1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/usb/core/usb.c
4 *
5 * (C) Copyright Linus Torvalds 1999
6 * (C) Copyright Johannes Erdfelt 1999-2001
7 * (C) Copyright Andreas Gal 1999
8 * (C) Copyright Gregory P. Smith 1999
9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10 * (C) Copyright Randy Dunlap 2000
11 * (C) Copyright David Brownell 2000-2004
12 * (C) Copyright Yggdrasil Computing, Inc. 2000
13 * (usb_device_id matching changes by Adam J. Richter)
14 * (C) Copyright Greg Kroah-Hartman 2002-2003
15 *
16 * Released under the GPLv2 only.
17 *
18 * NOTE! This is not actually a driver at all, rather this is
19 * just a collection of helper routines that implement the
20 * generic USB things that the real drivers can use..
21 *
22 * Think of this as a "USB library" rather than anything else,
23 * with no callbacks. Callbacks are evil.
24 */
25
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/of.h>
29#include <linux/string.h>
30#include <linux/bitops.h>
31#include <linux/slab.h>
32#include <linux/kmod.h>
33#include <linux/init.h>
34#include <linux/spinlock.h>
35#include <linux/errno.h>
36#include <linux/usb.h>
37#include <linux/usb/hcd.h>
38#include <linux/mutex.h>
39#include <linux/workqueue.h>
40#include <linux/debugfs.h>
41#include <linux/usb/of.h>
42
43#include <asm/io.h>
44#include <linux/scatterlist.h>
45#include <linux/mm.h>
46#include <linux/dma-mapping.h>
47
48#include "hub.h"
49
50const char *usbcore_name = "usbcore";
51
52static bool nousb; /* Disable USB when built into kernel image */
53
54module_param(nousb, bool, 0444);
55
56/*
57 * for external read access to <nousb>
58 */
59int usb_disabled(void)
60{
61 return nousb;
62}
63EXPORT_SYMBOL_GPL(usb_disabled);
64
65#ifdef CONFIG_PM
66/* Default delay value, in seconds */
67static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
68module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
69MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
70
71#else
72#define usb_autosuspend_delay 0
73#endif
74
75static bool match_endpoint(struct usb_endpoint_descriptor *epd,
76 struct usb_endpoint_descriptor **bulk_in,
77 struct usb_endpoint_descriptor **bulk_out,
78 struct usb_endpoint_descriptor **int_in,
79 struct usb_endpoint_descriptor **int_out)
80{
81 switch (usb_endpoint_type(epd)) {
82 case USB_ENDPOINT_XFER_BULK:
83 if (usb_endpoint_dir_in(epd)) {
84 if (bulk_in && !*bulk_in) {
85 *bulk_in = epd;
86 break;
87 }
88 } else {
89 if (bulk_out && !*bulk_out) {
90 *bulk_out = epd;
91 break;
92 }
93 }
94
95 return false;
96 case USB_ENDPOINT_XFER_INT:
97 if (usb_endpoint_dir_in(epd)) {
98 if (int_in && !*int_in) {
99 *int_in = epd;
100 break;
101 }
102 } else {
103 if (int_out && !*int_out) {
104 *int_out = epd;
105 break;
106 }
107 }
108
109 return false;
110 default:
111 return false;
112 }
113
114 return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
115 (!int_in || *int_in) && (!int_out || *int_out);
116}
117
118/**
119 * usb_find_common_endpoints() -- look up common endpoint descriptors
120 * @alt: alternate setting to search
121 * @bulk_in: pointer to descriptor pointer, or NULL
122 * @bulk_out: pointer to descriptor pointer, or NULL
123 * @int_in: pointer to descriptor pointer, or NULL
124 * @int_out: pointer to descriptor pointer, or NULL
125 *
126 * Search the alternate setting's endpoint descriptors for the first bulk-in,
127 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
128 * provided pointers (unless they are NULL).
129 *
130 * If a requested endpoint is not found, the corresponding pointer is set to
131 * NULL.
132 *
133 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
134 */
135int usb_find_common_endpoints(struct usb_host_interface *alt,
136 struct usb_endpoint_descriptor **bulk_in,
137 struct usb_endpoint_descriptor **bulk_out,
138 struct usb_endpoint_descriptor **int_in,
139 struct usb_endpoint_descriptor **int_out)
140{
141 struct usb_endpoint_descriptor *epd;
142 int i;
143
144 if (bulk_in)
145 *bulk_in = NULL;
146 if (bulk_out)
147 *bulk_out = NULL;
148 if (int_in)
149 *int_in = NULL;
150 if (int_out)
151 *int_out = NULL;
152
153 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
154 epd = &alt->endpoint[i].desc;
155
156 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
157 return 0;
158 }
159
160 return -ENXIO;
161}
162EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
163
164/**
165 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
166 * @alt: alternate setting to search
167 * @bulk_in: pointer to descriptor pointer, or NULL
168 * @bulk_out: pointer to descriptor pointer, or NULL
169 * @int_in: pointer to descriptor pointer, or NULL
170 * @int_out: pointer to descriptor pointer, or NULL
171 *
172 * Search the alternate setting's endpoint descriptors for the last bulk-in,
173 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
174 * provided pointers (unless they are NULL).
175 *
176 * If a requested endpoint is not found, the corresponding pointer is set to
177 * NULL.
178 *
179 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
180 */
181int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
182 struct usb_endpoint_descriptor **bulk_in,
183 struct usb_endpoint_descriptor **bulk_out,
184 struct usb_endpoint_descriptor **int_in,
185 struct usb_endpoint_descriptor **int_out)
186{
187 struct usb_endpoint_descriptor *epd;
188 int i;
189
190 if (bulk_in)
191 *bulk_in = NULL;
192 if (bulk_out)
193 *bulk_out = NULL;
194 if (int_in)
195 *int_in = NULL;
196 if (int_out)
197 *int_out = NULL;
198
199 for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
200 epd = &alt->endpoint[i].desc;
201
202 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
203 return 0;
204 }
205
206 return -ENXIO;
207}
208EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
209
210/**
211 * usb_find_endpoint() - Given an endpoint address, search for the endpoint's
212 * usb_host_endpoint structure in an interface's current altsetting.
213 * @intf: the interface whose current altsetting should be searched
214 * @ep_addr: the endpoint address (number and direction) to find
215 *
216 * Search the altsetting's list of endpoints for one with the specified address.
217 *
218 * Return: Pointer to the usb_host_endpoint if found, %NULL otherwise.
219 */
220static const struct usb_host_endpoint *usb_find_endpoint(
221 const struct usb_interface *intf, unsigned int ep_addr)
222{
223 int n;
224 const struct usb_host_endpoint *ep;
225
226 n = intf->cur_altsetting->desc.bNumEndpoints;
227 ep = intf->cur_altsetting->endpoint;
228 for (; n > 0; (--n, ++ep)) {
229 if (ep->desc.bEndpointAddress == ep_addr)
230 return ep;
231 }
232 return NULL;
233}
234
235/**
236 * usb_check_bulk_endpoints - Check whether an interface's current altsetting
237 * contains a set of bulk endpoints with the given addresses.
238 * @intf: the interface whose current altsetting should be searched
239 * @ep_addrs: 0-terminated array of the endpoint addresses (number and
240 * direction) to look for
241 *
242 * Search for endpoints with the specified addresses and check their types.
243 *
244 * Return: %true if all the endpoints are found and are bulk, %false otherwise.
245 */
246bool usb_check_bulk_endpoints(
247 const struct usb_interface *intf, const u8 *ep_addrs)
248{
249 const struct usb_host_endpoint *ep;
250
251 for (; *ep_addrs; ++ep_addrs) {
252 ep = usb_find_endpoint(intf, ep_addr: *ep_addrs);
253 if (!ep || !usb_endpoint_xfer_bulk(epd: &ep->desc))
254 return false;
255 }
256 return true;
257}
258EXPORT_SYMBOL_GPL(usb_check_bulk_endpoints);
259
260/**
261 * usb_check_int_endpoints - Check whether an interface's current altsetting
262 * contains a set of interrupt endpoints with the given addresses.
263 * @intf: the interface whose current altsetting should be searched
264 * @ep_addrs: 0-terminated array of the endpoint addresses (number and
265 * direction) to look for
266 *
267 * Search for endpoints with the specified addresses and check their types.
268 *
269 * Return: %true if all the endpoints are found and are interrupt,
270 * %false otherwise.
271 */
272bool usb_check_int_endpoints(
273 const struct usb_interface *intf, const u8 *ep_addrs)
274{
275 const struct usb_host_endpoint *ep;
276
277 for (; *ep_addrs; ++ep_addrs) {
278 ep = usb_find_endpoint(intf, ep_addr: *ep_addrs);
279 if (!ep || !usb_endpoint_xfer_int(epd: &ep->desc))
280 return false;
281 }
282 return true;
283}
284EXPORT_SYMBOL_GPL(usb_check_int_endpoints);
285
286/**
287 * usb_find_alt_setting() - Given a configuration, find the alternate setting
288 * for the given interface.
289 * @config: the configuration to search (not necessarily the current config).
290 * @iface_num: interface number to search in
291 * @alt_num: alternate interface setting number to search for.
292 *
293 * Search the configuration's interface cache for the given alt setting.
294 *
295 * Return: The alternate setting, if found. %NULL otherwise.
296 */
297struct usb_host_interface *usb_find_alt_setting(
298 struct usb_host_config *config,
299 unsigned int iface_num,
300 unsigned int alt_num)
301{
302 struct usb_interface_cache *intf_cache = NULL;
303 int i;
304
305 if (!config)
306 return NULL;
307 for (i = 0; i < config->desc.bNumInterfaces; i++) {
308 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
309 == iface_num) {
310 intf_cache = config->intf_cache[i];
311 break;
312 }
313 }
314 if (!intf_cache)
315 return NULL;
316 for (i = 0; i < intf_cache->num_altsetting; i++)
317 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
318 return &intf_cache->altsetting[i];
319
320 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
321 "config %u\n", alt_num, iface_num,
322 config->desc.bConfigurationValue);
323 return NULL;
324}
325EXPORT_SYMBOL_GPL(usb_find_alt_setting);
326
327/**
328 * usb_ifnum_to_if - get the interface object with a given interface number
329 * @dev: the device whose current configuration is considered
330 * @ifnum: the desired interface
331 *
332 * This walks the device descriptor for the currently active configuration
333 * to find the interface object with the particular interface number.
334 *
335 * Note that configuration descriptors are not required to assign interface
336 * numbers sequentially, so that it would be incorrect to assume that
337 * the first interface in that descriptor corresponds to interface zero.
338 * This routine helps device drivers avoid such mistakes.
339 * However, you should make sure that you do the right thing with any
340 * alternate settings available for this interfaces.
341 *
342 * Don't call this function unless you are bound to one of the interfaces
343 * on this device or you have locked the device!
344 *
345 * Return: A pointer to the interface that has @ifnum as interface number,
346 * if found. %NULL otherwise.
347 */
348struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
349 unsigned ifnum)
350{
351 struct usb_host_config *config = dev->actconfig;
352 int i;
353
354 if (!config)
355 return NULL;
356 for (i = 0; i < config->desc.bNumInterfaces; i++)
357 if (config->interface[i]->altsetting[0]
358 .desc.bInterfaceNumber == ifnum)
359 return config->interface[i];
360
361 return NULL;
362}
363EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
364
365/**
366 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
367 * @intf: the interface containing the altsetting in question
368 * @altnum: the desired alternate setting number
369 *
370 * This searches the altsetting array of the specified interface for
371 * an entry with the correct bAlternateSetting value.
372 *
373 * Note that altsettings need not be stored sequentially by number, so
374 * it would be incorrect to assume that the first altsetting entry in
375 * the array corresponds to altsetting zero. This routine helps device
376 * drivers avoid such mistakes.
377 *
378 * Don't call this function unless you are bound to the intf interface
379 * or you have locked the device!
380 *
381 * Return: A pointer to the entry of the altsetting array of @intf that
382 * has @altnum as the alternate setting number. %NULL if not found.
383 */
384struct usb_host_interface *usb_altnum_to_altsetting(
385 const struct usb_interface *intf,
386 unsigned int altnum)
387{
388 int i;
389
390 for (i = 0; i < intf->num_altsetting; i++) {
391 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
392 return &intf->altsetting[i];
393 }
394 return NULL;
395}
396EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
397
398struct find_interface_arg {
399 int minor;
400 struct device_driver *drv;
401};
402
403static int __find_interface(struct device *dev, const void *data)
404{
405 const struct find_interface_arg *arg = data;
406 struct usb_interface *intf;
407
408 if (!is_usb_interface(dev))
409 return 0;
410
411 if (dev->driver != arg->drv)
412 return 0;
413 intf = to_usb_interface(dev);
414 return intf->minor == arg->minor;
415}
416
417/**
418 * usb_find_interface - find usb_interface pointer for driver and device
419 * @drv: the driver whose current configuration is considered
420 * @minor: the minor number of the desired device
421 *
422 * This walks the bus device list and returns a pointer to the interface
423 * with the matching minor and driver. Note, this only works for devices
424 * that share the USB major number.
425 *
426 * Return: A pointer to the interface with the matching major and @minor.
427 */
428struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
429{
430 struct find_interface_arg argb;
431 struct device *dev;
432
433 argb.minor = minor;
434 argb.drv = &drv->driver;
435
436 dev = bus_find_device(bus: &usb_bus_type, NULL, data: &argb, match: __find_interface);
437
438 /* Drop reference count from bus_find_device */
439 put_device(dev);
440
441 return dev ? to_usb_interface(dev) : NULL;
442}
443EXPORT_SYMBOL_GPL(usb_find_interface);
444
445struct each_dev_arg {
446 void *data;
447 int (*fn)(struct usb_device *, void *);
448};
449
450static int __each_dev(struct device *dev, void *data)
451{
452 struct each_dev_arg *arg = (struct each_dev_arg *)data;
453
454 /* There are struct usb_interface on the same bus, filter them out */
455 if (!is_usb_device(dev))
456 return 0;
457
458 return arg->fn(to_usb_device(dev), arg->data);
459}
460
461/**
462 * usb_for_each_dev - iterate over all USB devices in the system
463 * @data: data pointer that will be handed to the callback function
464 * @fn: callback function to be called for each USB device
465 *
466 * Iterate over all USB devices and call @fn for each, passing it @data. If it
467 * returns anything other than 0, we break the iteration prematurely and return
468 * that value.
469 */
470int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
471{
472 struct each_dev_arg arg = {data, fn};
473
474 return bus_for_each_dev(bus: &usb_bus_type, NULL, data: &arg, fn: __each_dev);
475}
476EXPORT_SYMBOL_GPL(usb_for_each_dev);
477
478/**
479 * usb_release_dev - free a usb device structure when all users of it are finished.
480 * @dev: device that's been disconnected
481 *
482 * Will be called only by the device core when all users of this usb device are
483 * done.
484 */
485static void usb_release_dev(struct device *dev)
486{
487 struct usb_device *udev;
488 struct usb_hcd *hcd;
489
490 udev = to_usb_device(dev);
491 hcd = bus_to_hcd(bus: udev->bus);
492
493 usb_destroy_configuration(dev: udev);
494 usb_release_bos_descriptor(dev: udev);
495 of_node_put(node: dev->of_node);
496 usb_put_hcd(hcd);
497 kfree(objp: udev->product);
498 kfree(objp: udev->manufacturer);
499 kfree(objp: udev->serial);
500 kfree(objp: udev);
501}
502
503static int usb_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
504{
505 const struct usb_device *usb_dev;
506
507 usb_dev = to_usb_device(dev);
508
509 if (add_uevent_var(env, format: "BUSNUM=%03d", usb_dev->bus->busnum))
510 return -ENOMEM;
511
512 if (add_uevent_var(env, format: "DEVNUM=%03d", usb_dev->devnum))
513 return -ENOMEM;
514
515 return 0;
516}
517
518#ifdef CONFIG_PM
519
520/* USB device Power-Management thunks.
521 * There's no need to distinguish here between quiescing a USB device
522 * and powering it down; the generic_suspend() routine takes care of
523 * it by skipping the usb_port_suspend() call for a quiesce. And for
524 * USB interfaces there's no difference at all.
525 */
526
527static int usb_dev_prepare(struct device *dev)
528{
529 return 0; /* Implement eventually? */
530}
531
532static void usb_dev_complete(struct device *dev)
533{
534 /* Currently used only for rebinding interfaces */
535 usb_resume_complete(dev);
536}
537
538static int usb_dev_suspend(struct device *dev)
539{
540 return usb_suspend(dev, PMSG_SUSPEND);
541}
542
543static int usb_dev_resume(struct device *dev)
544{
545 return usb_resume(dev, PMSG_RESUME);
546}
547
548static int usb_dev_freeze(struct device *dev)
549{
550 return usb_suspend(dev, PMSG_FREEZE);
551}
552
553static int usb_dev_thaw(struct device *dev)
554{
555 return usb_resume(dev, PMSG_THAW);
556}
557
558static int usb_dev_poweroff(struct device *dev)
559{
560 return usb_suspend(dev, PMSG_HIBERNATE);
561}
562
563static int usb_dev_restore(struct device *dev)
564{
565 return usb_resume(dev, PMSG_RESTORE);
566}
567
568static const struct dev_pm_ops usb_device_pm_ops = {
569 .prepare = usb_dev_prepare,
570 .complete = usb_dev_complete,
571 .suspend = usb_dev_suspend,
572 .resume = usb_dev_resume,
573 .freeze = usb_dev_freeze,
574 .thaw = usb_dev_thaw,
575 .poweroff = usb_dev_poweroff,
576 .restore = usb_dev_restore,
577 .runtime_suspend = usb_runtime_suspend,
578 .runtime_resume = usb_runtime_resume,
579 .runtime_idle = usb_runtime_idle,
580};
581
582#endif /* CONFIG_PM */
583
584
585static char *usb_devnode(const struct device *dev,
586 umode_t *mode, kuid_t *uid, kgid_t *gid)
587{
588 const struct usb_device *usb_dev;
589
590 usb_dev = to_usb_device(dev);
591 return kasprintf(GFP_KERNEL, fmt: "bus/usb/%03d/%03d",
592 usb_dev->bus->busnum, usb_dev->devnum);
593}
594
595const struct device_type usb_device_type = {
596 .name = "usb_device",
597 .release = usb_release_dev,
598 .uevent = usb_dev_uevent,
599 .devnode = usb_devnode,
600#ifdef CONFIG_PM
601 .pm = &usb_device_pm_ops,
602#endif
603};
604
605static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
606{
607 struct usb_hub *hub;
608
609 if (!dev->parent)
610 return true; /* Root hub always ok [and always wired] */
611
612 switch (hcd->dev_policy) {
613 case USB_DEVICE_AUTHORIZE_NONE:
614 default:
615 return false;
616
617 case USB_DEVICE_AUTHORIZE_ALL:
618 return true;
619
620 case USB_DEVICE_AUTHORIZE_INTERNAL:
621 hub = usb_hub_to_struct_hub(hdev: dev->parent);
622 return hub->ports[dev->portnum - 1]->connect_type ==
623 USB_PORT_CONNECT_TYPE_HARD_WIRED;
624 }
625}
626
627/**
628 * usb_alloc_dev - usb device constructor (usbcore-internal)
629 * @parent: hub to which device is connected; null to allocate a root hub
630 * @bus: bus used to access the device
631 * @port1: one-based index of port; ignored for root hubs
632 *
633 * Context: task context, might sleep.
634 *
635 * Only hub drivers (including virtual root hub drivers for host
636 * controllers) should ever call this.
637 *
638 * This call may not be used in a non-sleeping context.
639 *
640 * Return: On success, a pointer to the allocated usb device. %NULL on
641 * failure.
642 */
643struct usb_device *usb_alloc_dev(struct usb_device *parent,
644 struct usb_bus *bus, unsigned port1)
645{
646 struct usb_device *dev;
647 struct usb_hcd *usb_hcd = bus_to_hcd(bus);
648 unsigned raw_port = port1;
649
650 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
651 if (!dev)
652 return NULL;
653
654 if (!usb_get_hcd(hcd: usb_hcd)) {
655 kfree(objp: dev);
656 return NULL;
657 }
658 /* Root hubs aren't true devices, so don't allocate HCD resources */
659 if (usb_hcd->driver->alloc_dev && parent &&
660 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
661 usb_put_hcd(hcd: bus_to_hcd(bus));
662 kfree(objp: dev);
663 return NULL;
664 }
665
666 device_initialize(dev: &dev->dev);
667 dev->dev.bus = &usb_bus_type;
668 dev->dev.type = &usb_device_type;
669 dev->dev.groups = usb_device_groups;
670 set_dev_node(dev: &dev->dev, node: dev_to_node(dev: bus->sysdev));
671 dev->state = USB_STATE_ATTACHED;
672 dev->lpm_disable_count = 1;
673 dev->offload_usage = 0;
674 atomic_set(v: &dev->urbnum, i: 0);
675
676 INIT_LIST_HEAD(list: &dev->ep0.urb_list);
677 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
678 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
679 /* ep0 maxpacket comes later, from device descriptor */
680 usb_enable_endpoint(dev, ep: &dev->ep0, reset_toggle: false);
681 dev->can_submit = 1;
682
683 /* Save readable and stable topology id, distinguishing devices
684 * by location for diagnostics, tools, driver model, etc. The
685 * string is a path along hub ports, from the root. Each device's
686 * dev->devpath will be stable until USB is re-cabled, and hubs
687 * are often labeled with these port numbers. The name isn't
688 * as stable: bus->busnum changes easily from modprobe order,
689 * cardbus or pci hotplugging, and so on.
690 */
691 if (unlikely(!parent)) {
692 dev->devpath[0] = '0';
693 dev->route = 0;
694
695 dev->dev.parent = bus->controller;
696 device_set_of_node_from_dev(dev: &dev->dev, dev2: bus->sysdev);
697 dev_set_name(dev: &dev->dev, name: "usb%d", bus->busnum);
698 } else {
699 int n;
700
701 /* match any labeling on the hubs; it's one-based */
702 if (parent->devpath[0] == '0') {
703 n = snprintf(buf: dev->devpath, size: sizeof(dev->devpath), fmt: "%d", port1);
704 /* Root ports are not counted in route string */
705 dev->route = 0;
706 } else {
707 n = snprintf(buf: dev->devpath, size: sizeof(dev->devpath), fmt: "%s.%d",
708 parent->devpath, port1);
709 /* Route string assumes hubs have less than 16 ports */
710 if (port1 < 15)
711 dev->route = parent->route +
712 (port1 << ((parent->level - 1)*4));
713 else
714 dev->route = parent->route +
715 (15 << ((parent->level - 1)*4));
716 }
717 if (n >= sizeof(dev->devpath)) {
718 usb_put_hcd(hcd: bus_to_hcd(bus));
719 usb_put_dev(dev);
720 return NULL;
721 }
722
723 dev->dev.parent = &parent->dev;
724 dev_set_name(dev: &dev->dev, name: "%d-%s", bus->busnum, dev->devpath);
725
726 if (!parent->parent) {
727 /* device under root hub's port */
728 raw_port = usb_hcd_find_raw_port_number(hcd: usb_hcd,
729 port1);
730 }
731 dev->dev.of_node = usb_of_get_device_node(hub: parent, port1: raw_port);
732
733 /* hub driver sets up TT records */
734 }
735
736 dev->portnum = port1;
737 dev->bus = bus;
738 dev->parent = parent;
739 INIT_LIST_HEAD(list: &dev->filelist);
740
741#ifdef CONFIG_PM
742 pm_runtime_set_autosuspend_delay(dev: &dev->dev,
743 delay: usb_autosuspend_delay * 1000);
744 dev->connect_time = jiffies;
745 dev->active_duration = -jiffies;
746#endif
747
748 dev->authorized = usb_dev_authorized(dev, hcd: usb_hcd);
749 return dev;
750}
751EXPORT_SYMBOL_GPL(usb_alloc_dev);
752
753/**
754 * usb_get_dev - increments the reference count of the usb device structure
755 * @dev: the device being referenced
756 *
757 * Each live reference to a device should be refcounted.
758 *
759 * Drivers for USB interfaces should normally record such references in
760 * their probe() methods, when they bind to an interface, and release
761 * them by calling usb_put_dev(), in their disconnect() methods.
762 * However, if a driver does not access the usb_device structure after
763 * its disconnect() method returns then refcounting is not necessary,
764 * because the USB core guarantees that a usb_device will not be
765 * deallocated until after all of its interface drivers have been unbound.
766 *
767 * Return: A pointer to the device with the incremented reference counter.
768 */
769struct usb_device *usb_get_dev(struct usb_device *dev)
770{
771 if (dev)
772 get_device(dev: &dev->dev);
773 return dev;
774}
775EXPORT_SYMBOL_GPL(usb_get_dev);
776
777/**
778 * usb_put_dev - release a use of the usb device structure
779 * @dev: device that's been disconnected
780 *
781 * Must be called when a user of a device is finished with it. When the last
782 * user of the device calls this function, the memory of the device is freed.
783 */
784void usb_put_dev(struct usb_device *dev)
785{
786 if (dev)
787 put_device(dev: &dev->dev);
788}
789EXPORT_SYMBOL_GPL(usb_put_dev);
790
791/**
792 * usb_get_intf - increments the reference count of the usb interface structure
793 * @intf: the interface being referenced
794 *
795 * Each live reference to a interface must be refcounted.
796 *
797 * Drivers for USB interfaces should normally record such references in
798 * their probe() methods, when they bind to an interface, and release
799 * them by calling usb_put_intf(), in their disconnect() methods.
800 * However, if a driver does not access the usb_interface structure after
801 * its disconnect() method returns then refcounting is not necessary,
802 * because the USB core guarantees that a usb_interface will not be
803 * deallocated until after its driver has been unbound.
804 *
805 * Return: A pointer to the interface with the incremented reference counter.
806 */
807struct usb_interface *usb_get_intf(struct usb_interface *intf)
808{
809 if (intf)
810 get_device(dev: &intf->dev);
811 return intf;
812}
813EXPORT_SYMBOL_GPL(usb_get_intf);
814
815/**
816 * usb_put_intf - release a use of the usb interface structure
817 * @intf: interface that's been decremented
818 *
819 * Must be called when a user of an interface is finished with it. When the
820 * last user of the interface calls this function, the memory of the interface
821 * is freed.
822 */
823void usb_put_intf(struct usb_interface *intf)
824{
825 if (intf)
826 put_device(dev: &intf->dev);
827}
828EXPORT_SYMBOL_GPL(usb_put_intf);
829
830/**
831 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint
832 * @intf: the usb interface
833 *
834 * While a USB device cannot perform DMA operations by itself, many USB
835 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint
836 * for the given USB interface, if any. The returned device structure must be
837 * released with put_device().
838 *
839 * See also usb_get_dma_device().
840 *
841 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none
842 * exists.
843 */
844struct device *usb_intf_get_dma_device(struct usb_interface *intf)
845{
846 struct usb_device *udev = interface_to_usbdev(intf);
847 struct device *dmadev;
848
849 if (!udev->bus)
850 return NULL;
851
852 dmadev = get_device(dev: udev->bus->sysdev);
853 if (!dmadev || !dmadev->dma_mask) {
854 put_device(dev: dmadev);
855 return NULL;
856 }
857
858 return dmadev;
859}
860EXPORT_SYMBOL_GPL(usb_intf_get_dma_device);
861
862/* USB device locking
863 *
864 * USB devices and interfaces are locked using the semaphore in their
865 * embedded struct device. The hub driver guarantees that whenever a
866 * device is connected or disconnected, drivers are called with the
867 * USB device locked as well as their particular interface.
868 *
869 * Complications arise when several devices are to be locked at the same
870 * time. Only hub-aware drivers that are part of usbcore ever have to
871 * do this; nobody else needs to worry about it. The rule for locking
872 * is simple:
873 *
874 * When locking both a device and its parent, always lock the
875 * parent first.
876 */
877
878/**
879 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
880 * @udev: device that's being locked
881 * @iface: interface bound to the driver making the request (optional)
882 *
883 * Attempts to acquire the device lock, but fails if the device is
884 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
885 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
886 * lock, the routine polls repeatedly. This is to prevent deadlock with
887 * disconnect; in some drivers (such as usb-storage) the disconnect()
888 * or suspend() method will block waiting for a device reset to complete.
889 *
890 * Return: A negative error code for failure, otherwise 0.
891 */
892int usb_lock_device_for_reset(struct usb_device *udev,
893 const struct usb_interface *iface)
894{
895 unsigned long jiffies_expire = jiffies + HZ;
896
897 if (udev->state == USB_STATE_NOTATTACHED)
898 return -ENODEV;
899 if (udev->state == USB_STATE_SUSPENDED)
900 return -EHOSTUNREACH;
901 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
902 iface->condition == USB_INTERFACE_UNBOUND))
903 return -EINTR;
904
905 while (!usb_trylock_device(udev)) {
906
907 /* If we can't acquire the lock after waiting one second,
908 * we're probably deadlocked */
909 if (time_after(jiffies, jiffies_expire))
910 return -EBUSY;
911
912 msleep(msecs: 15);
913 if (udev->state == USB_STATE_NOTATTACHED)
914 return -ENODEV;
915 if (udev->state == USB_STATE_SUSPENDED)
916 return -EHOSTUNREACH;
917 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
918 iface->condition == USB_INTERFACE_UNBOUND))
919 return -EINTR;
920 }
921 return 0;
922}
923EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
924
925/**
926 * usb_get_current_frame_number - return current bus frame number
927 * @dev: the device whose bus is being queried
928 *
929 * Return: The current frame number for the USB host controller used
930 * with the given USB device. This can be used when scheduling
931 * isochronous requests.
932 *
933 * Note: Different kinds of host controller have different "scheduling
934 * horizons". While one type might support scheduling only 32 frames
935 * into the future, others could support scheduling up to 1024 frames
936 * into the future.
937 *
938 */
939int usb_get_current_frame_number(struct usb_device *dev)
940{
941 return usb_hcd_get_frame_number(udev: dev);
942}
943EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
944
945/*-------------------------------------------------------------------*/
946/*
947 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
948 * extra field of the interface and endpoint descriptor structs.
949 */
950
951int __usb_get_extra_descriptor(char *buffer, unsigned size,
952 unsigned char type, void **ptr, size_t minsize)
953{
954 struct usb_descriptor_header *header;
955
956 while (size >= sizeof(struct usb_descriptor_header)) {
957 header = (struct usb_descriptor_header *)buffer;
958
959 if (header->bLength < 2 || header->bLength > size) {
960 printk(KERN_ERR
961 "%s: bogus descriptor, type %d length %d\n",
962 usbcore_name,
963 header->bDescriptorType,
964 header->bLength);
965 return -1;
966 }
967
968 if (header->bDescriptorType == type && header->bLength >= minsize) {
969 *ptr = header;
970 return 0;
971 }
972
973 buffer += header->bLength;
974 size -= header->bLength;
975 }
976 return -1;
977}
978EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
979
980/**
981 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
982 * @dev: device the buffer will be used with
983 * @size: requested buffer size
984 * @mem_flags: affect whether allocation may block
985 * @dma: used to return DMA address of buffer
986 *
987 * Return: Either null (indicating no buffer could be allocated), or the
988 * cpu-space pointer to a buffer that may be used to perform DMA to the
989 * specified device. Such cpu-space buffers are returned along with the DMA
990 * address (through the pointer provided).
991 *
992 * Note:
993 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
994 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
995 * hardware during URB completion/resubmit. The implementation varies between
996 * platforms, depending on details of how DMA will work to this device.
997 * Using these buffers also eliminates cacheline sharing problems on
998 * architectures where CPU caches are not DMA-coherent. On systems without
999 * bus-snooping caches, these buffers are uncached.
1000 *
1001 * When the buffer is no longer used, free it with usb_free_coherent().
1002 */
1003void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
1004 dma_addr_t *dma)
1005{
1006 if (!dev || !dev->bus)
1007 return NULL;
1008 return hcd_buffer_alloc(bus: dev->bus, size, mem_flags, dma);
1009}
1010EXPORT_SYMBOL_GPL(usb_alloc_coherent);
1011
1012/**
1013 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
1014 * @dev: device the buffer was used with
1015 * @size: requested buffer size
1016 * @addr: CPU address of buffer
1017 * @dma: DMA address of buffer
1018 *
1019 * This reclaims an I/O buffer, letting it be reused. The memory must have
1020 * been allocated using usb_alloc_coherent(), and the parameters must match
1021 * those provided in that allocation request.
1022 */
1023void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
1024 dma_addr_t dma)
1025{
1026 if (!dev || !dev->bus)
1027 return;
1028 if (!addr)
1029 return;
1030 hcd_buffer_free(bus: dev->bus, size, addr, dma);
1031}
1032EXPORT_SYMBOL_GPL(usb_free_coherent);
1033
1034/**
1035 * usb_alloc_noncoherent - allocate dma-noncoherent buffer for URB_NO_xxx_DMA_MAP
1036 * @dev: device the buffer will be used with
1037 * @size: requested buffer size
1038 * @mem_flags: affect whether allocation may block
1039 * @dma: used to return DMA address of buffer
1040 * @dir: DMA transfer direction
1041 * @table: used to return sg_table of allocated memory
1042 *
1043 * To explicit manage the memory ownership for the kernel vs the device by
1044 * USB core, the user needs save sg_table to urb->sgt. Then USB core will
1045 * do DMA sync for CPU and device properly.
1046 *
1047 * When the buffer is no longer used, free it with usb_free_noncoherent().
1048 *
1049 * Return: Either null (indicating no buffer could be allocated), or the
1050 * cpu-space pointer to a buffer that may be used to perform DMA to the
1051 * specified device. Such cpu-space buffers are returned along with the DMA
1052 * address (through the pointer provided).
1053 */
1054void *usb_alloc_noncoherent(struct usb_device *dev, size_t size,
1055 gfp_t mem_flags, dma_addr_t *dma,
1056 enum dma_data_direction dir,
1057 struct sg_table **table)
1058{
1059 struct device *dmadev;
1060 struct sg_table *sgt;
1061 void *buffer;
1062
1063 if (!dev || !dev->bus)
1064 return NULL;
1065
1066 dmadev = bus_to_hcd(bus: dev->bus)->self.sysdev;
1067
1068 sgt = dma_alloc_noncontiguous(dev: dmadev, size, dir, gfp: mem_flags, attrs: 0);
1069 if (!sgt)
1070 return NULL;
1071
1072 buffer = dma_vmap_noncontiguous(dev: dmadev, size, sgt);
1073 if (!buffer) {
1074 dma_free_noncontiguous(dev: dmadev, size, sgt, dir);
1075 return NULL;
1076 }
1077
1078 *table = sgt;
1079 *dma = sg_dma_address(sgt->sgl);
1080
1081 return buffer;
1082}
1083EXPORT_SYMBOL_GPL(usb_alloc_noncoherent);
1084
1085/**
1086 * usb_free_noncoherent - free memory allocated with usb_alloc_noncoherent()
1087 * @dev: device the buffer was used with
1088 * @size: requested buffer size
1089 * @addr: CPU address of buffer
1090 * @dir: DMA transfer direction
1091 * @table: describe the allocated and DMA mapped memory,
1092 *
1093 * This reclaims an I/O buffer, letting it be reused. The memory must have
1094 * been allocated using usb_alloc_noncoherent(), and the parameters must match
1095 * those provided in that allocation request.
1096 */
1097void usb_free_noncoherent(struct usb_device *dev, size_t size,
1098 void *addr, enum dma_data_direction dir,
1099 struct sg_table *table)
1100{
1101 struct device *dmadev;
1102
1103 if (!dev || !dev->bus)
1104 return;
1105 if (!addr)
1106 return;
1107
1108 dmadev = bus_to_hcd(bus: dev->bus)->self.sysdev;
1109 dma_vunmap_noncontiguous(dev: dmadev, vaddr: addr);
1110 dma_free_noncontiguous(dev: dmadev, size, sgt: table, dir);
1111}
1112EXPORT_SYMBOL_GPL(usb_free_noncoherent);
1113
1114/**
1115 * usb_endpoint_max_periodic_payload - Get maximum payload bytes per service
1116 * interval
1117 * @udev: The USB device
1118 * @ep: The endpoint
1119 *
1120 * Returns: the maximum number of bytes isochronous or interrupt endpoint @ep
1121 * can transfer during a service interval, or 0 for other endpoints.
1122 */
1123u32 usb_endpoint_max_periodic_payload(struct usb_device *udev,
1124 const struct usb_host_endpoint *ep)
1125{
1126 if (!usb_endpoint_xfer_isoc(epd: &ep->desc) &&
1127 !usb_endpoint_xfer_int(epd: &ep->desc))
1128 return 0;
1129
1130 switch (udev->speed) {
1131 case USB_SPEED_SUPER_PLUS:
1132 if (USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1133 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1134 fallthrough;
1135 case USB_SPEED_SUPER:
1136 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1137 default:
1138 if (usb_endpoint_is_hs_isoc_double(udev, ep))
1139 return le32_to_cpu(ep->eusb2_isoc_ep_comp.dwBytesPerInterval);
1140 return usb_endpoint_maxp(epd: &ep->desc) * usb_endpoint_maxp_mult(epd: &ep->desc);
1141 }
1142}
1143EXPORT_SYMBOL_GPL(usb_endpoint_max_periodic_payload);
1144
1145/**
1146 * usb_endpoint_is_hs_isoc_double - Tell whether an endpoint uses USB 2
1147 * Isochronous Double IN Bandwidth
1148 * @udev: The USB device
1149 * @ep: The endpoint
1150 *
1151 * Returns: true if an endpoint @ep conforms to USB 2 Isochronous Double IN
1152 * Bandwidth ECN, false otherwise.
1153 */
1154bool usb_endpoint_is_hs_isoc_double(struct usb_device *udev,
1155 const struct usb_host_endpoint *ep)
1156{
1157 return ep->eusb2_isoc_ep_comp.bDescriptorType &&
1158 le16_to_cpu(udev->descriptor.bcdUSB) == 0x220 &&
1159 usb_endpoint_is_isoc_in(epd: &ep->desc) &&
1160 !le16_to_cpu(ep->desc.wMaxPacketSize);
1161}
1162EXPORT_SYMBOL_GPL(usb_endpoint_is_hs_isoc_double);
1163
1164/*
1165 * Notifications of device and interface registration
1166 */
1167static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1168 void *data)
1169{
1170 struct device *dev = data;
1171
1172 switch (action) {
1173 case BUS_NOTIFY_ADD_DEVICE:
1174 if (dev->type == &usb_device_type)
1175 (void) usb_create_sysfs_dev_files(to_usb_device(dev));
1176 else if (dev->type == &usb_if_device_type)
1177 usb_create_sysfs_intf_files(to_usb_interface(dev));
1178 break;
1179
1180 case BUS_NOTIFY_DEL_DEVICE:
1181 if (dev->type == &usb_device_type)
1182 usb_remove_sysfs_dev_files(to_usb_device(dev));
1183 else if (dev->type == &usb_if_device_type)
1184 usb_remove_sysfs_intf_files(to_usb_interface(dev));
1185 break;
1186 }
1187 return 0;
1188}
1189
1190static struct notifier_block usb_bus_nb = {
1191 .notifier_call = usb_bus_notify,
1192};
1193
1194static void usb_debugfs_init(void)
1195{
1196 debugfs_create_file("devices", 0444, usb_debug_root, NULL,
1197 &usbfs_devices_fops);
1198}
1199
1200static void usb_debugfs_cleanup(void)
1201{
1202 debugfs_lookup_and_remove(name: "devices", parent: usb_debug_root);
1203}
1204
1205/*
1206 * Init
1207 */
1208static int __init usb_init(void)
1209{
1210 int retval;
1211 if (usb_disabled()) {
1212 pr_info("%s: USB support disabled\n", usbcore_name);
1213 return 0;
1214 }
1215 usb_init_pool_max();
1216
1217 usb_debugfs_init();
1218
1219 usb_acpi_register();
1220 retval = bus_register(bus: &usb_bus_type);
1221 if (retval)
1222 goto bus_register_failed;
1223 retval = bus_register_notifier(bus: &usb_bus_type, nb: &usb_bus_nb);
1224 if (retval)
1225 goto bus_notifier_failed;
1226 retval = usb_major_init();
1227 if (retval)
1228 goto major_init_failed;
1229 retval = class_register(class: &usbmisc_class);
1230 if (retval)
1231 goto class_register_failed;
1232 retval = usb_register(&usbfs_driver);
1233 if (retval)
1234 goto driver_register_failed;
1235 retval = usb_devio_init();
1236 if (retval)
1237 goto usb_devio_init_failed;
1238 retval = usb_hub_init();
1239 if (retval)
1240 goto hub_init_failed;
1241 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1242 if (!retval)
1243 goto out;
1244
1245 usb_hub_cleanup();
1246hub_init_failed:
1247 usb_devio_cleanup();
1248usb_devio_init_failed:
1249 usb_deregister(&usbfs_driver);
1250driver_register_failed:
1251 class_unregister(class: &usbmisc_class);
1252class_register_failed:
1253 usb_major_cleanup();
1254major_init_failed:
1255 bus_unregister_notifier(bus: &usb_bus_type, nb: &usb_bus_nb);
1256bus_notifier_failed:
1257 bus_unregister(bus: &usb_bus_type);
1258bus_register_failed:
1259 usb_acpi_unregister();
1260 usb_debugfs_cleanup();
1261out:
1262 return retval;
1263}
1264
1265/*
1266 * Cleanup
1267 */
1268static void __exit usb_exit(void)
1269{
1270 /* This will matter if shutdown/reboot does exitcalls. */
1271 if (usb_disabled())
1272 return;
1273
1274 usb_release_quirk_list();
1275 usb_deregister_device_driver(&usb_generic_driver);
1276 usb_major_cleanup();
1277 usb_deregister(&usbfs_driver);
1278 usb_devio_cleanup();
1279 usb_hub_cleanup();
1280 class_unregister(class: &usbmisc_class);
1281 bus_unregister_notifier(bus: &usb_bus_type, nb: &usb_bus_nb);
1282 bus_unregister(bus: &usb_bus_type);
1283 usb_acpi_unregister();
1284 usb_debugfs_cleanup();
1285 idr_destroy(&usb_bus_idr);
1286}
1287
1288subsys_initcall(usb_init);
1289module_exit(usb_exit);
1290MODULE_DESCRIPTION("USB core host-side support");
1291MODULE_LICENSE("GPL");
1292