| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | * Deadline Scheduling Class (SCHED_DEADLINE) | 
|---|
| 4 | * | 
|---|
| 5 | * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). | 
|---|
| 6 | * | 
|---|
| 7 | * Tasks that periodically executes their instances for less than their | 
|---|
| 8 | * runtime won't miss any of their deadlines. | 
|---|
| 9 | * Tasks that are not periodic or sporadic or that tries to execute more | 
|---|
| 10 | * than their reserved bandwidth will be slowed down (and may potentially | 
|---|
| 11 | * miss some of their deadlines), and won't affect any other task. | 
|---|
| 12 | * | 
|---|
| 13 | * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, | 
|---|
| 14 | *                    Juri Lelli <juri.lelli@gmail.com>, | 
|---|
| 15 | *                    Michael Trimarchi <michael@amarulasolutions.com>, | 
|---|
| 16 | *                    Fabio Checconi <fchecconi@gmail.com> | 
|---|
| 17 | */ | 
|---|
| 18 |  | 
|---|
| 19 | #include <linux/cpuset.h> | 
|---|
| 20 | #include <linux/sched/clock.h> | 
|---|
| 21 | #include <uapi/linux/sched/types.h> | 
|---|
| 22 | #include "sched.h" | 
|---|
| 23 | #include "pelt.h" | 
|---|
| 24 |  | 
|---|
| 25 | /* | 
|---|
| 26 | * Default limits for DL period; on the top end we guard against small util | 
|---|
| 27 | * tasks still getting ridiculously long effective runtimes, on the bottom end we | 
|---|
| 28 | * guard against timer DoS. | 
|---|
| 29 | */ | 
|---|
| 30 | static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ | 
|---|
| 31 | static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */ | 
|---|
| 32 | #ifdef CONFIG_SYSCTL | 
|---|
| 33 | static const struct ctl_table sched_dl_sysctls[] = { | 
|---|
| 34 | { | 
|---|
| 35 | .procname       = "sched_deadline_period_max_us", | 
|---|
| 36 | .data           = &sysctl_sched_dl_period_max, | 
|---|
| 37 | .maxlen         = sizeof(unsigned int), | 
|---|
| 38 | .mode           = 0644, | 
|---|
| 39 | .proc_handler   = proc_douintvec_minmax, | 
|---|
| 40 | .extra1         = (void *)&sysctl_sched_dl_period_min, | 
|---|
| 41 | }, | 
|---|
| 42 | { | 
|---|
| 43 | .procname       = "sched_deadline_period_min_us", | 
|---|
| 44 | .data           = &sysctl_sched_dl_period_min, | 
|---|
| 45 | .maxlen         = sizeof(unsigned int), | 
|---|
| 46 | .mode           = 0644, | 
|---|
| 47 | .proc_handler   = proc_douintvec_minmax, | 
|---|
| 48 | .extra2         = (void *)&sysctl_sched_dl_period_max, | 
|---|
| 49 | }, | 
|---|
| 50 | }; | 
|---|
| 51 |  | 
|---|
| 52 | static int __init sched_dl_sysctl_init(void) | 
|---|
| 53 | { | 
|---|
| 54 | register_sysctl_init( "kernel", sched_dl_sysctls); | 
|---|
| 55 | return 0; | 
|---|
| 56 | } | 
|---|
| 57 | late_initcall(sched_dl_sysctl_init); | 
|---|
| 58 | #endif /* CONFIG_SYSCTL */ | 
|---|
| 59 |  | 
|---|
| 60 | static bool dl_server(struct sched_dl_entity *dl_se) | 
|---|
| 61 | { | 
|---|
| 62 | return dl_se->dl_server; | 
|---|
| 63 | } | 
|---|
| 64 |  | 
|---|
| 65 | static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) | 
|---|
| 66 | { | 
|---|
| 67 | BUG_ON(dl_server(dl_se)); | 
|---|
| 68 | return container_of(dl_se, struct task_struct, dl); | 
|---|
| 69 | } | 
|---|
| 70 |  | 
|---|
| 71 | static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) | 
|---|
| 72 | { | 
|---|
| 73 | return container_of(dl_rq, struct rq, dl); | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 | static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se) | 
|---|
| 77 | { | 
|---|
| 78 | struct rq *rq = dl_se->rq; | 
|---|
| 79 |  | 
|---|
| 80 | if (!dl_server(dl_se)) | 
|---|
| 81 | rq = task_rq(dl_task_of(dl_se)); | 
|---|
| 82 |  | 
|---|
| 83 | return rq; | 
|---|
| 84 | } | 
|---|
| 85 |  | 
|---|
| 86 | static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) | 
|---|
| 87 | { | 
|---|
| 88 | return &rq_of_dl_se(dl_se)->dl; | 
|---|
| 89 | } | 
|---|
| 90 |  | 
|---|
| 91 | static inline int on_dl_rq(struct sched_dl_entity *dl_se) | 
|---|
| 92 | { | 
|---|
| 93 | return !RB_EMPTY_NODE(&dl_se->rb_node); | 
|---|
| 94 | } | 
|---|
| 95 |  | 
|---|
| 96 | #ifdef CONFIG_RT_MUTEXES | 
|---|
| 97 | static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) | 
|---|
| 98 | { | 
|---|
| 99 | return dl_se->pi_se; | 
|---|
| 100 | } | 
|---|
| 101 |  | 
|---|
| 102 | static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) | 
|---|
| 103 | { | 
|---|
| 104 | return pi_of(dl_se) != dl_se; | 
|---|
| 105 | } | 
|---|
| 106 | #else /* !CONFIG_RT_MUTEXES: */ | 
|---|
| 107 | static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) | 
|---|
| 108 | { | 
|---|
| 109 | return dl_se; | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 | static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) | 
|---|
| 113 | { | 
|---|
| 114 | return false; | 
|---|
| 115 | } | 
|---|
| 116 | #endif /* !CONFIG_RT_MUTEXES */ | 
|---|
| 117 |  | 
|---|
| 118 | static inline struct dl_bw *dl_bw_of(int i) | 
|---|
| 119 | { | 
|---|
| 120 | RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), | 
|---|
| 121 | "sched RCU must be held"); | 
|---|
| 122 | return &cpu_rq(i)->rd->dl_bw; | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | static inline int dl_bw_cpus(int i) | 
|---|
| 126 | { | 
|---|
| 127 | struct root_domain *rd = cpu_rq(i)->rd; | 
|---|
| 128 | int cpus; | 
|---|
| 129 |  | 
|---|
| 130 | RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), | 
|---|
| 131 | "sched RCU must be held"); | 
|---|
| 132 |  | 
|---|
| 133 | if (cpumask_subset(src1p: rd->span, cpu_active_mask)) | 
|---|
| 134 | return cpumask_weight(srcp: rd->span); | 
|---|
| 135 |  | 
|---|
| 136 | cpus = 0; | 
|---|
| 137 |  | 
|---|
| 138 | for_each_cpu_and(i, rd->span, cpu_active_mask) | 
|---|
| 139 | cpus++; | 
|---|
| 140 |  | 
|---|
| 141 | return cpus; | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|
| 144 | static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) | 
|---|
| 145 | { | 
|---|
| 146 | unsigned long cap = 0; | 
|---|
| 147 | int i; | 
|---|
| 148 |  | 
|---|
| 149 | for_each_cpu_and(i, mask, cpu_active_mask) | 
|---|
| 150 | cap += arch_scale_cpu_capacity(cpu: i); | 
|---|
| 151 |  | 
|---|
| 152 | return cap; | 
|---|
| 153 | } | 
|---|
| 154 |  | 
|---|
| 155 | /* | 
|---|
| 156 | * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity | 
|---|
| 157 | * of the CPU the task is running on rather rd's \Sum CPU capacity. | 
|---|
| 158 | */ | 
|---|
| 159 | static inline unsigned long dl_bw_capacity(int i) | 
|---|
| 160 | { | 
|---|
| 161 | if (!sched_asym_cpucap_active() && | 
|---|
| 162 | arch_scale_cpu_capacity(cpu: i) == SCHED_CAPACITY_SCALE) { | 
|---|
| 163 | return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; | 
|---|
| 164 | } else { | 
|---|
| 165 | RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), | 
|---|
| 166 | "sched RCU must be held"); | 
|---|
| 167 |  | 
|---|
| 168 | return __dl_bw_capacity(cpu_rq(i)->rd->span); | 
|---|
| 169 | } | 
|---|
| 170 | } | 
|---|
| 171 |  | 
|---|
| 172 | bool dl_bw_visited(int cpu, u64 cookie) | 
|---|
| 173 | { | 
|---|
| 174 | struct root_domain *rd = cpu_rq(cpu)->rd; | 
|---|
| 175 |  | 
|---|
| 176 | if (rd->visit_cookie == cookie) | 
|---|
| 177 | return true; | 
|---|
| 178 |  | 
|---|
| 179 | rd->visit_cookie = cookie; | 
|---|
| 180 | return false; | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | static inline | 
|---|
| 184 | void __dl_update(struct dl_bw *dl_b, s64 bw) | 
|---|
| 185 | { | 
|---|
| 186 | struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); | 
|---|
| 187 | int i; | 
|---|
| 188 |  | 
|---|
| 189 | RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), | 
|---|
| 190 | "sched RCU must be held"); | 
|---|
| 191 | for_each_cpu_and(i, rd->span, cpu_active_mask) { | 
|---|
| 192 | struct rq *rq = cpu_rq(i); | 
|---|
| 193 |  | 
|---|
| 194 | rq->dl.extra_bw += bw; | 
|---|
| 195 | } | 
|---|
| 196 | } | 
|---|
| 197 |  | 
|---|
| 198 | static inline | 
|---|
| 199 | void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) | 
|---|
| 200 | { | 
|---|
| 201 | dl_b->total_bw -= tsk_bw; | 
|---|
| 202 | __dl_update(dl_b, bw: (s32)tsk_bw / cpus); | 
|---|
| 203 | } | 
|---|
| 204 |  | 
|---|
| 205 | static inline | 
|---|
| 206 | void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) | 
|---|
| 207 | { | 
|---|
| 208 | dl_b->total_bw += tsk_bw; | 
|---|
| 209 | __dl_update(dl_b, bw: -((s32)tsk_bw / cpus)); | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|
| 212 | static inline bool | 
|---|
| 213 | __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) | 
|---|
| 214 | { | 
|---|
| 215 | return dl_b->bw != -1 && | 
|---|
| 216 | cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; | 
|---|
| 217 | } | 
|---|
| 218 |  | 
|---|
| 219 | static inline | 
|---|
| 220 | void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) | 
|---|
| 221 | { | 
|---|
| 222 | u64 old = dl_rq->running_bw; | 
|---|
| 223 |  | 
|---|
| 224 | lockdep_assert_rq_held(rq: rq_of_dl_rq(dl_rq)); | 
|---|
| 225 | dl_rq->running_bw += dl_bw; | 
|---|
| 226 | WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */ | 
|---|
| 227 | WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); | 
|---|
| 228 | /* kick cpufreq (see the comment in kernel/sched/sched.h). */ | 
|---|
| 229 | cpufreq_update_util(rq: rq_of_dl_rq(dl_rq), flags: 0); | 
|---|
| 230 | } | 
|---|
| 231 |  | 
|---|
| 232 | static inline | 
|---|
| 233 | void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) | 
|---|
| 234 | { | 
|---|
| 235 | u64 old = dl_rq->running_bw; | 
|---|
| 236 |  | 
|---|
| 237 | lockdep_assert_rq_held(rq: rq_of_dl_rq(dl_rq)); | 
|---|
| 238 | dl_rq->running_bw -= dl_bw; | 
|---|
| 239 | WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */ | 
|---|
| 240 | if (dl_rq->running_bw > old) | 
|---|
| 241 | dl_rq->running_bw = 0; | 
|---|
| 242 | /* kick cpufreq (see the comment in kernel/sched/sched.h). */ | 
|---|
| 243 | cpufreq_update_util(rq: rq_of_dl_rq(dl_rq), flags: 0); | 
|---|
| 244 | } | 
|---|
| 245 |  | 
|---|
| 246 | static inline | 
|---|
| 247 | void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) | 
|---|
| 248 | { | 
|---|
| 249 | u64 old = dl_rq->this_bw; | 
|---|
| 250 |  | 
|---|
| 251 | lockdep_assert_rq_held(rq: rq_of_dl_rq(dl_rq)); | 
|---|
| 252 | dl_rq->this_bw += dl_bw; | 
|---|
| 253 | WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */ | 
|---|
| 254 | } | 
|---|
| 255 |  | 
|---|
| 256 | static inline | 
|---|
| 257 | void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) | 
|---|
| 258 | { | 
|---|
| 259 | u64 old = dl_rq->this_bw; | 
|---|
| 260 |  | 
|---|
| 261 | lockdep_assert_rq_held(rq: rq_of_dl_rq(dl_rq)); | 
|---|
| 262 | dl_rq->this_bw -= dl_bw; | 
|---|
| 263 | WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */ | 
|---|
| 264 | if (dl_rq->this_bw > old) | 
|---|
| 265 | dl_rq->this_bw = 0; | 
|---|
| 266 | WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|
| 269 | static inline | 
|---|
| 270 | void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
|---|
| 271 | { | 
|---|
| 272 | if (!dl_entity_is_special(dl_se)) | 
|---|
| 273 | __add_rq_bw(dl_bw: dl_se->dl_bw, dl_rq); | 
|---|
| 274 | } | 
|---|
| 275 |  | 
|---|
| 276 | static inline | 
|---|
| 277 | void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
|---|
| 278 | { | 
|---|
| 279 | if (!dl_entity_is_special(dl_se)) | 
|---|
| 280 | __sub_rq_bw(dl_bw: dl_se->dl_bw, dl_rq); | 
|---|
| 281 | } | 
|---|
| 282 |  | 
|---|
| 283 | static inline | 
|---|
| 284 | void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
|---|
| 285 | { | 
|---|
| 286 | if (!dl_entity_is_special(dl_se)) | 
|---|
| 287 | __add_running_bw(dl_bw: dl_se->dl_bw, dl_rq); | 
|---|
| 288 | } | 
|---|
| 289 |  | 
|---|
| 290 | static inline | 
|---|
| 291 | void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
|---|
| 292 | { | 
|---|
| 293 | if (!dl_entity_is_special(dl_se)) | 
|---|
| 294 | __sub_running_bw(dl_bw: dl_se->dl_bw, dl_rq); | 
|---|
| 295 | } | 
|---|
| 296 |  | 
|---|
| 297 | static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw) | 
|---|
| 298 | { | 
|---|
| 299 | if (dl_se->dl_non_contending) { | 
|---|
| 300 | sub_running_bw(dl_se, dl_rq: &rq->dl); | 
|---|
| 301 | dl_se->dl_non_contending = 0; | 
|---|
| 302 |  | 
|---|
| 303 | /* | 
|---|
| 304 | * If the timer handler is currently running and the | 
|---|
| 305 | * timer cannot be canceled, inactive_task_timer() | 
|---|
| 306 | * will see that dl_not_contending is not set, and | 
|---|
| 307 | * will not touch the rq's active utilization, | 
|---|
| 308 | * so we are still safe. | 
|---|
| 309 | */ | 
|---|
| 310 | if (hrtimer_try_to_cancel(timer: &dl_se->inactive_timer) == 1) { | 
|---|
| 311 | if (!dl_server(dl_se)) | 
|---|
| 312 | put_task_struct(t: dl_task_of(dl_se)); | 
|---|
| 313 | } | 
|---|
| 314 | } | 
|---|
| 315 | __sub_rq_bw(dl_bw: dl_se->dl_bw, dl_rq: &rq->dl); | 
|---|
| 316 | __add_rq_bw(dl_bw: new_bw, dl_rq: &rq->dl); | 
|---|
| 317 | } | 
|---|
| 318 |  | 
|---|
| 319 | static __always_inline | 
|---|
| 320 | void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer) | 
|---|
| 321 | { | 
|---|
| 322 | /* | 
|---|
| 323 | * If the timer callback was running (hrtimer_try_to_cancel == -1), | 
|---|
| 324 | * it will eventually call put_task_struct(). | 
|---|
| 325 | */ | 
|---|
| 326 | if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se)) | 
|---|
| 327 | put_task_struct(t: dl_task_of(dl_se)); | 
|---|
| 328 | } | 
|---|
| 329 |  | 
|---|
| 330 | static __always_inline | 
|---|
| 331 | void cancel_replenish_timer(struct sched_dl_entity *dl_se) | 
|---|
| 332 | { | 
|---|
| 333 | cancel_dl_timer(dl_se, timer: &dl_se->dl_timer); | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | static __always_inline | 
|---|
| 337 | void cancel_inactive_timer(struct sched_dl_entity *dl_se) | 
|---|
| 338 | { | 
|---|
| 339 | cancel_dl_timer(dl_se, timer: &dl_se->inactive_timer); | 
|---|
| 340 | } | 
|---|
| 341 |  | 
|---|
| 342 | static void dl_change_utilization(struct task_struct *p, u64 new_bw) | 
|---|
| 343 | { | 
|---|
| 344 | WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); | 
|---|
| 345 |  | 
|---|
| 346 | if (task_on_rq_queued(p)) | 
|---|
| 347 | return; | 
|---|
| 348 |  | 
|---|
| 349 | dl_rq_change_utilization(task_rq(p), dl_se: &p->dl, new_bw); | 
|---|
| 350 | } | 
|---|
| 351 |  | 
|---|
| 352 | static void __dl_clear_params(struct sched_dl_entity *dl_se); | 
|---|
| 353 |  | 
|---|
| 354 | /* | 
|---|
| 355 | * The utilization of a task cannot be immediately removed from | 
|---|
| 356 | * the rq active utilization (running_bw) when the task blocks. | 
|---|
| 357 | * Instead, we have to wait for the so called "0-lag time". | 
|---|
| 358 | * | 
|---|
| 359 | * If a task blocks before the "0-lag time", a timer (the inactive | 
|---|
| 360 | * timer) is armed, and running_bw is decreased when the timer | 
|---|
| 361 | * fires. | 
|---|
| 362 | * | 
|---|
| 363 | * If the task wakes up again before the inactive timer fires, | 
|---|
| 364 | * the timer is canceled, whereas if the task wakes up after the | 
|---|
| 365 | * inactive timer fired (and running_bw has been decreased) the | 
|---|
| 366 | * task's utilization has to be added to running_bw again. | 
|---|
| 367 | * A flag in the deadline scheduling entity (dl_non_contending) | 
|---|
| 368 | * is used to avoid race conditions between the inactive timer handler | 
|---|
| 369 | * and task wakeups. | 
|---|
| 370 | * | 
|---|
| 371 | * The following diagram shows how running_bw is updated. A task is | 
|---|
| 372 | * "ACTIVE" when its utilization contributes to running_bw; an | 
|---|
| 373 | * "ACTIVE contending" task is in the TASK_RUNNING state, while an | 
|---|
| 374 | * "ACTIVE non contending" task is a blocked task for which the "0-lag time" | 
|---|
| 375 | * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" | 
|---|
| 376 | * time already passed, which does not contribute to running_bw anymore. | 
|---|
| 377 | *                              +------------------+ | 
|---|
| 378 | *             wakeup           |    ACTIVE        | | 
|---|
| 379 | *          +------------------>+   contending     | | 
|---|
| 380 | *          | add_running_bw    |                  | | 
|---|
| 381 | *          |                   +----+------+------+ | 
|---|
| 382 | *          |                        |      ^ | 
|---|
| 383 | *          |                dequeue |      | | 
|---|
| 384 | * +--------+-------+                |      | | 
|---|
| 385 | * |                |   t >= 0-lag   |      | wakeup | 
|---|
| 386 | * |    INACTIVE    |<---------------+      | | 
|---|
| 387 | * |                | sub_running_bw |      | | 
|---|
| 388 | * +--------+-------+                |      | | 
|---|
| 389 | *          ^                        |      | | 
|---|
| 390 | *          |              t < 0-lag |      | | 
|---|
| 391 | *          |                        |      | | 
|---|
| 392 | *          |                        V      | | 
|---|
| 393 | *          |                   +----+------+------+ | 
|---|
| 394 | *          | sub_running_bw    |    ACTIVE        | | 
|---|
| 395 | *          +-------------------+                  | | 
|---|
| 396 | *            inactive timer    |  non contending  | | 
|---|
| 397 | *            fired             +------------------+ | 
|---|
| 398 | * | 
|---|
| 399 | * The task_non_contending() function is invoked when a task | 
|---|
| 400 | * blocks, and checks if the 0-lag time already passed or | 
|---|
| 401 | * not (in the first case, it directly updates running_bw; | 
|---|
| 402 | * in the second case, it arms the inactive timer). | 
|---|
| 403 | * | 
|---|
| 404 | * The task_contending() function is invoked when a task wakes | 
|---|
| 405 | * up, and checks if the task is still in the "ACTIVE non contending" | 
|---|
| 406 | * state or not (in the second case, it updates running_bw). | 
|---|
| 407 | */ | 
|---|
| 408 | static void task_non_contending(struct sched_dl_entity *dl_se) | 
|---|
| 409 | { | 
|---|
| 410 | struct hrtimer *timer = &dl_se->inactive_timer; | 
|---|
| 411 | struct rq *rq = rq_of_dl_se(dl_se); | 
|---|
| 412 | struct dl_rq *dl_rq = &rq->dl; | 
|---|
| 413 | s64 zerolag_time; | 
|---|
| 414 |  | 
|---|
| 415 | /* | 
|---|
| 416 | * If this is a non-deadline task that has been boosted, | 
|---|
| 417 | * do nothing | 
|---|
| 418 | */ | 
|---|
| 419 | if (dl_se->dl_runtime == 0) | 
|---|
| 420 | return; | 
|---|
| 421 |  | 
|---|
| 422 | if (dl_entity_is_special(dl_se)) | 
|---|
| 423 | return; | 
|---|
| 424 |  | 
|---|
| 425 | WARN_ON(dl_se->dl_non_contending); | 
|---|
| 426 |  | 
|---|
| 427 | zerolag_time = dl_se->deadline - | 
|---|
| 428 | div64_long((dl_se->runtime * dl_se->dl_period), | 
|---|
| 429 | dl_se->dl_runtime); | 
|---|
| 430 |  | 
|---|
| 431 | /* | 
|---|
| 432 | * Using relative times instead of the absolute "0-lag time" | 
|---|
| 433 | * allows to simplify the code | 
|---|
| 434 | */ | 
|---|
| 435 | zerolag_time -= rq_clock(rq); | 
|---|
| 436 |  | 
|---|
| 437 | /* | 
|---|
| 438 | * If the "0-lag time" already passed, decrease the active | 
|---|
| 439 | * utilization now, instead of starting a timer | 
|---|
| 440 | */ | 
|---|
| 441 | if ((zerolag_time < 0) || hrtimer_active(timer: &dl_se->inactive_timer)) { | 
|---|
| 442 | if (dl_server(dl_se)) { | 
|---|
| 443 | sub_running_bw(dl_se, dl_rq); | 
|---|
| 444 | } else { | 
|---|
| 445 | struct task_struct *p = dl_task_of(dl_se); | 
|---|
| 446 |  | 
|---|
| 447 | if (dl_task(p)) | 
|---|
| 448 | sub_running_bw(dl_se, dl_rq); | 
|---|
| 449 |  | 
|---|
| 450 | if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { | 
|---|
| 451 | struct dl_bw *dl_b = dl_bw_of(i: task_cpu(p)); | 
|---|
| 452 |  | 
|---|
| 453 | if (READ_ONCE(p->__state) == TASK_DEAD) | 
|---|
| 454 | sub_rq_bw(dl_se, dl_rq: &rq->dl); | 
|---|
| 455 | raw_spin_lock(&dl_b->lock); | 
|---|
| 456 | __dl_sub(dl_b, tsk_bw: dl_se->dl_bw, cpus: dl_bw_cpus(i: task_cpu(p))); | 
|---|
| 457 | raw_spin_unlock(&dl_b->lock); | 
|---|
| 458 | __dl_clear_params(dl_se); | 
|---|
| 459 | } | 
|---|
| 460 | } | 
|---|
| 461 |  | 
|---|
| 462 | return; | 
|---|
| 463 | } | 
|---|
| 464 |  | 
|---|
| 465 | dl_se->dl_non_contending = 1; | 
|---|
| 466 | if (!dl_server(dl_se)) | 
|---|
| 467 | get_task_struct(t: dl_task_of(dl_se)); | 
|---|
| 468 |  | 
|---|
| 469 | hrtimer_start(timer, tim: ns_to_ktime(ns: zerolag_time), mode: HRTIMER_MODE_REL_HARD); | 
|---|
| 470 | } | 
|---|
| 471 |  | 
|---|
| 472 | static void task_contending(struct sched_dl_entity *dl_se, int flags) | 
|---|
| 473 | { | 
|---|
| 474 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
|---|
| 475 |  | 
|---|
| 476 | /* | 
|---|
| 477 | * If this is a non-deadline task that has been boosted, | 
|---|
| 478 | * do nothing | 
|---|
| 479 | */ | 
|---|
| 480 | if (dl_se->dl_runtime == 0) | 
|---|
| 481 | return; | 
|---|
| 482 |  | 
|---|
| 483 | if (flags & ENQUEUE_MIGRATED) | 
|---|
| 484 | add_rq_bw(dl_se, dl_rq); | 
|---|
| 485 |  | 
|---|
| 486 | if (dl_se->dl_non_contending) { | 
|---|
| 487 | dl_se->dl_non_contending = 0; | 
|---|
| 488 | /* | 
|---|
| 489 | * If the timer handler is currently running and the | 
|---|
| 490 | * timer cannot be canceled, inactive_task_timer() | 
|---|
| 491 | * will see that dl_not_contending is not set, and | 
|---|
| 492 | * will not touch the rq's active utilization, | 
|---|
| 493 | * so we are still safe. | 
|---|
| 494 | */ | 
|---|
| 495 | cancel_inactive_timer(dl_se); | 
|---|
| 496 | } else { | 
|---|
| 497 | /* | 
|---|
| 498 | * Since "dl_non_contending" is not set, the | 
|---|
| 499 | * task's utilization has already been removed from | 
|---|
| 500 | * active utilization (either when the task blocked, | 
|---|
| 501 | * when the "inactive timer" fired). | 
|---|
| 502 | * So, add it back. | 
|---|
| 503 | */ | 
|---|
| 504 | add_running_bw(dl_se, dl_rq); | 
|---|
| 505 | } | 
|---|
| 506 | } | 
|---|
| 507 |  | 
|---|
| 508 | static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
|---|
| 509 | { | 
|---|
| 510 | return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; | 
|---|
| 511 | } | 
|---|
| 512 |  | 
|---|
| 513 | static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); | 
|---|
| 514 |  | 
|---|
| 515 | void init_dl_bw(struct dl_bw *dl_b) | 
|---|
| 516 | { | 
|---|
| 517 | raw_spin_lock_init(&dl_b->lock); | 
|---|
| 518 | if (global_rt_runtime() == RUNTIME_INF) | 
|---|
| 519 | dl_b->bw = -1; | 
|---|
| 520 | else | 
|---|
| 521 | dl_b->bw = to_ratio(period: global_rt_period(), runtime: global_rt_runtime()); | 
|---|
| 522 | dl_b->total_bw = 0; | 
|---|
| 523 | } | 
|---|
| 524 |  | 
|---|
| 525 | void init_dl_rq(struct dl_rq *dl_rq) | 
|---|
| 526 | { | 
|---|
| 527 | dl_rq->root = RB_ROOT_CACHED; | 
|---|
| 528 |  | 
|---|
| 529 | /* zero means no -deadline tasks */ | 
|---|
| 530 | dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; | 
|---|
| 531 |  | 
|---|
| 532 | dl_rq->overloaded = 0; | 
|---|
| 533 | dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; | 
|---|
| 534 |  | 
|---|
| 535 | dl_rq->running_bw = 0; | 
|---|
| 536 | dl_rq->this_bw = 0; | 
|---|
| 537 | init_dl_rq_bw_ratio(dl_rq); | 
|---|
| 538 | } | 
|---|
| 539 |  | 
|---|
| 540 | static inline int dl_overloaded(struct rq *rq) | 
|---|
| 541 | { | 
|---|
| 542 | return atomic_read(v: &rq->rd->dlo_count); | 
|---|
| 543 | } | 
|---|
| 544 |  | 
|---|
| 545 | static inline void dl_set_overload(struct rq *rq) | 
|---|
| 546 | { | 
|---|
| 547 | if (!rq->online) | 
|---|
| 548 | return; | 
|---|
| 549 |  | 
|---|
| 550 | cpumask_set_cpu(cpu: rq->cpu, dstp: rq->rd->dlo_mask); | 
|---|
| 551 | /* | 
|---|
| 552 | * Must be visible before the overload count is | 
|---|
| 553 | * set (as in sched_rt.c). | 
|---|
| 554 | * | 
|---|
| 555 | * Matched by the barrier in pull_dl_task(). | 
|---|
| 556 | */ | 
|---|
| 557 | smp_wmb(); | 
|---|
| 558 | atomic_inc(v: &rq->rd->dlo_count); | 
|---|
| 559 | } | 
|---|
| 560 |  | 
|---|
| 561 | static inline void dl_clear_overload(struct rq *rq) | 
|---|
| 562 | { | 
|---|
| 563 | if (!rq->online) | 
|---|
| 564 | return; | 
|---|
| 565 |  | 
|---|
| 566 | atomic_dec(v: &rq->rd->dlo_count); | 
|---|
| 567 | cpumask_clear_cpu(cpu: rq->cpu, dstp: rq->rd->dlo_mask); | 
|---|
| 568 | } | 
|---|
| 569 |  | 
|---|
| 570 | #define __node_2_pdl(node) \ | 
|---|
| 571 | rb_entry((node), struct task_struct, pushable_dl_tasks) | 
|---|
| 572 |  | 
|---|
| 573 | static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) | 
|---|
| 574 | { | 
|---|
| 575 | return dl_entity_preempt(a: &__node_2_pdl(a)->dl, b: &__node_2_pdl(b)->dl); | 
|---|
| 576 | } | 
|---|
| 577 |  | 
|---|
| 578 | static inline int has_pushable_dl_tasks(struct rq *rq) | 
|---|
| 579 | { | 
|---|
| 580 | return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); | 
|---|
| 581 | } | 
|---|
| 582 |  | 
|---|
| 583 | /* | 
|---|
| 584 | * The list of pushable -deadline task is not a plist, like in | 
|---|
| 585 | * sched_rt.c, it is an rb-tree with tasks ordered by deadline. | 
|---|
| 586 | */ | 
|---|
| 587 | static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) | 
|---|
| 588 | { | 
|---|
| 589 | struct rb_node *leftmost; | 
|---|
| 590 |  | 
|---|
| 591 | WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); | 
|---|
| 592 |  | 
|---|
| 593 | leftmost = rb_add_cached(node: &p->pushable_dl_tasks, | 
|---|
| 594 | tree: &rq->dl.pushable_dl_tasks_root, | 
|---|
| 595 | less: __pushable_less); | 
|---|
| 596 | if (leftmost) | 
|---|
| 597 | rq->dl.earliest_dl.next = p->dl.deadline; | 
|---|
| 598 |  | 
|---|
| 599 | if (!rq->dl.overloaded) { | 
|---|
| 600 | dl_set_overload(rq); | 
|---|
| 601 | rq->dl.overloaded = 1; | 
|---|
| 602 | } | 
|---|
| 603 | } | 
|---|
| 604 |  | 
|---|
| 605 | static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) | 
|---|
| 606 | { | 
|---|
| 607 | struct dl_rq *dl_rq = &rq->dl; | 
|---|
| 608 | struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; | 
|---|
| 609 | struct rb_node *leftmost; | 
|---|
| 610 |  | 
|---|
| 611 | if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) | 
|---|
| 612 | return; | 
|---|
| 613 |  | 
|---|
| 614 | leftmost = rb_erase_cached(node: &p->pushable_dl_tasks, root); | 
|---|
| 615 | if (leftmost) | 
|---|
| 616 | dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; | 
|---|
| 617 |  | 
|---|
| 618 | RB_CLEAR_NODE(&p->pushable_dl_tasks); | 
|---|
| 619 |  | 
|---|
| 620 | if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) { | 
|---|
| 621 | dl_clear_overload(rq); | 
|---|
| 622 | rq->dl.overloaded = 0; | 
|---|
| 623 | } | 
|---|
| 624 | } | 
|---|
| 625 |  | 
|---|
| 626 | static int push_dl_task(struct rq *rq); | 
|---|
| 627 |  | 
|---|
| 628 | static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) | 
|---|
| 629 | { | 
|---|
| 630 | return rq->online && dl_task(p: prev); | 
|---|
| 631 | } | 
|---|
| 632 |  | 
|---|
| 633 | static DEFINE_PER_CPU(struct balance_callback, dl_push_head); | 
|---|
| 634 | static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); | 
|---|
| 635 |  | 
|---|
| 636 | static void push_dl_tasks(struct rq *); | 
|---|
| 637 | static void pull_dl_task(struct rq *); | 
|---|
| 638 |  | 
|---|
| 639 | static inline void deadline_queue_push_tasks(struct rq *rq) | 
|---|
| 640 | { | 
|---|
| 641 | if (!has_pushable_dl_tasks(rq)) | 
|---|
| 642 | return; | 
|---|
| 643 |  | 
|---|
| 644 | queue_balance_callback(rq, head: &per_cpu(dl_push_head, rq->cpu), func: push_dl_tasks); | 
|---|
| 645 | } | 
|---|
| 646 |  | 
|---|
| 647 | static inline void deadline_queue_pull_task(struct rq *rq) | 
|---|
| 648 | { | 
|---|
| 649 | queue_balance_callback(rq, head: &per_cpu(dl_pull_head, rq->cpu), func: pull_dl_task); | 
|---|
| 650 | } | 
|---|
| 651 |  | 
|---|
| 652 | static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); | 
|---|
| 653 |  | 
|---|
| 654 | static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) | 
|---|
| 655 | { | 
|---|
| 656 | struct rq *later_rq = NULL; | 
|---|
| 657 | struct dl_bw *dl_b; | 
|---|
| 658 |  | 
|---|
| 659 | later_rq = find_lock_later_rq(task: p, rq); | 
|---|
| 660 | if (!later_rq) { | 
|---|
| 661 | int cpu; | 
|---|
| 662 |  | 
|---|
| 663 | /* | 
|---|
| 664 | * If we cannot preempt any rq, fall back to pick any | 
|---|
| 665 | * online CPU: | 
|---|
| 666 | */ | 
|---|
| 667 | cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); | 
|---|
| 668 | if (cpu >= nr_cpu_ids) { | 
|---|
| 669 | /* | 
|---|
| 670 | * Failed to find any suitable CPU. | 
|---|
| 671 | * The task will never come back! | 
|---|
| 672 | */ | 
|---|
| 673 | WARN_ON_ONCE(dl_bandwidth_enabled()); | 
|---|
| 674 |  | 
|---|
| 675 | /* | 
|---|
| 676 | * If admission control is disabled we | 
|---|
| 677 | * try a little harder to let the task | 
|---|
| 678 | * run. | 
|---|
| 679 | */ | 
|---|
| 680 | cpu = cpumask_any(cpu_active_mask); | 
|---|
| 681 | } | 
|---|
| 682 | later_rq = cpu_rq(cpu); | 
|---|
| 683 | double_lock_balance(this_rq: rq, busiest: later_rq); | 
|---|
| 684 | } | 
|---|
| 685 |  | 
|---|
| 686 | if (p->dl.dl_non_contending || p->dl.dl_throttled) { | 
|---|
| 687 | /* | 
|---|
| 688 | * Inactive timer is armed (or callback is running, but | 
|---|
| 689 | * waiting for us to release rq locks). In any case, when it | 
|---|
| 690 | * will fire (or continue), it will see running_bw of this | 
|---|
| 691 | * task migrated to later_rq (and correctly handle it). | 
|---|
| 692 | */ | 
|---|
| 693 | sub_running_bw(dl_se: &p->dl, dl_rq: &rq->dl); | 
|---|
| 694 | sub_rq_bw(dl_se: &p->dl, dl_rq: &rq->dl); | 
|---|
| 695 |  | 
|---|
| 696 | add_rq_bw(dl_se: &p->dl, dl_rq: &later_rq->dl); | 
|---|
| 697 | add_running_bw(dl_se: &p->dl, dl_rq: &later_rq->dl); | 
|---|
| 698 | } else { | 
|---|
| 699 | sub_rq_bw(dl_se: &p->dl, dl_rq: &rq->dl); | 
|---|
| 700 | add_rq_bw(dl_se: &p->dl, dl_rq: &later_rq->dl); | 
|---|
| 701 | } | 
|---|
| 702 |  | 
|---|
| 703 | /* | 
|---|
| 704 | * And we finally need to fix up root_domain(s) bandwidth accounting, | 
|---|
| 705 | * since p is still hanging out in the old (now moved to default) root | 
|---|
| 706 | * domain. | 
|---|
| 707 | */ | 
|---|
| 708 | dl_b = &rq->rd->dl_bw; | 
|---|
| 709 | raw_spin_lock(&dl_b->lock); | 
|---|
| 710 | __dl_sub(dl_b, tsk_bw: p->dl.dl_bw, cpus: cpumask_weight(srcp: rq->rd->span)); | 
|---|
| 711 | raw_spin_unlock(&dl_b->lock); | 
|---|
| 712 |  | 
|---|
| 713 | dl_b = &later_rq->rd->dl_bw; | 
|---|
| 714 | raw_spin_lock(&dl_b->lock); | 
|---|
| 715 | __dl_add(dl_b, tsk_bw: p->dl.dl_bw, cpus: cpumask_weight(srcp: later_rq->rd->span)); | 
|---|
| 716 | raw_spin_unlock(&dl_b->lock); | 
|---|
| 717 |  | 
|---|
| 718 | set_task_cpu(p, cpu: later_rq->cpu); | 
|---|
| 719 | double_unlock_balance(this_rq: later_rq, busiest: rq); | 
|---|
| 720 |  | 
|---|
| 721 | return later_rq; | 
|---|
| 722 | } | 
|---|
| 723 |  | 
|---|
| 724 | static void | 
|---|
| 725 | enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags); | 
|---|
| 726 | static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); | 
|---|
| 727 | static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags); | 
|---|
| 728 | static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags); | 
|---|
| 729 |  | 
|---|
| 730 | static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, | 
|---|
| 731 | struct rq *rq) | 
|---|
| 732 | { | 
|---|
| 733 | /* for non-boosted task, pi_of(dl_se) == dl_se */ | 
|---|
| 734 | dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; | 
|---|
| 735 | dl_se->runtime = pi_of(dl_se)->dl_runtime; | 
|---|
| 736 |  | 
|---|
| 737 | /* | 
|---|
| 738 | * If it is a deferred reservation, and the server | 
|---|
| 739 | * is not handling an starvation case, defer it. | 
|---|
| 740 | */ | 
|---|
| 741 | if (dl_se->dl_defer && !dl_se->dl_defer_running) { | 
|---|
| 742 | dl_se->dl_throttled = 1; | 
|---|
| 743 | dl_se->dl_defer_armed = 1; | 
|---|
| 744 | } | 
|---|
| 745 | } | 
|---|
| 746 |  | 
|---|
| 747 | /* | 
|---|
| 748 | * We are being explicitly informed that a new instance is starting, | 
|---|
| 749 | * and this means that: | 
|---|
| 750 | *  - the absolute deadline of the entity has to be placed at | 
|---|
| 751 | *    current time + relative deadline; | 
|---|
| 752 | *  - the runtime of the entity has to be set to the maximum value. | 
|---|
| 753 | * | 
|---|
| 754 | * The capability of specifying such event is useful whenever a -deadline | 
|---|
| 755 | * entity wants to (try to!) synchronize its behaviour with the scheduler's | 
|---|
| 756 | * one, and to (try to!) reconcile itself with its own scheduling | 
|---|
| 757 | * parameters. | 
|---|
| 758 | */ | 
|---|
| 759 | static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) | 
|---|
| 760 | { | 
|---|
| 761 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
|---|
| 762 | struct rq *rq = rq_of_dl_rq(dl_rq); | 
|---|
| 763 |  | 
|---|
| 764 | update_rq_clock(rq); | 
|---|
| 765 |  | 
|---|
| 766 | WARN_ON(is_dl_boosted(dl_se)); | 
|---|
| 767 | WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); | 
|---|
| 768 |  | 
|---|
| 769 | /* | 
|---|
| 770 | * We are racing with the deadline timer. So, do nothing because | 
|---|
| 771 | * the deadline timer handler will take care of properly recharging | 
|---|
| 772 | * the runtime and postponing the deadline | 
|---|
| 773 | */ | 
|---|
| 774 | if (dl_se->dl_throttled) | 
|---|
| 775 | return; | 
|---|
| 776 |  | 
|---|
| 777 | /* | 
|---|
| 778 | * We use the regular wall clock time to set deadlines in the | 
|---|
| 779 | * future; in fact, we must consider execution overheads (time | 
|---|
| 780 | * spent on hardirq context, etc.). | 
|---|
| 781 | */ | 
|---|
| 782 | replenish_dl_new_period(dl_se, rq); | 
|---|
| 783 | } | 
|---|
| 784 |  | 
|---|
| 785 | static int start_dl_timer(struct sched_dl_entity *dl_se); | 
|---|
| 786 | static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t); | 
|---|
| 787 |  | 
|---|
| 788 | /* | 
|---|
| 789 | * Pure Earliest Deadline First (EDF) scheduling does not deal with the | 
|---|
| 790 | * possibility of a entity lasting more than what it declared, and thus | 
|---|
| 791 | * exhausting its runtime. | 
|---|
| 792 | * | 
|---|
| 793 | * Here we are interested in making runtime overrun possible, but we do | 
|---|
| 794 | * not want a entity which is misbehaving to affect the scheduling of all | 
|---|
| 795 | * other entities. | 
|---|
| 796 | * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) | 
|---|
| 797 | * is used, in order to confine each entity within its own bandwidth. | 
|---|
| 798 | * | 
|---|
| 799 | * This function deals exactly with that, and ensures that when the runtime | 
|---|
| 800 | * of a entity is replenished, its deadline is also postponed. That ensures | 
|---|
| 801 | * the overrunning entity can't interfere with other entity in the system and | 
|---|
| 802 | * can't make them miss their deadlines. Reasons why this kind of overruns | 
|---|
| 803 | * could happen are, typically, a entity voluntarily trying to overcome its | 
|---|
| 804 | * runtime, or it just underestimated it during sched_setattr(). | 
|---|
| 805 | */ | 
|---|
| 806 | static void replenish_dl_entity(struct sched_dl_entity *dl_se) | 
|---|
| 807 | { | 
|---|
| 808 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
|---|
| 809 | struct rq *rq = rq_of_dl_rq(dl_rq); | 
|---|
| 810 |  | 
|---|
| 811 | WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); | 
|---|
| 812 |  | 
|---|
| 813 | /* | 
|---|
| 814 | * This could be the case for a !-dl task that is boosted. | 
|---|
| 815 | * Just go with full inherited parameters. | 
|---|
| 816 | * | 
|---|
| 817 | * Or, it could be the case of a deferred reservation that | 
|---|
| 818 | * was not able to consume its runtime in background and | 
|---|
| 819 | * reached this point with current u > U. | 
|---|
| 820 | * | 
|---|
| 821 | * In both cases, set a new period. | 
|---|
| 822 | */ | 
|---|
| 823 | if (dl_se->dl_deadline == 0 || | 
|---|
| 824 | (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, t: rq_clock(rq)))) { | 
|---|
| 825 | dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; | 
|---|
| 826 | dl_se->runtime = pi_of(dl_se)->dl_runtime; | 
|---|
| 827 | } | 
|---|
| 828 |  | 
|---|
| 829 | if (dl_se->dl_yielded && dl_se->runtime > 0) | 
|---|
| 830 | dl_se->runtime = 0; | 
|---|
| 831 |  | 
|---|
| 832 | /* | 
|---|
| 833 | * We keep moving the deadline away until we get some | 
|---|
| 834 | * available runtime for the entity. This ensures correct | 
|---|
| 835 | * handling of situations where the runtime overrun is | 
|---|
| 836 | * arbitrary large. | 
|---|
| 837 | */ | 
|---|
| 838 | while (dl_se->runtime <= 0) { | 
|---|
| 839 | dl_se->deadline += pi_of(dl_se)->dl_period; | 
|---|
| 840 | dl_se->runtime += pi_of(dl_se)->dl_runtime; | 
|---|
| 841 | } | 
|---|
| 842 |  | 
|---|
| 843 | /* | 
|---|
| 844 | * At this point, the deadline really should be "in | 
|---|
| 845 | * the future" with respect to rq->clock. If it's | 
|---|
| 846 | * not, we are, for some reason, lagging too much! | 
|---|
| 847 | * Anyway, after having warn userspace abut that, | 
|---|
| 848 | * we still try to keep the things running by | 
|---|
| 849 | * resetting the deadline and the budget of the | 
|---|
| 850 | * entity. | 
|---|
| 851 | */ | 
|---|
| 852 | if (dl_time_before(a: dl_se->deadline, b: rq_clock(rq))) { | 
|---|
| 853 | printk_deferred_once( "sched: DL replenish lagged too much\n"); | 
|---|
| 854 | replenish_dl_new_period(dl_se, rq); | 
|---|
| 855 | } | 
|---|
| 856 |  | 
|---|
| 857 | if (dl_se->dl_yielded) | 
|---|
| 858 | dl_se->dl_yielded = 0; | 
|---|
| 859 | if (dl_se->dl_throttled) | 
|---|
| 860 | dl_se->dl_throttled = 0; | 
|---|
| 861 |  | 
|---|
| 862 | /* | 
|---|
| 863 | * If this is the replenishment of a deferred reservation, | 
|---|
| 864 | * clear the flag and return. | 
|---|
| 865 | */ | 
|---|
| 866 | if (dl_se->dl_defer_armed) { | 
|---|
| 867 | dl_se->dl_defer_armed = 0; | 
|---|
| 868 | return; | 
|---|
| 869 | } | 
|---|
| 870 |  | 
|---|
| 871 | /* | 
|---|
| 872 | * A this point, if the deferred server is not armed, and the deadline | 
|---|
| 873 | * is in the future, if it is not running already, throttle the server | 
|---|
| 874 | * and arm the defer timer. | 
|---|
| 875 | */ | 
|---|
| 876 | if (dl_se->dl_defer && !dl_se->dl_defer_running && | 
|---|
| 877 | dl_time_before(a: rq_clock(rq: dl_se->rq), b: dl_se->deadline - dl_se->runtime)) { | 
|---|
| 878 | if (!is_dl_boosted(dl_se)) { | 
|---|
| 879 |  | 
|---|
| 880 | /* | 
|---|
| 881 | * Set dl_se->dl_defer_armed and dl_throttled variables to | 
|---|
| 882 | * inform the start_dl_timer() that this is a deferred | 
|---|
| 883 | * activation. | 
|---|
| 884 | */ | 
|---|
| 885 | dl_se->dl_defer_armed = 1; | 
|---|
| 886 | dl_se->dl_throttled = 1; | 
|---|
| 887 | if (!start_dl_timer(dl_se)) { | 
|---|
| 888 | /* | 
|---|
| 889 | * If for whatever reason (delays), a previous timer was | 
|---|
| 890 | * queued but not serviced, cancel it and clean the | 
|---|
| 891 | * deferrable server variables intended for start_dl_timer(). | 
|---|
| 892 | */ | 
|---|
| 893 | hrtimer_try_to_cancel(timer: &dl_se->dl_timer); | 
|---|
| 894 | dl_se->dl_defer_armed = 0; | 
|---|
| 895 | dl_se->dl_throttled = 0; | 
|---|
| 896 | } | 
|---|
| 897 | } | 
|---|
| 898 | } | 
|---|
| 899 | } | 
|---|
| 900 |  | 
|---|
| 901 | /* | 
|---|
| 902 | * Here we check if --at time t-- an entity (which is probably being | 
|---|
| 903 | * [re]activated or, in general, enqueued) can use its remaining runtime | 
|---|
| 904 | * and its current deadline _without_ exceeding the bandwidth it is | 
|---|
| 905 | * assigned (function returns true if it can't). We are in fact applying | 
|---|
| 906 | * one of the CBS rules: when a task wakes up, if the residual runtime | 
|---|
| 907 | * over residual deadline fits within the allocated bandwidth, then we | 
|---|
| 908 | * can keep the current (absolute) deadline and residual budget without | 
|---|
| 909 | * disrupting the schedulability of the system. Otherwise, we should | 
|---|
| 910 | * refill the runtime and set the deadline a period in the future, | 
|---|
| 911 | * because keeping the current (absolute) deadline of the task would | 
|---|
| 912 | * result in breaking guarantees promised to other tasks (refer to | 
|---|
| 913 | * Documentation/scheduler/sched-deadline.rst for more information). | 
|---|
| 914 | * | 
|---|
| 915 | * This function returns true if: | 
|---|
| 916 | * | 
|---|
| 917 | *   runtime / (deadline - t) > dl_runtime / dl_deadline , | 
|---|
| 918 | * | 
|---|
| 919 | * IOW we can't recycle current parameters. | 
|---|
| 920 | * | 
|---|
| 921 | * Notice that the bandwidth check is done against the deadline. For | 
|---|
| 922 | * task with deadline equal to period this is the same of using | 
|---|
| 923 | * dl_period instead of dl_deadline in the equation above. | 
|---|
| 924 | */ | 
|---|
| 925 | static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) | 
|---|
| 926 | { | 
|---|
| 927 | u64 left, right; | 
|---|
| 928 |  | 
|---|
| 929 | /* | 
|---|
| 930 | * left and right are the two sides of the equation above, | 
|---|
| 931 | * after a bit of shuffling to use multiplications instead | 
|---|
| 932 | * of divisions. | 
|---|
| 933 | * | 
|---|
| 934 | * Note that none of the time values involved in the two | 
|---|
| 935 | * multiplications are absolute: dl_deadline and dl_runtime | 
|---|
| 936 | * are the relative deadline and the maximum runtime of each | 
|---|
| 937 | * instance, runtime is the runtime left for the last instance | 
|---|
| 938 | * and (deadline - t), since t is rq->clock, is the time left | 
|---|
| 939 | * to the (absolute) deadline. Even if overflowing the u64 type | 
|---|
| 940 | * is very unlikely to occur in both cases, here we scale down | 
|---|
| 941 | * as we want to avoid that risk at all. Scaling down by 10 | 
|---|
| 942 | * means that we reduce granularity to 1us. We are fine with it, | 
|---|
| 943 | * since this is only a true/false check and, anyway, thinking | 
|---|
| 944 | * of anything below microseconds resolution is actually fiction | 
|---|
| 945 | * (but still we want to give the user that illusion >;). | 
|---|
| 946 | */ | 
|---|
| 947 | left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); | 
|---|
| 948 | right = ((dl_se->deadline - t) >> DL_SCALE) * | 
|---|
| 949 | (pi_of(dl_se)->dl_runtime >> DL_SCALE); | 
|---|
| 950 |  | 
|---|
| 951 | return dl_time_before(a: right, b: left); | 
|---|
| 952 | } | 
|---|
| 953 |  | 
|---|
| 954 | /* | 
|---|
| 955 | * Revised wakeup rule [1]: For self-suspending tasks, rather then | 
|---|
| 956 | * re-initializing task's runtime and deadline, the revised wakeup | 
|---|
| 957 | * rule adjusts the task's runtime to avoid the task to overrun its | 
|---|
| 958 | * density. | 
|---|
| 959 | * | 
|---|
| 960 | * Reasoning: a task may overrun the density if: | 
|---|
| 961 | *    runtime / (deadline - t) > dl_runtime / dl_deadline | 
|---|
| 962 | * | 
|---|
| 963 | * Therefore, runtime can be adjusted to: | 
|---|
| 964 | *     runtime = (dl_runtime / dl_deadline) * (deadline - t) | 
|---|
| 965 | * | 
|---|
| 966 | * In such way that runtime will be equal to the maximum density | 
|---|
| 967 | * the task can use without breaking any rule. | 
|---|
| 968 | * | 
|---|
| 969 | * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant | 
|---|
| 970 | * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. | 
|---|
| 971 | */ | 
|---|
| 972 | static void | 
|---|
| 973 | update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) | 
|---|
| 974 | { | 
|---|
| 975 | u64 laxity = dl_se->deadline - rq_clock(rq); | 
|---|
| 976 |  | 
|---|
| 977 | /* | 
|---|
| 978 | * If the task has deadline < period, and the deadline is in the past, | 
|---|
| 979 | * it should already be throttled before this check. | 
|---|
| 980 | * | 
|---|
| 981 | * See update_dl_entity() comments for further details. | 
|---|
| 982 | */ | 
|---|
| 983 | WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); | 
|---|
| 984 |  | 
|---|
| 985 | dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; | 
|---|
| 986 | } | 
|---|
| 987 |  | 
|---|
| 988 | /* | 
|---|
| 989 | * Regarding the deadline, a task with implicit deadline has a relative | 
|---|
| 990 | * deadline == relative period. A task with constrained deadline has a | 
|---|
| 991 | * relative deadline <= relative period. | 
|---|
| 992 | * | 
|---|
| 993 | * We support constrained deadline tasks. However, there are some restrictions | 
|---|
| 994 | * applied only for tasks which do not have an implicit deadline. See | 
|---|
| 995 | * update_dl_entity() to know more about such restrictions. | 
|---|
| 996 | * | 
|---|
| 997 | * The dl_is_implicit() returns true if the task has an implicit deadline. | 
|---|
| 998 | */ | 
|---|
| 999 | static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) | 
|---|
| 1000 | { | 
|---|
| 1001 | return dl_se->dl_deadline == dl_se->dl_period; | 
|---|
| 1002 | } | 
|---|
| 1003 |  | 
|---|
| 1004 | /* | 
|---|
| 1005 | * When a deadline entity is placed in the runqueue, its runtime and deadline | 
|---|
| 1006 | * might need to be updated. This is done by a CBS wake up rule. There are two | 
|---|
| 1007 | * different rules: 1) the original CBS; and 2) the Revisited CBS. | 
|---|
| 1008 | * | 
|---|
| 1009 | * When the task is starting a new period, the Original CBS is used. In this | 
|---|
| 1010 | * case, the runtime is replenished and a new absolute deadline is set. | 
|---|
| 1011 | * | 
|---|
| 1012 | * When a task is queued before the begin of the next period, using the | 
|---|
| 1013 | * remaining runtime and deadline could make the entity to overflow, see | 
|---|
| 1014 | * dl_entity_overflow() to find more about runtime overflow. When such case | 
|---|
| 1015 | * is detected, the runtime and deadline need to be updated. | 
|---|
| 1016 | * | 
|---|
| 1017 | * If the task has an implicit deadline, i.e., deadline == period, the Original | 
|---|
| 1018 | * CBS is applied. The runtime is replenished and a new absolute deadline is | 
|---|
| 1019 | * set, as in the previous cases. | 
|---|
| 1020 | * | 
|---|
| 1021 | * However, the Original CBS does not work properly for tasks with | 
|---|
| 1022 | * deadline < period, which are said to have a constrained deadline. By | 
|---|
| 1023 | * applying the Original CBS, a constrained deadline task would be able to run | 
|---|
| 1024 | * runtime/deadline in a period. With deadline < period, the task would | 
|---|
| 1025 | * overrun the runtime/period allowed bandwidth, breaking the admission test. | 
|---|
| 1026 | * | 
|---|
| 1027 | * In order to prevent this misbehave, the Revisited CBS is used for | 
|---|
| 1028 | * constrained deadline tasks when a runtime overflow is detected. In the | 
|---|
| 1029 | * Revisited CBS, rather than replenishing & setting a new absolute deadline, | 
|---|
| 1030 | * the remaining runtime of the task is reduced to avoid runtime overflow. | 
|---|
| 1031 | * Please refer to the comments update_dl_revised_wakeup() function to find | 
|---|
| 1032 | * more about the Revised CBS rule. | 
|---|
| 1033 | */ | 
|---|
| 1034 | static void update_dl_entity(struct sched_dl_entity *dl_se) | 
|---|
| 1035 | { | 
|---|
| 1036 | struct rq *rq = rq_of_dl_se(dl_se); | 
|---|
| 1037 |  | 
|---|
| 1038 | if (dl_time_before(a: dl_se->deadline, b: rq_clock(rq)) || | 
|---|
| 1039 | dl_entity_overflow(dl_se, t: rq_clock(rq))) { | 
|---|
| 1040 |  | 
|---|
| 1041 | if (unlikely(!dl_is_implicit(dl_se) && | 
|---|
| 1042 | !dl_time_before(dl_se->deadline, rq_clock(rq)) && | 
|---|
| 1043 | !is_dl_boosted(dl_se))) { | 
|---|
| 1044 | update_dl_revised_wakeup(dl_se, rq); | 
|---|
| 1045 | return; | 
|---|
| 1046 | } | 
|---|
| 1047 |  | 
|---|
| 1048 | replenish_dl_new_period(dl_se, rq); | 
|---|
| 1049 | } else if (dl_server(dl_se) && dl_se->dl_defer) { | 
|---|
| 1050 | /* | 
|---|
| 1051 | * The server can still use its previous deadline, so check if | 
|---|
| 1052 | * it left the dl_defer_running state. | 
|---|
| 1053 | */ | 
|---|
| 1054 | if (!dl_se->dl_defer_running) { | 
|---|
| 1055 | dl_se->dl_defer_armed = 1; | 
|---|
| 1056 | dl_se->dl_throttled = 1; | 
|---|
| 1057 | } | 
|---|
| 1058 | } | 
|---|
| 1059 | } | 
|---|
| 1060 |  | 
|---|
| 1061 | static inline u64 dl_next_period(struct sched_dl_entity *dl_se) | 
|---|
| 1062 | { | 
|---|
| 1063 | return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; | 
|---|
| 1064 | } | 
|---|
| 1065 |  | 
|---|
| 1066 | /* | 
|---|
| 1067 | * If the entity depleted all its runtime, and if we want it to sleep | 
|---|
| 1068 | * while waiting for some new execution time to become available, we | 
|---|
| 1069 | * set the bandwidth replenishment timer to the replenishment instant | 
|---|
| 1070 | * and try to activate it. | 
|---|
| 1071 | * | 
|---|
| 1072 | * Notice that it is important for the caller to know if the timer | 
|---|
| 1073 | * actually started or not (i.e., the replenishment instant is in | 
|---|
| 1074 | * the future or in the past). | 
|---|
| 1075 | */ | 
|---|
| 1076 | static int start_dl_timer(struct sched_dl_entity *dl_se) | 
|---|
| 1077 | { | 
|---|
| 1078 | struct hrtimer *timer = &dl_se->dl_timer; | 
|---|
| 1079 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
|---|
| 1080 | struct rq *rq = rq_of_dl_rq(dl_rq); | 
|---|
| 1081 | ktime_t now, act; | 
|---|
| 1082 | s64 delta; | 
|---|
| 1083 |  | 
|---|
| 1084 | lockdep_assert_rq_held(rq); | 
|---|
| 1085 |  | 
|---|
| 1086 | /* | 
|---|
| 1087 | * We want the timer to fire at the deadline, but considering | 
|---|
| 1088 | * that it is actually coming from rq->clock and not from | 
|---|
| 1089 | * hrtimer's time base reading. | 
|---|
| 1090 | * | 
|---|
| 1091 | * The deferred reservation will have its timer set to | 
|---|
| 1092 | * (deadline - runtime). At that point, the CBS rule will decide | 
|---|
| 1093 | * if the current deadline can be used, or if a replenishment is | 
|---|
| 1094 | * required to avoid add too much pressure on the system | 
|---|
| 1095 | * (current u > U). | 
|---|
| 1096 | */ | 
|---|
| 1097 | if (dl_se->dl_defer_armed) { | 
|---|
| 1098 | WARN_ON_ONCE(!dl_se->dl_throttled); | 
|---|
| 1099 | act = ns_to_ktime(ns: dl_se->deadline - dl_se->runtime); | 
|---|
| 1100 | } else { | 
|---|
| 1101 | /* act = deadline - rel-deadline + period */ | 
|---|
| 1102 | act = ns_to_ktime(ns: dl_next_period(dl_se)); | 
|---|
| 1103 | } | 
|---|
| 1104 |  | 
|---|
| 1105 | now = hrtimer_cb_get_time(timer); | 
|---|
| 1106 | delta = ktime_to_ns(kt: now) - rq_clock(rq); | 
|---|
| 1107 | act = ktime_add_ns(act, delta); | 
|---|
| 1108 |  | 
|---|
| 1109 | /* | 
|---|
| 1110 | * If the expiry time already passed, e.g., because the value | 
|---|
| 1111 | * chosen as the deadline is too small, don't even try to | 
|---|
| 1112 | * start the timer in the past! | 
|---|
| 1113 | */ | 
|---|
| 1114 | if (ktime_us_delta(later: act, earlier: now) < 0) | 
|---|
| 1115 | return 0; | 
|---|
| 1116 |  | 
|---|
| 1117 | /* | 
|---|
| 1118 | * !enqueued will guarantee another callback; even if one is already in | 
|---|
| 1119 | * progress. This ensures a balanced {get,put}_task_struct(). | 
|---|
| 1120 | * | 
|---|
| 1121 | * The race against __run_timer() clearing the enqueued state is | 
|---|
| 1122 | * harmless because we're holding task_rq()->lock, therefore the timer | 
|---|
| 1123 | * expiring after we've done the check will wait on its task_rq_lock() | 
|---|
| 1124 | * and observe our state. | 
|---|
| 1125 | */ | 
|---|
| 1126 | if (!hrtimer_is_queued(timer)) { | 
|---|
| 1127 | if (!dl_server(dl_se)) | 
|---|
| 1128 | get_task_struct(t: dl_task_of(dl_se)); | 
|---|
| 1129 | hrtimer_start(timer, tim: act, mode: HRTIMER_MODE_ABS_HARD); | 
|---|
| 1130 | } | 
|---|
| 1131 |  | 
|---|
| 1132 | return 1; | 
|---|
| 1133 | } | 
|---|
| 1134 |  | 
|---|
| 1135 | static void __push_dl_task(struct rq *rq, struct rq_flags *rf) | 
|---|
| 1136 | { | 
|---|
| 1137 | /* | 
|---|
| 1138 | * Queueing this task back might have overloaded rq, check if we need | 
|---|
| 1139 | * to kick someone away. | 
|---|
| 1140 | */ | 
|---|
| 1141 | if (has_pushable_dl_tasks(rq)) { | 
|---|
| 1142 | /* | 
|---|
| 1143 | * Nothing relies on rq->lock after this, so its safe to drop | 
|---|
| 1144 | * rq->lock. | 
|---|
| 1145 | */ | 
|---|
| 1146 | rq_unpin_lock(rq, rf); | 
|---|
| 1147 | push_dl_task(rq); | 
|---|
| 1148 | rq_repin_lock(rq, rf); | 
|---|
| 1149 | } | 
|---|
| 1150 | } | 
|---|
| 1151 |  | 
|---|
| 1152 | /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */ | 
|---|
| 1153 | static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC; | 
|---|
| 1154 |  | 
|---|
| 1155 | static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se) | 
|---|
| 1156 | { | 
|---|
| 1157 | struct rq *rq = rq_of_dl_se(dl_se); | 
|---|
| 1158 | u64 fw; | 
|---|
| 1159 |  | 
|---|
| 1160 | scoped_guard (rq_lock, rq) { | 
|---|
| 1161 | struct rq_flags *rf = &scope.rf; | 
|---|
| 1162 |  | 
|---|
| 1163 | if (!dl_se->dl_throttled || !dl_se->dl_runtime) | 
|---|
| 1164 | return HRTIMER_NORESTART; | 
|---|
| 1165 |  | 
|---|
| 1166 | sched_clock_tick(); | 
|---|
| 1167 | update_rq_clock(rq); | 
|---|
| 1168 |  | 
|---|
| 1169 | if (!dl_se->dl_runtime) | 
|---|
| 1170 | return HRTIMER_NORESTART; | 
|---|
| 1171 |  | 
|---|
| 1172 | if (dl_se->dl_defer_armed) { | 
|---|
| 1173 | /* | 
|---|
| 1174 | * First check if the server could consume runtime in background. | 
|---|
| 1175 | * If so, it is possible to push the defer timer for this amount | 
|---|
| 1176 | * of time. The dl_server_min_res serves as a limit to avoid | 
|---|
| 1177 | * forwarding the timer for a too small amount of time. | 
|---|
| 1178 | */ | 
|---|
| 1179 | if (dl_time_before(a: rq_clock(rq: dl_se->rq), | 
|---|
| 1180 | b: (dl_se->deadline - dl_se->runtime - dl_server_min_res))) { | 
|---|
| 1181 |  | 
|---|
| 1182 | /* reset the defer timer */ | 
|---|
| 1183 | fw = dl_se->deadline - rq_clock(rq: dl_se->rq) - dl_se->runtime; | 
|---|
| 1184 |  | 
|---|
| 1185 | hrtimer_forward_now(timer, interval: ns_to_ktime(ns: fw)); | 
|---|
| 1186 | return HRTIMER_RESTART; | 
|---|
| 1187 | } | 
|---|
| 1188 |  | 
|---|
| 1189 | dl_se->dl_defer_running = 1; | 
|---|
| 1190 | } | 
|---|
| 1191 |  | 
|---|
| 1192 | enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH); | 
|---|
| 1193 |  | 
|---|
| 1194 | if (!dl_task(p: dl_se->rq->curr) || dl_entity_preempt(a: dl_se, b: &dl_se->rq->curr->dl)) | 
|---|
| 1195 | resched_curr(rq); | 
|---|
| 1196 |  | 
|---|
| 1197 | __push_dl_task(rq, rf); | 
|---|
| 1198 | } | 
|---|
| 1199 |  | 
|---|
| 1200 | return HRTIMER_NORESTART; | 
|---|
| 1201 | } | 
|---|
| 1202 |  | 
|---|
| 1203 | /* | 
|---|
| 1204 | * This is the bandwidth enforcement timer callback. If here, we know | 
|---|
| 1205 | * a task is not on its dl_rq, since the fact that the timer was running | 
|---|
| 1206 | * means the task is throttled and needs a runtime replenishment. | 
|---|
| 1207 | * | 
|---|
| 1208 | * However, what we actually do depends on the fact the task is active, | 
|---|
| 1209 | * (it is on its rq) or has been removed from there by a call to | 
|---|
| 1210 | * dequeue_task_dl(). In the former case we must issue the runtime | 
|---|
| 1211 | * replenishment and add the task back to the dl_rq; in the latter, we just | 
|---|
| 1212 | * do nothing but clearing dl_throttled, so that runtime and deadline | 
|---|
| 1213 | * updating (and the queueing back to dl_rq) will be done by the | 
|---|
| 1214 | * next call to enqueue_task_dl(). | 
|---|
| 1215 | */ | 
|---|
| 1216 | static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) | 
|---|
| 1217 | { | 
|---|
| 1218 | struct sched_dl_entity *dl_se = container_of(timer, | 
|---|
| 1219 | struct sched_dl_entity, | 
|---|
| 1220 | dl_timer); | 
|---|
| 1221 | struct task_struct *p; | 
|---|
| 1222 | struct rq_flags rf; | 
|---|
| 1223 | struct rq *rq; | 
|---|
| 1224 |  | 
|---|
| 1225 | if (dl_server(dl_se)) | 
|---|
| 1226 | return dl_server_timer(timer, dl_se); | 
|---|
| 1227 |  | 
|---|
| 1228 | p = dl_task_of(dl_se); | 
|---|
| 1229 | rq = task_rq_lock(p, rf: &rf); | 
|---|
| 1230 |  | 
|---|
| 1231 | /* | 
|---|
| 1232 | * The task might have changed its scheduling policy to something | 
|---|
| 1233 | * different than SCHED_DEADLINE (through switched_from_dl()). | 
|---|
| 1234 | */ | 
|---|
| 1235 | if (!dl_task(p)) | 
|---|
| 1236 | goto unlock; | 
|---|
| 1237 |  | 
|---|
| 1238 | /* | 
|---|
| 1239 | * The task might have been boosted by someone else and might be in the | 
|---|
| 1240 | * boosting/deboosting path, its not throttled. | 
|---|
| 1241 | */ | 
|---|
| 1242 | if (is_dl_boosted(dl_se)) | 
|---|
| 1243 | goto unlock; | 
|---|
| 1244 |  | 
|---|
| 1245 | /* | 
|---|
| 1246 | * Spurious timer due to start_dl_timer() race; or we already received | 
|---|
| 1247 | * a replenishment from rt_mutex_setprio(). | 
|---|
| 1248 | */ | 
|---|
| 1249 | if (!dl_se->dl_throttled) | 
|---|
| 1250 | goto unlock; | 
|---|
| 1251 |  | 
|---|
| 1252 | sched_clock_tick(); | 
|---|
| 1253 | update_rq_clock(rq); | 
|---|
| 1254 |  | 
|---|
| 1255 | /* | 
|---|
| 1256 | * If the throttle happened during sched-out; like: | 
|---|
| 1257 | * | 
|---|
| 1258 | *   schedule() | 
|---|
| 1259 | *     deactivate_task() | 
|---|
| 1260 | *       dequeue_task_dl() | 
|---|
| 1261 | *         update_curr_dl() | 
|---|
| 1262 | *           start_dl_timer() | 
|---|
| 1263 | *         __dequeue_task_dl() | 
|---|
| 1264 | *     prev->on_rq = 0; | 
|---|
| 1265 | * | 
|---|
| 1266 | * We can be both throttled and !queued. Replenish the counter | 
|---|
| 1267 | * but do not enqueue -- wait for our wakeup to do that. | 
|---|
| 1268 | */ | 
|---|
| 1269 | if (!task_on_rq_queued(p)) { | 
|---|
| 1270 | replenish_dl_entity(dl_se); | 
|---|
| 1271 | goto unlock; | 
|---|
| 1272 | } | 
|---|
| 1273 |  | 
|---|
| 1274 | if (unlikely(!rq->online)) { | 
|---|
| 1275 | /* | 
|---|
| 1276 | * If the runqueue is no longer available, migrate the | 
|---|
| 1277 | * task elsewhere. This necessarily changes rq. | 
|---|
| 1278 | */ | 
|---|
| 1279 | lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); | 
|---|
| 1280 | rq = dl_task_offline_migration(rq, p); | 
|---|
| 1281 | rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); | 
|---|
| 1282 | update_rq_clock(rq); | 
|---|
| 1283 |  | 
|---|
| 1284 | /* | 
|---|
| 1285 | * Now that the task has been migrated to the new RQ and we | 
|---|
| 1286 | * have that locked, proceed as normal and enqueue the task | 
|---|
| 1287 | * there. | 
|---|
| 1288 | */ | 
|---|
| 1289 | } | 
|---|
| 1290 |  | 
|---|
| 1291 | enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); | 
|---|
| 1292 | if (dl_task(p: rq->donor)) | 
|---|
| 1293 | wakeup_preempt_dl(rq, p, flags: 0); | 
|---|
| 1294 | else | 
|---|
| 1295 | resched_curr(rq); | 
|---|
| 1296 |  | 
|---|
| 1297 | __push_dl_task(rq, rf: &rf); | 
|---|
| 1298 |  | 
|---|
| 1299 | unlock: | 
|---|
| 1300 | task_rq_unlock(rq, p, rf: &rf); | 
|---|
| 1301 |  | 
|---|
| 1302 | /* | 
|---|
| 1303 | * This can free the task_struct, including this hrtimer, do not touch | 
|---|
| 1304 | * anything related to that after this. | 
|---|
| 1305 | */ | 
|---|
| 1306 | put_task_struct(t: p); | 
|---|
| 1307 |  | 
|---|
| 1308 | return HRTIMER_NORESTART; | 
|---|
| 1309 | } | 
|---|
| 1310 |  | 
|---|
| 1311 | static void init_dl_task_timer(struct sched_dl_entity *dl_se) | 
|---|
| 1312 | { | 
|---|
| 1313 | struct hrtimer *timer = &dl_se->dl_timer; | 
|---|
| 1314 |  | 
|---|
| 1315 | hrtimer_setup(timer, function: dl_task_timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_HARD); | 
|---|
| 1316 | } | 
|---|
| 1317 |  | 
|---|
| 1318 | /* | 
|---|
| 1319 | * During the activation, CBS checks if it can reuse the current task's | 
|---|
| 1320 | * runtime and period. If the deadline of the task is in the past, CBS | 
|---|
| 1321 | * cannot use the runtime, and so it replenishes the task. This rule | 
|---|
| 1322 | * works fine for implicit deadline tasks (deadline == period), and the | 
|---|
| 1323 | * CBS was designed for implicit deadline tasks. However, a task with | 
|---|
| 1324 | * constrained deadline (deadline < period) might be awakened after the | 
|---|
| 1325 | * deadline, but before the next period. In this case, replenishing the | 
|---|
| 1326 | * task would allow it to run for runtime / deadline. As in this case | 
|---|
| 1327 | * deadline < period, CBS enables a task to run for more than the | 
|---|
| 1328 | * runtime / period. In a very loaded system, this can cause a domino | 
|---|
| 1329 | * effect, making other tasks miss their deadlines. | 
|---|
| 1330 | * | 
|---|
| 1331 | * To avoid this problem, in the activation of a constrained deadline | 
|---|
| 1332 | * task after the deadline but before the next period, throttle the | 
|---|
| 1333 | * task and set the replenishing timer to the begin of the next period, | 
|---|
| 1334 | * unless it is boosted. | 
|---|
| 1335 | */ | 
|---|
| 1336 | static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) | 
|---|
| 1337 | { | 
|---|
| 1338 | struct rq *rq = rq_of_dl_se(dl_se); | 
|---|
| 1339 |  | 
|---|
| 1340 | if (dl_time_before(a: dl_se->deadline, b: rq_clock(rq)) && | 
|---|
| 1341 | dl_time_before(a: rq_clock(rq), b: dl_next_period(dl_se))) { | 
|---|
| 1342 | if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) | 
|---|
| 1343 | return; | 
|---|
| 1344 | dl_se->dl_throttled = 1; | 
|---|
| 1345 | if (dl_se->runtime > 0) | 
|---|
| 1346 | dl_se->runtime = 0; | 
|---|
| 1347 | } | 
|---|
| 1348 | } | 
|---|
| 1349 |  | 
|---|
| 1350 | static | 
|---|
| 1351 | int dl_runtime_exceeded(struct sched_dl_entity *dl_se) | 
|---|
| 1352 | { | 
|---|
| 1353 | return (dl_se->runtime <= 0); | 
|---|
| 1354 | } | 
|---|
| 1355 |  | 
|---|
| 1356 | /* | 
|---|
| 1357 | * This function implements the GRUB accounting rule. According to the | 
|---|
| 1358 | * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", | 
|---|
| 1359 | * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", | 
|---|
| 1360 | * where u is the utilization of the task, Umax is the maximum reclaimable | 
|---|
| 1361 | * utilization, Uinact is the (per-runqueue) inactive utilization, computed | 
|---|
| 1362 | * as the difference between the "total runqueue utilization" and the | 
|---|
| 1363 | * "runqueue active utilization", and Uextra is the (per runqueue) extra | 
|---|
| 1364 | * reclaimable utilization. | 
|---|
| 1365 | * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied | 
|---|
| 1366 | * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. | 
|---|
| 1367 | * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw | 
|---|
| 1368 | * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. | 
|---|
| 1369 | * Since delta is a 64 bit variable, to have an overflow its value should be | 
|---|
| 1370 | * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is | 
|---|
| 1371 | * not an issue here. | 
|---|
| 1372 | */ | 
|---|
| 1373 | static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) | 
|---|
| 1374 | { | 
|---|
| 1375 | u64 u_act; | 
|---|
| 1376 | u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ | 
|---|
| 1377 |  | 
|---|
| 1378 | /* | 
|---|
| 1379 | * Instead of computing max{u, (u_max - u_inact - u_extra)}, we | 
|---|
| 1380 | * compare u_inact + u_extra with u_max - u, because u_inact + u_extra | 
|---|
| 1381 | * can be larger than u_max. So, u_max - u_inact - u_extra would be | 
|---|
| 1382 | * negative leading to wrong results. | 
|---|
| 1383 | */ | 
|---|
| 1384 | if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) | 
|---|
| 1385 | u_act = dl_se->dl_bw; | 
|---|
| 1386 | else | 
|---|
| 1387 | u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; | 
|---|
| 1388 |  | 
|---|
| 1389 | u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; | 
|---|
| 1390 | return (delta * u_act) >> BW_SHIFT; | 
|---|
| 1391 | } | 
|---|
| 1392 |  | 
|---|
| 1393 | s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) | 
|---|
| 1394 | { | 
|---|
| 1395 | s64 scaled_delta_exec; | 
|---|
| 1396 |  | 
|---|
| 1397 | /* | 
|---|
| 1398 | * For tasks that participate in GRUB, we implement GRUB-PA: the | 
|---|
| 1399 | * spare reclaimed bandwidth is used to clock down frequency. | 
|---|
| 1400 | * | 
|---|
| 1401 | * For the others, we still need to scale reservation parameters | 
|---|
| 1402 | * according to current frequency and CPU maximum capacity. | 
|---|
| 1403 | */ | 
|---|
| 1404 | if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { | 
|---|
| 1405 | scaled_delta_exec = grub_reclaim(delta: delta_exec, rq, dl_se); | 
|---|
| 1406 | } else { | 
|---|
| 1407 | int cpu = cpu_of(rq); | 
|---|
| 1408 | unsigned long scale_freq = arch_scale_freq_capacity(cpu); | 
|---|
| 1409 | unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); | 
|---|
| 1410 |  | 
|---|
| 1411 | scaled_delta_exec = cap_scale(delta_exec, scale_freq); | 
|---|
| 1412 | scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); | 
|---|
| 1413 | } | 
|---|
| 1414 |  | 
|---|
| 1415 | return scaled_delta_exec; | 
|---|
| 1416 | } | 
|---|
| 1417 |  | 
|---|
| 1418 | static inline void | 
|---|
| 1419 | update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, | 
|---|
| 1420 | int flags); | 
|---|
| 1421 | static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) | 
|---|
| 1422 | { | 
|---|
| 1423 | s64 scaled_delta_exec; | 
|---|
| 1424 |  | 
|---|
| 1425 | if (unlikely(delta_exec <= 0)) { | 
|---|
| 1426 | if (unlikely(dl_se->dl_yielded)) | 
|---|
| 1427 | goto throttle; | 
|---|
| 1428 | return; | 
|---|
| 1429 | } | 
|---|
| 1430 |  | 
|---|
| 1431 | if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer) | 
|---|
| 1432 | return; | 
|---|
| 1433 |  | 
|---|
| 1434 | if (dl_entity_is_special(dl_se)) | 
|---|
| 1435 | return; | 
|---|
| 1436 |  | 
|---|
| 1437 | scaled_delta_exec = delta_exec; | 
|---|
| 1438 | if (!dl_server(dl_se)) | 
|---|
| 1439 | scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec); | 
|---|
| 1440 |  | 
|---|
| 1441 | dl_se->runtime -= scaled_delta_exec; | 
|---|
| 1442 |  | 
|---|
| 1443 | /* | 
|---|
| 1444 | * The fair server can consume its runtime while throttled (not queued/ | 
|---|
| 1445 | * running as regular CFS). | 
|---|
| 1446 | * | 
|---|
| 1447 | * If the server consumes its entire runtime in this state. The server | 
|---|
| 1448 | * is not required for the current period. Thus, reset the server by | 
|---|
| 1449 | * starting a new period, pushing the activation. | 
|---|
| 1450 | */ | 
|---|
| 1451 | if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) { | 
|---|
| 1452 | /* | 
|---|
| 1453 | * If the server was previously activated - the starving condition | 
|---|
| 1454 | * took place, it this point it went away because the fair scheduler | 
|---|
| 1455 | * was able to get runtime in background. So return to the initial | 
|---|
| 1456 | * state. | 
|---|
| 1457 | */ | 
|---|
| 1458 | dl_se->dl_defer_running = 0; | 
|---|
| 1459 |  | 
|---|
| 1460 | hrtimer_try_to_cancel(timer: &dl_se->dl_timer); | 
|---|
| 1461 |  | 
|---|
| 1462 | replenish_dl_new_period(dl_se, rq: dl_se->rq); | 
|---|
| 1463 |  | 
|---|
| 1464 | /* | 
|---|
| 1465 | * Not being able to start the timer seems problematic. If it could not | 
|---|
| 1466 | * be started for whatever reason, we need to "unthrottle" the DL server | 
|---|
| 1467 | * and queue right away. Otherwise nothing might queue it. That's similar | 
|---|
| 1468 | * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn. | 
|---|
| 1469 | */ | 
|---|
| 1470 | WARN_ON_ONCE(!start_dl_timer(dl_se)); | 
|---|
| 1471 |  | 
|---|
| 1472 | return; | 
|---|
| 1473 | } | 
|---|
| 1474 |  | 
|---|
| 1475 | throttle: | 
|---|
| 1476 | if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { | 
|---|
| 1477 | dl_se->dl_throttled = 1; | 
|---|
| 1478 |  | 
|---|
| 1479 | /* If requested, inform the user about runtime overruns. */ | 
|---|
| 1480 | if (dl_runtime_exceeded(dl_se) && | 
|---|
| 1481 | (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) | 
|---|
| 1482 | dl_se->dl_overrun = 1; | 
|---|
| 1483 |  | 
|---|
| 1484 | dequeue_dl_entity(dl_se, flags: 0); | 
|---|
| 1485 | if (!dl_server(dl_se)) { | 
|---|
| 1486 | update_stats_dequeue_dl(dl_rq: &rq->dl, dl_se, flags: 0); | 
|---|
| 1487 | dequeue_pushable_dl_task(rq, p: dl_task_of(dl_se)); | 
|---|
| 1488 | } | 
|---|
| 1489 |  | 
|---|
| 1490 | if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) { | 
|---|
| 1491 | if (dl_server(dl_se)) { | 
|---|
| 1492 | replenish_dl_new_period(dl_se, rq); | 
|---|
| 1493 | start_dl_timer(dl_se); | 
|---|
| 1494 | } else { | 
|---|
| 1495 | enqueue_task_dl(rq, p: dl_task_of(dl_se), ENQUEUE_REPLENISH); | 
|---|
| 1496 | } | 
|---|
| 1497 | } | 
|---|
| 1498 |  | 
|---|
| 1499 | if (!is_leftmost(dl_se, dl_rq: &rq->dl)) | 
|---|
| 1500 | resched_curr(rq); | 
|---|
| 1501 | } | 
|---|
| 1502 |  | 
|---|
| 1503 | /* | 
|---|
| 1504 | * The fair server (sole dl_server) does not account for real-time | 
|---|
| 1505 | * workload because it is running fair work. | 
|---|
| 1506 | */ | 
|---|
| 1507 | if (dl_se == &rq->fair_server) | 
|---|
| 1508 | return; | 
|---|
| 1509 |  | 
|---|
| 1510 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 1511 | /* | 
|---|
| 1512 | * Because -- for now -- we share the rt bandwidth, we need to | 
|---|
| 1513 | * account our runtime there too, otherwise actual rt tasks | 
|---|
| 1514 | * would be able to exceed the shared quota. | 
|---|
| 1515 | * | 
|---|
| 1516 | * Account to the root rt group for now. | 
|---|
| 1517 | * | 
|---|
| 1518 | * The solution we're working towards is having the RT groups scheduled | 
|---|
| 1519 | * using deadline servers -- however there's a few nasties to figure | 
|---|
| 1520 | * out before that can happen. | 
|---|
| 1521 | */ | 
|---|
| 1522 | if (rt_bandwidth_enabled()) { | 
|---|
| 1523 | struct rt_rq *rt_rq = &rq->rt; | 
|---|
| 1524 |  | 
|---|
| 1525 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|---|
| 1526 | /* | 
|---|
| 1527 | * We'll let actual RT tasks worry about the overflow here, we | 
|---|
| 1528 | * have our own CBS to keep us inline; only account when RT | 
|---|
| 1529 | * bandwidth is relevant. | 
|---|
| 1530 | */ | 
|---|
| 1531 | if (sched_rt_bandwidth_account(rt_rq)) | 
|---|
| 1532 | rt_rq->rt_time += delta_exec; | 
|---|
| 1533 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|---|
| 1534 | } | 
|---|
| 1535 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|---|
| 1536 | } | 
|---|
| 1537 |  | 
|---|
| 1538 | /* | 
|---|
| 1539 | * In the non-defer mode, the idle time is not accounted, as the | 
|---|
| 1540 | * server provides a guarantee. | 
|---|
| 1541 | * | 
|---|
| 1542 | * If the dl_server is in defer mode, the idle time is also considered | 
|---|
| 1543 | * as time available for the fair server, avoiding a penalty for the | 
|---|
| 1544 | * rt scheduler that did not consumed that time. | 
|---|
| 1545 | */ | 
|---|
| 1546 | void dl_server_update_idle_time(struct rq *rq, struct task_struct *p) | 
|---|
| 1547 | { | 
|---|
| 1548 | s64 delta_exec; | 
|---|
| 1549 |  | 
|---|
| 1550 | if (!rq->fair_server.dl_defer) | 
|---|
| 1551 | return; | 
|---|
| 1552 |  | 
|---|
| 1553 | /* no need to discount more */ | 
|---|
| 1554 | if (rq->fair_server.runtime < 0) | 
|---|
| 1555 | return; | 
|---|
| 1556 |  | 
|---|
| 1557 | delta_exec = rq_clock_task(rq) - p->se.exec_start; | 
|---|
| 1558 | if (delta_exec < 0) | 
|---|
| 1559 | return; | 
|---|
| 1560 |  | 
|---|
| 1561 | rq->fair_server.runtime -= delta_exec; | 
|---|
| 1562 |  | 
|---|
| 1563 | if (rq->fair_server.runtime < 0) { | 
|---|
| 1564 | rq->fair_server.dl_defer_running = 0; | 
|---|
| 1565 | rq->fair_server.runtime = 0; | 
|---|
| 1566 | } | 
|---|
| 1567 |  | 
|---|
| 1568 | p->se.exec_start = rq_clock_task(rq); | 
|---|
| 1569 | } | 
|---|
| 1570 |  | 
|---|
| 1571 | void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec) | 
|---|
| 1572 | { | 
|---|
| 1573 | /* 0 runtime = fair server disabled */ | 
|---|
| 1574 | if (dl_se->dl_runtime) | 
|---|
| 1575 | update_curr_dl_se(rq: dl_se->rq, dl_se, delta_exec); | 
|---|
| 1576 | } | 
|---|
| 1577 |  | 
|---|
| 1578 | void dl_server_start(struct sched_dl_entity *dl_se) | 
|---|
| 1579 | { | 
|---|
| 1580 | struct rq *rq = dl_se->rq; | 
|---|
| 1581 |  | 
|---|
| 1582 | if (!dl_server(dl_se) || dl_se->dl_server_active) | 
|---|
| 1583 | return; | 
|---|
| 1584 |  | 
|---|
| 1585 | dl_se->dl_server_active = 1; | 
|---|
| 1586 | enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP); | 
|---|
| 1587 | if (!dl_task(p: dl_se->rq->curr) || dl_entity_preempt(a: dl_se, b: &rq->curr->dl)) | 
|---|
| 1588 | resched_curr(rq: dl_se->rq); | 
|---|
| 1589 | } | 
|---|
| 1590 |  | 
|---|
| 1591 | void dl_server_stop(struct sched_dl_entity *dl_se) | 
|---|
| 1592 | { | 
|---|
| 1593 | if (!dl_server(dl_se) || !dl_server_active(dl_se)) | 
|---|
| 1594 | return; | 
|---|
| 1595 |  | 
|---|
| 1596 | dequeue_dl_entity(dl_se, DEQUEUE_SLEEP); | 
|---|
| 1597 | hrtimer_try_to_cancel(timer: &dl_se->dl_timer); | 
|---|
| 1598 | dl_se->dl_defer_armed = 0; | 
|---|
| 1599 | dl_se->dl_throttled = 0; | 
|---|
| 1600 | dl_se->dl_server_active = 0; | 
|---|
| 1601 | } | 
|---|
| 1602 |  | 
|---|
| 1603 | void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, | 
|---|
| 1604 | dl_server_pick_f pick_task) | 
|---|
| 1605 | { | 
|---|
| 1606 | dl_se->rq = rq; | 
|---|
| 1607 | dl_se->server_pick_task = pick_task; | 
|---|
| 1608 | } | 
|---|
| 1609 |  | 
|---|
| 1610 | void sched_init_dl_servers(void) | 
|---|
| 1611 | { | 
|---|
| 1612 | int cpu; | 
|---|
| 1613 | struct rq *rq; | 
|---|
| 1614 | struct sched_dl_entity *dl_se; | 
|---|
| 1615 |  | 
|---|
| 1616 | for_each_online_cpu(cpu) { | 
|---|
| 1617 | u64 runtime =  50 * NSEC_PER_MSEC; | 
|---|
| 1618 | u64 period = 1000 * NSEC_PER_MSEC; | 
|---|
| 1619 |  | 
|---|
| 1620 | rq = cpu_rq(cpu); | 
|---|
| 1621 |  | 
|---|
| 1622 | guard(rq_lock_irq)(l: rq); | 
|---|
| 1623 |  | 
|---|
| 1624 | dl_se = &rq->fair_server; | 
|---|
| 1625 |  | 
|---|
| 1626 | WARN_ON(dl_server(dl_se)); | 
|---|
| 1627 |  | 
|---|
| 1628 | dl_server_apply_params(dl_se, runtime, period, init: 1); | 
|---|
| 1629 |  | 
|---|
| 1630 | dl_se->dl_server = 1; | 
|---|
| 1631 | dl_se->dl_defer = 1; | 
|---|
| 1632 | setup_new_dl_entity(dl_se); | 
|---|
| 1633 | } | 
|---|
| 1634 | } | 
|---|
| 1635 |  | 
|---|
| 1636 | void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq) | 
|---|
| 1637 | { | 
|---|
| 1638 | u64 new_bw = dl_se->dl_bw; | 
|---|
| 1639 | int cpu = cpu_of(rq); | 
|---|
| 1640 | struct dl_bw *dl_b; | 
|---|
| 1641 |  | 
|---|
| 1642 | dl_b = dl_bw_of(i: cpu_of(rq)); | 
|---|
| 1643 | guard(raw_spinlock)(l: &dl_b->lock); | 
|---|
| 1644 |  | 
|---|
| 1645 | if (!dl_bw_cpus(i: cpu)) | 
|---|
| 1646 | return; | 
|---|
| 1647 |  | 
|---|
| 1648 | __dl_add(dl_b, tsk_bw: new_bw, cpus: dl_bw_cpus(i: cpu)); | 
|---|
| 1649 | } | 
|---|
| 1650 |  | 
|---|
| 1651 | int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init) | 
|---|
| 1652 | { | 
|---|
| 1653 | u64 old_bw = init ? 0 : to_ratio(period: dl_se->dl_period, runtime: dl_se->dl_runtime); | 
|---|
| 1654 | u64 new_bw = to_ratio(period, runtime); | 
|---|
| 1655 | struct rq *rq = dl_se->rq; | 
|---|
| 1656 | int cpu = cpu_of(rq); | 
|---|
| 1657 | struct dl_bw *dl_b; | 
|---|
| 1658 | unsigned long cap; | 
|---|
| 1659 | int retval = 0; | 
|---|
| 1660 | int cpus; | 
|---|
| 1661 |  | 
|---|
| 1662 | dl_b = dl_bw_of(i: cpu); | 
|---|
| 1663 | guard(raw_spinlock)(l: &dl_b->lock); | 
|---|
| 1664 |  | 
|---|
| 1665 | cpus = dl_bw_cpus(i: cpu); | 
|---|
| 1666 | cap = dl_bw_capacity(i: cpu); | 
|---|
| 1667 |  | 
|---|
| 1668 | if (__dl_overflow(dl_b, cap, old_bw, new_bw)) | 
|---|
| 1669 | return -EBUSY; | 
|---|
| 1670 |  | 
|---|
| 1671 | if (init) { | 
|---|
| 1672 | __add_rq_bw(dl_bw: new_bw, dl_rq: &rq->dl); | 
|---|
| 1673 | __dl_add(dl_b, tsk_bw: new_bw, cpus); | 
|---|
| 1674 | } else { | 
|---|
| 1675 | __dl_sub(dl_b, tsk_bw: dl_se->dl_bw, cpus); | 
|---|
| 1676 | __dl_add(dl_b, tsk_bw: new_bw, cpus); | 
|---|
| 1677 |  | 
|---|
| 1678 | dl_rq_change_utilization(rq, dl_se, new_bw); | 
|---|
| 1679 | } | 
|---|
| 1680 |  | 
|---|
| 1681 | dl_se->dl_runtime = runtime; | 
|---|
| 1682 | dl_se->dl_deadline = period; | 
|---|
| 1683 | dl_se->dl_period = period; | 
|---|
| 1684 |  | 
|---|
| 1685 | dl_se->runtime = 0; | 
|---|
| 1686 | dl_se->deadline = 0; | 
|---|
| 1687 |  | 
|---|
| 1688 | dl_se->dl_bw = to_ratio(period: dl_se->dl_period, runtime: dl_se->dl_runtime); | 
|---|
| 1689 | dl_se->dl_density = to_ratio(period: dl_se->dl_deadline, runtime: dl_se->dl_runtime); | 
|---|
| 1690 |  | 
|---|
| 1691 | return retval; | 
|---|
| 1692 | } | 
|---|
| 1693 |  | 
|---|
| 1694 | /* | 
|---|
| 1695 | * Update the current task's runtime statistics (provided it is still | 
|---|
| 1696 | * a -deadline task and has not been removed from the dl_rq). | 
|---|
| 1697 | */ | 
|---|
| 1698 | static void update_curr_dl(struct rq *rq) | 
|---|
| 1699 | { | 
|---|
| 1700 | struct task_struct *donor = rq->donor; | 
|---|
| 1701 | struct sched_dl_entity *dl_se = &donor->dl; | 
|---|
| 1702 | s64 delta_exec; | 
|---|
| 1703 |  | 
|---|
| 1704 | if (!dl_task(p: donor) || !on_dl_rq(dl_se)) | 
|---|
| 1705 | return; | 
|---|
| 1706 |  | 
|---|
| 1707 | /* | 
|---|
| 1708 | * Consumed budget is computed considering the time as | 
|---|
| 1709 | * observed by schedulable tasks (excluding time spent | 
|---|
| 1710 | * in hardirq context, etc.). Deadlines are instead | 
|---|
| 1711 | * computed using hard walltime. This seems to be the more | 
|---|
| 1712 | * natural solution, but the full ramifications of this | 
|---|
| 1713 | * approach need further study. | 
|---|
| 1714 | */ | 
|---|
| 1715 | delta_exec = update_curr_common(rq); | 
|---|
| 1716 | update_curr_dl_se(rq, dl_se, delta_exec); | 
|---|
| 1717 | } | 
|---|
| 1718 |  | 
|---|
| 1719 | static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) | 
|---|
| 1720 | { | 
|---|
| 1721 | struct sched_dl_entity *dl_se = container_of(timer, | 
|---|
| 1722 | struct sched_dl_entity, | 
|---|
| 1723 | inactive_timer); | 
|---|
| 1724 | struct task_struct *p = NULL; | 
|---|
| 1725 | struct rq_flags rf; | 
|---|
| 1726 | struct rq *rq; | 
|---|
| 1727 |  | 
|---|
| 1728 | if (!dl_server(dl_se)) { | 
|---|
| 1729 | p = dl_task_of(dl_se); | 
|---|
| 1730 | rq = task_rq_lock(p, rf: &rf); | 
|---|
| 1731 | } else { | 
|---|
| 1732 | rq = dl_se->rq; | 
|---|
| 1733 | rq_lock(rq, rf: &rf); | 
|---|
| 1734 | } | 
|---|
| 1735 |  | 
|---|
| 1736 | sched_clock_tick(); | 
|---|
| 1737 | update_rq_clock(rq); | 
|---|
| 1738 |  | 
|---|
| 1739 | if (dl_server(dl_se)) | 
|---|
| 1740 | goto no_task; | 
|---|
| 1741 |  | 
|---|
| 1742 | if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { | 
|---|
| 1743 | struct dl_bw *dl_b = dl_bw_of(i: task_cpu(p)); | 
|---|
| 1744 |  | 
|---|
| 1745 | if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { | 
|---|
| 1746 | sub_running_bw(dl_se: &p->dl, dl_rq: dl_rq_of_se(dl_se: &p->dl)); | 
|---|
| 1747 | sub_rq_bw(dl_se: &p->dl, dl_rq: dl_rq_of_se(dl_se: &p->dl)); | 
|---|
| 1748 | dl_se->dl_non_contending = 0; | 
|---|
| 1749 | } | 
|---|
| 1750 |  | 
|---|
| 1751 | raw_spin_lock(&dl_b->lock); | 
|---|
| 1752 | __dl_sub(dl_b, tsk_bw: p->dl.dl_bw, cpus: dl_bw_cpus(i: task_cpu(p))); | 
|---|
| 1753 | raw_spin_unlock(&dl_b->lock); | 
|---|
| 1754 | __dl_clear_params(dl_se); | 
|---|
| 1755 |  | 
|---|
| 1756 | goto unlock; | 
|---|
| 1757 | } | 
|---|
| 1758 |  | 
|---|
| 1759 | no_task: | 
|---|
| 1760 | if (dl_se->dl_non_contending == 0) | 
|---|
| 1761 | goto unlock; | 
|---|
| 1762 |  | 
|---|
| 1763 | sub_running_bw(dl_se, dl_rq: &rq->dl); | 
|---|
| 1764 | dl_se->dl_non_contending = 0; | 
|---|
| 1765 | unlock: | 
|---|
| 1766 |  | 
|---|
| 1767 | if (!dl_server(dl_se)) { | 
|---|
| 1768 | task_rq_unlock(rq, p, rf: &rf); | 
|---|
| 1769 | put_task_struct(t: p); | 
|---|
| 1770 | } else { | 
|---|
| 1771 | rq_unlock(rq, rf: &rf); | 
|---|
| 1772 | } | 
|---|
| 1773 |  | 
|---|
| 1774 | return HRTIMER_NORESTART; | 
|---|
| 1775 | } | 
|---|
| 1776 |  | 
|---|
| 1777 | static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) | 
|---|
| 1778 | { | 
|---|
| 1779 | struct hrtimer *timer = &dl_se->inactive_timer; | 
|---|
| 1780 |  | 
|---|
| 1781 | hrtimer_setup(timer, function: inactive_task_timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_HARD); | 
|---|
| 1782 | } | 
|---|
| 1783 |  | 
|---|
| 1784 | #define __node_2_dle(node) \ | 
|---|
| 1785 | rb_entry((node), struct sched_dl_entity, rb_node) | 
|---|
| 1786 |  | 
|---|
| 1787 | static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) | 
|---|
| 1788 | { | 
|---|
| 1789 | struct rq *rq = rq_of_dl_rq(dl_rq); | 
|---|
| 1790 |  | 
|---|
| 1791 | if (dl_rq->earliest_dl.curr == 0 || | 
|---|
| 1792 | dl_time_before(a: deadline, b: dl_rq->earliest_dl.curr)) { | 
|---|
| 1793 | if (dl_rq->earliest_dl.curr == 0) | 
|---|
| 1794 | cpupri_set(cp: &rq->rd->cpupri, cpu: rq->cpu, CPUPRI_HIGHER); | 
|---|
| 1795 | dl_rq->earliest_dl.curr = deadline; | 
|---|
| 1796 | cpudl_set(cp: &rq->rd->cpudl, cpu: rq->cpu, dl: deadline); | 
|---|
| 1797 | } | 
|---|
| 1798 | } | 
|---|
| 1799 |  | 
|---|
| 1800 | static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) | 
|---|
| 1801 | { | 
|---|
| 1802 | struct rq *rq = rq_of_dl_rq(dl_rq); | 
|---|
| 1803 |  | 
|---|
| 1804 | /* | 
|---|
| 1805 | * Since we may have removed our earliest (and/or next earliest) | 
|---|
| 1806 | * task we must recompute them. | 
|---|
| 1807 | */ | 
|---|
| 1808 | if (!dl_rq->dl_nr_running) { | 
|---|
| 1809 | dl_rq->earliest_dl.curr = 0; | 
|---|
| 1810 | dl_rq->earliest_dl.next = 0; | 
|---|
| 1811 | cpudl_clear(cp: &rq->rd->cpudl, cpu: rq->cpu); | 
|---|
| 1812 | cpupri_set(cp: &rq->rd->cpupri, cpu: rq->cpu, pri: rq->rt.highest_prio.curr); | 
|---|
| 1813 | } else { | 
|---|
| 1814 | struct rb_node *leftmost = rb_first_cached(&dl_rq->root); | 
|---|
| 1815 | struct sched_dl_entity *entry = __node_2_dle(leftmost); | 
|---|
| 1816 |  | 
|---|
| 1817 | dl_rq->earliest_dl.curr = entry->deadline; | 
|---|
| 1818 | cpudl_set(cp: &rq->rd->cpudl, cpu: rq->cpu, dl: entry->deadline); | 
|---|
| 1819 | } | 
|---|
| 1820 | } | 
|---|
| 1821 |  | 
|---|
| 1822 | static inline | 
|---|
| 1823 | void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
|---|
| 1824 | { | 
|---|
| 1825 | u64 deadline = dl_se->deadline; | 
|---|
| 1826 |  | 
|---|
| 1827 | dl_rq->dl_nr_running++; | 
|---|
| 1828 |  | 
|---|
| 1829 | if (!dl_server(dl_se)) | 
|---|
| 1830 | add_nr_running(rq: rq_of_dl_rq(dl_rq), count: 1); | 
|---|
| 1831 |  | 
|---|
| 1832 | inc_dl_deadline(dl_rq, deadline); | 
|---|
| 1833 | } | 
|---|
| 1834 |  | 
|---|
| 1835 | static inline | 
|---|
| 1836 | void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
|---|
| 1837 | { | 
|---|
| 1838 | WARN_ON(!dl_rq->dl_nr_running); | 
|---|
| 1839 | dl_rq->dl_nr_running--; | 
|---|
| 1840 |  | 
|---|
| 1841 | if (!dl_server(dl_se)) | 
|---|
| 1842 | sub_nr_running(rq: rq_of_dl_rq(dl_rq), count: 1); | 
|---|
| 1843 |  | 
|---|
| 1844 | dec_dl_deadline(dl_rq, deadline: dl_se->deadline); | 
|---|
| 1845 | } | 
|---|
| 1846 |  | 
|---|
| 1847 | static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) | 
|---|
| 1848 | { | 
|---|
| 1849 | return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); | 
|---|
| 1850 | } | 
|---|
| 1851 |  | 
|---|
| 1852 | static __always_inline struct sched_statistics * | 
|---|
| 1853 | __schedstats_from_dl_se(struct sched_dl_entity *dl_se) | 
|---|
| 1854 | { | 
|---|
| 1855 | if (!schedstat_enabled()) | 
|---|
| 1856 | return NULL; | 
|---|
| 1857 |  | 
|---|
| 1858 | if (dl_server(dl_se)) | 
|---|
| 1859 | return NULL; | 
|---|
| 1860 |  | 
|---|
| 1861 | return &dl_task_of(dl_se)->stats; | 
|---|
| 1862 | } | 
|---|
| 1863 |  | 
|---|
| 1864 | static inline void | 
|---|
| 1865 | update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) | 
|---|
| 1866 | { | 
|---|
| 1867 | struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); | 
|---|
| 1868 | if (stats) | 
|---|
| 1869 | __update_stats_wait_start(rq: rq_of_dl_rq(dl_rq), p: dl_task_of(dl_se), stats); | 
|---|
| 1870 | } | 
|---|
| 1871 |  | 
|---|
| 1872 | static inline void | 
|---|
| 1873 | update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) | 
|---|
| 1874 | { | 
|---|
| 1875 | struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); | 
|---|
| 1876 | if (stats) | 
|---|
| 1877 | __update_stats_wait_end(rq: rq_of_dl_rq(dl_rq), p: dl_task_of(dl_se), stats); | 
|---|
| 1878 | } | 
|---|
| 1879 |  | 
|---|
| 1880 | static inline void | 
|---|
| 1881 | update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) | 
|---|
| 1882 | { | 
|---|
| 1883 | struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); | 
|---|
| 1884 | if (stats) | 
|---|
| 1885 | __update_stats_enqueue_sleeper(rq: rq_of_dl_rq(dl_rq), p: dl_task_of(dl_se), stats); | 
|---|
| 1886 | } | 
|---|
| 1887 |  | 
|---|
| 1888 | static inline void | 
|---|
| 1889 | update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, | 
|---|
| 1890 | int flags) | 
|---|
| 1891 | { | 
|---|
| 1892 | if (!schedstat_enabled()) | 
|---|
| 1893 | return; | 
|---|
| 1894 |  | 
|---|
| 1895 | if (flags & ENQUEUE_WAKEUP) | 
|---|
| 1896 | update_stats_enqueue_sleeper_dl(dl_rq, dl_se); | 
|---|
| 1897 | } | 
|---|
| 1898 |  | 
|---|
| 1899 | static inline void | 
|---|
| 1900 | update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, | 
|---|
| 1901 | int flags) | 
|---|
| 1902 | { | 
|---|
| 1903 | struct task_struct *p = dl_task_of(dl_se); | 
|---|
| 1904 |  | 
|---|
| 1905 | if (!schedstat_enabled()) | 
|---|
| 1906 | return; | 
|---|
| 1907 |  | 
|---|
| 1908 | if ((flags & DEQUEUE_SLEEP)) { | 
|---|
| 1909 | unsigned int state; | 
|---|
| 1910 |  | 
|---|
| 1911 | state = READ_ONCE(p->__state); | 
|---|
| 1912 | if (state & TASK_INTERRUPTIBLE) | 
|---|
| 1913 | __schedstat_set(p->stats.sleep_start, | 
|---|
| 1914 | rq_clock(rq_of_dl_rq(dl_rq))); | 
|---|
| 1915 |  | 
|---|
| 1916 | if (state & TASK_UNINTERRUPTIBLE) | 
|---|
| 1917 | __schedstat_set(p->stats.block_start, | 
|---|
| 1918 | rq_clock(rq_of_dl_rq(dl_rq))); | 
|---|
| 1919 | } | 
|---|
| 1920 | } | 
|---|
| 1921 |  | 
|---|
| 1922 | static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) | 
|---|
| 1923 | { | 
|---|
| 1924 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
|---|
| 1925 |  | 
|---|
| 1926 | WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); | 
|---|
| 1927 |  | 
|---|
| 1928 | rb_add_cached(node: &dl_se->rb_node, tree: &dl_rq->root, less: __dl_less); | 
|---|
| 1929 |  | 
|---|
| 1930 | inc_dl_tasks(dl_se, dl_rq); | 
|---|
| 1931 | } | 
|---|
| 1932 |  | 
|---|
| 1933 | static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) | 
|---|
| 1934 | { | 
|---|
| 1935 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
|---|
| 1936 |  | 
|---|
| 1937 | if (RB_EMPTY_NODE(&dl_se->rb_node)) | 
|---|
| 1938 | return; | 
|---|
| 1939 |  | 
|---|
| 1940 | rb_erase_cached(node: &dl_se->rb_node, root: &dl_rq->root); | 
|---|
| 1941 |  | 
|---|
| 1942 | RB_CLEAR_NODE(&dl_se->rb_node); | 
|---|
| 1943 |  | 
|---|
| 1944 | dec_dl_tasks(dl_se, dl_rq); | 
|---|
| 1945 | } | 
|---|
| 1946 |  | 
|---|
| 1947 | static void | 
|---|
| 1948 | enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) | 
|---|
| 1949 | { | 
|---|
| 1950 | WARN_ON_ONCE(on_dl_rq(dl_se)); | 
|---|
| 1951 |  | 
|---|
| 1952 | update_stats_enqueue_dl(dl_rq: dl_rq_of_se(dl_se), dl_se, flags); | 
|---|
| 1953 |  | 
|---|
| 1954 | /* | 
|---|
| 1955 | * Check if a constrained deadline task was activated | 
|---|
| 1956 | * after the deadline but before the next period. | 
|---|
| 1957 | * If that is the case, the task will be throttled and | 
|---|
| 1958 | * the replenishment timer will be set to the next period. | 
|---|
| 1959 | */ | 
|---|
| 1960 | if (!dl_se->dl_throttled && !dl_is_implicit(dl_se)) | 
|---|
| 1961 | dl_check_constrained_dl(dl_se); | 
|---|
| 1962 |  | 
|---|
| 1963 | if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) { | 
|---|
| 1964 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
|---|
| 1965 |  | 
|---|
| 1966 | add_rq_bw(dl_se, dl_rq); | 
|---|
| 1967 | add_running_bw(dl_se, dl_rq); | 
|---|
| 1968 | } | 
|---|
| 1969 |  | 
|---|
| 1970 | /* | 
|---|
| 1971 | * If p is throttled, we do not enqueue it. In fact, if it exhausted | 
|---|
| 1972 | * its budget it needs a replenishment and, since it now is on | 
|---|
| 1973 | * its rq, the bandwidth timer callback (which clearly has not | 
|---|
| 1974 | * run yet) will take care of this. | 
|---|
| 1975 | * However, the active utilization does not depend on the fact | 
|---|
| 1976 | * that the task is on the runqueue or not (but depends on the | 
|---|
| 1977 | * task's state - in GRUB parlance, "inactive" vs "active contending"). | 
|---|
| 1978 | * In other words, even if a task is throttled its utilization must | 
|---|
| 1979 | * be counted in the active utilization; hence, we need to call | 
|---|
| 1980 | * add_running_bw(). | 
|---|
| 1981 | */ | 
|---|
| 1982 | if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) { | 
|---|
| 1983 | if (flags & ENQUEUE_WAKEUP) | 
|---|
| 1984 | task_contending(dl_se, flags); | 
|---|
| 1985 |  | 
|---|
| 1986 | return; | 
|---|
| 1987 | } | 
|---|
| 1988 |  | 
|---|
| 1989 | /* | 
|---|
| 1990 | * If this is a wakeup or a new instance, the scheduling | 
|---|
| 1991 | * parameters of the task might need updating. Otherwise, | 
|---|
| 1992 | * we want a replenishment of its runtime. | 
|---|
| 1993 | */ | 
|---|
| 1994 | if (flags & ENQUEUE_WAKEUP) { | 
|---|
| 1995 | task_contending(dl_se, flags); | 
|---|
| 1996 | update_dl_entity(dl_se); | 
|---|
| 1997 | } else if (flags & ENQUEUE_REPLENISH) { | 
|---|
| 1998 | replenish_dl_entity(dl_se); | 
|---|
| 1999 | } else if ((flags & ENQUEUE_RESTORE) && | 
|---|
| 2000 | !is_dl_boosted(dl_se) && | 
|---|
| 2001 | dl_time_before(a: dl_se->deadline, b: rq_clock(rq: rq_of_dl_se(dl_se)))) { | 
|---|
| 2002 | setup_new_dl_entity(dl_se); | 
|---|
| 2003 | } | 
|---|
| 2004 |  | 
|---|
| 2005 | /* | 
|---|
| 2006 | * If the reservation is still throttled, e.g., it got replenished but is a | 
|---|
| 2007 | * deferred task and still got to wait, don't enqueue. | 
|---|
| 2008 | */ | 
|---|
| 2009 | if (dl_se->dl_throttled && start_dl_timer(dl_se)) | 
|---|
| 2010 | return; | 
|---|
| 2011 |  | 
|---|
| 2012 | /* | 
|---|
| 2013 | * We're about to enqueue, make sure we're not ->dl_throttled! | 
|---|
| 2014 | * In case the timer was not started, say because the defer time | 
|---|
| 2015 | * has passed, mark as not throttled and mark unarmed. | 
|---|
| 2016 | * Also cancel earlier timers, since letting those run is pointless. | 
|---|
| 2017 | */ | 
|---|
| 2018 | if (dl_se->dl_throttled) { | 
|---|
| 2019 | hrtimer_try_to_cancel(timer: &dl_se->dl_timer); | 
|---|
| 2020 | dl_se->dl_defer_armed = 0; | 
|---|
| 2021 | dl_se->dl_throttled = 0; | 
|---|
| 2022 | } | 
|---|
| 2023 |  | 
|---|
| 2024 | __enqueue_dl_entity(dl_se); | 
|---|
| 2025 | } | 
|---|
| 2026 |  | 
|---|
| 2027 | static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags) | 
|---|
| 2028 | { | 
|---|
| 2029 | __dequeue_dl_entity(dl_se); | 
|---|
| 2030 |  | 
|---|
| 2031 | if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) { | 
|---|
| 2032 | struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
|---|
| 2033 |  | 
|---|
| 2034 | sub_running_bw(dl_se, dl_rq); | 
|---|
| 2035 | sub_rq_bw(dl_se, dl_rq); | 
|---|
| 2036 | } | 
|---|
| 2037 |  | 
|---|
| 2038 | /* | 
|---|
| 2039 | * This check allows to start the inactive timer (or to immediately | 
|---|
| 2040 | * decrease the active utilization, if needed) in two cases: | 
|---|
| 2041 | * when the task blocks and when it is terminating | 
|---|
| 2042 | * (p->state == TASK_DEAD). We can handle the two cases in the same | 
|---|
| 2043 | * way, because from GRUB's point of view the same thing is happening | 
|---|
| 2044 | * (the task moves from "active contending" to "active non contending" | 
|---|
| 2045 | * or "inactive") | 
|---|
| 2046 | */ | 
|---|
| 2047 | if (flags & DEQUEUE_SLEEP) | 
|---|
| 2048 | task_non_contending(dl_se); | 
|---|
| 2049 | } | 
|---|
| 2050 |  | 
|---|
| 2051 | static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 2052 | { | 
|---|
| 2053 | if (is_dl_boosted(dl_se: &p->dl)) { | 
|---|
| 2054 | /* | 
|---|
| 2055 | * Because of delays in the detection of the overrun of a | 
|---|
| 2056 | * thread's runtime, it might be the case that a thread | 
|---|
| 2057 | * goes to sleep in a rt mutex with negative runtime. As | 
|---|
| 2058 | * a consequence, the thread will be throttled. | 
|---|
| 2059 | * | 
|---|
| 2060 | * While waiting for the mutex, this thread can also be | 
|---|
| 2061 | * boosted via PI, resulting in a thread that is throttled | 
|---|
| 2062 | * and boosted at the same time. | 
|---|
| 2063 | * | 
|---|
| 2064 | * In this case, the boost overrides the throttle. | 
|---|
| 2065 | */ | 
|---|
| 2066 | if (p->dl.dl_throttled) { | 
|---|
| 2067 | /* | 
|---|
| 2068 | * The replenish timer needs to be canceled. No | 
|---|
| 2069 | * problem if it fires concurrently: boosted threads | 
|---|
| 2070 | * are ignored in dl_task_timer(). | 
|---|
| 2071 | */ | 
|---|
| 2072 | cancel_replenish_timer(dl_se: &p->dl); | 
|---|
| 2073 | p->dl.dl_throttled = 0; | 
|---|
| 2074 | } | 
|---|
| 2075 | } else if (!dl_prio(prio: p->normal_prio)) { | 
|---|
| 2076 | /* | 
|---|
| 2077 | * Special case in which we have a !SCHED_DEADLINE task that is going | 
|---|
| 2078 | * to be deboosted, but exceeds its runtime while doing so. No point in | 
|---|
| 2079 | * replenishing it, as it's going to return back to its original | 
|---|
| 2080 | * scheduling class after this. If it has been throttled, we need to | 
|---|
| 2081 | * clear the flag, otherwise the task may wake up as throttled after | 
|---|
| 2082 | * being boosted again with no means to replenish the runtime and clear | 
|---|
| 2083 | * the throttle. | 
|---|
| 2084 | */ | 
|---|
| 2085 | p->dl.dl_throttled = 0; | 
|---|
| 2086 | if (!(flags & ENQUEUE_REPLENISH)) | 
|---|
| 2087 | printk_deferred_once( "sched: DL de-boosted task PID %d: REPLENISH flag missing\n", | 
|---|
| 2088 | task_pid_nr(p)); | 
|---|
| 2089 |  | 
|---|
| 2090 | return; | 
|---|
| 2091 | } | 
|---|
| 2092 |  | 
|---|
| 2093 | check_schedstat_required(); | 
|---|
| 2094 | update_stats_wait_start_dl(dl_rq: dl_rq_of_se(dl_se: &p->dl), dl_se: &p->dl); | 
|---|
| 2095 |  | 
|---|
| 2096 | if (p->on_rq == TASK_ON_RQ_MIGRATING) | 
|---|
| 2097 | flags |= ENQUEUE_MIGRATING; | 
|---|
| 2098 |  | 
|---|
| 2099 | enqueue_dl_entity(dl_se: &p->dl, flags); | 
|---|
| 2100 |  | 
|---|
| 2101 | if (dl_server(dl_se: &p->dl)) | 
|---|
| 2102 | return; | 
|---|
| 2103 |  | 
|---|
| 2104 | if (task_is_blocked(p)) | 
|---|
| 2105 | return; | 
|---|
| 2106 |  | 
|---|
| 2107 | if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1) | 
|---|
| 2108 | enqueue_pushable_dl_task(rq, p); | 
|---|
| 2109 | } | 
|---|
| 2110 |  | 
|---|
| 2111 | static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 2112 | { | 
|---|
| 2113 | update_curr_dl(rq); | 
|---|
| 2114 |  | 
|---|
| 2115 | if (p->on_rq == TASK_ON_RQ_MIGRATING) | 
|---|
| 2116 | flags |= DEQUEUE_MIGRATING; | 
|---|
| 2117 |  | 
|---|
| 2118 | dequeue_dl_entity(dl_se: &p->dl, flags); | 
|---|
| 2119 | if (!p->dl.dl_throttled && !dl_server(dl_se: &p->dl)) | 
|---|
| 2120 | dequeue_pushable_dl_task(rq, p); | 
|---|
| 2121 |  | 
|---|
| 2122 | return true; | 
|---|
| 2123 | } | 
|---|
| 2124 |  | 
|---|
| 2125 | /* | 
|---|
| 2126 | * Yield task semantic for -deadline tasks is: | 
|---|
| 2127 | * | 
|---|
| 2128 | *   get off from the CPU until our next instance, with | 
|---|
| 2129 | *   a new runtime. This is of little use now, since we | 
|---|
| 2130 | *   don't have a bandwidth reclaiming mechanism. Anyway, | 
|---|
| 2131 | *   bandwidth reclaiming is planned for the future, and | 
|---|
| 2132 | *   yield_task_dl will indicate that some spare budget | 
|---|
| 2133 | *   is available for other task instances to use it. | 
|---|
| 2134 | */ | 
|---|
| 2135 | static void yield_task_dl(struct rq *rq) | 
|---|
| 2136 | { | 
|---|
| 2137 | /* | 
|---|
| 2138 | * We make the task go to sleep until its current deadline by | 
|---|
| 2139 | * forcing its runtime to zero. This way, update_curr_dl() stops | 
|---|
| 2140 | * it and the bandwidth timer will wake it up and will give it | 
|---|
| 2141 | * new scheduling parameters (thanks to dl_yielded=1). | 
|---|
| 2142 | */ | 
|---|
| 2143 | rq->curr->dl.dl_yielded = 1; | 
|---|
| 2144 |  | 
|---|
| 2145 | update_rq_clock(rq); | 
|---|
| 2146 | update_curr_dl(rq); | 
|---|
| 2147 | /* | 
|---|
| 2148 | * Tell update_rq_clock() that we've just updated, | 
|---|
| 2149 | * so we don't do microscopic update in schedule() | 
|---|
| 2150 | * and double the fastpath cost. | 
|---|
| 2151 | */ | 
|---|
| 2152 | rq_clock_skip_update(rq); | 
|---|
| 2153 | } | 
|---|
| 2154 |  | 
|---|
| 2155 | static inline bool dl_task_is_earliest_deadline(struct task_struct *p, | 
|---|
| 2156 | struct rq *rq) | 
|---|
| 2157 | { | 
|---|
| 2158 | return (!rq->dl.dl_nr_running || | 
|---|
| 2159 | dl_time_before(a: p->dl.deadline, | 
|---|
| 2160 | b: rq->dl.earliest_dl.curr)); | 
|---|
| 2161 | } | 
|---|
| 2162 |  | 
|---|
| 2163 | static int find_later_rq(struct task_struct *task); | 
|---|
| 2164 |  | 
|---|
| 2165 | static int | 
|---|
| 2166 | select_task_rq_dl(struct task_struct *p, int cpu, int flags) | 
|---|
| 2167 | { | 
|---|
| 2168 | struct task_struct *curr, *donor; | 
|---|
| 2169 | bool select_rq; | 
|---|
| 2170 | struct rq *rq; | 
|---|
| 2171 |  | 
|---|
| 2172 | if (!(flags & WF_TTWU)) | 
|---|
| 2173 | goto out; | 
|---|
| 2174 |  | 
|---|
| 2175 | rq = cpu_rq(cpu); | 
|---|
| 2176 |  | 
|---|
| 2177 | rcu_read_lock(); | 
|---|
| 2178 | curr = READ_ONCE(rq->curr); /* unlocked access */ | 
|---|
| 2179 | donor = READ_ONCE(rq->donor); | 
|---|
| 2180 |  | 
|---|
| 2181 | /* | 
|---|
| 2182 | * If we are dealing with a -deadline task, we must | 
|---|
| 2183 | * decide where to wake it up. | 
|---|
| 2184 | * If it has a later deadline and the current task | 
|---|
| 2185 | * on this rq can't move (provided the waking task | 
|---|
| 2186 | * can!) we prefer to send it somewhere else. On the | 
|---|
| 2187 | * other hand, if it has a shorter deadline, we | 
|---|
| 2188 | * try to make it stay here, it might be important. | 
|---|
| 2189 | */ | 
|---|
| 2190 | select_rq = unlikely(dl_task(donor)) && | 
|---|
| 2191 | (curr->nr_cpus_allowed < 2 || | 
|---|
| 2192 | !dl_entity_preempt(a: &p->dl, b: &donor->dl)) && | 
|---|
| 2193 | p->nr_cpus_allowed > 1; | 
|---|
| 2194 |  | 
|---|
| 2195 | /* | 
|---|
| 2196 | * Take the capacity of the CPU into account to | 
|---|
| 2197 | * ensure it fits the requirement of the task. | 
|---|
| 2198 | */ | 
|---|
| 2199 | if (sched_asym_cpucap_active()) | 
|---|
| 2200 | select_rq |= !dl_task_fits_capacity(p, cpu); | 
|---|
| 2201 |  | 
|---|
| 2202 | if (select_rq) { | 
|---|
| 2203 | int target = find_later_rq(task: p); | 
|---|
| 2204 |  | 
|---|
| 2205 | if (target != -1 && | 
|---|
| 2206 | dl_task_is_earliest_deadline(p, cpu_rq(target))) | 
|---|
| 2207 | cpu = target; | 
|---|
| 2208 | } | 
|---|
| 2209 | rcu_read_unlock(); | 
|---|
| 2210 |  | 
|---|
| 2211 | out: | 
|---|
| 2212 | return cpu; | 
|---|
| 2213 | } | 
|---|
| 2214 |  | 
|---|
| 2215 | static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) | 
|---|
| 2216 | { | 
|---|
| 2217 | struct rq_flags rf; | 
|---|
| 2218 | struct rq *rq; | 
|---|
| 2219 |  | 
|---|
| 2220 | if (READ_ONCE(p->__state) != TASK_WAKING) | 
|---|
| 2221 | return; | 
|---|
| 2222 |  | 
|---|
| 2223 | rq = task_rq(p); | 
|---|
| 2224 | /* | 
|---|
| 2225 | * Since p->state == TASK_WAKING, set_task_cpu() has been called | 
|---|
| 2226 | * from try_to_wake_up(). Hence, p->pi_lock is locked, but | 
|---|
| 2227 | * rq->lock is not... So, lock it | 
|---|
| 2228 | */ | 
|---|
| 2229 | rq_lock(rq, rf: &rf); | 
|---|
| 2230 | if (p->dl.dl_non_contending) { | 
|---|
| 2231 | update_rq_clock(rq); | 
|---|
| 2232 | sub_running_bw(dl_se: &p->dl, dl_rq: &rq->dl); | 
|---|
| 2233 | p->dl.dl_non_contending = 0; | 
|---|
| 2234 | /* | 
|---|
| 2235 | * If the timer handler is currently running and the | 
|---|
| 2236 | * timer cannot be canceled, inactive_task_timer() | 
|---|
| 2237 | * will see that dl_not_contending is not set, and | 
|---|
| 2238 | * will not touch the rq's active utilization, | 
|---|
| 2239 | * so we are still safe. | 
|---|
| 2240 | */ | 
|---|
| 2241 | cancel_inactive_timer(dl_se: &p->dl); | 
|---|
| 2242 | } | 
|---|
| 2243 | sub_rq_bw(dl_se: &p->dl, dl_rq: &rq->dl); | 
|---|
| 2244 | rq_unlock(rq, rf: &rf); | 
|---|
| 2245 | } | 
|---|
| 2246 |  | 
|---|
| 2247 | static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) | 
|---|
| 2248 | { | 
|---|
| 2249 | /* | 
|---|
| 2250 | * Current can't be migrated, useless to reschedule, | 
|---|
| 2251 | * let's hope p can move out. | 
|---|
| 2252 | */ | 
|---|
| 2253 | if (rq->curr->nr_cpus_allowed == 1 || | 
|---|
| 2254 | !cpudl_find(cp: &rq->rd->cpudl, p: rq->donor, NULL)) | 
|---|
| 2255 | return; | 
|---|
| 2256 |  | 
|---|
| 2257 | /* | 
|---|
| 2258 | * p is migratable, so let's not schedule it and | 
|---|
| 2259 | * see if it is pushed or pulled somewhere else. | 
|---|
| 2260 | */ | 
|---|
| 2261 | if (p->nr_cpus_allowed != 1 && | 
|---|
| 2262 | cpudl_find(cp: &rq->rd->cpudl, p, NULL)) | 
|---|
| 2263 | return; | 
|---|
| 2264 |  | 
|---|
| 2265 | resched_curr(rq); | 
|---|
| 2266 | } | 
|---|
| 2267 |  | 
|---|
| 2268 | static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) | 
|---|
| 2269 | { | 
|---|
| 2270 | if (!on_dl_rq(dl_se: &p->dl) && need_pull_dl_task(rq, prev: p)) { | 
|---|
| 2271 | /* | 
|---|
| 2272 | * This is OK, because current is on_cpu, which avoids it being | 
|---|
| 2273 | * picked for load-balance and preemption/IRQs are still | 
|---|
| 2274 | * disabled avoiding further scheduler activity on it and we've | 
|---|
| 2275 | * not yet started the picking loop. | 
|---|
| 2276 | */ | 
|---|
| 2277 | rq_unpin_lock(rq, rf); | 
|---|
| 2278 | pull_dl_task(rq); | 
|---|
| 2279 | rq_repin_lock(rq, rf); | 
|---|
| 2280 | } | 
|---|
| 2281 |  | 
|---|
| 2282 | return sched_stop_runnable(rq) || sched_dl_runnable(rq); | 
|---|
| 2283 | } | 
|---|
| 2284 |  | 
|---|
| 2285 | /* | 
|---|
| 2286 | * Only called when both the current and waking task are -deadline | 
|---|
| 2287 | * tasks. | 
|---|
| 2288 | */ | 
|---|
| 2289 | static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, | 
|---|
| 2290 | int flags) | 
|---|
| 2291 | { | 
|---|
| 2292 | if (dl_entity_preempt(a: &p->dl, b: &rq->donor->dl)) { | 
|---|
| 2293 | resched_curr(rq); | 
|---|
| 2294 | return; | 
|---|
| 2295 | } | 
|---|
| 2296 |  | 
|---|
| 2297 | /* | 
|---|
| 2298 | * In the unlikely case current and p have the same deadline | 
|---|
| 2299 | * let us try to decide what's the best thing to do... | 
|---|
| 2300 | */ | 
|---|
| 2301 | if ((p->dl.deadline == rq->donor->dl.deadline) && | 
|---|
| 2302 | !test_tsk_need_resched(tsk: rq->curr)) | 
|---|
| 2303 | check_preempt_equal_dl(rq, p); | 
|---|
| 2304 | } | 
|---|
| 2305 |  | 
|---|
| 2306 | #ifdef CONFIG_SCHED_HRTICK | 
|---|
| 2307 | static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) | 
|---|
| 2308 | { | 
|---|
| 2309 | hrtick_start(rq, delay: dl_se->runtime); | 
|---|
| 2310 | } | 
|---|
| 2311 | #else /* !CONFIG_SCHED_HRTICK: */ | 
|---|
| 2312 | static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) | 
|---|
| 2313 | { | 
|---|
| 2314 | } | 
|---|
| 2315 | #endif /* !CONFIG_SCHED_HRTICK */ | 
|---|
| 2316 |  | 
|---|
| 2317 | static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) | 
|---|
| 2318 | { | 
|---|
| 2319 | struct sched_dl_entity *dl_se = &p->dl; | 
|---|
| 2320 | struct dl_rq *dl_rq = &rq->dl; | 
|---|
| 2321 |  | 
|---|
| 2322 | p->se.exec_start = rq_clock_task(rq); | 
|---|
| 2323 | if (on_dl_rq(dl_se: &p->dl)) | 
|---|
| 2324 | update_stats_wait_end_dl(dl_rq, dl_se); | 
|---|
| 2325 |  | 
|---|
| 2326 | /* You can't push away the running task */ | 
|---|
| 2327 | dequeue_pushable_dl_task(rq, p); | 
|---|
| 2328 |  | 
|---|
| 2329 | if (!first) | 
|---|
| 2330 | return; | 
|---|
| 2331 |  | 
|---|
| 2332 | if (rq->donor->sched_class != &dl_sched_class) | 
|---|
| 2333 | update_dl_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 0); | 
|---|
| 2334 |  | 
|---|
| 2335 | deadline_queue_push_tasks(rq); | 
|---|
| 2336 |  | 
|---|
| 2337 | if (hrtick_enabled_dl(rq)) | 
|---|
| 2338 | start_hrtick_dl(rq, dl_se: &p->dl); | 
|---|
| 2339 | } | 
|---|
| 2340 |  | 
|---|
| 2341 | static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) | 
|---|
| 2342 | { | 
|---|
| 2343 | struct rb_node *left = rb_first_cached(&dl_rq->root); | 
|---|
| 2344 |  | 
|---|
| 2345 | if (!left) | 
|---|
| 2346 | return NULL; | 
|---|
| 2347 |  | 
|---|
| 2348 | return __node_2_dle(left); | 
|---|
| 2349 | } | 
|---|
| 2350 |  | 
|---|
| 2351 | /* | 
|---|
| 2352 | * __pick_next_task_dl - Helper to pick the next -deadline task to run. | 
|---|
| 2353 | * @rq: The runqueue to pick the next task from. | 
|---|
| 2354 | */ | 
|---|
| 2355 | static struct task_struct *__pick_task_dl(struct rq *rq) | 
|---|
| 2356 | { | 
|---|
| 2357 | struct sched_dl_entity *dl_se; | 
|---|
| 2358 | struct dl_rq *dl_rq = &rq->dl; | 
|---|
| 2359 | struct task_struct *p; | 
|---|
| 2360 |  | 
|---|
| 2361 | again: | 
|---|
| 2362 | if (!sched_dl_runnable(rq)) | 
|---|
| 2363 | return NULL; | 
|---|
| 2364 |  | 
|---|
| 2365 | dl_se = pick_next_dl_entity(dl_rq); | 
|---|
| 2366 | WARN_ON_ONCE(!dl_se); | 
|---|
| 2367 |  | 
|---|
| 2368 | if (dl_server(dl_se)) { | 
|---|
| 2369 | p = dl_se->server_pick_task(dl_se); | 
|---|
| 2370 | if (!p) { | 
|---|
| 2371 | dl_server_stop(dl_se); | 
|---|
| 2372 | goto again; | 
|---|
| 2373 | } | 
|---|
| 2374 | rq->dl_server = dl_se; | 
|---|
| 2375 | } else { | 
|---|
| 2376 | p = dl_task_of(dl_se); | 
|---|
| 2377 | } | 
|---|
| 2378 |  | 
|---|
| 2379 | return p; | 
|---|
| 2380 | } | 
|---|
| 2381 |  | 
|---|
| 2382 | static struct task_struct *pick_task_dl(struct rq *rq) | 
|---|
| 2383 | { | 
|---|
| 2384 | return __pick_task_dl(rq); | 
|---|
| 2385 | } | 
|---|
| 2386 |  | 
|---|
| 2387 | static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next) | 
|---|
| 2388 | { | 
|---|
| 2389 | struct sched_dl_entity *dl_se = &p->dl; | 
|---|
| 2390 | struct dl_rq *dl_rq = &rq->dl; | 
|---|
| 2391 |  | 
|---|
| 2392 | if (on_dl_rq(dl_se: &p->dl)) | 
|---|
| 2393 | update_stats_wait_start_dl(dl_rq, dl_se); | 
|---|
| 2394 |  | 
|---|
| 2395 | update_curr_dl(rq); | 
|---|
| 2396 |  | 
|---|
| 2397 | update_dl_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 1); | 
|---|
| 2398 |  | 
|---|
| 2399 | if (task_is_blocked(p)) | 
|---|
| 2400 | return; | 
|---|
| 2401 |  | 
|---|
| 2402 | if (on_dl_rq(dl_se: &p->dl) && p->nr_cpus_allowed > 1) | 
|---|
| 2403 | enqueue_pushable_dl_task(rq, p); | 
|---|
| 2404 | } | 
|---|
| 2405 |  | 
|---|
| 2406 | /* | 
|---|
| 2407 | * scheduler tick hitting a task of our scheduling class. | 
|---|
| 2408 | * | 
|---|
| 2409 | * NOTE: This function can be called remotely by the tick offload that | 
|---|
| 2410 | * goes along full dynticks. Therefore no local assumption can be made | 
|---|
| 2411 | * and everything must be accessed through the @rq and @curr passed in | 
|---|
| 2412 | * parameters. | 
|---|
| 2413 | */ | 
|---|
| 2414 | static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) | 
|---|
| 2415 | { | 
|---|
| 2416 | update_curr_dl(rq); | 
|---|
| 2417 |  | 
|---|
| 2418 | update_dl_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 1); | 
|---|
| 2419 | /* | 
|---|
| 2420 | * Even when we have runtime, update_curr_dl() might have resulted in us | 
|---|
| 2421 | * not being the leftmost task anymore. In that case NEED_RESCHED will | 
|---|
| 2422 | * be set and schedule() will start a new hrtick for the next task. | 
|---|
| 2423 | */ | 
|---|
| 2424 | if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && | 
|---|
| 2425 | is_leftmost(dl_se: &p->dl, dl_rq: &rq->dl)) | 
|---|
| 2426 | start_hrtick_dl(rq, dl_se: &p->dl); | 
|---|
| 2427 | } | 
|---|
| 2428 |  | 
|---|
| 2429 | static void task_fork_dl(struct task_struct *p) | 
|---|
| 2430 | { | 
|---|
| 2431 | /* | 
|---|
| 2432 | * SCHED_DEADLINE tasks cannot fork and this is achieved through | 
|---|
| 2433 | * sched_fork() | 
|---|
| 2434 | */ | 
|---|
| 2435 | } | 
|---|
| 2436 |  | 
|---|
| 2437 | /* Only try algorithms three times */ | 
|---|
| 2438 | #define DL_MAX_TRIES 3 | 
|---|
| 2439 |  | 
|---|
| 2440 | /* | 
|---|
| 2441 | * Return the earliest pushable rq's task, which is suitable to be executed | 
|---|
| 2442 | * on the CPU, NULL otherwise: | 
|---|
| 2443 | */ | 
|---|
| 2444 | static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) | 
|---|
| 2445 | { | 
|---|
| 2446 | struct task_struct *p = NULL; | 
|---|
| 2447 | struct rb_node *next_node; | 
|---|
| 2448 |  | 
|---|
| 2449 | if (!has_pushable_dl_tasks(rq)) | 
|---|
| 2450 | return NULL; | 
|---|
| 2451 |  | 
|---|
| 2452 | next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); | 
|---|
| 2453 | while (next_node) { | 
|---|
| 2454 | p = __node_2_pdl(next_node); | 
|---|
| 2455 |  | 
|---|
| 2456 | if (task_is_pushable(rq, p, cpu)) | 
|---|
| 2457 | return p; | 
|---|
| 2458 |  | 
|---|
| 2459 | next_node = rb_next(next_node); | 
|---|
| 2460 | } | 
|---|
| 2461 |  | 
|---|
| 2462 | return NULL; | 
|---|
| 2463 | } | 
|---|
| 2464 |  | 
|---|
| 2465 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); | 
|---|
| 2466 |  | 
|---|
| 2467 | static int find_later_rq(struct task_struct *task) | 
|---|
| 2468 | { | 
|---|
| 2469 | struct sched_domain *sd; | 
|---|
| 2470 | struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); | 
|---|
| 2471 | int this_cpu = smp_processor_id(); | 
|---|
| 2472 | int cpu = task_cpu(p: task); | 
|---|
| 2473 |  | 
|---|
| 2474 | /* Make sure the mask is initialized first */ | 
|---|
| 2475 | if (unlikely(!later_mask)) | 
|---|
| 2476 | return -1; | 
|---|
| 2477 |  | 
|---|
| 2478 | if (task->nr_cpus_allowed == 1) | 
|---|
| 2479 | return -1; | 
|---|
| 2480 |  | 
|---|
| 2481 | /* | 
|---|
| 2482 | * We have to consider system topology and task affinity | 
|---|
| 2483 | * first, then we can look for a suitable CPU. | 
|---|
| 2484 | */ | 
|---|
| 2485 | if (!cpudl_find(cp: &task_rq(task)->rd->cpudl, p: task, later_mask)) | 
|---|
| 2486 | return -1; | 
|---|
| 2487 |  | 
|---|
| 2488 | /* | 
|---|
| 2489 | * If we are here, some targets have been found, including | 
|---|
| 2490 | * the most suitable which is, among the runqueues where the | 
|---|
| 2491 | * current tasks have later deadlines than the task's one, the | 
|---|
| 2492 | * rq with the latest possible one. | 
|---|
| 2493 | * | 
|---|
| 2494 | * Now we check how well this matches with task's | 
|---|
| 2495 | * affinity and system topology. | 
|---|
| 2496 | * | 
|---|
| 2497 | * The last CPU where the task run is our first | 
|---|
| 2498 | * guess, since it is most likely cache-hot there. | 
|---|
| 2499 | */ | 
|---|
| 2500 | if (cpumask_test_cpu(cpu, cpumask: later_mask)) | 
|---|
| 2501 | return cpu; | 
|---|
| 2502 | /* | 
|---|
| 2503 | * Check if this_cpu is to be skipped (i.e., it is | 
|---|
| 2504 | * not in the mask) or not. | 
|---|
| 2505 | */ | 
|---|
| 2506 | if (!cpumask_test_cpu(cpu: this_cpu, cpumask: later_mask)) | 
|---|
| 2507 | this_cpu = -1; | 
|---|
| 2508 |  | 
|---|
| 2509 | rcu_read_lock(); | 
|---|
| 2510 | for_each_domain(cpu, sd) { | 
|---|
| 2511 | if (sd->flags & SD_WAKE_AFFINE) { | 
|---|
| 2512 | int best_cpu; | 
|---|
| 2513 |  | 
|---|
| 2514 | /* | 
|---|
| 2515 | * If possible, preempting this_cpu is | 
|---|
| 2516 | * cheaper than migrating. | 
|---|
| 2517 | */ | 
|---|
| 2518 | if (this_cpu != -1 && | 
|---|
| 2519 | cpumask_test_cpu(cpu: this_cpu, cpumask: sched_domain_span(sd))) { | 
|---|
| 2520 | rcu_read_unlock(); | 
|---|
| 2521 | return this_cpu; | 
|---|
| 2522 | } | 
|---|
| 2523 |  | 
|---|
| 2524 | best_cpu = cpumask_any_and_distribute(src1p: later_mask, | 
|---|
| 2525 | src2p: sched_domain_span(sd)); | 
|---|
| 2526 | /* | 
|---|
| 2527 | * Last chance: if a CPU being in both later_mask | 
|---|
| 2528 | * and current sd span is valid, that becomes our | 
|---|
| 2529 | * choice. Of course, the latest possible CPU is | 
|---|
| 2530 | * already under consideration through later_mask. | 
|---|
| 2531 | */ | 
|---|
| 2532 | if (best_cpu < nr_cpu_ids) { | 
|---|
| 2533 | rcu_read_unlock(); | 
|---|
| 2534 | return best_cpu; | 
|---|
| 2535 | } | 
|---|
| 2536 | } | 
|---|
| 2537 | } | 
|---|
| 2538 | rcu_read_unlock(); | 
|---|
| 2539 |  | 
|---|
| 2540 | /* | 
|---|
| 2541 | * At this point, all our guesses failed, we just return | 
|---|
| 2542 | * 'something', and let the caller sort the things out. | 
|---|
| 2543 | */ | 
|---|
| 2544 | if (this_cpu != -1) | 
|---|
| 2545 | return this_cpu; | 
|---|
| 2546 |  | 
|---|
| 2547 | cpu = cpumask_any_distribute(srcp: later_mask); | 
|---|
| 2548 | if (cpu < nr_cpu_ids) | 
|---|
| 2549 | return cpu; | 
|---|
| 2550 |  | 
|---|
| 2551 | return -1; | 
|---|
| 2552 | } | 
|---|
| 2553 |  | 
|---|
| 2554 | static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) | 
|---|
| 2555 | { | 
|---|
| 2556 | struct task_struct *p; | 
|---|
| 2557 |  | 
|---|
| 2558 | if (!has_pushable_dl_tasks(rq)) | 
|---|
| 2559 | return NULL; | 
|---|
| 2560 |  | 
|---|
| 2561 | p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); | 
|---|
| 2562 |  | 
|---|
| 2563 | WARN_ON_ONCE(rq->cpu != task_cpu(p)); | 
|---|
| 2564 | WARN_ON_ONCE(task_current(rq, p)); | 
|---|
| 2565 | WARN_ON_ONCE(p->nr_cpus_allowed <= 1); | 
|---|
| 2566 |  | 
|---|
| 2567 | WARN_ON_ONCE(!task_on_rq_queued(p)); | 
|---|
| 2568 | WARN_ON_ONCE(!dl_task(p)); | 
|---|
| 2569 |  | 
|---|
| 2570 | return p; | 
|---|
| 2571 | } | 
|---|
| 2572 |  | 
|---|
| 2573 | /* Locks the rq it finds */ | 
|---|
| 2574 | static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) | 
|---|
| 2575 | { | 
|---|
| 2576 | struct rq *later_rq = NULL; | 
|---|
| 2577 | int tries; | 
|---|
| 2578 | int cpu; | 
|---|
| 2579 |  | 
|---|
| 2580 | for (tries = 0; tries < DL_MAX_TRIES; tries++) { | 
|---|
| 2581 | cpu = find_later_rq(task); | 
|---|
| 2582 |  | 
|---|
| 2583 | if ((cpu == -1) || (cpu == rq->cpu)) | 
|---|
| 2584 | break; | 
|---|
| 2585 |  | 
|---|
| 2586 | later_rq = cpu_rq(cpu); | 
|---|
| 2587 |  | 
|---|
| 2588 | if (!dl_task_is_earliest_deadline(p: task, rq: later_rq)) { | 
|---|
| 2589 | /* | 
|---|
| 2590 | * Target rq has tasks of equal or earlier deadline, | 
|---|
| 2591 | * retrying does not release any lock and is unlikely | 
|---|
| 2592 | * to yield a different result. | 
|---|
| 2593 | */ | 
|---|
| 2594 | later_rq = NULL; | 
|---|
| 2595 | break; | 
|---|
| 2596 | } | 
|---|
| 2597 |  | 
|---|
| 2598 | /* Retry if something changed. */ | 
|---|
| 2599 | if (double_lock_balance(this_rq: rq, busiest: later_rq)) { | 
|---|
| 2600 | /* | 
|---|
| 2601 | * double_lock_balance had to release rq->lock, in the | 
|---|
| 2602 | * meantime, task may no longer be fit to be migrated. | 
|---|
| 2603 | * Check the following to ensure that the task is | 
|---|
| 2604 | * still suitable for migration: | 
|---|
| 2605 | * 1. It is possible the task was scheduled, | 
|---|
| 2606 | *    migrate_disabled was set and then got preempted, | 
|---|
| 2607 | *    so we must check the task migration disable | 
|---|
| 2608 | *    flag. | 
|---|
| 2609 | * 2. The CPU picked is in the task's affinity. | 
|---|
| 2610 | * 3. For throttled task (dl_task_offline_migration), | 
|---|
| 2611 | *    check the following: | 
|---|
| 2612 | *    - the task is not on the rq anymore (it was | 
|---|
| 2613 | *      migrated) | 
|---|
| 2614 | *    - the task is not on CPU anymore | 
|---|
| 2615 | *    - the task is still a dl task | 
|---|
| 2616 | *    - the task is not queued on the rq anymore | 
|---|
| 2617 | * 4. For the non-throttled task (push_dl_task), the | 
|---|
| 2618 | *    check to ensure that this task is still at the | 
|---|
| 2619 | *    head of the pushable tasks list is enough. | 
|---|
| 2620 | */ | 
|---|
| 2621 | if (unlikely(is_migration_disabled(task) || | 
|---|
| 2622 | !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || | 
|---|
| 2623 | (task->dl.dl_throttled && | 
|---|
| 2624 | (task_rq(task) != rq || | 
|---|
| 2625 | task_on_cpu(rq, task) || | 
|---|
| 2626 | !dl_task(task) || | 
|---|
| 2627 | !task_on_rq_queued(task))) || | 
|---|
| 2628 | (!task->dl.dl_throttled && | 
|---|
| 2629 | task != pick_next_pushable_dl_task(rq)))) { | 
|---|
| 2630 |  | 
|---|
| 2631 | double_unlock_balance(this_rq: rq, busiest: later_rq); | 
|---|
| 2632 | later_rq = NULL; | 
|---|
| 2633 | break; | 
|---|
| 2634 | } | 
|---|
| 2635 | } | 
|---|
| 2636 |  | 
|---|
| 2637 | /* | 
|---|
| 2638 | * If the rq we found has no -deadline task, or | 
|---|
| 2639 | * its earliest one has a later deadline than our | 
|---|
| 2640 | * task, the rq is a good one. | 
|---|
| 2641 | */ | 
|---|
| 2642 | if (dl_task_is_earliest_deadline(p: task, rq: later_rq)) | 
|---|
| 2643 | break; | 
|---|
| 2644 |  | 
|---|
| 2645 | /* Otherwise we try again. */ | 
|---|
| 2646 | double_unlock_balance(this_rq: rq, busiest: later_rq); | 
|---|
| 2647 | later_rq = NULL; | 
|---|
| 2648 | } | 
|---|
| 2649 |  | 
|---|
| 2650 | return later_rq; | 
|---|
| 2651 | } | 
|---|
| 2652 |  | 
|---|
| 2653 | /* | 
|---|
| 2654 | * See if the non running -deadline tasks on this rq | 
|---|
| 2655 | * can be sent to some other CPU where they can preempt | 
|---|
| 2656 | * and start executing. | 
|---|
| 2657 | */ | 
|---|
| 2658 | static int push_dl_task(struct rq *rq) | 
|---|
| 2659 | { | 
|---|
| 2660 | struct task_struct *next_task; | 
|---|
| 2661 | struct rq *later_rq; | 
|---|
| 2662 | int ret = 0; | 
|---|
| 2663 |  | 
|---|
| 2664 | next_task = pick_next_pushable_dl_task(rq); | 
|---|
| 2665 | if (!next_task) | 
|---|
| 2666 | return 0; | 
|---|
| 2667 |  | 
|---|
| 2668 | retry: | 
|---|
| 2669 | /* | 
|---|
| 2670 | * If next_task preempts rq->curr, and rq->curr | 
|---|
| 2671 | * can move away, it makes sense to just reschedule | 
|---|
| 2672 | * without going further in pushing next_task. | 
|---|
| 2673 | */ | 
|---|
| 2674 | if (dl_task(p: rq->donor) && | 
|---|
| 2675 | dl_time_before(a: next_task->dl.deadline, b: rq->donor->dl.deadline) && | 
|---|
| 2676 | rq->curr->nr_cpus_allowed > 1) { | 
|---|
| 2677 | resched_curr(rq); | 
|---|
| 2678 | return 0; | 
|---|
| 2679 | } | 
|---|
| 2680 |  | 
|---|
| 2681 | if (is_migration_disabled(p: next_task)) | 
|---|
| 2682 | return 0; | 
|---|
| 2683 |  | 
|---|
| 2684 | if (WARN_ON(next_task == rq->curr)) | 
|---|
| 2685 | return 0; | 
|---|
| 2686 |  | 
|---|
| 2687 | /* We might release rq lock */ | 
|---|
| 2688 | get_task_struct(t: next_task); | 
|---|
| 2689 |  | 
|---|
| 2690 | /* Will lock the rq it'll find */ | 
|---|
| 2691 | later_rq = find_lock_later_rq(task: next_task, rq); | 
|---|
| 2692 | if (!later_rq) { | 
|---|
| 2693 | struct task_struct *task; | 
|---|
| 2694 |  | 
|---|
| 2695 | /* | 
|---|
| 2696 | * We must check all this again, since | 
|---|
| 2697 | * find_lock_later_rq releases rq->lock and it is | 
|---|
| 2698 | * then possible that next_task has migrated. | 
|---|
| 2699 | */ | 
|---|
| 2700 | task = pick_next_pushable_dl_task(rq); | 
|---|
| 2701 | if (task == next_task) { | 
|---|
| 2702 | /* | 
|---|
| 2703 | * The task is still there. We don't try | 
|---|
| 2704 | * again, some other CPU will pull it when ready. | 
|---|
| 2705 | */ | 
|---|
| 2706 | goto out; | 
|---|
| 2707 | } | 
|---|
| 2708 |  | 
|---|
| 2709 | if (!task) | 
|---|
| 2710 | /* No more tasks */ | 
|---|
| 2711 | goto out; | 
|---|
| 2712 |  | 
|---|
| 2713 | put_task_struct(t: next_task); | 
|---|
| 2714 | next_task = task; | 
|---|
| 2715 | goto retry; | 
|---|
| 2716 | } | 
|---|
| 2717 |  | 
|---|
| 2718 | move_queued_task_locked(src_rq: rq, dst_rq: later_rq, task: next_task); | 
|---|
| 2719 | ret = 1; | 
|---|
| 2720 |  | 
|---|
| 2721 | resched_curr(rq: later_rq); | 
|---|
| 2722 |  | 
|---|
| 2723 | double_unlock_balance(this_rq: rq, busiest: later_rq); | 
|---|
| 2724 |  | 
|---|
| 2725 | out: | 
|---|
| 2726 | put_task_struct(t: next_task); | 
|---|
| 2727 |  | 
|---|
| 2728 | return ret; | 
|---|
| 2729 | } | 
|---|
| 2730 |  | 
|---|
| 2731 | static void push_dl_tasks(struct rq *rq) | 
|---|
| 2732 | { | 
|---|
| 2733 | /* push_dl_task() will return true if it moved a -deadline task */ | 
|---|
| 2734 | while (push_dl_task(rq)) | 
|---|
| 2735 | ; | 
|---|
| 2736 | } | 
|---|
| 2737 |  | 
|---|
| 2738 | static void pull_dl_task(struct rq *this_rq) | 
|---|
| 2739 | { | 
|---|
| 2740 | int this_cpu = this_rq->cpu, cpu; | 
|---|
| 2741 | struct task_struct *p, *push_task; | 
|---|
| 2742 | bool resched = false; | 
|---|
| 2743 | struct rq *src_rq; | 
|---|
| 2744 | u64 dmin = LONG_MAX; | 
|---|
| 2745 |  | 
|---|
| 2746 | if (likely(!dl_overloaded(this_rq))) | 
|---|
| 2747 | return; | 
|---|
| 2748 |  | 
|---|
| 2749 | /* | 
|---|
| 2750 | * Match the barrier from dl_set_overloaded; this guarantees that if we | 
|---|
| 2751 | * see overloaded we must also see the dlo_mask bit. | 
|---|
| 2752 | */ | 
|---|
| 2753 | smp_rmb(); | 
|---|
| 2754 |  | 
|---|
| 2755 | for_each_cpu(cpu, this_rq->rd->dlo_mask) { | 
|---|
| 2756 | if (this_cpu == cpu) | 
|---|
| 2757 | continue; | 
|---|
| 2758 |  | 
|---|
| 2759 | src_rq = cpu_rq(cpu); | 
|---|
| 2760 |  | 
|---|
| 2761 | /* | 
|---|
| 2762 | * It looks racy, and it is! However, as in sched_rt.c, | 
|---|
| 2763 | * we are fine with this. | 
|---|
| 2764 | */ | 
|---|
| 2765 | if (this_rq->dl.dl_nr_running && | 
|---|
| 2766 | dl_time_before(a: this_rq->dl.earliest_dl.curr, | 
|---|
| 2767 | b: src_rq->dl.earliest_dl.next)) | 
|---|
| 2768 | continue; | 
|---|
| 2769 |  | 
|---|
| 2770 | /* Might drop this_rq->lock */ | 
|---|
| 2771 | push_task = NULL; | 
|---|
| 2772 | double_lock_balance(this_rq, busiest: src_rq); | 
|---|
| 2773 |  | 
|---|
| 2774 | /* | 
|---|
| 2775 | * If there are no more pullable tasks on the | 
|---|
| 2776 | * rq, we're done with it. | 
|---|
| 2777 | */ | 
|---|
| 2778 | if (src_rq->dl.dl_nr_running <= 1) | 
|---|
| 2779 | goto skip; | 
|---|
| 2780 |  | 
|---|
| 2781 | p = pick_earliest_pushable_dl_task(rq: src_rq, cpu: this_cpu); | 
|---|
| 2782 |  | 
|---|
| 2783 | /* | 
|---|
| 2784 | * We found a task to be pulled if: | 
|---|
| 2785 | *  - it preempts our current (if there's one), | 
|---|
| 2786 | *  - it will preempt the last one we pulled (if any). | 
|---|
| 2787 | */ | 
|---|
| 2788 | if (p && dl_time_before(a: p->dl.deadline, b: dmin) && | 
|---|
| 2789 | dl_task_is_earliest_deadline(p, rq: this_rq)) { | 
|---|
| 2790 | WARN_ON(p == src_rq->curr); | 
|---|
| 2791 | WARN_ON(!task_on_rq_queued(p)); | 
|---|
| 2792 |  | 
|---|
| 2793 | /* | 
|---|
| 2794 | * Then we pull iff p has actually an earlier | 
|---|
| 2795 | * deadline than the current task of its runqueue. | 
|---|
| 2796 | */ | 
|---|
| 2797 | if (dl_time_before(a: p->dl.deadline, | 
|---|
| 2798 | b: src_rq->donor->dl.deadline)) | 
|---|
| 2799 | goto skip; | 
|---|
| 2800 |  | 
|---|
| 2801 | if (is_migration_disabled(p)) { | 
|---|
| 2802 | push_task = get_push_task(rq: src_rq); | 
|---|
| 2803 | } else { | 
|---|
| 2804 | move_queued_task_locked(src_rq, dst_rq: this_rq, task: p); | 
|---|
| 2805 | dmin = p->dl.deadline; | 
|---|
| 2806 | resched = true; | 
|---|
| 2807 | } | 
|---|
| 2808 |  | 
|---|
| 2809 | /* Is there any other task even earlier? */ | 
|---|
| 2810 | } | 
|---|
| 2811 | skip: | 
|---|
| 2812 | double_unlock_balance(this_rq, busiest: src_rq); | 
|---|
| 2813 |  | 
|---|
| 2814 | if (push_task) { | 
|---|
| 2815 | preempt_disable(); | 
|---|
| 2816 | raw_spin_rq_unlock(rq: this_rq); | 
|---|
| 2817 | stop_one_cpu_nowait(cpu: src_rq->cpu, fn: push_cpu_stop, | 
|---|
| 2818 | arg: push_task, work_buf: &src_rq->push_work); | 
|---|
| 2819 | preempt_enable(); | 
|---|
| 2820 | raw_spin_rq_lock(rq: this_rq); | 
|---|
| 2821 | } | 
|---|
| 2822 | } | 
|---|
| 2823 |  | 
|---|
| 2824 | if (resched) | 
|---|
| 2825 | resched_curr(rq: this_rq); | 
|---|
| 2826 | } | 
|---|
| 2827 |  | 
|---|
| 2828 | /* | 
|---|
| 2829 | * Since the task is not running and a reschedule is not going to happen | 
|---|
| 2830 | * anytime soon on its runqueue, we try pushing it away now. | 
|---|
| 2831 | */ | 
|---|
| 2832 | static void task_woken_dl(struct rq *rq, struct task_struct *p) | 
|---|
| 2833 | { | 
|---|
| 2834 | if (!task_on_cpu(rq, p) && | 
|---|
| 2835 | !test_tsk_need_resched(tsk: rq->curr) && | 
|---|
| 2836 | p->nr_cpus_allowed > 1 && | 
|---|
| 2837 | dl_task(p: rq->donor) && | 
|---|
| 2838 | (rq->curr->nr_cpus_allowed < 2 || | 
|---|
| 2839 | !dl_entity_preempt(a: &p->dl, b: &rq->donor->dl))) { | 
|---|
| 2840 | push_dl_tasks(rq); | 
|---|
| 2841 | } | 
|---|
| 2842 | } | 
|---|
| 2843 |  | 
|---|
| 2844 | static void set_cpus_allowed_dl(struct task_struct *p, | 
|---|
| 2845 | struct affinity_context *ctx) | 
|---|
| 2846 | { | 
|---|
| 2847 | struct root_domain *src_rd; | 
|---|
| 2848 | struct rq *rq; | 
|---|
| 2849 |  | 
|---|
| 2850 | WARN_ON_ONCE(!dl_task(p)); | 
|---|
| 2851 |  | 
|---|
| 2852 | rq = task_rq(p); | 
|---|
| 2853 | src_rd = rq->rd; | 
|---|
| 2854 | /* | 
|---|
| 2855 | * Migrating a SCHED_DEADLINE task between exclusive | 
|---|
| 2856 | * cpusets (different root_domains) entails a bandwidth | 
|---|
| 2857 | * update. We already made space for us in the destination | 
|---|
| 2858 | * domain (see cpuset_can_attach()). | 
|---|
| 2859 | */ | 
|---|
| 2860 | if (!cpumask_intersects(src1p: src_rd->span, src2p: ctx->new_mask)) { | 
|---|
| 2861 | struct dl_bw *src_dl_b; | 
|---|
| 2862 |  | 
|---|
| 2863 | src_dl_b = dl_bw_of(i: cpu_of(rq)); | 
|---|
| 2864 | /* | 
|---|
| 2865 | * We now free resources of the root_domain we are migrating | 
|---|
| 2866 | * off. In the worst case, sched_setattr() may temporary fail | 
|---|
| 2867 | * until we complete the update. | 
|---|
| 2868 | */ | 
|---|
| 2869 | raw_spin_lock(&src_dl_b->lock); | 
|---|
| 2870 | __dl_sub(dl_b: src_dl_b, tsk_bw: p->dl.dl_bw, cpus: dl_bw_cpus(i: task_cpu(p))); | 
|---|
| 2871 | raw_spin_unlock(&src_dl_b->lock); | 
|---|
| 2872 | } | 
|---|
| 2873 |  | 
|---|
| 2874 | set_cpus_allowed_common(p, ctx); | 
|---|
| 2875 | } | 
|---|
| 2876 |  | 
|---|
| 2877 | /* Assumes rq->lock is held */ | 
|---|
| 2878 | static void rq_online_dl(struct rq *rq) | 
|---|
| 2879 | { | 
|---|
| 2880 | if (rq->dl.overloaded) | 
|---|
| 2881 | dl_set_overload(rq); | 
|---|
| 2882 |  | 
|---|
| 2883 | cpudl_set_freecpu(cp: &rq->rd->cpudl, cpu: rq->cpu); | 
|---|
| 2884 | if (rq->dl.dl_nr_running > 0) | 
|---|
| 2885 | cpudl_set(cp: &rq->rd->cpudl, cpu: rq->cpu, dl: rq->dl.earliest_dl.curr); | 
|---|
| 2886 | } | 
|---|
| 2887 |  | 
|---|
| 2888 | /* Assumes rq->lock is held */ | 
|---|
| 2889 | static void rq_offline_dl(struct rq *rq) | 
|---|
| 2890 | { | 
|---|
| 2891 | if (rq->dl.overloaded) | 
|---|
| 2892 | dl_clear_overload(rq); | 
|---|
| 2893 |  | 
|---|
| 2894 | cpudl_clear(cp: &rq->rd->cpudl, cpu: rq->cpu); | 
|---|
| 2895 | cpudl_clear_freecpu(cp: &rq->rd->cpudl, cpu: rq->cpu); | 
|---|
| 2896 | } | 
|---|
| 2897 |  | 
|---|
| 2898 | void __init init_sched_dl_class(void) | 
|---|
| 2899 | { | 
|---|
| 2900 | unsigned int i; | 
|---|
| 2901 |  | 
|---|
| 2902 | for_each_possible_cpu(i) | 
|---|
| 2903 | zalloc_cpumask_var_node(mask: &per_cpu(local_cpu_mask_dl, i), | 
|---|
| 2904 | GFP_KERNEL, node: cpu_to_node(cpu: i)); | 
|---|
| 2905 | } | 
|---|
| 2906 |  | 
|---|
| 2907 | void dl_add_task_root_domain(struct task_struct *p) | 
|---|
| 2908 | { | 
|---|
| 2909 | struct rq_flags rf; | 
|---|
| 2910 | struct rq *rq; | 
|---|
| 2911 | struct dl_bw *dl_b; | 
|---|
| 2912 |  | 
|---|
| 2913 | raw_spin_lock_irqsave(&p->pi_lock, rf.flags); | 
|---|
| 2914 | if (!dl_task(p) || dl_entity_is_special(dl_se: &p->dl)) { | 
|---|
| 2915 | raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); | 
|---|
| 2916 | return; | 
|---|
| 2917 | } | 
|---|
| 2918 |  | 
|---|
| 2919 | rq = __task_rq_lock(p, rf: &rf); | 
|---|
| 2920 |  | 
|---|
| 2921 | dl_b = &rq->rd->dl_bw; | 
|---|
| 2922 | raw_spin_lock(&dl_b->lock); | 
|---|
| 2923 |  | 
|---|
| 2924 | __dl_add(dl_b, tsk_bw: p->dl.dl_bw, cpus: cpumask_weight(srcp: rq->rd->span)); | 
|---|
| 2925 |  | 
|---|
| 2926 | raw_spin_unlock(&dl_b->lock); | 
|---|
| 2927 |  | 
|---|
| 2928 | task_rq_unlock(rq, p, rf: &rf); | 
|---|
| 2929 | } | 
|---|
| 2930 |  | 
|---|
| 2931 | void dl_clear_root_domain(struct root_domain *rd) | 
|---|
| 2932 | { | 
|---|
| 2933 | int i; | 
|---|
| 2934 |  | 
|---|
| 2935 | guard(raw_spinlock_irqsave)(l: &rd->dl_bw.lock); | 
|---|
| 2936 |  | 
|---|
| 2937 | /* | 
|---|
| 2938 | * Reset total_bw to zero and extra_bw to max_bw so that next | 
|---|
| 2939 | * loop will add dl-servers contributions back properly, | 
|---|
| 2940 | */ | 
|---|
| 2941 | rd->dl_bw.total_bw = 0; | 
|---|
| 2942 | for_each_cpu(i, rd->span) | 
|---|
| 2943 | cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw; | 
|---|
| 2944 |  | 
|---|
| 2945 | /* | 
|---|
| 2946 | * dl_servers are not tasks. Since dl_add_task_root_domain ignores | 
|---|
| 2947 | * them, we need to account for them here explicitly. | 
|---|
| 2948 | */ | 
|---|
| 2949 | for_each_cpu(i, rd->span) { | 
|---|
| 2950 | struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server; | 
|---|
| 2951 |  | 
|---|
| 2952 | if (dl_server(dl_se) && cpu_active(cpu: i)) | 
|---|
| 2953 | __dl_add(dl_b: &rd->dl_bw, tsk_bw: dl_se->dl_bw, cpus: dl_bw_cpus(i)); | 
|---|
| 2954 | } | 
|---|
| 2955 | } | 
|---|
| 2956 |  | 
|---|
| 2957 | void dl_clear_root_domain_cpu(int cpu) | 
|---|
| 2958 | { | 
|---|
| 2959 | dl_clear_root_domain(cpu_rq(cpu)->rd); | 
|---|
| 2960 | } | 
|---|
| 2961 |  | 
|---|
| 2962 | static void switched_from_dl(struct rq *rq, struct task_struct *p) | 
|---|
| 2963 | { | 
|---|
| 2964 | /* | 
|---|
| 2965 | * task_non_contending() can start the "inactive timer" (if the 0-lag | 
|---|
| 2966 | * time is in the future). If the task switches back to dl before | 
|---|
| 2967 | * the "inactive timer" fires, it can continue to consume its current | 
|---|
| 2968 | * runtime using its current deadline. If it stays outside of | 
|---|
| 2969 | * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() | 
|---|
| 2970 | * will reset the task parameters. | 
|---|
| 2971 | */ | 
|---|
| 2972 | if (task_on_rq_queued(p) && p->dl.dl_runtime) | 
|---|
| 2973 | task_non_contending(dl_se: &p->dl); | 
|---|
| 2974 |  | 
|---|
| 2975 | /* | 
|---|
| 2976 | * In case a task is setscheduled out from SCHED_DEADLINE we need to | 
|---|
| 2977 | * keep track of that on its cpuset (for correct bandwidth tracking). | 
|---|
| 2978 | */ | 
|---|
| 2979 | dec_dl_tasks_cs(task: p); | 
|---|
| 2980 |  | 
|---|
| 2981 | if (!task_on_rq_queued(p)) { | 
|---|
| 2982 | /* | 
|---|
| 2983 | * Inactive timer is armed. However, p is leaving DEADLINE and | 
|---|
| 2984 | * might migrate away from this rq while continuing to run on | 
|---|
| 2985 | * some other class. We need to remove its contribution from | 
|---|
| 2986 | * this rq running_bw now, or sub_rq_bw (below) will complain. | 
|---|
| 2987 | */ | 
|---|
| 2988 | if (p->dl.dl_non_contending) | 
|---|
| 2989 | sub_running_bw(dl_se: &p->dl, dl_rq: &rq->dl); | 
|---|
| 2990 | sub_rq_bw(dl_se: &p->dl, dl_rq: &rq->dl); | 
|---|
| 2991 | } | 
|---|
| 2992 |  | 
|---|
| 2993 | /* | 
|---|
| 2994 | * We cannot use inactive_task_timer() to invoke sub_running_bw() | 
|---|
| 2995 | * at the 0-lag time, because the task could have been migrated | 
|---|
| 2996 | * while SCHED_OTHER in the meanwhile. | 
|---|
| 2997 | */ | 
|---|
| 2998 | if (p->dl.dl_non_contending) | 
|---|
| 2999 | p->dl.dl_non_contending = 0; | 
|---|
| 3000 |  | 
|---|
| 3001 | /* | 
|---|
| 3002 | * Since this might be the only -deadline task on the rq, | 
|---|
| 3003 | * this is the right place to try to pull some other one | 
|---|
| 3004 | * from an overloaded CPU, if any. | 
|---|
| 3005 | */ | 
|---|
| 3006 | if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) | 
|---|
| 3007 | return; | 
|---|
| 3008 |  | 
|---|
| 3009 | deadline_queue_pull_task(rq); | 
|---|
| 3010 | } | 
|---|
| 3011 |  | 
|---|
| 3012 | /* | 
|---|
| 3013 | * When switching to -deadline, we may overload the rq, then | 
|---|
| 3014 | * we try to push someone off, if possible. | 
|---|
| 3015 | */ | 
|---|
| 3016 | static void switched_to_dl(struct rq *rq, struct task_struct *p) | 
|---|
| 3017 | { | 
|---|
| 3018 | cancel_inactive_timer(dl_se: &p->dl); | 
|---|
| 3019 |  | 
|---|
| 3020 | /* | 
|---|
| 3021 | * In case a task is setscheduled to SCHED_DEADLINE we need to keep | 
|---|
| 3022 | * track of that on its cpuset (for correct bandwidth tracking). | 
|---|
| 3023 | */ | 
|---|
| 3024 | inc_dl_tasks_cs(task: p); | 
|---|
| 3025 |  | 
|---|
| 3026 | /* If p is not queued we will update its parameters at next wakeup. */ | 
|---|
| 3027 | if (!task_on_rq_queued(p)) { | 
|---|
| 3028 | add_rq_bw(dl_se: &p->dl, dl_rq: &rq->dl); | 
|---|
| 3029 |  | 
|---|
| 3030 | return; | 
|---|
| 3031 | } | 
|---|
| 3032 |  | 
|---|
| 3033 | if (rq->donor != p) { | 
|---|
| 3034 | if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) | 
|---|
| 3035 | deadline_queue_push_tasks(rq); | 
|---|
| 3036 | if (dl_task(p: rq->donor)) | 
|---|
| 3037 | wakeup_preempt_dl(rq, p, flags: 0); | 
|---|
| 3038 | else | 
|---|
| 3039 | resched_curr(rq); | 
|---|
| 3040 | } else { | 
|---|
| 3041 | update_dl_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 0); | 
|---|
| 3042 | } | 
|---|
| 3043 | } | 
|---|
| 3044 |  | 
|---|
| 3045 | /* | 
|---|
| 3046 | * If the scheduling parameters of a -deadline task changed, | 
|---|
| 3047 | * a push or pull operation might be needed. | 
|---|
| 3048 | */ | 
|---|
| 3049 | static void prio_changed_dl(struct rq *rq, struct task_struct *p, | 
|---|
| 3050 | int oldprio) | 
|---|
| 3051 | { | 
|---|
| 3052 | if (!task_on_rq_queued(p)) | 
|---|
| 3053 | return; | 
|---|
| 3054 |  | 
|---|
| 3055 | /* | 
|---|
| 3056 | * This might be too much, but unfortunately | 
|---|
| 3057 | * we don't have the old deadline value, and | 
|---|
| 3058 | * we can't argue if the task is increasing | 
|---|
| 3059 | * or lowering its prio, so... | 
|---|
| 3060 | */ | 
|---|
| 3061 | if (!rq->dl.overloaded) | 
|---|
| 3062 | deadline_queue_pull_task(rq); | 
|---|
| 3063 |  | 
|---|
| 3064 | if (task_current_donor(rq, p)) { | 
|---|
| 3065 | /* | 
|---|
| 3066 | * If we now have a earlier deadline task than p, | 
|---|
| 3067 | * then reschedule, provided p is still on this | 
|---|
| 3068 | * runqueue. | 
|---|
| 3069 | */ | 
|---|
| 3070 | if (dl_time_before(a: rq->dl.earliest_dl.curr, b: p->dl.deadline)) | 
|---|
| 3071 | resched_curr(rq); | 
|---|
| 3072 | } else { | 
|---|
| 3073 | /* | 
|---|
| 3074 | * Current may not be deadline in case p was throttled but we | 
|---|
| 3075 | * have just replenished it (e.g. rt_mutex_setprio()). | 
|---|
| 3076 | * | 
|---|
| 3077 | * Otherwise, if p was given an earlier deadline, reschedule. | 
|---|
| 3078 | */ | 
|---|
| 3079 | if (!dl_task(p: rq->curr) || | 
|---|
| 3080 | dl_time_before(a: p->dl.deadline, b: rq->curr->dl.deadline)) | 
|---|
| 3081 | resched_curr(rq); | 
|---|
| 3082 | } | 
|---|
| 3083 | } | 
|---|
| 3084 |  | 
|---|
| 3085 | #ifdef CONFIG_SCHED_CORE | 
|---|
| 3086 | static int task_is_throttled_dl(struct task_struct *p, int cpu) | 
|---|
| 3087 | { | 
|---|
| 3088 | return p->dl.dl_throttled; | 
|---|
| 3089 | } | 
|---|
| 3090 | #endif | 
|---|
| 3091 |  | 
|---|
| 3092 | DEFINE_SCHED_CLASS(dl) = { | 
|---|
| 3093 |  | 
|---|
| 3094 | .enqueue_task		= enqueue_task_dl, | 
|---|
| 3095 | .dequeue_task		= dequeue_task_dl, | 
|---|
| 3096 | .yield_task		= yield_task_dl, | 
|---|
| 3097 |  | 
|---|
| 3098 | .wakeup_preempt		= wakeup_preempt_dl, | 
|---|
| 3099 |  | 
|---|
| 3100 | .pick_task		= pick_task_dl, | 
|---|
| 3101 | .put_prev_task		= put_prev_task_dl, | 
|---|
| 3102 | .set_next_task		= set_next_task_dl, | 
|---|
| 3103 |  | 
|---|
| 3104 | .balance		= balance_dl, | 
|---|
| 3105 | .select_task_rq		= select_task_rq_dl, | 
|---|
| 3106 | .migrate_task_rq	= migrate_task_rq_dl, | 
|---|
| 3107 | .set_cpus_allowed       = set_cpus_allowed_dl, | 
|---|
| 3108 | .rq_online              = rq_online_dl, | 
|---|
| 3109 | .rq_offline             = rq_offline_dl, | 
|---|
| 3110 | .task_woken		= task_woken_dl, | 
|---|
| 3111 | .find_lock_rq		= find_lock_later_rq, | 
|---|
| 3112 |  | 
|---|
| 3113 | .task_tick		= task_tick_dl, | 
|---|
| 3114 | .task_fork              = task_fork_dl, | 
|---|
| 3115 |  | 
|---|
| 3116 | .prio_changed           = prio_changed_dl, | 
|---|
| 3117 | .switched_from		= switched_from_dl, | 
|---|
| 3118 | .switched_to		= switched_to_dl, | 
|---|
| 3119 |  | 
|---|
| 3120 | .update_curr		= update_curr_dl, | 
|---|
| 3121 | #ifdef CONFIG_SCHED_CORE | 
|---|
| 3122 | .task_is_throttled	= task_is_throttled_dl, | 
|---|
| 3123 | #endif | 
|---|
| 3124 | }; | 
|---|
| 3125 |  | 
|---|
| 3126 | /* | 
|---|
| 3127 | * Used for dl_bw check and update, used under sched_rt_handler()::mutex and | 
|---|
| 3128 | * sched_domains_mutex. | 
|---|
| 3129 | */ | 
|---|
| 3130 | u64 dl_cookie; | 
|---|
| 3131 |  | 
|---|
| 3132 | int sched_dl_global_validate(void) | 
|---|
| 3133 | { | 
|---|
| 3134 | u64 runtime = global_rt_runtime(); | 
|---|
| 3135 | u64 period = global_rt_period(); | 
|---|
| 3136 | u64 new_bw = to_ratio(period, runtime); | 
|---|
| 3137 | u64 cookie = ++dl_cookie; | 
|---|
| 3138 | struct dl_bw *dl_b; | 
|---|
| 3139 | int cpu, cpus, ret = 0; | 
|---|
| 3140 | unsigned long flags; | 
|---|
| 3141 |  | 
|---|
| 3142 | /* | 
|---|
| 3143 | * Here we want to check the bandwidth not being set to some | 
|---|
| 3144 | * value smaller than the currently allocated bandwidth in | 
|---|
| 3145 | * any of the root_domains. | 
|---|
| 3146 | */ | 
|---|
| 3147 | for_each_online_cpu(cpu) { | 
|---|
| 3148 | rcu_read_lock_sched(); | 
|---|
| 3149 |  | 
|---|
| 3150 | if (dl_bw_visited(cpu, cookie)) | 
|---|
| 3151 | goto next; | 
|---|
| 3152 |  | 
|---|
| 3153 | dl_b = dl_bw_of(i: cpu); | 
|---|
| 3154 | cpus = dl_bw_cpus(i: cpu); | 
|---|
| 3155 |  | 
|---|
| 3156 | raw_spin_lock_irqsave(&dl_b->lock, flags); | 
|---|
| 3157 | if (new_bw * cpus < dl_b->total_bw) | 
|---|
| 3158 | ret = -EBUSY; | 
|---|
| 3159 | raw_spin_unlock_irqrestore(&dl_b->lock, flags); | 
|---|
| 3160 |  | 
|---|
| 3161 | next: | 
|---|
| 3162 | rcu_read_unlock_sched(); | 
|---|
| 3163 |  | 
|---|
| 3164 | if (ret) | 
|---|
| 3165 | break; | 
|---|
| 3166 | } | 
|---|
| 3167 |  | 
|---|
| 3168 | return ret; | 
|---|
| 3169 | } | 
|---|
| 3170 |  | 
|---|
| 3171 | static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) | 
|---|
| 3172 | { | 
|---|
| 3173 | if (global_rt_runtime() == RUNTIME_INF) { | 
|---|
| 3174 | dl_rq->bw_ratio = 1 << RATIO_SHIFT; | 
|---|
| 3175 | dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; | 
|---|
| 3176 | } else { | 
|---|
| 3177 | dl_rq->bw_ratio = to_ratio(period: global_rt_runtime(), | 
|---|
| 3178 | runtime: global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); | 
|---|
| 3179 | dl_rq->max_bw = dl_rq->extra_bw = | 
|---|
| 3180 | to_ratio(period: global_rt_period(), runtime: global_rt_runtime()); | 
|---|
| 3181 | } | 
|---|
| 3182 | } | 
|---|
| 3183 |  | 
|---|
| 3184 | void sched_dl_do_global(void) | 
|---|
| 3185 | { | 
|---|
| 3186 | u64 new_bw = -1; | 
|---|
| 3187 | u64 cookie = ++dl_cookie; | 
|---|
| 3188 | struct dl_bw *dl_b; | 
|---|
| 3189 | int cpu; | 
|---|
| 3190 | unsigned long flags; | 
|---|
| 3191 |  | 
|---|
| 3192 | if (global_rt_runtime() != RUNTIME_INF) | 
|---|
| 3193 | new_bw = to_ratio(period: global_rt_period(), runtime: global_rt_runtime()); | 
|---|
| 3194 |  | 
|---|
| 3195 | for_each_possible_cpu(cpu) | 
|---|
| 3196 | init_dl_rq_bw_ratio(dl_rq: &cpu_rq(cpu)->dl); | 
|---|
| 3197 |  | 
|---|
| 3198 | for_each_possible_cpu(cpu) { | 
|---|
| 3199 | rcu_read_lock_sched(); | 
|---|
| 3200 |  | 
|---|
| 3201 | if (dl_bw_visited(cpu, cookie)) { | 
|---|
| 3202 | rcu_read_unlock_sched(); | 
|---|
| 3203 | continue; | 
|---|
| 3204 | } | 
|---|
| 3205 |  | 
|---|
| 3206 | dl_b = dl_bw_of(i: cpu); | 
|---|
| 3207 |  | 
|---|
| 3208 | raw_spin_lock_irqsave(&dl_b->lock, flags); | 
|---|
| 3209 | dl_b->bw = new_bw; | 
|---|
| 3210 | raw_spin_unlock_irqrestore(&dl_b->lock, flags); | 
|---|
| 3211 |  | 
|---|
| 3212 | rcu_read_unlock_sched(); | 
|---|
| 3213 | } | 
|---|
| 3214 | } | 
|---|
| 3215 |  | 
|---|
| 3216 | /* | 
|---|
| 3217 | * We must be sure that accepting a new task (or allowing changing the | 
|---|
| 3218 | * parameters of an existing one) is consistent with the bandwidth | 
|---|
| 3219 | * constraints. If yes, this function also accordingly updates the currently | 
|---|
| 3220 | * allocated bandwidth to reflect the new situation. | 
|---|
| 3221 | * | 
|---|
| 3222 | * This function is called while holding p's rq->lock. | 
|---|
| 3223 | */ | 
|---|
| 3224 | int sched_dl_overflow(struct task_struct *p, int policy, | 
|---|
| 3225 | const struct sched_attr *attr) | 
|---|
| 3226 | { | 
|---|
| 3227 | u64 period = attr->sched_period ?: attr->sched_deadline; | 
|---|
| 3228 | u64 runtime = attr->sched_runtime; | 
|---|
| 3229 | u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; | 
|---|
| 3230 | int cpus, err = -1, cpu = task_cpu(p); | 
|---|
| 3231 | struct dl_bw *dl_b = dl_bw_of(i: cpu); | 
|---|
| 3232 | unsigned long cap; | 
|---|
| 3233 |  | 
|---|
| 3234 | if (attr->sched_flags & SCHED_FLAG_SUGOV) | 
|---|
| 3235 | return 0; | 
|---|
| 3236 |  | 
|---|
| 3237 | /* !deadline task may carry old deadline bandwidth */ | 
|---|
| 3238 | if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) | 
|---|
| 3239 | return 0; | 
|---|
| 3240 |  | 
|---|
| 3241 | /* | 
|---|
| 3242 | * Either if a task, enters, leave, or stays -deadline but changes | 
|---|
| 3243 | * its parameters, we may need to update accordingly the total | 
|---|
| 3244 | * allocated bandwidth of the container. | 
|---|
| 3245 | */ | 
|---|
| 3246 | raw_spin_lock(&dl_b->lock); | 
|---|
| 3247 | cpus = dl_bw_cpus(i: cpu); | 
|---|
| 3248 | cap = dl_bw_capacity(i: cpu); | 
|---|
| 3249 |  | 
|---|
| 3250 | if (dl_policy(policy) && !task_has_dl_policy(p) && | 
|---|
| 3251 | !__dl_overflow(dl_b, cap, old_bw: 0, new_bw)) { | 
|---|
| 3252 | if (hrtimer_active(timer: &p->dl.inactive_timer)) | 
|---|
| 3253 | __dl_sub(dl_b, tsk_bw: p->dl.dl_bw, cpus); | 
|---|
| 3254 | __dl_add(dl_b, tsk_bw: new_bw, cpus); | 
|---|
| 3255 | err = 0; | 
|---|
| 3256 | } else if (dl_policy(policy) && task_has_dl_policy(p) && | 
|---|
| 3257 | !__dl_overflow(dl_b, cap, old_bw: p->dl.dl_bw, new_bw)) { | 
|---|
| 3258 | /* | 
|---|
| 3259 | * XXX this is slightly incorrect: when the task | 
|---|
| 3260 | * utilization decreases, we should delay the total | 
|---|
| 3261 | * utilization change until the task's 0-lag point. | 
|---|
| 3262 | * But this would require to set the task's "inactive | 
|---|
| 3263 | * timer" when the task is not inactive. | 
|---|
| 3264 | */ | 
|---|
| 3265 | __dl_sub(dl_b, tsk_bw: p->dl.dl_bw, cpus); | 
|---|
| 3266 | __dl_add(dl_b, tsk_bw: new_bw, cpus); | 
|---|
| 3267 | dl_change_utilization(p, new_bw); | 
|---|
| 3268 | err = 0; | 
|---|
| 3269 | } else if (!dl_policy(policy) && task_has_dl_policy(p)) { | 
|---|
| 3270 | /* | 
|---|
| 3271 | * Do not decrease the total deadline utilization here, | 
|---|
| 3272 | * switched_from_dl() will take care to do it at the correct | 
|---|
| 3273 | * (0-lag) time. | 
|---|
| 3274 | */ | 
|---|
| 3275 | err = 0; | 
|---|
| 3276 | } | 
|---|
| 3277 | raw_spin_unlock(&dl_b->lock); | 
|---|
| 3278 |  | 
|---|
| 3279 | return err; | 
|---|
| 3280 | } | 
|---|
| 3281 |  | 
|---|
| 3282 | /* | 
|---|
| 3283 | * This function initializes the sched_dl_entity of a newly becoming | 
|---|
| 3284 | * SCHED_DEADLINE task. | 
|---|
| 3285 | * | 
|---|
| 3286 | * Only the static values are considered here, the actual runtime and the | 
|---|
| 3287 | * absolute deadline will be properly calculated when the task is enqueued | 
|---|
| 3288 | * for the first time with its new policy. | 
|---|
| 3289 | */ | 
|---|
| 3290 | void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) | 
|---|
| 3291 | { | 
|---|
| 3292 | struct sched_dl_entity *dl_se = &p->dl; | 
|---|
| 3293 |  | 
|---|
| 3294 | dl_se->dl_runtime = attr->sched_runtime; | 
|---|
| 3295 | dl_se->dl_deadline = attr->sched_deadline; | 
|---|
| 3296 | dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; | 
|---|
| 3297 | dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; | 
|---|
| 3298 | dl_se->dl_bw = to_ratio(period: dl_se->dl_period, runtime: dl_se->dl_runtime); | 
|---|
| 3299 | dl_se->dl_density = to_ratio(period: dl_se->dl_deadline, runtime: dl_se->dl_runtime); | 
|---|
| 3300 | } | 
|---|
| 3301 |  | 
|---|
| 3302 | void __getparam_dl(struct task_struct *p, struct sched_attr *attr) | 
|---|
| 3303 | { | 
|---|
| 3304 | struct sched_dl_entity *dl_se = &p->dl; | 
|---|
| 3305 |  | 
|---|
| 3306 | attr->sched_priority = p->rt_priority; | 
|---|
| 3307 | attr->sched_runtime = dl_se->dl_runtime; | 
|---|
| 3308 | attr->sched_deadline = dl_se->dl_deadline; | 
|---|
| 3309 | attr->sched_period = dl_se->dl_period; | 
|---|
| 3310 | attr->sched_flags &= ~SCHED_DL_FLAGS; | 
|---|
| 3311 | attr->sched_flags |= dl_se->flags; | 
|---|
| 3312 | } | 
|---|
| 3313 |  | 
|---|
| 3314 | /* | 
|---|
| 3315 | * This function validates the new parameters of a -deadline task. | 
|---|
| 3316 | * We ask for the deadline not being zero, and greater or equal | 
|---|
| 3317 | * than the runtime, as well as the period of being zero or | 
|---|
| 3318 | * greater than deadline. Furthermore, we have to be sure that | 
|---|
| 3319 | * user parameters are above the internal resolution of 1us (we | 
|---|
| 3320 | * check sched_runtime only since it is always the smaller one) and | 
|---|
| 3321 | * below 2^63 ns (we have to check both sched_deadline and | 
|---|
| 3322 | * sched_period, as the latter can be zero). | 
|---|
| 3323 | */ | 
|---|
| 3324 | bool __checkparam_dl(const struct sched_attr *attr) | 
|---|
| 3325 | { | 
|---|
| 3326 | u64 period, max, min; | 
|---|
| 3327 |  | 
|---|
| 3328 | /* special dl tasks don't actually use any parameter */ | 
|---|
| 3329 | if (attr->sched_flags & SCHED_FLAG_SUGOV) | 
|---|
| 3330 | return true; | 
|---|
| 3331 |  | 
|---|
| 3332 | /* deadline != 0 */ | 
|---|
| 3333 | if (attr->sched_deadline == 0) | 
|---|
| 3334 | return false; | 
|---|
| 3335 |  | 
|---|
| 3336 | /* | 
|---|
| 3337 | * Since we truncate DL_SCALE bits, make sure we're at least | 
|---|
| 3338 | * that big. | 
|---|
| 3339 | */ | 
|---|
| 3340 | if (attr->sched_runtime < (1ULL << DL_SCALE)) | 
|---|
| 3341 | return false; | 
|---|
| 3342 |  | 
|---|
| 3343 | /* | 
|---|
| 3344 | * Since we use the MSB for wrap-around and sign issues, make | 
|---|
| 3345 | * sure it's not set (mind that period can be equal to zero). | 
|---|
| 3346 | */ | 
|---|
| 3347 | if (attr->sched_deadline & (1ULL << 63) || | 
|---|
| 3348 | attr->sched_period & (1ULL << 63)) | 
|---|
| 3349 | return false; | 
|---|
| 3350 |  | 
|---|
| 3351 | period = attr->sched_period; | 
|---|
| 3352 | if (!period) | 
|---|
| 3353 | period = attr->sched_deadline; | 
|---|
| 3354 |  | 
|---|
| 3355 | /* runtime <= deadline <= period (if period != 0) */ | 
|---|
| 3356 | if (period < attr->sched_deadline || | 
|---|
| 3357 | attr->sched_deadline < attr->sched_runtime) | 
|---|
| 3358 | return false; | 
|---|
| 3359 |  | 
|---|
| 3360 | max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; | 
|---|
| 3361 | min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; | 
|---|
| 3362 |  | 
|---|
| 3363 | if (period < min || period > max) | 
|---|
| 3364 | return false; | 
|---|
| 3365 |  | 
|---|
| 3366 | return true; | 
|---|
| 3367 | } | 
|---|
| 3368 |  | 
|---|
| 3369 | /* | 
|---|
| 3370 | * This function clears the sched_dl_entity static params. | 
|---|
| 3371 | */ | 
|---|
| 3372 | static void __dl_clear_params(struct sched_dl_entity *dl_se) | 
|---|
| 3373 | { | 
|---|
| 3374 | dl_se->dl_runtime		= 0; | 
|---|
| 3375 | dl_se->dl_deadline		= 0; | 
|---|
| 3376 | dl_se->dl_period		= 0; | 
|---|
| 3377 | dl_se->flags			= 0; | 
|---|
| 3378 | dl_se->dl_bw			= 0; | 
|---|
| 3379 | dl_se->dl_density		= 0; | 
|---|
| 3380 |  | 
|---|
| 3381 | dl_se->dl_throttled		= 0; | 
|---|
| 3382 | dl_se->dl_yielded		= 0; | 
|---|
| 3383 | dl_se->dl_non_contending	= 0; | 
|---|
| 3384 | dl_se->dl_overrun		= 0; | 
|---|
| 3385 | dl_se->dl_server		= 0; | 
|---|
| 3386 |  | 
|---|
| 3387 | #ifdef CONFIG_RT_MUTEXES | 
|---|
| 3388 | dl_se->pi_se			= dl_se; | 
|---|
| 3389 | #endif | 
|---|
| 3390 | } | 
|---|
| 3391 |  | 
|---|
| 3392 | void init_dl_entity(struct sched_dl_entity *dl_se) | 
|---|
| 3393 | { | 
|---|
| 3394 | RB_CLEAR_NODE(&dl_se->rb_node); | 
|---|
| 3395 | init_dl_task_timer(dl_se); | 
|---|
| 3396 | init_dl_inactive_task_timer(dl_se); | 
|---|
| 3397 | __dl_clear_params(dl_se); | 
|---|
| 3398 | } | 
|---|
| 3399 |  | 
|---|
| 3400 | bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) | 
|---|
| 3401 | { | 
|---|
| 3402 | struct sched_dl_entity *dl_se = &p->dl; | 
|---|
| 3403 |  | 
|---|
| 3404 | if (dl_se->dl_runtime != attr->sched_runtime || | 
|---|
| 3405 | dl_se->dl_deadline != attr->sched_deadline || | 
|---|
| 3406 | dl_se->dl_period != attr->sched_period || | 
|---|
| 3407 | dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) | 
|---|
| 3408 | return true; | 
|---|
| 3409 |  | 
|---|
| 3410 | return false; | 
|---|
| 3411 | } | 
|---|
| 3412 |  | 
|---|
| 3413 | int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, | 
|---|
| 3414 | const struct cpumask *trial) | 
|---|
| 3415 | { | 
|---|
| 3416 | unsigned long flags, cap; | 
|---|
| 3417 | struct dl_bw *cur_dl_b; | 
|---|
| 3418 | int ret = 1; | 
|---|
| 3419 |  | 
|---|
| 3420 | rcu_read_lock_sched(); | 
|---|
| 3421 | cur_dl_b = dl_bw_of(cpumask_any(cur)); | 
|---|
| 3422 | cap = __dl_bw_capacity(mask: trial); | 
|---|
| 3423 | raw_spin_lock_irqsave(&cur_dl_b->lock, flags); | 
|---|
| 3424 | if (__dl_overflow(dl_b: cur_dl_b, cap, old_bw: 0, new_bw: 0)) | 
|---|
| 3425 | ret = 0; | 
|---|
| 3426 | raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); | 
|---|
| 3427 | rcu_read_unlock_sched(); | 
|---|
| 3428 |  | 
|---|
| 3429 | return ret; | 
|---|
| 3430 | } | 
|---|
| 3431 |  | 
|---|
| 3432 | enum dl_bw_request { | 
|---|
| 3433 | dl_bw_req_deactivate = 0, | 
|---|
| 3434 | dl_bw_req_alloc, | 
|---|
| 3435 | dl_bw_req_free | 
|---|
| 3436 | }; | 
|---|
| 3437 |  | 
|---|
| 3438 | static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) | 
|---|
| 3439 | { | 
|---|
| 3440 | unsigned long flags, cap; | 
|---|
| 3441 | struct dl_bw *dl_b; | 
|---|
| 3442 | bool overflow = 0; | 
|---|
| 3443 | u64 fair_server_bw = 0; | 
|---|
| 3444 |  | 
|---|
| 3445 | rcu_read_lock_sched(); | 
|---|
| 3446 | dl_b = dl_bw_of(i: cpu); | 
|---|
| 3447 | raw_spin_lock_irqsave(&dl_b->lock, flags); | 
|---|
| 3448 |  | 
|---|
| 3449 | cap = dl_bw_capacity(i: cpu); | 
|---|
| 3450 | switch (req) { | 
|---|
| 3451 | case dl_bw_req_free: | 
|---|
| 3452 | __dl_sub(dl_b, tsk_bw: dl_bw, cpus: dl_bw_cpus(i: cpu)); | 
|---|
| 3453 | break; | 
|---|
| 3454 | case dl_bw_req_alloc: | 
|---|
| 3455 | overflow = __dl_overflow(dl_b, cap, old_bw: 0, new_bw: dl_bw); | 
|---|
| 3456 |  | 
|---|
| 3457 | if (!overflow) { | 
|---|
| 3458 | /* | 
|---|
| 3459 | * We reserve space in the destination | 
|---|
| 3460 | * root_domain, as we can't fail after this point. | 
|---|
| 3461 | * We will free resources in the source root_domain | 
|---|
| 3462 | * later on (see set_cpus_allowed_dl()). | 
|---|
| 3463 | */ | 
|---|
| 3464 | __dl_add(dl_b, tsk_bw: dl_bw, cpus: dl_bw_cpus(i: cpu)); | 
|---|
| 3465 | } | 
|---|
| 3466 | break; | 
|---|
| 3467 | case dl_bw_req_deactivate: | 
|---|
| 3468 | /* | 
|---|
| 3469 | * cpu is not off yet, but we need to do the math by | 
|---|
| 3470 | * considering it off already (i.e., what would happen if we | 
|---|
| 3471 | * turn cpu off?). | 
|---|
| 3472 | */ | 
|---|
| 3473 | cap -= arch_scale_cpu_capacity(cpu); | 
|---|
| 3474 |  | 
|---|
| 3475 | /* | 
|---|
| 3476 | * cpu is going offline and NORMAL tasks will be moved away | 
|---|
| 3477 | * from it. We can thus discount dl_server bandwidth | 
|---|
| 3478 | * contribution as it won't need to be servicing tasks after | 
|---|
| 3479 | * the cpu is off. | 
|---|
| 3480 | */ | 
|---|
| 3481 | if (cpu_rq(cpu)->fair_server.dl_server) | 
|---|
| 3482 | fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw; | 
|---|
| 3483 |  | 
|---|
| 3484 | /* | 
|---|
| 3485 | * Not much to check if no DEADLINE bandwidth is present. | 
|---|
| 3486 | * dl_servers we can discount, as tasks will be moved out the | 
|---|
| 3487 | * offlined CPUs anyway. | 
|---|
| 3488 | */ | 
|---|
| 3489 | if (dl_b->total_bw - fair_server_bw > 0) { | 
|---|
| 3490 | /* | 
|---|
| 3491 | * Leaving at least one CPU for DEADLINE tasks seems a | 
|---|
| 3492 | * wise thing to do. As said above, cpu is not offline | 
|---|
| 3493 | * yet, so account for that. | 
|---|
| 3494 | */ | 
|---|
| 3495 | if (dl_bw_cpus(i: cpu) - 1) | 
|---|
| 3496 | overflow = __dl_overflow(dl_b, cap, old_bw: fair_server_bw, new_bw: 0); | 
|---|
| 3497 | else | 
|---|
| 3498 | overflow = 1; | 
|---|
| 3499 | } | 
|---|
| 3500 |  | 
|---|
| 3501 | break; | 
|---|
| 3502 | } | 
|---|
| 3503 |  | 
|---|
| 3504 | raw_spin_unlock_irqrestore(&dl_b->lock, flags); | 
|---|
| 3505 | rcu_read_unlock_sched(); | 
|---|
| 3506 |  | 
|---|
| 3507 | return overflow ? -EBUSY : 0; | 
|---|
| 3508 | } | 
|---|
| 3509 |  | 
|---|
| 3510 | int dl_bw_deactivate(int cpu) | 
|---|
| 3511 | { | 
|---|
| 3512 | return dl_bw_manage(req: dl_bw_req_deactivate, cpu, dl_bw: 0); | 
|---|
| 3513 | } | 
|---|
| 3514 |  | 
|---|
| 3515 | int dl_bw_alloc(int cpu, u64 dl_bw) | 
|---|
| 3516 | { | 
|---|
| 3517 | return dl_bw_manage(req: dl_bw_req_alloc, cpu, dl_bw); | 
|---|
| 3518 | } | 
|---|
| 3519 |  | 
|---|
| 3520 | void dl_bw_free(int cpu, u64 dl_bw) | 
|---|
| 3521 | { | 
|---|
| 3522 | dl_bw_manage(req: dl_bw_req_free, cpu, dl_bw); | 
|---|
| 3523 | } | 
|---|
| 3524 |  | 
|---|
| 3525 | void print_dl_stats(struct seq_file *m, int cpu) | 
|---|
| 3526 | { | 
|---|
| 3527 | print_dl_rq(m, cpu, dl_rq: &cpu_rq(cpu)->dl); | 
|---|
| 3528 | } | 
|---|
| 3529 |  | 
|---|