;
758 return domain->msi_cookie->msi_iova - size;
759 }
760
761 shift = iova_shift(iovad);
762 iova_len = size >> shift;
763
764 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
765
766 if (domain->geometry.force_aperture)
767 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
768
769 /*
770 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
771 * DAC reasoning loses relevance with PCIe, but enough hardware and
772 * firmware bugs are still lurking out there that it's safest not to
773 * venture into the 64-bit space until necessary.
774 *
775 * If your device goes wrong after seeing the notice then likely either
776 * its driver is not setting DMA masks accurately, the hardware has
777 * some inherent bug in handling >32-bit addresses, or not all the
778 * expected address bits are wired up between the device and the IOMMU.
779 */
780 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
781 iova = alloc_iova_fast(iovad, size: iova_len,
782 DMA_BIT_MASK(32) >> shift, flush_rcache: false);
783 if (iova)
784 goto done;
785
786 dev->iommu->pci_32bit_workaround = false;
787 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
788 }
789
790 iova = alloc_iova_fast(iovad, size: iova_len, limit_pfn: dma_limit >> shift, flush_rcache: true);
791done:
792 return (dma_addr_t)iova << shift;
793}
794
795static void iommu_dma_free_iova(struct iommu_domain *domain, dma_addr_t iova,
796 size_t size, struct iommu_iotlb_gather *gather)
797{
798 struct iova_domain *iovad = &domain->iova_cookie->iovad;
799
800 /* The MSI case is only ever cleaning up its most recent allocation */
801 if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI)
802 domain->msi_cookie->msi_iova -= size;
803 else if (gather && gather->queued)
804 queue_iova(cookie: domain->iova_cookie, pfn: iova_pfn(iovad, iova),
805 pages: size >> iova_shift(iovad),
806 freelist: &gather->freelist);
807 else
808 free_iova_fast(iovad, pfn: iova_pfn(iovad, iova),
809 size: size >> iova_shift(iovad));
810}
811
812static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
813 size_t size)
814{
815 struct iommu_domain *domain = iommu_get_dma_domain(dev);
816 struct iommu_dma_cookie *cookie = domain->iova_cookie;
817 struct iova_domain *iovad = &cookie->iovad;
818 size_t iova_off = iova_offset(iovad, iova: dma_addr);
819 struct iommu_iotlb_gather iotlb_gather;
820 size_t unmapped;
821
822 dma_addr -= iova_off;
823 size = iova_align(iovad, size: size + iova_off);
824 iommu_iotlb_gather_init(gather: &iotlb_gather);
825 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
826
827 unmapped = iommu_unmap_fast(domain, iova: dma_addr, size, iotlb_gather: &iotlb_gather);
828 WARN_ON(unmapped != size);
829
830 if (!iotlb_gather.queued)
831 iommu_iotlb_sync(domain, iotlb_gather: &iotlb_gather);
832 iommu_dma_free_iova(domain, iova: dma_addr, size, gather: &iotlb_gather);
833}
834
835static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
836 size_t size, int prot, u64 dma_mask)
837{
838 struct iommu_domain *domain = iommu_get_dma_domain(dev);
839 struct iommu_dma_cookie *cookie = domain->iova_cookie;
840 struct iova_domain *iovad = &cookie->iovad;
841 size_t iova_off = iova_offset(iovad, iova: phys);
842 dma_addr_t iova;
843
844 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
845 iommu_deferred_attach(dev, domain))
846 return DMA_MAPPING_ERROR;
847
848 /* If anyone ever wants this we'd need support in the IOVA allocator */
849 if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad),
850 "Unsupported alignment constraint\n"))
851 return DMA_MAPPING_ERROR;
852
853 size = iova_align(iovad, size: size + iova_off);
854
855 iova = iommu_dma_alloc_iova(domain, size, dma_limit: dma_mask, dev);
856 if (!iova)
857 return DMA_MAPPING_ERROR;
858
859 if (iommu_map(domain, iova, paddr: phys - iova_off, size, prot, GFP_ATOMIC)) {
860 iommu_dma_free_iova(domain, iova, size, NULL);
861 return DMA_MAPPING_ERROR;
862 }
863 return iova + iova_off;
864}
865
866static void __iommu_dma_free_pages(struct page **pages, int count)
867{
868 while (count--)
869 __free_page(pages[count]);
870 kvfree(addr: pages);
871}
872
873static struct page **__iommu_dma_alloc_pages(struct device *dev,
874 unsigned int count, unsigned long order_mask, gfp_t gfp)
875{
876 struct page **pages;
877 unsigned int i = 0, nid = dev_to_node(dev);
878
879 order_mask &= GENMASK(MAX_PAGE_ORDER, 0);
880 if (!order_mask)
881 return NULL;
882
883 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
884 if (!pages)
885 return NULL;
886
887 /* IOMMU can map any pages, so himem can also be used here */
888 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
889
890 while (count) {
891 struct page *page = NULL;
892 unsigned int order_size;
893
894 /*
895 * Higher-order allocations are a convenience rather
896 * than a necessity, hence using __GFP_NORETRY until
897 * falling back to minimum-order allocations.
898 */
899 for (order_mask &= GENMASK(__fls(count), 0);
900 order_mask; order_mask &= ~order_size) {
901 unsigned int order = __fls(word: order_mask);
902 gfp_t alloc_flags = gfp;
903
904 order_size = 1U << order;
905 if (order_mask > order_size)
906 alloc_flags |= __GFP_NORETRY;
907 page = alloc_pages_node(nid, alloc_flags, order);
908 if (!page)
909 continue;
910 if (order)
911 split_page(page, order);
912 break;
913 }
914 if (!page) {
915 __iommu_dma_free_pages(pages, count: i);
916 return NULL;
917 }
918 count -= order_size;
919 while (order_size--)
920 pages[i++] = page++;
921 }
922 return pages;
923}
924
925/*
926 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
927 * but an IOMMU which supports smaller pages might not map the whole thing.
928 */
929static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
930 size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs)
931{
932 struct iommu_domain *domain = iommu_get_dma_domain(dev);
933 struct iommu_dma_cookie *cookie = domain->iova_cookie;
934 struct iova_domain *iovad = &cookie->iovad;
935 bool coherent = dev_is_dma_coherent(dev);
936 int ioprot = dma_info_to_prot(dir: DMA_BIDIRECTIONAL, coherent, attrs);
937 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
938 struct page **pages;
939 dma_addr_t iova;
940 ssize_t ret;
941
942 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
943 iommu_deferred_attach(dev, domain))
944 return NULL;
945
946 min_size = alloc_sizes & -alloc_sizes;
947 if (min_size < PAGE_SIZE) {
948 min_size = PAGE_SIZE;
949 alloc_sizes |= PAGE_SIZE;
950 } else {
951 size = ALIGN(size, min_size);
952 }
953 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
954 alloc_sizes = min_size;
955
956 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
957 pages = __iommu_dma_alloc_pages(dev, count, order_mask: alloc_sizes >> PAGE_SHIFT,
958 gfp);
959 if (!pages)
960 return NULL;
961
962 size = iova_align(iovad, size);
963 iova = iommu_dma_alloc_iova(domain, size, dma_limit: dev->coherent_dma_mask, dev);
964 if (!iova)
965 goto out_free_pages;
966
967 /*
968 * Remove the zone/policy flags from the GFP - these are applied to the
969 * __iommu_dma_alloc_pages() but are not used for the supporting
970 * internal allocations that follow.
971 */
972 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
973
974 if (sg_alloc_table_from_pages(sgt, pages, n_pages: count, offset: 0, size, gfp_mask: gfp))
975 goto out_free_iova;
976
977 if (!(ioprot & IOMMU_CACHE)) {
978 struct scatterlist *sg;
979 int i;
980
981 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
982 arch_dma_prep_coherent(page: sg_page(sg), size: sg->length);
983 }
984
985 ret = iommu_map_sg(domain, iova, sg: sgt->sgl, nents: sgt->orig_nents, prot: ioprot,
986 gfp);
987 if (ret < 0 || ret < size)
988 goto out_free_sg;
989
990 sgt->sgl->dma_address = iova;
991 sgt->sgl->dma_length = size;
992 return pages;
993
994out_free_sg:
995 sg_free_table(sgt);
996out_free_iova:
997 iommu_dma_free_iova(domain, iova, size, NULL);
998out_free_pages:
999 __iommu_dma_free_pages(pages, count);
1000 return NULL;
1001}
1002
1003static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
1004 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
1005{
1006 struct page **pages;
1007 struct sg_table sgt;
1008 void *vaddr;
1009 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1010
1011 pages = __iommu_dma_alloc_noncontiguous(dev, size, sgt: &sgt, gfp, attrs);
1012 if (!pages)
1013 return NULL;
1014 *dma_handle = sgt.sgl->dma_address;
1015 sg_free_table(&sgt);
1016 vaddr = dma_common_pages_remap(pages, size, prot,
1017 caller: __builtin_return_address(0));
1018 if (!vaddr)
1019 goto out_unmap;
1020 return vaddr;
1021
1022out_unmap:
1023 __iommu_dma_unmap(dev, dma_addr: *dma_handle, size);
1024 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1025 return NULL;
1026}
1027
1028/*
1029 * This is the actual return value from the iommu_dma_alloc_noncontiguous.
1030 *
1031 * The users of the DMA API should only care about the sg_table, but to make
1032 * the DMA-API internal vmaping and freeing easier we stash away the page
1033 * array as well (except for the fallback case). This can go away any time,
1034 * e.g. when a vmap-variant that takes a scatterlist comes along.
1035 */
1036struct dma_sgt_handle {
1037 struct sg_table sgt;
1038 struct page **pages;
1039};
1040#define sgt_handle(sgt) \
1041 container_of((sgt), struct dma_sgt_handle, sgt)
1042
1043struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size,
1044 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
1045{
1046 struct dma_sgt_handle *sh;
1047
1048 sh = kmalloc(sizeof(*sh), gfp);
1049 if (!sh)
1050 return NULL;
1051
1052 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, sgt: &sh->sgt, gfp, attrs);
1053 if (!sh->pages) {
1054 kfree(objp: sh);
1055 return NULL;
1056 }
1057 return &sh->sgt;
1058}
1059
1060void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
1061 struct sg_table *sgt, enum dma_data_direction dir)
1062{
1063 struct dma_sgt_handle *sh = sgt_handle(sgt);
1064
1065 __iommu_dma_unmap(dev, dma_addr: sgt->sgl->dma_address, size);
1066 __iommu_dma_free_pages(pages: sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1067 sg_free_table(&sh->sgt);
1068 kfree(objp: sh);
1069}
1070
1071void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size,
1072 struct sg_table *sgt)
1073{
1074 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1075
1076 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
1077}
1078
1079int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
1080 size_t size, struct sg_table *sgt)
1081{
1082 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1083
1084 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
1085 return -ENXIO;
1086 return vm_map_pages(vma, sgt_handle(sgt)->pages, num: count);
1087}
1088
1089void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
1090 size_t size, enum dma_data_direction dir)
1091{
1092 phys_addr_t phys;
1093
1094 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1095 return;
1096
1097 phys = iommu_iova_to_phys(domain: iommu_get_dma_domain(dev), iova: dma_handle);
1098 if (!dev_is_dma_coherent(dev))
1099 arch_sync_dma_for_cpu(paddr: phys, size, dir);
1100
1101 swiotlb_sync_single_for_cpu(dev, addr: phys, size, dir);
1102}
1103
1104void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
1105 size_t size, enum dma_data_direction dir)
1106{
1107 phys_addr_t phys;
1108
1109 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1110 return;
1111
1112 phys = iommu_iova_to_phys(domain: iommu_get_dma_domain(dev), iova: dma_handle);
1113 swiotlb_sync_single_for_device(dev, addr: phys, size, dir);
1114
1115 if (!dev_is_dma_coherent(dev))
1116 arch_sync_dma_for_device(paddr: phys, size, dir);
1117}
1118
1119void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
1120 int nelems, enum dma_data_direction dir)
1121{
1122 struct scatterlist *sg;
1123 int i;
1124
1125 if (sg_dma_is_swiotlb(sg: sgl))
1126 for_each_sg(sgl, sg, nelems, i)
1127 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1128 size: sg->length, dir);
1129 else if (!dev_is_dma_coherent(dev))
1130 for_each_sg(sgl, sg, nelems, i)
1131 arch_sync_dma_for_cpu(paddr: sg_phys(sg), size: sg->length, dir);
1132}
1133
1134void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
1135 int nelems, enum dma_data_direction dir)
1136{
1137 struct scatterlist *sg;
1138 int i;
1139
1140 if (sg_dma_is_swiotlb(sg: sgl))
1141 for_each_sg(sgl, sg, nelems, i)
1142 iommu_dma_sync_single_for_device(dev,
1143 sg_dma_address(sg),
1144 size: sg->length, dir);
1145 else if (!dev_is_dma_coherent(dev))
1146 for_each_sg(sgl, sg, nelems, i)
1147 arch_sync_dma_for_device(paddr: sg_phys(sg), size: sg->length, dir);
1148}
1149
1150static phys_addr_t iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
1151 size_t size, enum dma_data_direction dir, unsigned long attrs)
1152{
1153 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1154 struct iova_domain *iovad = &domain->iova_cookie->iovad;
1155
1156 if (!is_swiotlb_active(dev)) {
1157 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1158 return (phys_addr_t)DMA_MAPPING_ERROR;
1159 }
1160
1161 trace_swiotlb_bounced(dev, dev_addr: phys, size);
1162
1163 phys = swiotlb_tbl_map_single(hwdev: dev, phys, mapping_size: size, alloc_aligned_mask: iova_mask(iovad), dir,
1164 attrs);
1165
1166 /*
1167 * Untrusted devices should not see padding areas with random leftover
1168 * kernel data, so zero the pre- and post-padding.
1169 * swiotlb_tbl_map_single() has initialized the bounce buffer proper to
1170 * the contents of the original memory buffer.
1171 */
1172 if (phys != (phys_addr_t)DMA_MAPPING_ERROR && dev_is_untrusted(dev)) {
1173 size_t start, virt = (size_t)phys_to_virt(address: phys);
1174
1175 /* Pre-padding */
1176 start = iova_align_down(iovad, size: virt);
1177 memset(s: (void *)start, c: 0, n: virt - start);
1178
1179 /* Post-padding */
1180 start = virt + size;
1181 memset(s: (void *)start, c: 0, n: iova_align(iovad, size: start) - start);
1182 }
1183
1184 return phys;
1185}
1186
1187/*
1188 * Checks if a physical buffer has unaligned boundaries with respect to
1189 * the IOMMU granule. Returns non-zero if either the start or end
1190 * address is not aligned to the granule boundary.
1191 */
1192static inline size_t iova_unaligned(struct iova_domain *iovad, phys_addr_t phys,
1193 size_t size)
1194{
1195 return iova_offset(iovad, iova: phys | size);
1196}
1197
1198dma_addr_t iommu_dma_map_phys(struct device *dev, phys_addr_t phys, size_t size,
1199 enum dma_data_direction dir, unsigned long attrs)
1200{
1201 bool coherent = dev_is_dma_coherent(dev);
1202 int prot = dma_info_to_prot(dir, coherent, attrs);
1203 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1204 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1205 struct iova_domain *iovad = &cookie->iovad;
1206 dma_addr_t iova, dma_mask = dma_get_mask(dev);
1207
1208 /*
1209 * If both the physical buffer start address and size are page aligned,
1210 * we don't need to use a bounce page.
1211 */
1212 if (dev_use_swiotlb(dev, size, dir) &&
1213 iova_unaligned(iovad, phys, size)) {
1214 if (attrs & DMA_ATTR_MMIO)
1215 return DMA_MAPPING_ERROR;
1216
1217 phys = iommu_dma_map_swiotlb(dev, phys, size, dir, attrs);
1218 if (phys == (phys_addr_t)DMA_MAPPING_ERROR)
1219 return DMA_MAPPING_ERROR;
1220 }
1221
1222 if (!coherent && !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO)))
1223 arch_sync_dma_for_device(paddr: phys, size, dir);
1224
1225 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1226 if (iova == DMA_MAPPING_ERROR && !(attrs & DMA_ATTR_MMIO))
1227 swiotlb_tbl_unmap_single(dev, addr: phys, size, dir, attrs);
1228 return iova;
1229}
1230
1231void iommu_dma_unmap_phys(struct device *dev, dma_addr_t dma_handle,
1232 size_t size, enum dma_data_direction dir, unsigned long attrs)
1233{
1234 phys_addr_t phys;
1235
1236 if (attrs & DMA_ATTR_MMIO) {
1237 __iommu_dma_unmap(dev, dma_addr: dma_handle, size);
1238 return;
1239 }
1240
1241 phys = iommu_iova_to_phys(domain: iommu_get_dma_domain(dev), iova: dma_handle);
1242 if (WARN_ON(!phys))
1243 return;
1244
1245 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1246 arch_sync_dma_for_cpu(paddr: phys, size, dir);
1247
1248 __iommu_dma_unmap(dev, dma_addr: dma_handle, size);
1249
1250 swiotlb_tbl_unmap_single(dev, addr: phys, size, dir, attrs);
1251}
1252
1253/*
1254 * Prepare a successfully-mapped scatterlist to give back to the caller.
1255 *
1256 * At this point the segments are already laid out by iommu_dma_map_sg() to
1257 * avoid individually crossing any boundaries, so we merely need to check a
1258 * segment's start address to avoid concatenating across one.
1259 */
1260static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1261 dma_addr_t dma_addr)
1262{
1263 struct scatterlist *s, *cur = sg;
1264 unsigned long seg_mask = dma_get_seg_boundary(dev);
1265 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1266 int i, count = 0;
1267
1268 for_each_sg(sg, s, nents, i) {
1269 /* Restore this segment's original unaligned fields first */
1270 dma_addr_t s_dma_addr = sg_dma_address(s);
1271 unsigned int s_iova_off = sg_dma_address(s);
1272 unsigned int s_length = sg_dma_len(s);
1273 unsigned int s_iova_len = s->length;
1274
1275 sg_dma_address(s) = DMA_MAPPING_ERROR;
1276 sg_dma_len(s) = 0;
1277
1278 if (sg_dma_is_bus_address(sg: s)) {
1279 if (i > 0)
1280 cur = sg_next(sg: cur);
1281
1282 sg_dma_unmark_bus_address(sg: s);
1283 sg_dma_address(cur) = s_dma_addr;
1284 sg_dma_len(cur) = s_length;
1285 sg_dma_mark_bus_address(sg: cur);
1286 count++;
1287 cur_len = 0;
1288 continue;
1289 }
1290
1291 s->offset += s_iova_off;
1292 s->length = s_length;
1293
1294 /*
1295 * Now fill in the real DMA data. If...
1296 * - there is a valid output segment to append to
1297 * - and this segment starts on an IOVA page boundary
1298 * - but doesn't fall at a segment boundary
1299 * - and wouldn't make the resulting output segment too long
1300 */
1301 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1302 (max_len - cur_len >= s_length)) {
1303 /* ...then concatenate it with the previous one */
1304 cur_len += s_length;
1305 } else {
1306 /* Otherwise start the next output segment */
1307 if (i > 0)
1308 cur = sg_next(sg: cur);
1309 cur_len = s_length;
1310 count++;
1311
1312 sg_dma_address(cur) = dma_addr + s_iova_off;
1313 }
1314
1315 sg_dma_len(cur) = cur_len;
1316 dma_addr += s_iova_len;
1317
1318 if (s_length + s_iova_off < s_iova_len)
1319 cur_len = 0;
1320 }
1321 return count;
1322}
1323
1324/*
1325 * If mapping failed, then just restore the original list,
1326 * but making sure the DMA fields are invalidated.
1327 */
1328static void __invalidate_sg(struct scatterlist *sg, int nents)
1329{
1330 struct scatterlist *s;
1331 int i;
1332
1333 for_each_sg(sg, s, nents, i) {
1334 if (sg_dma_is_bus_address(sg: s)) {
1335 sg_dma_unmark_bus_address(sg: s);
1336 } else {
1337 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1338 s->offset += sg_dma_address(s);
1339 if (sg_dma_len(s))
1340 s->length = sg_dma_len(s);
1341 }
1342 sg_dma_address(s) = DMA_MAPPING_ERROR;
1343 sg_dma_len(s) = 0;
1344 }
1345}
1346
1347static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1348 int nents, enum dma_data_direction dir, unsigned long attrs)
1349{
1350 struct scatterlist *s;
1351 int i;
1352
1353 for_each_sg(sg, s, nents, i)
1354 iommu_dma_unmap_phys(dev, sg_dma_address(s),
1355 sg_dma_len(s), dir, attrs);
1356}
1357
1358static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1359 int nents, enum dma_data_direction dir, unsigned long attrs)
1360{
1361 struct scatterlist *s;
1362 int i;
1363
1364 sg_dma_mark_swiotlb(sg);
1365
1366 for_each_sg(sg, s, nents, i) {
1367 sg_dma_address(s) = iommu_dma_map_phys(dev, phys: sg_phys(sg: s),
1368 size: s->length, dir, attrs);
1369 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1370 goto out_unmap;
1371 sg_dma_len(s) = s->length;
1372 }
1373
1374 return nents;
1375
1376out_unmap:
1377 iommu_dma_unmap_sg_swiotlb(dev, sg, nents: i, dir, attrs: attrs | DMA_ATTR_SKIP_CPU_SYNC);
1378 return -EIO;
1379}
1380
1381/*
1382 * The DMA API client is passing in a scatterlist which could describe
1383 * any old buffer layout, but the IOMMU API requires everything to be
1384 * aligned to IOMMU pages. Hence the need for this complicated bit of
1385 * impedance-matching, to be able to hand off a suitably-aligned list,
1386 * but still preserve the original offsets and sizes for the caller.
1387 */
1388int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1389 enum dma_data_direction dir, unsigned long attrs)
1390{
1391 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1392 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1393 struct iova_domain *iovad = &cookie->iovad;
1394 struct scatterlist *s, *prev = NULL;
1395 int prot = dma_info_to_prot(dir, coherent: dev_is_dma_coherent(dev), attrs);
1396 struct pci_p2pdma_map_state p2pdma_state = {};
1397 dma_addr_t iova;
1398 size_t iova_len = 0;
1399 unsigned long mask = dma_get_seg_boundary(dev);
1400 ssize_t ret;
1401 int i;
1402
1403 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1404 ret = iommu_deferred_attach(dev, domain);
1405 if (ret)
1406 goto out;
1407 }
1408
1409 if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1410 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1411
1412 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1413 iommu_dma_sync_sg_for_device(dev, sgl: sg, nelems: nents, dir);
1414
1415 /*
1416 * Work out how much IOVA space we need, and align the segments to
1417 * IOVA granules for the IOMMU driver to handle. With some clever
1418 * trickery we can modify the list in-place, but reversibly, by
1419 * stashing the unaligned parts in the as-yet-unused DMA fields.
1420 */
1421 for_each_sg(sg, s, nents, i) {
1422 size_t s_iova_off = iova_offset(iovad, iova: s->offset);
1423 size_t s_length = s->length;
1424 size_t pad_len = (mask - iova_len + 1) & mask;
1425
1426 switch (pci_p2pdma_state(state: &p2pdma_state, dev, page: sg_page(sg: s))) {
1427 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1428 /*
1429 * Mapping through host bridge should be mapped with
1430 * regular IOVAs, thus we do nothing here and continue
1431 * below.
1432 */
1433 break;
1434 case PCI_P2PDMA_MAP_NONE:
1435 break;
1436 case PCI_P2PDMA_MAP_BUS_ADDR:
1437 /*
1438 * iommu_map_sg() will skip this segment as it is marked
1439 * as a bus address, __finalise_sg() will copy the dma
1440 * address into the output segment.
1441 */
1442 s->dma_address = pci_p2pdma_bus_addr_map(state: &p2pdma_state,
1443 paddr: sg_phys(sg: s));
1444 sg_dma_len(s) = sg->length;
1445 sg_dma_mark_bus_address(sg: s);
1446 continue;
1447 default:
1448 ret = -EREMOTEIO;
1449 goto out_restore_sg;
1450 }
1451
1452 sg_dma_address(s) = s_iova_off;
1453 sg_dma_len(s) = s_length;
1454 s->offset -= s_iova_off;
1455 s_length = iova_align(iovad, size: s_length + s_iova_off);
1456 s->length = s_length;
1457
1458 /*
1459 * Due to the alignment of our single IOVA allocation, we can
1460 * depend on these assumptions about the segment boundary mask:
1461 * - If mask size >= IOVA size, then the IOVA range cannot
1462 * possibly fall across a boundary, so we don't care.
1463 * - If mask size < IOVA size, then the IOVA range must start
1464 * exactly on a boundary, therefore we can lay things out
1465 * based purely on segment lengths without needing to know
1466 * the actual addresses beforehand.
1467 * - The mask must be a power of 2, so pad_len == 0 if
1468 * iova_len == 0, thus we cannot dereference prev the first
1469 * time through here (i.e. before it has a meaningful value).
1470 */
1471 if (pad_len && pad_len < s_length - 1) {
1472 prev->length += pad_len;
1473 iova_len += pad_len;
1474 }
1475
1476 iova_len += s_length;
1477 prev = s;
1478 }
1479
1480 if (!iova_len)
1481 return __finalise_sg(dev, sg, nents, dma_addr: 0);
1482
1483 iova = iommu_dma_alloc_iova(domain, size: iova_len, dma_limit: dma_get_mask(dev), dev);
1484 if (!iova) {
1485 ret = -ENOMEM;
1486 goto out_restore_sg;
1487 }
1488
1489 /*
1490 * We'll leave any physical concatenation to the IOMMU driver's
1491 * implementation - it knows better than we do.
1492 */
1493 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1494 if (ret < 0 || ret < iova_len)
1495 goto out_free_iova;
1496
1497 return __finalise_sg(dev, sg, nents, dma_addr: iova);
1498
1499out_free_iova:
1500 iommu_dma_free_iova(domain, iova, size: iova_len, NULL);
1501out_restore_sg:
1502 __invalidate_sg(sg, nents);
1503out:
1504 if (ret != -ENOMEM && ret != -EREMOTEIO)
1505 return -EINVAL;
1506 return ret;
1507}
1508
1509void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1510 enum dma_data_direction dir, unsigned long attrs)
1511{
1512 dma_addr_t end = 0, start;
1513 struct scatterlist *tmp;
1514 int i;
1515
1516 if (sg_dma_is_swiotlb(sg)) {
1517 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1518 return;
1519 }
1520
1521 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1522 iommu_dma_sync_sg_for_cpu(dev, sgl: sg, nelems: nents, dir);
1523
1524 /*
1525 * The scatterlist segments are mapped into a single
1526 * contiguous IOVA allocation, the start and end points
1527 * just have to be determined.
1528 */
1529 for_each_sg(sg, tmp, nents, i) {
1530 if (sg_dma_is_bus_address(sg: tmp)) {
1531 sg_dma_unmark_bus_address(sg: tmp);
1532 continue;
1533 }
1534
1535 if (sg_dma_len(tmp) == 0)
1536 break;
1537
1538 start = sg_dma_address(tmp);
1539 break;
1540 }
1541
1542 nents -= i;
1543 for_each_sg(tmp, tmp, nents, i) {
1544 if (sg_dma_is_bus_address(sg: tmp)) {
1545 sg_dma_unmark_bus_address(sg: tmp);
1546 continue;
1547 }
1548
1549 if (sg_dma_len(tmp) == 0)
1550 break;
1551
1552 end = sg_dma_address(tmp) + sg_dma_len(tmp);
1553 }
1554
1555 if (end)
1556 __iommu_dma_unmap(dev, dma_addr: start, size: end - start);
1557}
1558
1559static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1560{
1561 size_t alloc_size = PAGE_ALIGN(size);
1562 int count = alloc_size >> PAGE_SHIFT;
1563 struct page *page = NULL, **pages = NULL;
1564
1565 /* Non-coherent atomic allocation? Easy */
1566 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1567 dma_free_from_pool(dev, start: cpu_addr, size: alloc_size))
1568 return;
1569
1570 if (is_vmalloc_addr(x: cpu_addr)) {
1571 /*
1572 * If it the address is remapped, then it's either non-coherent
1573 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1574 */
1575 pages = dma_common_find_pages(cpu_addr);
1576 if (!pages)
1577 page = vmalloc_to_page(addr: cpu_addr);
1578 dma_common_free_remap(cpu_addr, size: alloc_size);
1579 } else {
1580 /* Lowmem means a coherent atomic or CMA allocation */
1581 page = virt_to_page(cpu_addr);
1582 }
1583
1584 if (pages)
1585 __iommu_dma_free_pages(pages, count);
1586 if (page)
1587 dma_free_contiguous(dev, page, size: alloc_size);
1588}
1589
1590void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1591 dma_addr_t handle, unsigned long attrs)
1592{
1593 __iommu_dma_unmap(dev, dma_addr: handle, size);
1594 __iommu_dma_free(dev, size, cpu_addr);
1595}
1596
1597static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1598 struct page **pagep, gfp_t gfp, unsigned long attrs)
1599{
1600 bool coherent = dev_is_dma_coherent(dev);
1601 size_t alloc_size = PAGE_ALIGN(size);
1602 int node = dev_to_node(dev);
1603 struct page *page = NULL;
1604 void *cpu_addr;
1605
1606 page = dma_alloc_contiguous(dev, size: alloc_size, gfp);
1607 if (!page)
1608 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1609 if (!page)
1610 return NULL;
1611
1612 if (!coherent || PageHighMem(page)) {
1613 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1614
1615 cpu_addr = dma_common_contiguous_remap(page, size: alloc_size,
1616 prot, caller: __builtin_return_address(0));
1617 if (!cpu_addr)
1618 goto out_free_pages;
1619
1620 if (!coherent)
1621 arch_dma_prep_coherent(page, size);
1622 } else {
1623 cpu_addr = page_address(page);
1624 }
1625
1626 *pagep = page;
1627 memset(s: cpu_addr, c: 0, n: alloc_size);
1628 return cpu_addr;
1629out_free_pages:
1630 dma_free_contiguous(dev, page, size: alloc_size);
1631 return NULL;
1632}
1633
1634void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
1635 gfp_t gfp, unsigned long attrs)
1636{
1637 bool coherent = dev_is_dma_coherent(dev);
1638 int ioprot = dma_info_to_prot(dir: DMA_BIDIRECTIONAL, coherent, attrs);
1639 struct page *page = NULL;
1640 void *cpu_addr;
1641
1642 gfp |= __GFP_ZERO;
1643
1644 if (gfpflags_allow_blocking(gfp_flags: gfp) &&
1645 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1646 return iommu_dma_alloc_remap(dev, size, dma_handle: handle, gfp, attrs);
1647 }
1648
1649 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1650 !gfpflags_allow_blocking(gfp_flags: gfp) && !coherent)
1651 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), cpu_addr: &cpu_addr,
1652 flags: gfp, NULL);
1653 else
1654 cpu_addr = iommu_dma_alloc_pages(dev, size, pagep: &page, gfp, attrs);
1655 if (!cpu_addr)
1656 return NULL;
1657
1658 *handle = __iommu_dma_map(dev, page_to_phys(page), size, prot: ioprot,
1659 dma_mask: dev->coherent_dma_mask);
1660 if (*handle == DMA_MAPPING_ERROR) {
1661 __iommu_dma_free(dev, size, cpu_addr);
1662 return NULL;
1663 }
1664
1665 return cpu_addr;
1666}
1667
1668int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1669 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1670 unsigned long attrs)
1671{
1672 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1673 unsigned long pfn, off = vma->vm_pgoff;
1674 int ret;
1675
1676 vma->vm_page_prot = dma_pgprot(dev, prot: vma->vm_page_prot, attrs);
1677
1678 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1679 return ret;
1680
1681 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1682 return -ENXIO;
1683
1684 if (is_vmalloc_addr(x: cpu_addr)) {
1685 struct page **pages = dma_common_find_pages(cpu_addr);
1686
1687 if (pages)
1688 return vm_map_pages(vma, pages, num: nr_pages);
1689 pfn = vmalloc_to_pfn(addr: cpu_addr);
1690 } else {
1691 pfn = page_to_pfn(virt_to_page(cpu_addr));
1692 }
1693
1694 return remap_pfn_range(vma, addr: vma->vm_start, pfn: pfn + off,
1695 size: vma->vm_end - vma->vm_start,
1696 vma->vm_page_prot);
1697}
1698
1699int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1700 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1701 unsigned long attrs)
1702{
1703 struct page *page;
1704 int ret;
1705
1706 if (is_vmalloc_addr(x: cpu_addr)) {
1707 struct page **pages = dma_common_find_pages(cpu_addr);
1708
1709 if (pages) {
1710 return sg_alloc_table_from_pages(sgt, pages,
1711 PAGE_ALIGN(size) >> PAGE_SHIFT,
1712 offset: 0, size, GFP_KERNEL);
1713 }
1714
1715 page = vmalloc_to_page(addr: cpu_addr);
1716 } else {
1717 page = virt_to_page(cpu_addr);
1718 }
1719
1720 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1721 if (!ret)
1722 sg_set_page(sg: sgt->sgl, page, PAGE_ALIGN(size), offset: 0);
1723 return ret;
1724}
1725
1726unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1727{
1728 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1729
1730 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1731}
1732
1733size_t iommu_dma_opt_mapping_size(void)
1734{
1735 return iova_rcache_range();
1736}
1737
1738size_t iommu_dma_max_mapping_size(struct device *dev)
1739{
1740 if (dev_is_untrusted(dev))
1741 return swiotlb_max_mapping_size(dev);
1742
1743 return SIZE_MAX;
1744}
1745
1746/**
1747 * dma_iova_try_alloc - Try to allocate an IOVA space
1748 * @dev: Device to allocate the IOVA space for
1749 * @state: IOVA state
1750 * @phys: physical address
1751 * @size: IOVA size
1752 *
1753 * Check if @dev supports the IOVA-based DMA API, and if yes allocate IOVA space
1754 * for the given base address and size.
1755 *
1756 * Note: @phys is only used to calculate the IOVA alignment. Callers that always
1757 * do PAGE_SIZE aligned transfers can safely pass 0 here.
1758 *
1759 * Returns %true if the IOVA-based DMA API can be used and IOVA space has been
1760 * allocated, or %false if the regular DMA API should be used.
1761 */
1762bool dma_iova_try_alloc(struct device *dev, struct dma_iova_state *state,
1763 phys_addr_t phys, size_t size)
1764{
1765 struct iommu_dma_cookie *cookie;
1766 struct iommu_domain *domain;
1767 struct iova_domain *iovad;
1768 size_t iova_off;
1769 dma_addr_t addr;
1770
1771 memset(s: state, c: 0, n: sizeof(*state));
1772 if (!use_dma_iommu(dev))
1773 return false;
1774
1775 domain = iommu_get_dma_domain(dev);
1776 cookie = domain->iova_cookie;
1777 iovad = &cookie->iovad;
1778 iova_off = iova_offset(iovad, iova: phys);
1779
1780 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
1781 iommu_deferred_attach(dev, domain: iommu_get_domain_for_dev(dev)))
1782 return false;
1783
1784 if (WARN_ON_ONCE(!size))
1785 return false;
1786
1787 /*
1788 * DMA_IOVA_USE_SWIOTLB is flag which is set by dma-iommu
1789 * internals, make sure that caller didn't set it and/or
1790 * didn't use this interface to map SIZE_MAX.
1791 */
1792 if (WARN_ON_ONCE((u64)size & DMA_IOVA_USE_SWIOTLB))
1793 return false;
1794
1795 addr = iommu_dma_alloc_iova(domain,
1796 size: iova_align(iovad, size: size + iova_off),
1797 dma_limit: dma_get_mask(dev), dev);
1798 if (!addr)
1799 return false;
1800
1801 state->addr = addr + iova_off;
1802 state->__size = size;
1803 return true;
1804}
1805EXPORT_SYMBOL_GPL(dma_iova_try_alloc);
1806
1807/**
1808 * dma_iova_free - Free an IOVA space
1809 * @dev: Device to free the IOVA space for
1810 * @state: IOVA state
1811 *
1812 * Undoes a successful dma_try_iova_alloc().
1813 *
1814 * Note that all dma_iova_link() calls need to be undone first. For callers
1815 * that never call dma_iova_unlink(), dma_iova_destroy() can be used instead
1816 * which unlinks all ranges and frees the IOVA space in a single efficient
1817 * operation.
1818 */
1819void dma_iova_free(struct device *dev, struct dma_iova_state *state)
1820{
1821 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1822 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1823 struct iova_domain *iovad = &cookie->iovad;
1824 size_t iova_start_pad = iova_offset(iovad, iova: state->addr);
1825 size_t size = dma_iova_size(state);
1826
1827 iommu_dma_free_iova(domain, iova: state->addr - iova_start_pad,
1828 size: iova_align(iovad, size: size + iova_start_pad), NULL);
1829}
1830EXPORT_SYMBOL_GPL(dma_iova_free);
1831
1832static int __dma_iova_link(struct device *dev, dma_addr_t addr,
1833 phys_addr_t phys, size_t size, enum dma_data_direction dir,
1834 unsigned long attrs)
1835{
1836 bool coherent = dev_is_dma_coherent(dev);
1837 int prot = dma_info_to_prot(dir, coherent, attrs);
1838
1839 if (!coherent && !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO)))
1840 arch_sync_dma_for_device(paddr: phys, size, dir);
1841
1842 return iommu_map_nosync(domain: iommu_get_dma_domain(dev), iova: addr, paddr: phys, size,
1843 prot, GFP_ATOMIC);
1844}
1845
1846static int iommu_dma_iova_bounce_and_link(struct device *dev, dma_addr_t addr,
1847 phys_addr_t phys, size_t bounce_len,
1848 enum dma_data_direction dir, unsigned long attrs,
1849 size_t iova_start_pad)
1850{
1851 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1852 struct iova_domain *iovad = &domain->iova_cookie->iovad;
1853 phys_addr_t bounce_phys;
1854 int error;
1855
1856 bounce_phys = iommu_dma_map_swiotlb(dev, phys, size: bounce_len, dir, attrs);
1857 if (bounce_phys == DMA_MAPPING_ERROR)
1858 return -ENOMEM;
1859
1860 error = __dma_iova_link(dev, addr: addr - iova_start_pad,
1861 phys: bounce_phys - iova_start_pad,
1862 size: iova_align(iovad, size: bounce_len), dir, attrs);
1863 if (error)
1864 swiotlb_tbl_unmap_single(dev, addr: bounce_phys, size: bounce_len, dir,
1865 attrs);
1866 return error;
1867}
1868
1869static int iommu_dma_iova_link_swiotlb(struct device *dev,
1870 struct dma_iova_state *state, phys_addr_t phys, size_t offset,
1871 size_t size, enum dma_data_direction dir, unsigned long attrs)
1872{
1873 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1874 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1875 struct iova_domain *iovad = &cookie->iovad;
1876 size_t iova_start_pad = iova_offset(iovad, iova: phys);
1877 size_t iova_end_pad = iova_offset(iovad, iova: phys + size);
1878 dma_addr_t addr = state->addr + offset;
1879 size_t mapped = 0;
1880 int error;
1881
1882 if (iova_start_pad) {
1883 size_t bounce_len = min(size, iovad->granule - iova_start_pad);
1884
1885 error = iommu_dma_iova_bounce_and_link(dev, addr, phys,
1886 bounce_len, dir, attrs, iova_start_pad);
1887 if (error)
1888 return error;
1889 state->__size |= DMA_IOVA_USE_SWIOTLB;
1890
1891 mapped += bounce_len;
1892 size -= bounce_len;
1893 if (!size)
1894 return 0;
1895 }
1896
1897 size -= iova_end_pad;
1898 error = __dma_iova_link(dev, addr: addr + mapped, phys: phys + mapped, size, dir,
1899 attrs);
1900 if (error)
1901 goto out_unmap;
1902 mapped += size;
1903
1904 if (iova_end_pad) {
1905 error = iommu_dma_iova_bounce_and_link(dev, addr: addr + mapped,
1906 phys: phys + mapped, bounce_len: iova_end_pad, dir, attrs, iova_start_pad: 0);
1907 if (error)
1908 goto out_unmap;
1909 state->__size |= DMA_IOVA_USE_SWIOTLB;
1910 }
1911
1912 return 0;
1913
1914out_unmap:
1915 dma_iova_unlink(dev, state, offset: 0, size: mapped, dir, attrs);
1916 return error;
1917}
1918
1919/**
1920 * dma_iova_link - Link a range of IOVA space
1921 * @dev: DMA device
1922 * @state: IOVA state
1923 * @phys: physical address to link
1924 * @offset: offset into the IOVA state to map into
1925 * @size: size of the buffer
1926 * @dir: DMA direction
1927 * @attrs: attributes of mapping properties
1928 *
1929 * Link a range of IOVA space for the given IOVA state without IOTLB sync.
1930 * This function is used to link multiple physical addresses in contiguous
1931 * IOVA space without performing costly IOTLB sync.
1932 *
1933 * The caller is responsible to call to dma_iova_sync() to sync IOTLB at
1934 * the end of linkage.
1935 */
1936int dma_iova_link(struct device *dev, struct dma_iova_state *state,
1937 phys_addr_t phys, size_t offset, size_t size,
1938 enum dma_data_direction dir, unsigned long attrs)
1939{
1940 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1941 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1942 struct iova_domain *iovad = &cookie->iovad;
1943 size_t iova_start_pad = iova_offset(iovad, iova: phys);
1944
1945 if (WARN_ON_ONCE(iova_start_pad && offset > 0))
1946 return -EIO;
1947
1948 if (dev_use_swiotlb(dev, size, dir) &&
1949 iova_unaligned(iovad, phys, size)) {
1950 if (attrs & DMA_ATTR_MMIO)
1951 return -EPERM;
1952
1953 return iommu_dma_iova_link_swiotlb(dev, state, phys, offset,
1954 size, dir, attrs);
1955 }
1956
1957 return __dma_iova_link(dev, addr: state->addr + offset - iova_start_pad,
1958 phys: phys - iova_start_pad,
1959 size: iova_align(iovad, size: size + iova_start_pad), dir, attrs);
1960}
1961EXPORT_SYMBOL_GPL(dma_iova_link);
1962
1963/**
1964 * dma_iova_sync - Sync IOTLB
1965 * @dev: DMA device
1966 * @state: IOVA state
1967 * @offset: offset into the IOVA state to sync
1968 * @size: size of the buffer
1969 *
1970 * Sync IOTLB for the given IOVA state. This function should be called on
1971 * the IOVA-contiguous range created by one ore more dma_iova_link() calls
1972 * to sync the IOTLB.
1973 */
1974int dma_iova_sync(struct device *dev, struct dma_iova_state *state,
1975 size_t offset, size_t size)
1976{
1977 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1978 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1979 struct iova_domain *iovad = &cookie->iovad;
1980 dma_addr_t addr = state->addr + offset;
1981 size_t iova_start_pad = iova_offset(iovad, iova: addr);
1982
1983 return iommu_sync_map(domain, iova: addr - iova_start_pad,
1984 size: iova_align(iovad, size: size + iova_start_pad));
1985}
1986EXPORT_SYMBOL_GPL(dma_iova_sync);
1987
1988static void iommu_dma_iova_unlink_range_slow(struct device *dev,
1989 dma_addr_t addr, size_t size, enum dma_data_direction dir,
1990 unsigned long attrs)
1991{
1992 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1993 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1994 struct iova_domain *iovad = &cookie->iovad;
1995 size_t iova_start_pad = iova_offset(iovad, iova: addr);
1996 dma_addr_t end = addr + size;
1997
1998 do {
1999 phys_addr_t phys;
2000 size_t len;
2001
2002 phys = iommu_iova_to_phys(domain, iova: addr);
2003 if (WARN_ON(!phys))
2004 /* Something very horrible happen here */
2005 return;
2006
2007 len = min_t(size_t,
2008 end - addr, iovad->granule - iova_start_pad);
2009
2010 if (!dev_is_dma_coherent(dev) &&
2011 !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
2012 arch_sync_dma_for_cpu(paddr: phys, size: len, dir);
2013
2014 swiotlb_tbl_unmap_single(dev, addr: phys, size: len, dir, attrs);
2015
2016 addr += len;
2017 iova_start_pad = 0;
2018 } while (addr < end);
2019}
2020
2021static void __iommu_dma_iova_unlink(struct device *dev,
2022 struct dma_iova_state *state, size_t offset, size_t size,
2023 enum dma_data_direction dir, unsigned long attrs,
2024 bool free_iova)
2025{
2026 struct iommu_domain *domain = iommu_get_dma_domain(dev);
2027 struct iommu_dma_cookie *cookie = domain->iova_cookie;
2028 struct iova_domain *iovad = &cookie->iovad;
2029 dma_addr_t addr = state->addr + offset;
2030 size_t iova_start_pad = iova_offset(iovad, iova: addr);
2031 struct iommu_iotlb_gather iotlb_gather;
2032 size_t unmapped;
2033
2034 if ((state->__size & DMA_IOVA_USE_SWIOTLB) ||
2035 (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)))
2036 iommu_dma_iova_unlink_range_slow(dev, addr, size, dir, attrs);
2037
2038 iommu_iotlb_gather_init(gather: &iotlb_gather);
2039 iotlb_gather.queued = free_iova && READ_ONCE(cookie->fq_domain);
2040
2041 size = iova_align(iovad, size: size + iova_start_pad);
2042 addr -= iova_start_pad;
2043 unmapped = iommu_unmap_fast(domain, iova: addr, size, iotlb_gather: &iotlb_gather);
2044 WARN_ON(unmapped != size);
2045
2046 if (!iotlb_gather.queued)
2047 iommu_iotlb_sync(domain, iotlb_gather: &iotlb_gather);
2048 if (free_iova)
2049 iommu_dma_free_iova(domain, iova: addr, size, gather: &iotlb_gather);
2050}
2051
2052/**
2053 * dma_iova_unlink - Unlink a range of IOVA space
2054 * @dev: DMA device
2055 * @state: IOVA state
2056 * @offset: offset into the IOVA state to unlink
2057 * @size: size of the buffer
2058 * @dir: DMA direction
2059 * @attrs: attributes of mapping properties
2060 *
2061 * Unlink a range of IOVA space for the given IOVA state.
2062 */
2063void dma_iova_unlink(struct device *dev, struct dma_iova_state *state,
2064 size_t offset, size_t size, enum dma_data_direction dir,
2065 unsigned long attrs)
2066{
2067 __iommu_dma_iova_unlink(dev, state, offset, size, dir, attrs, free_iova: false);
2068}
2069EXPORT_SYMBOL_GPL(dma_iova_unlink);
2070
2071/**
2072 * dma_iova_destroy - Finish a DMA mapping transaction
2073 * @dev: DMA device
2074 * @state: IOVA state
2075 * @mapped_len: number of bytes to unmap
2076 * @dir: DMA direction
2077 * @attrs: attributes of mapping properties
2078 *
2079 * Unlink the IOVA range up to @mapped_len and free the entire IOVA space. The
2080 * range of IOVA from dma_addr to @mapped_len must all be linked, and be the
2081 * only linked IOVA in state.
2082 */
2083void dma_iova_destroy(struct device *dev, struct dma_iova_state *state,
2084 size_t mapped_len, enum dma_data_direction dir,
2085 unsigned long attrs)
2086{
2087 if (mapped_len)
2088 __iommu_dma_iova_unlink(dev, state, offset: 0, size: mapped_len, dir, attrs,
2089 free_iova: true);
2090 else
2091 /*
2092 * We can be here if first call to dma_iova_link() failed and
2093 * there is nothing to unlink, so let's be more clear.
2094 */
2095 dma_iova_free(dev, state);
2096}
2097EXPORT_SYMBOL_GPL(dma_iova_destroy);
2098
2099void iommu_setup_dma_ops(struct device *dev)
2100{
2101 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
2102
2103 if (dev_is_pci(dev))
2104 dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac;
2105
2106 dev->dma_iommu = iommu_is_dma_domain(domain);
2107 if (dev->dma_iommu && iommu_dma_init_domain(domain, dev))
2108 goto out_err;
2109
2110 return;
2111out_err:
2112 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
2113 dev_name(dev));
2114 dev->dma_iommu = false;
2115}
2116
2117static bool has_msi_cookie(const struct iommu_domain *domain)
2118{
2119 return domain && (domain->cookie_type == IOMMU_COOKIE_DMA_IOVA ||
2120 domain->cookie_type == IOMMU_COOKIE_DMA_MSI);
2121}
2122
2123static size_t cookie_msi_granule(const struct iommu_domain *domain)
2124{
2125 switch (domain->cookie_type) {
2126 case IOMMU_COOKIE_DMA_IOVA:
2127 return domain->iova_cookie->iovad.granule;
2128 case IOMMU_COOKIE_DMA_MSI:
2129 return PAGE_SIZE;
2130 default:
2131 BUG();
2132 }
2133}
2134
2135static struct list_head *cookie_msi_pages(const struct iommu_domain *domain)
2136{
2137 switch (domain->cookie_type) {
2138 case IOMMU_COOKIE_DMA_IOVA:
2139 return &domain->iova_cookie->msi_page_list;
2140 case IOMMU_COOKIE_DMA_MSI:
2141 return &domain->msi_cookie->msi_page_list;
2142 default:
2143 BUG();
2144 }
2145}
2146
2147static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
2148 phys_addr_t msi_addr, struct iommu_domain *domain)
2149{
2150 struct list_head *msi_page_list = cookie_msi_pages(domain);
2151 struct iommu_dma_msi_page *msi_page;
2152 dma_addr_t iova;
2153 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
2154 size_t size = cookie_msi_granule(domain);
2155
2156 msi_addr &= ~(phys_addr_t)(size - 1);
2157 list_for_each_entry(msi_page, msi_page_list, list)
2158 if (msi_page->phys == msi_addr)
2159 return msi_page;
2160
2161 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
2162 if (!msi_page)
2163 return NULL;
2164
2165 iova = iommu_dma_alloc_iova(domain, size, dma_limit: dma_get_mask(dev), dev);
2166 if (!iova)
2167 goto out_free_page;
2168
2169 if (iommu_map(domain, iova, paddr: msi_addr, size, prot, GFP_KERNEL))
2170 goto out_free_iova;
2171
2172 INIT_LIST_HEAD(list: &msi_page->list);
2173 msi_page->phys = msi_addr;
2174 msi_page->iova = iova;
2175 list_add(new: &msi_page->list, head: msi_page_list);
2176 return msi_page;
2177
2178out_free_iova:
2179 iommu_dma_free_iova(domain, iova, size, NULL);
2180out_free_page:
2181 kfree(objp: msi_page);
2182 return NULL;
2183}
2184
2185int iommu_dma_sw_msi(struct iommu_domain *domain, struct msi_desc *desc,
2186 phys_addr_t msi_addr)
2187{
2188 struct device *dev = msi_desc_to_dev(desc);
2189 const struct iommu_dma_msi_page *msi_page;
2190
2191 if (!has_msi_cookie(domain)) {
2192 msi_desc_set_iommu_msi_iova(desc, msi_iova: 0, msi_shift: 0);
2193 return 0;
2194 }
2195
2196 iommu_group_mutex_assert(dev);
2197 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
2198 if (!msi_page)
2199 return -ENOMEM;
2200
2201 msi_desc_set_iommu_msi_iova(desc, msi_iova: msi_page->iova,
2202 ilog2(cookie_msi_granule(domain)));
2203 return 0;
2204}
2205
2206static int iommu_dma_init(void)
2207{
2208 if (is_kdump_kernel())
2209 static_branch_enable(&iommu_deferred_attach_enabled);
2210
2211 return iova_cache_get();
2212}
2213arch_initcall(iommu_dma_init);
2214