| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | 
|---|
| 4 | * | 
|---|
| 5 | *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
|---|
| 6 | * | 
|---|
| 7 | *  Interactivity improvements by Mike Galbraith | 
|---|
| 8 | *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
|---|
| 9 | * | 
|---|
| 10 | *  Various enhancements by Dmitry Adamushko. | 
|---|
| 11 | *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
|---|
| 12 | * | 
|---|
| 13 | *  Group scheduling enhancements by Srivatsa Vaddagiri | 
|---|
| 14 | *  Copyright IBM Corporation, 2007 | 
|---|
| 15 | *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
|---|
| 16 | * | 
|---|
| 17 | *  Scaled math optimizations by Thomas Gleixner | 
|---|
| 18 | *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
|---|
| 19 | * | 
|---|
| 20 | *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
|---|
| 21 | *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra | 
|---|
| 22 | */ | 
|---|
| 23 | #include <linux/energy_model.h> | 
|---|
| 24 | #include <linux/mmap_lock.h> | 
|---|
| 25 | #include <linux/hugetlb_inline.h> | 
|---|
| 26 | #include <linux/jiffies.h> | 
|---|
| 27 | #include <linux/mm_api.h> | 
|---|
| 28 | #include <linux/highmem.h> | 
|---|
| 29 | #include <linux/spinlock_api.h> | 
|---|
| 30 | #include <linux/cpumask_api.h> | 
|---|
| 31 | #include <linux/lockdep_api.h> | 
|---|
| 32 | #include <linux/softirq.h> | 
|---|
| 33 | #include <linux/refcount_api.h> | 
|---|
| 34 | #include <linux/topology.h> | 
|---|
| 35 | #include <linux/sched/clock.h> | 
|---|
| 36 | #include <linux/sched/cond_resched.h> | 
|---|
| 37 | #include <linux/sched/cputime.h> | 
|---|
| 38 | #include <linux/sched/isolation.h> | 
|---|
| 39 | #include <linux/sched/nohz.h> | 
|---|
| 40 | #include <linux/sched/prio.h> | 
|---|
| 41 |  | 
|---|
| 42 | #include <linux/cpuidle.h> | 
|---|
| 43 | #include <linux/interrupt.h> | 
|---|
| 44 | #include <linux/memory-tiers.h> | 
|---|
| 45 | #include <linux/mempolicy.h> | 
|---|
| 46 | #include <linux/mutex_api.h> | 
|---|
| 47 | #include <linux/profile.h> | 
|---|
| 48 | #include <linux/psi.h> | 
|---|
| 49 | #include <linux/ratelimit.h> | 
|---|
| 50 | #include <linux/task_work.h> | 
|---|
| 51 | #include <linux/rbtree_augmented.h> | 
|---|
| 52 |  | 
|---|
| 53 | #include <asm/switch_to.h> | 
|---|
| 54 |  | 
|---|
| 55 | #include <uapi/linux/sched/types.h> | 
|---|
| 56 |  | 
|---|
| 57 | #include "sched.h" | 
|---|
| 58 | #include "stats.h" | 
|---|
| 59 | #include "autogroup.h" | 
|---|
| 60 |  | 
|---|
| 61 | /* | 
|---|
| 62 | * The initial- and re-scaling of tunables is configurable | 
|---|
| 63 | * | 
|---|
| 64 | * Options are: | 
|---|
| 65 | * | 
|---|
| 66 | *   SCHED_TUNABLESCALING_NONE - unscaled, always *1 | 
|---|
| 67 | *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) | 
|---|
| 68 | *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | 
|---|
| 69 | * | 
|---|
| 70 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | 
|---|
| 71 | */ | 
|---|
| 72 | unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; | 
|---|
| 73 |  | 
|---|
| 74 | /* | 
|---|
| 75 | * Minimal preemption granularity for CPU-bound tasks: | 
|---|
| 76 | * | 
|---|
| 77 | * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
|---|
| 78 | */ | 
|---|
| 79 | unsigned int sysctl_sched_base_slice			= 700000ULL; | 
|---|
| 80 | static unsigned int normalized_sysctl_sched_base_slice	= 700000ULL; | 
|---|
| 81 |  | 
|---|
| 82 | __read_mostly unsigned int sysctl_sched_migration_cost	= 500000UL; | 
|---|
| 83 |  | 
|---|
| 84 | static int __init setup_sched_thermal_decay_shift(char *str) | 
|---|
| 85 | { | 
|---|
| 86 | pr_warn( "Ignoring the deprecated sched_thermal_decay_shift= option\n"); | 
|---|
| 87 | return 1; | 
|---|
| 88 | } | 
|---|
| 89 | __setup( "sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); | 
|---|
| 90 |  | 
|---|
| 91 | /* | 
|---|
| 92 | * For asym packing, by default the lower numbered CPU has higher priority. | 
|---|
| 93 | */ | 
|---|
| 94 | int __weak arch_asym_cpu_priority(int cpu) | 
|---|
| 95 | { | 
|---|
| 96 | return -cpu; | 
|---|
| 97 | } | 
|---|
| 98 |  | 
|---|
| 99 | /* | 
|---|
| 100 | * The margin used when comparing utilization with CPU capacity. | 
|---|
| 101 | * | 
|---|
| 102 | * (default: ~20%) | 
|---|
| 103 | */ | 
|---|
| 104 | #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024) | 
|---|
| 105 |  | 
|---|
| 106 | /* | 
|---|
| 107 | * The margin used when comparing CPU capacities. | 
|---|
| 108 | * is 'cap1' noticeably greater than 'cap2' | 
|---|
| 109 | * | 
|---|
| 110 | * (default: ~5%) | 
|---|
| 111 | */ | 
|---|
| 112 | #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) | 
|---|
| 113 |  | 
|---|
| 114 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 115 | /* | 
|---|
| 116 | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | 
|---|
| 117 | * each time a cfs_rq requests quota. | 
|---|
| 118 | * | 
|---|
| 119 | * Note: in the case that the slice exceeds the runtime remaining (either due | 
|---|
| 120 | * to consumption or the quota being specified to be smaller than the slice) | 
|---|
| 121 | * we will always only issue the remaining available time. | 
|---|
| 122 | * | 
|---|
| 123 | * (default: 5 msec, units: microseconds) | 
|---|
| 124 | */ | 
|---|
| 125 | static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL; | 
|---|
| 126 | #endif | 
|---|
| 127 |  | 
|---|
| 128 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 129 | /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ | 
|---|
| 130 | static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; | 
|---|
| 131 | #endif | 
|---|
| 132 |  | 
|---|
| 133 | #ifdef CONFIG_SYSCTL | 
|---|
| 134 | static const struct ctl_table sched_fair_sysctls[] = { | 
|---|
| 135 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 136 | { | 
|---|
| 137 | .procname       = "sched_cfs_bandwidth_slice_us", | 
|---|
| 138 | .data           = &sysctl_sched_cfs_bandwidth_slice, | 
|---|
| 139 | .maxlen         = sizeof(unsigned int), | 
|---|
| 140 | .mode           = 0644, | 
|---|
| 141 | .proc_handler   = proc_dointvec_minmax, | 
|---|
| 142 | .extra1         = SYSCTL_ONE, | 
|---|
| 143 | }, | 
|---|
| 144 | #endif | 
|---|
| 145 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 146 | { | 
|---|
| 147 | .procname	= "numa_balancing_promote_rate_limit_MBps", | 
|---|
| 148 | .data		= &sysctl_numa_balancing_promote_rate_limit, | 
|---|
| 149 | .maxlen		= sizeof(unsigned int), | 
|---|
| 150 | .mode		= 0644, | 
|---|
| 151 | .proc_handler	= proc_dointvec_minmax, | 
|---|
| 152 | .extra1		= SYSCTL_ZERO, | 
|---|
| 153 | }, | 
|---|
| 154 | #endif /* CONFIG_NUMA_BALANCING */ | 
|---|
| 155 | }; | 
|---|
| 156 |  | 
|---|
| 157 | static int __init sched_fair_sysctl_init(void) | 
|---|
| 158 | { | 
|---|
| 159 | register_sysctl_init( "kernel", sched_fair_sysctls); | 
|---|
| 160 | return 0; | 
|---|
| 161 | } | 
|---|
| 162 | late_initcall(sched_fair_sysctl_init); | 
|---|
| 163 | #endif /* CONFIG_SYSCTL */ | 
|---|
| 164 |  | 
|---|
| 165 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | 
|---|
| 166 | { | 
|---|
| 167 | lw->weight += inc; | 
|---|
| 168 | lw->inv_weight = 0; | 
|---|
| 169 | } | 
|---|
| 170 |  | 
|---|
| 171 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | 
|---|
| 172 | { | 
|---|
| 173 | lw->weight -= dec; | 
|---|
| 174 | lw->inv_weight = 0; | 
|---|
| 175 | } | 
|---|
| 176 |  | 
|---|
| 177 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | 
|---|
| 178 | { | 
|---|
| 179 | lw->weight = w; | 
|---|
| 180 | lw->inv_weight = 0; | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | /* | 
|---|
| 184 | * Increase the granularity value when there are more CPUs, | 
|---|
| 185 | * because with more CPUs the 'effective latency' as visible | 
|---|
| 186 | * to users decreases. But the relationship is not linear, | 
|---|
| 187 | * so pick a second-best guess by going with the log2 of the | 
|---|
| 188 | * number of CPUs. | 
|---|
| 189 | * | 
|---|
| 190 | * This idea comes from the SD scheduler of Con Kolivas: | 
|---|
| 191 | */ | 
|---|
| 192 | static unsigned int get_update_sysctl_factor(void) | 
|---|
| 193 | { | 
|---|
| 194 | unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); | 
|---|
| 195 | unsigned int factor; | 
|---|
| 196 |  | 
|---|
| 197 | switch (sysctl_sched_tunable_scaling) { | 
|---|
| 198 | case SCHED_TUNABLESCALING_NONE: | 
|---|
| 199 | factor = 1; | 
|---|
| 200 | break; | 
|---|
| 201 | case SCHED_TUNABLESCALING_LINEAR: | 
|---|
| 202 | factor = cpus; | 
|---|
| 203 | break; | 
|---|
| 204 | case SCHED_TUNABLESCALING_LOG: | 
|---|
| 205 | default: | 
|---|
| 206 | factor = 1 + ilog2(cpus); | 
|---|
| 207 | break; | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | return factor; | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | static void update_sysctl(void) | 
|---|
| 214 | { | 
|---|
| 215 | unsigned int factor = get_update_sysctl_factor(); | 
|---|
| 216 |  | 
|---|
| 217 | #define SET_SYSCTL(name) \ | 
|---|
| 218 | (sysctl_##name = (factor) * normalized_sysctl_##name) | 
|---|
| 219 | SET_SYSCTL(sched_base_slice); | 
|---|
| 220 | #undef SET_SYSCTL | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | void __init sched_init_granularity(void) | 
|---|
| 224 | { | 
|---|
| 225 | update_sysctl(); | 
|---|
| 226 | } | 
|---|
| 227 |  | 
|---|
| 228 | #define WMULT_CONST	(~0U) | 
|---|
| 229 | #define WMULT_SHIFT	32 | 
|---|
| 230 |  | 
|---|
| 231 | static void __update_inv_weight(struct load_weight *lw) | 
|---|
| 232 | { | 
|---|
| 233 | unsigned long w; | 
|---|
| 234 |  | 
|---|
| 235 | if (likely(lw->inv_weight)) | 
|---|
| 236 | return; | 
|---|
| 237 |  | 
|---|
| 238 | w = scale_load_down(lw->weight); | 
|---|
| 239 |  | 
|---|
| 240 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | 
|---|
| 241 | lw->inv_weight = 1; | 
|---|
| 242 | else if (unlikely(!w)) | 
|---|
| 243 | lw->inv_weight = WMULT_CONST; | 
|---|
| 244 | else | 
|---|
| 245 | lw->inv_weight = WMULT_CONST / w; | 
|---|
| 246 | } | 
|---|
| 247 |  | 
|---|
| 248 | /* | 
|---|
| 249 | * delta_exec * weight / lw.weight | 
|---|
| 250 | *   OR | 
|---|
| 251 | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT | 
|---|
| 252 | * | 
|---|
| 253 | * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case | 
|---|
| 254 | * we're guaranteed shift stays positive because inv_weight is guaranteed to | 
|---|
| 255 | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. | 
|---|
| 256 | * | 
|---|
| 257 | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus | 
|---|
| 258 | * weight/lw.weight <= 1, and therefore our shift will also be positive. | 
|---|
| 259 | */ | 
|---|
| 260 | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) | 
|---|
| 261 | { | 
|---|
| 262 | u64 fact = scale_load_down(weight); | 
|---|
| 263 | u32 fact_hi = (u32)(fact >> 32); | 
|---|
| 264 | int shift = WMULT_SHIFT; | 
|---|
| 265 | int fs; | 
|---|
| 266 |  | 
|---|
| 267 | __update_inv_weight(lw); | 
|---|
| 268 |  | 
|---|
| 269 | if (unlikely(fact_hi)) { | 
|---|
| 270 | fs = fls(x: fact_hi); | 
|---|
| 271 | shift -= fs; | 
|---|
| 272 | fact >>= fs; | 
|---|
| 273 | } | 
|---|
| 274 |  | 
|---|
| 275 | fact = mul_u32_u32(a: fact, b: lw->inv_weight); | 
|---|
| 276 |  | 
|---|
| 277 | fact_hi = (u32)(fact >> 32); | 
|---|
| 278 | if (fact_hi) { | 
|---|
| 279 | fs = fls(x: fact_hi); | 
|---|
| 280 | shift -= fs; | 
|---|
| 281 | fact >>= fs; | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 | return mul_u64_u32_shr(a: delta_exec, mul: fact, shift); | 
|---|
| 285 | } | 
|---|
| 286 |  | 
|---|
| 287 | /* | 
|---|
| 288 | * delta /= w | 
|---|
| 289 | */ | 
|---|
| 290 | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) | 
|---|
| 291 | { | 
|---|
| 292 | if (unlikely(se->load.weight != NICE_0_LOAD)) | 
|---|
| 293 | delta = __calc_delta(delta_exec: delta, NICE_0_LOAD, lw: &se->load); | 
|---|
| 294 |  | 
|---|
| 295 | return delta; | 
|---|
| 296 | } | 
|---|
| 297 |  | 
|---|
| 298 | const struct sched_class fair_sched_class; | 
|---|
| 299 |  | 
|---|
| 300 | /************************************************************** | 
|---|
| 301 | * CFS operations on generic schedulable entities: | 
|---|
| 302 | */ | 
|---|
| 303 |  | 
|---|
| 304 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 305 |  | 
|---|
| 306 | /* Walk up scheduling entities hierarchy */ | 
|---|
| 307 | #define for_each_sched_entity(se) \ | 
|---|
| 308 | for (; se; se = se->parent) | 
|---|
| 309 |  | 
|---|
| 310 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|---|
| 311 | { | 
|---|
| 312 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 313 | int cpu = cpu_of(rq); | 
|---|
| 314 |  | 
|---|
| 315 | if (cfs_rq->on_list) | 
|---|
| 316 | return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; | 
|---|
| 317 |  | 
|---|
| 318 | cfs_rq->on_list = 1; | 
|---|
| 319 |  | 
|---|
| 320 | /* | 
|---|
| 321 | * Ensure we either appear before our parent (if already | 
|---|
| 322 | * enqueued) or force our parent to appear after us when it is | 
|---|
| 323 | * enqueued. The fact that we always enqueue bottom-up | 
|---|
| 324 | * reduces this to two cases and a special case for the root | 
|---|
| 325 | * cfs_rq. Furthermore, it also means that we will always reset | 
|---|
| 326 | * tmp_alone_branch either when the branch is connected | 
|---|
| 327 | * to a tree or when we reach the top of the tree | 
|---|
| 328 | */ | 
|---|
| 329 | if (cfs_rq->tg->parent && | 
|---|
| 330 | cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { | 
|---|
| 331 | /* | 
|---|
| 332 | * If parent is already on the list, we add the child | 
|---|
| 333 | * just before. Thanks to circular linked property of | 
|---|
| 334 | * the list, this means to put the child at the tail | 
|---|
| 335 | * of the list that starts by parent. | 
|---|
| 336 | */ | 
|---|
| 337 | list_add_tail_rcu(new: &cfs_rq->leaf_cfs_rq_list, | 
|---|
| 338 | head: &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); | 
|---|
| 339 | /* | 
|---|
| 340 | * The branch is now connected to its tree so we can | 
|---|
| 341 | * reset tmp_alone_branch to the beginning of the | 
|---|
| 342 | * list. | 
|---|
| 343 | */ | 
|---|
| 344 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | 
|---|
| 345 | return true; | 
|---|
| 346 | } | 
|---|
| 347 |  | 
|---|
| 348 | if (!cfs_rq->tg->parent) { | 
|---|
| 349 | /* | 
|---|
| 350 | * cfs rq without parent should be put | 
|---|
| 351 | * at the tail of the list. | 
|---|
| 352 | */ | 
|---|
| 353 | list_add_tail_rcu(new: &cfs_rq->leaf_cfs_rq_list, | 
|---|
| 354 | head: &rq->leaf_cfs_rq_list); | 
|---|
| 355 | /* | 
|---|
| 356 | * We have reach the top of a tree so we can reset | 
|---|
| 357 | * tmp_alone_branch to the beginning of the list. | 
|---|
| 358 | */ | 
|---|
| 359 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | 
|---|
| 360 | return true; | 
|---|
| 361 | } | 
|---|
| 362 |  | 
|---|
| 363 | /* | 
|---|
| 364 | * The parent has not already been added so we want to | 
|---|
| 365 | * make sure that it will be put after us. | 
|---|
| 366 | * tmp_alone_branch points to the begin of the branch | 
|---|
| 367 | * where we will add parent. | 
|---|
| 368 | */ | 
|---|
| 369 | list_add_rcu(new: &cfs_rq->leaf_cfs_rq_list, head: rq->tmp_alone_branch); | 
|---|
| 370 | /* | 
|---|
| 371 | * update tmp_alone_branch to points to the new begin | 
|---|
| 372 | * of the branch | 
|---|
| 373 | */ | 
|---|
| 374 | rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; | 
|---|
| 375 | return false; | 
|---|
| 376 | } | 
|---|
| 377 |  | 
|---|
| 378 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|---|
| 379 | { | 
|---|
| 380 | if (cfs_rq->on_list) { | 
|---|
| 381 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 382 |  | 
|---|
| 383 | /* | 
|---|
| 384 | * With cfs_rq being unthrottled/throttled during an enqueue, | 
|---|
| 385 | * it can happen the tmp_alone_branch points to the leaf that | 
|---|
| 386 | * we finally want to delete. In this case, tmp_alone_branch moves | 
|---|
| 387 | * to the prev element but it will point to rq->leaf_cfs_rq_list | 
|---|
| 388 | * at the end of the enqueue. | 
|---|
| 389 | */ | 
|---|
| 390 | if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) | 
|---|
| 391 | rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; | 
|---|
| 392 |  | 
|---|
| 393 | list_del_rcu(entry: &cfs_rq->leaf_cfs_rq_list); | 
|---|
| 394 | cfs_rq->on_list = 0; | 
|---|
| 395 | } | 
|---|
| 396 | } | 
|---|
| 397 |  | 
|---|
| 398 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) | 
|---|
| 399 | { | 
|---|
| 400 | WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); | 
|---|
| 401 | } | 
|---|
| 402 |  | 
|---|
| 403 | /* Iterate through all leaf cfs_rq's on a runqueue */ | 
|---|
| 404 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\ | 
|---|
| 405 | list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\ | 
|---|
| 406 | leaf_cfs_rq_list) | 
|---|
| 407 |  | 
|---|
| 408 | /* Do the two (enqueued) entities belong to the same group ? */ | 
|---|
| 409 | static inline struct cfs_rq * | 
|---|
| 410 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
|---|
| 411 | { | 
|---|
| 412 | if (se->cfs_rq == pse->cfs_rq) | 
|---|
| 413 | return se->cfs_rq; | 
|---|
| 414 |  | 
|---|
| 415 | return NULL; | 
|---|
| 416 | } | 
|---|
| 417 |  | 
|---|
| 418 | static inline struct sched_entity *parent_entity(const struct sched_entity *se) | 
|---|
| 419 | { | 
|---|
| 420 | return se->parent; | 
|---|
| 421 | } | 
|---|
| 422 |  | 
|---|
| 423 | static void | 
|---|
| 424 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
|---|
| 425 | { | 
|---|
| 426 | int se_depth, pse_depth; | 
|---|
| 427 |  | 
|---|
| 428 | /* | 
|---|
| 429 | * preemption test can be made between sibling entities who are in the | 
|---|
| 430 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | 
|---|
| 431 | * both tasks until we find their ancestors who are siblings of common | 
|---|
| 432 | * parent. | 
|---|
| 433 | */ | 
|---|
| 434 |  | 
|---|
| 435 | /* First walk up until both entities are at same depth */ | 
|---|
| 436 | se_depth = (*se)->depth; | 
|---|
| 437 | pse_depth = (*pse)->depth; | 
|---|
| 438 |  | 
|---|
| 439 | while (se_depth > pse_depth) { | 
|---|
| 440 | se_depth--; | 
|---|
| 441 | *se = parent_entity(se: *se); | 
|---|
| 442 | } | 
|---|
| 443 |  | 
|---|
| 444 | while (pse_depth > se_depth) { | 
|---|
| 445 | pse_depth--; | 
|---|
| 446 | *pse = parent_entity(se: *pse); | 
|---|
| 447 | } | 
|---|
| 448 |  | 
|---|
| 449 | while (!is_same_group(se: *se, pse: *pse)) { | 
|---|
| 450 | *se = parent_entity(se: *se); | 
|---|
| 451 | *pse = parent_entity(se: *pse); | 
|---|
| 452 | } | 
|---|
| 453 | } | 
|---|
| 454 |  | 
|---|
| 455 | static int tg_is_idle(struct task_group *tg) | 
|---|
| 456 | { | 
|---|
| 457 | return tg->idle > 0; | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) | 
|---|
| 461 | { | 
|---|
| 462 | return cfs_rq->idle > 0; | 
|---|
| 463 | } | 
|---|
| 464 |  | 
|---|
| 465 | static int se_is_idle(struct sched_entity *se) | 
|---|
| 466 | { | 
|---|
| 467 | if (entity_is_task(se)) | 
|---|
| 468 | return task_has_idle_policy(p: task_of(se)); | 
|---|
| 469 | return cfs_rq_is_idle(cfs_rq: group_cfs_rq(grp: se)); | 
|---|
| 470 | } | 
|---|
| 471 |  | 
|---|
| 472 | #else /* !CONFIG_FAIR_GROUP_SCHED: */ | 
|---|
| 473 |  | 
|---|
| 474 | #define for_each_sched_entity(se) \ | 
|---|
| 475 | for (; se; se = NULL) | 
|---|
| 476 |  | 
|---|
| 477 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|---|
| 478 | { | 
|---|
| 479 | return true; | 
|---|
| 480 | } | 
|---|
| 481 |  | 
|---|
| 482 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
|---|
| 483 | { | 
|---|
| 484 | } | 
|---|
| 485 |  | 
|---|
| 486 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) | 
|---|
| 487 | { | 
|---|
| 488 | } | 
|---|
| 489 |  | 
|---|
| 490 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\ | 
|---|
| 491 | for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) | 
|---|
| 492 |  | 
|---|
| 493 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
|---|
| 494 | { | 
|---|
| 495 | return NULL; | 
|---|
| 496 | } | 
|---|
| 497 |  | 
|---|
| 498 | static inline void | 
|---|
| 499 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
|---|
| 500 | { | 
|---|
| 501 | } | 
|---|
| 502 |  | 
|---|
| 503 | static inline int tg_is_idle(struct task_group *tg) | 
|---|
| 504 | { | 
|---|
| 505 | return 0; | 
|---|
| 506 | } | 
|---|
| 507 |  | 
|---|
| 508 | static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) | 
|---|
| 509 | { | 
|---|
| 510 | return 0; | 
|---|
| 511 | } | 
|---|
| 512 |  | 
|---|
| 513 | static int se_is_idle(struct sched_entity *se) | 
|---|
| 514 | { | 
|---|
| 515 | return task_has_idle_policy(task_of(se)); | 
|---|
| 516 | } | 
|---|
| 517 |  | 
|---|
| 518 | #endif /* !CONFIG_FAIR_GROUP_SCHED */ | 
|---|
| 519 |  | 
|---|
| 520 | static __always_inline | 
|---|
| 521 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); | 
|---|
| 522 |  | 
|---|
| 523 | /************************************************************** | 
|---|
| 524 | * Scheduling class tree data structure manipulation methods: | 
|---|
| 525 | */ | 
|---|
| 526 |  | 
|---|
| 527 | static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) | 
|---|
| 528 | { | 
|---|
| 529 | s64 delta = (s64)(vruntime - max_vruntime); | 
|---|
| 530 | if (delta > 0) | 
|---|
| 531 | max_vruntime = vruntime; | 
|---|
| 532 |  | 
|---|
| 533 | return max_vruntime; | 
|---|
| 534 | } | 
|---|
| 535 |  | 
|---|
| 536 | static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) | 
|---|
| 537 | { | 
|---|
| 538 | s64 delta = (s64)(vruntime - min_vruntime); | 
|---|
| 539 | if (delta < 0) | 
|---|
| 540 | min_vruntime = vruntime; | 
|---|
| 541 |  | 
|---|
| 542 | return min_vruntime; | 
|---|
| 543 | } | 
|---|
| 544 |  | 
|---|
| 545 | static inline bool entity_before(const struct sched_entity *a, | 
|---|
| 546 | const struct sched_entity *b) | 
|---|
| 547 | { | 
|---|
| 548 | /* | 
|---|
| 549 | * Tiebreak on vruntime seems unnecessary since it can | 
|---|
| 550 | * hardly happen. | 
|---|
| 551 | */ | 
|---|
| 552 | return (s64)(a->deadline - b->deadline) < 0; | 
|---|
| 553 | } | 
|---|
| 554 |  | 
|---|
| 555 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 556 | { | 
|---|
| 557 | return (s64)(se->vruntime - cfs_rq->min_vruntime); | 
|---|
| 558 | } | 
|---|
| 559 |  | 
|---|
| 560 | #define __node_2_se(node) \ | 
|---|
| 561 | rb_entry((node), struct sched_entity, run_node) | 
|---|
| 562 |  | 
|---|
| 563 | /* | 
|---|
| 564 | * Compute virtual time from the per-task service numbers: | 
|---|
| 565 | * | 
|---|
| 566 | * Fair schedulers conserve lag: | 
|---|
| 567 | * | 
|---|
| 568 | *   \Sum lag_i = 0 | 
|---|
| 569 | * | 
|---|
| 570 | * Where lag_i is given by: | 
|---|
| 571 | * | 
|---|
| 572 | *   lag_i = S - s_i = w_i * (V - v_i) | 
|---|
| 573 | * | 
|---|
| 574 | * Where S is the ideal service time and V is it's virtual time counterpart. | 
|---|
| 575 | * Therefore: | 
|---|
| 576 | * | 
|---|
| 577 | *   \Sum lag_i = 0 | 
|---|
| 578 | *   \Sum w_i * (V - v_i) = 0 | 
|---|
| 579 | *   \Sum w_i * V - w_i * v_i = 0 | 
|---|
| 580 | * | 
|---|
| 581 | * From which we can solve an expression for V in v_i (which we have in | 
|---|
| 582 | * se->vruntime): | 
|---|
| 583 | * | 
|---|
| 584 | *       \Sum v_i * w_i   \Sum v_i * w_i | 
|---|
| 585 | *   V = -------------- = -------------- | 
|---|
| 586 | *          \Sum w_i            W | 
|---|
| 587 | * | 
|---|
| 588 | * Specifically, this is the weighted average of all entity virtual runtimes. | 
|---|
| 589 | * | 
|---|
| 590 | * [[ NOTE: this is only equal to the ideal scheduler under the condition | 
|---|
| 591 | *          that join/leave operations happen at lag_i = 0, otherwise the | 
|---|
| 592 | *          virtual time has non-contiguous motion equivalent to: | 
|---|
| 593 | * | 
|---|
| 594 | *	      V +-= lag_i / W | 
|---|
| 595 | * | 
|---|
| 596 | *	    Also see the comment in place_entity() that deals with this. ]] | 
|---|
| 597 | * | 
|---|
| 598 | * However, since v_i is u64, and the multiplication could easily overflow | 
|---|
| 599 | * transform it into a relative form that uses smaller quantities: | 
|---|
| 600 | * | 
|---|
| 601 | * Substitute: v_i == (v_i - v0) + v0 | 
|---|
| 602 | * | 
|---|
| 603 | *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i | 
|---|
| 604 | * V = ---------------------------- = --------------------- + v0 | 
|---|
| 605 | *                  W                            W | 
|---|
| 606 | * | 
|---|
| 607 | * Which we track using: | 
|---|
| 608 | * | 
|---|
| 609 | *                    v0 := cfs_rq->min_vruntime | 
|---|
| 610 | * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime | 
|---|
| 611 | *              \Sum w_i := cfs_rq->avg_load | 
|---|
| 612 | * | 
|---|
| 613 | * Since min_vruntime is a monotonic increasing variable that closely tracks | 
|---|
| 614 | * the per-task service, these deltas: (v_i - v), will be in the order of the | 
|---|
| 615 | * maximal (virtual) lag induced in the system due to quantisation. | 
|---|
| 616 | * | 
|---|
| 617 | * Also, we use scale_load_down() to reduce the size. | 
|---|
| 618 | * | 
|---|
| 619 | * As measured, the max (key * weight) value was ~44 bits for a kernel build. | 
|---|
| 620 | */ | 
|---|
| 621 | static void | 
|---|
| 622 | avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 623 | { | 
|---|
| 624 | unsigned long weight = scale_load_down(se->load.weight); | 
|---|
| 625 | s64 key = entity_key(cfs_rq, se); | 
|---|
| 626 |  | 
|---|
| 627 | cfs_rq->avg_vruntime += key * weight; | 
|---|
| 628 | cfs_rq->avg_load += weight; | 
|---|
| 629 | } | 
|---|
| 630 |  | 
|---|
| 631 | static void | 
|---|
| 632 | avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 633 | { | 
|---|
| 634 | unsigned long weight = scale_load_down(se->load.weight); | 
|---|
| 635 | s64 key = entity_key(cfs_rq, se); | 
|---|
| 636 |  | 
|---|
| 637 | cfs_rq->avg_vruntime -= key * weight; | 
|---|
| 638 | cfs_rq->avg_load -= weight; | 
|---|
| 639 | } | 
|---|
| 640 |  | 
|---|
| 641 | static inline | 
|---|
| 642 | void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) | 
|---|
| 643 | { | 
|---|
| 644 | /* | 
|---|
| 645 | * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load | 
|---|
| 646 | */ | 
|---|
| 647 | cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; | 
|---|
| 648 | } | 
|---|
| 649 |  | 
|---|
| 650 | /* | 
|---|
| 651 | * Specifically: avg_runtime() + 0 must result in entity_eligible() := true | 
|---|
| 652 | * For this to be so, the result of this function must have a left bias. | 
|---|
| 653 | */ | 
|---|
| 654 | u64 avg_vruntime(struct cfs_rq *cfs_rq) | 
|---|
| 655 | { | 
|---|
| 656 | struct sched_entity *curr = cfs_rq->curr; | 
|---|
| 657 | s64 avg = cfs_rq->avg_vruntime; | 
|---|
| 658 | long load = cfs_rq->avg_load; | 
|---|
| 659 |  | 
|---|
| 660 | if (curr && curr->on_rq) { | 
|---|
| 661 | unsigned long weight = scale_load_down(curr->load.weight); | 
|---|
| 662 |  | 
|---|
| 663 | avg += entity_key(cfs_rq, se: curr) * weight; | 
|---|
| 664 | load += weight; | 
|---|
| 665 | } | 
|---|
| 666 |  | 
|---|
| 667 | if (load) { | 
|---|
| 668 | /* sign flips effective floor / ceiling */ | 
|---|
| 669 | if (avg < 0) | 
|---|
| 670 | avg -= (load - 1); | 
|---|
| 671 | avg = div_s64(dividend: avg, divisor: load); | 
|---|
| 672 | } | 
|---|
| 673 |  | 
|---|
| 674 | return cfs_rq->min_vruntime + avg; | 
|---|
| 675 | } | 
|---|
| 676 |  | 
|---|
| 677 | /* | 
|---|
| 678 | * lag_i = S - s_i = w_i * (V - v_i) | 
|---|
| 679 | * | 
|---|
| 680 | * However, since V is approximated by the weighted average of all entities it | 
|---|
| 681 | * is possible -- by addition/removal/reweight to the tree -- to move V around | 
|---|
| 682 | * and end up with a larger lag than we started with. | 
|---|
| 683 | * | 
|---|
| 684 | * Limit this to either double the slice length with a minimum of TICK_NSEC | 
|---|
| 685 | * since that is the timing granularity. | 
|---|
| 686 | * | 
|---|
| 687 | * EEVDF gives the following limit for a steady state system: | 
|---|
| 688 | * | 
|---|
| 689 | *   -r_max < lag < max(r_max, q) | 
|---|
| 690 | * | 
|---|
| 691 | * XXX could add max_slice to the augmented data to track this. | 
|---|
| 692 | */ | 
|---|
| 693 | static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 694 | { | 
|---|
| 695 | s64 vlag, limit; | 
|---|
| 696 |  | 
|---|
| 697 | WARN_ON_ONCE(!se->on_rq); | 
|---|
| 698 |  | 
|---|
| 699 | vlag = avg_vruntime(cfs_rq) - se->vruntime; | 
|---|
| 700 | limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); | 
|---|
| 701 |  | 
|---|
| 702 | se->vlag = clamp(vlag, -limit, limit); | 
|---|
| 703 | } | 
|---|
| 704 |  | 
|---|
| 705 | /* | 
|---|
| 706 | * Entity is eligible once it received less service than it ought to have, | 
|---|
| 707 | * eg. lag >= 0. | 
|---|
| 708 | * | 
|---|
| 709 | * lag_i = S - s_i = w_i*(V - v_i) | 
|---|
| 710 | * | 
|---|
| 711 | * lag_i >= 0 -> V >= v_i | 
|---|
| 712 | * | 
|---|
| 713 | *     \Sum (v_i - v)*w_i | 
|---|
| 714 | * V = ------------------ + v | 
|---|
| 715 | *          \Sum w_i | 
|---|
| 716 | * | 
|---|
| 717 | * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) | 
|---|
| 718 | * | 
|---|
| 719 | * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due | 
|---|
| 720 | *       to the loss in precision caused by the division. | 
|---|
| 721 | */ | 
|---|
| 722 | static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) | 
|---|
| 723 | { | 
|---|
| 724 | struct sched_entity *curr = cfs_rq->curr; | 
|---|
| 725 | s64 avg = cfs_rq->avg_vruntime; | 
|---|
| 726 | long load = cfs_rq->avg_load; | 
|---|
| 727 |  | 
|---|
| 728 | if (curr && curr->on_rq) { | 
|---|
| 729 | unsigned long weight = scale_load_down(curr->load.weight); | 
|---|
| 730 |  | 
|---|
| 731 | avg += entity_key(cfs_rq, se: curr) * weight; | 
|---|
| 732 | load += weight; | 
|---|
| 733 | } | 
|---|
| 734 |  | 
|---|
| 735 | return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; | 
|---|
| 736 | } | 
|---|
| 737 |  | 
|---|
| 738 | int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 739 | { | 
|---|
| 740 | return vruntime_eligible(cfs_rq, vruntime: se->vruntime); | 
|---|
| 741 | } | 
|---|
| 742 |  | 
|---|
| 743 | static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) | 
|---|
| 744 | { | 
|---|
| 745 | u64 min_vruntime = cfs_rq->min_vruntime; | 
|---|
| 746 | /* | 
|---|
| 747 | * open coded max_vruntime() to allow updating avg_vruntime | 
|---|
| 748 | */ | 
|---|
| 749 | s64 delta = (s64)(vruntime - min_vruntime); | 
|---|
| 750 | if (delta > 0) { | 
|---|
| 751 | avg_vruntime_update(cfs_rq, delta); | 
|---|
| 752 | min_vruntime = vruntime; | 
|---|
| 753 | } | 
|---|
| 754 | return min_vruntime; | 
|---|
| 755 | } | 
|---|
| 756 |  | 
|---|
| 757 | static void update_min_vruntime(struct cfs_rq *cfs_rq) | 
|---|
| 758 | { | 
|---|
| 759 | struct sched_entity *se = __pick_root_entity(cfs_rq); | 
|---|
| 760 | struct sched_entity *curr = cfs_rq->curr; | 
|---|
| 761 | u64 vruntime = cfs_rq->min_vruntime; | 
|---|
| 762 |  | 
|---|
| 763 | if (curr) { | 
|---|
| 764 | if (curr->on_rq) | 
|---|
| 765 | vruntime = curr->vruntime; | 
|---|
| 766 | else | 
|---|
| 767 | curr = NULL; | 
|---|
| 768 | } | 
|---|
| 769 |  | 
|---|
| 770 | if (se) { | 
|---|
| 771 | if (!curr) | 
|---|
| 772 | vruntime = se->min_vruntime; | 
|---|
| 773 | else | 
|---|
| 774 | vruntime = min_vruntime(min_vruntime: vruntime, vruntime: se->min_vruntime); | 
|---|
| 775 | } | 
|---|
| 776 |  | 
|---|
| 777 | /* ensure we never gain time by being placed backwards. */ | 
|---|
| 778 | cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); | 
|---|
| 779 | } | 
|---|
| 780 |  | 
|---|
| 781 | static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) | 
|---|
| 782 | { | 
|---|
| 783 | struct sched_entity *root = __pick_root_entity(cfs_rq); | 
|---|
| 784 | struct sched_entity *curr = cfs_rq->curr; | 
|---|
| 785 | u64 min_slice = ~0ULL; | 
|---|
| 786 |  | 
|---|
| 787 | if (curr && curr->on_rq) | 
|---|
| 788 | min_slice = curr->slice; | 
|---|
| 789 |  | 
|---|
| 790 | if (root) | 
|---|
| 791 | min_slice = min(min_slice, root->min_slice); | 
|---|
| 792 |  | 
|---|
| 793 | return min_slice; | 
|---|
| 794 | } | 
|---|
| 795 |  | 
|---|
| 796 | static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) | 
|---|
| 797 | { | 
|---|
| 798 | return entity_before(__node_2_se(a), __node_2_se(b)); | 
|---|
| 799 | } | 
|---|
| 800 |  | 
|---|
| 801 | #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) | 
|---|
| 802 |  | 
|---|
| 803 | static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) | 
|---|
| 804 | { | 
|---|
| 805 | if (node) { | 
|---|
| 806 | struct sched_entity *rse = __node_2_se(node); | 
|---|
| 807 | if (vruntime_gt(min_vruntime, se, rse)) | 
|---|
| 808 | se->min_vruntime = rse->min_vruntime; | 
|---|
| 809 | } | 
|---|
| 810 | } | 
|---|
| 811 |  | 
|---|
| 812 | static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) | 
|---|
| 813 | { | 
|---|
| 814 | if (node) { | 
|---|
| 815 | struct sched_entity *rse = __node_2_se(node); | 
|---|
| 816 | if (rse->min_slice < se->min_slice) | 
|---|
| 817 | se->min_slice = rse->min_slice; | 
|---|
| 818 | } | 
|---|
| 819 | } | 
|---|
| 820 |  | 
|---|
| 821 | /* | 
|---|
| 822 | * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) | 
|---|
| 823 | */ | 
|---|
| 824 | static inline bool min_vruntime_update(struct sched_entity *se, bool exit) | 
|---|
| 825 | { | 
|---|
| 826 | u64 old_min_vruntime = se->min_vruntime; | 
|---|
| 827 | u64 old_min_slice = se->min_slice; | 
|---|
| 828 | struct rb_node *node = &se->run_node; | 
|---|
| 829 |  | 
|---|
| 830 | se->min_vruntime = se->vruntime; | 
|---|
| 831 | __min_vruntime_update(se, node: node->rb_right); | 
|---|
| 832 | __min_vruntime_update(se, node: node->rb_left); | 
|---|
| 833 |  | 
|---|
| 834 | se->min_slice = se->slice; | 
|---|
| 835 | __min_slice_update(se, node: node->rb_right); | 
|---|
| 836 | __min_slice_update(se, node: node->rb_left); | 
|---|
| 837 |  | 
|---|
| 838 | return se->min_vruntime == old_min_vruntime && | 
|---|
| 839 | se->min_slice == old_min_slice; | 
|---|
| 840 | } | 
|---|
| 841 |  | 
|---|
| 842 | RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, | 
|---|
| 843 | run_node, min_vruntime, min_vruntime_update); | 
|---|
| 844 |  | 
|---|
| 845 | /* | 
|---|
| 846 | * Enqueue an entity into the rb-tree: | 
|---|
| 847 | */ | 
|---|
| 848 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 849 | { | 
|---|
| 850 | avg_vruntime_add(cfs_rq, se); | 
|---|
| 851 | se->min_vruntime = se->vruntime; | 
|---|
| 852 | se->min_slice = se->slice; | 
|---|
| 853 | rb_add_augmented_cached(node: &se->run_node, tree: &cfs_rq->tasks_timeline, | 
|---|
| 854 | less: __entity_less, augment: &min_vruntime_cb); | 
|---|
| 855 | } | 
|---|
| 856 |  | 
|---|
| 857 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 858 | { | 
|---|
| 859 | rb_erase_augmented_cached(node: &se->run_node, root: &cfs_rq->tasks_timeline, | 
|---|
| 860 | augment: &min_vruntime_cb); | 
|---|
| 861 | avg_vruntime_sub(cfs_rq, se); | 
|---|
| 862 | } | 
|---|
| 863 |  | 
|---|
| 864 | struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) | 
|---|
| 865 | { | 
|---|
| 866 | struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; | 
|---|
| 867 |  | 
|---|
| 868 | if (!root) | 
|---|
| 869 | return NULL; | 
|---|
| 870 |  | 
|---|
| 871 | return __node_2_se(root); | 
|---|
| 872 | } | 
|---|
| 873 |  | 
|---|
| 874 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) | 
|---|
| 875 | { | 
|---|
| 876 | struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); | 
|---|
| 877 |  | 
|---|
| 878 | if (!left) | 
|---|
| 879 | return NULL; | 
|---|
| 880 |  | 
|---|
| 881 | return __node_2_se(left); | 
|---|
| 882 | } | 
|---|
| 883 |  | 
|---|
| 884 | /* | 
|---|
| 885 | * Set the vruntime up to which an entity can run before looking | 
|---|
| 886 | * for another entity to pick. | 
|---|
| 887 | * In case of run to parity, we use the shortest slice of the enqueued | 
|---|
| 888 | * entities to set the protected period. | 
|---|
| 889 | * When run to parity is disabled, we give a minimum quantum to the running | 
|---|
| 890 | * entity to ensure progress. | 
|---|
| 891 | */ | 
|---|
| 892 | static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 893 | { | 
|---|
| 894 | u64 slice = normalized_sysctl_sched_base_slice; | 
|---|
| 895 | u64 vprot = se->deadline; | 
|---|
| 896 |  | 
|---|
| 897 | if (sched_feat(RUN_TO_PARITY)) | 
|---|
| 898 | slice = cfs_rq_min_slice(cfs_rq); | 
|---|
| 899 |  | 
|---|
| 900 | slice = min(slice, se->slice); | 
|---|
| 901 | if (slice != se->slice) | 
|---|
| 902 | vprot = min_vruntime(min_vruntime: vprot, vruntime: se->vruntime + calc_delta_fair(delta: slice, se)); | 
|---|
| 903 |  | 
|---|
| 904 | se->vprot = vprot; | 
|---|
| 905 | } | 
|---|
| 906 |  | 
|---|
| 907 | static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 908 | { | 
|---|
| 909 | u64 slice = cfs_rq_min_slice(cfs_rq); | 
|---|
| 910 |  | 
|---|
| 911 | se->vprot = min_vruntime(min_vruntime: se->vprot, vruntime: se->vruntime + calc_delta_fair(delta: slice, se)); | 
|---|
| 912 | } | 
|---|
| 913 |  | 
|---|
| 914 | static inline bool protect_slice(struct sched_entity *se) | 
|---|
| 915 | { | 
|---|
| 916 | return ((s64)(se->vprot - se->vruntime) > 0); | 
|---|
| 917 | } | 
|---|
| 918 |  | 
|---|
| 919 | static inline void cancel_protect_slice(struct sched_entity *se) | 
|---|
| 920 | { | 
|---|
| 921 | if (protect_slice(se)) | 
|---|
| 922 | se->vprot = se->vruntime; | 
|---|
| 923 | } | 
|---|
| 924 |  | 
|---|
| 925 | /* | 
|---|
| 926 | * Earliest Eligible Virtual Deadline First | 
|---|
| 927 | * | 
|---|
| 928 | * In order to provide latency guarantees for different request sizes | 
|---|
| 929 | * EEVDF selects the best runnable task from two criteria: | 
|---|
| 930 | * | 
|---|
| 931 | *  1) the task must be eligible (must be owed service) | 
|---|
| 932 | * | 
|---|
| 933 | *  2) from those tasks that meet 1), we select the one | 
|---|
| 934 | *     with the earliest virtual deadline. | 
|---|
| 935 | * | 
|---|
| 936 | * We can do this in O(log n) time due to an augmented RB-tree. The | 
|---|
| 937 | * tree keeps the entries sorted on deadline, but also functions as a | 
|---|
| 938 | * heap based on the vruntime by keeping: | 
|---|
| 939 | * | 
|---|
| 940 | *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) | 
|---|
| 941 | * | 
|---|
| 942 | * Which allows tree pruning through eligibility. | 
|---|
| 943 | */ | 
|---|
| 944 | static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect) | 
|---|
| 945 | { | 
|---|
| 946 | struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; | 
|---|
| 947 | struct sched_entity *se = __pick_first_entity(cfs_rq); | 
|---|
| 948 | struct sched_entity *curr = cfs_rq->curr; | 
|---|
| 949 | struct sched_entity *best = NULL; | 
|---|
| 950 |  | 
|---|
| 951 | /* | 
|---|
| 952 | * We can safely skip eligibility check if there is only one entity | 
|---|
| 953 | * in this cfs_rq, saving some cycles. | 
|---|
| 954 | */ | 
|---|
| 955 | if (cfs_rq->nr_queued == 1) | 
|---|
| 956 | return curr && curr->on_rq ? curr : se; | 
|---|
| 957 |  | 
|---|
| 958 | if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, se: curr))) | 
|---|
| 959 | curr = NULL; | 
|---|
| 960 |  | 
|---|
| 961 | if (curr && protect && protect_slice(se: curr)) | 
|---|
| 962 | return curr; | 
|---|
| 963 |  | 
|---|
| 964 | /* Pick the leftmost entity if it's eligible */ | 
|---|
| 965 | if (se && entity_eligible(cfs_rq, se)) { | 
|---|
| 966 | best = se; | 
|---|
| 967 | goto found; | 
|---|
| 968 | } | 
|---|
| 969 |  | 
|---|
| 970 | /* Heap search for the EEVD entity */ | 
|---|
| 971 | while (node) { | 
|---|
| 972 | struct rb_node *left = node->rb_left; | 
|---|
| 973 |  | 
|---|
| 974 | /* | 
|---|
| 975 | * Eligible entities in left subtree are always better | 
|---|
| 976 | * choices, since they have earlier deadlines. | 
|---|
| 977 | */ | 
|---|
| 978 | if (left && vruntime_eligible(cfs_rq, | 
|---|
| 979 | __node_2_se(left)->min_vruntime)) { | 
|---|
| 980 | node = left; | 
|---|
| 981 | continue; | 
|---|
| 982 | } | 
|---|
| 983 |  | 
|---|
| 984 | se = __node_2_se(node); | 
|---|
| 985 |  | 
|---|
| 986 | /* | 
|---|
| 987 | * The left subtree either is empty or has no eligible | 
|---|
| 988 | * entity, so check the current node since it is the one | 
|---|
| 989 | * with earliest deadline that might be eligible. | 
|---|
| 990 | */ | 
|---|
| 991 | if (entity_eligible(cfs_rq, se)) { | 
|---|
| 992 | best = se; | 
|---|
| 993 | break; | 
|---|
| 994 | } | 
|---|
| 995 |  | 
|---|
| 996 | node = node->rb_right; | 
|---|
| 997 | } | 
|---|
| 998 | found: | 
|---|
| 999 | if (!best || (curr && entity_before(a: curr, b: best))) | 
|---|
| 1000 | best = curr; | 
|---|
| 1001 |  | 
|---|
| 1002 | return best; | 
|---|
| 1003 | } | 
|---|
| 1004 |  | 
|---|
| 1005 | static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) | 
|---|
| 1006 | { | 
|---|
| 1007 | return __pick_eevdf(cfs_rq, protect: true); | 
|---|
| 1008 | } | 
|---|
| 1009 |  | 
|---|
| 1010 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | 
|---|
| 1011 | { | 
|---|
| 1012 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); | 
|---|
| 1013 |  | 
|---|
| 1014 | if (!last) | 
|---|
| 1015 | return NULL; | 
|---|
| 1016 |  | 
|---|
| 1017 | return __node_2_se(last); | 
|---|
| 1018 | } | 
|---|
| 1019 |  | 
|---|
| 1020 | /************************************************************** | 
|---|
| 1021 | * Scheduling class statistics methods: | 
|---|
| 1022 | */ | 
|---|
| 1023 | int sched_update_scaling(void) | 
|---|
| 1024 | { | 
|---|
| 1025 | unsigned int factor = get_update_sysctl_factor(); | 
|---|
| 1026 |  | 
|---|
| 1027 | #define WRT_SYSCTL(name) \ | 
|---|
| 1028 | (normalized_sysctl_##name = sysctl_##name / (factor)) | 
|---|
| 1029 | WRT_SYSCTL(sched_base_slice); | 
|---|
| 1030 | #undef WRT_SYSCTL | 
|---|
| 1031 |  | 
|---|
| 1032 | return 0; | 
|---|
| 1033 | } | 
|---|
| 1034 |  | 
|---|
| 1035 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); | 
|---|
| 1036 |  | 
|---|
| 1037 | /* | 
|---|
| 1038 | * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i | 
|---|
| 1039 | * this is probably good enough. | 
|---|
| 1040 | */ | 
|---|
| 1041 | static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 1042 | { | 
|---|
| 1043 | if ((s64)(se->vruntime - se->deadline) < 0) | 
|---|
| 1044 | return false; | 
|---|
| 1045 |  | 
|---|
| 1046 | /* | 
|---|
| 1047 | * For EEVDF the virtual time slope is determined by w_i (iow. | 
|---|
| 1048 | * nice) while the request time r_i is determined by | 
|---|
| 1049 | * sysctl_sched_base_slice. | 
|---|
| 1050 | */ | 
|---|
| 1051 | if (!se->custom_slice) | 
|---|
| 1052 | se->slice = sysctl_sched_base_slice; | 
|---|
| 1053 |  | 
|---|
| 1054 | /* | 
|---|
| 1055 | * EEVDF: vd_i = ve_i + r_i / w_i | 
|---|
| 1056 | */ | 
|---|
| 1057 | se->deadline = se->vruntime + calc_delta_fair(delta: se->slice, se); | 
|---|
| 1058 |  | 
|---|
| 1059 | /* | 
|---|
| 1060 | * The task has consumed its request, reschedule. | 
|---|
| 1061 | */ | 
|---|
| 1062 | return true; | 
|---|
| 1063 | } | 
|---|
| 1064 |  | 
|---|
| 1065 | #include "pelt.h" | 
|---|
| 1066 |  | 
|---|
| 1067 | static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); | 
|---|
| 1068 | static unsigned long task_h_load(struct task_struct *p); | 
|---|
| 1069 | static unsigned long capacity_of(int cpu); | 
|---|
| 1070 |  | 
|---|
| 1071 | /* Give new sched_entity start runnable values to heavy its load in infant time */ | 
|---|
| 1072 | void init_entity_runnable_average(struct sched_entity *se) | 
|---|
| 1073 | { | 
|---|
| 1074 | struct sched_avg *sa = &se->avg; | 
|---|
| 1075 |  | 
|---|
| 1076 | memset(s: sa, c: 0, n: sizeof(*sa)); | 
|---|
| 1077 |  | 
|---|
| 1078 | /* | 
|---|
| 1079 | * Tasks are initialized with full load to be seen as heavy tasks until | 
|---|
| 1080 | * they get a chance to stabilize to their real load level. | 
|---|
| 1081 | * Group entities are initialized with zero load to reflect the fact that | 
|---|
| 1082 | * nothing has been attached to the task group yet. | 
|---|
| 1083 | */ | 
|---|
| 1084 | if (entity_is_task(se)) | 
|---|
| 1085 | sa->load_avg = scale_load_down(se->load.weight); | 
|---|
| 1086 |  | 
|---|
| 1087 | /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ | 
|---|
| 1088 | } | 
|---|
| 1089 |  | 
|---|
| 1090 | /* | 
|---|
| 1091 | * With new tasks being created, their initial util_avgs are extrapolated | 
|---|
| 1092 | * based on the cfs_rq's current util_avg: | 
|---|
| 1093 | * | 
|---|
| 1094 | *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) | 
|---|
| 1095 | *		* se_weight(se) | 
|---|
| 1096 | * | 
|---|
| 1097 | * However, in many cases, the above util_avg does not give a desired | 
|---|
| 1098 | * value. Moreover, the sum of the util_avgs may be divergent, such | 
|---|
| 1099 | * as when the series is a harmonic series. | 
|---|
| 1100 | * | 
|---|
| 1101 | * To solve this problem, we also cap the util_avg of successive tasks to | 
|---|
| 1102 | * only 1/2 of the left utilization budget: | 
|---|
| 1103 | * | 
|---|
| 1104 | *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n | 
|---|
| 1105 | * | 
|---|
| 1106 | * where n denotes the nth task and cpu_scale the CPU capacity. | 
|---|
| 1107 | * | 
|---|
| 1108 | * For example, for a CPU with 1024 of capacity, a simplest series from | 
|---|
| 1109 | * the beginning would be like: | 
|---|
| 1110 | * | 
|---|
| 1111 | *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ... | 
|---|
| 1112 | * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... | 
|---|
| 1113 | * | 
|---|
| 1114 | * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) | 
|---|
| 1115 | * if util_avg > util_avg_cap. | 
|---|
| 1116 | */ | 
|---|
| 1117 | void post_init_entity_util_avg(struct task_struct *p) | 
|---|
| 1118 | { | 
|---|
| 1119 | struct sched_entity *se = &p->se; | 
|---|
| 1120 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 1121 | struct sched_avg *sa = &se->avg; | 
|---|
| 1122 | long cpu_scale = arch_scale_cpu_capacity(cpu: cpu_of(rq: rq_of(cfs_rq))); | 
|---|
| 1123 | long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; | 
|---|
| 1124 |  | 
|---|
| 1125 | if (p->sched_class != &fair_sched_class) { | 
|---|
| 1126 | /* | 
|---|
| 1127 | * For !fair tasks do: | 
|---|
| 1128 | * | 
|---|
| 1129 | update_cfs_rq_load_avg(now, cfs_rq); | 
|---|
| 1130 | attach_entity_load_avg(cfs_rq, se); | 
|---|
| 1131 | switched_from_fair(rq, p); | 
|---|
| 1132 | * | 
|---|
| 1133 | * such that the next switched_to_fair() has the | 
|---|
| 1134 | * expected state. | 
|---|
| 1135 | */ | 
|---|
| 1136 | se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); | 
|---|
| 1137 | return; | 
|---|
| 1138 | } | 
|---|
| 1139 |  | 
|---|
| 1140 | if (cap > 0) { | 
|---|
| 1141 | if (cfs_rq->avg.util_avg != 0) { | 
|---|
| 1142 | sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se); | 
|---|
| 1143 | sa->util_avg /= (cfs_rq->avg.load_avg + 1); | 
|---|
| 1144 |  | 
|---|
| 1145 | if (sa->util_avg > cap) | 
|---|
| 1146 | sa->util_avg = cap; | 
|---|
| 1147 | } else { | 
|---|
| 1148 | sa->util_avg = cap; | 
|---|
| 1149 | } | 
|---|
| 1150 | } | 
|---|
| 1151 |  | 
|---|
| 1152 | sa->runnable_avg = sa->util_avg; | 
|---|
| 1153 | } | 
|---|
| 1154 |  | 
|---|
| 1155 | static s64 update_se(struct rq *rq, struct sched_entity *se) | 
|---|
| 1156 | { | 
|---|
| 1157 | u64 now = rq_clock_task(rq); | 
|---|
| 1158 | s64 delta_exec; | 
|---|
| 1159 |  | 
|---|
| 1160 | delta_exec = now - se->exec_start; | 
|---|
| 1161 | if (unlikely(delta_exec <= 0)) | 
|---|
| 1162 | return delta_exec; | 
|---|
| 1163 |  | 
|---|
| 1164 | se->exec_start = now; | 
|---|
| 1165 | if (entity_is_task(se)) { | 
|---|
| 1166 | struct task_struct *donor = task_of(se); | 
|---|
| 1167 | struct task_struct *running = rq->curr; | 
|---|
| 1168 | /* | 
|---|
| 1169 | * If se is a task, we account the time against the running | 
|---|
| 1170 | * task, as w/ proxy-exec they may not be the same. | 
|---|
| 1171 | */ | 
|---|
| 1172 | running->se.exec_start = now; | 
|---|
| 1173 | running->se.sum_exec_runtime += delta_exec; | 
|---|
| 1174 |  | 
|---|
| 1175 | trace_sched_stat_runtime(tsk: running, runtime: delta_exec); | 
|---|
| 1176 | account_group_exec_runtime(tsk: running, ns: delta_exec); | 
|---|
| 1177 |  | 
|---|
| 1178 | /* cgroup time is always accounted against the donor */ | 
|---|
| 1179 | cgroup_account_cputime(task: donor, delta_exec); | 
|---|
| 1180 | } else { | 
|---|
| 1181 | /* If not task, account the time against donor se  */ | 
|---|
| 1182 | se->sum_exec_runtime += delta_exec; | 
|---|
| 1183 | } | 
|---|
| 1184 |  | 
|---|
| 1185 | if (schedstat_enabled()) { | 
|---|
| 1186 | struct sched_statistics *stats; | 
|---|
| 1187 |  | 
|---|
| 1188 | stats = __schedstats_from_se(se); | 
|---|
| 1189 | __schedstat_set(stats->exec_max, | 
|---|
| 1190 | max(delta_exec, stats->exec_max)); | 
|---|
| 1191 | } | 
|---|
| 1192 |  | 
|---|
| 1193 | return delta_exec; | 
|---|
| 1194 | } | 
|---|
| 1195 |  | 
|---|
| 1196 | /* | 
|---|
| 1197 | * Used by other classes to account runtime. | 
|---|
| 1198 | */ | 
|---|
| 1199 | s64 update_curr_common(struct rq *rq) | 
|---|
| 1200 | { | 
|---|
| 1201 | return update_se(rq, se: &rq->donor->se); | 
|---|
| 1202 | } | 
|---|
| 1203 |  | 
|---|
| 1204 | /* | 
|---|
| 1205 | * Update the current task's runtime statistics. | 
|---|
| 1206 | */ | 
|---|
| 1207 | static void update_curr(struct cfs_rq *cfs_rq) | 
|---|
| 1208 | { | 
|---|
| 1209 | /* | 
|---|
| 1210 | * Note: cfs_rq->curr corresponds to the task picked to | 
|---|
| 1211 | * run (ie: rq->donor.se) which due to proxy-exec may | 
|---|
| 1212 | * not necessarily be the actual task running | 
|---|
| 1213 | * (rq->curr.se). This is easy to confuse! | 
|---|
| 1214 | */ | 
|---|
| 1215 | struct sched_entity *curr = cfs_rq->curr; | 
|---|
| 1216 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 1217 | s64 delta_exec; | 
|---|
| 1218 | bool resched; | 
|---|
| 1219 |  | 
|---|
| 1220 | if (unlikely(!curr)) | 
|---|
| 1221 | return; | 
|---|
| 1222 |  | 
|---|
| 1223 | delta_exec = update_se(rq, se: curr); | 
|---|
| 1224 | if (unlikely(delta_exec <= 0)) | 
|---|
| 1225 | return; | 
|---|
| 1226 |  | 
|---|
| 1227 | curr->vruntime += calc_delta_fair(delta: delta_exec, se: curr); | 
|---|
| 1228 | resched = update_deadline(cfs_rq, se: curr); | 
|---|
| 1229 | update_min_vruntime(cfs_rq); | 
|---|
| 1230 |  | 
|---|
| 1231 | if (entity_is_task(curr)) { | 
|---|
| 1232 | /* | 
|---|
| 1233 | * If the fair_server is active, we need to account for the | 
|---|
| 1234 | * fair_server time whether or not the task is running on | 
|---|
| 1235 | * behalf of fair_server or not: | 
|---|
| 1236 | *  - If the task is running on behalf of fair_server, we need | 
|---|
| 1237 | *    to limit its time based on the assigned runtime. | 
|---|
| 1238 | *  - Fair task that runs outside of fair_server should account | 
|---|
| 1239 | *    against fair_server such that it can account for this time | 
|---|
| 1240 | *    and possibly avoid running this period. | 
|---|
| 1241 | */ | 
|---|
| 1242 | if (dl_server_active(dl_se: &rq->fair_server)) | 
|---|
| 1243 | dl_server_update(dl_se: &rq->fair_server, delta_exec); | 
|---|
| 1244 | } | 
|---|
| 1245 |  | 
|---|
| 1246 | account_cfs_rq_runtime(cfs_rq, delta_exec); | 
|---|
| 1247 |  | 
|---|
| 1248 | if (cfs_rq->nr_queued == 1) | 
|---|
| 1249 | return; | 
|---|
| 1250 |  | 
|---|
| 1251 | if (resched || !protect_slice(se: curr)) { | 
|---|
| 1252 | resched_curr_lazy(rq); | 
|---|
| 1253 | clear_buddies(cfs_rq, se: curr); | 
|---|
| 1254 | } | 
|---|
| 1255 | } | 
|---|
| 1256 |  | 
|---|
| 1257 | static void update_curr_fair(struct rq *rq) | 
|---|
| 1258 | { | 
|---|
| 1259 | update_curr(cfs_rq: cfs_rq_of(se: &rq->donor->se)); | 
|---|
| 1260 | } | 
|---|
| 1261 |  | 
|---|
| 1262 | static inline void | 
|---|
| 1263 | update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 1264 | { | 
|---|
| 1265 | struct sched_statistics *stats; | 
|---|
| 1266 | struct task_struct *p = NULL; | 
|---|
| 1267 |  | 
|---|
| 1268 | if (!schedstat_enabled()) | 
|---|
| 1269 | return; | 
|---|
| 1270 |  | 
|---|
| 1271 | stats = __schedstats_from_se(se); | 
|---|
| 1272 |  | 
|---|
| 1273 | if (entity_is_task(se)) | 
|---|
| 1274 | p = task_of(se); | 
|---|
| 1275 |  | 
|---|
| 1276 | __update_stats_wait_start(rq: rq_of(cfs_rq), p, stats); | 
|---|
| 1277 | } | 
|---|
| 1278 |  | 
|---|
| 1279 | static inline void | 
|---|
| 1280 | update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 1281 | { | 
|---|
| 1282 | struct sched_statistics *stats; | 
|---|
| 1283 | struct task_struct *p = NULL; | 
|---|
| 1284 |  | 
|---|
| 1285 | if (!schedstat_enabled()) | 
|---|
| 1286 | return; | 
|---|
| 1287 |  | 
|---|
| 1288 | stats = __schedstats_from_se(se); | 
|---|
| 1289 |  | 
|---|
| 1290 | /* | 
|---|
| 1291 | * When the sched_schedstat changes from 0 to 1, some sched se | 
|---|
| 1292 | * maybe already in the runqueue, the se->statistics.wait_start | 
|---|
| 1293 | * will be 0.So it will let the delta wrong. We need to avoid this | 
|---|
| 1294 | * scenario. | 
|---|
| 1295 | */ | 
|---|
| 1296 | if (unlikely(!schedstat_val(stats->wait_start))) | 
|---|
| 1297 | return; | 
|---|
| 1298 |  | 
|---|
| 1299 | if (entity_is_task(se)) | 
|---|
| 1300 | p = task_of(se); | 
|---|
| 1301 |  | 
|---|
| 1302 | __update_stats_wait_end(rq: rq_of(cfs_rq), p, stats); | 
|---|
| 1303 | } | 
|---|
| 1304 |  | 
|---|
| 1305 | static inline void | 
|---|
| 1306 | update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 1307 | { | 
|---|
| 1308 | struct sched_statistics *stats; | 
|---|
| 1309 | struct task_struct *tsk = NULL; | 
|---|
| 1310 |  | 
|---|
| 1311 | if (!schedstat_enabled()) | 
|---|
| 1312 | return; | 
|---|
| 1313 |  | 
|---|
| 1314 | stats = __schedstats_from_se(se); | 
|---|
| 1315 |  | 
|---|
| 1316 | if (entity_is_task(se)) | 
|---|
| 1317 | tsk = task_of(se); | 
|---|
| 1318 |  | 
|---|
| 1319 | __update_stats_enqueue_sleeper(rq: rq_of(cfs_rq), p: tsk, stats); | 
|---|
| 1320 | } | 
|---|
| 1321 |  | 
|---|
| 1322 | /* | 
|---|
| 1323 | * Task is being enqueued - update stats: | 
|---|
| 1324 | */ | 
|---|
| 1325 | static inline void | 
|---|
| 1326 | update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|---|
| 1327 | { | 
|---|
| 1328 | if (!schedstat_enabled()) | 
|---|
| 1329 | return; | 
|---|
| 1330 |  | 
|---|
| 1331 | /* | 
|---|
| 1332 | * Are we enqueueing a waiting task? (for current tasks | 
|---|
| 1333 | * a dequeue/enqueue event is a NOP) | 
|---|
| 1334 | */ | 
|---|
| 1335 | if (se != cfs_rq->curr) | 
|---|
| 1336 | update_stats_wait_start_fair(cfs_rq, se); | 
|---|
| 1337 |  | 
|---|
| 1338 | if (flags & ENQUEUE_WAKEUP) | 
|---|
| 1339 | update_stats_enqueue_sleeper_fair(cfs_rq, se); | 
|---|
| 1340 | } | 
|---|
| 1341 |  | 
|---|
| 1342 | static inline void | 
|---|
| 1343 | update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|---|
| 1344 | { | 
|---|
| 1345 |  | 
|---|
| 1346 | if (!schedstat_enabled()) | 
|---|
| 1347 | return; | 
|---|
| 1348 |  | 
|---|
| 1349 | /* | 
|---|
| 1350 | * Mark the end of the wait period if dequeueing a | 
|---|
| 1351 | * waiting task: | 
|---|
| 1352 | */ | 
|---|
| 1353 | if (se != cfs_rq->curr) | 
|---|
| 1354 | update_stats_wait_end_fair(cfs_rq, se); | 
|---|
| 1355 |  | 
|---|
| 1356 | if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { | 
|---|
| 1357 | struct task_struct *tsk = task_of(se); | 
|---|
| 1358 | unsigned int state; | 
|---|
| 1359 |  | 
|---|
| 1360 | /* XXX racy against TTWU */ | 
|---|
| 1361 | state = READ_ONCE(tsk->__state); | 
|---|
| 1362 | if (state & TASK_INTERRUPTIBLE) | 
|---|
| 1363 | __schedstat_set(tsk->stats.sleep_start, | 
|---|
| 1364 | rq_clock(rq_of(cfs_rq))); | 
|---|
| 1365 | if (state & TASK_UNINTERRUPTIBLE) | 
|---|
| 1366 | __schedstat_set(tsk->stats.block_start, | 
|---|
| 1367 | rq_clock(rq_of(cfs_rq))); | 
|---|
| 1368 | } | 
|---|
| 1369 | } | 
|---|
| 1370 |  | 
|---|
| 1371 | /* | 
|---|
| 1372 | * We are picking a new current task - update its stats: | 
|---|
| 1373 | */ | 
|---|
| 1374 | static inline void | 
|---|
| 1375 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 1376 | { | 
|---|
| 1377 | /* | 
|---|
| 1378 | * We are starting a new run period: | 
|---|
| 1379 | */ | 
|---|
| 1380 | se->exec_start = rq_clock_task(rq: rq_of(cfs_rq)); | 
|---|
| 1381 | } | 
|---|
| 1382 |  | 
|---|
| 1383 | /************************************************** | 
|---|
| 1384 | * Scheduling class queueing methods: | 
|---|
| 1385 | */ | 
|---|
| 1386 |  | 
|---|
| 1387 | static inline bool is_core_idle(int cpu) | 
|---|
| 1388 | { | 
|---|
| 1389 | #ifdef CONFIG_SCHED_SMT | 
|---|
| 1390 | int sibling; | 
|---|
| 1391 |  | 
|---|
| 1392 | for_each_cpu(sibling, cpu_smt_mask(cpu)) { | 
|---|
| 1393 | if (cpu == sibling) | 
|---|
| 1394 | continue; | 
|---|
| 1395 |  | 
|---|
| 1396 | if (!idle_cpu(cpu: sibling)) | 
|---|
| 1397 | return false; | 
|---|
| 1398 | } | 
|---|
| 1399 | #endif | 
|---|
| 1400 |  | 
|---|
| 1401 | return true; | 
|---|
| 1402 | } | 
|---|
| 1403 |  | 
|---|
| 1404 | #ifdef CONFIG_NUMA | 
|---|
| 1405 | #define NUMA_IMBALANCE_MIN 2 | 
|---|
| 1406 |  | 
|---|
| 1407 | static inline long | 
|---|
| 1408 | adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) | 
|---|
| 1409 | { | 
|---|
| 1410 | /* | 
|---|
| 1411 | * Allow a NUMA imbalance if busy CPUs is less than the maximum | 
|---|
| 1412 | * threshold. Above this threshold, individual tasks may be contending | 
|---|
| 1413 | * for both memory bandwidth and any shared HT resources.  This is an | 
|---|
| 1414 | * approximation as the number of running tasks may not be related to | 
|---|
| 1415 | * the number of busy CPUs due to sched_setaffinity. | 
|---|
| 1416 | */ | 
|---|
| 1417 | if (dst_running > imb_numa_nr) | 
|---|
| 1418 | return imbalance; | 
|---|
| 1419 |  | 
|---|
| 1420 | /* | 
|---|
| 1421 | * Allow a small imbalance based on a simple pair of communicating | 
|---|
| 1422 | * tasks that remain local when the destination is lightly loaded. | 
|---|
| 1423 | */ | 
|---|
| 1424 | if (imbalance <= NUMA_IMBALANCE_MIN) | 
|---|
| 1425 | return 0; | 
|---|
| 1426 |  | 
|---|
| 1427 | return imbalance; | 
|---|
| 1428 | } | 
|---|
| 1429 | #endif /* CONFIG_NUMA */ | 
|---|
| 1430 |  | 
|---|
| 1431 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 1432 | /* | 
|---|
| 1433 | * Approximate time to scan a full NUMA task in ms. The task scan period is | 
|---|
| 1434 | * calculated based on the tasks virtual memory size and | 
|---|
| 1435 | * numa_balancing_scan_size. | 
|---|
| 1436 | */ | 
|---|
| 1437 | unsigned int sysctl_numa_balancing_scan_period_min = 1000; | 
|---|
| 1438 | unsigned int sysctl_numa_balancing_scan_period_max = 60000; | 
|---|
| 1439 |  | 
|---|
| 1440 | /* Portion of address space to scan in MB */ | 
|---|
| 1441 | unsigned int sysctl_numa_balancing_scan_size = 256; | 
|---|
| 1442 |  | 
|---|
| 1443 | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ | 
|---|
| 1444 | unsigned int sysctl_numa_balancing_scan_delay = 1000; | 
|---|
| 1445 |  | 
|---|
| 1446 | /* The page with hint page fault latency < threshold in ms is considered hot */ | 
|---|
| 1447 | unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; | 
|---|
| 1448 |  | 
|---|
| 1449 | struct numa_group { | 
|---|
| 1450 | refcount_t refcount; | 
|---|
| 1451 |  | 
|---|
| 1452 | spinlock_t lock; /* nr_tasks, tasks */ | 
|---|
| 1453 | int nr_tasks; | 
|---|
| 1454 | pid_t gid; | 
|---|
| 1455 | int active_nodes; | 
|---|
| 1456 |  | 
|---|
| 1457 | struct rcu_head rcu; | 
|---|
| 1458 | unsigned long total_faults; | 
|---|
| 1459 | unsigned long max_faults_cpu; | 
|---|
| 1460 | /* | 
|---|
| 1461 | * faults[] array is split into two regions: faults_mem and faults_cpu. | 
|---|
| 1462 | * | 
|---|
| 1463 | * Faults_cpu is used to decide whether memory should move | 
|---|
| 1464 | * towards the CPU. As a consequence, these stats are weighted | 
|---|
| 1465 | * more by CPU use than by memory faults. | 
|---|
| 1466 | */ | 
|---|
| 1467 | unsigned long faults[]; | 
|---|
| 1468 | }; | 
|---|
| 1469 |  | 
|---|
| 1470 | /* | 
|---|
| 1471 | * For functions that can be called in multiple contexts that permit reading | 
|---|
| 1472 | * ->numa_group (see struct task_struct for locking rules). | 
|---|
| 1473 | */ | 
|---|
| 1474 | static struct numa_group *deref_task_numa_group(struct task_struct *p) | 
|---|
| 1475 | { | 
|---|
| 1476 | return rcu_dereference_check(p->numa_group, p == current || | 
|---|
| 1477 | (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); | 
|---|
| 1478 | } | 
|---|
| 1479 |  | 
|---|
| 1480 | static struct numa_group *deref_curr_numa_group(struct task_struct *p) | 
|---|
| 1481 | { | 
|---|
| 1482 | return rcu_dereference_protected(p->numa_group, p == current); | 
|---|
| 1483 | } | 
|---|
| 1484 |  | 
|---|
| 1485 | static inline unsigned long group_faults_priv(struct numa_group *ng); | 
|---|
| 1486 | static inline unsigned long group_faults_shared(struct numa_group *ng); | 
|---|
| 1487 |  | 
|---|
| 1488 | static unsigned int task_nr_scan_windows(struct task_struct *p) | 
|---|
| 1489 | { | 
|---|
| 1490 | unsigned long rss = 0; | 
|---|
| 1491 | unsigned long nr_scan_pages; | 
|---|
| 1492 |  | 
|---|
| 1493 | /* | 
|---|
| 1494 | * Calculations based on RSS as non-present and empty pages are skipped | 
|---|
| 1495 | * by the PTE scanner and NUMA hinting faults should be trapped based | 
|---|
| 1496 | * on resident pages | 
|---|
| 1497 | */ | 
|---|
| 1498 | nr_scan_pages = MB_TO_PAGES(sysctl_numa_balancing_scan_size); | 
|---|
| 1499 | rss = get_mm_rss(p->mm); | 
|---|
| 1500 | if (!rss) | 
|---|
| 1501 | rss = nr_scan_pages; | 
|---|
| 1502 |  | 
|---|
| 1503 | rss = round_up(rss, nr_scan_pages); | 
|---|
| 1504 | return rss / nr_scan_pages; | 
|---|
| 1505 | } | 
|---|
| 1506 |  | 
|---|
| 1507 | /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ | 
|---|
| 1508 | #define MAX_SCAN_WINDOW 2560 | 
|---|
| 1509 |  | 
|---|
| 1510 | static unsigned int task_scan_min(struct task_struct *p) | 
|---|
| 1511 | { | 
|---|
| 1512 | unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); | 
|---|
| 1513 | unsigned int scan, floor; | 
|---|
| 1514 | unsigned int windows = 1; | 
|---|
| 1515 |  | 
|---|
| 1516 | if (scan_size < MAX_SCAN_WINDOW) | 
|---|
| 1517 | windows = MAX_SCAN_WINDOW / scan_size; | 
|---|
| 1518 | floor = 1000 / windows; | 
|---|
| 1519 |  | 
|---|
| 1520 | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); | 
|---|
| 1521 | return max_t(unsigned int, floor, scan); | 
|---|
| 1522 | } | 
|---|
| 1523 |  | 
|---|
| 1524 | static unsigned int task_scan_start(struct task_struct *p) | 
|---|
| 1525 | { | 
|---|
| 1526 | unsigned long smin = task_scan_min(p); | 
|---|
| 1527 | unsigned long period = smin; | 
|---|
| 1528 | struct numa_group *ng; | 
|---|
| 1529 |  | 
|---|
| 1530 | /* Scale the maximum scan period with the amount of shared memory. */ | 
|---|
| 1531 | rcu_read_lock(); | 
|---|
| 1532 | ng = rcu_dereference(p->numa_group); | 
|---|
| 1533 | if (ng) { | 
|---|
| 1534 | unsigned long shared = group_faults_shared(ng); | 
|---|
| 1535 | unsigned long private = group_faults_priv(ng); | 
|---|
| 1536 |  | 
|---|
| 1537 | period *= refcount_read(&ng->refcount); | 
|---|
| 1538 | period *= shared + 1; | 
|---|
| 1539 | period /= private + shared + 1; | 
|---|
| 1540 | } | 
|---|
| 1541 | rcu_read_unlock(); | 
|---|
| 1542 |  | 
|---|
| 1543 | return max(smin, period); | 
|---|
| 1544 | } | 
|---|
| 1545 |  | 
|---|
| 1546 | static unsigned int task_scan_max(struct task_struct *p) | 
|---|
| 1547 | { | 
|---|
| 1548 | unsigned long smin = task_scan_min(p); | 
|---|
| 1549 | unsigned long smax; | 
|---|
| 1550 | struct numa_group *ng; | 
|---|
| 1551 |  | 
|---|
| 1552 | /* Watch for min being lower than max due to floor calculations */ | 
|---|
| 1553 | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); | 
|---|
| 1554 |  | 
|---|
| 1555 | /* Scale the maximum scan period with the amount of shared memory. */ | 
|---|
| 1556 | ng = deref_curr_numa_group(p); | 
|---|
| 1557 | if (ng) { | 
|---|
| 1558 | unsigned long shared = group_faults_shared(ng); | 
|---|
| 1559 | unsigned long private = group_faults_priv(ng); | 
|---|
| 1560 | unsigned long period = smax; | 
|---|
| 1561 |  | 
|---|
| 1562 | period *= refcount_read(&ng->refcount); | 
|---|
| 1563 | period *= shared + 1; | 
|---|
| 1564 | period /= private + shared + 1; | 
|---|
| 1565 |  | 
|---|
| 1566 | smax = max(smax, period); | 
|---|
| 1567 | } | 
|---|
| 1568 |  | 
|---|
| 1569 | return max(smin, smax); | 
|---|
| 1570 | } | 
|---|
| 1571 |  | 
|---|
| 1572 | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) | 
|---|
| 1573 | { | 
|---|
| 1574 | rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); | 
|---|
| 1575 | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); | 
|---|
| 1576 | } | 
|---|
| 1577 |  | 
|---|
| 1578 | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) | 
|---|
| 1579 | { | 
|---|
| 1580 | rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); | 
|---|
| 1581 | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); | 
|---|
| 1582 | } | 
|---|
| 1583 |  | 
|---|
| 1584 | /* Shared or private faults. */ | 
|---|
| 1585 | #define NR_NUMA_HINT_FAULT_TYPES 2 | 
|---|
| 1586 |  | 
|---|
| 1587 | /* Memory and CPU locality */ | 
|---|
| 1588 | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) | 
|---|
| 1589 |  | 
|---|
| 1590 | /* Averaged statistics, and temporary buffers. */ | 
|---|
| 1591 | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) | 
|---|
| 1592 |  | 
|---|
| 1593 | pid_t task_numa_group_id(struct task_struct *p) | 
|---|
| 1594 | { | 
|---|
| 1595 | struct numa_group *ng; | 
|---|
| 1596 | pid_t gid = 0; | 
|---|
| 1597 |  | 
|---|
| 1598 | rcu_read_lock(); | 
|---|
| 1599 | ng = rcu_dereference(p->numa_group); | 
|---|
| 1600 | if (ng) | 
|---|
| 1601 | gid = ng->gid; | 
|---|
| 1602 | rcu_read_unlock(); | 
|---|
| 1603 |  | 
|---|
| 1604 | return gid; | 
|---|
| 1605 | } | 
|---|
| 1606 |  | 
|---|
| 1607 | /* | 
|---|
| 1608 | * The averaged statistics, shared & private, memory & CPU, | 
|---|
| 1609 | * occupy the first half of the array. The second half of the | 
|---|
| 1610 | * array is for current counters, which are averaged into the | 
|---|
| 1611 | * first set by task_numa_placement. | 
|---|
| 1612 | */ | 
|---|
| 1613 | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) | 
|---|
| 1614 | { | 
|---|
| 1615 | return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; | 
|---|
| 1616 | } | 
|---|
| 1617 |  | 
|---|
| 1618 | static inline unsigned long task_faults(struct task_struct *p, int nid) | 
|---|
| 1619 | { | 
|---|
| 1620 | if (!p->numa_faults) | 
|---|
| 1621 | return 0; | 
|---|
| 1622 |  | 
|---|
| 1623 | return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + | 
|---|
| 1624 | p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; | 
|---|
| 1625 | } | 
|---|
| 1626 |  | 
|---|
| 1627 | static inline unsigned long group_faults(struct task_struct *p, int nid) | 
|---|
| 1628 | { | 
|---|
| 1629 | struct numa_group *ng = deref_task_numa_group(p); | 
|---|
| 1630 |  | 
|---|
| 1631 | if (!ng) | 
|---|
| 1632 | return 0; | 
|---|
| 1633 |  | 
|---|
| 1634 | return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + | 
|---|
| 1635 | ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; | 
|---|
| 1636 | } | 
|---|
| 1637 |  | 
|---|
| 1638 | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) | 
|---|
| 1639 | { | 
|---|
| 1640 | return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + | 
|---|
| 1641 | group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; | 
|---|
| 1642 | } | 
|---|
| 1643 |  | 
|---|
| 1644 | static inline unsigned long group_faults_priv(struct numa_group *ng) | 
|---|
| 1645 | { | 
|---|
| 1646 | unsigned long faults = 0; | 
|---|
| 1647 | int node; | 
|---|
| 1648 |  | 
|---|
| 1649 | for_each_online_node(node) { | 
|---|
| 1650 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | 
|---|
| 1651 | } | 
|---|
| 1652 |  | 
|---|
| 1653 | return faults; | 
|---|
| 1654 | } | 
|---|
| 1655 |  | 
|---|
| 1656 | static inline unsigned long group_faults_shared(struct numa_group *ng) | 
|---|
| 1657 | { | 
|---|
| 1658 | unsigned long faults = 0; | 
|---|
| 1659 | int node; | 
|---|
| 1660 |  | 
|---|
| 1661 | for_each_online_node(node) { | 
|---|
| 1662 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; | 
|---|
| 1663 | } | 
|---|
| 1664 |  | 
|---|
| 1665 | return faults; | 
|---|
| 1666 | } | 
|---|
| 1667 |  | 
|---|
| 1668 | /* | 
|---|
| 1669 | * A node triggering more than 1/3 as many NUMA faults as the maximum is | 
|---|
| 1670 | * considered part of a numa group's pseudo-interleaving set. Migrations | 
|---|
| 1671 | * between these nodes are slowed down, to allow things to settle down. | 
|---|
| 1672 | */ | 
|---|
| 1673 | #define ACTIVE_NODE_FRACTION 3 | 
|---|
| 1674 |  | 
|---|
| 1675 | static bool numa_is_active_node(int nid, struct numa_group *ng) | 
|---|
| 1676 | { | 
|---|
| 1677 | return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; | 
|---|
| 1678 | } | 
|---|
| 1679 |  | 
|---|
| 1680 | /* Handle placement on systems where not all nodes are directly connected. */ | 
|---|
| 1681 | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, | 
|---|
| 1682 | int lim_dist, bool task) | 
|---|
| 1683 | { | 
|---|
| 1684 | unsigned long score = 0; | 
|---|
| 1685 | int node, max_dist; | 
|---|
| 1686 |  | 
|---|
| 1687 | /* | 
|---|
| 1688 | * All nodes are directly connected, and the same distance | 
|---|
| 1689 | * from each other. No need for fancy placement algorithms. | 
|---|
| 1690 | */ | 
|---|
| 1691 | if (sched_numa_topology_type == NUMA_DIRECT) | 
|---|
| 1692 | return 0; | 
|---|
| 1693 |  | 
|---|
| 1694 | /* sched_max_numa_distance may be changed in parallel. */ | 
|---|
| 1695 | max_dist = READ_ONCE(sched_max_numa_distance); | 
|---|
| 1696 | /* | 
|---|
| 1697 | * This code is called for each node, introducing N^2 complexity, | 
|---|
| 1698 | * which should be OK given the number of nodes rarely exceeds 8. | 
|---|
| 1699 | */ | 
|---|
| 1700 | for_each_online_node(node) { | 
|---|
| 1701 | unsigned long faults; | 
|---|
| 1702 | int dist = node_distance(nid, node); | 
|---|
| 1703 |  | 
|---|
| 1704 | /* | 
|---|
| 1705 | * The furthest away nodes in the system are not interesting | 
|---|
| 1706 | * for placement; nid was already counted. | 
|---|
| 1707 | */ | 
|---|
| 1708 | if (dist >= max_dist || node == nid) | 
|---|
| 1709 | continue; | 
|---|
| 1710 |  | 
|---|
| 1711 | /* | 
|---|
| 1712 | * On systems with a backplane NUMA topology, compare groups | 
|---|
| 1713 | * of nodes, and move tasks towards the group with the most | 
|---|
| 1714 | * memory accesses. When comparing two nodes at distance | 
|---|
| 1715 | * "hoplimit", only nodes closer by than "hoplimit" are part | 
|---|
| 1716 | * of each group. Skip other nodes. | 
|---|
| 1717 | */ | 
|---|
| 1718 | if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) | 
|---|
| 1719 | continue; | 
|---|
| 1720 |  | 
|---|
| 1721 | /* Add up the faults from nearby nodes. */ | 
|---|
| 1722 | if (task) | 
|---|
| 1723 | faults = task_faults(p, node); | 
|---|
| 1724 | else | 
|---|
| 1725 | faults = group_faults(p, node); | 
|---|
| 1726 |  | 
|---|
| 1727 | /* | 
|---|
| 1728 | * On systems with a glueless mesh NUMA topology, there are | 
|---|
| 1729 | * no fixed "groups of nodes". Instead, nodes that are not | 
|---|
| 1730 | * directly connected bounce traffic through intermediate | 
|---|
| 1731 | * nodes; a numa_group can occupy any set of nodes. | 
|---|
| 1732 | * The further away a node is, the less the faults count. | 
|---|
| 1733 | * This seems to result in good task placement. | 
|---|
| 1734 | */ | 
|---|
| 1735 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | 
|---|
| 1736 | faults *= (max_dist - dist); | 
|---|
| 1737 | faults /= (max_dist - LOCAL_DISTANCE); | 
|---|
| 1738 | } | 
|---|
| 1739 |  | 
|---|
| 1740 | score += faults; | 
|---|
| 1741 | } | 
|---|
| 1742 |  | 
|---|
| 1743 | return score; | 
|---|
| 1744 | } | 
|---|
| 1745 |  | 
|---|
| 1746 | /* | 
|---|
| 1747 | * These return the fraction of accesses done by a particular task, or | 
|---|
| 1748 | * task group, on a particular numa node.  The group weight is given a | 
|---|
| 1749 | * larger multiplier, in order to group tasks together that are almost | 
|---|
| 1750 | * evenly spread out between numa nodes. | 
|---|
| 1751 | */ | 
|---|
| 1752 | static inline unsigned long task_weight(struct task_struct *p, int nid, | 
|---|
| 1753 | int dist) | 
|---|
| 1754 | { | 
|---|
| 1755 | unsigned long faults, total_faults; | 
|---|
| 1756 |  | 
|---|
| 1757 | if (!p->numa_faults) | 
|---|
| 1758 | return 0; | 
|---|
| 1759 |  | 
|---|
| 1760 | total_faults = p->total_numa_faults; | 
|---|
| 1761 |  | 
|---|
| 1762 | if (!total_faults) | 
|---|
| 1763 | return 0; | 
|---|
| 1764 |  | 
|---|
| 1765 | faults = task_faults(p, nid); | 
|---|
| 1766 | faults += score_nearby_nodes(p, nid, dist, true); | 
|---|
| 1767 |  | 
|---|
| 1768 | return 1000 * faults / total_faults; | 
|---|
| 1769 | } | 
|---|
| 1770 |  | 
|---|
| 1771 | static inline unsigned long group_weight(struct task_struct *p, int nid, | 
|---|
| 1772 | int dist) | 
|---|
| 1773 | { | 
|---|
| 1774 | struct numa_group *ng = deref_task_numa_group(p); | 
|---|
| 1775 | unsigned long faults, total_faults; | 
|---|
| 1776 |  | 
|---|
| 1777 | if (!ng) | 
|---|
| 1778 | return 0; | 
|---|
| 1779 |  | 
|---|
| 1780 | total_faults = ng->total_faults; | 
|---|
| 1781 |  | 
|---|
| 1782 | if (!total_faults) | 
|---|
| 1783 | return 0; | 
|---|
| 1784 |  | 
|---|
| 1785 | faults = group_faults(p, nid); | 
|---|
| 1786 | faults += score_nearby_nodes(p, nid, dist, false); | 
|---|
| 1787 |  | 
|---|
| 1788 | return 1000 * faults / total_faults; | 
|---|
| 1789 | } | 
|---|
| 1790 |  | 
|---|
| 1791 | /* | 
|---|
| 1792 | * If memory tiering mode is enabled, cpupid of slow memory page is | 
|---|
| 1793 | * used to record scan time instead of CPU and PID.  When tiering mode | 
|---|
| 1794 | * is disabled at run time, the scan time (in cpupid) will be | 
|---|
| 1795 | * interpreted as CPU and PID.  So CPU needs to be checked to avoid to | 
|---|
| 1796 | * access out of array bound. | 
|---|
| 1797 | */ | 
|---|
| 1798 | static inline bool cpupid_valid(int cpupid) | 
|---|
| 1799 | { | 
|---|
| 1800 | return cpupid_to_cpu(cpupid) < nr_cpu_ids; | 
|---|
| 1801 | } | 
|---|
| 1802 |  | 
|---|
| 1803 | /* | 
|---|
| 1804 | * For memory tiering mode, if there are enough free pages (more than | 
|---|
| 1805 | * enough watermark defined here) in fast memory node, to take full | 
|---|
| 1806 | * advantage of fast memory capacity, all recently accessed slow | 
|---|
| 1807 | * memory pages will be migrated to fast memory node without | 
|---|
| 1808 | * considering hot threshold. | 
|---|
| 1809 | */ | 
|---|
| 1810 | static bool pgdat_free_space_enough(struct pglist_data *pgdat) | 
|---|
| 1811 | { | 
|---|
| 1812 | int z; | 
|---|
| 1813 | unsigned long enough_wmark; | 
|---|
| 1814 |  | 
|---|
| 1815 | enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, | 
|---|
| 1816 | pgdat->node_present_pages >> 4); | 
|---|
| 1817 | for (z = pgdat->nr_zones - 1; z >= 0; z--) { | 
|---|
| 1818 | struct zone *zone = pgdat->node_zones + z; | 
|---|
| 1819 |  | 
|---|
| 1820 | if (!populated_zone(zone)) | 
|---|
| 1821 | continue; | 
|---|
| 1822 |  | 
|---|
| 1823 | if (zone_watermark_ok(zone, 0, | 
|---|
| 1824 | promo_wmark_pages(zone) + enough_wmark, | 
|---|
| 1825 | ZONE_MOVABLE, 0)) | 
|---|
| 1826 | return true; | 
|---|
| 1827 | } | 
|---|
| 1828 | return false; | 
|---|
| 1829 | } | 
|---|
| 1830 |  | 
|---|
| 1831 | /* | 
|---|
| 1832 | * For memory tiering mode, when page tables are scanned, the scan | 
|---|
| 1833 | * time will be recorded in struct page in addition to make page | 
|---|
| 1834 | * PROT_NONE for slow memory page.  So when the page is accessed, in | 
|---|
| 1835 | * hint page fault handler, the hint page fault latency is calculated | 
|---|
| 1836 | * via, | 
|---|
| 1837 | * | 
|---|
| 1838 | *	hint page fault latency = hint page fault time - scan time | 
|---|
| 1839 | * | 
|---|
| 1840 | * The smaller the hint page fault latency, the higher the possibility | 
|---|
| 1841 | * for the page to be hot. | 
|---|
| 1842 | */ | 
|---|
| 1843 | static int numa_hint_fault_latency(struct folio *folio) | 
|---|
| 1844 | { | 
|---|
| 1845 | int last_time, time; | 
|---|
| 1846 |  | 
|---|
| 1847 | time = jiffies_to_msecs(jiffies); | 
|---|
| 1848 | last_time = folio_xchg_access_time(folio, time); | 
|---|
| 1849 |  | 
|---|
| 1850 | return (time - last_time) & PAGE_ACCESS_TIME_MASK; | 
|---|
| 1851 | } | 
|---|
| 1852 |  | 
|---|
| 1853 | /* | 
|---|
| 1854 | * For memory tiering mode, too high promotion/demotion throughput may | 
|---|
| 1855 | * hurt application latency.  So we provide a mechanism to rate limit | 
|---|
| 1856 | * the number of pages that are tried to be promoted. | 
|---|
| 1857 | */ | 
|---|
| 1858 | static bool numa_promotion_rate_limit(struct pglist_data *pgdat, | 
|---|
| 1859 | unsigned long rate_limit, int nr) | 
|---|
| 1860 | { | 
|---|
| 1861 | unsigned long nr_cand; | 
|---|
| 1862 | unsigned int now, start; | 
|---|
| 1863 |  | 
|---|
| 1864 | now = jiffies_to_msecs(jiffies); | 
|---|
| 1865 | mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); | 
|---|
| 1866 | nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); | 
|---|
| 1867 | start = pgdat->nbp_rl_start; | 
|---|
| 1868 | if (now - start > MSEC_PER_SEC && | 
|---|
| 1869 | cmpxchg(&pgdat->nbp_rl_start, start, now) == start) | 
|---|
| 1870 | pgdat->nbp_rl_nr_cand = nr_cand; | 
|---|
| 1871 | if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) | 
|---|
| 1872 | return true; | 
|---|
| 1873 | return false; | 
|---|
| 1874 | } | 
|---|
| 1875 |  | 
|---|
| 1876 | #define NUMA_MIGRATION_ADJUST_STEPS	16 | 
|---|
| 1877 |  | 
|---|
| 1878 | static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, | 
|---|
| 1879 | unsigned long rate_limit, | 
|---|
| 1880 | unsigned int ref_th) | 
|---|
| 1881 | { | 
|---|
| 1882 | unsigned int now, start, th_period, unit_th, th; | 
|---|
| 1883 | unsigned long nr_cand, ref_cand, diff_cand; | 
|---|
| 1884 |  | 
|---|
| 1885 | now = jiffies_to_msecs(jiffies); | 
|---|
| 1886 | th_period = sysctl_numa_balancing_scan_period_max; | 
|---|
| 1887 | start = pgdat->nbp_th_start; | 
|---|
| 1888 | if (now - start > th_period && | 
|---|
| 1889 | cmpxchg(&pgdat->nbp_th_start, start, now) == start) { | 
|---|
| 1890 | ref_cand = rate_limit * | 
|---|
| 1891 | sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; | 
|---|
| 1892 | nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); | 
|---|
| 1893 | diff_cand = nr_cand - pgdat->nbp_th_nr_cand; | 
|---|
| 1894 | unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; | 
|---|
| 1895 | th = pgdat->nbp_threshold ? : ref_th; | 
|---|
| 1896 | if (diff_cand > ref_cand * 11 / 10) | 
|---|
| 1897 | th = max(th - unit_th, unit_th); | 
|---|
| 1898 | else if (diff_cand < ref_cand * 9 / 10) | 
|---|
| 1899 | th = min(th + unit_th, ref_th * 2); | 
|---|
| 1900 | pgdat->nbp_th_nr_cand = nr_cand; | 
|---|
| 1901 | pgdat->nbp_threshold = th; | 
|---|
| 1902 | } | 
|---|
| 1903 | } | 
|---|
| 1904 |  | 
|---|
| 1905 | bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, | 
|---|
| 1906 | int src_nid, int dst_cpu) | 
|---|
| 1907 | { | 
|---|
| 1908 | struct numa_group *ng = deref_curr_numa_group(p); | 
|---|
| 1909 | int dst_nid = cpu_to_node(dst_cpu); | 
|---|
| 1910 | int last_cpupid, this_cpupid; | 
|---|
| 1911 |  | 
|---|
| 1912 | /* | 
|---|
| 1913 | * Cannot migrate to memoryless nodes. | 
|---|
| 1914 | */ | 
|---|
| 1915 | if (!node_state(dst_nid, N_MEMORY)) | 
|---|
| 1916 | return false; | 
|---|
| 1917 |  | 
|---|
| 1918 | /* | 
|---|
| 1919 | * The pages in slow memory node should be migrated according | 
|---|
| 1920 | * to hot/cold instead of private/shared. | 
|---|
| 1921 | */ | 
|---|
| 1922 | if (folio_use_access_time(folio)) { | 
|---|
| 1923 | struct pglist_data *pgdat; | 
|---|
| 1924 | unsigned long rate_limit; | 
|---|
| 1925 | unsigned int latency, th, def_th; | 
|---|
| 1926 | long nr = folio_nr_pages(folio); | 
|---|
| 1927 |  | 
|---|
| 1928 | pgdat = NODE_DATA(dst_nid); | 
|---|
| 1929 | if (pgdat_free_space_enough(pgdat)) { | 
|---|
| 1930 | /* workload changed, reset hot threshold */ | 
|---|
| 1931 | pgdat->nbp_threshold = 0; | 
|---|
| 1932 | mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE_NRL, nr); | 
|---|
| 1933 | return true; | 
|---|
| 1934 | } | 
|---|
| 1935 |  | 
|---|
| 1936 | def_th = sysctl_numa_balancing_hot_threshold; | 
|---|
| 1937 | rate_limit = MB_TO_PAGES(sysctl_numa_balancing_promote_rate_limit); | 
|---|
| 1938 | numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); | 
|---|
| 1939 |  | 
|---|
| 1940 | th = pgdat->nbp_threshold ? : def_th; | 
|---|
| 1941 | latency = numa_hint_fault_latency(folio); | 
|---|
| 1942 | if (latency >= th) | 
|---|
| 1943 | return false; | 
|---|
| 1944 |  | 
|---|
| 1945 | return !numa_promotion_rate_limit(pgdat, rate_limit, nr); | 
|---|
| 1946 | } | 
|---|
| 1947 |  | 
|---|
| 1948 | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); | 
|---|
| 1949 | last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); | 
|---|
| 1950 |  | 
|---|
| 1951 | if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && | 
|---|
| 1952 | !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) | 
|---|
| 1953 | return false; | 
|---|
| 1954 |  | 
|---|
| 1955 | /* | 
|---|
| 1956 | * Allow first faults or private faults to migrate immediately early in | 
|---|
| 1957 | * the lifetime of a task. The magic number 4 is based on waiting for | 
|---|
| 1958 | * two full passes of the "multi-stage node selection" test that is | 
|---|
| 1959 | * executed below. | 
|---|
| 1960 | */ | 
|---|
| 1961 | if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && | 
|---|
| 1962 | (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) | 
|---|
| 1963 | return true; | 
|---|
| 1964 |  | 
|---|
| 1965 | /* | 
|---|
| 1966 | * Multi-stage node selection is used in conjunction with a periodic | 
|---|
| 1967 | * migration fault to build a temporal task<->page relation. By using | 
|---|
| 1968 | * a two-stage filter we remove short/unlikely relations. | 
|---|
| 1969 | * | 
|---|
| 1970 | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate | 
|---|
| 1971 | * a task's usage of a particular page (n_p) per total usage of this | 
|---|
| 1972 | * page (n_t) (in a given time-span) to a probability. | 
|---|
| 1973 | * | 
|---|
| 1974 | * Our periodic faults will sample this probability and getting the | 
|---|
| 1975 | * same result twice in a row, given these samples are fully | 
|---|
| 1976 | * independent, is then given by P(n)^2, provided our sample period | 
|---|
| 1977 | * is sufficiently short compared to the usage pattern. | 
|---|
| 1978 | * | 
|---|
| 1979 | * This quadric squishes small probabilities, making it less likely we | 
|---|
| 1980 | * act on an unlikely task<->page relation. | 
|---|
| 1981 | */ | 
|---|
| 1982 | if (!cpupid_pid_unset(last_cpupid) && | 
|---|
| 1983 | cpupid_to_nid(last_cpupid) != dst_nid) | 
|---|
| 1984 | return false; | 
|---|
| 1985 |  | 
|---|
| 1986 | /* Always allow migrate on private faults */ | 
|---|
| 1987 | if (cpupid_match_pid(p, last_cpupid)) | 
|---|
| 1988 | return true; | 
|---|
| 1989 |  | 
|---|
| 1990 | /* A shared fault, but p->numa_group has not been set up yet. */ | 
|---|
| 1991 | if (!ng) | 
|---|
| 1992 | return true; | 
|---|
| 1993 |  | 
|---|
| 1994 | /* | 
|---|
| 1995 | * Destination node is much more heavily used than the source | 
|---|
| 1996 | * node? Allow migration. | 
|---|
| 1997 | */ | 
|---|
| 1998 | if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * | 
|---|
| 1999 | ACTIVE_NODE_FRACTION) | 
|---|
| 2000 | return true; | 
|---|
| 2001 |  | 
|---|
| 2002 | /* | 
|---|
| 2003 | * Distribute memory according to CPU & memory use on each node, | 
|---|
| 2004 | * with 3/4 hysteresis to avoid unnecessary memory migrations: | 
|---|
| 2005 | * | 
|---|
| 2006 | * faults_cpu(dst)   3   faults_cpu(src) | 
|---|
| 2007 | * --------------- * - > --------------- | 
|---|
| 2008 | * faults_mem(dst)   4   faults_mem(src) | 
|---|
| 2009 | */ | 
|---|
| 2010 | return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > | 
|---|
| 2011 | group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; | 
|---|
| 2012 | } | 
|---|
| 2013 |  | 
|---|
| 2014 | /* | 
|---|
| 2015 | * 'numa_type' describes the node at the moment of load balancing. | 
|---|
| 2016 | */ | 
|---|
| 2017 | enum numa_type { | 
|---|
| 2018 | /* The node has spare capacity that can be used to run more tasks.  */ | 
|---|
| 2019 | node_has_spare = 0, | 
|---|
| 2020 | /* | 
|---|
| 2021 | * The node is fully used and the tasks don't compete for more CPU | 
|---|
| 2022 | * cycles. Nevertheless, some tasks might wait before running. | 
|---|
| 2023 | */ | 
|---|
| 2024 | node_fully_busy, | 
|---|
| 2025 | /* | 
|---|
| 2026 | * The node is overloaded and can't provide expected CPU cycles to all | 
|---|
| 2027 | * tasks. | 
|---|
| 2028 | */ | 
|---|
| 2029 | node_overloaded | 
|---|
| 2030 | }; | 
|---|
| 2031 |  | 
|---|
| 2032 | /* Cached statistics for all CPUs within a node */ | 
|---|
| 2033 | struct numa_stats { | 
|---|
| 2034 | unsigned long load; | 
|---|
| 2035 | unsigned long runnable; | 
|---|
| 2036 | unsigned long util; | 
|---|
| 2037 | /* Total compute capacity of CPUs on a node */ | 
|---|
| 2038 | unsigned long compute_capacity; | 
|---|
| 2039 | unsigned int nr_running; | 
|---|
| 2040 | unsigned int weight; | 
|---|
| 2041 | enum numa_type node_type; | 
|---|
| 2042 | int idle_cpu; | 
|---|
| 2043 | }; | 
|---|
| 2044 |  | 
|---|
| 2045 | struct task_numa_env { | 
|---|
| 2046 | struct task_struct *p; | 
|---|
| 2047 |  | 
|---|
| 2048 | int src_cpu, src_nid; | 
|---|
| 2049 | int dst_cpu, dst_nid; | 
|---|
| 2050 | int imb_numa_nr; | 
|---|
| 2051 |  | 
|---|
| 2052 | struct numa_stats src_stats, dst_stats; | 
|---|
| 2053 |  | 
|---|
| 2054 | int imbalance_pct; | 
|---|
| 2055 | int dist; | 
|---|
| 2056 |  | 
|---|
| 2057 | struct task_struct *best_task; | 
|---|
| 2058 | long best_imp; | 
|---|
| 2059 | int best_cpu; | 
|---|
| 2060 | }; | 
|---|
| 2061 |  | 
|---|
| 2062 | static unsigned long cpu_load(struct rq *rq); | 
|---|
| 2063 | static unsigned long cpu_runnable(struct rq *rq); | 
|---|
| 2064 |  | 
|---|
| 2065 | static inline enum | 
|---|
| 2066 | numa_type numa_classify(unsigned int imbalance_pct, | 
|---|
| 2067 | struct numa_stats *ns) | 
|---|
| 2068 | { | 
|---|
| 2069 | if ((ns->nr_running > ns->weight) && | 
|---|
| 2070 | (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || | 
|---|
| 2071 | ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) | 
|---|
| 2072 | return node_overloaded; | 
|---|
| 2073 |  | 
|---|
| 2074 | if ((ns->nr_running < ns->weight) || | 
|---|
| 2075 | (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && | 
|---|
| 2076 | ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) | 
|---|
| 2077 | return node_has_spare; | 
|---|
| 2078 |  | 
|---|
| 2079 | return node_fully_busy; | 
|---|
| 2080 | } | 
|---|
| 2081 |  | 
|---|
| 2082 | #ifdef CONFIG_SCHED_SMT | 
|---|
| 2083 | /* Forward declarations of select_idle_sibling helpers */ | 
|---|
| 2084 | static inline bool test_idle_cores(int cpu); | 
|---|
| 2085 | static inline int numa_idle_core(int idle_core, int cpu) | 
|---|
| 2086 | { | 
|---|
| 2087 | if (!static_branch_likely(&sched_smt_present) || | 
|---|
| 2088 | idle_core >= 0 || !test_idle_cores(cpu)) | 
|---|
| 2089 | return idle_core; | 
|---|
| 2090 |  | 
|---|
| 2091 | /* | 
|---|
| 2092 | * Prefer cores instead of packing HT siblings | 
|---|
| 2093 | * and triggering future load balancing. | 
|---|
| 2094 | */ | 
|---|
| 2095 | if (is_core_idle(cpu)) | 
|---|
| 2096 | idle_core = cpu; | 
|---|
| 2097 |  | 
|---|
| 2098 | return idle_core; | 
|---|
| 2099 | } | 
|---|
| 2100 | #else /* !CONFIG_SCHED_SMT: */ | 
|---|
| 2101 | static inline int numa_idle_core(int idle_core, int cpu) | 
|---|
| 2102 | { | 
|---|
| 2103 | return idle_core; | 
|---|
| 2104 | } | 
|---|
| 2105 | #endif /* !CONFIG_SCHED_SMT */ | 
|---|
| 2106 |  | 
|---|
| 2107 | /* | 
|---|
| 2108 | * Gather all necessary information to make NUMA balancing placement | 
|---|
| 2109 | * decisions that are compatible with standard load balancer. This | 
|---|
| 2110 | * borrows code and logic from update_sg_lb_stats but sharing a | 
|---|
| 2111 | * common implementation is impractical. | 
|---|
| 2112 | */ | 
|---|
| 2113 | static void update_numa_stats(struct task_numa_env *env, | 
|---|
| 2114 | struct numa_stats *ns, int nid, | 
|---|
| 2115 | bool find_idle) | 
|---|
| 2116 | { | 
|---|
| 2117 | int cpu, idle_core = -1; | 
|---|
| 2118 |  | 
|---|
| 2119 | memset(ns, 0, sizeof(*ns)); | 
|---|
| 2120 | ns->idle_cpu = -1; | 
|---|
| 2121 |  | 
|---|
| 2122 | rcu_read_lock(); | 
|---|
| 2123 | for_each_cpu(cpu, cpumask_of_node(nid)) { | 
|---|
| 2124 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 2125 |  | 
|---|
| 2126 | ns->load += cpu_load(rq); | 
|---|
| 2127 | ns->runnable += cpu_runnable(rq); | 
|---|
| 2128 | ns->util += cpu_util_cfs(cpu); | 
|---|
| 2129 | ns->nr_running += rq->cfs.h_nr_runnable; | 
|---|
| 2130 | ns->compute_capacity += capacity_of(cpu); | 
|---|
| 2131 |  | 
|---|
| 2132 | if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { | 
|---|
| 2133 | if (READ_ONCE(rq->numa_migrate_on) || | 
|---|
| 2134 | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) | 
|---|
| 2135 | continue; | 
|---|
| 2136 |  | 
|---|
| 2137 | if (ns->idle_cpu == -1) | 
|---|
| 2138 | ns->idle_cpu = cpu; | 
|---|
| 2139 |  | 
|---|
| 2140 | idle_core = numa_idle_core(idle_core, cpu); | 
|---|
| 2141 | } | 
|---|
| 2142 | } | 
|---|
| 2143 | rcu_read_unlock(); | 
|---|
| 2144 |  | 
|---|
| 2145 | ns->weight = cpumask_weight(cpumask_of_node(nid)); | 
|---|
| 2146 |  | 
|---|
| 2147 | ns->node_type = numa_classify(env->imbalance_pct, ns); | 
|---|
| 2148 |  | 
|---|
| 2149 | if (idle_core >= 0) | 
|---|
| 2150 | ns->idle_cpu = idle_core; | 
|---|
| 2151 | } | 
|---|
| 2152 |  | 
|---|
| 2153 | static void task_numa_assign(struct task_numa_env *env, | 
|---|
| 2154 | struct task_struct *p, long imp) | 
|---|
| 2155 | { | 
|---|
| 2156 | struct rq *rq = cpu_rq(env->dst_cpu); | 
|---|
| 2157 |  | 
|---|
| 2158 | /* Check if run-queue part of active NUMA balance. */ | 
|---|
| 2159 | if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { | 
|---|
| 2160 | int cpu; | 
|---|
| 2161 | int start = env->dst_cpu; | 
|---|
| 2162 |  | 
|---|
| 2163 | /* Find alternative idle CPU. */ | 
|---|
| 2164 | for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { | 
|---|
| 2165 | if (cpu == env->best_cpu || !idle_cpu(cpu) || | 
|---|
| 2166 | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { | 
|---|
| 2167 | continue; | 
|---|
| 2168 | } | 
|---|
| 2169 |  | 
|---|
| 2170 | env->dst_cpu = cpu; | 
|---|
| 2171 | rq = cpu_rq(env->dst_cpu); | 
|---|
| 2172 | if (!xchg(&rq->numa_migrate_on, 1)) | 
|---|
| 2173 | goto assign; | 
|---|
| 2174 | } | 
|---|
| 2175 |  | 
|---|
| 2176 | /* Failed to find an alternative idle CPU */ | 
|---|
| 2177 | return; | 
|---|
| 2178 | } | 
|---|
| 2179 |  | 
|---|
| 2180 | assign: | 
|---|
| 2181 | /* | 
|---|
| 2182 | * Clear previous best_cpu/rq numa-migrate flag, since task now | 
|---|
| 2183 | * found a better CPU to move/swap. | 
|---|
| 2184 | */ | 
|---|
| 2185 | if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { | 
|---|
| 2186 | rq = cpu_rq(env->best_cpu); | 
|---|
| 2187 | WRITE_ONCE(rq->numa_migrate_on, 0); | 
|---|
| 2188 | } | 
|---|
| 2189 |  | 
|---|
| 2190 | if (env->best_task) | 
|---|
| 2191 | put_task_struct(env->best_task); | 
|---|
| 2192 | if (p) | 
|---|
| 2193 | get_task_struct(p); | 
|---|
| 2194 |  | 
|---|
| 2195 | env->best_task = p; | 
|---|
| 2196 | env->best_imp = imp; | 
|---|
| 2197 | env->best_cpu = env->dst_cpu; | 
|---|
| 2198 | } | 
|---|
| 2199 |  | 
|---|
| 2200 | static bool load_too_imbalanced(long src_load, long dst_load, | 
|---|
| 2201 | struct task_numa_env *env) | 
|---|
| 2202 | { | 
|---|
| 2203 | long imb, old_imb; | 
|---|
| 2204 | long orig_src_load, orig_dst_load; | 
|---|
| 2205 | long src_capacity, dst_capacity; | 
|---|
| 2206 |  | 
|---|
| 2207 | /* | 
|---|
| 2208 | * The load is corrected for the CPU capacity available on each node. | 
|---|
| 2209 | * | 
|---|
| 2210 | * src_load        dst_load | 
|---|
| 2211 | * ------------ vs --------- | 
|---|
| 2212 | * src_capacity    dst_capacity | 
|---|
| 2213 | */ | 
|---|
| 2214 | src_capacity = env->src_stats.compute_capacity; | 
|---|
| 2215 | dst_capacity = env->dst_stats.compute_capacity; | 
|---|
| 2216 |  | 
|---|
| 2217 | imb = abs(dst_load * src_capacity - src_load * dst_capacity); | 
|---|
| 2218 |  | 
|---|
| 2219 | orig_src_load = env->src_stats.load; | 
|---|
| 2220 | orig_dst_load = env->dst_stats.load; | 
|---|
| 2221 |  | 
|---|
| 2222 | old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); | 
|---|
| 2223 |  | 
|---|
| 2224 | /* Would this change make things worse? */ | 
|---|
| 2225 | return (imb > old_imb); | 
|---|
| 2226 | } | 
|---|
| 2227 |  | 
|---|
| 2228 | /* | 
|---|
| 2229 | * Maximum NUMA importance can be 1998 (2*999); | 
|---|
| 2230 | * SMALLIMP @ 30 would be close to 1998/64. | 
|---|
| 2231 | * Used to deter task migration. | 
|---|
| 2232 | */ | 
|---|
| 2233 | #define SMALLIMP	30 | 
|---|
| 2234 |  | 
|---|
| 2235 | /* | 
|---|
| 2236 | * This checks if the overall compute and NUMA accesses of the system would | 
|---|
| 2237 | * be improved if the source tasks was migrated to the target dst_cpu taking | 
|---|
| 2238 | * into account that it might be best if task running on the dst_cpu should | 
|---|
| 2239 | * be exchanged with the source task | 
|---|
| 2240 | */ | 
|---|
| 2241 | static bool task_numa_compare(struct task_numa_env *env, | 
|---|
| 2242 | long taskimp, long groupimp, bool maymove) | 
|---|
| 2243 | { | 
|---|
| 2244 | struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); | 
|---|
| 2245 | struct rq *dst_rq = cpu_rq(env->dst_cpu); | 
|---|
| 2246 | long imp = p_ng ? groupimp : taskimp; | 
|---|
| 2247 | struct task_struct *cur; | 
|---|
| 2248 | long src_load, dst_load; | 
|---|
| 2249 | int dist = env->dist; | 
|---|
| 2250 | long moveimp = imp; | 
|---|
| 2251 | long load; | 
|---|
| 2252 | bool stopsearch = false; | 
|---|
| 2253 |  | 
|---|
| 2254 | if (READ_ONCE(dst_rq->numa_migrate_on)) | 
|---|
| 2255 | return false; | 
|---|
| 2256 |  | 
|---|
| 2257 | rcu_read_lock(); | 
|---|
| 2258 | cur = rcu_dereference(dst_rq->curr); | 
|---|
| 2259 | if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) || | 
|---|
| 2260 | !cur->mm)) | 
|---|
| 2261 | cur = NULL; | 
|---|
| 2262 |  | 
|---|
| 2263 | /* | 
|---|
| 2264 | * Because we have preemption enabled we can get migrated around and | 
|---|
| 2265 | * end try selecting ourselves (current == env->p) as a swap candidate. | 
|---|
| 2266 | */ | 
|---|
| 2267 | if (cur == env->p) { | 
|---|
| 2268 | stopsearch = true; | 
|---|
| 2269 | goto unlock; | 
|---|
| 2270 | } | 
|---|
| 2271 |  | 
|---|
| 2272 | if (!cur) { | 
|---|
| 2273 | if (maymove && moveimp >= env->best_imp) | 
|---|
| 2274 | goto assign; | 
|---|
| 2275 | else | 
|---|
| 2276 | goto unlock; | 
|---|
| 2277 | } | 
|---|
| 2278 |  | 
|---|
| 2279 | /* Skip this swap candidate if cannot move to the source cpu. */ | 
|---|
| 2280 | if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) | 
|---|
| 2281 | goto unlock; | 
|---|
| 2282 |  | 
|---|
| 2283 | /* | 
|---|
| 2284 | * Skip this swap candidate if it is not moving to its preferred | 
|---|
| 2285 | * node and the best task is. | 
|---|
| 2286 | */ | 
|---|
| 2287 | if (env->best_task && | 
|---|
| 2288 | env->best_task->numa_preferred_nid == env->src_nid && | 
|---|
| 2289 | cur->numa_preferred_nid != env->src_nid) { | 
|---|
| 2290 | goto unlock; | 
|---|
| 2291 | } | 
|---|
| 2292 |  | 
|---|
| 2293 | /* | 
|---|
| 2294 | * "imp" is the fault differential for the source task between the | 
|---|
| 2295 | * source and destination node. Calculate the total differential for | 
|---|
| 2296 | * the source task and potential destination task. The more negative | 
|---|
| 2297 | * the value is, the more remote accesses that would be expected to | 
|---|
| 2298 | * be incurred if the tasks were swapped. | 
|---|
| 2299 | * | 
|---|
| 2300 | * If dst and source tasks are in the same NUMA group, or not | 
|---|
| 2301 | * in any group then look only at task weights. | 
|---|
| 2302 | */ | 
|---|
| 2303 | cur_ng = rcu_dereference(cur->numa_group); | 
|---|
| 2304 | if (cur_ng == p_ng) { | 
|---|
| 2305 | /* | 
|---|
| 2306 | * Do not swap within a group or between tasks that have | 
|---|
| 2307 | * no group if there is spare capacity. Swapping does | 
|---|
| 2308 | * not address the load imbalance and helps one task at | 
|---|
| 2309 | * the cost of punishing another. | 
|---|
| 2310 | */ | 
|---|
| 2311 | if (env->dst_stats.node_type == node_has_spare) | 
|---|
| 2312 | goto unlock; | 
|---|
| 2313 |  | 
|---|
| 2314 | imp = taskimp + task_weight(cur, env->src_nid, dist) - | 
|---|
| 2315 | task_weight(cur, env->dst_nid, dist); | 
|---|
| 2316 | /* | 
|---|
| 2317 | * Add some hysteresis to prevent swapping the | 
|---|
| 2318 | * tasks within a group over tiny differences. | 
|---|
| 2319 | */ | 
|---|
| 2320 | if (cur_ng) | 
|---|
| 2321 | imp -= imp / 16; | 
|---|
| 2322 | } else { | 
|---|
| 2323 | /* | 
|---|
| 2324 | * Compare the group weights. If a task is all by itself | 
|---|
| 2325 | * (not part of a group), use the task weight instead. | 
|---|
| 2326 | */ | 
|---|
| 2327 | if (cur_ng && p_ng) | 
|---|
| 2328 | imp += group_weight(cur, env->src_nid, dist) - | 
|---|
| 2329 | group_weight(cur, env->dst_nid, dist); | 
|---|
| 2330 | else | 
|---|
| 2331 | imp += task_weight(cur, env->src_nid, dist) - | 
|---|
| 2332 | task_weight(cur, env->dst_nid, dist); | 
|---|
| 2333 | } | 
|---|
| 2334 |  | 
|---|
| 2335 | /* Discourage picking a task already on its preferred node */ | 
|---|
| 2336 | if (cur->numa_preferred_nid == env->dst_nid) | 
|---|
| 2337 | imp -= imp / 16; | 
|---|
| 2338 |  | 
|---|
| 2339 | /* | 
|---|
| 2340 | * Encourage picking a task that moves to its preferred node. | 
|---|
| 2341 | * This potentially makes imp larger than it's maximum of | 
|---|
| 2342 | * 1998 (see SMALLIMP and task_weight for why) but in this | 
|---|
| 2343 | * case, it does not matter. | 
|---|
| 2344 | */ | 
|---|
| 2345 | if (cur->numa_preferred_nid == env->src_nid) | 
|---|
| 2346 | imp += imp / 8; | 
|---|
| 2347 |  | 
|---|
| 2348 | if (maymove && moveimp > imp && moveimp > env->best_imp) { | 
|---|
| 2349 | imp = moveimp; | 
|---|
| 2350 | cur = NULL; | 
|---|
| 2351 | goto assign; | 
|---|
| 2352 | } | 
|---|
| 2353 |  | 
|---|
| 2354 | /* | 
|---|
| 2355 | * Prefer swapping with a task moving to its preferred node over a | 
|---|
| 2356 | * task that is not. | 
|---|
| 2357 | */ | 
|---|
| 2358 | if (env->best_task && cur->numa_preferred_nid == env->src_nid && | 
|---|
| 2359 | env->best_task->numa_preferred_nid != env->src_nid) { | 
|---|
| 2360 | goto assign; | 
|---|
| 2361 | } | 
|---|
| 2362 |  | 
|---|
| 2363 | /* | 
|---|
| 2364 | * If the NUMA importance is less than SMALLIMP, | 
|---|
| 2365 | * task migration might only result in ping pong | 
|---|
| 2366 | * of tasks and also hurt performance due to cache | 
|---|
| 2367 | * misses. | 
|---|
| 2368 | */ | 
|---|
| 2369 | if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) | 
|---|
| 2370 | goto unlock; | 
|---|
| 2371 |  | 
|---|
| 2372 | /* | 
|---|
| 2373 | * In the overloaded case, try and keep the load balanced. | 
|---|
| 2374 | */ | 
|---|
| 2375 | load = task_h_load(env->p) - task_h_load(cur); | 
|---|
| 2376 | if (!load) | 
|---|
| 2377 | goto assign; | 
|---|
| 2378 |  | 
|---|
| 2379 | dst_load = env->dst_stats.load + load; | 
|---|
| 2380 | src_load = env->src_stats.load - load; | 
|---|
| 2381 |  | 
|---|
| 2382 | if (load_too_imbalanced(src_load, dst_load, env)) | 
|---|
| 2383 | goto unlock; | 
|---|
| 2384 |  | 
|---|
| 2385 | assign: | 
|---|
| 2386 | /* Evaluate an idle CPU for a task numa move. */ | 
|---|
| 2387 | if (!cur) { | 
|---|
| 2388 | int cpu = env->dst_stats.idle_cpu; | 
|---|
| 2389 |  | 
|---|
| 2390 | /* Nothing cached so current CPU went idle since the search. */ | 
|---|
| 2391 | if (cpu < 0) | 
|---|
| 2392 | cpu = env->dst_cpu; | 
|---|
| 2393 |  | 
|---|
| 2394 | /* | 
|---|
| 2395 | * If the CPU is no longer truly idle and the previous best CPU | 
|---|
| 2396 | * is, keep using it. | 
|---|
| 2397 | */ | 
|---|
| 2398 | if (!idle_cpu(cpu) && env->best_cpu >= 0 && | 
|---|
| 2399 | idle_cpu(env->best_cpu)) { | 
|---|
| 2400 | cpu = env->best_cpu; | 
|---|
| 2401 | } | 
|---|
| 2402 |  | 
|---|
| 2403 | env->dst_cpu = cpu; | 
|---|
| 2404 | } | 
|---|
| 2405 |  | 
|---|
| 2406 | task_numa_assign(env, cur, imp); | 
|---|
| 2407 |  | 
|---|
| 2408 | /* | 
|---|
| 2409 | * If a move to idle is allowed because there is capacity or load | 
|---|
| 2410 | * balance improves then stop the search. While a better swap | 
|---|
| 2411 | * candidate may exist, a search is not free. | 
|---|
| 2412 | */ | 
|---|
| 2413 | if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) | 
|---|
| 2414 | stopsearch = true; | 
|---|
| 2415 |  | 
|---|
| 2416 | /* | 
|---|
| 2417 | * If a swap candidate must be identified and the current best task | 
|---|
| 2418 | * moves its preferred node then stop the search. | 
|---|
| 2419 | */ | 
|---|
| 2420 | if (!maymove && env->best_task && | 
|---|
| 2421 | env->best_task->numa_preferred_nid == env->src_nid) { | 
|---|
| 2422 | stopsearch = true; | 
|---|
| 2423 | } | 
|---|
| 2424 | unlock: | 
|---|
| 2425 | rcu_read_unlock(); | 
|---|
| 2426 |  | 
|---|
| 2427 | return stopsearch; | 
|---|
| 2428 | } | 
|---|
| 2429 |  | 
|---|
| 2430 | static void task_numa_find_cpu(struct task_numa_env *env, | 
|---|
| 2431 | long taskimp, long groupimp) | 
|---|
| 2432 | { | 
|---|
| 2433 | bool maymove = false; | 
|---|
| 2434 | int cpu; | 
|---|
| 2435 |  | 
|---|
| 2436 | /* | 
|---|
| 2437 | * If dst node has spare capacity, then check if there is an | 
|---|
| 2438 | * imbalance that would be overruled by the load balancer. | 
|---|
| 2439 | */ | 
|---|
| 2440 | if (env->dst_stats.node_type == node_has_spare) { | 
|---|
| 2441 | unsigned int imbalance; | 
|---|
| 2442 | int src_running, dst_running; | 
|---|
| 2443 |  | 
|---|
| 2444 | /* | 
|---|
| 2445 | * Would movement cause an imbalance? Note that if src has | 
|---|
| 2446 | * more running tasks that the imbalance is ignored as the | 
|---|
| 2447 | * move improves the imbalance from the perspective of the | 
|---|
| 2448 | * CPU load balancer. | 
|---|
| 2449 | * */ | 
|---|
| 2450 | src_running = env->src_stats.nr_running - 1; | 
|---|
| 2451 | dst_running = env->dst_stats.nr_running + 1; | 
|---|
| 2452 | imbalance = max(0, dst_running - src_running); | 
|---|
| 2453 | imbalance = adjust_numa_imbalance(imbalance, dst_running, | 
|---|
| 2454 | env->imb_numa_nr); | 
|---|
| 2455 |  | 
|---|
| 2456 | /* Use idle CPU if there is no imbalance */ | 
|---|
| 2457 | if (!imbalance) { | 
|---|
| 2458 | maymove = true; | 
|---|
| 2459 | if (env->dst_stats.idle_cpu >= 0) { | 
|---|
| 2460 | env->dst_cpu = env->dst_stats.idle_cpu; | 
|---|
| 2461 | task_numa_assign(env, NULL, 0); | 
|---|
| 2462 | return; | 
|---|
| 2463 | } | 
|---|
| 2464 | } | 
|---|
| 2465 | } else { | 
|---|
| 2466 | long src_load, dst_load, load; | 
|---|
| 2467 | /* | 
|---|
| 2468 | * If the improvement from just moving env->p direction is better | 
|---|
| 2469 | * than swapping tasks around, check if a move is possible. | 
|---|
| 2470 | */ | 
|---|
| 2471 | load = task_h_load(env->p); | 
|---|
| 2472 | dst_load = env->dst_stats.load + load; | 
|---|
| 2473 | src_load = env->src_stats.load - load; | 
|---|
| 2474 | maymove = !load_too_imbalanced(src_load, dst_load, env); | 
|---|
| 2475 | } | 
|---|
| 2476 |  | 
|---|
| 2477 | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { | 
|---|
| 2478 | /* Skip this CPU if the source task cannot migrate */ | 
|---|
| 2479 | if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) | 
|---|
| 2480 | continue; | 
|---|
| 2481 |  | 
|---|
| 2482 | env->dst_cpu = cpu; | 
|---|
| 2483 | if (task_numa_compare(env, taskimp, groupimp, maymove)) | 
|---|
| 2484 | break; | 
|---|
| 2485 | } | 
|---|
| 2486 | } | 
|---|
| 2487 |  | 
|---|
| 2488 | static int task_numa_migrate(struct task_struct *p) | 
|---|
| 2489 | { | 
|---|
| 2490 | struct task_numa_env env = { | 
|---|
| 2491 | .p = p, | 
|---|
| 2492 |  | 
|---|
| 2493 | .src_cpu = task_cpu(p), | 
|---|
| 2494 | .src_nid = task_node(p), | 
|---|
| 2495 |  | 
|---|
| 2496 | .imbalance_pct = 112, | 
|---|
| 2497 |  | 
|---|
| 2498 | .best_task = NULL, | 
|---|
| 2499 | .best_imp = 0, | 
|---|
| 2500 | .best_cpu = -1, | 
|---|
| 2501 | }; | 
|---|
| 2502 | unsigned long taskweight, groupweight; | 
|---|
| 2503 | struct sched_domain *sd; | 
|---|
| 2504 | long taskimp, groupimp; | 
|---|
| 2505 | struct numa_group *ng; | 
|---|
| 2506 | struct rq *best_rq; | 
|---|
| 2507 | int nid, ret, dist; | 
|---|
| 2508 |  | 
|---|
| 2509 | /* | 
|---|
| 2510 | * Pick the lowest SD_NUMA domain, as that would have the smallest | 
|---|
| 2511 | * imbalance and would be the first to start moving tasks about. | 
|---|
| 2512 | * | 
|---|
| 2513 | * And we want to avoid any moving of tasks about, as that would create | 
|---|
| 2514 | * random movement of tasks -- counter the numa conditions we're trying | 
|---|
| 2515 | * to satisfy here. | 
|---|
| 2516 | */ | 
|---|
| 2517 | rcu_read_lock(); | 
|---|
| 2518 | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); | 
|---|
| 2519 | if (sd) { | 
|---|
| 2520 | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; | 
|---|
| 2521 | env.imb_numa_nr = sd->imb_numa_nr; | 
|---|
| 2522 | } | 
|---|
| 2523 | rcu_read_unlock(); | 
|---|
| 2524 |  | 
|---|
| 2525 | /* | 
|---|
| 2526 | * Cpusets can break the scheduler domain tree into smaller | 
|---|
| 2527 | * balance domains, some of which do not cross NUMA boundaries. | 
|---|
| 2528 | * Tasks that are "trapped" in such domains cannot be migrated | 
|---|
| 2529 | * elsewhere, so there is no point in (re)trying. | 
|---|
| 2530 | */ | 
|---|
| 2531 | if (unlikely(!sd)) { | 
|---|
| 2532 | sched_setnuma(p, task_node(p)); | 
|---|
| 2533 | return -EINVAL; | 
|---|
| 2534 | } | 
|---|
| 2535 |  | 
|---|
| 2536 | env.dst_nid = p->numa_preferred_nid; | 
|---|
| 2537 | dist = env.dist = node_distance(env.src_nid, env.dst_nid); | 
|---|
| 2538 | taskweight = task_weight(p, env.src_nid, dist); | 
|---|
| 2539 | groupweight = group_weight(p, env.src_nid, dist); | 
|---|
| 2540 | update_numa_stats(&env, &env.src_stats, env.src_nid, false); | 
|---|
| 2541 | taskimp = task_weight(p, env.dst_nid, dist) - taskweight; | 
|---|
| 2542 | groupimp = group_weight(p, env.dst_nid, dist) - groupweight; | 
|---|
| 2543 | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); | 
|---|
| 2544 |  | 
|---|
| 2545 | /* Try to find a spot on the preferred nid. */ | 
|---|
| 2546 | task_numa_find_cpu(&env, taskimp, groupimp); | 
|---|
| 2547 |  | 
|---|
| 2548 | /* | 
|---|
| 2549 | * Look at other nodes in these cases: | 
|---|
| 2550 | * - there is no space available on the preferred_nid | 
|---|
| 2551 | * - the task is part of a numa_group that is interleaved across | 
|---|
| 2552 | *   multiple NUMA nodes; in order to better consolidate the group, | 
|---|
| 2553 | *   we need to check other locations. | 
|---|
| 2554 | */ | 
|---|
| 2555 | ng = deref_curr_numa_group(p); | 
|---|
| 2556 | if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { | 
|---|
| 2557 | for_each_node_state(nid, N_CPU) { | 
|---|
| 2558 | if (nid == env.src_nid || nid == p->numa_preferred_nid) | 
|---|
| 2559 | continue; | 
|---|
| 2560 |  | 
|---|
| 2561 | dist = node_distance(env.src_nid, env.dst_nid); | 
|---|
| 2562 | if (sched_numa_topology_type == NUMA_BACKPLANE && | 
|---|
| 2563 | dist != env.dist) { | 
|---|
| 2564 | taskweight = task_weight(p, env.src_nid, dist); | 
|---|
| 2565 | groupweight = group_weight(p, env.src_nid, dist); | 
|---|
| 2566 | } | 
|---|
| 2567 |  | 
|---|
| 2568 | /* Only consider nodes where both task and groups benefit */ | 
|---|
| 2569 | taskimp = task_weight(p, nid, dist) - taskweight; | 
|---|
| 2570 | groupimp = group_weight(p, nid, dist) - groupweight; | 
|---|
| 2571 | if (taskimp < 0 && groupimp < 0) | 
|---|
| 2572 | continue; | 
|---|
| 2573 |  | 
|---|
| 2574 | env.dist = dist; | 
|---|
| 2575 | env.dst_nid = nid; | 
|---|
| 2576 | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); | 
|---|
| 2577 | task_numa_find_cpu(&env, taskimp, groupimp); | 
|---|
| 2578 | } | 
|---|
| 2579 | } | 
|---|
| 2580 |  | 
|---|
| 2581 | /* | 
|---|
| 2582 | * If the task is part of a workload that spans multiple NUMA nodes, | 
|---|
| 2583 | * and is migrating into one of the workload's active nodes, remember | 
|---|
| 2584 | * this node as the task's preferred numa node, so the workload can | 
|---|
| 2585 | * settle down. | 
|---|
| 2586 | * A task that migrated to a second choice node will be better off | 
|---|
| 2587 | * trying for a better one later. Do not set the preferred node here. | 
|---|
| 2588 | */ | 
|---|
| 2589 | if (ng) { | 
|---|
| 2590 | if (env.best_cpu == -1) | 
|---|
| 2591 | nid = env.src_nid; | 
|---|
| 2592 | else | 
|---|
| 2593 | nid = cpu_to_node(env.best_cpu); | 
|---|
| 2594 |  | 
|---|
| 2595 | if (nid != p->numa_preferred_nid) | 
|---|
| 2596 | sched_setnuma(p, nid); | 
|---|
| 2597 | } | 
|---|
| 2598 |  | 
|---|
| 2599 | /* No better CPU than the current one was found. */ | 
|---|
| 2600 | if (env.best_cpu == -1) { | 
|---|
| 2601 | trace_sched_stick_numa(p, env.src_cpu, NULL, -1); | 
|---|
| 2602 | return -EAGAIN; | 
|---|
| 2603 | } | 
|---|
| 2604 |  | 
|---|
| 2605 | best_rq = cpu_rq(env.best_cpu); | 
|---|
| 2606 | if (env.best_task == NULL) { | 
|---|
| 2607 | ret = migrate_task_to(p, env.best_cpu); | 
|---|
| 2608 | WRITE_ONCE(best_rq->numa_migrate_on, 0); | 
|---|
| 2609 | if (ret != 0) | 
|---|
| 2610 | trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); | 
|---|
| 2611 | return ret; | 
|---|
| 2612 | } | 
|---|
| 2613 |  | 
|---|
| 2614 | ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); | 
|---|
| 2615 | WRITE_ONCE(best_rq->numa_migrate_on, 0); | 
|---|
| 2616 |  | 
|---|
| 2617 | if (ret != 0) | 
|---|
| 2618 | trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); | 
|---|
| 2619 | put_task_struct(env.best_task); | 
|---|
| 2620 | return ret; | 
|---|
| 2621 | } | 
|---|
| 2622 |  | 
|---|
| 2623 | /* Attempt to migrate a task to a CPU on the preferred node. */ | 
|---|
| 2624 | static void numa_migrate_preferred(struct task_struct *p) | 
|---|
| 2625 | { | 
|---|
| 2626 | unsigned long interval = HZ; | 
|---|
| 2627 |  | 
|---|
| 2628 | /* This task has no NUMA fault statistics yet */ | 
|---|
| 2629 | if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) | 
|---|
| 2630 | return; | 
|---|
| 2631 |  | 
|---|
| 2632 | /* Periodically retry migrating the task to the preferred node */ | 
|---|
| 2633 | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); | 
|---|
| 2634 | p->numa_migrate_retry = jiffies + interval; | 
|---|
| 2635 |  | 
|---|
| 2636 | /* Success if task is already running on preferred CPU */ | 
|---|
| 2637 | if (task_node(p) == p->numa_preferred_nid) | 
|---|
| 2638 | return; | 
|---|
| 2639 |  | 
|---|
| 2640 | /* Otherwise, try migrate to a CPU on the preferred node */ | 
|---|
| 2641 | task_numa_migrate(p); | 
|---|
| 2642 | } | 
|---|
| 2643 |  | 
|---|
| 2644 | /* | 
|---|
| 2645 | * Find out how many nodes the workload is actively running on. Do this by | 
|---|
| 2646 | * tracking the nodes from which NUMA hinting faults are triggered. This can | 
|---|
| 2647 | * be different from the set of nodes where the workload's memory is currently | 
|---|
| 2648 | * located. | 
|---|
| 2649 | */ | 
|---|
| 2650 | static void numa_group_count_active_nodes(struct numa_group *numa_group) | 
|---|
| 2651 | { | 
|---|
| 2652 | unsigned long faults, max_faults = 0; | 
|---|
| 2653 | int nid, active_nodes = 0; | 
|---|
| 2654 |  | 
|---|
| 2655 | for_each_node_state(nid, N_CPU) { | 
|---|
| 2656 | faults = group_faults_cpu(numa_group, nid); | 
|---|
| 2657 | if (faults > max_faults) | 
|---|
| 2658 | max_faults = faults; | 
|---|
| 2659 | } | 
|---|
| 2660 |  | 
|---|
| 2661 | for_each_node_state(nid, N_CPU) { | 
|---|
| 2662 | faults = group_faults_cpu(numa_group, nid); | 
|---|
| 2663 | if (faults * ACTIVE_NODE_FRACTION > max_faults) | 
|---|
| 2664 | active_nodes++; | 
|---|
| 2665 | } | 
|---|
| 2666 |  | 
|---|
| 2667 | numa_group->max_faults_cpu = max_faults; | 
|---|
| 2668 | numa_group->active_nodes = active_nodes; | 
|---|
| 2669 | } | 
|---|
| 2670 |  | 
|---|
| 2671 | /* | 
|---|
| 2672 | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS | 
|---|
| 2673 | * increments. The more local the fault statistics are, the higher the scan | 
|---|
| 2674 | * period will be for the next scan window. If local/(local+remote) ratio is | 
|---|
| 2675 | * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) | 
|---|
| 2676 | * the scan period will decrease. Aim for 70% local accesses. | 
|---|
| 2677 | */ | 
|---|
| 2678 | #define NUMA_PERIOD_SLOTS 10 | 
|---|
| 2679 | #define NUMA_PERIOD_THRESHOLD 7 | 
|---|
| 2680 |  | 
|---|
| 2681 | /* | 
|---|
| 2682 | * Increase the scan period (slow down scanning) if the majority of | 
|---|
| 2683 | * our memory is already on our local node, or if the majority of | 
|---|
| 2684 | * the page accesses are shared with other processes. | 
|---|
| 2685 | * Otherwise, decrease the scan period. | 
|---|
| 2686 | */ | 
|---|
| 2687 | static void update_task_scan_period(struct task_struct *p, | 
|---|
| 2688 | unsigned long shared, unsigned long private) | 
|---|
| 2689 | { | 
|---|
| 2690 | unsigned int period_slot; | 
|---|
| 2691 | int lr_ratio, ps_ratio; | 
|---|
| 2692 | int diff; | 
|---|
| 2693 |  | 
|---|
| 2694 | unsigned long remote = p->numa_faults_locality[0]; | 
|---|
| 2695 | unsigned long local = p->numa_faults_locality[1]; | 
|---|
| 2696 |  | 
|---|
| 2697 | /* | 
|---|
| 2698 | * If there were no record hinting faults then either the task is | 
|---|
| 2699 | * completely idle or all activity is in areas that are not of interest | 
|---|
| 2700 | * to automatic numa balancing. Related to that, if there were failed | 
|---|
| 2701 | * migration then it implies we are migrating too quickly or the local | 
|---|
| 2702 | * node is overloaded. In either case, scan slower | 
|---|
| 2703 | */ | 
|---|
| 2704 | if (local + shared == 0 || p->numa_faults_locality[2]) { | 
|---|
| 2705 | p->numa_scan_period = min(p->numa_scan_period_max, | 
|---|
| 2706 | p->numa_scan_period << 1); | 
|---|
| 2707 |  | 
|---|
| 2708 | p->mm->numa_next_scan = jiffies + | 
|---|
| 2709 | msecs_to_jiffies(p->numa_scan_period); | 
|---|
| 2710 |  | 
|---|
| 2711 | return; | 
|---|
| 2712 | } | 
|---|
| 2713 |  | 
|---|
| 2714 | /* | 
|---|
| 2715 | * Prepare to scale scan period relative to the current period. | 
|---|
| 2716 | *	 == NUMA_PERIOD_THRESHOLD scan period stays the same | 
|---|
| 2717 | *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) | 
|---|
| 2718 | *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) | 
|---|
| 2719 | */ | 
|---|
| 2720 | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); | 
|---|
| 2721 | lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); | 
|---|
| 2722 | ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); | 
|---|
| 2723 |  | 
|---|
| 2724 | if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { | 
|---|
| 2725 | /* | 
|---|
| 2726 | * Most memory accesses are local. There is no need to | 
|---|
| 2727 | * do fast NUMA scanning, since memory is already local. | 
|---|
| 2728 | */ | 
|---|
| 2729 | int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; | 
|---|
| 2730 | if (!slot) | 
|---|
| 2731 | slot = 1; | 
|---|
| 2732 | diff = slot * period_slot; | 
|---|
| 2733 | } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { | 
|---|
| 2734 | /* | 
|---|
| 2735 | * Most memory accesses are shared with other tasks. | 
|---|
| 2736 | * There is no point in continuing fast NUMA scanning, | 
|---|
| 2737 | * since other tasks may just move the memory elsewhere. | 
|---|
| 2738 | */ | 
|---|
| 2739 | int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; | 
|---|
| 2740 | if (!slot) | 
|---|
| 2741 | slot = 1; | 
|---|
| 2742 | diff = slot * period_slot; | 
|---|
| 2743 | } else { | 
|---|
| 2744 | /* | 
|---|
| 2745 | * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, | 
|---|
| 2746 | * yet they are not on the local NUMA node. Speed up | 
|---|
| 2747 | * NUMA scanning to get the memory moved over. | 
|---|
| 2748 | */ | 
|---|
| 2749 | int ratio = max(lr_ratio, ps_ratio); | 
|---|
| 2750 | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; | 
|---|
| 2751 | } | 
|---|
| 2752 |  | 
|---|
| 2753 | p->numa_scan_period = clamp(p->numa_scan_period + diff, | 
|---|
| 2754 | task_scan_min(p), task_scan_max(p)); | 
|---|
| 2755 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | 
|---|
| 2756 | } | 
|---|
| 2757 |  | 
|---|
| 2758 | /* | 
|---|
| 2759 | * Get the fraction of time the task has been running since the last | 
|---|
| 2760 | * NUMA placement cycle. The scheduler keeps similar statistics, but | 
|---|
| 2761 | * decays those on a 32ms period, which is orders of magnitude off | 
|---|
| 2762 | * from the dozens-of-seconds NUMA balancing period. Use the scheduler | 
|---|
| 2763 | * stats only if the task is so new there are no NUMA statistics yet. | 
|---|
| 2764 | */ | 
|---|
| 2765 | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) | 
|---|
| 2766 | { | 
|---|
| 2767 | u64 runtime, delta, now; | 
|---|
| 2768 | /* Use the start of this time slice to avoid calculations. */ | 
|---|
| 2769 | now = p->se.exec_start; | 
|---|
| 2770 | runtime = p->se.sum_exec_runtime; | 
|---|
| 2771 |  | 
|---|
| 2772 | if (p->last_task_numa_placement) { | 
|---|
| 2773 | delta = runtime - p->last_sum_exec_runtime; | 
|---|
| 2774 | *period = now - p->last_task_numa_placement; | 
|---|
| 2775 |  | 
|---|
| 2776 | /* Avoid time going backwards, prevent potential divide error: */ | 
|---|
| 2777 | if (unlikely((s64)*period < 0)) | 
|---|
| 2778 | *period = 0; | 
|---|
| 2779 | } else { | 
|---|
| 2780 | delta = p->se.avg.load_sum; | 
|---|
| 2781 | *period = LOAD_AVG_MAX; | 
|---|
| 2782 | } | 
|---|
| 2783 |  | 
|---|
| 2784 | p->last_sum_exec_runtime = runtime; | 
|---|
| 2785 | p->last_task_numa_placement = now; | 
|---|
| 2786 |  | 
|---|
| 2787 | return delta; | 
|---|
| 2788 | } | 
|---|
| 2789 |  | 
|---|
| 2790 | /* | 
|---|
| 2791 | * Determine the preferred nid for a task in a numa_group. This needs to | 
|---|
| 2792 | * be done in a way that produces consistent results with group_weight, | 
|---|
| 2793 | * otherwise workloads might not converge. | 
|---|
| 2794 | */ | 
|---|
| 2795 | static int preferred_group_nid(struct task_struct *p, int nid) | 
|---|
| 2796 | { | 
|---|
| 2797 | nodemask_t nodes; | 
|---|
| 2798 | int dist; | 
|---|
| 2799 |  | 
|---|
| 2800 | /* Direct connections between all NUMA nodes. */ | 
|---|
| 2801 | if (sched_numa_topology_type == NUMA_DIRECT) | 
|---|
| 2802 | return nid; | 
|---|
| 2803 |  | 
|---|
| 2804 | /* | 
|---|
| 2805 | * On a system with glueless mesh NUMA topology, group_weight | 
|---|
| 2806 | * scores nodes according to the number of NUMA hinting faults on | 
|---|
| 2807 | * both the node itself, and on nearby nodes. | 
|---|
| 2808 | */ | 
|---|
| 2809 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | 
|---|
| 2810 | unsigned long score, max_score = 0; | 
|---|
| 2811 | int node, max_node = nid; | 
|---|
| 2812 |  | 
|---|
| 2813 | dist = sched_max_numa_distance; | 
|---|
| 2814 |  | 
|---|
| 2815 | for_each_node_state(node, N_CPU) { | 
|---|
| 2816 | score = group_weight(p, node, dist); | 
|---|
| 2817 | if (score > max_score) { | 
|---|
| 2818 | max_score = score; | 
|---|
| 2819 | max_node = node; | 
|---|
| 2820 | } | 
|---|
| 2821 | } | 
|---|
| 2822 | return max_node; | 
|---|
| 2823 | } | 
|---|
| 2824 |  | 
|---|
| 2825 | /* | 
|---|
| 2826 | * Finding the preferred nid in a system with NUMA backplane | 
|---|
| 2827 | * interconnect topology is more involved. The goal is to locate | 
|---|
| 2828 | * tasks from numa_groups near each other in the system, and | 
|---|
| 2829 | * untangle workloads from different sides of the system. This requires | 
|---|
| 2830 | * searching down the hierarchy of node groups, recursively searching | 
|---|
| 2831 | * inside the highest scoring group of nodes. The nodemask tricks | 
|---|
| 2832 | * keep the complexity of the search down. | 
|---|
| 2833 | */ | 
|---|
| 2834 | nodes = node_states[N_CPU]; | 
|---|
| 2835 | for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { | 
|---|
| 2836 | unsigned long max_faults = 0; | 
|---|
| 2837 | nodemask_t max_group = NODE_MASK_NONE; | 
|---|
| 2838 | int a, b; | 
|---|
| 2839 |  | 
|---|
| 2840 | /* Are there nodes at this distance from each other? */ | 
|---|
| 2841 | if (!find_numa_distance(dist)) | 
|---|
| 2842 | continue; | 
|---|
| 2843 |  | 
|---|
| 2844 | for_each_node_mask(a, nodes) { | 
|---|
| 2845 | unsigned long faults = 0; | 
|---|
| 2846 | nodemask_t this_group; | 
|---|
| 2847 | nodes_clear(this_group); | 
|---|
| 2848 |  | 
|---|
| 2849 | /* Sum group's NUMA faults; includes a==b case. */ | 
|---|
| 2850 | for_each_node_mask(b, nodes) { | 
|---|
| 2851 | if (node_distance(a, b) < dist) { | 
|---|
| 2852 | faults += group_faults(p, b); | 
|---|
| 2853 | node_set(b, this_group); | 
|---|
| 2854 | node_clear(b, nodes); | 
|---|
| 2855 | } | 
|---|
| 2856 | } | 
|---|
| 2857 |  | 
|---|
| 2858 | /* Remember the top group. */ | 
|---|
| 2859 | if (faults > max_faults) { | 
|---|
| 2860 | max_faults = faults; | 
|---|
| 2861 | max_group = this_group; | 
|---|
| 2862 | /* | 
|---|
| 2863 | * subtle: at the smallest distance there is | 
|---|
| 2864 | * just one node left in each "group", the | 
|---|
| 2865 | * winner is the preferred nid. | 
|---|
| 2866 | */ | 
|---|
| 2867 | nid = a; | 
|---|
| 2868 | } | 
|---|
| 2869 | } | 
|---|
| 2870 | /* Next round, evaluate the nodes within max_group. */ | 
|---|
| 2871 | if (!max_faults) | 
|---|
| 2872 | break; | 
|---|
| 2873 | nodes = max_group; | 
|---|
| 2874 | } | 
|---|
| 2875 | return nid; | 
|---|
| 2876 | } | 
|---|
| 2877 |  | 
|---|
| 2878 | static void task_numa_placement(struct task_struct *p) | 
|---|
| 2879 | { | 
|---|
| 2880 | int seq, nid, max_nid = NUMA_NO_NODE; | 
|---|
| 2881 | unsigned long max_faults = 0; | 
|---|
| 2882 | unsigned long fault_types[2] = { 0, 0 }; | 
|---|
| 2883 | unsigned long total_faults; | 
|---|
| 2884 | u64 runtime, period; | 
|---|
| 2885 | spinlock_t *group_lock = NULL; | 
|---|
| 2886 | struct numa_group *ng; | 
|---|
| 2887 |  | 
|---|
| 2888 | /* | 
|---|
| 2889 | * The p->mm->numa_scan_seq field gets updated without | 
|---|
| 2890 | * exclusive access. Use READ_ONCE() here to ensure | 
|---|
| 2891 | * that the field is read in a single access: | 
|---|
| 2892 | */ | 
|---|
| 2893 | seq = READ_ONCE(p->mm->numa_scan_seq); | 
|---|
| 2894 | if (p->numa_scan_seq == seq) | 
|---|
| 2895 | return; | 
|---|
| 2896 | p->numa_scan_seq = seq; | 
|---|
| 2897 | p->numa_scan_period_max = task_scan_max(p); | 
|---|
| 2898 |  | 
|---|
| 2899 | total_faults = p->numa_faults_locality[0] + | 
|---|
| 2900 | p->numa_faults_locality[1]; | 
|---|
| 2901 | runtime = numa_get_avg_runtime(p, &period); | 
|---|
| 2902 |  | 
|---|
| 2903 | /* If the task is part of a group prevent parallel updates to group stats */ | 
|---|
| 2904 | ng = deref_curr_numa_group(p); | 
|---|
| 2905 | if (ng) { | 
|---|
| 2906 | group_lock = &ng->lock; | 
|---|
| 2907 | spin_lock_irq(group_lock); | 
|---|
| 2908 | } | 
|---|
| 2909 |  | 
|---|
| 2910 | /* Find the node with the highest number of faults */ | 
|---|
| 2911 | for_each_online_node(nid) { | 
|---|
| 2912 | /* Keep track of the offsets in numa_faults array */ | 
|---|
| 2913 | int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; | 
|---|
| 2914 | unsigned long faults = 0, group_faults = 0; | 
|---|
| 2915 | int priv; | 
|---|
| 2916 |  | 
|---|
| 2917 | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { | 
|---|
| 2918 | long diff, f_diff, f_weight; | 
|---|
| 2919 |  | 
|---|
| 2920 | mem_idx = task_faults_idx(NUMA_MEM, nid, priv); | 
|---|
| 2921 | membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); | 
|---|
| 2922 | cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); | 
|---|
| 2923 | cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); | 
|---|
| 2924 |  | 
|---|
| 2925 | /* Decay existing window, copy faults since last scan */ | 
|---|
| 2926 | diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; | 
|---|
| 2927 | fault_types[priv] += p->numa_faults[membuf_idx]; | 
|---|
| 2928 | p->numa_faults[membuf_idx] = 0; | 
|---|
| 2929 |  | 
|---|
| 2930 | /* | 
|---|
| 2931 | * Normalize the faults_from, so all tasks in a group | 
|---|
| 2932 | * count according to CPU use, instead of by the raw | 
|---|
| 2933 | * number of faults. Tasks with little runtime have | 
|---|
| 2934 | * little over-all impact on throughput, and thus their | 
|---|
| 2935 | * faults are less important. | 
|---|
| 2936 | */ | 
|---|
| 2937 | f_weight = div64_u64(runtime << 16, period + 1); | 
|---|
| 2938 | f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / | 
|---|
| 2939 | (total_faults + 1); | 
|---|
| 2940 | f_diff = f_weight - p->numa_faults[cpu_idx] / 2; | 
|---|
| 2941 | p->numa_faults[cpubuf_idx] = 0; | 
|---|
| 2942 |  | 
|---|
| 2943 | p->numa_faults[mem_idx] += diff; | 
|---|
| 2944 | p->numa_faults[cpu_idx] += f_diff; | 
|---|
| 2945 | faults += p->numa_faults[mem_idx]; | 
|---|
| 2946 | p->total_numa_faults += diff; | 
|---|
| 2947 | if (ng) { | 
|---|
| 2948 | /* | 
|---|
| 2949 | * safe because we can only change our own group | 
|---|
| 2950 | * | 
|---|
| 2951 | * mem_idx represents the offset for a given | 
|---|
| 2952 | * nid and priv in a specific region because it | 
|---|
| 2953 | * is at the beginning of the numa_faults array. | 
|---|
| 2954 | */ | 
|---|
| 2955 | ng->faults[mem_idx] += diff; | 
|---|
| 2956 | ng->faults[cpu_idx] += f_diff; | 
|---|
| 2957 | ng->total_faults += diff; | 
|---|
| 2958 | group_faults += ng->faults[mem_idx]; | 
|---|
| 2959 | } | 
|---|
| 2960 | } | 
|---|
| 2961 |  | 
|---|
| 2962 | if (!ng) { | 
|---|
| 2963 | if (faults > max_faults) { | 
|---|
| 2964 | max_faults = faults; | 
|---|
| 2965 | max_nid = nid; | 
|---|
| 2966 | } | 
|---|
| 2967 | } else if (group_faults > max_faults) { | 
|---|
| 2968 | max_faults = group_faults; | 
|---|
| 2969 | max_nid = nid; | 
|---|
| 2970 | } | 
|---|
| 2971 | } | 
|---|
| 2972 |  | 
|---|
| 2973 | /* Cannot migrate task to CPU-less node */ | 
|---|
| 2974 | max_nid = numa_nearest_node(max_nid, N_CPU); | 
|---|
| 2975 |  | 
|---|
| 2976 | if (ng) { | 
|---|
| 2977 | numa_group_count_active_nodes(ng); | 
|---|
| 2978 | spin_unlock_irq(group_lock); | 
|---|
| 2979 | max_nid = preferred_group_nid(p, max_nid); | 
|---|
| 2980 | } | 
|---|
| 2981 |  | 
|---|
| 2982 | if (max_faults) { | 
|---|
| 2983 | /* Set the new preferred node */ | 
|---|
| 2984 | if (max_nid != p->numa_preferred_nid) | 
|---|
| 2985 | sched_setnuma(p, max_nid); | 
|---|
| 2986 | } | 
|---|
| 2987 |  | 
|---|
| 2988 | update_task_scan_period(p, fault_types[0], fault_types[1]); | 
|---|
| 2989 | } | 
|---|
| 2990 |  | 
|---|
| 2991 | static inline int get_numa_group(struct numa_group *grp) | 
|---|
| 2992 | { | 
|---|
| 2993 | return refcount_inc_not_zero(&grp->refcount); | 
|---|
| 2994 | } | 
|---|
| 2995 |  | 
|---|
| 2996 | static inline void put_numa_group(struct numa_group *grp) | 
|---|
| 2997 | { | 
|---|
| 2998 | if (refcount_dec_and_test(&grp->refcount)) | 
|---|
| 2999 | kfree_rcu(grp, rcu); | 
|---|
| 3000 | } | 
|---|
| 3001 |  | 
|---|
| 3002 | static void task_numa_group(struct task_struct *p, int cpupid, int flags, | 
|---|
| 3003 | int *priv) | 
|---|
| 3004 | { | 
|---|
| 3005 | struct numa_group *grp, *my_grp; | 
|---|
| 3006 | struct task_struct *tsk; | 
|---|
| 3007 | bool join = false; | 
|---|
| 3008 | int cpu = cpupid_to_cpu(cpupid); | 
|---|
| 3009 | int i; | 
|---|
| 3010 |  | 
|---|
| 3011 | if (unlikely(!deref_curr_numa_group(p))) { | 
|---|
| 3012 | unsigned int size = sizeof(struct numa_group) + | 
|---|
| 3013 | NR_NUMA_HINT_FAULT_STATS * | 
|---|
| 3014 | nr_node_ids * sizeof(unsigned long); | 
|---|
| 3015 |  | 
|---|
| 3016 | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); | 
|---|
| 3017 | if (!grp) | 
|---|
| 3018 | return; | 
|---|
| 3019 |  | 
|---|
| 3020 | refcount_set(&grp->refcount, 1); | 
|---|
| 3021 | grp->active_nodes = 1; | 
|---|
| 3022 | grp->max_faults_cpu = 0; | 
|---|
| 3023 | spin_lock_init(&grp->lock); | 
|---|
| 3024 | grp->gid = p->pid; | 
|---|
| 3025 |  | 
|---|
| 3026 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | 
|---|
| 3027 | grp->faults[i] = p->numa_faults[i]; | 
|---|
| 3028 |  | 
|---|
| 3029 | grp->total_faults = p->total_numa_faults; | 
|---|
| 3030 |  | 
|---|
| 3031 | grp->nr_tasks++; | 
|---|
| 3032 | rcu_assign_pointer(p->numa_group, grp); | 
|---|
| 3033 | } | 
|---|
| 3034 |  | 
|---|
| 3035 | rcu_read_lock(); | 
|---|
| 3036 | tsk = READ_ONCE(cpu_rq(cpu)->curr); | 
|---|
| 3037 |  | 
|---|
| 3038 | if (!cpupid_match_pid(tsk, cpupid)) | 
|---|
| 3039 | goto no_join; | 
|---|
| 3040 |  | 
|---|
| 3041 | grp = rcu_dereference(tsk->numa_group); | 
|---|
| 3042 | if (!grp) | 
|---|
| 3043 | goto no_join; | 
|---|
| 3044 |  | 
|---|
| 3045 | my_grp = deref_curr_numa_group(p); | 
|---|
| 3046 | if (grp == my_grp) | 
|---|
| 3047 | goto no_join; | 
|---|
| 3048 |  | 
|---|
| 3049 | /* | 
|---|
| 3050 | * Only join the other group if its bigger; if we're the bigger group, | 
|---|
| 3051 | * the other task will join us. | 
|---|
| 3052 | */ | 
|---|
| 3053 | if (my_grp->nr_tasks > grp->nr_tasks) | 
|---|
| 3054 | goto no_join; | 
|---|
| 3055 |  | 
|---|
| 3056 | /* | 
|---|
| 3057 | * Tie-break on the grp address. | 
|---|
| 3058 | */ | 
|---|
| 3059 | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) | 
|---|
| 3060 | goto no_join; | 
|---|
| 3061 |  | 
|---|
| 3062 | /* Always join threads in the same process. */ | 
|---|
| 3063 | if (tsk->mm == current->mm) | 
|---|
| 3064 | join = true; | 
|---|
| 3065 |  | 
|---|
| 3066 | /* Simple filter to avoid false positives due to PID collisions */ | 
|---|
| 3067 | if (flags & TNF_SHARED) | 
|---|
| 3068 | join = true; | 
|---|
| 3069 |  | 
|---|
| 3070 | /* Update priv based on whether false sharing was detected */ | 
|---|
| 3071 | *priv = !join; | 
|---|
| 3072 |  | 
|---|
| 3073 | if (join && !get_numa_group(grp)) | 
|---|
| 3074 | goto no_join; | 
|---|
| 3075 |  | 
|---|
| 3076 | rcu_read_unlock(); | 
|---|
| 3077 |  | 
|---|
| 3078 | if (!join) | 
|---|
| 3079 | return; | 
|---|
| 3080 |  | 
|---|
| 3081 | WARN_ON_ONCE(irqs_disabled()); | 
|---|
| 3082 | double_lock_irq(&my_grp->lock, &grp->lock); | 
|---|
| 3083 |  | 
|---|
| 3084 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { | 
|---|
| 3085 | my_grp->faults[i] -= p->numa_faults[i]; | 
|---|
| 3086 | grp->faults[i] += p->numa_faults[i]; | 
|---|
| 3087 | } | 
|---|
| 3088 | my_grp->total_faults -= p->total_numa_faults; | 
|---|
| 3089 | grp->total_faults += p->total_numa_faults; | 
|---|
| 3090 |  | 
|---|
| 3091 | my_grp->nr_tasks--; | 
|---|
| 3092 | grp->nr_tasks++; | 
|---|
| 3093 |  | 
|---|
| 3094 | spin_unlock(&my_grp->lock); | 
|---|
| 3095 | spin_unlock_irq(&grp->lock); | 
|---|
| 3096 |  | 
|---|
| 3097 | rcu_assign_pointer(p->numa_group, grp); | 
|---|
| 3098 |  | 
|---|
| 3099 | put_numa_group(my_grp); | 
|---|
| 3100 | return; | 
|---|
| 3101 |  | 
|---|
| 3102 | no_join: | 
|---|
| 3103 | rcu_read_unlock(); | 
|---|
| 3104 | return; | 
|---|
| 3105 | } | 
|---|
| 3106 |  | 
|---|
| 3107 | /* | 
|---|
| 3108 | * Get rid of NUMA statistics associated with a task (either current or dead). | 
|---|
| 3109 | * If @final is set, the task is dead and has reached refcount zero, so we can | 
|---|
| 3110 | * safely free all relevant data structures. Otherwise, there might be | 
|---|
| 3111 | * concurrent reads from places like load balancing and procfs, and we should | 
|---|
| 3112 | * reset the data back to default state without freeing ->numa_faults. | 
|---|
| 3113 | */ | 
|---|
| 3114 | void task_numa_free(struct task_struct *p, bool final) | 
|---|
| 3115 | { | 
|---|
| 3116 | /* safe: p either is current or is being freed by current */ | 
|---|
| 3117 | struct numa_group *grp = rcu_dereference_raw(p->numa_group); | 
|---|
| 3118 | unsigned long *numa_faults = p->numa_faults; | 
|---|
| 3119 | unsigned long flags; | 
|---|
| 3120 | int i; | 
|---|
| 3121 |  | 
|---|
| 3122 | if (!numa_faults) | 
|---|
| 3123 | return; | 
|---|
| 3124 |  | 
|---|
| 3125 | if (grp) { | 
|---|
| 3126 | spin_lock_irqsave(&grp->lock, flags); | 
|---|
| 3127 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | 
|---|
| 3128 | grp->faults[i] -= p->numa_faults[i]; | 
|---|
| 3129 | grp->total_faults -= p->total_numa_faults; | 
|---|
| 3130 |  | 
|---|
| 3131 | grp->nr_tasks--; | 
|---|
| 3132 | spin_unlock_irqrestore(&grp->lock, flags); | 
|---|
| 3133 | RCU_INIT_POINTER(p->numa_group, NULL); | 
|---|
| 3134 | put_numa_group(grp); | 
|---|
| 3135 | } | 
|---|
| 3136 |  | 
|---|
| 3137 | if (final) { | 
|---|
| 3138 | p->numa_faults = NULL; | 
|---|
| 3139 | kfree(numa_faults); | 
|---|
| 3140 | } else { | 
|---|
| 3141 | p->total_numa_faults = 0; | 
|---|
| 3142 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | 
|---|
| 3143 | numa_faults[i] = 0; | 
|---|
| 3144 | } | 
|---|
| 3145 | } | 
|---|
| 3146 |  | 
|---|
| 3147 | /* | 
|---|
| 3148 | * Got a PROT_NONE fault for a page on @node. | 
|---|
| 3149 | */ | 
|---|
| 3150 | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) | 
|---|
| 3151 | { | 
|---|
| 3152 | struct task_struct *p = current; | 
|---|
| 3153 | bool migrated = flags & TNF_MIGRATED; | 
|---|
| 3154 | int cpu_node = task_node(current); | 
|---|
| 3155 | int local = !!(flags & TNF_FAULT_LOCAL); | 
|---|
| 3156 | struct numa_group *ng; | 
|---|
| 3157 | int priv; | 
|---|
| 3158 |  | 
|---|
| 3159 | if (!static_branch_likely(&sched_numa_balancing)) | 
|---|
| 3160 | return; | 
|---|
| 3161 |  | 
|---|
| 3162 | /* for example, ksmd faulting in a user's mm */ | 
|---|
| 3163 | if (!p->mm) | 
|---|
| 3164 | return; | 
|---|
| 3165 |  | 
|---|
| 3166 | /* | 
|---|
| 3167 | * NUMA faults statistics are unnecessary for the slow memory | 
|---|
| 3168 | * node for memory tiering mode. | 
|---|
| 3169 | */ | 
|---|
| 3170 | if (!node_is_toptier(mem_node) && | 
|---|
| 3171 | (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || | 
|---|
| 3172 | !cpupid_valid(last_cpupid))) | 
|---|
| 3173 | return; | 
|---|
| 3174 |  | 
|---|
| 3175 | /* Allocate buffer to track faults on a per-node basis */ | 
|---|
| 3176 | if (unlikely(!p->numa_faults)) { | 
|---|
| 3177 | int size = sizeof(*p->numa_faults) * | 
|---|
| 3178 | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; | 
|---|
| 3179 |  | 
|---|
| 3180 | p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); | 
|---|
| 3181 | if (!p->numa_faults) | 
|---|
| 3182 | return; | 
|---|
| 3183 |  | 
|---|
| 3184 | p->total_numa_faults = 0; | 
|---|
| 3185 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | 
|---|
| 3186 | } | 
|---|
| 3187 |  | 
|---|
| 3188 | /* | 
|---|
| 3189 | * First accesses are treated as private, otherwise consider accesses | 
|---|
| 3190 | * to be private if the accessing pid has not changed | 
|---|
| 3191 | */ | 
|---|
| 3192 | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { | 
|---|
| 3193 | priv = 1; | 
|---|
| 3194 | } else { | 
|---|
| 3195 | priv = cpupid_match_pid(p, last_cpupid); | 
|---|
| 3196 | if (!priv && !(flags & TNF_NO_GROUP)) | 
|---|
| 3197 | task_numa_group(p, last_cpupid, flags, &priv); | 
|---|
| 3198 | } | 
|---|
| 3199 |  | 
|---|
| 3200 | /* | 
|---|
| 3201 | * If a workload spans multiple NUMA nodes, a shared fault that | 
|---|
| 3202 | * occurs wholly within the set of nodes that the workload is | 
|---|
| 3203 | * actively using should be counted as local. This allows the | 
|---|
| 3204 | * scan rate to slow down when a workload has settled down. | 
|---|
| 3205 | */ | 
|---|
| 3206 | ng = deref_curr_numa_group(p); | 
|---|
| 3207 | if (!priv && !local && ng && ng->active_nodes > 1 && | 
|---|
| 3208 | numa_is_active_node(cpu_node, ng) && | 
|---|
| 3209 | numa_is_active_node(mem_node, ng)) | 
|---|
| 3210 | local = 1; | 
|---|
| 3211 |  | 
|---|
| 3212 | /* | 
|---|
| 3213 | * Retry to migrate task to preferred node periodically, in case it | 
|---|
| 3214 | * previously failed, or the scheduler moved us. | 
|---|
| 3215 | */ | 
|---|
| 3216 | if (time_after(jiffies, p->numa_migrate_retry)) { | 
|---|
| 3217 | task_numa_placement(p); | 
|---|
| 3218 | numa_migrate_preferred(p); | 
|---|
| 3219 | } | 
|---|
| 3220 |  | 
|---|
| 3221 | if (migrated) | 
|---|
| 3222 | p->numa_pages_migrated += pages; | 
|---|
| 3223 | if (flags & TNF_MIGRATE_FAIL) | 
|---|
| 3224 | p->numa_faults_locality[2] += pages; | 
|---|
| 3225 |  | 
|---|
| 3226 | p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; | 
|---|
| 3227 | p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; | 
|---|
| 3228 | p->numa_faults_locality[local] += pages; | 
|---|
| 3229 | } | 
|---|
| 3230 |  | 
|---|
| 3231 | static void reset_ptenuma_scan(struct task_struct *p) | 
|---|
| 3232 | { | 
|---|
| 3233 | /* | 
|---|
| 3234 | * We only did a read acquisition of the mmap sem, so | 
|---|
| 3235 | * p->mm->numa_scan_seq is written to without exclusive access | 
|---|
| 3236 | * and the update is not guaranteed to be atomic. That's not | 
|---|
| 3237 | * much of an issue though, since this is just used for | 
|---|
| 3238 | * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not | 
|---|
| 3239 | * expensive, to avoid any form of compiler optimizations: | 
|---|
| 3240 | */ | 
|---|
| 3241 | WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); | 
|---|
| 3242 | p->mm->numa_scan_offset = 0; | 
|---|
| 3243 | } | 
|---|
| 3244 |  | 
|---|
| 3245 | static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) | 
|---|
| 3246 | { | 
|---|
| 3247 | unsigned long pids; | 
|---|
| 3248 | /* | 
|---|
| 3249 | * Allow unconditional access first two times, so that all the (pages) | 
|---|
| 3250 | * of VMAs get prot_none fault introduced irrespective of accesses. | 
|---|
| 3251 | * This is also done to avoid any side effect of task scanning | 
|---|
| 3252 | * amplifying the unfairness of disjoint set of VMAs' access. | 
|---|
| 3253 | */ | 
|---|
| 3254 | if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) | 
|---|
| 3255 | return true; | 
|---|
| 3256 |  | 
|---|
| 3257 | pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; | 
|---|
| 3258 | if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) | 
|---|
| 3259 | return true; | 
|---|
| 3260 |  | 
|---|
| 3261 | /* | 
|---|
| 3262 | * Complete a scan that has already started regardless of PID access, or | 
|---|
| 3263 | * some VMAs may never be scanned in multi-threaded applications: | 
|---|
| 3264 | */ | 
|---|
| 3265 | if (mm->numa_scan_offset > vma->vm_start) { | 
|---|
| 3266 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); | 
|---|
| 3267 | return true; | 
|---|
| 3268 | } | 
|---|
| 3269 |  | 
|---|
| 3270 | /* | 
|---|
| 3271 | * This vma has not been accessed for a while, and if the number | 
|---|
| 3272 | * the threads in the same process is low, which means no other | 
|---|
| 3273 | * threads can help scan this vma, force a vma scan. | 
|---|
| 3274 | */ | 
|---|
| 3275 | if (READ_ONCE(mm->numa_scan_seq) > | 
|---|
| 3276 | (vma->numab_state->prev_scan_seq + get_nr_threads(current))) | 
|---|
| 3277 | return true; | 
|---|
| 3278 |  | 
|---|
| 3279 | return false; | 
|---|
| 3280 | } | 
|---|
| 3281 |  | 
|---|
| 3282 | #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) | 
|---|
| 3283 |  | 
|---|
| 3284 | /* | 
|---|
| 3285 | * The expensive part of numa migration is done from task_work context. | 
|---|
| 3286 | * Triggered from task_tick_numa(). | 
|---|
| 3287 | */ | 
|---|
| 3288 | static void task_numa_work(struct callback_head *work) | 
|---|
| 3289 | { | 
|---|
| 3290 | unsigned long migrate, next_scan, now = jiffies; | 
|---|
| 3291 | struct task_struct *p = current; | 
|---|
| 3292 | struct mm_struct *mm = p->mm; | 
|---|
| 3293 | u64 runtime = p->se.sum_exec_runtime; | 
|---|
| 3294 | struct vm_area_struct *vma; | 
|---|
| 3295 | unsigned long start, end; | 
|---|
| 3296 | unsigned long nr_pte_updates = 0; | 
|---|
| 3297 | long pages, virtpages; | 
|---|
| 3298 | struct vma_iterator vmi; | 
|---|
| 3299 | bool vma_pids_skipped; | 
|---|
| 3300 | bool vma_pids_forced = false; | 
|---|
| 3301 |  | 
|---|
| 3302 | WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); | 
|---|
| 3303 |  | 
|---|
| 3304 | work->next = work; | 
|---|
| 3305 | /* | 
|---|
| 3306 | * Who cares about NUMA placement when they're dying. | 
|---|
| 3307 | * | 
|---|
| 3308 | * NOTE: make sure not to dereference p->mm before this check, | 
|---|
| 3309 | * exit_task_work() happens _after_ exit_mm() so we could be called | 
|---|
| 3310 | * without p->mm even though we still had it when we enqueued this | 
|---|
| 3311 | * work. | 
|---|
| 3312 | */ | 
|---|
| 3313 | if (p->flags & PF_EXITING) | 
|---|
| 3314 | return; | 
|---|
| 3315 |  | 
|---|
| 3316 | /* | 
|---|
| 3317 | * Memory is pinned to only one NUMA node via cpuset.mems, naturally | 
|---|
| 3318 | * no page can be migrated. | 
|---|
| 3319 | */ | 
|---|
| 3320 | if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { | 
|---|
| 3321 | trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); | 
|---|
| 3322 | return; | 
|---|
| 3323 | } | 
|---|
| 3324 |  | 
|---|
| 3325 | if (!mm->numa_next_scan) { | 
|---|
| 3326 | mm->numa_next_scan = now + | 
|---|
| 3327 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | 
|---|
| 3328 | } | 
|---|
| 3329 |  | 
|---|
| 3330 | /* | 
|---|
| 3331 | * Enforce maximal scan/migration frequency.. | 
|---|
| 3332 | */ | 
|---|
| 3333 | migrate = mm->numa_next_scan; | 
|---|
| 3334 | if (time_before(now, migrate)) | 
|---|
| 3335 | return; | 
|---|
| 3336 |  | 
|---|
| 3337 | if (p->numa_scan_period == 0) { | 
|---|
| 3338 | p->numa_scan_period_max = task_scan_max(p); | 
|---|
| 3339 | p->numa_scan_period = task_scan_start(p); | 
|---|
| 3340 | } | 
|---|
| 3341 |  | 
|---|
| 3342 | next_scan = now + msecs_to_jiffies(p->numa_scan_period); | 
|---|
| 3343 | if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) | 
|---|
| 3344 | return; | 
|---|
| 3345 |  | 
|---|
| 3346 | /* | 
|---|
| 3347 | * Delay this task enough that another task of this mm will likely win | 
|---|
| 3348 | * the next time around. | 
|---|
| 3349 | */ | 
|---|
| 3350 | p->node_stamp += 2 * TICK_NSEC; | 
|---|
| 3351 |  | 
|---|
| 3352 | pages = sysctl_numa_balancing_scan_size; | 
|---|
| 3353 | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ | 
|---|
| 3354 | virtpages = pages * 8;	   /* Scan up to this much virtual space */ | 
|---|
| 3355 | if (!pages) | 
|---|
| 3356 | return; | 
|---|
| 3357 |  | 
|---|
| 3358 |  | 
|---|
| 3359 | if (!mmap_read_trylock(mm)) | 
|---|
| 3360 | return; | 
|---|
| 3361 |  | 
|---|
| 3362 | /* | 
|---|
| 3363 | * VMAs are skipped if the current PID has not trapped a fault within | 
|---|
| 3364 | * the VMA recently. Allow scanning to be forced if there is no | 
|---|
| 3365 | * suitable VMA remaining. | 
|---|
| 3366 | */ | 
|---|
| 3367 | vma_pids_skipped = false; | 
|---|
| 3368 |  | 
|---|
| 3369 | retry_pids: | 
|---|
| 3370 | start = mm->numa_scan_offset; | 
|---|
| 3371 | vma_iter_init(&vmi, mm, start); | 
|---|
| 3372 | vma = vma_next(&vmi); | 
|---|
| 3373 | if (!vma) { | 
|---|
| 3374 | reset_ptenuma_scan(p); | 
|---|
| 3375 | start = 0; | 
|---|
| 3376 | vma_iter_set(&vmi, start); | 
|---|
| 3377 | vma = vma_next(&vmi); | 
|---|
| 3378 | } | 
|---|
| 3379 |  | 
|---|
| 3380 | for (; vma; vma = vma_next(&vmi)) { | 
|---|
| 3381 | if (!vma_migratable(vma) || !vma_policy_mof(vma) || | 
|---|
| 3382 | is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { | 
|---|
| 3383 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); | 
|---|
| 3384 | continue; | 
|---|
| 3385 | } | 
|---|
| 3386 |  | 
|---|
| 3387 | /* | 
|---|
| 3388 | * Shared library pages mapped by multiple processes are not | 
|---|
| 3389 | * migrated as it is expected they are cache replicated. Avoid | 
|---|
| 3390 | * hinting faults in read-only file-backed mappings or the vDSO | 
|---|
| 3391 | * as migrating the pages will be of marginal benefit. | 
|---|
| 3392 | */ | 
|---|
| 3393 | if (!vma->vm_mm || | 
|---|
| 3394 | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { | 
|---|
| 3395 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); | 
|---|
| 3396 | continue; | 
|---|
| 3397 | } | 
|---|
| 3398 |  | 
|---|
| 3399 | /* | 
|---|
| 3400 | * Skip inaccessible VMAs to avoid any confusion between | 
|---|
| 3401 | * PROT_NONE and NUMA hinting PTEs | 
|---|
| 3402 | */ | 
|---|
| 3403 | if (!vma_is_accessible(vma)) { | 
|---|
| 3404 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); | 
|---|
| 3405 | continue; | 
|---|
| 3406 | } | 
|---|
| 3407 |  | 
|---|
| 3408 | /* Initialise new per-VMA NUMAB state. */ | 
|---|
| 3409 | if (!vma->numab_state) { | 
|---|
| 3410 | struct vma_numab_state *ptr; | 
|---|
| 3411 |  | 
|---|
| 3412 | ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); | 
|---|
| 3413 | if (!ptr) | 
|---|
| 3414 | continue; | 
|---|
| 3415 |  | 
|---|
| 3416 | if (cmpxchg(&vma->numab_state, NULL, ptr)) { | 
|---|
| 3417 | kfree(ptr); | 
|---|
| 3418 | continue; | 
|---|
| 3419 | } | 
|---|
| 3420 |  | 
|---|
| 3421 | vma->numab_state->start_scan_seq = mm->numa_scan_seq; | 
|---|
| 3422 |  | 
|---|
| 3423 | vma->numab_state->next_scan = now + | 
|---|
| 3424 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | 
|---|
| 3425 |  | 
|---|
| 3426 | /* Reset happens after 4 times scan delay of scan start */ | 
|---|
| 3427 | vma->numab_state->pids_active_reset =  vma->numab_state->next_scan + | 
|---|
| 3428 | msecs_to_jiffies(VMA_PID_RESET_PERIOD); | 
|---|
| 3429 |  | 
|---|
| 3430 | /* | 
|---|
| 3431 | * Ensure prev_scan_seq does not match numa_scan_seq, | 
|---|
| 3432 | * to prevent VMAs being skipped prematurely on the | 
|---|
| 3433 | * first scan: | 
|---|
| 3434 | */ | 
|---|
| 3435 | vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; | 
|---|
| 3436 | } | 
|---|
| 3437 |  | 
|---|
| 3438 | /* | 
|---|
| 3439 | * Scanning the VMAs of short lived tasks add more overhead. So | 
|---|
| 3440 | * delay the scan for new VMAs. | 
|---|
| 3441 | */ | 
|---|
| 3442 | if (mm->numa_scan_seq && time_before(jiffies, | 
|---|
| 3443 | vma->numab_state->next_scan)) { | 
|---|
| 3444 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); | 
|---|
| 3445 | continue; | 
|---|
| 3446 | } | 
|---|
| 3447 |  | 
|---|
| 3448 | /* RESET access PIDs regularly for old VMAs. */ | 
|---|
| 3449 | if (mm->numa_scan_seq && | 
|---|
| 3450 | time_after(jiffies, vma->numab_state->pids_active_reset)) { | 
|---|
| 3451 | vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + | 
|---|
| 3452 | msecs_to_jiffies(VMA_PID_RESET_PERIOD); | 
|---|
| 3453 | vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); | 
|---|
| 3454 | vma->numab_state->pids_active[1] = 0; | 
|---|
| 3455 | } | 
|---|
| 3456 |  | 
|---|
| 3457 | /* Do not rescan VMAs twice within the same sequence. */ | 
|---|
| 3458 | if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { | 
|---|
| 3459 | mm->numa_scan_offset = vma->vm_end; | 
|---|
| 3460 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); | 
|---|
| 3461 | continue; | 
|---|
| 3462 | } | 
|---|
| 3463 |  | 
|---|
| 3464 | /* | 
|---|
| 3465 | * Do not scan the VMA if task has not accessed it, unless no other | 
|---|
| 3466 | * VMA candidate exists. | 
|---|
| 3467 | */ | 
|---|
| 3468 | if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { | 
|---|
| 3469 | vma_pids_skipped = true; | 
|---|
| 3470 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); | 
|---|
| 3471 | continue; | 
|---|
| 3472 | } | 
|---|
| 3473 |  | 
|---|
| 3474 | do { | 
|---|
| 3475 | start = max(start, vma->vm_start); | 
|---|
| 3476 | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); | 
|---|
| 3477 | end = min(end, vma->vm_end); | 
|---|
| 3478 | nr_pte_updates = change_prot_numa(vma, start, end); | 
|---|
| 3479 |  | 
|---|
| 3480 | /* | 
|---|
| 3481 | * Try to scan sysctl_numa_balancing_size worth of | 
|---|
| 3482 | * hpages that have at least one present PTE that | 
|---|
| 3483 | * is not already PTE-numa. If the VMA contains | 
|---|
| 3484 | * areas that are unused or already full of prot_numa | 
|---|
| 3485 | * PTEs, scan up to virtpages, to skip through those | 
|---|
| 3486 | * areas faster. | 
|---|
| 3487 | */ | 
|---|
| 3488 | if (nr_pte_updates) | 
|---|
| 3489 | pages -= (end - start) >> PAGE_SHIFT; | 
|---|
| 3490 | virtpages -= (end - start) >> PAGE_SHIFT; | 
|---|
| 3491 |  | 
|---|
| 3492 | start = end; | 
|---|
| 3493 | if (pages <= 0 || virtpages <= 0) | 
|---|
| 3494 | goto out; | 
|---|
| 3495 |  | 
|---|
| 3496 | cond_resched(); | 
|---|
| 3497 | } while (end != vma->vm_end); | 
|---|
| 3498 |  | 
|---|
| 3499 | /* VMA scan is complete, do not scan until next sequence. */ | 
|---|
| 3500 | vma->numab_state->prev_scan_seq = mm->numa_scan_seq; | 
|---|
| 3501 |  | 
|---|
| 3502 | /* | 
|---|
| 3503 | * Only force scan within one VMA at a time, to limit the | 
|---|
| 3504 | * cost of scanning a potentially uninteresting VMA. | 
|---|
| 3505 | */ | 
|---|
| 3506 | if (vma_pids_forced) | 
|---|
| 3507 | break; | 
|---|
| 3508 | } | 
|---|
| 3509 |  | 
|---|
| 3510 | /* | 
|---|
| 3511 | * If no VMAs are remaining and VMAs were skipped due to the PID | 
|---|
| 3512 | * not accessing the VMA previously, then force a scan to ensure | 
|---|
| 3513 | * forward progress: | 
|---|
| 3514 | */ | 
|---|
| 3515 | if (!vma && !vma_pids_forced && vma_pids_skipped) { | 
|---|
| 3516 | vma_pids_forced = true; | 
|---|
| 3517 | goto retry_pids; | 
|---|
| 3518 | } | 
|---|
| 3519 |  | 
|---|
| 3520 | out: | 
|---|
| 3521 | /* | 
|---|
| 3522 | * It is possible to reach the end of the VMA list but the last few | 
|---|
| 3523 | * VMAs are not guaranteed to the vma_migratable. If they are not, we | 
|---|
| 3524 | * would find the !migratable VMA on the next scan but not reset the | 
|---|
| 3525 | * scanner to the start so check it now. | 
|---|
| 3526 | */ | 
|---|
| 3527 | if (vma) | 
|---|
| 3528 | mm->numa_scan_offset = start; | 
|---|
| 3529 | else | 
|---|
| 3530 | reset_ptenuma_scan(p); | 
|---|
| 3531 | mmap_read_unlock(mm); | 
|---|
| 3532 |  | 
|---|
| 3533 | /* | 
|---|
| 3534 | * Make sure tasks use at least 32x as much time to run other code | 
|---|
| 3535 | * than they used here, to limit NUMA PTE scanning overhead to 3% max. | 
|---|
| 3536 | * Usually update_task_scan_period slows down scanning enough; on an | 
|---|
| 3537 | * overloaded system we need to limit overhead on a per task basis. | 
|---|
| 3538 | */ | 
|---|
| 3539 | if (unlikely(p->se.sum_exec_runtime != runtime)) { | 
|---|
| 3540 | u64 diff = p->se.sum_exec_runtime - runtime; | 
|---|
| 3541 | p->node_stamp += 32 * diff; | 
|---|
| 3542 | } | 
|---|
| 3543 | } | 
|---|
| 3544 |  | 
|---|
| 3545 | void init_numa_balancing(u64 clone_flags, struct task_struct *p) | 
|---|
| 3546 | { | 
|---|
| 3547 | int mm_users = 0; | 
|---|
| 3548 | struct mm_struct *mm = p->mm; | 
|---|
| 3549 |  | 
|---|
| 3550 | if (mm) { | 
|---|
| 3551 | mm_users = atomic_read(&mm->mm_users); | 
|---|
| 3552 | if (mm_users == 1) { | 
|---|
| 3553 | mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | 
|---|
| 3554 | mm->numa_scan_seq = 0; | 
|---|
| 3555 | } | 
|---|
| 3556 | } | 
|---|
| 3557 | p->node_stamp			= 0; | 
|---|
| 3558 | p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0; | 
|---|
| 3559 | p->numa_scan_period		= sysctl_numa_balancing_scan_delay; | 
|---|
| 3560 | p->numa_migrate_retry		= 0; | 
|---|
| 3561 | /* Protect against double add, see task_tick_numa and task_numa_work */ | 
|---|
| 3562 | p->numa_work.next		= &p->numa_work; | 
|---|
| 3563 | p->numa_faults			= NULL; | 
|---|
| 3564 | p->numa_pages_migrated		= 0; | 
|---|
| 3565 | p->total_numa_faults		= 0; | 
|---|
| 3566 | RCU_INIT_POINTER(p->numa_group, NULL); | 
|---|
| 3567 | p->last_task_numa_placement	= 0; | 
|---|
| 3568 | p->last_sum_exec_runtime	= 0; | 
|---|
| 3569 |  | 
|---|
| 3570 | init_task_work(&p->numa_work, task_numa_work); | 
|---|
| 3571 |  | 
|---|
| 3572 | /* New address space, reset the preferred nid */ | 
|---|
| 3573 | if (!(clone_flags & CLONE_VM)) { | 
|---|
| 3574 | p->numa_preferred_nid = NUMA_NO_NODE; | 
|---|
| 3575 | return; | 
|---|
| 3576 | } | 
|---|
| 3577 |  | 
|---|
| 3578 | /* | 
|---|
| 3579 | * New thread, keep existing numa_preferred_nid which should be copied | 
|---|
| 3580 | * already by arch_dup_task_struct but stagger when scans start. | 
|---|
| 3581 | */ | 
|---|
| 3582 | if (mm) { | 
|---|
| 3583 | unsigned int delay; | 
|---|
| 3584 |  | 
|---|
| 3585 | delay = min_t(unsigned int, task_scan_max(current), | 
|---|
| 3586 | current->numa_scan_period * mm_users * NSEC_PER_MSEC); | 
|---|
| 3587 | delay += 2 * TICK_NSEC; | 
|---|
| 3588 | p->node_stamp = delay; | 
|---|
| 3589 | } | 
|---|
| 3590 | } | 
|---|
| 3591 |  | 
|---|
| 3592 | /* | 
|---|
| 3593 | * Drive the periodic memory faults.. | 
|---|
| 3594 | */ | 
|---|
| 3595 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | 
|---|
| 3596 | { | 
|---|
| 3597 | struct callback_head *work = &curr->numa_work; | 
|---|
| 3598 | u64 period, now; | 
|---|
| 3599 |  | 
|---|
| 3600 | /* | 
|---|
| 3601 | * We don't care about NUMA placement if we don't have memory. | 
|---|
| 3602 | */ | 
|---|
| 3603 | if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) | 
|---|
| 3604 | return; | 
|---|
| 3605 |  | 
|---|
| 3606 | /* | 
|---|
| 3607 | * Using runtime rather than walltime has the dual advantage that | 
|---|
| 3608 | * we (mostly) drive the selection from busy threads and that the | 
|---|
| 3609 | * task needs to have done some actual work before we bother with | 
|---|
| 3610 | * NUMA placement. | 
|---|
| 3611 | */ | 
|---|
| 3612 | now = curr->se.sum_exec_runtime; | 
|---|
| 3613 | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; | 
|---|
| 3614 |  | 
|---|
| 3615 | if (now > curr->node_stamp + period) { | 
|---|
| 3616 | if (!curr->node_stamp) | 
|---|
| 3617 | curr->numa_scan_period = task_scan_start(curr); | 
|---|
| 3618 | curr->node_stamp += period; | 
|---|
| 3619 |  | 
|---|
| 3620 | if (!time_before(jiffies, curr->mm->numa_next_scan)) | 
|---|
| 3621 | task_work_add(curr, work, TWA_RESUME); | 
|---|
| 3622 | } | 
|---|
| 3623 | } | 
|---|
| 3624 |  | 
|---|
| 3625 | static void update_scan_period(struct task_struct *p, int new_cpu) | 
|---|
| 3626 | { | 
|---|
| 3627 | int src_nid = cpu_to_node(task_cpu(p)); | 
|---|
| 3628 | int dst_nid = cpu_to_node(new_cpu); | 
|---|
| 3629 |  | 
|---|
| 3630 | if (!static_branch_likely(&sched_numa_balancing)) | 
|---|
| 3631 | return; | 
|---|
| 3632 |  | 
|---|
| 3633 | if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) | 
|---|
| 3634 | return; | 
|---|
| 3635 |  | 
|---|
| 3636 | if (src_nid == dst_nid) | 
|---|
| 3637 | return; | 
|---|
| 3638 |  | 
|---|
| 3639 | /* | 
|---|
| 3640 | * Allow resets if faults have been trapped before one scan | 
|---|
| 3641 | * has completed. This is most likely due to a new task that | 
|---|
| 3642 | * is pulled cross-node due to wakeups or load balancing. | 
|---|
| 3643 | */ | 
|---|
| 3644 | if (p->numa_scan_seq) { | 
|---|
| 3645 | /* | 
|---|
| 3646 | * Avoid scan adjustments if moving to the preferred | 
|---|
| 3647 | * node or if the task was not previously running on | 
|---|
| 3648 | * the preferred node. | 
|---|
| 3649 | */ | 
|---|
| 3650 | if (dst_nid == p->numa_preferred_nid || | 
|---|
| 3651 | (p->numa_preferred_nid != NUMA_NO_NODE && | 
|---|
| 3652 | src_nid != p->numa_preferred_nid)) | 
|---|
| 3653 | return; | 
|---|
| 3654 | } | 
|---|
| 3655 |  | 
|---|
| 3656 | p->numa_scan_period = task_scan_start(p); | 
|---|
| 3657 | } | 
|---|
| 3658 |  | 
|---|
| 3659 | #else /* !CONFIG_NUMA_BALANCING: */ | 
|---|
| 3660 |  | 
|---|
| 3661 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | 
|---|
| 3662 | { | 
|---|
| 3663 | } | 
|---|
| 3664 |  | 
|---|
| 3665 | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) | 
|---|
| 3666 | { | 
|---|
| 3667 | } | 
|---|
| 3668 |  | 
|---|
| 3669 | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) | 
|---|
| 3670 | { | 
|---|
| 3671 | } | 
|---|
| 3672 |  | 
|---|
| 3673 | static inline void update_scan_period(struct task_struct *p, int new_cpu) | 
|---|
| 3674 | { | 
|---|
| 3675 | } | 
|---|
| 3676 |  | 
|---|
| 3677 | #endif /* !CONFIG_NUMA_BALANCING */ | 
|---|
| 3678 |  | 
|---|
| 3679 | static void | 
|---|
| 3680 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 3681 | { | 
|---|
| 3682 | update_load_add(lw: &cfs_rq->load, inc: se->load.weight); | 
|---|
| 3683 | if (entity_is_task(se)) { | 
|---|
| 3684 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 3685 |  | 
|---|
| 3686 | account_numa_enqueue(rq, p: task_of(se)); | 
|---|
| 3687 | list_add(new: &se->group_node, head: &rq->cfs_tasks); | 
|---|
| 3688 | } | 
|---|
| 3689 | cfs_rq->nr_queued++; | 
|---|
| 3690 | } | 
|---|
| 3691 |  | 
|---|
| 3692 | static void | 
|---|
| 3693 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 3694 | { | 
|---|
| 3695 | update_load_sub(lw: &cfs_rq->load, dec: se->load.weight); | 
|---|
| 3696 | if (entity_is_task(se)) { | 
|---|
| 3697 | account_numa_dequeue(rq: rq_of(cfs_rq), p: task_of(se)); | 
|---|
| 3698 | list_del_init(entry: &se->group_node); | 
|---|
| 3699 | } | 
|---|
| 3700 | cfs_rq->nr_queued--; | 
|---|
| 3701 | } | 
|---|
| 3702 |  | 
|---|
| 3703 | /* | 
|---|
| 3704 | * Signed add and clamp on underflow. | 
|---|
| 3705 | * | 
|---|
| 3706 | * Explicitly do a load-store to ensure the intermediate value never hits | 
|---|
| 3707 | * memory. This allows lockless observations without ever seeing the negative | 
|---|
| 3708 | * values. | 
|---|
| 3709 | */ | 
|---|
| 3710 | #define add_positive(_ptr, _val) do {                           \ | 
|---|
| 3711 | typeof(_ptr) ptr = (_ptr);                              \ | 
|---|
| 3712 | typeof(_val) val = (_val);                              \ | 
|---|
| 3713 | typeof(*ptr) res, var = READ_ONCE(*ptr);                \ | 
|---|
| 3714 | \ | 
|---|
| 3715 | res = var + val;                                        \ | 
|---|
| 3716 | \ | 
|---|
| 3717 | if (val < 0 && res > var)                               \ | 
|---|
| 3718 | res = 0;                                        \ | 
|---|
| 3719 | \ | 
|---|
| 3720 | WRITE_ONCE(*ptr, res);                                  \ | 
|---|
| 3721 | } while (0) | 
|---|
| 3722 |  | 
|---|
| 3723 | /* | 
|---|
| 3724 | * Unsigned subtract and clamp on underflow. | 
|---|
| 3725 | * | 
|---|
| 3726 | * Explicitly do a load-store to ensure the intermediate value never hits | 
|---|
| 3727 | * memory. This allows lockless observations without ever seeing the negative | 
|---|
| 3728 | * values. | 
|---|
| 3729 | */ | 
|---|
| 3730 | #define sub_positive(_ptr, _val) do {				\ | 
|---|
| 3731 | typeof(_ptr) ptr = (_ptr);				\ | 
|---|
| 3732 | typeof(*ptr) val = (_val);				\ | 
|---|
| 3733 | typeof(*ptr) res, var = READ_ONCE(*ptr);		\ | 
|---|
| 3734 | res = var - val;					\ | 
|---|
| 3735 | if (res > var)						\ | 
|---|
| 3736 | res = 0;					\ | 
|---|
| 3737 | WRITE_ONCE(*ptr, res);					\ | 
|---|
| 3738 | } while (0) | 
|---|
| 3739 |  | 
|---|
| 3740 | /* | 
|---|
| 3741 | * Remove and clamp on negative, from a local variable. | 
|---|
| 3742 | * | 
|---|
| 3743 | * A variant of sub_positive(), which does not use explicit load-store | 
|---|
| 3744 | * and is thus optimized for local variable updates. | 
|---|
| 3745 | */ | 
|---|
| 3746 | #define lsub_positive(_ptr, _val) do {				\ | 
|---|
| 3747 | typeof(_ptr) ptr = (_ptr);				\ | 
|---|
| 3748 | *ptr -= min_t(typeof(*ptr), *ptr, _val);		\ | 
|---|
| 3749 | } while (0) | 
|---|
| 3750 |  | 
|---|
| 3751 | static inline void | 
|---|
| 3752 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 3753 | { | 
|---|
| 3754 | cfs_rq->avg.load_avg += se->avg.load_avg; | 
|---|
| 3755 | cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; | 
|---|
| 3756 | } | 
|---|
| 3757 |  | 
|---|
| 3758 | static inline void | 
|---|
| 3759 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 3760 | { | 
|---|
| 3761 | sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); | 
|---|
| 3762 | sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); | 
|---|
| 3763 | /* See update_cfs_rq_load_avg() */ | 
|---|
| 3764 | cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, | 
|---|
| 3765 | cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); | 
|---|
| 3766 | } | 
|---|
| 3767 |  | 
|---|
| 3768 | static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); | 
|---|
| 3769 |  | 
|---|
| 3770 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | 
|---|
| 3771 | unsigned long weight) | 
|---|
| 3772 | { | 
|---|
| 3773 | bool curr = cfs_rq->curr == se; | 
|---|
| 3774 |  | 
|---|
| 3775 | if (se->on_rq) { | 
|---|
| 3776 | /* commit outstanding execution time */ | 
|---|
| 3777 | update_curr(cfs_rq); | 
|---|
| 3778 | update_entity_lag(cfs_rq, se); | 
|---|
| 3779 | se->deadline -= se->vruntime; | 
|---|
| 3780 | se->rel_deadline = 1; | 
|---|
| 3781 | cfs_rq->nr_queued--; | 
|---|
| 3782 | if (!curr) | 
|---|
| 3783 | __dequeue_entity(cfs_rq, se); | 
|---|
| 3784 | update_load_sub(lw: &cfs_rq->load, dec: se->load.weight); | 
|---|
| 3785 | } | 
|---|
| 3786 | dequeue_load_avg(cfs_rq, se); | 
|---|
| 3787 |  | 
|---|
| 3788 | /* | 
|---|
| 3789 | * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), | 
|---|
| 3790 | * we need to scale se->vlag when w_i changes. | 
|---|
| 3791 | */ | 
|---|
| 3792 | se->vlag = div_s64(dividend: se->vlag * se->load.weight, divisor: weight); | 
|---|
| 3793 | if (se->rel_deadline) | 
|---|
| 3794 | se->deadline = div_s64(dividend: se->deadline * se->load.weight, divisor: weight); | 
|---|
| 3795 |  | 
|---|
| 3796 | update_load_set(lw: &se->load, w: weight); | 
|---|
| 3797 |  | 
|---|
| 3798 | do { | 
|---|
| 3799 | u32 divider = get_pelt_divider(avg: &se->avg); | 
|---|
| 3800 |  | 
|---|
| 3801 | se->avg.load_avg = div_u64(dividend: se_weight(se) * se->avg.load_sum, divisor: divider); | 
|---|
| 3802 | } while (0); | 
|---|
| 3803 |  | 
|---|
| 3804 | enqueue_load_avg(cfs_rq, se); | 
|---|
| 3805 | if (se->on_rq) { | 
|---|
| 3806 | place_entity(cfs_rq, se, flags: 0); | 
|---|
| 3807 | update_load_add(lw: &cfs_rq->load, inc: se->load.weight); | 
|---|
| 3808 | if (!curr) | 
|---|
| 3809 | __enqueue_entity(cfs_rq, se); | 
|---|
| 3810 | cfs_rq->nr_queued++; | 
|---|
| 3811 |  | 
|---|
| 3812 | /* | 
|---|
| 3813 | * The entity's vruntime has been adjusted, so let's check | 
|---|
| 3814 | * whether the rq-wide min_vruntime needs updated too. Since | 
|---|
| 3815 | * the calculations above require stable min_vruntime rather | 
|---|
| 3816 | * than up-to-date one, we do the update at the end of the | 
|---|
| 3817 | * reweight process. | 
|---|
| 3818 | */ | 
|---|
| 3819 | update_min_vruntime(cfs_rq); | 
|---|
| 3820 | } | 
|---|
| 3821 | } | 
|---|
| 3822 |  | 
|---|
| 3823 | static void reweight_task_fair(struct rq *rq, struct task_struct *p, | 
|---|
| 3824 | const struct load_weight *lw) | 
|---|
| 3825 | { | 
|---|
| 3826 | struct sched_entity *se = &p->se; | 
|---|
| 3827 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 3828 | struct load_weight *load = &se->load; | 
|---|
| 3829 |  | 
|---|
| 3830 | reweight_entity(cfs_rq, se, weight: lw->weight); | 
|---|
| 3831 | load->inv_weight = lw->inv_weight; | 
|---|
| 3832 | } | 
|---|
| 3833 |  | 
|---|
| 3834 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); | 
|---|
| 3835 |  | 
|---|
| 3836 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 3837 | /* | 
|---|
| 3838 | * All this does is approximate the hierarchical proportion which includes that | 
|---|
| 3839 | * global sum we all love to hate. | 
|---|
| 3840 | * | 
|---|
| 3841 | * That is, the weight of a group entity, is the proportional share of the | 
|---|
| 3842 | * group weight based on the group runqueue weights. That is: | 
|---|
| 3843 | * | 
|---|
| 3844 | *                     tg->weight * grq->load.weight | 
|---|
| 3845 | *   ge->load.weight = -----------------------------               (1) | 
|---|
| 3846 | *                       \Sum grq->load.weight | 
|---|
| 3847 | * | 
|---|
| 3848 | * Now, because computing that sum is prohibitively expensive to compute (been | 
|---|
| 3849 | * there, done that) we approximate it with this average stuff. The average | 
|---|
| 3850 | * moves slower and therefore the approximation is cheaper and more stable. | 
|---|
| 3851 | * | 
|---|
| 3852 | * So instead of the above, we substitute: | 
|---|
| 3853 | * | 
|---|
| 3854 | *   grq->load.weight -> grq->avg.load_avg                         (2) | 
|---|
| 3855 | * | 
|---|
| 3856 | * which yields the following: | 
|---|
| 3857 | * | 
|---|
| 3858 | *                     tg->weight * grq->avg.load_avg | 
|---|
| 3859 | *   ge->load.weight = ------------------------------              (3) | 
|---|
| 3860 | *                             tg->load_avg | 
|---|
| 3861 | * | 
|---|
| 3862 | * Where: tg->load_avg ~= \Sum grq->avg.load_avg | 
|---|
| 3863 | * | 
|---|
| 3864 | * That is shares_avg, and it is right (given the approximation (2)). | 
|---|
| 3865 | * | 
|---|
| 3866 | * The problem with it is that because the average is slow -- it was designed | 
|---|
| 3867 | * to be exactly that of course -- this leads to transients in boundary | 
|---|
| 3868 | * conditions. In specific, the case where the group was idle and we start the | 
|---|
| 3869 | * one task. It takes time for our CPU's grq->avg.load_avg to build up, | 
|---|
| 3870 | * yielding bad latency etc.. | 
|---|
| 3871 | * | 
|---|
| 3872 | * Now, in that special case (1) reduces to: | 
|---|
| 3873 | * | 
|---|
| 3874 | *                     tg->weight * grq->load.weight | 
|---|
| 3875 | *   ge->load.weight = ----------------------------- = tg->weight   (4) | 
|---|
| 3876 | *                         grp->load.weight | 
|---|
| 3877 | * | 
|---|
| 3878 | * That is, the sum collapses because all other CPUs are idle; the UP scenario. | 
|---|
| 3879 | * | 
|---|
| 3880 | * So what we do is modify our approximation (3) to approach (4) in the (near) | 
|---|
| 3881 | * UP case, like: | 
|---|
| 3882 | * | 
|---|
| 3883 | *   ge->load.weight = | 
|---|
| 3884 | * | 
|---|
| 3885 | *              tg->weight * grq->load.weight | 
|---|
| 3886 | *     ---------------------------------------------------         (5) | 
|---|
| 3887 | *     tg->load_avg - grq->avg.load_avg + grq->load.weight | 
|---|
| 3888 | * | 
|---|
| 3889 | * But because grq->load.weight can drop to 0, resulting in a divide by zero, | 
|---|
| 3890 | * we need to use grq->avg.load_avg as its lower bound, which then gives: | 
|---|
| 3891 | * | 
|---|
| 3892 | * | 
|---|
| 3893 | *                     tg->weight * grq->load.weight | 
|---|
| 3894 | *   ge->load.weight = -----------------------------		   (6) | 
|---|
| 3895 | *                             tg_load_avg' | 
|---|
| 3896 | * | 
|---|
| 3897 | * Where: | 
|---|
| 3898 | * | 
|---|
| 3899 | *   tg_load_avg' = tg->load_avg - grq->avg.load_avg + | 
|---|
| 3900 | *                  max(grq->load.weight, grq->avg.load_avg) | 
|---|
| 3901 | * | 
|---|
| 3902 | * And that is shares_weight and is icky. In the (near) UP case it approaches | 
|---|
| 3903 | * (4) while in the normal case it approaches (3). It consistently | 
|---|
| 3904 | * overestimates the ge->load.weight and therefore: | 
|---|
| 3905 | * | 
|---|
| 3906 | *   \Sum ge->load.weight >= tg->weight | 
|---|
| 3907 | * | 
|---|
| 3908 | * hence icky! | 
|---|
| 3909 | */ | 
|---|
| 3910 | static long calc_group_shares(struct cfs_rq *cfs_rq) | 
|---|
| 3911 | { | 
|---|
| 3912 | long tg_weight, tg_shares, load, shares; | 
|---|
| 3913 | struct task_group *tg = cfs_rq->tg; | 
|---|
| 3914 |  | 
|---|
| 3915 | tg_shares = READ_ONCE(tg->shares); | 
|---|
| 3916 |  | 
|---|
| 3917 | load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); | 
|---|
| 3918 |  | 
|---|
| 3919 | tg_weight = atomic_long_read(v: &tg->load_avg); | 
|---|
| 3920 |  | 
|---|
| 3921 | /* Ensure tg_weight >= load */ | 
|---|
| 3922 | tg_weight -= cfs_rq->tg_load_avg_contrib; | 
|---|
| 3923 | tg_weight += load; | 
|---|
| 3924 |  | 
|---|
| 3925 | shares = (tg_shares * load); | 
|---|
| 3926 | if (tg_weight) | 
|---|
| 3927 | shares /= tg_weight; | 
|---|
| 3928 |  | 
|---|
| 3929 | /* | 
|---|
| 3930 | * MIN_SHARES has to be unscaled here to support per-CPU partitioning | 
|---|
| 3931 | * of a group with small tg->shares value. It is a floor value which is | 
|---|
| 3932 | * assigned as a minimum load.weight to the sched_entity representing | 
|---|
| 3933 | * the group on a CPU. | 
|---|
| 3934 | * | 
|---|
| 3935 | * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 | 
|---|
| 3936 | * on an 8-core system with 8 tasks each runnable on one CPU shares has | 
|---|
| 3937 | * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In | 
|---|
| 3938 | * case no task is runnable on a CPU MIN_SHARES=2 should be returned | 
|---|
| 3939 | * instead of 0. | 
|---|
| 3940 | */ | 
|---|
| 3941 | return clamp_t(long, shares, MIN_SHARES, tg_shares); | 
|---|
| 3942 | } | 
|---|
| 3943 |  | 
|---|
| 3944 | /* | 
|---|
| 3945 | * Recomputes the group entity based on the current state of its group | 
|---|
| 3946 | * runqueue. | 
|---|
| 3947 | */ | 
|---|
| 3948 | static void update_cfs_group(struct sched_entity *se) | 
|---|
| 3949 | { | 
|---|
| 3950 | struct cfs_rq *gcfs_rq = group_cfs_rq(grp: se); | 
|---|
| 3951 | long shares; | 
|---|
| 3952 |  | 
|---|
| 3953 | /* | 
|---|
| 3954 | * When a group becomes empty, preserve its weight. This matters for | 
|---|
| 3955 | * DELAY_DEQUEUE. | 
|---|
| 3956 | */ | 
|---|
| 3957 | if (!gcfs_rq || !gcfs_rq->load.weight) | 
|---|
| 3958 | return; | 
|---|
| 3959 |  | 
|---|
| 3960 | shares = calc_group_shares(cfs_rq: gcfs_rq); | 
|---|
| 3961 | if (unlikely(se->load.weight != shares)) | 
|---|
| 3962 | reweight_entity(cfs_rq: cfs_rq_of(se), se, weight: shares); | 
|---|
| 3963 | } | 
|---|
| 3964 |  | 
|---|
| 3965 | #else /* !CONFIG_FAIR_GROUP_SCHED: */ | 
|---|
| 3966 | static inline void update_cfs_group(struct sched_entity *se) | 
|---|
| 3967 | { | 
|---|
| 3968 | } | 
|---|
| 3969 | #endif /* !CONFIG_FAIR_GROUP_SCHED */ | 
|---|
| 3970 |  | 
|---|
| 3971 | static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) | 
|---|
| 3972 | { | 
|---|
| 3973 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 3974 |  | 
|---|
| 3975 | if (&rq->cfs == cfs_rq) { | 
|---|
| 3976 | /* | 
|---|
| 3977 | * There are a few boundary cases this might miss but it should | 
|---|
| 3978 | * get called often enough that that should (hopefully) not be | 
|---|
| 3979 | * a real problem. | 
|---|
| 3980 | * | 
|---|
| 3981 | * It will not get called when we go idle, because the idle | 
|---|
| 3982 | * thread is a different class (!fair), nor will the utilization | 
|---|
| 3983 | * number include things like RT tasks. | 
|---|
| 3984 | * | 
|---|
| 3985 | * As is, the util number is not freq-invariant (we'd have to | 
|---|
| 3986 | * implement arch_scale_freq_capacity() for that). | 
|---|
| 3987 | * | 
|---|
| 3988 | * See cpu_util_cfs(). | 
|---|
| 3989 | */ | 
|---|
| 3990 | cpufreq_update_util(rq, flags); | 
|---|
| 3991 | } | 
|---|
| 3992 | } | 
|---|
| 3993 |  | 
|---|
| 3994 | static inline bool load_avg_is_decayed(struct sched_avg *sa) | 
|---|
| 3995 | { | 
|---|
| 3996 | if (sa->load_sum) | 
|---|
| 3997 | return false; | 
|---|
| 3998 |  | 
|---|
| 3999 | if (sa->util_sum) | 
|---|
| 4000 | return false; | 
|---|
| 4001 |  | 
|---|
| 4002 | if (sa->runnable_sum) | 
|---|
| 4003 | return false; | 
|---|
| 4004 |  | 
|---|
| 4005 | /* | 
|---|
| 4006 | * _avg must be null when _sum are null because _avg = _sum / divider | 
|---|
| 4007 | * Make sure that rounding and/or propagation of PELT values never | 
|---|
| 4008 | * break this. | 
|---|
| 4009 | */ | 
|---|
| 4010 | WARN_ON_ONCE(sa->load_avg || | 
|---|
| 4011 | sa->util_avg || | 
|---|
| 4012 | sa->runnable_avg); | 
|---|
| 4013 |  | 
|---|
| 4014 | return true; | 
|---|
| 4015 | } | 
|---|
| 4016 |  | 
|---|
| 4017 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) | 
|---|
| 4018 | { | 
|---|
| 4019 | return u64_u32_load_copy(cfs_rq->avg.last_update_time, | 
|---|
| 4020 | cfs_rq->last_update_time_copy); | 
|---|
| 4021 | } | 
|---|
| 4022 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 4023 | /* | 
|---|
| 4024 | * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list | 
|---|
| 4025 | * immediately before a parent cfs_rq, and cfs_rqs are removed from the list | 
|---|
| 4026 | * bottom-up, we only have to test whether the cfs_rq before us on the list | 
|---|
| 4027 | * is our child. | 
|---|
| 4028 | * If cfs_rq is not on the list, test whether a child needs its to be added to | 
|---|
| 4029 | * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details). | 
|---|
| 4030 | */ | 
|---|
| 4031 | static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) | 
|---|
| 4032 | { | 
|---|
| 4033 | struct cfs_rq *prev_cfs_rq; | 
|---|
| 4034 | struct list_head *prev; | 
|---|
| 4035 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 4036 |  | 
|---|
| 4037 | if (cfs_rq->on_list) { | 
|---|
| 4038 | prev = cfs_rq->leaf_cfs_rq_list.prev; | 
|---|
| 4039 | } else { | 
|---|
| 4040 | prev = rq->tmp_alone_branch; | 
|---|
| 4041 | } | 
|---|
| 4042 |  | 
|---|
| 4043 | if (prev == &rq->leaf_cfs_rq_list) | 
|---|
| 4044 | return false; | 
|---|
| 4045 |  | 
|---|
| 4046 | prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); | 
|---|
| 4047 |  | 
|---|
| 4048 | return (prev_cfs_rq->tg->parent == cfs_rq->tg); | 
|---|
| 4049 | } | 
|---|
| 4050 |  | 
|---|
| 4051 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) | 
|---|
| 4052 | { | 
|---|
| 4053 | if (cfs_rq->load.weight) | 
|---|
| 4054 | return false; | 
|---|
| 4055 |  | 
|---|
| 4056 | if (!load_avg_is_decayed(sa: &cfs_rq->avg)) | 
|---|
| 4057 | return false; | 
|---|
| 4058 |  | 
|---|
| 4059 | if (child_cfs_rq_on_list(cfs_rq)) | 
|---|
| 4060 | return false; | 
|---|
| 4061 |  | 
|---|
| 4062 | return true; | 
|---|
| 4063 | } | 
|---|
| 4064 |  | 
|---|
| 4065 | /** | 
|---|
| 4066 | * update_tg_load_avg - update the tg's load avg | 
|---|
| 4067 | * @cfs_rq: the cfs_rq whose avg changed | 
|---|
| 4068 | * | 
|---|
| 4069 | * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. | 
|---|
| 4070 | * However, because tg->load_avg is a global value there are performance | 
|---|
| 4071 | * considerations. | 
|---|
| 4072 | * | 
|---|
| 4073 | * In order to avoid having to look at the other cfs_rq's, we use a | 
|---|
| 4074 | * differential update where we store the last value we propagated. This in | 
|---|
| 4075 | * turn allows skipping updates if the differential is 'small'. | 
|---|
| 4076 | * | 
|---|
| 4077 | * Updating tg's load_avg is necessary before update_cfs_share(). | 
|---|
| 4078 | */ | 
|---|
| 4079 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) | 
|---|
| 4080 | { | 
|---|
| 4081 | long delta; | 
|---|
| 4082 | u64 now; | 
|---|
| 4083 |  | 
|---|
| 4084 | /* | 
|---|
| 4085 | * No need to update load_avg for root_task_group as it is not used. | 
|---|
| 4086 | */ | 
|---|
| 4087 | if (cfs_rq->tg == &root_task_group) | 
|---|
| 4088 | return; | 
|---|
| 4089 |  | 
|---|
| 4090 | /* rq has been offline and doesn't contribute to the share anymore: */ | 
|---|
| 4091 | if (!cpu_active(cpu: cpu_of(rq: rq_of(cfs_rq)))) | 
|---|
| 4092 | return; | 
|---|
| 4093 |  | 
|---|
| 4094 | /* | 
|---|
| 4095 | * For migration heavy workloads, access to tg->load_avg can be | 
|---|
| 4096 | * unbound. Limit the update rate to at most once per ms. | 
|---|
| 4097 | */ | 
|---|
| 4098 | now = sched_clock_cpu(cpu: cpu_of(rq: rq_of(cfs_rq))); | 
|---|
| 4099 | if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) | 
|---|
| 4100 | return; | 
|---|
| 4101 |  | 
|---|
| 4102 | delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; | 
|---|
| 4103 | if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { | 
|---|
| 4104 | atomic_long_add(i: delta, v: &cfs_rq->tg->load_avg); | 
|---|
| 4105 | cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; | 
|---|
| 4106 | cfs_rq->last_update_tg_load_avg = now; | 
|---|
| 4107 | } | 
|---|
| 4108 | } | 
|---|
| 4109 |  | 
|---|
| 4110 | static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) | 
|---|
| 4111 | { | 
|---|
| 4112 | long delta; | 
|---|
| 4113 | u64 now; | 
|---|
| 4114 |  | 
|---|
| 4115 | /* | 
|---|
| 4116 | * No need to update load_avg for root_task_group, as it is not used. | 
|---|
| 4117 | */ | 
|---|
| 4118 | if (cfs_rq->tg == &root_task_group) | 
|---|
| 4119 | return; | 
|---|
| 4120 |  | 
|---|
| 4121 | now = sched_clock_cpu(cpu: cpu_of(rq: rq_of(cfs_rq))); | 
|---|
| 4122 | delta = 0 - cfs_rq->tg_load_avg_contrib; | 
|---|
| 4123 | atomic_long_add(i: delta, v: &cfs_rq->tg->load_avg); | 
|---|
| 4124 | cfs_rq->tg_load_avg_contrib = 0; | 
|---|
| 4125 | cfs_rq->last_update_tg_load_avg = now; | 
|---|
| 4126 | } | 
|---|
| 4127 |  | 
|---|
| 4128 | /* CPU offline callback: */ | 
|---|
| 4129 | static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) | 
|---|
| 4130 | { | 
|---|
| 4131 | struct task_group *tg; | 
|---|
| 4132 |  | 
|---|
| 4133 | lockdep_assert_rq_held(rq); | 
|---|
| 4134 |  | 
|---|
| 4135 | /* | 
|---|
| 4136 | * The rq clock has already been updated in | 
|---|
| 4137 | * set_rq_offline(), so we should skip updating | 
|---|
| 4138 | * the rq clock again in unthrottle_cfs_rq(). | 
|---|
| 4139 | */ | 
|---|
| 4140 | rq_clock_start_loop_update(rq); | 
|---|
| 4141 |  | 
|---|
| 4142 | rcu_read_lock(); | 
|---|
| 4143 | list_for_each_entry_rcu(tg, &task_groups, list) { | 
|---|
| 4144 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|---|
| 4145 |  | 
|---|
| 4146 | clear_tg_load_avg(cfs_rq); | 
|---|
| 4147 | } | 
|---|
| 4148 | rcu_read_unlock(); | 
|---|
| 4149 |  | 
|---|
| 4150 | rq_clock_stop_loop_update(rq); | 
|---|
| 4151 | } | 
|---|
| 4152 |  | 
|---|
| 4153 | /* | 
|---|
| 4154 | * Called within set_task_rq() right before setting a task's CPU. The | 
|---|
| 4155 | * caller only guarantees p->pi_lock is held; no other assumptions, | 
|---|
| 4156 | * including the state of rq->lock, should be made. | 
|---|
| 4157 | */ | 
|---|
| 4158 | void set_task_rq_fair(struct sched_entity *se, | 
|---|
| 4159 | struct cfs_rq *prev, struct cfs_rq *next) | 
|---|
| 4160 | { | 
|---|
| 4161 | u64 p_last_update_time; | 
|---|
| 4162 | u64 n_last_update_time; | 
|---|
| 4163 |  | 
|---|
| 4164 | if (!sched_feat(ATTACH_AGE_LOAD)) | 
|---|
| 4165 | return; | 
|---|
| 4166 |  | 
|---|
| 4167 | /* | 
|---|
| 4168 | * We are supposed to update the task to "current" time, then its up to | 
|---|
| 4169 | * date and ready to go to new CPU/cfs_rq. But we have difficulty in | 
|---|
| 4170 | * getting what current time is, so simply throw away the out-of-date | 
|---|
| 4171 | * time. This will result in the wakee task is less decayed, but giving | 
|---|
| 4172 | * the wakee more load sounds not bad. | 
|---|
| 4173 | */ | 
|---|
| 4174 | if (!(se->avg.last_update_time && prev)) | 
|---|
| 4175 | return; | 
|---|
| 4176 |  | 
|---|
| 4177 | p_last_update_time = cfs_rq_last_update_time(cfs_rq: prev); | 
|---|
| 4178 | n_last_update_time = cfs_rq_last_update_time(cfs_rq: next); | 
|---|
| 4179 |  | 
|---|
| 4180 | __update_load_avg_blocked_se(now: p_last_update_time, se); | 
|---|
| 4181 | se->avg.last_update_time = n_last_update_time; | 
|---|
| 4182 | } | 
|---|
| 4183 |  | 
|---|
| 4184 | /* | 
|---|
| 4185 | * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to | 
|---|
| 4186 | * propagate its contribution. The key to this propagation is the invariant | 
|---|
| 4187 | * that for each group: | 
|---|
| 4188 | * | 
|---|
| 4189 | *   ge->avg == grq->avg						(1) | 
|---|
| 4190 | * | 
|---|
| 4191 | * _IFF_ we look at the pure running and runnable sums. Because they | 
|---|
| 4192 | * represent the very same entity, just at different points in the hierarchy. | 
|---|
| 4193 | * | 
|---|
| 4194 | * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial | 
|---|
| 4195 | * and simply copies the running/runnable sum over (but still wrong, because | 
|---|
| 4196 | * the group entity and group rq do not have their PELT windows aligned). | 
|---|
| 4197 | * | 
|---|
| 4198 | * However, update_tg_cfs_load() is more complex. So we have: | 
|---|
| 4199 | * | 
|---|
| 4200 | *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2) | 
|---|
| 4201 | * | 
|---|
| 4202 | * And since, like util, the runnable part should be directly transferable, | 
|---|
| 4203 | * the following would _appear_ to be the straight forward approach: | 
|---|
| 4204 | * | 
|---|
| 4205 | *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3) | 
|---|
| 4206 | * | 
|---|
| 4207 | * And per (1) we have: | 
|---|
| 4208 | * | 
|---|
| 4209 | *   ge->avg.runnable_avg == grq->avg.runnable_avg | 
|---|
| 4210 | * | 
|---|
| 4211 | * Which gives: | 
|---|
| 4212 | * | 
|---|
| 4213 | *                      ge->load.weight * grq->avg.load_avg | 
|---|
| 4214 | *   ge->avg.load_avg = -----------------------------------		(4) | 
|---|
| 4215 | *                               grq->load.weight | 
|---|
| 4216 | * | 
|---|
| 4217 | * Except that is wrong! | 
|---|
| 4218 | * | 
|---|
| 4219 | * Because while for entities historical weight is not important and we | 
|---|
| 4220 | * really only care about our future and therefore can consider a pure | 
|---|
| 4221 | * runnable sum, runqueues can NOT do this. | 
|---|
| 4222 | * | 
|---|
| 4223 | * We specifically want runqueues to have a load_avg that includes | 
|---|
| 4224 | * historical weights. Those represent the blocked load, the load we expect | 
|---|
| 4225 | * to (shortly) return to us. This only works by keeping the weights as | 
|---|
| 4226 | * integral part of the sum. We therefore cannot decompose as per (3). | 
|---|
| 4227 | * | 
|---|
| 4228 | * Another reason this doesn't work is that runnable isn't a 0-sum entity. | 
|---|
| 4229 | * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the | 
|---|
| 4230 | * rq itself is runnable anywhere between 2/3 and 1 depending on how the | 
|---|
| 4231 | * runnable section of these tasks overlap (or not). If they were to perfectly | 
|---|
| 4232 | * align the rq as a whole would be runnable 2/3 of the time. If however we | 
|---|
| 4233 | * always have at least 1 runnable task, the rq as a whole is always runnable. | 
|---|
| 4234 | * | 
|---|
| 4235 | * So we'll have to approximate.. :/ | 
|---|
| 4236 | * | 
|---|
| 4237 | * Given the constraint: | 
|---|
| 4238 | * | 
|---|
| 4239 | *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX | 
|---|
| 4240 | * | 
|---|
| 4241 | * We can construct a rule that adds runnable to a rq by assuming minimal | 
|---|
| 4242 | * overlap. | 
|---|
| 4243 | * | 
|---|
| 4244 | * On removal, we'll assume each task is equally runnable; which yields: | 
|---|
| 4245 | * | 
|---|
| 4246 | *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight | 
|---|
| 4247 | * | 
|---|
| 4248 | * XXX: only do this for the part of runnable > running ? | 
|---|
| 4249 | * | 
|---|
| 4250 | */ | 
|---|
| 4251 | static inline void | 
|---|
| 4252 | update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) | 
|---|
| 4253 | { | 
|---|
| 4254 | long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; | 
|---|
| 4255 | u32 new_sum, divider; | 
|---|
| 4256 |  | 
|---|
| 4257 | /* Nothing to update */ | 
|---|
| 4258 | if (!delta_avg) | 
|---|
| 4259 | return; | 
|---|
| 4260 |  | 
|---|
| 4261 | /* | 
|---|
| 4262 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | 
|---|
| 4263 | * See ___update_load_avg() for details. | 
|---|
| 4264 | */ | 
|---|
| 4265 | divider = get_pelt_divider(avg: &cfs_rq->avg); | 
|---|
| 4266 |  | 
|---|
| 4267 |  | 
|---|
| 4268 | /* Set new sched_entity's utilization */ | 
|---|
| 4269 | se->avg.util_avg = gcfs_rq->avg.util_avg; | 
|---|
| 4270 | new_sum = se->avg.util_avg * divider; | 
|---|
| 4271 | delta_sum = (long)new_sum - (long)se->avg.util_sum; | 
|---|
| 4272 | se->avg.util_sum = new_sum; | 
|---|
| 4273 |  | 
|---|
| 4274 | /* Update parent cfs_rq utilization */ | 
|---|
| 4275 | add_positive(&cfs_rq->avg.util_avg, delta_avg); | 
|---|
| 4276 | add_positive(&cfs_rq->avg.util_sum, delta_sum); | 
|---|
| 4277 |  | 
|---|
| 4278 | /* See update_cfs_rq_load_avg() */ | 
|---|
| 4279 | cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, | 
|---|
| 4280 | cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); | 
|---|
| 4281 | } | 
|---|
| 4282 |  | 
|---|
| 4283 | static inline void | 
|---|
| 4284 | update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) | 
|---|
| 4285 | { | 
|---|
| 4286 | long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; | 
|---|
| 4287 | u32 new_sum, divider; | 
|---|
| 4288 |  | 
|---|
| 4289 | /* Nothing to update */ | 
|---|
| 4290 | if (!delta_avg) | 
|---|
| 4291 | return; | 
|---|
| 4292 |  | 
|---|
| 4293 | /* | 
|---|
| 4294 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | 
|---|
| 4295 | * See ___update_load_avg() for details. | 
|---|
| 4296 | */ | 
|---|
| 4297 | divider = get_pelt_divider(avg: &cfs_rq->avg); | 
|---|
| 4298 |  | 
|---|
| 4299 | /* Set new sched_entity's runnable */ | 
|---|
| 4300 | se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; | 
|---|
| 4301 | new_sum = se->avg.runnable_avg * divider; | 
|---|
| 4302 | delta_sum = (long)new_sum - (long)se->avg.runnable_sum; | 
|---|
| 4303 | se->avg.runnable_sum = new_sum; | 
|---|
| 4304 |  | 
|---|
| 4305 | /* Update parent cfs_rq runnable */ | 
|---|
| 4306 | add_positive(&cfs_rq->avg.runnable_avg, delta_avg); | 
|---|
| 4307 | add_positive(&cfs_rq->avg.runnable_sum, delta_sum); | 
|---|
| 4308 | /* See update_cfs_rq_load_avg() */ | 
|---|
| 4309 | cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, | 
|---|
| 4310 | cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); | 
|---|
| 4311 | } | 
|---|
| 4312 |  | 
|---|
| 4313 | static inline void | 
|---|
| 4314 | update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) | 
|---|
| 4315 | { | 
|---|
| 4316 | long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; | 
|---|
| 4317 | unsigned long load_avg; | 
|---|
| 4318 | u64 load_sum = 0; | 
|---|
| 4319 | s64 delta_sum; | 
|---|
| 4320 | u32 divider; | 
|---|
| 4321 |  | 
|---|
| 4322 | if (!runnable_sum) | 
|---|
| 4323 | return; | 
|---|
| 4324 |  | 
|---|
| 4325 | gcfs_rq->prop_runnable_sum = 0; | 
|---|
| 4326 |  | 
|---|
| 4327 | /* | 
|---|
| 4328 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | 
|---|
| 4329 | * See ___update_load_avg() for details. | 
|---|
| 4330 | */ | 
|---|
| 4331 | divider = get_pelt_divider(avg: &cfs_rq->avg); | 
|---|
| 4332 |  | 
|---|
| 4333 | if (runnable_sum >= 0) { | 
|---|
| 4334 | /* | 
|---|
| 4335 | * Add runnable; clip at LOAD_AVG_MAX. Reflects that until | 
|---|
| 4336 | * the CPU is saturated running == runnable. | 
|---|
| 4337 | */ | 
|---|
| 4338 | runnable_sum += se->avg.load_sum; | 
|---|
| 4339 | runnable_sum = min_t(long, runnable_sum, divider); | 
|---|
| 4340 | } else { | 
|---|
| 4341 | /* | 
|---|
| 4342 | * Estimate the new unweighted runnable_sum of the gcfs_rq by | 
|---|
| 4343 | * assuming all tasks are equally runnable. | 
|---|
| 4344 | */ | 
|---|
| 4345 | if (scale_load_down(gcfs_rq->load.weight)) { | 
|---|
| 4346 | load_sum = div_u64(dividend: gcfs_rq->avg.load_sum, | 
|---|
| 4347 | scale_load_down(gcfs_rq->load.weight)); | 
|---|
| 4348 | } | 
|---|
| 4349 |  | 
|---|
| 4350 | /* But make sure to not inflate se's runnable */ | 
|---|
| 4351 | runnable_sum = min(se->avg.load_sum, load_sum); | 
|---|
| 4352 | } | 
|---|
| 4353 |  | 
|---|
| 4354 | /* | 
|---|
| 4355 | * runnable_sum can't be lower than running_sum | 
|---|
| 4356 | * Rescale running sum to be in the same range as runnable sum | 
|---|
| 4357 | * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT] | 
|---|
| 4358 | * runnable_sum is in [0 : LOAD_AVG_MAX] | 
|---|
| 4359 | */ | 
|---|
| 4360 | running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; | 
|---|
| 4361 | runnable_sum = max(runnable_sum, running_sum); | 
|---|
| 4362 |  | 
|---|
| 4363 | load_sum = se_weight(se) * runnable_sum; | 
|---|
| 4364 | load_avg = div_u64(dividend: load_sum, divisor: divider); | 
|---|
| 4365 |  | 
|---|
| 4366 | delta_avg = load_avg - se->avg.load_avg; | 
|---|
| 4367 | if (!delta_avg) | 
|---|
| 4368 | return; | 
|---|
| 4369 |  | 
|---|
| 4370 | delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; | 
|---|
| 4371 |  | 
|---|
| 4372 | se->avg.load_sum = runnable_sum; | 
|---|
| 4373 | se->avg.load_avg = load_avg; | 
|---|
| 4374 | add_positive(&cfs_rq->avg.load_avg, delta_avg); | 
|---|
| 4375 | add_positive(&cfs_rq->avg.load_sum, delta_sum); | 
|---|
| 4376 | /* See update_cfs_rq_load_avg() */ | 
|---|
| 4377 | cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, | 
|---|
| 4378 | cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); | 
|---|
| 4379 | } | 
|---|
| 4380 |  | 
|---|
| 4381 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) | 
|---|
| 4382 | { | 
|---|
| 4383 | cfs_rq->propagate = 1; | 
|---|
| 4384 | cfs_rq->prop_runnable_sum += runnable_sum; | 
|---|
| 4385 | } | 
|---|
| 4386 |  | 
|---|
| 4387 | /* Update task and its cfs_rq load average */ | 
|---|
| 4388 | static inline int propagate_entity_load_avg(struct sched_entity *se) | 
|---|
| 4389 | { | 
|---|
| 4390 | struct cfs_rq *cfs_rq, *gcfs_rq; | 
|---|
| 4391 |  | 
|---|
| 4392 | if (entity_is_task(se)) | 
|---|
| 4393 | return 0; | 
|---|
| 4394 |  | 
|---|
| 4395 | gcfs_rq = group_cfs_rq(grp: se); | 
|---|
| 4396 | if (!gcfs_rq->propagate) | 
|---|
| 4397 | return 0; | 
|---|
| 4398 |  | 
|---|
| 4399 | gcfs_rq->propagate = 0; | 
|---|
| 4400 |  | 
|---|
| 4401 | cfs_rq = cfs_rq_of(se); | 
|---|
| 4402 |  | 
|---|
| 4403 | add_tg_cfs_propagate(cfs_rq, runnable_sum: gcfs_rq->prop_runnable_sum); | 
|---|
| 4404 |  | 
|---|
| 4405 | update_tg_cfs_util(cfs_rq, se, gcfs_rq); | 
|---|
| 4406 | update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); | 
|---|
| 4407 | update_tg_cfs_load(cfs_rq, se, gcfs_rq); | 
|---|
| 4408 |  | 
|---|
| 4409 | trace_pelt_cfs_tp(cfs_rq); | 
|---|
| 4410 | trace_pelt_se_tp(se); | 
|---|
| 4411 |  | 
|---|
| 4412 | return 1; | 
|---|
| 4413 | } | 
|---|
| 4414 |  | 
|---|
| 4415 | /* | 
|---|
| 4416 | * Check if we need to update the load and the utilization of a blocked | 
|---|
| 4417 | * group_entity: | 
|---|
| 4418 | */ | 
|---|
| 4419 | static inline bool skip_blocked_update(struct sched_entity *se) | 
|---|
| 4420 | { | 
|---|
| 4421 | struct cfs_rq *gcfs_rq = group_cfs_rq(grp: se); | 
|---|
| 4422 |  | 
|---|
| 4423 | /* | 
|---|
| 4424 | * If sched_entity still have not zero load or utilization, we have to | 
|---|
| 4425 | * decay it: | 
|---|
| 4426 | */ | 
|---|
| 4427 | if (se->avg.load_avg || se->avg.util_avg) | 
|---|
| 4428 | return false; | 
|---|
| 4429 |  | 
|---|
| 4430 | /* | 
|---|
| 4431 | * If there is a pending propagation, we have to update the load and | 
|---|
| 4432 | * the utilization of the sched_entity: | 
|---|
| 4433 | */ | 
|---|
| 4434 | if (gcfs_rq->propagate) | 
|---|
| 4435 | return false; | 
|---|
| 4436 |  | 
|---|
| 4437 | /* | 
|---|
| 4438 | * Otherwise, the load and the utilization of the sched_entity is | 
|---|
| 4439 | * already zero and there is no pending propagation, so it will be a | 
|---|
| 4440 | * waste of time to try to decay it: | 
|---|
| 4441 | */ | 
|---|
| 4442 | return true; | 
|---|
| 4443 | } | 
|---|
| 4444 |  | 
|---|
| 4445 | #else /* !CONFIG_FAIR_GROUP_SCHED: */ | 
|---|
| 4446 |  | 
|---|
| 4447 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} | 
|---|
| 4448 |  | 
|---|
| 4449 | static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} | 
|---|
| 4450 |  | 
|---|
| 4451 | static inline int propagate_entity_load_avg(struct sched_entity *se) | 
|---|
| 4452 | { | 
|---|
| 4453 | return 0; | 
|---|
| 4454 | } | 
|---|
| 4455 |  | 
|---|
| 4456 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} | 
|---|
| 4457 |  | 
|---|
| 4458 | #endif /* !CONFIG_FAIR_GROUP_SCHED */ | 
|---|
| 4459 |  | 
|---|
| 4460 | #ifdef CONFIG_NO_HZ_COMMON | 
|---|
| 4461 | static inline void migrate_se_pelt_lag(struct sched_entity *se) | 
|---|
| 4462 | { | 
|---|
| 4463 | u64 throttled = 0, now, lut; | 
|---|
| 4464 | struct cfs_rq *cfs_rq; | 
|---|
| 4465 | struct rq *rq; | 
|---|
| 4466 | bool is_idle; | 
|---|
| 4467 |  | 
|---|
| 4468 | if (load_avg_is_decayed(sa: &se->avg)) | 
|---|
| 4469 | return; | 
|---|
| 4470 |  | 
|---|
| 4471 | cfs_rq = cfs_rq_of(se); | 
|---|
| 4472 | rq = rq_of(cfs_rq); | 
|---|
| 4473 |  | 
|---|
| 4474 | rcu_read_lock(); | 
|---|
| 4475 | is_idle = is_idle_task(rcu_dereference(rq->curr)); | 
|---|
| 4476 | rcu_read_unlock(); | 
|---|
| 4477 |  | 
|---|
| 4478 | /* | 
|---|
| 4479 | * The lag estimation comes with a cost we don't want to pay all the | 
|---|
| 4480 | * time. Hence, limiting to the case where the source CPU is idle and | 
|---|
| 4481 | * we know we are at the greatest risk to have an outdated clock. | 
|---|
| 4482 | */ | 
|---|
| 4483 | if (!is_idle) | 
|---|
| 4484 | return; | 
|---|
| 4485 |  | 
|---|
| 4486 | /* | 
|---|
| 4487 | * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: | 
|---|
| 4488 | * | 
|---|
| 4489 | *   last_update_time (the cfs_rq's last_update_time) | 
|---|
| 4490 | *	= cfs_rq_clock_pelt()@cfs_rq_idle | 
|---|
| 4491 | *      = rq_clock_pelt()@cfs_rq_idle | 
|---|
| 4492 | *        - cfs->throttled_clock_pelt_time@cfs_rq_idle | 
|---|
| 4493 | * | 
|---|
| 4494 | *   cfs_idle_lag (delta between rq's update and cfs_rq's update) | 
|---|
| 4495 | *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle | 
|---|
| 4496 | * | 
|---|
| 4497 | *   rq_idle_lag (delta between now and rq's update) | 
|---|
| 4498 | *      = sched_clock_cpu() - rq_clock()@rq_idle | 
|---|
| 4499 | * | 
|---|
| 4500 | * We can then write: | 
|---|
| 4501 | * | 
|---|
| 4502 | *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + | 
|---|
| 4503 | *          sched_clock_cpu() - rq_clock()@rq_idle | 
|---|
| 4504 | * Where: | 
|---|
| 4505 | *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle | 
|---|
| 4506 | *      rq_clock()@rq_idle      is rq->clock_idle | 
|---|
| 4507 | *      cfs->throttled_clock_pelt_time@cfs_rq_idle | 
|---|
| 4508 | *                              is cfs_rq->throttled_pelt_idle | 
|---|
| 4509 | */ | 
|---|
| 4510 |  | 
|---|
| 4511 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 4512 | throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); | 
|---|
| 4513 | /* The clock has been stopped for throttling */ | 
|---|
| 4514 | if (throttled == U64_MAX) | 
|---|
| 4515 | return; | 
|---|
| 4516 | #endif | 
|---|
| 4517 | now = u64_u32_load(rq->clock_pelt_idle); | 
|---|
| 4518 | /* | 
|---|
| 4519 | * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case | 
|---|
| 4520 | * is observed the old clock_pelt_idle value and the new clock_idle, | 
|---|
| 4521 | * which lead to an underestimation. The opposite would lead to an | 
|---|
| 4522 | * overestimation. | 
|---|
| 4523 | */ | 
|---|
| 4524 | smp_rmb(); | 
|---|
| 4525 | lut = cfs_rq_last_update_time(cfs_rq); | 
|---|
| 4526 |  | 
|---|
| 4527 | now -= throttled; | 
|---|
| 4528 | if (now < lut) | 
|---|
| 4529 | /* | 
|---|
| 4530 | * cfs_rq->avg.last_update_time is more recent than our | 
|---|
| 4531 | * estimation, let's use it. | 
|---|
| 4532 | */ | 
|---|
| 4533 | now = lut; | 
|---|
| 4534 | else | 
|---|
| 4535 | now += sched_clock_cpu(cpu: cpu_of(rq)) - u64_u32_load(rq->clock_idle); | 
|---|
| 4536 |  | 
|---|
| 4537 | __update_load_avg_blocked_se(now, se); | 
|---|
| 4538 | } | 
|---|
| 4539 | #else /* !CONFIG_NO_HZ_COMMON: */ | 
|---|
| 4540 | static void migrate_se_pelt_lag(struct sched_entity *se) {} | 
|---|
| 4541 | #endif /* !CONFIG_NO_HZ_COMMON */ | 
|---|
| 4542 |  | 
|---|
| 4543 | /** | 
|---|
| 4544 | * update_cfs_rq_load_avg - update the cfs_rq's load/util averages | 
|---|
| 4545 | * @now: current time, as per cfs_rq_clock_pelt() | 
|---|
| 4546 | * @cfs_rq: cfs_rq to update | 
|---|
| 4547 | * | 
|---|
| 4548 | * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) | 
|---|
| 4549 | * avg. The immediate corollary is that all (fair) tasks must be attached. | 
|---|
| 4550 | * | 
|---|
| 4551 | * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. | 
|---|
| 4552 | * | 
|---|
| 4553 | * Return: true if the load decayed or we removed load. | 
|---|
| 4554 | * | 
|---|
| 4555 | * Since both these conditions indicate a changed cfs_rq->avg.load we should | 
|---|
| 4556 | * call update_tg_load_avg() when this function returns true. | 
|---|
| 4557 | */ | 
|---|
| 4558 | static inline int | 
|---|
| 4559 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) | 
|---|
| 4560 | { | 
|---|
| 4561 | unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; | 
|---|
| 4562 | struct sched_avg *sa = &cfs_rq->avg; | 
|---|
| 4563 | int decayed = 0; | 
|---|
| 4564 |  | 
|---|
| 4565 | if (cfs_rq->removed.nr) { | 
|---|
| 4566 | unsigned long r; | 
|---|
| 4567 | u32 divider = get_pelt_divider(avg: &cfs_rq->avg); | 
|---|
| 4568 |  | 
|---|
| 4569 | raw_spin_lock(&cfs_rq->removed.lock); | 
|---|
| 4570 | swap(cfs_rq->removed.util_avg, removed_util); | 
|---|
| 4571 | swap(cfs_rq->removed.load_avg, removed_load); | 
|---|
| 4572 | swap(cfs_rq->removed.runnable_avg, removed_runnable); | 
|---|
| 4573 | cfs_rq->removed.nr = 0; | 
|---|
| 4574 | raw_spin_unlock(&cfs_rq->removed.lock); | 
|---|
| 4575 |  | 
|---|
| 4576 | r = removed_load; | 
|---|
| 4577 | sub_positive(&sa->load_avg, r); | 
|---|
| 4578 | sub_positive(&sa->load_sum, r * divider); | 
|---|
| 4579 | /* See sa->util_sum below */ | 
|---|
| 4580 | sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); | 
|---|
| 4581 |  | 
|---|
| 4582 | r = removed_util; | 
|---|
| 4583 | sub_positive(&sa->util_avg, r); | 
|---|
| 4584 | sub_positive(&sa->util_sum, r * divider); | 
|---|
| 4585 | /* | 
|---|
| 4586 | * Because of rounding, se->util_sum might ends up being +1 more than | 
|---|
| 4587 | * cfs->util_sum. Although this is not a problem by itself, detaching | 
|---|
| 4588 | * a lot of tasks with the rounding problem between 2 updates of | 
|---|
| 4589 | * util_avg (~1ms) can make cfs->util_sum becoming null whereas | 
|---|
| 4590 | * cfs_util_avg is not. | 
|---|
| 4591 | * Check that util_sum is still above its lower bound for the new | 
|---|
| 4592 | * util_avg. Given that period_contrib might have moved since the last | 
|---|
| 4593 | * sync, we are only sure that util_sum must be above or equal to | 
|---|
| 4594 | *    util_avg * minimum possible divider | 
|---|
| 4595 | */ | 
|---|
| 4596 | sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); | 
|---|
| 4597 |  | 
|---|
| 4598 | r = removed_runnable; | 
|---|
| 4599 | sub_positive(&sa->runnable_avg, r); | 
|---|
| 4600 | sub_positive(&sa->runnable_sum, r * divider); | 
|---|
| 4601 | /* See sa->util_sum above */ | 
|---|
| 4602 | sa->runnable_sum = max_t(u32, sa->runnable_sum, | 
|---|
| 4603 | sa->runnable_avg * PELT_MIN_DIVIDER); | 
|---|
| 4604 |  | 
|---|
| 4605 | /* | 
|---|
| 4606 | * removed_runnable is the unweighted version of removed_load so we | 
|---|
| 4607 | * can use it to estimate removed_load_sum. | 
|---|
| 4608 | */ | 
|---|
| 4609 | add_tg_cfs_propagate(cfs_rq, | 
|---|
| 4610 | runnable_sum: -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); | 
|---|
| 4611 |  | 
|---|
| 4612 | decayed = 1; | 
|---|
| 4613 | } | 
|---|
| 4614 |  | 
|---|
| 4615 | decayed |= __update_load_avg_cfs_rq(now, cfs_rq); | 
|---|
| 4616 | u64_u32_store_copy(sa->last_update_time, | 
|---|
| 4617 | cfs_rq->last_update_time_copy, | 
|---|
| 4618 | sa->last_update_time); | 
|---|
| 4619 | return decayed; | 
|---|
| 4620 | } | 
|---|
| 4621 |  | 
|---|
| 4622 | /** | 
|---|
| 4623 | * attach_entity_load_avg - attach this entity to its cfs_rq load avg | 
|---|
| 4624 | * @cfs_rq: cfs_rq to attach to | 
|---|
| 4625 | * @se: sched_entity to attach | 
|---|
| 4626 | * | 
|---|
| 4627 | * Must call update_cfs_rq_load_avg() before this, since we rely on | 
|---|
| 4628 | * cfs_rq->avg.last_update_time being current. | 
|---|
| 4629 | */ | 
|---|
| 4630 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 4631 | { | 
|---|
| 4632 | /* | 
|---|
| 4633 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | 
|---|
| 4634 | * See ___update_load_avg() for details. | 
|---|
| 4635 | */ | 
|---|
| 4636 | u32 divider = get_pelt_divider(avg: &cfs_rq->avg); | 
|---|
| 4637 |  | 
|---|
| 4638 | /* | 
|---|
| 4639 | * When we attach the @se to the @cfs_rq, we must align the decay | 
|---|
| 4640 | * window because without that, really weird and wonderful things can | 
|---|
| 4641 | * happen. | 
|---|
| 4642 | * | 
|---|
| 4643 | * XXX illustrate | 
|---|
| 4644 | */ | 
|---|
| 4645 | se->avg.last_update_time = cfs_rq->avg.last_update_time; | 
|---|
| 4646 | se->avg.period_contrib = cfs_rq->avg.period_contrib; | 
|---|
| 4647 |  | 
|---|
| 4648 | /* | 
|---|
| 4649 | * Hell(o) Nasty stuff.. we need to recompute _sum based on the new | 
|---|
| 4650 | * period_contrib. This isn't strictly correct, but since we're | 
|---|
| 4651 | * entirely outside of the PELT hierarchy, nobody cares if we truncate | 
|---|
| 4652 | * _sum a little. | 
|---|
| 4653 | */ | 
|---|
| 4654 | se->avg.util_sum = se->avg.util_avg * divider; | 
|---|
| 4655 |  | 
|---|
| 4656 | se->avg.runnable_sum = se->avg.runnable_avg * divider; | 
|---|
| 4657 |  | 
|---|
| 4658 | se->avg.load_sum = se->avg.load_avg * divider; | 
|---|
| 4659 | if (se_weight(se) < se->avg.load_sum) | 
|---|
| 4660 | se->avg.load_sum = div_u64(dividend: se->avg.load_sum, divisor: se_weight(se)); | 
|---|
| 4661 | else | 
|---|
| 4662 | se->avg.load_sum = 1; | 
|---|
| 4663 |  | 
|---|
| 4664 | enqueue_load_avg(cfs_rq, se); | 
|---|
| 4665 | cfs_rq->avg.util_avg += se->avg.util_avg; | 
|---|
| 4666 | cfs_rq->avg.util_sum += se->avg.util_sum; | 
|---|
| 4667 | cfs_rq->avg.runnable_avg += se->avg.runnable_avg; | 
|---|
| 4668 | cfs_rq->avg.runnable_sum += se->avg.runnable_sum; | 
|---|
| 4669 |  | 
|---|
| 4670 | add_tg_cfs_propagate(cfs_rq, runnable_sum: se->avg.load_sum); | 
|---|
| 4671 |  | 
|---|
| 4672 | cfs_rq_util_change(cfs_rq, flags: 0); | 
|---|
| 4673 |  | 
|---|
| 4674 | trace_pelt_cfs_tp(cfs_rq); | 
|---|
| 4675 | } | 
|---|
| 4676 |  | 
|---|
| 4677 | /** | 
|---|
| 4678 | * detach_entity_load_avg - detach this entity from its cfs_rq load avg | 
|---|
| 4679 | * @cfs_rq: cfs_rq to detach from | 
|---|
| 4680 | * @se: sched_entity to detach | 
|---|
| 4681 | * | 
|---|
| 4682 | * Must call update_cfs_rq_load_avg() before this, since we rely on | 
|---|
| 4683 | * cfs_rq->avg.last_update_time being current. | 
|---|
| 4684 | */ | 
|---|
| 4685 | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 4686 | { | 
|---|
| 4687 | dequeue_load_avg(cfs_rq, se); | 
|---|
| 4688 | sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); | 
|---|
| 4689 | sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); | 
|---|
| 4690 | /* See update_cfs_rq_load_avg() */ | 
|---|
| 4691 | cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, | 
|---|
| 4692 | cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); | 
|---|
| 4693 |  | 
|---|
| 4694 | sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); | 
|---|
| 4695 | sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); | 
|---|
| 4696 | /* See update_cfs_rq_load_avg() */ | 
|---|
| 4697 | cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, | 
|---|
| 4698 | cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); | 
|---|
| 4699 |  | 
|---|
| 4700 | add_tg_cfs_propagate(cfs_rq, runnable_sum: -se->avg.load_sum); | 
|---|
| 4701 |  | 
|---|
| 4702 | cfs_rq_util_change(cfs_rq, flags: 0); | 
|---|
| 4703 |  | 
|---|
| 4704 | trace_pelt_cfs_tp(cfs_rq); | 
|---|
| 4705 | } | 
|---|
| 4706 |  | 
|---|
| 4707 | /* | 
|---|
| 4708 | * Optional action to be done while updating the load average | 
|---|
| 4709 | */ | 
|---|
| 4710 | #define UPDATE_TG	0x1 | 
|---|
| 4711 | #define SKIP_AGE_LOAD	0x2 | 
|---|
| 4712 | #define DO_ATTACH	0x4 | 
|---|
| 4713 | #define DO_DETACH	0x8 | 
|---|
| 4714 |  | 
|---|
| 4715 | /* Update task and its cfs_rq load average */ | 
|---|
| 4716 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|---|
| 4717 | { | 
|---|
| 4718 | u64 now = cfs_rq_clock_pelt(cfs_rq); | 
|---|
| 4719 | int decayed; | 
|---|
| 4720 |  | 
|---|
| 4721 | /* | 
|---|
| 4722 | * Track task load average for carrying it to new CPU after migrated, and | 
|---|
| 4723 | * track group sched_entity load average for task_h_load calculation in migration | 
|---|
| 4724 | */ | 
|---|
| 4725 | if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) | 
|---|
| 4726 | __update_load_avg_se(now, cfs_rq, se); | 
|---|
| 4727 |  | 
|---|
| 4728 | decayed  = update_cfs_rq_load_avg(now, cfs_rq); | 
|---|
| 4729 | decayed |= propagate_entity_load_avg(se); | 
|---|
| 4730 |  | 
|---|
| 4731 | if (!se->avg.last_update_time && (flags & DO_ATTACH)) { | 
|---|
| 4732 |  | 
|---|
| 4733 | /* | 
|---|
| 4734 | * DO_ATTACH means we're here from enqueue_entity(). | 
|---|
| 4735 | * !last_update_time means we've passed through | 
|---|
| 4736 | * migrate_task_rq_fair() indicating we migrated. | 
|---|
| 4737 | * | 
|---|
| 4738 | * IOW we're enqueueing a task on a new CPU. | 
|---|
| 4739 | */ | 
|---|
| 4740 | attach_entity_load_avg(cfs_rq, se); | 
|---|
| 4741 | update_tg_load_avg(cfs_rq); | 
|---|
| 4742 |  | 
|---|
| 4743 | } else if (flags & DO_DETACH) { | 
|---|
| 4744 | /* | 
|---|
| 4745 | * DO_DETACH means we're here from dequeue_entity() | 
|---|
| 4746 | * and we are migrating task out of the CPU. | 
|---|
| 4747 | */ | 
|---|
| 4748 | detach_entity_load_avg(cfs_rq, se); | 
|---|
| 4749 | update_tg_load_avg(cfs_rq); | 
|---|
| 4750 | } else if (decayed) { | 
|---|
| 4751 | cfs_rq_util_change(cfs_rq, flags: 0); | 
|---|
| 4752 |  | 
|---|
| 4753 | if (flags & UPDATE_TG) | 
|---|
| 4754 | update_tg_load_avg(cfs_rq); | 
|---|
| 4755 | } | 
|---|
| 4756 | } | 
|---|
| 4757 |  | 
|---|
| 4758 | /* | 
|---|
| 4759 | * Synchronize entity load avg of dequeued entity without locking | 
|---|
| 4760 | * the previous rq. | 
|---|
| 4761 | */ | 
|---|
| 4762 | static void sync_entity_load_avg(struct sched_entity *se) | 
|---|
| 4763 | { | 
|---|
| 4764 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 4765 | u64 last_update_time; | 
|---|
| 4766 |  | 
|---|
| 4767 | last_update_time = cfs_rq_last_update_time(cfs_rq); | 
|---|
| 4768 | __update_load_avg_blocked_se(now: last_update_time, se); | 
|---|
| 4769 | } | 
|---|
| 4770 |  | 
|---|
| 4771 | /* | 
|---|
| 4772 | * Task first catches up with cfs_rq, and then subtract | 
|---|
| 4773 | * itself from the cfs_rq (task must be off the queue now). | 
|---|
| 4774 | */ | 
|---|
| 4775 | static void remove_entity_load_avg(struct sched_entity *se) | 
|---|
| 4776 | { | 
|---|
| 4777 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 4778 | unsigned long flags; | 
|---|
| 4779 |  | 
|---|
| 4780 | /* | 
|---|
| 4781 | * tasks cannot exit without having gone through wake_up_new_task() -> | 
|---|
| 4782 | * enqueue_task_fair() which will have added things to the cfs_rq, | 
|---|
| 4783 | * so we can remove unconditionally. | 
|---|
| 4784 | */ | 
|---|
| 4785 |  | 
|---|
| 4786 | sync_entity_load_avg(se); | 
|---|
| 4787 |  | 
|---|
| 4788 | raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); | 
|---|
| 4789 | ++cfs_rq->removed.nr; | 
|---|
| 4790 | cfs_rq->removed.util_avg	+= se->avg.util_avg; | 
|---|
| 4791 | cfs_rq->removed.load_avg	+= se->avg.load_avg; | 
|---|
| 4792 | cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg; | 
|---|
| 4793 | raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); | 
|---|
| 4794 | } | 
|---|
| 4795 |  | 
|---|
| 4796 | static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) | 
|---|
| 4797 | { | 
|---|
| 4798 | return cfs_rq->avg.runnable_avg; | 
|---|
| 4799 | } | 
|---|
| 4800 |  | 
|---|
| 4801 | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) | 
|---|
| 4802 | { | 
|---|
| 4803 | return cfs_rq->avg.load_avg; | 
|---|
| 4804 | } | 
|---|
| 4805 |  | 
|---|
| 4806 | static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); | 
|---|
| 4807 |  | 
|---|
| 4808 | static inline unsigned long task_util(struct task_struct *p) | 
|---|
| 4809 | { | 
|---|
| 4810 | return READ_ONCE(p->se.avg.util_avg); | 
|---|
| 4811 | } | 
|---|
| 4812 |  | 
|---|
| 4813 | static inline unsigned long task_runnable(struct task_struct *p) | 
|---|
| 4814 | { | 
|---|
| 4815 | return READ_ONCE(p->se.avg.runnable_avg); | 
|---|
| 4816 | } | 
|---|
| 4817 |  | 
|---|
| 4818 | static inline unsigned long _task_util_est(struct task_struct *p) | 
|---|
| 4819 | { | 
|---|
| 4820 | return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; | 
|---|
| 4821 | } | 
|---|
| 4822 |  | 
|---|
| 4823 | static inline unsigned long task_util_est(struct task_struct *p) | 
|---|
| 4824 | { | 
|---|
| 4825 | return max(task_util(p), _task_util_est(p)); | 
|---|
| 4826 | } | 
|---|
| 4827 |  | 
|---|
| 4828 | static inline void util_est_enqueue(struct cfs_rq *cfs_rq, | 
|---|
| 4829 | struct task_struct *p) | 
|---|
| 4830 | { | 
|---|
| 4831 | unsigned int enqueued; | 
|---|
| 4832 |  | 
|---|
| 4833 | if (!sched_feat(UTIL_EST)) | 
|---|
| 4834 | return; | 
|---|
| 4835 |  | 
|---|
| 4836 | /* Update root cfs_rq's estimated utilization */ | 
|---|
| 4837 | enqueued  = cfs_rq->avg.util_est; | 
|---|
| 4838 | enqueued += _task_util_est(p); | 
|---|
| 4839 | WRITE_ONCE(cfs_rq->avg.util_est, enqueued); | 
|---|
| 4840 |  | 
|---|
| 4841 | trace_sched_util_est_cfs_tp(cfs_rq); | 
|---|
| 4842 | } | 
|---|
| 4843 |  | 
|---|
| 4844 | static inline void util_est_dequeue(struct cfs_rq *cfs_rq, | 
|---|
| 4845 | struct task_struct *p) | 
|---|
| 4846 | { | 
|---|
| 4847 | unsigned int enqueued; | 
|---|
| 4848 |  | 
|---|
| 4849 | if (!sched_feat(UTIL_EST)) | 
|---|
| 4850 | return; | 
|---|
| 4851 |  | 
|---|
| 4852 | /* Update root cfs_rq's estimated utilization */ | 
|---|
| 4853 | enqueued  = cfs_rq->avg.util_est; | 
|---|
| 4854 | enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); | 
|---|
| 4855 | WRITE_ONCE(cfs_rq->avg.util_est, enqueued); | 
|---|
| 4856 |  | 
|---|
| 4857 | trace_sched_util_est_cfs_tp(cfs_rq); | 
|---|
| 4858 | } | 
|---|
| 4859 |  | 
|---|
| 4860 | #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) | 
|---|
| 4861 |  | 
|---|
| 4862 | static inline void util_est_update(struct cfs_rq *cfs_rq, | 
|---|
| 4863 | struct task_struct *p, | 
|---|
| 4864 | bool task_sleep) | 
|---|
| 4865 | { | 
|---|
| 4866 | unsigned int ewma, dequeued, last_ewma_diff; | 
|---|
| 4867 |  | 
|---|
| 4868 | if (!sched_feat(UTIL_EST)) | 
|---|
| 4869 | return; | 
|---|
| 4870 |  | 
|---|
| 4871 | /* | 
|---|
| 4872 | * Skip update of task's estimated utilization when the task has not | 
|---|
| 4873 | * yet completed an activation, e.g. being migrated. | 
|---|
| 4874 | */ | 
|---|
| 4875 | if (!task_sleep) | 
|---|
| 4876 | return; | 
|---|
| 4877 |  | 
|---|
| 4878 | /* Get current estimate of utilization */ | 
|---|
| 4879 | ewma = READ_ONCE(p->se.avg.util_est); | 
|---|
| 4880 |  | 
|---|
| 4881 | /* | 
|---|
| 4882 | * If the PELT values haven't changed since enqueue time, | 
|---|
| 4883 | * skip the util_est update. | 
|---|
| 4884 | */ | 
|---|
| 4885 | if (ewma & UTIL_AVG_UNCHANGED) | 
|---|
| 4886 | return; | 
|---|
| 4887 |  | 
|---|
| 4888 | /* Get utilization at dequeue */ | 
|---|
| 4889 | dequeued = task_util(p); | 
|---|
| 4890 |  | 
|---|
| 4891 | /* | 
|---|
| 4892 | * Reset EWMA on utilization increases, the moving average is used only | 
|---|
| 4893 | * to smooth utilization decreases. | 
|---|
| 4894 | */ | 
|---|
| 4895 | if (ewma <= dequeued) { | 
|---|
| 4896 | ewma = dequeued; | 
|---|
| 4897 | goto done; | 
|---|
| 4898 | } | 
|---|
| 4899 |  | 
|---|
| 4900 | /* | 
|---|
| 4901 | * Skip update of task's estimated utilization when its members are | 
|---|
| 4902 | * already ~1% close to its last activation value. | 
|---|
| 4903 | */ | 
|---|
| 4904 | last_ewma_diff = ewma - dequeued; | 
|---|
| 4905 | if (last_ewma_diff < UTIL_EST_MARGIN) | 
|---|
| 4906 | goto done; | 
|---|
| 4907 |  | 
|---|
| 4908 | /* | 
|---|
| 4909 | * To avoid underestimate of task utilization, skip updates of EWMA if | 
|---|
| 4910 | * we cannot grant that thread got all CPU time it wanted. | 
|---|
| 4911 | */ | 
|---|
| 4912 | if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) | 
|---|
| 4913 | goto done; | 
|---|
| 4914 |  | 
|---|
| 4915 |  | 
|---|
| 4916 | /* | 
|---|
| 4917 | * Update Task's estimated utilization | 
|---|
| 4918 | * | 
|---|
| 4919 | * When *p completes an activation we can consolidate another sample | 
|---|
| 4920 | * of the task size. This is done by using this value to update the | 
|---|
| 4921 | * Exponential Weighted Moving Average (EWMA): | 
|---|
| 4922 | * | 
|---|
| 4923 | *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1) | 
|---|
| 4924 | *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1) | 
|---|
| 4925 | *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1) | 
|---|
| 4926 | *          = w * (      -last_ewma_diff           ) +     ewma(t-1) | 
|---|
| 4927 | *          = w * (-last_ewma_diff +  ewma(t-1) / w) | 
|---|
| 4928 | * | 
|---|
| 4929 | * Where 'w' is the weight of new samples, which is configured to be | 
|---|
| 4930 | * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) | 
|---|
| 4931 | */ | 
|---|
| 4932 | ewma <<= UTIL_EST_WEIGHT_SHIFT; | 
|---|
| 4933 | ewma  -= last_ewma_diff; | 
|---|
| 4934 | ewma >>= UTIL_EST_WEIGHT_SHIFT; | 
|---|
| 4935 | done: | 
|---|
| 4936 | ewma |= UTIL_AVG_UNCHANGED; | 
|---|
| 4937 | WRITE_ONCE(p->se.avg.util_est, ewma); | 
|---|
| 4938 |  | 
|---|
| 4939 | trace_sched_util_est_se_tp(se: &p->se); | 
|---|
| 4940 | } | 
|---|
| 4941 |  | 
|---|
| 4942 | static inline unsigned long get_actual_cpu_capacity(int cpu) | 
|---|
| 4943 | { | 
|---|
| 4944 | unsigned long capacity = arch_scale_cpu_capacity(cpu); | 
|---|
| 4945 |  | 
|---|
| 4946 | capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); | 
|---|
| 4947 |  | 
|---|
| 4948 | return capacity; | 
|---|
| 4949 | } | 
|---|
| 4950 |  | 
|---|
| 4951 | static inline int util_fits_cpu(unsigned long util, | 
|---|
| 4952 | unsigned long uclamp_min, | 
|---|
| 4953 | unsigned long uclamp_max, | 
|---|
| 4954 | int cpu) | 
|---|
| 4955 | { | 
|---|
| 4956 | unsigned long capacity = capacity_of(cpu); | 
|---|
| 4957 | unsigned long capacity_orig; | 
|---|
| 4958 | bool fits, uclamp_max_fits; | 
|---|
| 4959 |  | 
|---|
| 4960 | /* | 
|---|
| 4961 | * Check if the real util fits without any uclamp boost/cap applied. | 
|---|
| 4962 | */ | 
|---|
| 4963 | fits = fits_capacity(util, capacity); | 
|---|
| 4964 |  | 
|---|
| 4965 | if (!uclamp_is_used()) | 
|---|
| 4966 | return fits; | 
|---|
| 4967 |  | 
|---|
| 4968 | /* | 
|---|
| 4969 | * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and | 
|---|
| 4970 | * uclamp_max. We only care about capacity pressure (by using | 
|---|
| 4971 | * capacity_of()) for comparing against the real util. | 
|---|
| 4972 | * | 
|---|
| 4973 | * If a task is boosted to 1024 for example, we don't want a tiny | 
|---|
| 4974 | * pressure to skew the check whether it fits a CPU or not. | 
|---|
| 4975 | * | 
|---|
| 4976 | * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it | 
|---|
| 4977 | * should fit a little cpu even if there's some pressure. | 
|---|
| 4978 | * | 
|---|
| 4979 | * Only exception is for HW or cpufreq pressure since it has a direct impact | 
|---|
| 4980 | * on available OPP of the system. | 
|---|
| 4981 | * | 
|---|
| 4982 | * We honour it for uclamp_min only as a drop in performance level | 
|---|
| 4983 | * could result in not getting the requested minimum performance level. | 
|---|
| 4984 | * | 
|---|
| 4985 | * For uclamp_max, we can tolerate a drop in performance level as the | 
|---|
| 4986 | * goal is to cap the task. So it's okay if it's getting less. | 
|---|
| 4987 | */ | 
|---|
| 4988 | capacity_orig = arch_scale_cpu_capacity(cpu); | 
|---|
| 4989 |  | 
|---|
| 4990 | /* | 
|---|
| 4991 | * We want to force a task to fit a cpu as implied by uclamp_max. | 
|---|
| 4992 | * But we do have some corner cases to cater for.. | 
|---|
| 4993 | * | 
|---|
| 4994 | * | 
|---|
| 4995 | *                                 C=z | 
|---|
| 4996 | *   |                             ___ | 
|---|
| 4997 | *   |                  C=y       |   | | 
|---|
| 4998 | *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max | 
|---|
| 4999 | *   |      C=x        |   |      |   | | 
|---|
| 5000 | *   |      ___        |   |      |   | | 
|---|
| 5001 | *   |     |   |       |   |      |   |    (util somewhere in this region) | 
|---|
| 5002 | *   |     |   |       |   |      |   | | 
|---|
| 5003 | *   |     |   |       |   |      |   | | 
|---|
| 5004 | *   +---------------------------------------- | 
|---|
| 5005 | *         CPU0        CPU1       CPU2 | 
|---|
| 5006 | * | 
|---|
| 5007 | *   In the above example if a task is capped to a specific performance | 
|---|
| 5008 | *   point, y, then when: | 
|---|
| 5009 | * | 
|---|
| 5010 | *   * util = 80% of x then it does not fit on CPU0 and should migrate | 
|---|
| 5011 | *     to CPU1 | 
|---|
| 5012 | *   * util = 80% of y then it is forced to fit on CPU1 to honour | 
|---|
| 5013 | *     uclamp_max request. | 
|---|
| 5014 | * | 
|---|
| 5015 | *   which is what we're enforcing here. A task always fits if | 
|---|
| 5016 | *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, | 
|---|
| 5017 | *   the normal upmigration rules should withhold still. | 
|---|
| 5018 | * | 
|---|
| 5019 | *   Only exception is when we are on max capacity, then we need to be | 
|---|
| 5020 | *   careful not to block overutilized state. This is so because: | 
|---|
| 5021 | * | 
|---|
| 5022 | *     1. There's no concept of capping at max_capacity! We can't go | 
|---|
| 5023 | *        beyond this performance level anyway. | 
|---|
| 5024 | *     2. The system is being saturated when we're operating near | 
|---|
| 5025 | *        max capacity, it doesn't make sense to block overutilized. | 
|---|
| 5026 | */ | 
|---|
| 5027 | uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); | 
|---|
| 5028 | uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); | 
|---|
| 5029 | fits = fits || uclamp_max_fits; | 
|---|
| 5030 |  | 
|---|
| 5031 | /* | 
|---|
| 5032 | * | 
|---|
| 5033 | *                                 C=z | 
|---|
| 5034 | *   |                             ___       (region a, capped, util >= uclamp_max) | 
|---|
| 5035 | *   |                  C=y       |   | | 
|---|
| 5036 | *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max | 
|---|
| 5037 | *   |      C=x        |   |      |   | | 
|---|
| 5038 | *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max) | 
|---|
| 5039 | *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min | 
|---|
| 5040 | *   |     |   |       |   |      |   | | 
|---|
| 5041 | *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min) | 
|---|
| 5042 | *   +---------------------------------------- | 
|---|
| 5043 | *         CPU0        CPU1       CPU2 | 
|---|
| 5044 | * | 
|---|
| 5045 | * a) If util > uclamp_max, then we're capped, we don't care about | 
|---|
| 5046 | *    actual fitness value here. We only care if uclamp_max fits | 
|---|
| 5047 | *    capacity without taking margin/pressure into account. | 
|---|
| 5048 | *    See comment above. | 
|---|
| 5049 | * | 
|---|
| 5050 | * b) If uclamp_min <= util <= uclamp_max, then the normal | 
|---|
| 5051 | *    fits_capacity() rules apply. Except we need to ensure that we | 
|---|
| 5052 | *    enforce we remain within uclamp_max, see comment above. | 
|---|
| 5053 | * | 
|---|
| 5054 | * c) If util < uclamp_min, then we are boosted. Same as (b) but we | 
|---|
| 5055 | *    need to take into account the boosted value fits the CPU without | 
|---|
| 5056 | *    taking margin/pressure into account. | 
|---|
| 5057 | * | 
|---|
| 5058 | * Cases (a) and (b) are handled in the 'fits' variable already. We | 
|---|
| 5059 | * just need to consider an extra check for case (c) after ensuring we | 
|---|
| 5060 | * handle the case uclamp_min > uclamp_max. | 
|---|
| 5061 | */ | 
|---|
| 5062 | uclamp_min = min(uclamp_min, uclamp_max); | 
|---|
| 5063 | if (fits && (util < uclamp_min) && | 
|---|
| 5064 | (uclamp_min > get_actual_cpu_capacity(cpu))) | 
|---|
| 5065 | return -1; | 
|---|
| 5066 |  | 
|---|
| 5067 | return fits; | 
|---|
| 5068 | } | 
|---|
| 5069 |  | 
|---|
| 5070 | static inline int task_fits_cpu(struct task_struct *p, int cpu) | 
|---|
| 5071 | { | 
|---|
| 5072 | unsigned long uclamp_min = uclamp_eff_value(p, clamp_id: UCLAMP_MIN); | 
|---|
| 5073 | unsigned long uclamp_max = uclamp_eff_value(p, clamp_id: UCLAMP_MAX); | 
|---|
| 5074 | unsigned long util = task_util_est(p); | 
|---|
| 5075 | /* | 
|---|
| 5076 | * Return true only if the cpu fully fits the task requirements, which | 
|---|
| 5077 | * include the utilization but also the performance hints. | 
|---|
| 5078 | */ | 
|---|
| 5079 | return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); | 
|---|
| 5080 | } | 
|---|
| 5081 |  | 
|---|
| 5082 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) | 
|---|
| 5083 | { | 
|---|
| 5084 | int cpu = cpu_of(rq); | 
|---|
| 5085 |  | 
|---|
| 5086 | if (!sched_asym_cpucap_active()) | 
|---|
| 5087 | return; | 
|---|
| 5088 |  | 
|---|
| 5089 | /* | 
|---|
| 5090 | * Affinity allows us to go somewhere higher?  Or are we on biggest | 
|---|
| 5091 | * available CPU already? Or do we fit into this CPU ? | 
|---|
| 5092 | */ | 
|---|
| 5093 | if (!p || (p->nr_cpus_allowed == 1) || | 
|---|
| 5094 | (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || | 
|---|
| 5095 | task_fits_cpu(p, cpu)) { | 
|---|
| 5096 |  | 
|---|
| 5097 | rq->misfit_task_load = 0; | 
|---|
| 5098 | return; | 
|---|
| 5099 | } | 
|---|
| 5100 |  | 
|---|
| 5101 | /* | 
|---|
| 5102 | * Make sure that misfit_task_load will not be null even if | 
|---|
| 5103 | * task_h_load() returns 0. | 
|---|
| 5104 | */ | 
|---|
| 5105 | rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); | 
|---|
| 5106 | } | 
|---|
| 5107 |  | 
|---|
| 5108 | void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) | 
|---|
| 5109 | { | 
|---|
| 5110 | struct sched_entity *se = &p->se; | 
|---|
| 5111 |  | 
|---|
| 5112 | p->static_prio = NICE_TO_PRIO(attr->sched_nice); | 
|---|
| 5113 | if (attr->sched_runtime) { | 
|---|
| 5114 | se->custom_slice = 1; | 
|---|
| 5115 | se->slice = clamp_t(u64, attr->sched_runtime, | 
|---|
| 5116 | NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */ | 
|---|
| 5117 | NSEC_PER_MSEC*100); /* HZ=100  / 10 */ | 
|---|
| 5118 | } else { | 
|---|
| 5119 | se->custom_slice = 0; | 
|---|
| 5120 | se->slice = sysctl_sched_base_slice; | 
|---|
| 5121 | } | 
|---|
| 5122 | } | 
|---|
| 5123 |  | 
|---|
| 5124 | static void | 
|---|
| 5125 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|---|
| 5126 | { | 
|---|
| 5127 | u64 vslice, vruntime = avg_vruntime(cfs_rq); | 
|---|
| 5128 | s64 lag = 0; | 
|---|
| 5129 |  | 
|---|
| 5130 | if (!se->custom_slice) | 
|---|
| 5131 | se->slice = sysctl_sched_base_slice; | 
|---|
| 5132 | vslice = calc_delta_fair(delta: se->slice, se); | 
|---|
| 5133 |  | 
|---|
| 5134 | /* | 
|---|
| 5135 | * Due to how V is constructed as the weighted average of entities, | 
|---|
| 5136 | * adding tasks with positive lag, or removing tasks with negative lag | 
|---|
| 5137 | * will move 'time' backwards, this can screw around with the lag of | 
|---|
| 5138 | * other tasks. | 
|---|
| 5139 | * | 
|---|
| 5140 | * EEVDF: placement strategy #1 / #2 | 
|---|
| 5141 | */ | 
|---|
| 5142 | if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { | 
|---|
| 5143 | struct sched_entity *curr = cfs_rq->curr; | 
|---|
| 5144 | unsigned long load; | 
|---|
| 5145 |  | 
|---|
| 5146 | lag = se->vlag; | 
|---|
| 5147 |  | 
|---|
| 5148 | /* | 
|---|
| 5149 | * If we want to place a task and preserve lag, we have to | 
|---|
| 5150 | * consider the effect of the new entity on the weighted | 
|---|
| 5151 | * average and compensate for this, otherwise lag can quickly | 
|---|
| 5152 | * evaporate. | 
|---|
| 5153 | * | 
|---|
| 5154 | * Lag is defined as: | 
|---|
| 5155 | * | 
|---|
| 5156 | *   lag_i = S - s_i = w_i * (V - v_i) | 
|---|
| 5157 | * | 
|---|
| 5158 | * To avoid the 'w_i' term all over the place, we only track | 
|---|
| 5159 | * the virtual lag: | 
|---|
| 5160 | * | 
|---|
| 5161 | *   vl_i = V - v_i <=> v_i = V - vl_i | 
|---|
| 5162 | * | 
|---|
| 5163 | * And we take V to be the weighted average of all v: | 
|---|
| 5164 | * | 
|---|
| 5165 | *   V = (\Sum w_j*v_j) / W | 
|---|
| 5166 | * | 
|---|
| 5167 | * Where W is: \Sum w_j | 
|---|
| 5168 | * | 
|---|
| 5169 | * Then, the weighted average after adding an entity with lag | 
|---|
| 5170 | * vl_i is given by: | 
|---|
| 5171 | * | 
|---|
| 5172 | *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) | 
|---|
| 5173 | *      = (W*V + w_i*(V - vl_i)) / (W + w_i) | 
|---|
| 5174 | *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i) | 
|---|
| 5175 | *      = (V*(W + w_i) - w_i*vl_i) / (W + w_i) | 
|---|
| 5176 | *      = V - w_i*vl_i / (W + w_i) | 
|---|
| 5177 | * | 
|---|
| 5178 | * And the actual lag after adding an entity with vl_i is: | 
|---|
| 5179 | * | 
|---|
| 5180 | *   vl'_i = V' - v_i | 
|---|
| 5181 | *         = V - w_i*vl_i / (W + w_i) - (V - vl_i) | 
|---|
| 5182 | *         = vl_i - w_i*vl_i / (W + w_i) | 
|---|
| 5183 | * | 
|---|
| 5184 | * Which is strictly less than vl_i. So in order to preserve lag | 
|---|
| 5185 | * we should inflate the lag before placement such that the | 
|---|
| 5186 | * effective lag after placement comes out right. | 
|---|
| 5187 | * | 
|---|
| 5188 | * As such, invert the above relation for vl'_i to get the vl_i | 
|---|
| 5189 | * we need to use such that the lag after placement is the lag | 
|---|
| 5190 | * we computed before dequeue. | 
|---|
| 5191 | * | 
|---|
| 5192 | *   vl'_i = vl_i - w_i*vl_i / (W + w_i) | 
|---|
| 5193 | *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) | 
|---|
| 5194 | * | 
|---|
| 5195 | *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i | 
|---|
| 5196 | *                   = W*vl_i | 
|---|
| 5197 | * | 
|---|
| 5198 | *   vl_i = (W + w_i)*vl'_i / W | 
|---|
| 5199 | */ | 
|---|
| 5200 | load = cfs_rq->avg_load; | 
|---|
| 5201 | if (curr && curr->on_rq) | 
|---|
| 5202 | load += scale_load_down(curr->load.weight); | 
|---|
| 5203 |  | 
|---|
| 5204 | lag *= load + scale_load_down(se->load.weight); | 
|---|
| 5205 | if (WARN_ON_ONCE(!load)) | 
|---|
| 5206 | load = 1; | 
|---|
| 5207 | lag = div_s64(dividend: lag, divisor: load); | 
|---|
| 5208 | } | 
|---|
| 5209 |  | 
|---|
| 5210 | se->vruntime = vruntime - lag; | 
|---|
| 5211 |  | 
|---|
| 5212 | if (se->rel_deadline) { | 
|---|
| 5213 | se->deadline += se->vruntime; | 
|---|
| 5214 | se->rel_deadline = 0; | 
|---|
| 5215 | return; | 
|---|
| 5216 | } | 
|---|
| 5217 |  | 
|---|
| 5218 | /* | 
|---|
| 5219 | * When joining the competition; the existing tasks will be, | 
|---|
| 5220 | * on average, halfway through their slice, as such start tasks | 
|---|
| 5221 | * off with half a slice to ease into the competition. | 
|---|
| 5222 | */ | 
|---|
| 5223 | if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) | 
|---|
| 5224 | vslice /= 2; | 
|---|
| 5225 |  | 
|---|
| 5226 | /* | 
|---|
| 5227 | * EEVDF: vd_i = ve_i + r_i/w_i | 
|---|
| 5228 | */ | 
|---|
| 5229 | se->deadline = se->vruntime + vslice; | 
|---|
| 5230 | } | 
|---|
| 5231 |  | 
|---|
| 5232 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); | 
|---|
| 5233 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); | 
|---|
| 5234 |  | 
|---|
| 5235 | static void | 
|---|
| 5236 | requeue_delayed_entity(struct sched_entity *se); | 
|---|
| 5237 |  | 
|---|
| 5238 | static void | 
|---|
| 5239 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|---|
| 5240 | { | 
|---|
| 5241 | bool curr = cfs_rq->curr == se; | 
|---|
| 5242 |  | 
|---|
| 5243 | /* | 
|---|
| 5244 | * If we're the current task, we must renormalise before calling | 
|---|
| 5245 | * update_curr(). | 
|---|
| 5246 | */ | 
|---|
| 5247 | if (curr) | 
|---|
| 5248 | place_entity(cfs_rq, se, flags); | 
|---|
| 5249 |  | 
|---|
| 5250 | update_curr(cfs_rq); | 
|---|
| 5251 |  | 
|---|
| 5252 | /* | 
|---|
| 5253 | * When enqueuing a sched_entity, we must: | 
|---|
| 5254 | *   - Update loads to have both entity and cfs_rq synced with now. | 
|---|
| 5255 | *   - For group_entity, update its runnable_weight to reflect the new | 
|---|
| 5256 | *     h_nr_runnable of its group cfs_rq. | 
|---|
| 5257 | *   - For group_entity, update its weight to reflect the new share of | 
|---|
| 5258 | *     its group cfs_rq | 
|---|
| 5259 | *   - Add its new weight to cfs_rq->load.weight | 
|---|
| 5260 | */ | 
|---|
| 5261 | update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); | 
|---|
| 5262 | se_update_runnable(se); | 
|---|
| 5263 | /* | 
|---|
| 5264 | * XXX update_load_avg() above will have attached us to the pelt sum; | 
|---|
| 5265 | * but update_cfs_group() here will re-adjust the weight and have to | 
|---|
| 5266 | * undo/redo all that. Seems wasteful. | 
|---|
| 5267 | */ | 
|---|
| 5268 | update_cfs_group(se); | 
|---|
| 5269 |  | 
|---|
| 5270 | /* | 
|---|
| 5271 | * XXX now that the entity has been re-weighted, and it's lag adjusted, | 
|---|
| 5272 | * we can place the entity. | 
|---|
| 5273 | */ | 
|---|
| 5274 | if (!curr) | 
|---|
| 5275 | place_entity(cfs_rq, se, flags); | 
|---|
| 5276 |  | 
|---|
| 5277 | account_entity_enqueue(cfs_rq, se); | 
|---|
| 5278 |  | 
|---|
| 5279 | /* Entity has migrated, no longer consider this task hot */ | 
|---|
| 5280 | if (flags & ENQUEUE_MIGRATED) | 
|---|
| 5281 | se->exec_start = 0; | 
|---|
| 5282 |  | 
|---|
| 5283 | check_schedstat_required(); | 
|---|
| 5284 | update_stats_enqueue_fair(cfs_rq, se, flags); | 
|---|
| 5285 | if (!curr) | 
|---|
| 5286 | __enqueue_entity(cfs_rq, se); | 
|---|
| 5287 | se->on_rq = 1; | 
|---|
| 5288 |  | 
|---|
| 5289 | if (cfs_rq->nr_queued == 1) { | 
|---|
| 5290 | check_enqueue_throttle(cfs_rq); | 
|---|
| 5291 | list_add_leaf_cfs_rq(cfs_rq); | 
|---|
| 5292 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 5293 | if (cfs_rq->pelt_clock_throttled) { | 
|---|
| 5294 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 5295 |  | 
|---|
| 5296 | cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - | 
|---|
| 5297 | cfs_rq->throttled_clock_pelt; | 
|---|
| 5298 | cfs_rq->pelt_clock_throttled = 0; | 
|---|
| 5299 | } | 
|---|
| 5300 | #endif | 
|---|
| 5301 | } | 
|---|
| 5302 | } | 
|---|
| 5303 |  | 
|---|
| 5304 | static void __clear_buddies_next(struct sched_entity *se) | 
|---|
| 5305 | { | 
|---|
| 5306 | for_each_sched_entity(se) { | 
|---|
| 5307 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 5308 | if (cfs_rq->next != se) | 
|---|
| 5309 | break; | 
|---|
| 5310 |  | 
|---|
| 5311 | cfs_rq->next = NULL; | 
|---|
| 5312 | } | 
|---|
| 5313 | } | 
|---|
| 5314 |  | 
|---|
| 5315 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 5316 | { | 
|---|
| 5317 | if (cfs_rq->next == se) | 
|---|
| 5318 | __clear_buddies_next(se); | 
|---|
| 5319 | } | 
|---|
| 5320 |  | 
|---|
| 5321 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); | 
|---|
| 5322 |  | 
|---|
| 5323 | static void set_delayed(struct sched_entity *se) | 
|---|
| 5324 | { | 
|---|
| 5325 | se->sched_delayed = 1; | 
|---|
| 5326 |  | 
|---|
| 5327 | /* | 
|---|
| 5328 | * Delayed se of cfs_rq have no tasks queued on them. | 
|---|
| 5329 | * Do not adjust h_nr_runnable since dequeue_entities() | 
|---|
| 5330 | * will account it for blocked tasks. | 
|---|
| 5331 | */ | 
|---|
| 5332 | if (!entity_is_task(se)) | 
|---|
| 5333 | return; | 
|---|
| 5334 |  | 
|---|
| 5335 | for_each_sched_entity(se) { | 
|---|
| 5336 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 5337 |  | 
|---|
| 5338 | cfs_rq->h_nr_runnable--; | 
|---|
| 5339 | } | 
|---|
| 5340 | } | 
|---|
| 5341 |  | 
|---|
| 5342 | static void clear_delayed(struct sched_entity *se) | 
|---|
| 5343 | { | 
|---|
| 5344 | se->sched_delayed = 0; | 
|---|
| 5345 |  | 
|---|
| 5346 | /* | 
|---|
| 5347 | * Delayed se of cfs_rq have no tasks queued on them. | 
|---|
| 5348 | * Do not adjust h_nr_runnable since a dequeue has | 
|---|
| 5349 | * already accounted for it or an enqueue of a task | 
|---|
| 5350 | * below it will account for it in enqueue_task_fair(). | 
|---|
| 5351 | */ | 
|---|
| 5352 | if (!entity_is_task(se)) | 
|---|
| 5353 | return; | 
|---|
| 5354 |  | 
|---|
| 5355 | for_each_sched_entity(se) { | 
|---|
| 5356 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 5357 |  | 
|---|
| 5358 | cfs_rq->h_nr_runnable++; | 
|---|
| 5359 | } | 
|---|
| 5360 | } | 
|---|
| 5361 |  | 
|---|
| 5362 | static inline void finish_delayed_dequeue_entity(struct sched_entity *se) | 
|---|
| 5363 | { | 
|---|
| 5364 | clear_delayed(se); | 
|---|
| 5365 | if (sched_feat(DELAY_ZERO) && se->vlag > 0) | 
|---|
| 5366 | se->vlag = 0; | 
|---|
| 5367 | } | 
|---|
| 5368 |  | 
|---|
| 5369 | static bool | 
|---|
| 5370 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
|---|
| 5371 | { | 
|---|
| 5372 | bool sleep = flags & DEQUEUE_SLEEP; | 
|---|
| 5373 | int action = UPDATE_TG; | 
|---|
| 5374 |  | 
|---|
| 5375 | update_curr(cfs_rq); | 
|---|
| 5376 | clear_buddies(cfs_rq, se); | 
|---|
| 5377 |  | 
|---|
| 5378 | if (flags & DEQUEUE_DELAYED) { | 
|---|
| 5379 | WARN_ON_ONCE(!se->sched_delayed); | 
|---|
| 5380 | } else { | 
|---|
| 5381 | bool delay = sleep; | 
|---|
| 5382 | /* | 
|---|
| 5383 | * DELAY_DEQUEUE relies on spurious wakeups, special task | 
|---|
| 5384 | * states must not suffer spurious wakeups, excempt them. | 
|---|
| 5385 | */ | 
|---|
| 5386 | if (flags & (DEQUEUE_SPECIAL | DEQUEUE_THROTTLE)) | 
|---|
| 5387 | delay = false; | 
|---|
| 5388 |  | 
|---|
| 5389 | WARN_ON_ONCE(delay && se->sched_delayed); | 
|---|
| 5390 |  | 
|---|
| 5391 | if (sched_feat(DELAY_DEQUEUE) && delay && | 
|---|
| 5392 | !entity_eligible(cfs_rq, se)) { | 
|---|
| 5393 | update_load_avg(cfs_rq, se, flags: 0); | 
|---|
| 5394 | set_delayed(se); | 
|---|
| 5395 | return false; | 
|---|
| 5396 | } | 
|---|
| 5397 | } | 
|---|
| 5398 |  | 
|---|
| 5399 | if (entity_is_task(se) && task_on_rq_migrating(p: task_of(se))) | 
|---|
| 5400 | action |= DO_DETACH; | 
|---|
| 5401 |  | 
|---|
| 5402 | /* | 
|---|
| 5403 | * When dequeuing a sched_entity, we must: | 
|---|
| 5404 | *   - Update loads to have both entity and cfs_rq synced with now. | 
|---|
| 5405 | *   - For group_entity, update its runnable_weight to reflect the new | 
|---|
| 5406 | *     h_nr_runnable of its group cfs_rq. | 
|---|
| 5407 | *   - Subtract its previous weight from cfs_rq->load.weight. | 
|---|
| 5408 | *   - For group entity, update its weight to reflect the new share | 
|---|
| 5409 | *     of its group cfs_rq. | 
|---|
| 5410 | */ | 
|---|
| 5411 | update_load_avg(cfs_rq, se, flags: action); | 
|---|
| 5412 | se_update_runnable(se); | 
|---|
| 5413 |  | 
|---|
| 5414 | update_stats_dequeue_fair(cfs_rq, se, flags); | 
|---|
| 5415 |  | 
|---|
| 5416 | update_entity_lag(cfs_rq, se); | 
|---|
| 5417 | if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { | 
|---|
| 5418 | se->deadline -= se->vruntime; | 
|---|
| 5419 | se->rel_deadline = 1; | 
|---|
| 5420 | } | 
|---|
| 5421 |  | 
|---|
| 5422 | if (se != cfs_rq->curr) | 
|---|
| 5423 | __dequeue_entity(cfs_rq, se); | 
|---|
| 5424 | se->on_rq = 0; | 
|---|
| 5425 | account_entity_dequeue(cfs_rq, se); | 
|---|
| 5426 |  | 
|---|
| 5427 | /* return excess runtime on last dequeue */ | 
|---|
| 5428 | return_cfs_rq_runtime(cfs_rq); | 
|---|
| 5429 |  | 
|---|
| 5430 | update_cfs_group(se); | 
|---|
| 5431 |  | 
|---|
| 5432 | /* | 
|---|
| 5433 | * Now advance min_vruntime if @se was the entity holding it back, | 
|---|
| 5434 | * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be | 
|---|
| 5435 | * put back on, and if we advance min_vruntime, we'll be placed back | 
|---|
| 5436 | * further than we started -- i.e. we'll be penalized. | 
|---|
| 5437 | */ | 
|---|
| 5438 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) | 
|---|
| 5439 | update_min_vruntime(cfs_rq); | 
|---|
| 5440 |  | 
|---|
| 5441 | if (flags & DEQUEUE_DELAYED) | 
|---|
| 5442 | finish_delayed_dequeue_entity(se); | 
|---|
| 5443 |  | 
|---|
| 5444 | if (cfs_rq->nr_queued == 0) { | 
|---|
| 5445 | update_idle_cfs_rq_clock_pelt(cfs_rq); | 
|---|
| 5446 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 5447 | if (throttled_hierarchy(cfs_rq)) { | 
|---|
| 5448 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 5449 |  | 
|---|
| 5450 | list_del_leaf_cfs_rq(cfs_rq); | 
|---|
| 5451 | cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); | 
|---|
| 5452 | cfs_rq->pelt_clock_throttled = 1; | 
|---|
| 5453 | } | 
|---|
| 5454 | #endif | 
|---|
| 5455 | } | 
|---|
| 5456 |  | 
|---|
| 5457 | return true; | 
|---|
| 5458 | } | 
|---|
| 5459 |  | 
|---|
| 5460 | static void | 
|---|
| 5461 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
|---|
| 5462 | { | 
|---|
| 5463 | clear_buddies(cfs_rq, se); | 
|---|
| 5464 |  | 
|---|
| 5465 | /* 'current' is not kept within the tree. */ | 
|---|
| 5466 | if (se->on_rq) { | 
|---|
| 5467 | /* | 
|---|
| 5468 | * Any task has to be enqueued before it get to execute on | 
|---|
| 5469 | * a CPU. So account for the time it spent waiting on the | 
|---|
| 5470 | * runqueue. | 
|---|
| 5471 | */ | 
|---|
| 5472 | update_stats_wait_end_fair(cfs_rq, se); | 
|---|
| 5473 | __dequeue_entity(cfs_rq, se); | 
|---|
| 5474 | update_load_avg(cfs_rq, se, UPDATE_TG); | 
|---|
| 5475 |  | 
|---|
| 5476 | set_protect_slice(cfs_rq, se); | 
|---|
| 5477 | } | 
|---|
| 5478 |  | 
|---|
| 5479 | update_stats_curr_start(cfs_rq, se); | 
|---|
| 5480 | WARN_ON_ONCE(cfs_rq->curr); | 
|---|
| 5481 | cfs_rq->curr = se; | 
|---|
| 5482 |  | 
|---|
| 5483 | /* | 
|---|
| 5484 | * Track our maximum slice length, if the CPU's load is at | 
|---|
| 5485 | * least twice that of our own weight (i.e. don't track it | 
|---|
| 5486 | * when there are only lesser-weight tasks around): | 
|---|
| 5487 | */ | 
|---|
| 5488 | if (schedstat_enabled() && | 
|---|
| 5489 | rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { | 
|---|
| 5490 | struct sched_statistics *stats; | 
|---|
| 5491 |  | 
|---|
| 5492 | stats = __schedstats_from_se(se); | 
|---|
| 5493 | __schedstat_set(stats->slice_max, | 
|---|
| 5494 | max((u64)stats->slice_max, | 
|---|
| 5495 | se->sum_exec_runtime - se->prev_sum_exec_runtime)); | 
|---|
| 5496 | } | 
|---|
| 5497 |  | 
|---|
| 5498 | se->prev_sum_exec_runtime = se->sum_exec_runtime; | 
|---|
| 5499 | } | 
|---|
| 5500 |  | 
|---|
| 5501 | static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); | 
|---|
| 5502 |  | 
|---|
| 5503 | /* | 
|---|
| 5504 | * Pick the next process, keeping these things in mind, in this order: | 
|---|
| 5505 | * 1) keep things fair between processes/task groups | 
|---|
| 5506 | * 2) pick the "next" process, since someone really wants that to run | 
|---|
| 5507 | * 3) pick the "last" process, for cache locality | 
|---|
| 5508 | * 4) do not run the "skip" process, if something else is available | 
|---|
| 5509 | */ | 
|---|
| 5510 | static struct sched_entity * | 
|---|
| 5511 | pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) | 
|---|
| 5512 | { | 
|---|
| 5513 | struct sched_entity *se; | 
|---|
| 5514 |  | 
|---|
| 5515 | /* | 
|---|
| 5516 | * Picking the ->next buddy will affect latency but not fairness. | 
|---|
| 5517 | */ | 
|---|
| 5518 | if (sched_feat(PICK_BUDDY) && | 
|---|
| 5519 | cfs_rq->next && entity_eligible(cfs_rq, se: cfs_rq->next)) { | 
|---|
| 5520 | /* ->next will never be delayed */ | 
|---|
| 5521 | WARN_ON_ONCE(cfs_rq->next->sched_delayed); | 
|---|
| 5522 | return cfs_rq->next; | 
|---|
| 5523 | } | 
|---|
| 5524 |  | 
|---|
| 5525 | se = pick_eevdf(cfs_rq); | 
|---|
| 5526 | if (se->sched_delayed) { | 
|---|
| 5527 | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); | 
|---|
| 5528 | /* | 
|---|
| 5529 | * Must not reference @se again, see __block_task(). | 
|---|
| 5530 | */ | 
|---|
| 5531 | return NULL; | 
|---|
| 5532 | } | 
|---|
| 5533 | return se; | 
|---|
| 5534 | } | 
|---|
| 5535 |  | 
|---|
| 5536 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); | 
|---|
| 5537 |  | 
|---|
| 5538 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | 
|---|
| 5539 | { | 
|---|
| 5540 | /* | 
|---|
| 5541 | * If still on the runqueue then deactivate_task() | 
|---|
| 5542 | * was not called and update_curr() has to be done: | 
|---|
| 5543 | */ | 
|---|
| 5544 | if (prev->on_rq) | 
|---|
| 5545 | update_curr(cfs_rq); | 
|---|
| 5546 |  | 
|---|
| 5547 | /* throttle cfs_rqs exceeding runtime */ | 
|---|
| 5548 | check_cfs_rq_runtime(cfs_rq); | 
|---|
| 5549 |  | 
|---|
| 5550 | if (prev->on_rq) { | 
|---|
| 5551 | update_stats_wait_start_fair(cfs_rq, se: prev); | 
|---|
| 5552 | /* Put 'current' back into the tree. */ | 
|---|
| 5553 | __enqueue_entity(cfs_rq, se: prev); | 
|---|
| 5554 | /* in !on_rq case, update occurred at dequeue */ | 
|---|
| 5555 | update_load_avg(cfs_rq, se: prev, flags: 0); | 
|---|
| 5556 | } | 
|---|
| 5557 | WARN_ON_ONCE(cfs_rq->curr != prev); | 
|---|
| 5558 | cfs_rq->curr = NULL; | 
|---|
| 5559 | } | 
|---|
| 5560 |  | 
|---|
| 5561 | static void | 
|---|
| 5562 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | 
|---|
| 5563 | { | 
|---|
| 5564 | /* | 
|---|
| 5565 | * Update run-time statistics of the 'current'. | 
|---|
| 5566 | */ | 
|---|
| 5567 | update_curr(cfs_rq); | 
|---|
| 5568 |  | 
|---|
| 5569 | /* | 
|---|
| 5570 | * Ensure that runnable average is periodically updated. | 
|---|
| 5571 | */ | 
|---|
| 5572 | update_load_avg(cfs_rq, se: curr, UPDATE_TG); | 
|---|
| 5573 | update_cfs_group(se: curr); | 
|---|
| 5574 |  | 
|---|
| 5575 | #ifdef CONFIG_SCHED_HRTICK | 
|---|
| 5576 | /* | 
|---|
| 5577 | * queued ticks are scheduled to match the slice, so don't bother | 
|---|
| 5578 | * validating it and just reschedule. | 
|---|
| 5579 | */ | 
|---|
| 5580 | if (queued) { | 
|---|
| 5581 | resched_curr_lazy(rq: rq_of(cfs_rq)); | 
|---|
| 5582 | return; | 
|---|
| 5583 | } | 
|---|
| 5584 | #endif | 
|---|
| 5585 | } | 
|---|
| 5586 |  | 
|---|
| 5587 |  | 
|---|
| 5588 | /************************************************** | 
|---|
| 5589 | * CFS bandwidth control machinery | 
|---|
| 5590 | */ | 
|---|
| 5591 |  | 
|---|
| 5592 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 5593 |  | 
|---|
| 5594 | #ifdef CONFIG_JUMP_LABEL | 
|---|
| 5595 | static struct static_key __cfs_bandwidth_used; | 
|---|
| 5596 |  | 
|---|
| 5597 | static inline bool cfs_bandwidth_used(void) | 
|---|
| 5598 | { | 
|---|
| 5599 | return static_key_false(&__cfs_bandwidth_used); | 
|---|
| 5600 | } | 
|---|
| 5601 |  | 
|---|
| 5602 | void cfs_bandwidth_usage_inc(void) | 
|---|
| 5603 | { | 
|---|
| 5604 | static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); | 
|---|
| 5605 | } | 
|---|
| 5606 |  | 
|---|
| 5607 | void cfs_bandwidth_usage_dec(void) | 
|---|
| 5608 | { | 
|---|
| 5609 | static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); | 
|---|
| 5610 | } | 
|---|
| 5611 | #else /* !CONFIG_JUMP_LABEL: */ | 
|---|
| 5612 | static bool cfs_bandwidth_used(void) | 
|---|
| 5613 | { | 
|---|
| 5614 | return true; | 
|---|
| 5615 | } | 
|---|
| 5616 |  | 
|---|
| 5617 | void cfs_bandwidth_usage_inc(void) {} | 
|---|
| 5618 | void cfs_bandwidth_usage_dec(void) {} | 
|---|
| 5619 | #endif /* !CONFIG_JUMP_LABEL */ | 
|---|
| 5620 |  | 
|---|
| 5621 | static inline u64 sched_cfs_bandwidth_slice(void) | 
|---|
| 5622 | { | 
|---|
| 5623 | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | 
|---|
| 5624 | } | 
|---|
| 5625 |  | 
|---|
| 5626 | /* | 
|---|
| 5627 | * Replenish runtime according to assigned quota. We use sched_clock_cpu | 
|---|
| 5628 | * directly instead of rq->clock to avoid adding additional synchronization | 
|---|
| 5629 | * around rq->lock. | 
|---|
| 5630 | * | 
|---|
| 5631 | * requires cfs_b->lock | 
|---|
| 5632 | */ | 
|---|
| 5633 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) | 
|---|
| 5634 | { | 
|---|
| 5635 | s64 runtime; | 
|---|
| 5636 |  | 
|---|
| 5637 | if (unlikely(cfs_b->quota == RUNTIME_INF)) | 
|---|
| 5638 | return; | 
|---|
| 5639 |  | 
|---|
| 5640 | cfs_b->runtime += cfs_b->quota; | 
|---|
| 5641 | runtime = cfs_b->runtime_snap - cfs_b->runtime; | 
|---|
| 5642 | if (runtime > 0) { | 
|---|
| 5643 | cfs_b->burst_time += runtime; | 
|---|
| 5644 | cfs_b->nr_burst++; | 
|---|
| 5645 | } | 
|---|
| 5646 |  | 
|---|
| 5647 | cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); | 
|---|
| 5648 | cfs_b->runtime_snap = cfs_b->runtime; | 
|---|
| 5649 | } | 
|---|
| 5650 |  | 
|---|
| 5651 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | 
|---|
| 5652 | { | 
|---|
| 5653 | return &tg->cfs_bandwidth; | 
|---|
| 5654 | } | 
|---|
| 5655 |  | 
|---|
| 5656 | /* returns 0 on failure to allocate runtime */ | 
|---|
| 5657 | static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, | 
|---|
| 5658 | struct cfs_rq *cfs_rq, u64 target_runtime) | 
|---|
| 5659 | { | 
|---|
| 5660 | u64 min_amount, amount = 0; | 
|---|
| 5661 |  | 
|---|
| 5662 | lockdep_assert_held(&cfs_b->lock); | 
|---|
| 5663 |  | 
|---|
| 5664 | /* note: this is a positive sum as runtime_remaining <= 0 */ | 
|---|
| 5665 | min_amount = target_runtime - cfs_rq->runtime_remaining; | 
|---|
| 5666 |  | 
|---|
| 5667 | if (cfs_b->quota == RUNTIME_INF) | 
|---|
| 5668 | amount = min_amount; | 
|---|
| 5669 | else { | 
|---|
| 5670 | start_cfs_bandwidth(cfs_b); | 
|---|
| 5671 |  | 
|---|
| 5672 | if (cfs_b->runtime > 0) { | 
|---|
| 5673 | amount = min(cfs_b->runtime, min_amount); | 
|---|
| 5674 | cfs_b->runtime -= amount; | 
|---|
| 5675 | cfs_b->idle = 0; | 
|---|
| 5676 | } | 
|---|
| 5677 | } | 
|---|
| 5678 |  | 
|---|
| 5679 | cfs_rq->runtime_remaining += amount; | 
|---|
| 5680 |  | 
|---|
| 5681 | return cfs_rq->runtime_remaining > 0; | 
|---|
| 5682 | } | 
|---|
| 5683 |  | 
|---|
| 5684 | /* returns 0 on failure to allocate runtime */ | 
|---|
| 5685 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|---|
| 5686 | { | 
|---|
| 5687 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|---|
| 5688 | int ret; | 
|---|
| 5689 |  | 
|---|
| 5690 | raw_spin_lock(&cfs_b->lock); | 
|---|
| 5691 | ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); | 
|---|
| 5692 | raw_spin_unlock(&cfs_b->lock); | 
|---|
| 5693 |  | 
|---|
| 5694 | return ret; | 
|---|
| 5695 | } | 
|---|
| 5696 |  | 
|---|
| 5697 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) | 
|---|
| 5698 | { | 
|---|
| 5699 | /* dock delta_exec before expiring quota (as it could span periods) */ | 
|---|
| 5700 | cfs_rq->runtime_remaining -= delta_exec; | 
|---|
| 5701 |  | 
|---|
| 5702 | if (likely(cfs_rq->runtime_remaining > 0)) | 
|---|
| 5703 | return; | 
|---|
| 5704 |  | 
|---|
| 5705 | if (cfs_rq->throttled) | 
|---|
| 5706 | return; | 
|---|
| 5707 | /* | 
|---|
| 5708 | * if we're unable to extend our runtime we resched so that the active | 
|---|
| 5709 | * hierarchy can be throttled | 
|---|
| 5710 | */ | 
|---|
| 5711 | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | 
|---|
| 5712 | resched_curr(rq_of(cfs_rq)); | 
|---|
| 5713 | } | 
|---|
| 5714 |  | 
|---|
| 5715 | static __always_inline | 
|---|
| 5716 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) | 
|---|
| 5717 | { | 
|---|
| 5718 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) | 
|---|
| 5719 | return; | 
|---|
| 5720 |  | 
|---|
| 5721 | __account_cfs_rq_runtime(cfs_rq, delta_exec); | 
|---|
| 5722 | } | 
|---|
| 5723 |  | 
|---|
| 5724 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 
|---|
| 5725 | { | 
|---|
| 5726 | return cfs_bandwidth_used() && cfs_rq->throttled; | 
|---|
| 5727 | } | 
|---|
| 5728 |  | 
|---|
| 5729 | static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq) | 
|---|
| 5730 | { | 
|---|
| 5731 | return cfs_bandwidth_used() && cfs_rq->pelt_clock_throttled; | 
|---|
| 5732 | } | 
|---|
| 5733 |  | 
|---|
| 5734 | /* check whether cfs_rq, or any parent, is throttled */ | 
|---|
| 5735 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 
|---|
| 5736 | { | 
|---|
| 5737 | return cfs_bandwidth_used() && cfs_rq->throttle_count; | 
|---|
| 5738 | } | 
|---|
| 5739 |  | 
|---|
| 5740 | static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu) | 
|---|
| 5741 | { | 
|---|
| 5742 | return throttled_hierarchy(task_group(p)->cfs_rq[dst_cpu]); | 
|---|
| 5743 | } | 
|---|
| 5744 |  | 
|---|
| 5745 | static inline bool task_is_throttled(struct task_struct *p) | 
|---|
| 5746 | { | 
|---|
| 5747 | return cfs_bandwidth_used() && p->throttled; | 
|---|
| 5748 | } | 
|---|
| 5749 |  | 
|---|
| 5750 | static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags); | 
|---|
| 5751 | static void throttle_cfs_rq_work(struct callback_head *work) | 
|---|
| 5752 | { | 
|---|
| 5753 | struct task_struct *p = container_of(work, struct task_struct, sched_throttle_work); | 
|---|
| 5754 | struct sched_entity *se; | 
|---|
| 5755 | struct cfs_rq *cfs_rq; | 
|---|
| 5756 | struct rq *rq; | 
|---|
| 5757 |  | 
|---|
| 5758 | WARN_ON_ONCE(p != current); | 
|---|
| 5759 | p->sched_throttle_work.next = &p->sched_throttle_work; | 
|---|
| 5760 |  | 
|---|
| 5761 | /* | 
|---|
| 5762 | * If task is exiting, then there won't be a return to userspace, so we | 
|---|
| 5763 | * don't have to bother with any of this. | 
|---|
| 5764 | */ | 
|---|
| 5765 | if ((p->flags & PF_EXITING)) | 
|---|
| 5766 | return; | 
|---|
| 5767 |  | 
|---|
| 5768 | scoped_guard(task_rq_lock, p) { | 
|---|
| 5769 | se = &p->se; | 
|---|
| 5770 | cfs_rq = cfs_rq_of(se); | 
|---|
| 5771 |  | 
|---|
| 5772 | /* Raced, forget */ | 
|---|
| 5773 | if (p->sched_class != &fair_sched_class) | 
|---|
| 5774 | return; | 
|---|
| 5775 |  | 
|---|
| 5776 | /* | 
|---|
| 5777 | * If not in limbo, then either replenish has happened or this | 
|---|
| 5778 | * task got migrated out of the throttled cfs_rq, move along. | 
|---|
| 5779 | */ | 
|---|
| 5780 | if (!cfs_rq->throttle_count) | 
|---|
| 5781 | return; | 
|---|
| 5782 | rq = scope.rq; | 
|---|
| 5783 | update_rq_clock(rq); | 
|---|
| 5784 | WARN_ON_ONCE(p->throttled || !list_empty(&p->throttle_node)); | 
|---|
| 5785 | dequeue_task_fair(rq, p, DEQUEUE_SLEEP | DEQUEUE_THROTTLE); | 
|---|
| 5786 | list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list); | 
|---|
| 5787 | /* | 
|---|
| 5788 | * Must not set throttled before dequeue or dequeue will | 
|---|
| 5789 | * mistakenly regard this task as an already throttled one. | 
|---|
| 5790 | */ | 
|---|
| 5791 | p->throttled = true; | 
|---|
| 5792 | resched_curr(rq); | 
|---|
| 5793 | } | 
|---|
| 5794 | } | 
|---|
| 5795 |  | 
|---|
| 5796 | void init_cfs_throttle_work(struct task_struct *p) | 
|---|
| 5797 | { | 
|---|
| 5798 | init_task_work(&p->sched_throttle_work, throttle_cfs_rq_work); | 
|---|
| 5799 | /* Protect against double add, see throttle_cfs_rq() and throttle_cfs_rq_work() */ | 
|---|
| 5800 | p->sched_throttle_work.next = &p->sched_throttle_work; | 
|---|
| 5801 | INIT_LIST_HEAD(&p->throttle_node); | 
|---|
| 5802 | } | 
|---|
| 5803 |  | 
|---|
| 5804 | /* | 
|---|
| 5805 | * Task is throttled and someone wants to dequeue it again: | 
|---|
| 5806 | * it could be sched/core when core needs to do things like | 
|---|
| 5807 | * task affinity change, task group change, task sched class | 
|---|
| 5808 | * change etc. and in these cases, DEQUEUE_SLEEP is not set; | 
|---|
| 5809 | * or the task is blocked after throttled due to freezer etc. | 
|---|
| 5810 | * and in these cases, DEQUEUE_SLEEP is set. | 
|---|
| 5811 | */ | 
|---|
| 5812 | static void detach_task_cfs_rq(struct task_struct *p); | 
|---|
| 5813 | static void dequeue_throttled_task(struct task_struct *p, int flags) | 
|---|
| 5814 | { | 
|---|
| 5815 | WARN_ON_ONCE(p->se.on_rq); | 
|---|
| 5816 | list_del_init(&p->throttle_node); | 
|---|
| 5817 |  | 
|---|
| 5818 | /* task blocked after throttled */ | 
|---|
| 5819 | if (flags & DEQUEUE_SLEEP) { | 
|---|
| 5820 | p->throttled = false; | 
|---|
| 5821 | return; | 
|---|
| 5822 | } | 
|---|
| 5823 |  | 
|---|
| 5824 | /* | 
|---|
| 5825 | * task is migrating off its old cfs_rq, detach | 
|---|
| 5826 | * the task's load from its old cfs_rq. | 
|---|
| 5827 | */ | 
|---|
| 5828 | if (task_on_rq_migrating(p)) | 
|---|
| 5829 | detach_task_cfs_rq(p); | 
|---|
| 5830 | } | 
|---|
| 5831 |  | 
|---|
| 5832 | static bool enqueue_throttled_task(struct task_struct *p) | 
|---|
| 5833 | { | 
|---|
| 5834 | struct cfs_rq *cfs_rq = cfs_rq_of(&p->se); | 
|---|
| 5835 |  | 
|---|
| 5836 | /* @p should have gone through dequeue_throttled_task() first */ | 
|---|
| 5837 | WARN_ON_ONCE(!list_empty(&p->throttle_node)); | 
|---|
| 5838 |  | 
|---|
| 5839 | /* | 
|---|
| 5840 | * If the throttled task @p is enqueued to a throttled cfs_rq, | 
|---|
| 5841 | * take the fast path by directly putting the task on the | 
|---|
| 5842 | * target cfs_rq's limbo list. | 
|---|
| 5843 | * | 
|---|
| 5844 | * Do not do that when @p is current because the following race can | 
|---|
| 5845 | * cause @p's group_node to be incorectly re-insterted in its rq's | 
|---|
| 5846 | * cfs_tasks list, despite being throttled: | 
|---|
| 5847 | * | 
|---|
| 5848 | *     cpuX                       cpuY | 
|---|
| 5849 | *   p ret2user | 
|---|
| 5850 | *  throttle_cfs_rq_work()  sched_move_task(p) | 
|---|
| 5851 | *  LOCK task_rq_lock | 
|---|
| 5852 | *  dequeue_task_fair(p) | 
|---|
| 5853 | *  UNLOCK task_rq_lock | 
|---|
| 5854 | *                          LOCK task_rq_lock | 
|---|
| 5855 | *                          task_current_donor(p) == true | 
|---|
| 5856 | *                          task_on_rq_queued(p) == true | 
|---|
| 5857 | *                          dequeue_task(p) | 
|---|
| 5858 | *                          put_prev_task(p) | 
|---|
| 5859 | *                          sched_change_group() | 
|---|
| 5860 | *                          enqueue_task(p) -> p's new cfs_rq | 
|---|
| 5861 | *                                             is throttled, go | 
|---|
| 5862 | *                                             fast path and skip | 
|---|
| 5863 | *                                             actual enqueue | 
|---|
| 5864 | *                          set_next_task(p) | 
|---|
| 5865 | *                    list_move(&se->group_node, &rq->cfs_tasks); // bug | 
|---|
| 5866 | *  schedule() | 
|---|
| 5867 | * | 
|---|
| 5868 | * In the above race case, @p current cfs_rq is in the same rq as | 
|---|
| 5869 | * its previous cfs_rq because sched_move_task() only moves a task | 
|---|
| 5870 | * to a different group from the same rq, so we can use its current | 
|---|
| 5871 | * cfs_rq to derive rq and test if the task is current. | 
|---|
| 5872 | */ | 
|---|
| 5873 | if (throttled_hierarchy(cfs_rq) && | 
|---|
| 5874 | !task_current_donor(rq_of(cfs_rq), p)) { | 
|---|
| 5875 | list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list); | 
|---|
| 5876 | return true; | 
|---|
| 5877 | } | 
|---|
| 5878 |  | 
|---|
| 5879 | /* we can't take the fast path, do an actual enqueue*/ | 
|---|
| 5880 | p->throttled = false; | 
|---|
| 5881 | return false; | 
|---|
| 5882 | } | 
|---|
| 5883 |  | 
|---|
| 5884 | static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags); | 
|---|
| 5885 | static int tg_unthrottle_up(struct task_group *tg, void *data) | 
|---|
| 5886 | { | 
|---|
| 5887 | struct rq *rq = data; | 
|---|
| 5888 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|---|
| 5889 | struct task_struct *p, *tmp; | 
|---|
| 5890 |  | 
|---|
| 5891 | if (--cfs_rq->throttle_count) | 
|---|
| 5892 | return 0; | 
|---|
| 5893 |  | 
|---|
| 5894 | if (cfs_rq->pelt_clock_throttled) { | 
|---|
| 5895 | cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - | 
|---|
| 5896 | cfs_rq->throttled_clock_pelt; | 
|---|
| 5897 | cfs_rq->pelt_clock_throttled = 0; | 
|---|
| 5898 | } | 
|---|
| 5899 |  | 
|---|
| 5900 | if (cfs_rq->throttled_clock_self) { | 
|---|
| 5901 | u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; | 
|---|
| 5902 |  | 
|---|
| 5903 | cfs_rq->throttled_clock_self = 0; | 
|---|
| 5904 |  | 
|---|
| 5905 | if (WARN_ON_ONCE((s64)delta < 0)) | 
|---|
| 5906 | delta = 0; | 
|---|
| 5907 |  | 
|---|
| 5908 | cfs_rq->throttled_clock_self_time += delta; | 
|---|
| 5909 | } | 
|---|
| 5910 |  | 
|---|
| 5911 | /* Re-enqueue the tasks that have been throttled at this level. */ | 
|---|
| 5912 | list_for_each_entry_safe(p, tmp, &cfs_rq->throttled_limbo_list, throttle_node) { | 
|---|
| 5913 | list_del_init(&p->throttle_node); | 
|---|
| 5914 | p->throttled = false; | 
|---|
| 5915 | enqueue_task_fair(rq_of(cfs_rq), p, ENQUEUE_WAKEUP); | 
|---|
| 5916 | } | 
|---|
| 5917 |  | 
|---|
| 5918 | /* Add cfs_rq with load or one or more already running entities to the list */ | 
|---|
| 5919 | if (!cfs_rq_is_decayed(cfs_rq)) | 
|---|
| 5920 | list_add_leaf_cfs_rq(cfs_rq); | 
|---|
| 5921 |  | 
|---|
| 5922 | return 0; | 
|---|
| 5923 | } | 
|---|
| 5924 |  | 
|---|
| 5925 | static inline bool task_has_throttle_work(struct task_struct *p) | 
|---|
| 5926 | { | 
|---|
| 5927 | return p->sched_throttle_work.next != &p->sched_throttle_work; | 
|---|
| 5928 | } | 
|---|
| 5929 |  | 
|---|
| 5930 | static inline void task_throttle_setup_work(struct task_struct *p) | 
|---|
| 5931 | { | 
|---|
| 5932 | if (task_has_throttle_work(p)) | 
|---|
| 5933 | return; | 
|---|
| 5934 |  | 
|---|
| 5935 | /* | 
|---|
| 5936 | * Kthreads and exiting tasks don't return to userspace, so adding the | 
|---|
| 5937 | * work is pointless | 
|---|
| 5938 | */ | 
|---|
| 5939 | if ((p->flags & (PF_EXITING | PF_KTHREAD))) | 
|---|
| 5940 | return; | 
|---|
| 5941 |  | 
|---|
| 5942 | task_work_add(p, &p->sched_throttle_work, TWA_RESUME); | 
|---|
| 5943 | } | 
|---|
| 5944 |  | 
|---|
| 5945 | static void record_throttle_clock(struct cfs_rq *cfs_rq) | 
|---|
| 5946 | { | 
|---|
| 5947 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 5948 |  | 
|---|
| 5949 | if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) | 
|---|
| 5950 | cfs_rq->throttled_clock = rq_clock(rq); | 
|---|
| 5951 |  | 
|---|
| 5952 | if (!cfs_rq->throttled_clock_self) | 
|---|
| 5953 | cfs_rq->throttled_clock_self = rq_clock(rq); | 
|---|
| 5954 | } | 
|---|
| 5955 |  | 
|---|
| 5956 | static int tg_throttle_down(struct task_group *tg, void *data) | 
|---|
| 5957 | { | 
|---|
| 5958 | struct rq *rq = data; | 
|---|
| 5959 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|---|
| 5960 |  | 
|---|
| 5961 | if (cfs_rq->throttle_count++) | 
|---|
| 5962 | return 0; | 
|---|
| 5963 |  | 
|---|
| 5964 | /* | 
|---|
| 5965 | * For cfs_rqs that still have entities enqueued, PELT clock | 
|---|
| 5966 | * stop happens at dequeue time when all entities are dequeued. | 
|---|
| 5967 | */ | 
|---|
| 5968 | if (!cfs_rq->nr_queued) { | 
|---|
| 5969 | list_del_leaf_cfs_rq(cfs_rq); | 
|---|
| 5970 | cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); | 
|---|
| 5971 | cfs_rq->pelt_clock_throttled = 1; | 
|---|
| 5972 | } | 
|---|
| 5973 |  | 
|---|
| 5974 | WARN_ON_ONCE(cfs_rq->throttled_clock_self); | 
|---|
| 5975 | WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list)); | 
|---|
| 5976 | return 0; | 
|---|
| 5977 | } | 
|---|
| 5978 |  | 
|---|
| 5979 | static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) | 
|---|
| 5980 | { | 
|---|
| 5981 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 5982 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|---|
| 5983 | int dequeue = 1; | 
|---|
| 5984 |  | 
|---|
| 5985 | raw_spin_lock(&cfs_b->lock); | 
|---|
| 5986 | /* This will start the period timer if necessary */ | 
|---|
| 5987 | if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { | 
|---|
| 5988 | /* | 
|---|
| 5989 | * We have raced with bandwidth becoming available, and if we | 
|---|
| 5990 | * actually throttled the timer might not unthrottle us for an | 
|---|
| 5991 | * entire period. We additionally needed to make sure that any | 
|---|
| 5992 | * subsequent check_cfs_rq_runtime calls agree not to throttle | 
|---|
| 5993 | * us, as we may commit to do cfs put_prev+pick_next, so we ask | 
|---|
| 5994 | * for 1ns of runtime rather than just check cfs_b. | 
|---|
| 5995 | */ | 
|---|
| 5996 | dequeue = 0; | 
|---|
| 5997 | } else { | 
|---|
| 5998 | list_add_tail_rcu(&cfs_rq->throttled_list, | 
|---|
| 5999 | &cfs_b->throttled_cfs_rq); | 
|---|
| 6000 | } | 
|---|
| 6001 | raw_spin_unlock(&cfs_b->lock); | 
|---|
| 6002 |  | 
|---|
| 6003 | if (!dequeue) | 
|---|
| 6004 | return false;  /* Throttle no longer required. */ | 
|---|
| 6005 |  | 
|---|
| 6006 | /* freeze hierarchy runnable averages while throttled */ | 
|---|
| 6007 | rcu_read_lock(); | 
|---|
| 6008 | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | 
|---|
| 6009 | rcu_read_unlock(); | 
|---|
| 6010 |  | 
|---|
| 6011 | /* | 
|---|
| 6012 | * Note: distribution will already see us throttled via the | 
|---|
| 6013 | * throttled-list.  rq->lock protects completion. | 
|---|
| 6014 | */ | 
|---|
| 6015 | cfs_rq->throttled = 1; | 
|---|
| 6016 | WARN_ON_ONCE(cfs_rq->throttled_clock); | 
|---|
| 6017 | return true; | 
|---|
| 6018 | } | 
|---|
| 6019 |  | 
|---|
| 6020 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) | 
|---|
| 6021 | { | 
|---|
| 6022 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 6023 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|---|
| 6024 | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | 
|---|
| 6025 |  | 
|---|
| 6026 | /* | 
|---|
| 6027 | * It's possible we are called with !runtime_remaining due to things | 
|---|
| 6028 | * like user changed quota setting(see tg_set_cfs_bandwidth()) or async | 
|---|
| 6029 | * unthrottled us with a positive runtime_remaining but other still | 
|---|
| 6030 | * running entities consumed those runtime before we reached here. | 
|---|
| 6031 | * | 
|---|
| 6032 | * Anyway, we can't unthrottle this cfs_rq without any runtime remaining | 
|---|
| 6033 | * because any enqueue in tg_unthrottle_up() will immediately trigger a | 
|---|
| 6034 | * throttle, which is not supposed to happen on unthrottle path. | 
|---|
| 6035 | */ | 
|---|
| 6036 | if (cfs_rq->runtime_enabled && cfs_rq->runtime_remaining <= 0) | 
|---|
| 6037 | return; | 
|---|
| 6038 |  | 
|---|
| 6039 | se = cfs_rq->tg->se[cpu_of(rq)]; | 
|---|
| 6040 |  | 
|---|
| 6041 | cfs_rq->throttled = 0; | 
|---|
| 6042 |  | 
|---|
| 6043 | update_rq_clock(rq); | 
|---|
| 6044 |  | 
|---|
| 6045 | raw_spin_lock(&cfs_b->lock); | 
|---|
| 6046 | if (cfs_rq->throttled_clock) { | 
|---|
| 6047 | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; | 
|---|
| 6048 | cfs_rq->throttled_clock = 0; | 
|---|
| 6049 | } | 
|---|
| 6050 | list_del_rcu(&cfs_rq->throttled_list); | 
|---|
| 6051 | raw_spin_unlock(&cfs_b->lock); | 
|---|
| 6052 |  | 
|---|
| 6053 | /* update hierarchical throttle state */ | 
|---|
| 6054 | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | 
|---|
| 6055 |  | 
|---|
| 6056 | if (!cfs_rq->load.weight) { | 
|---|
| 6057 | if (!cfs_rq->on_list) | 
|---|
| 6058 | return; | 
|---|
| 6059 | /* | 
|---|
| 6060 | * Nothing to run but something to decay (on_list)? | 
|---|
| 6061 | * Complete the branch. | 
|---|
| 6062 | */ | 
|---|
| 6063 | for_each_sched_entity(se) { | 
|---|
| 6064 | if (list_add_leaf_cfs_rq(cfs_rq_of(se))) | 
|---|
| 6065 | break; | 
|---|
| 6066 | } | 
|---|
| 6067 | } | 
|---|
| 6068 |  | 
|---|
| 6069 | assert_list_leaf_cfs_rq(rq); | 
|---|
| 6070 |  | 
|---|
| 6071 | /* Determine whether we need to wake up potentially idle CPU: */ | 
|---|
| 6072 | if (rq->curr == rq->idle && rq->cfs.nr_queued) | 
|---|
| 6073 | resched_curr(rq); | 
|---|
| 6074 | } | 
|---|
| 6075 |  | 
|---|
| 6076 | static void __cfsb_csd_unthrottle(void *arg) | 
|---|
| 6077 | { | 
|---|
| 6078 | struct cfs_rq *cursor, *tmp; | 
|---|
| 6079 | struct rq *rq = arg; | 
|---|
| 6080 | struct rq_flags rf; | 
|---|
| 6081 |  | 
|---|
| 6082 | rq_lock(rq, &rf); | 
|---|
| 6083 |  | 
|---|
| 6084 | /* | 
|---|
| 6085 | * Iterating over the list can trigger several call to | 
|---|
| 6086 | * update_rq_clock() in unthrottle_cfs_rq(). | 
|---|
| 6087 | * Do it once and skip the potential next ones. | 
|---|
| 6088 | */ | 
|---|
| 6089 | update_rq_clock(rq); | 
|---|
| 6090 | rq_clock_start_loop_update(rq); | 
|---|
| 6091 |  | 
|---|
| 6092 | /* | 
|---|
| 6093 | * Since we hold rq lock we're safe from concurrent manipulation of | 
|---|
| 6094 | * the CSD list. However, this RCU critical section annotates the | 
|---|
| 6095 | * fact that we pair with sched_free_group_rcu(), so that we cannot | 
|---|
| 6096 | * race with group being freed in the window between removing it | 
|---|
| 6097 | * from the list and advancing to the next entry in the list. | 
|---|
| 6098 | */ | 
|---|
| 6099 | rcu_read_lock(); | 
|---|
| 6100 |  | 
|---|
| 6101 | list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, | 
|---|
| 6102 | throttled_csd_list) { | 
|---|
| 6103 | list_del_init(&cursor->throttled_csd_list); | 
|---|
| 6104 |  | 
|---|
| 6105 | if (cfs_rq_throttled(cursor)) | 
|---|
| 6106 | unthrottle_cfs_rq(cursor); | 
|---|
| 6107 | } | 
|---|
| 6108 |  | 
|---|
| 6109 | rcu_read_unlock(); | 
|---|
| 6110 |  | 
|---|
| 6111 | rq_clock_stop_loop_update(rq); | 
|---|
| 6112 | rq_unlock(rq, &rf); | 
|---|
| 6113 | } | 
|---|
| 6114 |  | 
|---|
| 6115 | static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | 
|---|
| 6116 | { | 
|---|
| 6117 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 6118 | bool first; | 
|---|
| 6119 |  | 
|---|
| 6120 | if (rq == this_rq()) { | 
|---|
| 6121 | unthrottle_cfs_rq(cfs_rq); | 
|---|
| 6122 | return; | 
|---|
| 6123 | } | 
|---|
| 6124 |  | 
|---|
| 6125 | /* Already enqueued */ | 
|---|
| 6126 | if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) | 
|---|
| 6127 | return; | 
|---|
| 6128 |  | 
|---|
| 6129 | first = list_empty(&rq->cfsb_csd_list); | 
|---|
| 6130 | list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); | 
|---|
| 6131 | if (first) | 
|---|
| 6132 | smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); | 
|---|
| 6133 | } | 
|---|
| 6134 |  | 
|---|
| 6135 | static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | 
|---|
| 6136 | { | 
|---|
| 6137 | lockdep_assert_rq_held(rq_of(cfs_rq)); | 
|---|
| 6138 |  | 
|---|
| 6139 | if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || | 
|---|
| 6140 | cfs_rq->runtime_remaining <= 0)) | 
|---|
| 6141 | return; | 
|---|
| 6142 |  | 
|---|
| 6143 | __unthrottle_cfs_rq_async(cfs_rq); | 
|---|
| 6144 | } | 
|---|
| 6145 |  | 
|---|
| 6146 | static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) | 
|---|
| 6147 | { | 
|---|
| 6148 | int this_cpu = smp_processor_id(); | 
|---|
| 6149 | u64 runtime, remaining = 1; | 
|---|
| 6150 | bool throttled = false; | 
|---|
| 6151 | struct cfs_rq *cfs_rq, *tmp; | 
|---|
| 6152 | struct rq_flags rf; | 
|---|
| 6153 | struct rq *rq; | 
|---|
| 6154 | LIST_HEAD(local_unthrottle); | 
|---|
| 6155 |  | 
|---|
| 6156 | rcu_read_lock(); | 
|---|
| 6157 | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | 
|---|
| 6158 | throttled_list) { | 
|---|
| 6159 | rq = rq_of(cfs_rq); | 
|---|
| 6160 |  | 
|---|
| 6161 | if (!remaining) { | 
|---|
| 6162 | throttled = true; | 
|---|
| 6163 | break; | 
|---|
| 6164 | } | 
|---|
| 6165 |  | 
|---|
| 6166 | rq_lock_irqsave(rq, &rf); | 
|---|
| 6167 | if (!cfs_rq_throttled(cfs_rq)) | 
|---|
| 6168 | goto next; | 
|---|
| 6169 |  | 
|---|
| 6170 | /* Already queued for async unthrottle */ | 
|---|
| 6171 | if (!list_empty(&cfs_rq->throttled_csd_list)) | 
|---|
| 6172 | goto next; | 
|---|
| 6173 |  | 
|---|
| 6174 | /* By the above checks, this should never be true */ | 
|---|
| 6175 | WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); | 
|---|
| 6176 |  | 
|---|
| 6177 | raw_spin_lock(&cfs_b->lock); | 
|---|
| 6178 | runtime = -cfs_rq->runtime_remaining + 1; | 
|---|
| 6179 | if (runtime > cfs_b->runtime) | 
|---|
| 6180 | runtime = cfs_b->runtime; | 
|---|
| 6181 | cfs_b->runtime -= runtime; | 
|---|
| 6182 | remaining = cfs_b->runtime; | 
|---|
| 6183 | raw_spin_unlock(&cfs_b->lock); | 
|---|
| 6184 |  | 
|---|
| 6185 | cfs_rq->runtime_remaining += runtime; | 
|---|
| 6186 |  | 
|---|
| 6187 | /* we check whether we're throttled above */ | 
|---|
| 6188 | if (cfs_rq->runtime_remaining > 0) { | 
|---|
| 6189 | if (cpu_of(rq) != this_cpu) { | 
|---|
| 6190 | unthrottle_cfs_rq_async(cfs_rq); | 
|---|
| 6191 | } else { | 
|---|
| 6192 | /* | 
|---|
| 6193 | * We currently only expect to be unthrottling | 
|---|
| 6194 | * a single cfs_rq locally. | 
|---|
| 6195 | */ | 
|---|
| 6196 | WARN_ON_ONCE(!list_empty(&local_unthrottle)); | 
|---|
| 6197 | list_add_tail(&cfs_rq->throttled_csd_list, | 
|---|
| 6198 | &local_unthrottle); | 
|---|
| 6199 | } | 
|---|
| 6200 | } else { | 
|---|
| 6201 | throttled = true; | 
|---|
| 6202 | } | 
|---|
| 6203 |  | 
|---|
| 6204 | next: | 
|---|
| 6205 | rq_unlock_irqrestore(rq, &rf); | 
|---|
| 6206 | } | 
|---|
| 6207 |  | 
|---|
| 6208 | list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, | 
|---|
| 6209 | throttled_csd_list) { | 
|---|
| 6210 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 6211 |  | 
|---|
| 6212 | rq_lock_irqsave(rq, &rf); | 
|---|
| 6213 |  | 
|---|
| 6214 | list_del_init(&cfs_rq->throttled_csd_list); | 
|---|
| 6215 |  | 
|---|
| 6216 | if (cfs_rq_throttled(cfs_rq)) | 
|---|
| 6217 | unthrottle_cfs_rq(cfs_rq); | 
|---|
| 6218 |  | 
|---|
| 6219 | rq_unlock_irqrestore(rq, &rf); | 
|---|
| 6220 | } | 
|---|
| 6221 | WARN_ON_ONCE(!list_empty(&local_unthrottle)); | 
|---|
| 6222 |  | 
|---|
| 6223 | rcu_read_unlock(); | 
|---|
| 6224 |  | 
|---|
| 6225 | return throttled; | 
|---|
| 6226 | } | 
|---|
| 6227 |  | 
|---|
| 6228 | /* | 
|---|
| 6229 | * Responsible for refilling a task_group's bandwidth and unthrottling its | 
|---|
| 6230 | * cfs_rqs as appropriate. If there has been no activity within the last | 
|---|
| 6231 | * period the timer is deactivated until scheduling resumes; cfs_b->idle is | 
|---|
| 6232 | * used to track this state. | 
|---|
| 6233 | */ | 
|---|
| 6234 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) | 
|---|
| 6235 | { | 
|---|
| 6236 | int throttled; | 
|---|
| 6237 |  | 
|---|
| 6238 | /* no need to continue the timer with no bandwidth constraint */ | 
|---|
| 6239 | if (cfs_b->quota == RUNTIME_INF) | 
|---|
| 6240 | goto out_deactivate; | 
|---|
| 6241 |  | 
|---|
| 6242 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); | 
|---|
| 6243 | cfs_b->nr_periods += overrun; | 
|---|
| 6244 |  | 
|---|
| 6245 | /* Refill extra burst quota even if cfs_b->idle */ | 
|---|
| 6246 | __refill_cfs_bandwidth_runtime(cfs_b); | 
|---|
| 6247 |  | 
|---|
| 6248 | /* | 
|---|
| 6249 | * idle depends on !throttled (for the case of a large deficit), and if | 
|---|
| 6250 | * we're going inactive then everything else can be deferred | 
|---|
| 6251 | */ | 
|---|
| 6252 | if (cfs_b->idle && !throttled) | 
|---|
| 6253 | goto out_deactivate; | 
|---|
| 6254 |  | 
|---|
| 6255 | if (!throttled) { | 
|---|
| 6256 | /* mark as potentially idle for the upcoming period */ | 
|---|
| 6257 | cfs_b->idle = 1; | 
|---|
| 6258 | return 0; | 
|---|
| 6259 | } | 
|---|
| 6260 |  | 
|---|
| 6261 | /* account preceding periods in which throttling occurred */ | 
|---|
| 6262 | cfs_b->nr_throttled += overrun; | 
|---|
| 6263 |  | 
|---|
| 6264 | /* | 
|---|
| 6265 | * This check is repeated as we release cfs_b->lock while we unthrottle. | 
|---|
| 6266 | */ | 
|---|
| 6267 | while (throttled && cfs_b->runtime > 0) { | 
|---|
| 6268 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); | 
|---|
| 6269 | /* we can't nest cfs_b->lock while distributing bandwidth */ | 
|---|
| 6270 | throttled = distribute_cfs_runtime(cfs_b); | 
|---|
| 6271 | raw_spin_lock_irqsave(&cfs_b->lock, flags); | 
|---|
| 6272 | } | 
|---|
| 6273 |  | 
|---|
| 6274 | /* | 
|---|
| 6275 | * While we are ensured activity in the period following an | 
|---|
| 6276 | * unthrottle, this also covers the case in which the new bandwidth is | 
|---|
| 6277 | * insufficient to cover the existing bandwidth deficit.  (Forcing the | 
|---|
| 6278 | * timer to remain active while there are any throttled entities.) | 
|---|
| 6279 | */ | 
|---|
| 6280 | cfs_b->idle = 0; | 
|---|
| 6281 |  | 
|---|
| 6282 | return 0; | 
|---|
| 6283 |  | 
|---|
| 6284 | out_deactivate: | 
|---|
| 6285 | return 1; | 
|---|
| 6286 | } | 
|---|
| 6287 |  | 
|---|
| 6288 | /* a cfs_rq won't donate quota below this amount */ | 
|---|
| 6289 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | 
|---|
| 6290 | /* minimum remaining period time to redistribute slack quota */ | 
|---|
| 6291 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | 
|---|
| 6292 | /* how long we wait to gather additional slack before distributing */ | 
|---|
| 6293 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | 
|---|
| 6294 |  | 
|---|
| 6295 | /* | 
|---|
| 6296 | * Are we near the end of the current quota period? | 
|---|
| 6297 | * | 
|---|
| 6298 | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the | 
|---|
| 6299 | * hrtimer base being cleared by hrtimer_start. In the case of | 
|---|
| 6300 | * migrate_hrtimers, base is never cleared, so we are fine. | 
|---|
| 6301 | */ | 
|---|
| 6302 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) | 
|---|
| 6303 | { | 
|---|
| 6304 | struct hrtimer *refresh_timer = &cfs_b->period_timer; | 
|---|
| 6305 | s64 remaining; | 
|---|
| 6306 |  | 
|---|
| 6307 | /* if the call-back is running a quota refresh is already occurring */ | 
|---|
| 6308 | if (hrtimer_callback_running(refresh_timer)) | 
|---|
| 6309 | return 1; | 
|---|
| 6310 |  | 
|---|
| 6311 | /* is a quota refresh about to occur? */ | 
|---|
| 6312 | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | 
|---|
| 6313 | if (remaining < (s64)min_expire) | 
|---|
| 6314 | return 1; | 
|---|
| 6315 |  | 
|---|
| 6316 | return 0; | 
|---|
| 6317 | } | 
|---|
| 6318 |  | 
|---|
| 6319 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | 
|---|
| 6320 | { | 
|---|
| 6321 | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | 
|---|
| 6322 |  | 
|---|
| 6323 | /* if there's a quota refresh soon don't bother with slack */ | 
|---|
| 6324 | if (runtime_refresh_within(cfs_b, min_left)) | 
|---|
| 6325 | return; | 
|---|
| 6326 |  | 
|---|
| 6327 | /* don't push forwards an existing deferred unthrottle */ | 
|---|
| 6328 | if (cfs_b->slack_started) | 
|---|
| 6329 | return; | 
|---|
| 6330 | cfs_b->slack_started = true; | 
|---|
| 6331 |  | 
|---|
| 6332 | hrtimer_start(&cfs_b->slack_timer, | 
|---|
| 6333 | ns_to_ktime(cfs_bandwidth_slack_period), | 
|---|
| 6334 | HRTIMER_MODE_REL); | 
|---|
| 6335 | } | 
|---|
| 6336 |  | 
|---|
| 6337 | /* we know any runtime found here is valid as update_curr() precedes return */ | 
|---|
| 6338 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|---|
| 6339 | { | 
|---|
| 6340 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
|---|
| 6341 | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | 
|---|
| 6342 |  | 
|---|
| 6343 | if (slack_runtime <= 0) | 
|---|
| 6344 | return; | 
|---|
| 6345 |  | 
|---|
| 6346 | raw_spin_lock(&cfs_b->lock); | 
|---|
| 6347 | if (cfs_b->quota != RUNTIME_INF) { | 
|---|
| 6348 | cfs_b->runtime += slack_runtime; | 
|---|
| 6349 |  | 
|---|
| 6350 | /* we are under rq->lock, defer unthrottling using a timer */ | 
|---|
| 6351 | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | 
|---|
| 6352 | !list_empty(&cfs_b->throttled_cfs_rq)) | 
|---|
| 6353 | start_cfs_slack_bandwidth(cfs_b); | 
|---|
| 6354 | } | 
|---|
| 6355 | raw_spin_unlock(&cfs_b->lock); | 
|---|
| 6356 |  | 
|---|
| 6357 | /* even if it's not valid for return we don't want to try again */ | 
|---|
| 6358 | cfs_rq->runtime_remaining -= slack_runtime; | 
|---|
| 6359 | } | 
|---|
| 6360 |  | 
|---|
| 6361 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|---|
| 6362 | { | 
|---|
| 6363 | if (!cfs_bandwidth_used()) | 
|---|
| 6364 | return; | 
|---|
| 6365 |  | 
|---|
| 6366 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) | 
|---|
| 6367 | return; | 
|---|
| 6368 |  | 
|---|
| 6369 | __return_cfs_rq_runtime(cfs_rq); | 
|---|
| 6370 | } | 
|---|
| 6371 |  | 
|---|
| 6372 | /* | 
|---|
| 6373 | * This is done with a timer (instead of inline with bandwidth return) since | 
|---|
| 6374 | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | 
|---|
| 6375 | */ | 
|---|
| 6376 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | 
|---|
| 6377 | { | 
|---|
| 6378 | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | 
|---|
| 6379 | unsigned long flags; | 
|---|
| 6380 |  | 
|---|
| 6381 | /* confirm we're still not at a refresh boundary */ | 
|---|
| 6382 | raw_spin_lock_irqsave(&cfs_b->lock, flags); | 
|---|
| 6383 | cfs_b->slack_started = false; | 
|---|
| 6384 |  | 
|---|
| 6385 | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { | 
|---|
| 6386 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); | 
|---|
| 6387 | return; | 
|---|
| 6388 | } | 
|---|
| 6389 |  | 
|---|
| 6390 | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) | 
|---|
| 6391 | runtime = cfs_b->runtime; | 
|---|
| 6392 |  | 
|---|
| 6393 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); | 
|---|
| 6394 |  | 
|---|
| 6395 | if (!runtime) | 
|---|
| 6396 | return; | 
|---|
| 6397 |  | 
|---|
| 6398 | distribute_cfs_runtime(cfs_b); | 
|---|
| 6399 | } | 
|---|
| 6400 |  | 
|---|
| 6401 | /* | 
|---|
| 6402 | * When a group wakes up we want to make sure that its quota is not already | 
|---|
| 6403 | * expired/exceeded, otherwise it may be allowed to steal additional ticks of | 
|---|
| 6404 | * runtime as update_curr() throttling can not trigger until it's on-rq. | 
|---|
| 6405 | */ | 
|---|
| 6406 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | 
|---|
| 6407 | { | 
|---|
| 6408 | if (!cfs_bandwidth_used()) | 
|---|
| 6409 | return; | 
|---|
| 6410 |  | 
|---|
| 6411 | /* an active group must be handled by the update_curr()->put() path */ | 
|---|
| 6412 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | 
|---|
| 6413 | return; | 
|---|
| 6414 |  | 
|---|
| 6415 | /* ensure the group is not already throttled */ | 
|---|
| 6416 | if (cfs_rq_throttled(cfs_rq)) | 
|---|
| 6417 | return; | 
|---|
| 6418 |  | 
|---|
| 6419 | /* update runtime allocation */ | 
|---|
| 6420 | account_cfs_rq_runtime(cfs_rq, 0); | 
|---|
| 6421 | if (cfs_rq->runtime_remaining <= 0) | 
|---|
| 6422 | throttle_cfs_rq(cfs_rq); | 
|---|
| 6423 | } | 
|---|
| 6424 |  | 
|---|
| 6425 | static void sync_throttle(struct task_group *tg, int cpu) | 
|---|
| 6426 | { | 
|---|
| 6427 | struct cfs_rq *pcfs_rq, *cfs_rq; | 
|---|
| 6428 |  | 
|---|
| 6429 | if (!cfs_bandwidth_used()) | 
|---|
| 6430 | return; | 
|---|
| 6431 |  | 
|---|
| 6432 | if (!tg->parent) | 
|---|
| 6433 | return; | 
|---|
| 6434 |  | 
|---|
| 6435 | cfs_rq = tg->cfs_rq[cpu]; | 
|---|
| 6436 | pcfs_rq = tg->parent->cfs_rq[cpu]; | 
|---|
| 6437 |  | 
|---|
| 6438 | cfs_rq->throttle_count = pcfs_rq->throttle_count; | 
|---|
| 6439 | cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); | 
|---|
| 6440 | } | 
|---|
| 6441 |  | 
|---|
| 6442 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ | 
|---|
| 6443 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|---|
| 6444 | { | 
|---|
| 6445 | if (!cfs_bandwidth_used()) | 
|---|
| 6446 | return false; | 
|---|
| 6447 |  | 
|---|
| 6448 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) | 
|---|
| 6449 | return false; | 
|---|
| 6450 |  | 
|---|
| 6451 | /* | 
|---|
| 6452 | * it's possible for a throttled entity to be forced into a running | 
|---|
| 6453 | * state (e.g. set_curr_task), in this case we're finished. | 
|---|
| 6454 | */ | 
|---|
| 6455 | if (cfs_rq_throttled(cfs_rq)) | 
|---|
| 6456 | return true; | 
|---|
| 6457 |  | 
|---|
| 6458 | return throttle_cfs_rq(cfs_rq); | 
|---|
| 6459 | } | 
|---|
| 6460 |  | 
|---|
| 6461 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) | 
|---|
| 6462 | { | 
|---|
| 6463 | struct cfs_bandwidth *cfs_b = | 
|---|
| 6464 | container_of(timer, struct cfs_bandwidth, slack_timer); | 
|---|
| 6465 |  | 
|---|
| 6466 | do_sched_cfs_slack_timer(cfs_b); | 
|---|
| 6467 |  | 
|---|
| 6468 | return HRTIMER_NORESTART; | 
|---|
| 6469 | } | 
|---|
| 6470 |  | 
|---|
| 6471 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) | 
|---|
| 6472 | { | 
|---|
| 6473 | struct cfs_bandwidth *cfs_b = | 
|---|
| 6474 | container_of(timer, struct cfs_bandwidth, period_timer); | 
|---|
| 6475 | unsigned long flags; | 
|---|
| 6476 | int overrun; | 
|---|
| 6477 | int idle = 0; | 
|---|
| 6478 | int count = 0; | 
|---|
| 6479 |  | 
|---|
| 6480 | raw_spin_lock_irqsave(&cfs_b->lock, flags); | 
|---|
| 6481 | for (;;) { | 
|---|
| 6482 | overrun = hrtimer_forward_now(timer, cfs_b->period); | 
|---|
| 6483 | if (!overrun) | 
|---|
| 6484 | break; | 
|---|
| 6485 |  | 
|---|
| 6486 | idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); | 
|---|
| 6487 |  | 
|---|
| 6488 | if (++count > 3) { | 
|---|
| 6489 | u64 new, old = ktime_to_ns(cfs_b->period); | 
|---|
| 6490 |  | 
|---|
| 6491 | /* | 
|---|
| 6492 | * Grow period by a factor of 2 to avoid losing precision. | 
|---|
| 6493 | * Precision loss in the quota/period ratio can cause __cfs_schedulable | 
|---|
| 6494 | * to fail. | 
|---|
| 6495 | */ | 
|---|
| 6496 | new = old * 2; | 
|---|
| 6497 | if (new < max_bw_quota_period_us * NSEC_PER_USEC) { | 
|---|
| 6498 | cfs_b->period = ns_to_ktime(new); | 
|---|
| 6499 | cfs_b->quota *= 2; | 
|---|
| 6500 | cfs_b->burst *= 2; | 
|---|
| 6501 |  | 
|---|
| 6502 | pr_warn_ratelimited( | 
|---|
| 6503 | "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", | 
|---|
| 6504 | smp_processor_id(), | 
|---|
| 6505 | div_u64(new, NSEC_PER_USEC), | 
|---|
| 6506 | div_u64(cfs_b->quota, NSEC_PER_USEC)); | 
|---|
| 6507 | } else { | 
|---|
| 6508 | pr_warn_ratelimited( | 
|---|
| 6509 | "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", | 
|---|
| 6510 | smp_processor_id(), | 
|---|
| 6511 | div_u64(old, NSEC_PER_USEC), | 
|---|
| 6512 | div_u64(cfs_b->quota, NSEC_PER_USEC)); | 
|---|
| 6513 | } | 
|---|
| 6514 |  | 
|---|
| 6515 | /* reset count so we don't come right back in here */ | 
|---|
| 6516 | count = 0; | 
|---|
| 6517 | } | 
|---|
| 6518 | } | 
|---|
| 6519 | if (idle) | 
|---|
| 6520 | cfs_b->period_active = 0; | 
|---|
| 6521 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); | 
|---|
| 6522 |  | 
|---|
| 6523 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 
|---|
| 6524 | } | 
|---|
| 6525 |  | 
|---|
| 6526 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) | 
|---|
| 6527 | { | 
|---|
| 6528 | raw_spin_lock_init(&cfs_b->lock); | 
|---|
| 6529 | cfs_b->runtime = 0; | 
|---|
| 6530 | cfs_b->quota = RUNTIME_INF; | 
|---|
| 6531 | cfs_b->period = us_to_ktime(default_bw_period_us()); | 
|---|
| 6532 | cfs_b->burst = 0; | 
|---|
| 6533 | cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; | 
|---|
| 6534 |  | 
|---|
| 6535 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | 
|---|
| 6536 | hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, | 
|---|
| 6537 | HRTIMER_MODE_ABS_PINNED); | 
|---|
| 6538 |  | 
|---|
| 6539 | /* Add a random offset so that timers interleave */ | 
|---|
| 6540 | hrtimer_set_expires(&cfs_b->period_timer, | 
|---|
| 6541 | get_random_u32_below(cfs_b->period)); | 
|---|
| 6542 | hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, | 
|---|
| 6543 | HRTIMER_MODE_REL); | 
|---|
| 6544 | cfs_b->slack_started = false; | 
|---|
| 6545 | } | 
|---|
| 6546 |  | 
|---|
| 6547 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
|---|
| 6548 | { | 
|---|
| 6549 | cfs_rq->runtime_enabled = 0; | 
|---|
| 6550 | INIT_LIST_HEAD(&cfs_rq->throttled_list); | 
|---|
| 6551 | INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); | 
|---|
| 6552 | INIT_LIST_HEAD(&cfs_rq->throttled_limbo_list); | 
|---|
| 6553 | } | 
|---|
| 6554 |  | 
|---|
| 6555 | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
|---|
| 6556 | { | 
|---|
| 6557 | lockdep_assert_held(&cfs_b->lock); | 
|---|
| 6558 |  | 
|---|
| 6559 | if (cfs_b->period_active) | 
|---|
| 6560 | return; | 
|---|
| 6561 |  | 
|---|
| 6562 | cfs_b->period_active = 1; | 
|---|
| 6563 | hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); | 
|---|
| 6564 | hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); | 
|---|
| 6565 | } | 
|---|
| 6566 |  | 
|---|
| 6567 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
|---|
| 6568 | { | 
|---|
| 6569 | int __maybe_unused i; | 
|---|
| 6570 |  | 
|---|
| 6571 | /* init_cfs_bandwidth() was not called */ | 
|---|
| 6572 | if (!cfs_b->throttled_cfs_rq.next) | 
|---|
| 6573 | return; | 
|---|
| 6574 |  | 
|---|
| 6575 | hrtimer_cancel(&cfs_b->period_timer); | 
|---|
| 6576 | hrtimer_cancel(&cfs_b->slack_timer); | 
|---|
| 6577 |  | 
|---|
| 6578 | /* | 
|---|
| 6579 | * It is possible that we still have some cfs_rq's pending on a CSD | 
|---|
| 6580 | * list, though this race is very rare. In order for this to occur, we | 
|---|
| 6581 | * must have raced with the last task leaving the group while there | 
|---|
| 6582 | * exist throttled cfs_rq(s), and the period_timer must have queued the | 
|---|
| 6583 | * CSD item but the remote cpu has not yet processed it. To handle this, | 
|---|
| 6584 | * we can simply flush all pending CSD work inline here. We're | 
|---|
| 6585 | * guaranteed at this point that no additional cfs_rq of this group can | 
|---|
| 6586 | * join a CSD list. | 
|---|
| 6587 | */ | 
|---|
| 6588 | for_each_possible_cpu(i) { | 
|---|
| 6589 | struct rq *rq = cpu_rq(i); | 
|---|
| 6590 | unsigned long flags; | 
|---|
| 6591 |  | 
|---|
| 6592 | if (list_empty(&rq->cfsb_csd_list)) | 
|---|
| 6593 | continue; | 
|---|
| 6594 |  | 
|---|
| 6595 | local_irq_save(flags); | 
|---|
| 6596 | __cfsb_csd_unthrottle(rq); | 
|---|
| 6597 | local_irq_restore(flags); | 
|---|
| 6598 | } | 
|---|
| 6599 | } | 
|---|
| 6600 |  | 
|---|
| 6601 | /* | 
|---|
| 6602 | * Both these CPU hotplug callbacks race against unregister_fair_sched_group() | 
|---|
| 6603 | * | 
|---|
| 6604 | * The race is harmless, since modifying bandwidth settings of unhooked group | 
|---|
| 6605 | * bits doesn't do much. | 
|---|
| 6606 | */ | 
|---|
| 6607 |  | 
|---|
| 6608 | /* cpu online callback */ | 
|---|
| 6609 | static void __maybe_unused update_runtime_enabled(struct rq *rq) | 
|---|
| 6610 | { | 
|---|
| 6611 | struct task_group *tg; | 
|---|
| 6612 |  | 
|---|
| 6613 | lockdep_assert_rq_held(rq); | 
|---|
| 6614 |  | 
|---|
| 6615 | rcu_read_lock(); | 
|---|
| 6616 | list_for_each_entry_rcu(tg, &task_groups, list) { | 
|---|
| 6617 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
|---|
| 6618 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|---|
| 6619 |  | 
|---|
| 6620 | raw_spin_lock(&cfs_b->lock); | 
|---|
| 6621 | cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; | 
|---|
| 6622 | raw_spin_unlock(&cfs_b->lock); | 
|---|
| 6623 | } | 
|---|
| 6624 | rcu_read_unlock(); | 
|---|
| 6625 | } | 
|---|
| 6626 |  | 
|---|
| 6627 | /* cpu offline callback */ | 
|---|
| 6628 | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) | 
|---|
| 6629 | { | 
|---|
| 6630 | struct task_group *tg; | 
|---|
| 6631 |  | 
|---|
| 6632 | lockdep_assert_rq_held(rq); | 
|---|
| 6633 |  | 
|---|
| 6634 | // Do not unthrottle for an active CPU | 
|---|
| 6635 | if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) | 
|---|
| 6636 | return; | 
|---|
| 6637 |  | 
|---|
| 6638 | /* | 
|---|
| 6639 | * The rq clock has already been updated in the | 
|---|
| 6640 | * set_rq_offline(), so we should skip updating | 
|---|
| 6641 | * the rq clock again in unthrottle_cfs_rq(). | 
|---|
| 6642 | */ | 
|---|
| 6643 | rq_clock_start_loop_update(rq); | 
|---|
| 6644 |  | 
|---|
| 6645 | rcu_read_lock(); | 
|---|
| 6646 | list_for_each_entry_rcu(tg, &task_groups, list) { | 
|---|
| 6647 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
|---|
| 6648 |  | 
|---|
| 6649 | if (!cfs_rq->runtime_enabled) | 
|---|
| 6650 | continue; | 
|---|
| 6651 |  | 
|---|
| 6652 | /* | 
|---|
| 6653 | * Offline rq is schedulable till CPU is completely disabled | 
|---|
| 6654 | * in take_cpu_down(), so we prevent new cfs throttling here. | 
|---|
| 6655 | */ | 
|---|
| 6656 | cfs_rq->runtime_enabled = 0; | 
|---|
| 6657 |  | 
|---|
| 6658 | if (!cfs_rq_throttled(cfs_rq)) | 
|---|
| 6659 | continue; | 
|---|
| 6660 |  | 
|---|
| 6661 | /* | 
|---|
| 6662 | * clock_task is not advancing so we just need to make sure | 
|---|
| 6663 | * there's some valid quota amount | 
|---|
| 6664 | */ | 
|---|
| 6665 | cfs_rq->runtime_remaining = 1; | 
|---|
| 6666 | unthrottle_cfs_rq(cfs_rq); | 
|---|
| 6667 | } | 
|---|
| 6668 | rcu_read_unlock(); | 
|---|
| 6669 |  | 
|---|
| 6670 | rq_clock_stop_loop_update(rq); | 
|---|
| 6671 | } | 
|---|
| 6672 |  | 
|---|
| 6673 | bool cfs_task_bw_constrained(struct task_struct *p) | 
|---|
| 6674 | { | 
|---|
| 6675 | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
|---|
| 6676 |  | 
|---|
| 6677 | if (!cfs_bandwidth_used()) | 
|---|
| 6678 | return false; | 
|---|
| 6679 |  | 
|---|
| 6680 | if (cfs_rq->runtime_enabled || | 
|---|
| 6681 | tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) | 
|---|
| 6682 | return true; | 
|---|
| 6683 |  | 
|---|
| 6684 | return false; | 
|---|
| 6685 | } | 
|---|
| 6686 |  | 
|---|
| 6687 | #ifdef CONFIG_NO_HZ_FULL | 
|---|
| 6688 | /* called from pick_next_task_fair() */ | 
|---|
| 6689 | static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) | 
|---|
| 6690 | { | 
|---|
| 6691 | int cpu = cpu_of(rq); | 
|---|
| 6692 |  | 
|---|
| 6693 | if (!cfs_bandwidth_used()) | 
|---|
| 6694 | return; | 
|---|
| 6695 |  | 
|---|
| 6696 | if (!tick_nohz_full_cpu(cpu)) | 
|---|
| 6697 | return; | 
|---|
| 6698 |  | 
|---|
| 6699 | if (rq->nr_running != 1) | 
|---|
| 6700 | return; | 
|---|
| 6701 |  | 
|---|
| 6702 | /* | 
|---|
| 6703 | *  We know there is only one task runnable and we've just picked it. The | 
|---|
| 6704 | *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will | 
|---|
| 6705 | *  be otherwise able to stop the tick. Just need to check if we are using | 
|---|
| 6706 | *  bandwidth control. | 
|---|
| 6707 | */ | 
|---|
| 6708 | if (cfs_task_bw_constrained(p)) | 
|---|
| 6709 | tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); | 
|---|
| 6710 | } | 
|---|
| 6711 | #endif /* CONFIG_NO_HZ_FULL */ | 
|---|
| 6712 |  | 
|---|
| 6713 | #else /* !CONFIG_CFS_BANDWIDTH: */ | 
|---|
| 6714 |  | 
|---|
| 6715 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} | 
|---|
| 6716 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } | 
|---|
| 6717 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} | 
|---|
| 6718 | static inline void sync_throttle(struct task_group *tg, int cpu) {} | 
|---|
| 6719 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
|---|
| 6720 | static void task_throttle_setup_work(struct task_struct *p) {} | 
|---|
| 6721 | static bool task_is_throttled(struct task_struct *p) { return false; } | 
|---|
| 6722 | static void dequeue_throttled_task(struct task_struct *p, int flags) {} | 
|---|
| 6723 | static bool enqueue_throttled_task(struct task_struct *p) { return false; } | 
|---|
| 6724 | static void record_throttle_clock(struct cfs_rq *cfs_rq) {} | 
|---|
| 6725 |  | 
|---|
| 6726 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 
|---|
| 6727 | { | 
|---|
| 6728 | return 0; | 
|---|
| 6729 | } | 
|---|
| 6730 |  | 
|---|
| 6731 | static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq) | 
|---|
| 6732 | { | 
|---|
| 6733 | return false; | 
|---|
| 6734 | } | 
|---|
| 6735 |  | 
|---|
| 6736 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 
|---|
| 6737 | { | 
|---|
| 6738 | return 0; | 
|---|
| 6739 | } | 
|---|
| 6740 |  | 
|---|
| 6741 | static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu) | 
|---|
| 6742 | { | 
|---|
| 6743 | return 0; | 
|---|
| 6744 | } | 
|---|
| 6745 |  | 
|---|
| 6746 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 6747 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} | 
|---|
| 6748 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
|---|
| 6749 | #endif | 
|---|
| 6750 |  | 
|---|
| 6751 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | 
|---|
| 6752 | { | 
|---|
| 6753 | return NULL; | 
|---|
| 6754 | } | 
|---|
| 6755 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | 
|---|
| 6756 | static inline void update_runtime_enabled(struct rq *rq) {} | 
|---|
| 6757 | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} | 
|---|
| 6758 | #ifdef CONFIG_CGROUP_SCHED | 
|---|
| 6759 | bool cfs_task_bw_constrained(struct task_struct *p) | 
|---|
| 6760 | { | 
|---|
| 6761 | return false; | 
|---|
| 6762 | } | 
|---|
| 6763 | #endif | 
|---|
| 6764 | #endif /* !CONFIG_CFS_BANDWIDTH */ | 
|---|
| 6765 |  | 
|---|
| 6766 | #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) | 
|---|
| 6767 | static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} | 
|---|
| 6768 | #endif | 
|---|
| 6769 |  | 
|---|
| 6770 | /************************************************** | 
|---|
| 6771 | * CFS operations on tasks: | 
|---|
| 6772 | */ | 
|---|
| 6773 |  | 
|---|
| 6774 | #ifdef CONFIG_SCHED_HRTICK | 
|---|
| 6775 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
|---|
| 6776 | { | 
|---|
| 6777 | struct sched_entity *se = &p->se; | 
|---|
| 6778 |  | 
|---|
| 6779 | WARN_ON_ONCE(task_rq(p) != rq); | 
|---|
| 6780 |  | 
|---|
| 6781 | if (rq->cfs.h_nr_queued > 1) { | 
|---|
| 6782 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
|---|
| 6783 | u64 slice = se->slice; | 
|---|
| 6784 | s64 delta = slice - ran; | 
|---|
| 6785 |  | 
|---|
| 6786 | if (delta < 0) { | 
|---|
| 6787 | if (task_current_donor(rq, p)) | 
|---|
| 6788 | resched_curr(rq); | 
|---|
| 6789 | return; | 
|---|
| 6790 | } | 
|---|
| 6791 | hrtick_start(rq, delay: delta); | 
|---|
| 6792 | } | 
|---|
| 6793 | } | 
|---|
| 6794 |  | 
|---|
| 6795 | /* | 
|---|
| 6796 | * called from enqueue/dequeue and updates the hrtick when the | 
|---|
| 6797 | * current task is from our class and nr_running is low enough | 
|---|
| 6798 | * to matter. | 
|---|
| 6799 | */ | 
|---|
| 6800 | static void hrtick_update(struct rq *rq) | 
|---|
| 6801 | { | 
|---|
| 6802 | struct task_struct *donor = rq->donor; | 
|---|
| 6803 |  | 
|---|
| 6804 | if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) | 
|---|
| 6805 | return; | 
|---|
| 6806 |  | 
|---|
| 6807 | hrtick_start_fair(rq, p: donor); | 
|---|
| 6808 | } | 
|---|
| 6809 | #else /* !CONFIG_SCHED_HRTICK: */ | 
|---|
| 6810 | static inline void | 
|---|
| 6811 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
|---|
| 6812 | { | 
|---|
| 6813 | } | 
|---|
| 6814 |  | 
|---|
| 6815 | static inline void hrtick_update(struct rq *rq) | 
|---|
| 6816 | { | 
|---|
| 6817 | } | 
|---|
| 6818 | #endif /* !CONFIG_SCHED_HRTICK */ | 
|---|
| 6819 |  | 
|---|
| 6820 | static inline bool cpu_overutilized(int cpu) | 
|---|
| 6821 | { | 
|---|
| 6822 | unsigned long  rq_util_min, rq_util_max; | 
|---|
| 6823 |  | 
|---|
| 6824 | if (!sched_energy_enabled()) | 
|---|
| 6825 | return false; | 
|---|
| 6826 |  | 
|---|
| 6827 | rq_util_min = uclamp_rq_get(cpu_rq(cpu), clamp_id: UCLAMP_MIN); | 
|---|
| 6828 | rq_util_max = uclamp_rq_get(cpu_rq(cpu), clamp_id: UCLAMP_MAX); | 
|---|
| 6829 |  | 
|---|
| 6830 | /* Return true only if the utilization doesn't fit CPU's capacity */ | 
|---|
| 6831 | return !util_fits_cpu(util: cpu_util_cfs(cpu), uclamp_min: rq_util_min, uclamp_max: rq_util_max, cpu); | 
|---|
| 6832 | } | 
|---|
| 6833 |  | 
|---|
| 6834 | /* | 
|---|
| 6835 | * overutilized value make sense only if EAS is enabled | 
|---|
| 6836 | */ | 
|---|
| 6837 | static inline bool is_rd_overutilized(struct root_domain *rd) | 
|---|
| 6838 | { | 
|---|
| 6839 | return !sched_energy_enabled() || READ_ONCE(rd->overutilized); | 
|---|
| 6840 | } | 
|---|
| 6841 |  | 
|---|
| 6842 | static inline void set_rd_overutilized(struct root_domain *rd, bool flag) | 
|---|
| 6843 | { | 
|---|
| 6844 | if (!sched_energy_enabled()) | 
|---|
| 6845 | return; | 
|---|
| 6846 |  | 
|---|
| 6847 | WRITE_ONCE(rd->overutilized, flag); | 
|---|
| 6848 | trace_sched_overutilized_tp(rd, overutilized: flag); | 
|---|
| 6849 | } | 
|---|
| 6850 |  | 
|---|
| 6851 | static inline void check_update_overutilized_status(struct rq *rq) | 
|---|
| 6852 | { | 
|---|
| 6853 | /* | 
|---|
| 6854 | * overutilized field is used for load balancing decisions only | 
|---|
| 6855 | * if energy aware scheduler is being used | 
|---|
| 6856 | */ | 
|---|
| 6857 |  | 
|---|
| 6858 | if (!is_rd_overutilized(rd: rq->rd) && cpu_overutilized(cpu: rq->cpu)) | 
|---|
| 6859 | set_rd_overutilized(rd: rq->rd, flag: 1); | 
|---|
| 6860 | } | 
|---|
| 6861 |  | 
|---|
| 6862 | /* Runqueue only has SCHED_IDLE tasks enqueued */ | 
|---|
| 6863 | static int sched_idle_rq(struct rq *rq) | 
|---|
| 6864 | { | 
|---|
| 6865 | return unlikely(rq->nr_running == rq->cfs.h_nr_idle && | 
|---|
| 6866 | rq->nr_running); | 
|---|
| 6867 | } | 
|---|
| 6868 |  | 
|---|
| 6869 | static int sched_idle_cpu(int cpu) | 
|---|
| 6870 | { | 
|---|
| 6871 | return sched_idle_rq(cpu_rq(cpu)); | 
|---|
| 6872 | } | 
|---|
| 6873 |  | 
|---|
| 6874 | static void | 
|---|
| 6875 | requeue_delayed_entity(struct sched_entity *se) | 
|---|
| 6876 | { | 
|---|
| 6877 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 6878 |  | 
|---|
| 6879 | /* | 
|---|
| 6880 | * se->sched_delayed should imply: se->on_rq == 1. | 
|---|
| 6881 | * Because a delayed entity is one that is still on | 
|---|
| 6882 | * the runqueue competing until elegibility. | 
|---|
| 6883 | */ | 
|---|
| 6884 | WARN_ON_ONCE(!se->sched_delayed); | 
|---|
| 6885 | WARN_ON_ONCE(!se->on_rq); | 
|---|
| 6886 |  | 
|---|
| 6887 | if (sched_feat(DELAY_ZERO)) { | 
|---|
| 6888 | update_entity_lag(cfs_rq, se); | 
|---|
| 6889 | if (se->vlag > 0) { | 
|---|
| 6890 | cfs_rq->nr_queued--; | 
|---|
| 6891 | if (se != cfs_rq->curr) | 
|---|
| 6892 | __dequeue_entity(cfs_rq, se); | 
|---|
| 6893 | se->vlag = 0; | 
|---|
| 6894 | place_entity(cfs_rq, se, flags: 0); | 
|---|
| 6895 | if (se != cfs_rq->curr) | 
|---|
| 6896 | __enqueue_entity(cfs_rq, se); | 
|---|
| 6897 | cfs_rq->nr_queued++; | 
|---|
| 6898 | } | 
|---|
| 6899 | } | 
|---|
| 6900 |  | 
|---|
| 6901 | update_load_avg(cfs_rq, se, flags: 0); | 
|---|
| 6902 | clear_delayed(se); | 
|---|
| 6903 | } | 
|---|
| 6904 |  | 
|---|
| 6905 | /* | 
|---|
| 6906 | * The enqueue_task method is called before nr_running is | 
|---|
| 6907 | * increased. Here we update the fair scheduling stats and | 
|---|
| 6908 | * then put the task into the rbtree: | 
|---|
| 6909 | */ | 
|---|
| 6910 | static void | 
|---|
| 6911 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 6912 | { | 
|---|
| 6913 | struct cfs_rq *cfs_rq; | 
|---|
| 6914 | struct sched_entity *se = &p->se; | 
|---|
| 6915 | int h_nr_idle = task_has_idle_policy(p); | 
|---|
| 6916 | int h_nr_runnable = 1; | 
|---|
| 6917 | int task_new = !(flags & ENQUEUE_WAKEUP); | 
|---|
| 6918 | int rq_h_nr_queued = rq->cfs.h_nr_queued; | 
|---|
| 6919 | u64 slice = 0; | 
|---|
| 6920 |  | 
|---|
| 6921 | if (task_is_throttled(p) && enqueue_throttled_task(p)) | 
|---|
| 6922 | return; | 
|---|
| 6923 |  | 
|---|
| 6924 | /* | 
|---|
| 6925 | * The code below (indirectly) updates schedutil which looks at | 
|---|
| 6926 | * the cfs_rq utilization to select a frequency. | 
|---|
| 6927 | * Let's add the task's estimated utilization to the cfs_rq's | 
|---|
| 6928 | * estimated utilization, before we update schedutil. | 
|---|
| 6929 | */ | 
|---|
| 6930 | if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) | 
|---|
| 6931 | util_est_enqueue(cfs_rq: &rq->cfs, p); | 
|---|
| 6932 |  | 
|---|
| 6933 | if (flags & ENQUEUE_DELAYED) { | 
|---|
| 6934 | requeue_delayed_entity(se); | 
|---|
| 6935 | return; | 
|---|
| 6936 | } | 
|---|
| 6937 |  | 
|---|
| 6938 | /* | 
|---|
| 6939 | * If in_iowait is set, the code below may not trigger any cpufreq | 
|---|
| 6940 | * utilization updates, so do it here explicitly with the IOWAIT flag | 
|---|
| 6941 | * passed. | 
|---|
| 6942 | */ | 
|---|
| 6943 | if (p->in_iowait) | 
|---|
| 6944 | cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); | 
|---|
| 6945 |  | 
|---|
| 6946 | if (task_new && se->sched_delayed) | 
|---|
| 6947 | h_nr_runnable = 0; | 
|---|
| 6948 |  | 
|---|
| 6949 | for_each_sched_entity(se) { | 
|---|
| 6950 | if (se->on_rq) { | 
|---|
| 6951 | if (se->sched_delayed) | 
|---|
| 6952 | requeue_delayed_entity(se); | 
|---|
| 6953 | break; | 
|---|
| 6954 | } | 
|---|
| 6955 | cfs_rq = cfs_rq_of(se); | 
|---|
| 6956 |  | 
|---|
| 6957 | /* | 
|---|
| 6958 | * Basically set the slice of group entries to the min_slice of | 
|---|
| 6959 | * their respective cfs_rq. This ensures the group can service | 
|---|
| 6960 | * its entities in the desired time-frame. | 
|---|
| 6961 | */ | 
|---|
| 6962 | if (slice) { | 
|---|
| 6963 | se->slice = slice; | 
|---|
| 6964 | se->custom_slice = 1; | 
|---|
| 6965 | } | 
|---|
| 6966 | enqueue_entity(cfs_rq, se, flags); | 
|---|
| 6967 | slice = cfs_rq_min_slice(cfs_rq); | 
|---|
| 6968 |  | 
|---|
| 6969 | cfs_rq->h_nr_runnable += h_nr_runnable; | 
|---|
| 6970 | cfs_rq->h_nr_queued++; | 
|---|
| 6971 | cfs_rq->h_nr_idle += h_nr_idle; | 
|---|
| 6972 |  | 
|---|
| 6973 | if (cfs_rq_is_idle(cfs_rq)) | 
|---|
| 6974 | h_nr_idle = 1; | 
|---|
| 6975 |  | 
|---|
| 6976 | flags = ENQUEUE_WAKEUP; | 
|---|
| 6977 | } | 
|---|
| 6978 |  | 
|---|
| 6979 | for_each_sched_entity(se) { | 
|---|
| 6980 | cfs_rq = cfs_rq_of(se); | 
|---|
| 6981 |  | 
|---|
| 6982 | update_load_avg(cfs_rq, se, UPDATE_TG); | 
|---|
| 6983 | se_update_runnable(se); | 
|---|
| 6984 | update_cfs_group(se); | 
|---|
| 6985 |  | 
|---|
| 6986 | se->slice = slice; | 
|---|
| 6987 | if (se != cfs_rq->curr) | 
|---|
| 6988 | min_vruntime_cb_propagate(rb: &se->run_node, NULL); | 
|---|
| 6989 | slice = cfs_rq_min_slice(cfs_rq); | 
|---|
| 6990 |  | 
|---|
| 6991 | cfs_rq->h_nr_runnable += h_nr_runnable; | 
|---|
| 6992 | cfs_rq->h_nr_queued++; | 
|---|
| 6993 | cfs_rq->h_nr_idle += h_nr_idle; | 
|---|
| 6994 |  | 
|---|
| 6995 | if (cfs_rq_is_idle(cfs_rq)) | 
|---|
| 6996 | h_nr_idle = 1; | 
|---|
| 6997 | } | 
|---|
| 6998 |  | 
|---|
| 6999 | if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { | 
|---|
| 7000 | /* Account for idle runtime */ | 
|---|
| 7001 | if (!rq->nr_running) | 
|---|
| 7002 | dl_server_update_idle_time(rq, p: rq->curr); | 
|---|
| 7003 | dl_server_start(dl_se: &rq->fair_server); | 
|---|
| 7004 | } | 
|---|
| 7005 |  | 
|---|
| 7006 | /* At this point se is NULL and we are at root level*/ | 
|---|
| 7007 | add_nr_running(rq, count: 1); | 
|---|
| 7008 |  | 
|---|
| 7009 | /* | 
|---|
| 7010 | * Since new tasks are assigned an initial util_avg equal to | 
|---|
| 7011 | * half of the spare capacity of their CPU, tiny tasks have the | 
|---|
| 7012 | * ability to cross the overutilized threshold, which will | 
|---|
| 7013 | * result in the load balancer ruining all the task placement | 
|---|
| 7014 | * done by EAS. As a way to mitigate that effect, do not account | 
|---|
| 7015 | * for the first enqueue operation of new tasks during the | 
|---|
| 7016 | * overutilized flag detection. | 
|---|
| 7017 | * | 
|---|
| 7018 | * A better way of solving this problem would be to wait for | 
|---|
| 7019 | * the PELT signals of tasks to converge before taking them | 
|---|
| 7020 | * into account, but that is not straightforward to implement, | 
|---|
| 7021 | * and the following generally works well enough in practice. | 
|---|
| 7022 | */ | 
|---|
| 7023 | if (!task_new) | 
|---|
| 7024 | check_update_overutilized_status(rq); | 
|---|
| 7025 |  | 
|---|
| 7026 | assert_list_leaf_cfs_rq(rq); | 
|---|
| 7027 |  | 
|---|
| 7028 | hrtick_update(rq); | 
|---|
| 7029 | } | 
|---|
| 7030 |  | 
|---|
| 7031 | static void set_next_buddy(struct sched_entity *se); | 
|---|
| 7032 |  | 
|---|
| 7033 | /* | 
|---|
| 7034 | * Basically dequeue_task_fair(), except it can deal with dequeue_entity() | 
|---|
| 7035 | * failing half-way through and resume the dequeue later. | 
|---|
| 7036 | * | 
|---|
| 7037 | * Returns: | 
|---|
| 7038 | * -1 - dequeue delayed | 
|---|
| 7039 | *  0 - dequeue throttled | 
|---|
| 7040 | *  1 - dequeue complete | 
|---|
| 7041 | */ | 
|---|
| 7042 | static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) | 
|---|
| 7043 | { | 
|---|
| 7044 | bool was_sched_idle = sched_idle_rq(rq); | 
|---|
| 7045 | bool task_sleep = flags & DEQUEUE_SLEEP; | 
|---|
| 7046 | bool task_delayed = flags & DEQUEUE_DELAYED; | 
|---|
| 7047 | bool task_throttled = flags & DEQUEUE_THROTTLE; | 
|---|
| 7048 | struct task_struct *p = NULL; | 
|---|
| 7049 | int h_nr_idle = 0; | 
|---|
| 7050 | int h_nr_queued = 0; | 
|---|
| 7051 | int h_nr_runnable = 0; | 
|---|
| 7052 | struct cfs_rq *cfs_rq; | 
|---|
| 7053 | u64 slice = 0; | 
|---|
| 7054 |  | 
|---|
| 7055 | if (entity_is_task(se)) { | 
|---|
| 7056 | p = task_of(se); | 
|---|
| 7057 | h_nr_queued = 1; | 
|---|
| 7058 | h_nr_idle = task_has_idle_policy(p); | 
|---|
| 7059 | if (task_sleep || task_delayed || !se->sched_delayed) | 
|---|
| 7060 | h_nr_runnable = 1; | 
|---|
| 7061 | } | 
|---|
| 7062 |  | 
|---|
| 7063 | for_each_sched_entity(se) { | 
|---|
| 7064 | cfs_rq = cfs_rq_of(se); | 
|---|
| 7065 |  | 
|---|
| 7066 | if (!dequeue_entity(cfs_rq, se, flags)) { | 
|---|
| 7067 | if (p && &p->se == se) | 
|---|
| 7068 | return -1; | 
|---|
| 7069 |  | 
|---|
| 7070 | slice = cfs_rq_min_slice(cfs_rq); | 
|---|
| 7071 | break; | 
|---|
| 7072 | } | 
|---|
| 7073 |  | 
|---|
| 7074 | cfs_rq->h_nr_runnable -= h_nr_runnable; | 
|---|
| 7075 | cfs_rq->h_nr_queued -= h_nr_queued; | 
|---|
| 7076 | cfs_rq->h_nr_idle -= h_nr_idle; | 
|---|
| 7077 |  | 
|---|
| 7078 | if (cfs_rq_is_idle(cfs_rq)) | 
|---|
| 7079 | h_nr_idle = h_nr_queued; | 
|---|
| 7080 |  | 
|---|
| 7081 | if (throttled_hierarchy(cfs_rq) && task_throttled) | 
|---|
| 7082 | record_throttle_clock(cfs_rq); | 
|---|
| 7083 |  | 
|---|
| 7084 | /* Don't dequeue parent if it has other entities besides us */ | 
|---|
| 7085 | if (cfs_rq->load.weight) { | 
|---|
| 7086 | slice = cfs_rq_min_slice(cfs_rq); | 
|---|
| 7087 |  | 
|---|
| 7088 | /* Avoid re-evaluating load for this entity: */ | 
|---|
| 7089 | se = parent_entity(se); | 
|---|
| 7090 | /* | 
|---|
| 7091 | * Bias pick_next to pick a task from this cfs_rq, as | 
|---|
| 7092 | * p is sleeping when it is within its sched_slice. | 
|---|
| 7093 | */ | 
|---|
| 7094 | if (task_sleep && se) | 
|---|
| 7095 | set_next_buddy(se); | 
|---|
| 7096 | break; | 
|---|
| 7097 | } | 
|---|
| 7098 | flags |= DEQUEUE_SLEEP; | 
|---|
| 7099 | flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); | 
|---|
| 7100 | } | 
|---|
| 7101 |  | 
|---|
| 7102 | for_each_sched_entity(se) { | 
|---|
| 7103 | cfs_rq = cfs_rq_of(se); | 
|---|
| 7104 |  | 
|---|
| 7105 | update_load_avg(cfs_rq, se, UPDATE_TG); | 
|---|
| 7106 | se_update_runnable(se); | 
|---|
| 7107 | update_cfs_group(se); | 
|---|
| 7108 |  | 
|---|
| 7109 | se->slice = slice; | 
|---|
| 7110 | if (se != cfs_rq->curr) | 
|---|
| 7111 | min_vruntime_cb_propagate(rb: &se->run_node, NULL); | 
|---|
| 7112 | slice = cfs_rq_min_slice(cfs_rq); | 
|---|
| 7113 |  | 
|---|
| 7114 | cfs_rq->h_nr_runnable -= h_nr_runnable; | 
|---|
| 7115 | cfs_rq->h_nr_queued -= h_nr_queued; | 
|---|
| 7116 | cfs_rq->h_nr_idle -= h_nr_idle; | 
|---|
| 7117 |  | 
|---|
| 7118 | if (cfs_rq_is_idle(cfs_rq)) | 
|---|
| 7119 | h_nr_idle = h_nr_queued; | 
|---|
| 7120 |  | 
|---|
| 7121 | if (throttled_hierarchy(cfs_rq) && task_throttled) | 
|---|
| 7122 | record_throttle_clock(cfs_rq); | 
|---|
| 7123 | } | 
|---|
| 7124 |  | 
|---|
| 7125 | sub_nr_running(rq, count: h_nr_queued); | 
|---|
| 7126 |  | 
|---|
| 7127 | /* balance early to pull high priority tasks */ | 
|---|
| 7128 | if (unlikely(!was_sched_idle && sched_idle_rq(rq))) | 
|---|
| 7129 | rq->next_balance = jiffies; | 
|---|
| 7130 |  | 
|---|
| 7131 | if (p && task_delayed) { | 
|---|
| 7132 | WARN_ON_ONCE(!task_sleep); | 
|---|
| 7133 | WARN_ON_ONCE(p->on_rq != 1); | 
|---|
| 7134 |  | 
|---|
| 7135 | /* Fix-up what dequeue_task_fair() skipped */ | 
|---|
| 7136 | hrtick_update(rq); | 
|---|
| 7137 |  | 
|---|
| 7138 | /* | 
|---|
| 7139 | * Fix-up what block_task() skipped. | 
|---|
| 7140 | * | 
|---|
| 7141 | * Must be last, @p might not be valid after this. | 
|---|
| 7142 | */ | 
|---|
| 7143 | __block_task(rq, p); | 
|---|
| 7144 | } | 
|---|
| 7145 |  | 
|---|
| 7146 | return 1; | 
|---|
| 7147 | } | 
|---|
| 7148 |  | 
|---|
| 7149 | /* | 
|---|
| 7150 | * The dequeue_task method is called before nr_running is | 
|---|
| 7151 | * decreased. We remove the task from the rbtree and | 
|---|
| 7152 | * update the fair scheduling stats: | 
|---|
| 7153 | */ | 
|---|
| 7154 | static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 7155 | { | 
|---|
| 7156 | if (task_is_throttled(p)) { | 
|---|
| 7157 | dequeue_throttled_task(p, flags); | 
|---|
| 7158 | return true; | 
|---|
| 7159 | } | 
|---|
| 7160 |  | 
|---|
| 7161 | if (!p->se.sched_delayed) | 
|---|
| 7162 | util_est_dequeue(cfs_rq: &rq->cfs, p); | 
|---|
| 7163 |  | 
|---|
| 7164 | util_est_update(cfs_rq: &rq->cfs, p, task_sleep: flags & DEQUEUE_SLEEP); | 
|---|
| 7165 | if (dequeue_entities(rq, se: &p->se, flags) < 0) | 
|---|
| 7166 | return false; | 
|---|
| 7167 |  | 
|---|
| 7168 | /* | 
|---|
| 7169 | * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). | 
|---|
| 7170 | */ | 
|---|
| 7171 |  | 
|---|
| 7172 | hrtick_update(rq); | 
|---|
| 7173 | return true; | 
|---|
| 7174 | } | 
|---|
| 7175 |  | 
|---|
| 7176 | static inline unsigned int cfs_h_nr_delayed(struct rq *rq) | 
|---|
| 7177 | { | 
|---|
| 7178 | return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); | 
|---|
| 7179 | } | 
|---|
| 7180 |  | 
|---|
| 7181 | /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ | 
|---|
| 7182 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); | 
|---|
| 7183 | static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); | 
|---|
| 7184 | static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); | 
|---|
| 7185 |  | 
|---|
| 7186 | #ifdef CONFIG_NO_HZ_COMMON | 
|---|
| 7187 |  | 
|---|
| 7188 | static struct { | 
|---|
| 7189 | cpumask_var_t idle_cpus_mask; | 
|---|
| 7190 | atomic_t nr_cpus; | 
|---|
| 7191 | int has_blocked;		/* Idle CPUS has blocked load */ | 
|---|
| 7192 | int needs_update;		/* Newly idle CPUs need their next_balance collated */ | 
|---|
| 7193 | unsigned long next_balance;     /* in jiffy units */ | 
|---|
| 7194 | unsigned long next_blocked;	/* Next update of blocked load in jiffies */ | 
|---|
| 7195 | } nohz ____cacheline_aligned; | 
|---|
| 7196 |  | 
|---|
| 7197 | #endif /* CONFIG_NO_HZ_COMMON */ | 
|---|
| 7198 |  | 
|---|
| 7199 | static unsigned long cpu_load(struct rq *rq) | 
|---|
| 7200 | { | 
|---|
| 7201 | return cfs_rq_load_avg(cfs_rq: &rq->cfs); | 
|---|
| 7202 | } | 
|---|
| 7203 |  | 
|---|
| 7204 | /* | 
|---|
| 7205 | * cpu_load_without - compute CPU load without any contributions from *p | 
|---|
| 7206 | * @cpu: the CPU which load is requested | 
|---|
| 7207 | * @p: the task which load should be discounted | 
|---|
| 7208 | * | 
|---|
| 7209 | * The load of a CPU is defined by the load of tasks currently enqueued on that | 
|---|
| 7210 | * CPU as well as tasks which are currently sleeping after an execution on that | 
|---|
| 7211 | * CPU. | 
|---|
| 7212 | * | 
|---|
| 7213 | * This method returns the load of the specified CPU by discounting the load of | 
|---|
| 7214 | * the specified task, whenever the task is currently contributing to the CPU | 
|---|
| 7215 | * load. | 
|---|
| 7216 | */ | 
|---|
| 7217 | static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) | 
|---|
| 7218 | { | 
|---|
| 7219 | struct cfs_rq *cfs_rq; | 
|---|
| 7220 | unsigned int load; | 
|---|
| 7221 |  | 
|---|
| 7222 | /* Task has no contribution or is new */ | 
|---|
| 7223 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | 
|---|
| 7224 | return cpu_load(rq); | 
|---|
| 7225 |  | 
|---|
| 7226 | cfs_rq = &rq->cfs; | 
|---|
| 7227 | load = READ_ONCE(cfs_rq->avg.load_avg); | 
|---|
| 7228 |  | 
|---|
| 7229 | /* Discount task's util from CPU's util */ | 
|---|
| 7230 | lsub_positive(&load, task_h_load(p)); | 
|---|
| 7231 |  | 
|---|
| 7232 | return load; | 
|---|
| 7233 | } | 
|---|
| 7234 |  | 
|---|
| 7235 | static unsigned long cpu_runnable(struct rq *rq) | 
|---|
| 7236 | { | 
|---|
| 7237 | return cfs_rq_runnable_avg(cfs_rq: &rq->cfs); | 
|---|
| 7238 | } | 
|---|
| 7239 |  | 
|---|
| 7240 | static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) | 
|---|
| 7241 | { | 
|---|
| 7242 | struct cfs_rq *cfs_rq; | 
|---|
| 7243 | unsigned int runnable; | 
|---|
| 7244 |  | 
|---|
| 7245 | /* Task has no contribution or is new */ | 
|---|
| 7246 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | 
|---|
| 7247 | return cpu_runnable(rq); | 
|---|
| 7248 |  | 
|---|
| 7249 | cfs_rq = &rq->cfs; | 
|---|
| 7250 | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); | 
|---|
| 7251 |  | 
|---|
| 7252 | /* Discount task's runnable from CPU's runnable */ | 
|---|
| 7253 | lsub_positive(&runnable, p->se.avg.runnable_avg); | 
|---|
| 7254 |  | 
|---|
| 7255 | return runnable; | 
|---|
| 7256 | } | 
|---|
| 7257 |  | 
|---|
| 7258 | static unsigned long capacity_of(int cpu) | 
|---|
| 7259 | { | 
|---|
| 7260 | return cpu_rq(cpu)->cpu_capacity; | 
|---|
| 7261 | } | 
|---|
| 7262 |  | 
|---|
| 7263 | static void record_wakee(struct task_struct *p) | 
|---|
| 7264 | { | 
|---|
| 7265 | /* | 
|---|
| 7266 | * Only decay a single time; tasks that have less then 1 wakeup per | 
|---|
| 7267 | * jiffy will not have built up many flips. | 
|---|
| 7268 | */ | 
|---|
| 7269 | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { | 
|---|
| 7270 | current->wakee_flips >>= 1; | 
|---|
| 7271 | current->wakee_flip_decay_ts = jiffies; | 
|---|
| 7272 | } | 
|---|
| 7273 |  | 
|---|
| 7274 | if (current->last_wakee != p) { | 
|---|
| 7275 | current->last_wakee = p; | 
|---|
| 7276 | current->wakee_flips++; | 
|---|
| 7277 | } | 
|---|
| 7278 | } | 
|---|
| 7279 |  | 
|---|
| 7280 | /* | 
|---|
| 7281 | * Detect M:N waker/wakee relationships via a switching-frequency heuristic. | 
|---|
| 7282 | * | 
|---|
| 7283 | * A waker of many should wake a different task than the one last awakened | 
|---|
| 7284 | * at a frequency roughly N times higher than one of its wakees. | 
|---|
| 7285 | * | 
|---|
| 7286 | * In order to determine whether we should let the load spread vs consolidating | 
|---|
| 7287 | * to shared cache, we look for a minimum 'flip' frequency of llc_size in one | 
|---|
| 7288 | * partner, and a factor of lls_size higher frequency in the other. | 
|---|
| 7289 | * | 
|---|
| 7290 | * With both conditions met, we can be relatively sure that the relationship is | 
|---|
| 7291 | * non-monogamous, with partner count exceeding socket size. | 
|---|
| 7292 | * | 
|---|
| 7293 | * Waker/wakee being client/server, worker/dispatcher, interrupt source or | 
|---|
| 7294 | * whatever is irrelevant, spread criteria is apparent partner count exceeds | 
|---|
| 7295 | * socket size. | 
|---|
| 7296 | */ | 
|---|
| 7297 | static int wake_wide(struct task_struct *p) | 
|---|
| 7298 | { | 
|---|
| 7299 | unsigned int master = current->wakee_flips; | 
|---|
| 7300 | unsigned int slave = p->wakee_flips; | 
|---|
| 7301 | int factor = __this_cpu_read(sd_llc_size); | 
|---|
| 7302 |  | 
|---|
| 7303 | if (master < slave) | 
|---|
| 7304 | swap(master, slave); | 
|---|
| 7305 | if (slave < factor || master < slave * factor) | 
|---|
| 7306 | return 0; | 
|---|
| 7307 | return 1; | 
|---|
| 7308 | } | 
|---|
| 7309 |  | 
|---|
| 7310 | /* | 
|---|
| 7311 | * The purpose of wake_affine() is to quickly determine on which CPU we can run | 
|---|
| 7312 | * soonest. For the purpose of speed we only consider the waking and previous | 
|---|
| 7313 | * CPU. | 
|---|
| 7314 | * | 
|---|
| 7315 | * wake_affine_idle() - only considers 'now', it check if the waking CPU is | 
|---|
| 7316 | *			cache-affine and is (or	will be) idle. | 
|---|
| 7317 | * | 
|---|
| 7318 | * wake_affine_weight() - considers the weight to reflect the average | 
|---|
| 7319 | *			  scheduling latency of the CPUs. This seems to work | 
|---|
| 7320 | *			  for the overloaded case. | 
|---|
| 7321 | */ | 
|---|
| 7322 | static int | 
|---|
| 7323 | wake_affine_idle(int this_cpu, int prev_cpu, int sync) | 
|---|
| 7324 | { | 
|---|
| 7325 | /* | 
|---|
| 7326 | * If this_cpu is idle, it implies the wakeup is from interrupt | 
|---|
| 7327 | * context. Only allow the move if cache is shared. Otherwise an | 
|---|
| 7328 | * interrupt intensive workload could force all tasks onto one | 
|---|
| 7329 | * node depending on the IO topology or IRQ affinity settings. | 
|---|
| 7330 | * | 
|---|
| 7331 | * If the prev_cpu is idle and cache affine then avoid a migration. | 
|---|
| 7332 | * There is no guarantee that the cache hot data from an interrupt | 
|---|
| 7333 | * is more important than cache hot data on the prev_cpu and from | 
|---|
| 7334 | * a cpufreq perspective, it's better to have higher utilisation | 
|---|
| 7335 | * on one CPU. | 
|---|
| 7336 | */ | 
|---|
| 7337 | if (available_idle_cpu(cpu: this_cpu) && cpus_share_cache(this_cpu, that_cpu: prev_cpu)) | 
|---|
| 7338 | return available_idle_cpu(cpu: prev_cpu) ? prev_cpu : this_cpu; | 
|---|
| 7339 |  | 
|---|
| 7340 | if (sync) { | 
|---|
| 7341 | struct rq *rq = cpu_rq(this_cpu); | 
|---|
| 7342 |  | 
|---|
| 7343 | if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) | 
|---|
| 7344 | return this_cpu; | 
|---|
| 7345 | } | 
|---|
| 7346 |  | 
|---|
| 7347 | if (available_idle_cpu(cpu: prev_cpu)) | 
|---|
| 7348 | return prev_cpu; | 
|---|
| 7349 |  | 
|---|
| 7350 | return nr_cpumask_bits; | 
|---|
| 7351 | } | 
|---|
| 7352 |  | 
|---|
| 7353 | static int | 
|---|
| 7354 | wake_affine_weight(struct sched_domain *sd, struct task_struct *p, | 
|---|
| 7355 | int this_cpu, int prev_cpu, int sync) | 
|---|
| 7356 | { | 
|---|
| 7357 | s64 this_eff_load, prev_eff_load; | 
|---|
| 7358 | unsigned long task_load; | 
|---|
| 7359 |  | 
|---|
| 7360 | this_eff_load = cpu_load(cpu_rq(this_cpu)); | 
|---|
| 7361 |  | 
|---|
| 7362 | if (sync) { | 
|---|
| 7363 | unsigned long current_load = task_h_load(current); | 
|---|
| 7364 |  | 
|---|
| 7365 | if (current_load > this_eff_load) | 
|---|
| 7366 | return this_cpu; | 
|---|
| 7367 |  | 
|---|
| 7368 | this_eff_load -= current_load; | 
|---|
| 7369 | } | 
|---|
| 7370 |  | 
|---|
| 7371 | task_load = task_h_load(p); | 
|---|
| 7372 |  | 
|---|
| 7373 | this_eff_load += task_load; | 
|---|
| 7374 | if (sched_feat(WA_BIAS)) | 
|---|
| 7375 | this_eff_load *= 100; | 
|---|
| 7376 | this_eff_load *= capacity_of(cpu: prev_cpu); | 
|---|
| 7377 |  | 
|---|
| 7378 | prev_eff_load = cpu_load(cpu_rq(prev_cpu)); | 
|---|
| 7379 | prev_eff_load -= task_load; | 
|---|
| 7380 | if (sched_feat(WA_BIAS)) | 
|---|
| 7381 | prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; | 
|---|
| 7382 | prev_eff_load *= capacity_of(cpu: this_cpu); | 
|---|
| 7383 |  | 
|---|
| 7384 | /* | 
|---|
| 7385 | * If sync, adjust the weight of prev_eff_load such that if | 
|---|
| 7386 | * prev_eff == this_eff that select_idle_sibling() will consider | 
|---|
| 7387 | * stacking the wakee on top of the waker if no other CPU is | 
|---|
| 7388 | * idle. | 
|---|
| 7389 | */ | 
|---|
| 7390 | if (sync) | 
|---|
| 7391 | prev_eff_load += 1; | 
|---|
| 7392 |  | 
|---|
| 7393 | return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; | 
|---|
| 7394 | } | 
|---|
| 7395 |  | 
|---|
| 7396 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, | 
|---|
| 7397 | int this_cpu, int prev_cpu, int sync) | 
|---|
| 7398 | { | 
|---|
| 7399 | int target = nr_cpumask_bits; | 
|---|
| 7400 |  | 
|---|
| 7401 | if (sched_feat(WA_IDLE)) | 
|---|
| 7402 | target = wake_affine_idle(this_cpu, prev_cpu, sync); | 
|---|
| 7403 |  | 
|---|
| 7404 | if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) | 
|---|
| 7405 | target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); | 
|---|
| 7406 |  | 
|---|
| 7407 | schedstat_inc(p->stats.nr_wakeups_affine_attempts); | 
|---|
| 7408 | if (target != this_cpu) | 
|---|
| 7409 | return prev_cpu; | 
|---|
| 7410 |  | 
|---|
| 7411 | schedstat_inc(sd->ttwu_move_affine); | 
|---|
| 7412 | schedstat_inc(p->stats.nr_wakeups_affine); | 
|---|
| 7413 | return target; | 
|---|
| 7414 | } | 
|---|
| 7415 |  | 
|---|
| 7416 | static struct sched_group * | 
|---|
| 7417 | sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); | 
|---|
| 7418 |  | 
|---|
| 7419 | /* | 
|---|
| 7420 | * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. | 
|---|
| 7421 | */ | 
|---|
| 7422 | static int | 
|---|
| 7423 | sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | 
|---|
| 7424 | { | 
|---|
| 7425 | unsigned long load, min_load = ULONG_MAX; | 
|---|
| 7426 | unsigned int min_exit_latency = UINT_MAX; | 
|---|
| 7427 | u64 latest_idle_timestamp = 0; | 
|---|
| 7428 | int least_loaded_cpu = this_cpu; | 
|---|
| 7429 | int shallowest_idle_cpu = -1; | 
|---|
| 7430 | int i; | 
|---|
| 7431 |  | 
|---|
| 7432 | /* Check if we have any choice: */ | 
|---|
| 7433 | if (group->group_weight == 1) | 
|---|
| 7434 | return cpumask_first(srcp: sched_group_span(sg: group)); | 
|---|
| 7435 |  | 
|---|
| 7436 | /* Traverse only the allowed CPUs */ | 
|---|
| 7437 | for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { | 
|---|
| 7438 | struct rq *rq = cpu_rq(i); | 
|---|
| 7439 |  | 
|---|
| 7440 | if (!sched_core_cookie_match(rq, p)) | 
|---|
| 7441 | continue; | 
|---|
| 7442 |  | 
|---|
| 7443 | if (sched_idle_cpu(cpu: i)) | 
|---|
| 7444 | return i; | 
|---|
| 7445 |  | 
|---|
| 7446 | if (available_idle_cpu(cpu: i)) { | 
|---|
| 7447 | struct cpuidle_state *idle = idle_get_state(rq); | 
|---|
| 7448 | if (idle && idle->exit_latency < min_exit_latency) { | 
|---|
| 7449 | /* | 
|---|
| 7450 | * We give priority to a CPU whose idle state | 
|---|
| 7451 | * has the smallest exit latency irrespective | 
|---|
| 7452 | * of any idle timestamp. | 
|---|
| 7453 | */ | 
|---|
| 7454 | min_exit_latency = idle->exit_latency; | 
|---|
| 7455 | latest_idle_timestamp = rq->idle_stamp; | 
|---|
| 7456 | shallowest_idle_cpu = i; | 
|---|
| 7457 | } else if ((!idle || idle->exit_latency == min_exit_latency) && | 
|---|
| 7458 | rq->idle_stamp > latest_idle_timestamp) { | 
|---|
| 7459 | /* | 
|---|
| 7460 | * If equal or no active idle state, then | 
|---|
| 7461 | * the most recently idled CPU might have | 
|---|
| 7462 | * a warmer cache. | 
|---|
| 7463 | */ | 
|---|
| 7464 | latest_idle_timestamp = rq->idle_stamp; | 
|---|
| 7465 | shallowest_idle_cpu = i; | 
|---|
| 7466 | } | 
|---|
| 7467 | } else if (shallowest_idle_cpu == -1) { | 
|---|
| 7468 | load = cpu_load(cpu_rq(i)); | 
|---|
| 7469 | if (load < min_load) { | 
|---|
| 7470 | min_load = load; | 
|---|
| 7471 | least_loaded_cpu = i; | 
|---|
| 7472 | } | 
|---|
| 7473 | } | 
|---|
| 7474 | } | 
|---|
| 7475 |  | 
|---|
| 7476 | return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; | 
|---|
| 7477 | } | 
|---|
| 7478 |  | 
|---|
| 7479 | static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, | 
|---|
| 7480 | int cpu, int prev_cpu, int sd_flag) | 
|---|
| 7481 | { | 
|---|
| 7482 | int new_cpu = cpu; | 
|---|
| 7483 |  | 
|---|
| 7484 | if (!cpumask_intersects(src1p: sched_domain_span(sd), src2p: p->cpus_ptr)) | 
|---|
| 7485 | return prev_cpu; | 
|---|
| 7486 |  | 
|---|
| 7487 | /* | 
|---|
| 7488 | * We need task's util for cpu_util_without, sync it up to | 
|---|
| 7489 | * prev_cpu's last_update_time. | 
|---|
| 7490 | */ | 
|---|
| 7491 | if (!(sd_flag & SD_BALANCE_FORK)) | 
|---|
| 7492 | sync_entity_load_avg(se: &p->se); | 
|---|
| 7493 |  | 
|---|
| 7494 | while (sd) { | 
|---|
| 7495 | struct sched_group *group; | 
|---|
| 7496 | struct sched_domain *tmp; | 
|---|
| 7497 | int weight; | 
|---|
| 7498 |  | 
|---|
| 7499 | if (!(sd->flags & sd_flag)) { | 
|---|
| 7500 | sd = sd->child; | 
|---|
| 7501 | continue; | 
|---|
| 7502 | } | 
|---|
| 7503 |  | 
|---|
| 7504 | group = sched_balance_find_dst_group(sd, p, this_cpu: cpu); | 
|---|
| 7505 | if (!group) { | 
|---|
| 7506 | sd = sd->child; | 
|---|
| 7507 | continue; | 
|---|
| 7508 | } | 
|---|
| 7509 |  | 
|---|
| 7510 | new_cpu = sched_balance_find_dst_group_cpu(group, p, this_cpu: cpu); | 
|---|
| 7511 | if (new_cpu == cpu) { | 
|---|
| 7512 | /* Now try balancing at a lower domain level of 'cpu': */ | 
|---|
| 7513 | sd = sd->child; | 
|---|
| 7514 | continue; | 
|---|
| 7515 | } | 
|---|
| 7516 |  | 
|---|
| 7517 | /* Now try balancing at a lower domain level of 'new_cpu': */ | 
|---|
| 7518 | cpu = new_cpu; | 
|---|
| 7519 | weight = sd->span_weight; | 
|---|
| 7520 | sd = NULL; | 
|---|
| 7521 | for_each_domain(cpu, tmp) { | 
|---|
| 7522 | if (weight <= tmp->span_weight) | 
|---|
| 7523 | break; | 
|---|
| 7524 | if (tmp->flags & sd_flag) | 
|---|
| 7525 | sd = tmp; | 
|---|
| 7526 | } | 
|---|
| 7527 | } | 
|---|
| 7528 |  | 
|---|
| 7529 | return new_cpu; | 
|---|
| 7530 | } | 
|---|
| 7531 |  | 
|---|
| 7532 | static inline int __select_idle_cpu(int cpu, struct task_struct *p) | 
|---|
| 7533 | { | 
|---|
| 7534 | if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && | 
|---|
| 7535 | sched_cpu_cookie_match(cpu_rq(cpu), p)) | 
|---|
| 7536 | return cpu; | 
|---|
| 7537 |  | 
|---|
| 7538 | return -1; | 
|---|
| 7539 | } | 
|---|
| 7540 |  | 
|---|
| 7541 | #ifdef CONFIG_SCHED_SMT | 
|---|
| 7542 | DEFINE_STATIC_KEY_FALSE(sched_smt_present); | 
|---|
| 7543 | EXPORT_SYMBOL_GPL(sched_smt_present); | 
|---|
| 7544 |  | 
|---|
| 7545 | static inline void set_idle_cores(int cpu, int val) | 
|---|
| 7546 | { | 
|---|
| 7547 | struct sched_domain_shared *sds; | 
|---|
| 7548 |  | 
|---|
| 7549 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | 
|---|
| 7550 | if (sds) | 
|---|
| 7551 | WRITE_ONCE(sds->has_idle_cores, val); | 
|---|
| 7552 | } | 
|---|
| 7553 |  | 
|---|
| 7554 | static inline bool test_idle_cores(int cpu) | 
|---|
| 7555 | { | 
|---|
| 7556 | struct sched_domain_shared *sds; | 
|---|
| 7557 |  | 
|---|
| 7558 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | 
|---|
| 7559 | if (sds) | 
|---|
| 7560 | return READ_ONCE(sds->has_idle_cores); | 
|---|
| 7561 |  | 
|---|
| 7562 | return false; | 
|---|
| 7563 | } | 
|---|
| 7564 |  | 
|---|
| 7565 | /* | 
|---|
| 7566 | * Scans the local SMT mask to see if the entire core is idle, and records this | 
|---|
| 7567 | * information in sd_llc_shared->has_idle_cores. | 
|---|
| 7568 | * | 
|---|
| 7569 | * Since SMT siblings share all cache levels, inspecting this limited remote | 
|---|
| 7570 | * state should be fairly cheap. | 
|---|
| 7571 | */ | 
|---|
| 7572 | void __update_idle_core(struct rq *rq) | 
|---|
| 7573 | { | 
|---|
| 7574 | int core = cpu_of(rq); | 
|---|
| 7575 | int cpu; | 
|---|
| 7576 |  | 
|---|
| 7577 | rcu_read_lock(); | 
|---|
| 7578 | if (test_idle_cores(cpu: core)) | 
|---|
| 7579 | goto unlock; | 
|---|
| 7580 |  | 
|---|
| 7581 | for_each_cpu(cpu, cpu_smt_mask(core)) { | 
|---|
| 7582 | if (cpu == core) | 
|---|
| 7583 | continue; | 
|---|
| 7584 |  | 
|---|
| 7585 | if (!available_idle_cpu(cpu)) | 
|---|
| 7586 | goto unlock; | 
|---|
| 7587 | } | 
|---|
| 7588 |  | 
|---|
| 7589 | set_idle_cores(cpu: core, val: 1); | 
|---|
| 7590 | unlock: | 
|---|
| 7591 | rcu_read_unlock(); | 
|---|
| 7592 | } | 
|---|
| 7593 |  | 
|---|
| 7594 | /* | 
|---|
| 7595 | * Scan the entire LLC domain for idle cores; this dynamically switches off if | 
|---|
| 7596 | * there are no idle cores left in the system; tracked through | 
|---|
| 7597 | * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. | 
|---|
| 7598 | */ | 
|---|
| 7599 | static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) | 
|---|
| 7600 | { | 
|---|
| 7601 | bool idle = true; | 
|---|
| 7602 | int cpu; | 
|---|
| 7603 |  | 
|---|
| 7604 | for_each_cpu(cpu, cpu_smt_mask(core)) { | 
|---|
| 7605 | if (!available_idle_cpu(cpu)) { | 
|---|
| 7606 | idle = false; | 
|---|
| 7607 | if (*idle_cpu == -1) { | 
|---|
| 7608 | if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpumask: cpus)) { | 
|---|
| 7609 | *idle_cpu = cpu; | 
|---|
| 7610 | break; | 
|---|
| 7611 | } | 
|---|
| 7612 | continue; | 
|---|
| 7613 | } | 
|---|
| 7614 | break; | 
|---|
| 7615 | } | 
|---|
| 7616 | if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpumask: cpus)) | 
|---|
| 7617 | *idle_cpu = cpu; | 
|---|
| 7618 | } | 
|---|
| 7619 |  | 
|---|
| 7620 | if (idle) | 
|---|
| 7621 | return core; | 
|---|
| 7622 |  | 
|---|
| 7623 | cpumask_andnot(dstp: cpus, src1p: cpus, src2p: cpu_smt_mask(cpu: core)); | 
|---|
| 7624 | return -1; | 
|---|
| 7625 | } | 
|---|
| 7626 |  | 
|---|
| 7627 | /* | 
|---|
| 7628 | * Scan the local SMT mask for idle CPUs. | 
|---|
| 7629 | */ | 
|---|
| 7630 | static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) | 
|---|
| 7631 | { | 
|---|
| 7632 | int cpu; | 
|---|
| 7633 |  | 
|---|
| 7634 | for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { | 
|---|
| 7635 | if (cpu == target) | 
|---|
| 7636 | continue; | 
|---|
| 7637 | /* | 
|---|
| 7638 | * Check if the CPU is in the LLC scheduling domain of @target. | 
|---|
| 7639 | * Due to isolcpus, there is no guarantee that all the siblings are in the domain. | 
|---|
| 7640 | */ | 
|---|
| 7641 | if (!cpumask_test_cpu(cpu, cpumask: sched_domain_span(sd))) | 
|---|
| 7642 | continue; | 
|---|
| 7643 | if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) | 
|---|
| 7644 | return cpu; | 
|---|
| 7645 | } | 
|---|
| 7646 |  | 
|---|
| 7647 | return -1; | 
|---|
| 7648 | } | 
|---|
| 7649 |  | 
|---|
| 7650 | #else /* !CONFIG_SCHED_SMT: */ | 
|---|
| 7651 |  | 
|---|
| 7652 | static inline void set_idle_cores(int cpu, int val) | 
|---|
| 7653 | { | 
|---|
| 7654 | } | 
|---|
| 7655 |  | 
|---|
| 7656 | static inline bool test_idle_cores(int cpu) | 
|---|
| 7657 | { | 
|---|
| 7658 | return false; | 
|---|
| 7659 | } | 
|---|
| 7660 |  | 
|---|
| 7661 | static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) | 
|---|
| 7662 | { | 
|---|
| 7663 | return __select_idle_cpu(core, p); | 
|---|
| 7664 | } | 
|---|
| 7665 |  | 
|---|
| 7666 | static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) | 
|---|
| 7667 | { | 
|---|
| 7668 | return -1; | 
|---|
| 7669 | } | 
|---|
| 7670 |  | 
|---|
| 7671 | #endif /* !CONFIG_SCHED_SMT */ | 
|---|
| 7672 |  | 
|---|
| 7673 | /* | 
|---|
| 7674 | * Scan the LLC domain for idle CPUs; this is dynamically regulated by | 
|---|
| 7675 | * comparing the average scan cost (tracked in sd->avg_scan_cost) against the | 
|---|
| 7676 | * average idle time for this rq (as found in rq->avg_idle). | 
|---|
| 7677 | */ | 
|---|
| 7678 | static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) | 
|---|
| 7679 | { | 
|---|
| 7680 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); | 
|---|
| 7681 | int i, cpu, idle_cpu = -1, nr = INT_MAX; | 
|---|
| 7682 | struct sched_domain_shared *sd_share; | 
|---|
| 7683 |  | 
|---|
| 7684 | cpumask_and(dstp: cpus, src1p: sched_domain_span(sd), src2p: p->cpus_ptr); | 
|---|
| 7685 |  | 
|---|
| 7686 | if (sched_feat(SIS_UTIL)) { | 
|---|
| 7687 | sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); | 
|---|
| 7688 | if (sd_share) { | 
|---|
| 7689 | /* because !--nr is the condition to stop scan */ | 
|---|
| 7690 | nr = READ_ONCE(sd_share->nr_idle_scan) + 1; | 
|---|
| 7691 | /* overloaded LLC is unlikely to have idle cpu/core */ | 
|---|
| 7692 | if (nr == 1) | 
|---|
| 7693 | return -1; | 
|---|
| 7694 | } | 
|---|
| 7695 | } | 
|---|
| 7696 |  | 
|---|
| 7697 | if (static_branch_unlikely(&sched_cluster_active)) { | 
|---|
| 7698 | struct sched_group *sg = sd->groups; | 
|---|
| 7699 |  | 
|---|
| 7700 | if (sg->flags & SD_CLUSTER) { | 
|---|
| 7701 | for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { | 
|---|
| 7702 | if (!cpumask_test_cpu(cpu, cpumask: cpus)) | 
|---|
| 7703 | continue; | 
|---|
| 7704 |  | 
|---|
| 7705 | if (has_idle_core) { | 
|---|
| 7706 | i = select_idle_core(p, core: cpu, cpus, idle_cpu: &idle_cpu); | 
|---|
| 7707 | if ((unsigned int)i < nr_cpumask_bits) | 
|---|
| 7708 | return i; | 
|---|
| 7709 | } else { | 
|---|
| 7710 | if (--nr <= 0) | 
|---|
| 7711 | return -1; | 
|---|
| 7712 | idle_cpu = __select_idle_cpu(cpu, p); | 
|---|
| 7713 | if ((unsigned int)idle_cpu < nr_cpumask_bits) | 
|---|
| 7714 | return idle_cpu; | 
|---|
| 7715 | } | 
|---|
| 7716 | } | 
|---|
| 7717 | cpumask_andnot(dstp: cpus, src1p: cpus, src2p: sched_group_span(sg)); | 
|---|
| 7718 | } | 
|---|
| 7719 | } | 
|---|
| 7720 |  | 
|---|
| 7721 | for_each_cpu_wrap(cpu, cpus, target + 1) { | 
|---|
| 7722 | if (has_idle_core) { | 
|---|
| 7723 | i = select_idle_core(p, core: cpu, cpus, idle_cpu: &idle_cpu); | 
|---|
| 7724 | if ((unsigned int)i < nr_cpumask_bits) | 
|---|
| 7725 | return i; | 
|---|
| 7726 |  | 
|---|
| 7727 | } else { | 
|---|
| 7728 | if (--nr <= 0) | 
|---|
| 7729 | return -1; | 
|---|
| 7730 | idle_cpu = __select_idle_cpu(cpu, p); | 
|---|
| 7731 | if ((unsigned int)idle_cpu < nr_cpumask_bits) | 
|---|
| 7732 | break; | 
|---|
| 7733 | } | 
|---|
| 7734 | } | 
|---|
| 7735 |  | 
|---|
| 7736 | if (has_idle_core) | 
|---|
| 7737 | set_idle_cores(cpu: target, val: false); | 
|---|
| 7738 |  | 
|---|
| 7739 | return idle_cpu; | 
|---|
| 7740 | } | 
|---|
| 7741 |  | 
|---|
| 7742 | /* | 
|---|
| 7743 | * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which | 
|---|
| 7744 | * the task fits. If no CPU is big enough, but there are idle ones, try to | 
|---|
| 7745 | * maximize capacity. | 
|---|
| 7746 | */ | 
|---|
| 7747 | static int | 
|---|
| 7748 | select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) | 
|---|
| 7749 | { | 
|---|
| 7750 | unsigned long task_util, util_min, util_max, best_cap = 0; | 
|---|
| 7751 | int fits, best_fits = 0; | 
|---|
| 7752 | int cpu, best_cpu = -1; | 
|---|
| 7753 | struct cpumask *cpus; | 
|---|
| 7754 |  | 
|---|
| 7755 | cpus = this_cpu_cpumask_var_ptr(select_rq_mask); | 
|---|
| 7756 | cpumask_and(dstp: cpus, src1p: sched_domain_span(sd), src2p: p->cpus_ptr); | 
|---|
| 7757 |  | 
|---|
| 7758 | task_util = task_util_est(p); | 
|---|
| 7759 | util_min = uclamp_eff_value(p, clamp_id: UCLAMP_MIN); | 
|---|
| 7760 | util_max = uclamp_eff_value(p, clamp_id: UCLAMP_MAX); | 
|---|
| 7761 |  | 
|---|
| 7762 | for_each_cpu_wrap(cpu, cpus, target) { | 
|---|
| 7763 | unsigned long cpu_cap = capacity_of(cpu); | 
|---|
| 7764 |  | 
|---|
| 7765 | if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) | 
|---|
| 7766 | continue; | 
|---|
| 7767 |  | 
|---|
| 7768 | fits = util_fits_cpu(util: task_util, uclamp_min: util_min, uclamp_max: util_max, cpu); | 
|---|
| 7769 |  | 
|---|
| 7770 | /* This CPU fits with all requirements */ | 
|---|
| 7771 | if (fits > 0) | 
|---|
| 7772 | return cpu; | 
|---|
| 7773 | /* | 
|---|
| 7774 | * Only the min performance hint (i.e. uclamp_min) doesn't fit. | 
|---|
| 7775 | * Look for the CPU with best capacity. | 
|---|
| 7776 | */ | 
|---|
| 7777 | else if (fits < 0) | 
|---|
| 7778 | cpu_cap = get_actual_cpu_capacity(cpu); | 
|---|
| 7779 |  | 
|---|
| 7780 | /* | 
|---|
| 7781 | * First, select CPU which fits better (-1 being better than 0). | 
|---|
| 7782 | * Then, select the one with best capacity at same level. | 
|---|
| 7783 | */ | 
|---|
| 7784 | if ((fits < best_fits) || | 
|---|
| 7785 | ((fits == best_fits) && (cpu_cap > best_cap))) { | 
|---|
| 7786 | best_cap = cpu_cap; | 
|---|
| 7787 | best_cpu = cpu; | 
|---|
| 7788 | best_fits = fits; | 
|---|
| 7789 | } | 
|---|
| 7790 | } | 
|---|
| 7791 |  | 
|---|
| 7792 | return best_cpu; | 
|---|
| 7793 | } | 
|---|
| 7794 |  | 
|---|
| 7795 | static inline bool asym_fits_cpu(unsigned long util, | 
|---|
| 7796 | unsigned long util_min, | 
|---|
| 7797 | unsigned long util_max, | 
|---|
| 7798 | int cpu) | 
|---|
| 7799 | { | 
|---|
| 7800 | if (sched_asym_cpucap_active()) | 
|---|
| 7801 | /* | 
|---|
| 7802 | * Return true only if the cpu fully fits the task requirements | 
|---|
| 7803 | * which include the utilization and the performance hints. | 
|---|
| 7804 | */ | 
|---|
| 7805 | return (util_fits_cpu(util, uclamp_min: util_min, uclamp_max: util_max, cpu) > 0); | 
|---|
| 7806 |  | 
|---|
| 7807 | return true; | 
|---|
| 7808 | } | 
|---|
| 7809 |  | 
|---|
| 7810 | /* | 
|---|
| 7811 | * Try and locate an idle core/thread in the LLC cache domain. | 
|---|
| 7812 | */ | 
|---|
| 7813 | static int select_idle_sibling(struct task_struct *p, int prev, int target) | 
|---|
| 7814 | { | 
|---|
| 7815 | bool has_idle_core = false; | 
|---|
| 7816 | struct sched_domain *sd; | 
|---|
| 7817 | unsigned long task_util, util_min, util_max; | 
|---|
| 7818 | int i, recent_used_cpu, prev_aff = -1; | 
|---|
| 7819 |  | 
|---|
| 7820 | /* | 
|---|
| 7821 | * On asymmetric system, update task utilization because we will check | 
|---|
| 7822 | * that the task fits with CPU's capacity. | 
|---|
| 7823 | */ | 
|---|
| 7824 | if (sched_asym_cpucap_active()) { | 
|---|
| 7825 | sync_entity_load_avg(se: &p->se); | 
|---|
| 7826 | task_util = task_util_est(p); | 
|---|
| 7827 | util_min = uclamp_eff_value(p, clamp_id: UCLAMP_MIN); | 
|---|
| 7828 | util_max = uclamp_eff_value(p, clamp_id: UCLAMP_MAX); | 
|---|
| 7829 | } | 
|---|
| 7830 |  | 
|---|
| 7831 | /* | 
|---|
| 7832 | * per-cpu select_rq_mask usage | 
|---|
| 7833 | */ | 
|---|
| 7834 | lockdep_assert_irqs_disabled(); | 
|---|
| 7835 |  | 
|---|
| 7836 | if ((available_idle_cpu(cpu: target) || sched_idle_cpu(cpu: target)) && | 
|---|
| 7837 | asym_fits_cpu(util: task_util, util_min, util_max, cpu: target)) | 
|---|
| 7838 | return target; | 
|---|
| 7839 |  | 
|---|
| 7840 | /* | 
|---|
| 7841 | * If the previous CPU is cache affine and idle, don't be stupid: | 
|---|
| 7842 | */ | 
|---|
| 7843 | if (prev != target && cpus_share_cache(this_cpu: prev, that_cpu: target) && | 
|---|
| 7844 | (available_idle_cpu(cpu: prev) || sched_idle_cpu(cpu: prev)) && | 
|---|
| 7845 | asym_fits_cpu(util: task_util, util_min, util_max, cpu: prev)) { | 
|---|
| 7846 |  | 
|---|
| 7847 | if (!static_branch_unlikely(&sched_cluster_active) || | 
|---|
| 7848 | cpus_share_resources(this_cpu: prev, that_cpu: target)) | 
|---|
| 7849 | return prev; | 
|---|
| 7850 |  | 
|---|
| 7851 | prev_aff = prev; | 
|---|
| 7852 | } | 
|---|
| 7853 |  | 
|---|
| 7854 | /* | 
|---|
| 7855 | * Allow a per-cpu kthread to stack with the wakee if the | 
|---|
| 7856 | * kworker thread and the tasks previous CPUs are the same. | 
|---|
| 7857 | * The assumption is that the wakee queued work for the | 
|---|
| 7858 | * per-cpu kthread that is now complete and the wakeup is | 
|---|
| 7859 | * essentially a sync wakeup. An obvious example of this | 
|---|
| 7860 | * pattern is IO completions. | 
|---|
| 7861 | */ | 
|---|
| 7862 | if (is_per_cpu_kthread(current) && | 
|---|
| 7863 | in_task() && | 
|---|
| 7864 | prev == smp_processor_id() && | 
|---|
| 7865 | this_rq()->nr_running <= 1 && | 
|---|
| 7866 | asym_fits_cpu(util: task_util, util_min, util_max, cpu: prev)) { | 
|---|
| 7867 | return prev; | 
|---|
| 7868 | } | 
|---|
| 7869 |  | 
|---|
| 7870 | /* Check a recently used CPU as a potential idle candidate: */ | 
|---|
| 7871 | recent_used_cpu = p->recent_used_cpu; | 
|---|
| 7872 | p->recent_used_cpu = prev; | 
|---|
| 7873 | if (recent_used_cpu != prev && | 
|---|
| 7874 | recent_used_cpu != target && | 
|---|
| 7875 | cpus_share_cache(this_cpu: recent_used_cpu, that_cpu: target) && | 
|---|
| 7876 | (available_idle_cpu(cpu: recent_used_cpu) || sched_idle_cpu(cpu: recent_used_cpu)) && | 
|---|
| 7877 | cpumask_test_cpu(cpu: recent_used_cpu, cpumask: p->cpus_ptr) && | 
|---|
| 7878 | asym_fits_cpu(util: task_util, util_min, util_max, cpu: recent_used_cpu)) { | 
|---|
| 7879 |  | 
|---|
| 7880 | if (!static_branch_unlikely(&sched_cluster_active) || | 
|---|
| 7881 | cpus_share_resources(this_cpu: recent_used_cpu, that_cpu: target)) | 
|---|
| 7882 | return recent_used_cpu; | 
|---|
| 7883 |  | 
|---|
| 7884 | } else { | 
|---|
| 7885 | recent_used_cpu = -1; | 
|---|
| 7886 | } | 
|---|
| 7887 |  | 
|---|
| 7888 | /* | 
|---|
| 7889 | * For asymmetric CPU capacity systems, our domain of interest is | 
|---|
| 7890 | * sd_asym_cpucapacity rather than sd_llc. | 
|---|
| 7891 | */ | 
|---|
| 7892 | if (sched_asym_cpucap_active()) { | 
|---|
| 7893 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); | 
|---|
| 7894 | /* | 
|---|
| 7895 | * On an asymmetric CPU capacity system where an exclusive | 
|---|
| 7896 | * cpuset defines a symmetric island (i.e. one unique | 
|---|
| 7897 | * capacity_orig value through the cpuset), the key will be set | 
|---|
| 7898 | * but the CPUs within that cpuset will not have a domain with | 
|---|
| 7899 | * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric | 
|---|
| 7900 | * capacity path. | 
|---|
| 7901 | */ | 
|---|
| 7902 | if (sd) { | 
|---|
| 7903 | i = select_idle_capacity(p, sd, target); | 
|---|
| 7904 | return ((unsigned)i < nr_cpumask_bits) ? i : target; | 
|---|
| 7905 | } | 
|---|
| 7906 | } | 
|---|
| 7907 |  | 
|---|
| 7908 | sd = rcu_dereference(per_cpu(sd_llc, target)); | 
|---|
| 7909 | if (!sd) | 
|---|
| 7910 | return target; | 
|---|
| 7911 |  | 
|---|
| 7912 | if (sched_smt_active()) { | 
|---|
| 7913 | has_idle_core = test_idle_cores(cpu: target); | 
|---|
| 7914 |  | 
|---|
| 7915 | if (!has_idle_core && cpus_share_cache(this_cpu: prev, that_cpu: target)) { | 
|---|
| 7916 | i = select_idle_smt(p, sd, target: prev); | 
|---|
| 7917 | if ((unsigned int)i < nr_cpumask_bits) | 
|---|
| 7918 | return i; | 
|---|
| 7919 | } | 
|---|
| 7920 | } | 
|---|
| 7921 |  | 
|---|
| 7922 | i = select_idle_cpu(p, sd, has_idle_core, target); | 
|---|
| 7923 | if ((unsigned)i < nr_cpumask_bits) | 
|---|
| 7924 | return i; | 
|---|
| 7925 |  | 
|---|
| 7926 | /* | 
|---|
| 7927 | * For cluster machines which have lower sharing cache like L2 or | 
|---|
| 7928 | * LLC Tag, we tend to find an idle CPU in the target's cluster | 
|---|
| 7929 | * first. But prev_cpu or recent_used_cpu may also be a good candidate, | 
|---|
| 7930 | * use them if possible when no idle CPU found in select_idle_cpu(). | 
|---|
| 7931 | */ | 
|---|
| 7932 | if ((unsigned int)prev_aff < nr_cpumask_bits) | 
|---|
| 7933 | return prev_aff; | 
|---|
| 7934 | if ((unsigned int)recent_used_cpu < nr_cpumask_bits) | 
|---|
| 7935 | return recent_used_cpu; | 
|---|
| 7936 |  | 
|---|
| 7937 | return target; | 
|---|
| 7938 | } | 
|---|
| 7939 |  | 
|---|
| 7940 | /** | 
|---|
| 7941 | * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. | 
|---|
| 7942 | * @cpu: the CPU to get the utilization for | 
|---|
| 7943 | * @p: task for which the CPU utilization should be predicted or NULL | 
|---|
| 7944 | * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL | 
|---|
| 7945 | * @boost: 1 to enable boosting, otherwise 0 | 
|---|
| 7946 | * | 
|---|
| 7947 | * The unit of the return value must be the same as the one of CPU capacity | 
|---|
| 7948 | * so that CPU utilization can be compared with CPU capacity. | 
|---|
| 7949 | * | 
|---|
| 7950 | * CPU utilization is the sum of running time of runnable tasks plus the | 
|---|
| 7951 | * recent utilization of currently non-runnable tasks on that CPU. | 
|---|
| 7952 | * It represents the amount of CPU capacity currently used by CFS tasks in | 
|---|
| 7953 | * the range [0..max CPU capacity] with max CPU capacity being the CPU | 
|---|
| 7954 | * capacity at f_max. | 
|---|
| 7955 | * | 
|---|
| 7956 | * The estimated CPU utilization is defined as the maximum between CPU | 
|---|
| 7957 | * utilization and sum of the estimated utilization of the currently | 
|---|
| 7958 | * runnable tasks on that CPU. It preserves a utilization "snapshot" of | 
|---|
| 7959 | * previously-executed tasks, which helps better deduce how busy a CPU will | 
|---|
| 7960 | * be when a long-sleeping task wakes up. The contribution to CPU utilization | 
|---|
| 7961 | * of such a task would be significantly decayed at this point of time. | 
|---|
| 7962 | * | 
|---|
| 7963 | * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). | 
|---|
| 7964 | * CPU contention for CFS tasks can be detected by CPU runnable > CPU | 
|---|
| 7965 | * utilization. Boosting is implemented in cpu_util() so that internal | 
|---|
| 7966 | * users (e.g. EAS) can use it next to external users (e.g. schedutil), | 
|---|
| 7967 | * latter via cpu_util_cfs_boost(). | 
|---|
| 7968 | * | 
|---|
| 7969 | * CPU utilization can be higher than the current CPU capacity | 
|---|
| 7970 | * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because | 
|---|
| 7971 | * of rounding errors as well as task migrations or wakeups of new tasks. | 
|---|
| 7972 | * CPU utilization has to be capped to fit into the [0..max CPU capacity] | 
|---|
| 7973 | * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) | 
|---|
| 7974 | * could be seen as over-utilized even though CPU1 has 20% of spare CPU | 
|---|
| 7975 | * capacity. CPU utilization is allowed to overshoot current CPU capacity | 
|---|
| 7976 | * though since this is useful for predicting the CPU capacity required | 
|---|
| 7977 | * after task migrations (scheduler-driven DVFS). | 
|---|
| 7978 | * | 
|---|
| 7979 | * Return: (Boosted) (estimated) utilization for the specified CPU. | 
|---|
| 7980 | */ | 
|---|
| 7981 | static unsigned long | 
|---|
| 7982 | cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) | 
|---|
| 7983 | { | 
|---|
| 7984 | struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; | 
|---|
| 7985 | unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); | 
|---|
| 7986 | unsigned long runnable; | 
|---|
| 7987 |  | 
|---|
| 7988 | if (boost) { | 
|---|
| 7989 | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); | 
|---|
| 7990 | util = max(util, runnable); | 
|---|
| 7991 | } | 
|---|
| 7992 |  | 
|---|
| 7993 | /* | 
|---|
| 7994 | * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its | 
|---|
| 7995 | * contribution. If @p migrates from another CPU to @cpu add its | 
|---|
| 7996 | * contribution. In all the other cases @cpu is not impacted by the | 
|---|
| 7997 | * migration so its util_avg is already correct. | 
|---|
| 7998 | */ | 
|---|
| 7999 | if (p && task_cpu(p) == cpu && dst_cpu != cpu) | 
|---|
| 8000 | lsub_positive(&util, task_util(p)); | 
|---|
| 8001 | else if (p && task_cpu(p) != cpu && dst_cpu == cpu) | 
|---|
| 8002 | util += task_util(p); | 
|---|
| 8003 |  | 
|---|
| 8004 | if (sched_feat(UTIL_EST)) { | 
|---|
| 8005 | unsigned long util_est; | 
|---|
| 8006 |  | 
|---|
| 8007 | util_est = READ_ONCE(cfs_rq->avg.util_est); | 
|---|
| 8008 |  | 
|---|
| 8009 | /* | 
|---|
| 8010 | * During wake-up @p isn't enqueued yet and doesn't contribute | 
|---|
| 8011 | * to any cpu_rq(cpu)->cfs.avg.util_est. | 
|---|
| 8012 | * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p | 
|---|
| 8013 | * has been enqueued. | 
|---|
| 8014 | * | 
|---|
| 8015 | * During exec (@dst_cpu = -1) @p is enqueued and does | 
|---|
| 8016 | * contribute to cpu_rq(cpu)->cfs.util_est. | 
|---|
| 8017 | * Remove it to "simulate" cpu_util without @p's contribution. | 
|---|
| 8018 | * | 
|---|
| 8019 | * Despite the task_on_rq_queued(@p) check there is still a | 
|---|
| 8020 | * small window for a possible race when an exec | 
|---|
| 8021 | * select_task_rq_fair() races with LB's detach_task(). | 
|---|
| 8022 | * | 
|---|
| 8023 | *   detach_task() | 
|---|
| 8024 | *     deactivate_task() | 
|---|
| 8025 | *       p->on_rq = TASK_ON_RQ_MIGRATING; | 
|---|
| 8026 | *       -------------------------------- A | 
|---|
| 8027 | *       dequeue_task()                    \ | 
|---|
| 8028 | *         dequeue_task_fair()              + Race Time | 
|---|
| 8029 | *           util_est_dequeue()            / | 
|---|
| 8030 | *       -------------------------------- B | 
|---|
| 8031 | * | 
|---|
| 8032 | * The additional check "current == p" is required to further | 
|---|
| 8033 | * reduce the race window. | 
|---|
| 8034 | */ | 
|---|
| 8035 | if (dst_cpu == cpu) | 
|---|
| 8036 | util_est += _task_util_est(p); | 
|---|
| 8037 | else if (p && unlikely(task_on_rq_queued(p) || current == p)) | 
|---|
| 8038 | lsub_positive(&util_est, _task_util_est(p)); | 
|---|
| 8039 |  | 
|---|
| 8040 | util = max(util, util_est); | 
|---|
| 8041 | } | 
|---|
| 8042 |  | 
|---|
| 8043 | return min(util, arch_scale_cpu_capacity(cpu)); | 
|---|
| 8044 | } | 
|---|
| 8045 |  | 
|---|
| 8046 | unsigned long cpu_util_cfs(int cpu) | 
|---|
| 8047 | { | 
|---|
| 8048 | return cpu_util(cpu, NULL, dst_cpu: -1, boost: 0); | 
|---|
| 8049 | } | 
|---|
| 8050 |  | 
|---|
| 8051 | unsigned long cpu_util_cfs_boost(int cpu) | 
|---|
| 8052 | { | 
|---|
| 8053 | return cpu_util(cpu, NULL, dst_cpu: -1, boost: 1); | 
|---|
| 8054 | } | 
|---|
| 8055 |  | 
|---|
| 8056 | /* | 
|---|
| 8057 | * cpu_util_without: compute cpu utilization without any contributions from *p | 
|---|
| 8058 | * @cpu: the CPU which utilization is requested | 
|---|
| 8059 | * @p: the task which utilization should be discounted | 
|---|
| 8060 | * | 
|---|
| 8061 | * The utilization of a CPU is defined by the utilization of tasks currently | 
|---|
| 8062 | * enqueued on that CPU as well as tasks which are currently sleeping after an | 
|---|
| 8063 | * execution on that CPU. | 
|---|
| 8064 | * | 
|---|
| 8065 | * This method returns the utilization of the specified CPU by discounting the | 
|---|
| 8066 | * utilization of the specified task, whenever the task is currently | 
|---|
| 8067 | * contributing to the CPU utilization. | 
|---|
| 8068 | */ | 
|---|
| 8069 | static unsigned long cpu_util_without(int cpu, struct task_struct *p) | 
|---|
| 8070 | { | 
|---|
| 8071 | /* Task has no contribution or is new */ | 
|---|
| 8072 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | 
|---|
| 8073 | p = NULL; | 
|---|
| 8074 |  | 
|---|
| 8075 | return cpu_util(cpu, p, dst_cpu: -1, boost: 0); | 
|---|
| 8076 | } | 
|---|
| 8077 |  | 
|---|
| 8078 | /* | 
|---|
| 8079 | * This function computes an effective utilization for the given CPU, to be | 
|---|
| 8080 | * used for frequency selection given the linear relation: f = u * f_max. | 
|---|
| 8081 | * | 
|---|
| 8082 | * The scheduler tracks the following metrics: | 
|---|
| 8083 | * | 
|---|
| 8084 | *   cpu_util_{cfs,rt,dl,irq}() | 
|---|
| 8085 | *   cpu_bw_dl() | 
|---|
| 8086 | * | 
|---|
| 8087 | * Where the cfs,rt and dl util numbers are tracked with the same metric and | 
|---|
| 8088 | * synchronized windows and are thus directly comparable. | 
|---|
| 8089 | * | 
|---|
| 8090 | * The cfs,rt,dl utilization are the running times measured with rq->clock_task | 
|---|
| 8091 | * which excludes things like IRQ and steal-time. These latter are then accrued | 
|---|
| 8092 | * in the IRQ utilization. | 
|---|
| 8093 | * | 
|---|
| 8094 | * The DL bandwidth number OTOH is not a measured metric but a value computed | 
|---|
| 8095 | * based on the task model parameters and gives the minimal utilization | 
|---|
| 8096 | * required to meet deadlines. | 
|---|
| 8097 | */ | 
|---|
| 8098 | unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, | 
|---|
| 8099 | unsigned long *min, | 
|---|
| 8100 | unsigned long *max) | 
|---|
| 8101 | { | 
|---|
| 8102 | unsigned long util, irq, scale; | 
|---|
| 8103 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 8104 |  | 
|---|
| 8105 | scale = arch_scale_cpu_capacity(cpu); | 
|---|
| 8106 |  | 
|---|
| 8107 | /* | 
|---|
| 8108 | * Early check to see if IRQ/steal time saturates the CPU, can be | 
|---|
| 8109 | * because of inaccuracies in how we track these -- see | 
|---|
| 8110 | * update_irq_load_avg(). | 
|---|
| 8111 | */ | 
|---|
| 8112 | irq = cpu_util_irq(rq); | 
|---|
| 8113 | if (unlikely(irq >= scale)) { | 
|---|
| 8114 | if (min) | 
|---|
| 8115 | *min = scale; | 
|---|
| 8116 | if (max) | 
|---|
| 8117 | *max = scale; | 
|---|
| 8118 | return scale; | 
|---|
| 8119 | } | 
|---|
| 8120 |  | 
|---|
| 8121 | if (min) { | 
|---|
| 8122 | /* | 
|---|
| 8123 | * The minimum utilization returns the highest level between: | 
|---|
| 8124 | * - the computed DL bandwidth needed with the IRQ pressure which | 
|---|
| 8125 | *   steals time to the deadline task. | 
|---|
| 8126 | * - The minimum performance requirement for CFS and/or RT. | 
|---|
| 8127 | */ | 
|---|
| 8128 | *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); | 
|---|
| 8129 |  | 
|---|
| 8130 | /* | 
|---|
| 8131 | * When an RT task is runnable and uclamp is not used, we must | 
|---|
| 8132 | * ensure that the task will run at maximum compute capacity. | 
|---|
| 8133 | */ | 
|---|
| 8134 | if (!uclamp_is_used() && rt_rq_is_runnable(rt_rq: &rq->rt)) | 
|---|
| 8135 | *min = max(*min, scale); | 
|---|
| 8136 | } | 
|---|
| 8137 |  | 
|---|
| 8138 | /* | 
|---|
| 8139 | * Because the time spend on RT/DL tasks is visible as 'lost' time to | 
|---|
| 8140 | * CFS tasks and we use the same metric to track the effective | 
|---|
| 8141 | * utilization (PELT windows are synchronized) we can directly add them | 
|---|
| 8142 | * to obtain the CPU's actual utilization. | 
|---|
| 8143 | */ | 
|---|
| 8144 | util = util_cfs + cpu_util_rt(rq); | 
|---|
| 8145 | util += cpu_util_dl(rq); | 
|---|
| 8146 |  | 
|---|
| 8147 | /* | 
|---|
| 8148 | * The maximum hint is a soft bandwidth requirement, which can be lower | 
|---|
| 8149 | * than the actual utilization because of uclamp_max requirements. | 
|---|
| 8150 | */ | 
|---|
| 8151 | if (max) | 
|---|
| 8152 | *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); | 
|---|
| 8153 |  | 
|---|
| 8154 | if (util >= scale) | 
|---|
| 8155 | return scale; | 
|---|
| 8156 |  | 
|---|
| 8157 | /* | 
|---|
| 8158 | * There is still idle time; further improve the number by using the | 
|---|
| 8159 | * IRQ metric. Because IRQ/steal time is hidden from the task clock we | 
|---|
| 8160 | * need to scale the task numbers: | 
|---|
| 8161 | * | 
|---|
| 8162 | *              max - irq | 
|---|
| 8163 | *   U' = irq + --------- * U | 
|---|
| 8164 | *                 max | 
|---|
| 8165 | */ | 
|---|
| 8166 | util = scale_irq_capacity(util, irq, max: scale); | 
|---|
| 8167 | util += irq; | 
|---|
| 8168 |  | 
|---|
| 8169 | return min(scale, util); | 
|---|
| 8170 | } | 
|---|
| 8171 |  | 
|---|
| 8172 | unsigned long sched_cpu_util(int cpu) | 
|---|
| 8173 | { | 
|---|
| 8174 | return effective_cpu_util(cpu, util_cfs: cpu_util_cfs(cpu), NULL, NULL); | 
|---|
| 8175 | } | 
|---|
| 8176 |  | 
|---|
| 8177 | /* | 
|---|
| 8178 | * energy_env - Utilization landscape for energy estimation. | 
|---|
| 8179 | * @task_busy_time: Utilization contribution by the task for which we test the | 
|---|
| 8180 | *                  placement. Given by eenv_task_busy_time(). | 
|---|
| 8181 | * @pd_busy_time:   Utilization of the whole perf domain without the task | 
|---|
| 8182 | *                  contribution. Given by eenv_pd_busy_time(). | 
|---|
| 8183 | * @cpu_cap:        Maximum CPU capacity for the perf domain. | 
|---|
| 8184 | * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap). | 
|---|
| 8185 | */ | 
|---|
| 8186 | struct energy_env { | 
|---|
| 8187 | unsigned long task_busy_time; | 
|---|
| 8188 | unsigned long pd_busy_time; | 
|---|
| 8189 | unsigned long cpu_cap; | 
|---|
| 8190 | unsigned long pd_cap; | 
|---|
| 8191 | }; | 
|---|
| 8192 |  | 
|---|
| 8193 | /* | 
|---|
| 8194 | * Compute the task busy time for compute_energy(). This time cannot be | 
|---|
| 8195 | * injected directly into effective_cpu_util() because of the IRQ scaling. | 
|---|
| 8196 | * The latter only makes sense with the most recent CPUs where the task has | 
|---|
| 8197 | * run. | 
|---|
| 8198 | */ | 
|---|
| 8199 | static inline void eenv_task_busy_time(struct energy_env *eenv, | 
|---|
| 8200 | struct task_struct *p, int prev_cpu) | 
|---|
| 8201 | { | 
|---|
| 8202 | unsigned long busy_time, max_cap = arch_scale_cpu_capacity(cpu: prev_cpu); | 
|---|
| 8203 | unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); | 
|---|
| 8204 |  | 
|---|
| 8205 | if (unlikely(irq >= max_cap)) | 
|---|
| 8206 | busy_time = max_cap; | 
|---|
| 8207 | else | 
|---|
| 8208 | busy_time = scale_irq_capacity(util: task_util_est(p), irq, max: max_cap); | 
|---|
| 8209 |  | 
|---|
| 8210 | eenv->task_busy_time = busy_time; | 
|---|
| 8211 | } | 
|---|
| 8212 |  | 
|---|
| 8213 | /* | 
|---|
| 8214 | * Compute the perf_domain (PD) busy time for compute_energy(). Based on the | 
|---|
| 8215 | * utilization for each @pd_cpus, it however doesn't take into account | 
|---|
| 8216 | * clamping since the ratio (utilization / cpu_capacity) is already enough to | 
|---|
| 8217 | * scale the EM reported power consumption at the (eventually clamped) | 
|---|
| 8218 | * cpu_capacity. | 
|---|
| 8219 | * | 
|---|
| 8220 | * The contribution of the task @p for which we want to estimate the | 
|---|
| 8221 | * energy cost is removed (by cpu_util()) and must be calculated | 
|---|
| 8222 | * separately (see eenv_task_busy_time). This ensures: | 
|---|
| 8223 | * | 
|---|
| 8224 | *   - A stable PD utilization, no matter which CPU of that PD we want to place | 
|---|
| 8225 | *     the task on. | 
|---|
| 8226 | * | 
|---|
| 8227 | *   - A fair comparison between CPUs as the task contribution (task_util()) | 
|---|
| 8228 | *     will always be the same no matter which CPU utilization we rely on | 
|---|
| 8229 | *     (util_avg or util_est). | 
|---|
| 8230 | * | 
|---|
| 8231 | * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't | 
|---|
| 8232 | * exceed @eenv->pd_cap. | 
|---|
| 8233 | */ | 
|---|
| 8234 | static inline void eenv_pd_busy_time(struct energy_env *eenv, | 
|---|
| 8235 | struct cpumask *pd_cpus, | 
|---|
| 8236 | struct task_struct *p) | 
|---|
| 8237 | { | 
|---|
| 8238 | unsigned long busy_time = 0; | 
|---|
| 8239 | int cpu; | 
|---|
| 8240 |  | 
|---|
| 8241 | for_each_cpu(cpu, pd_cpus) { | 
|---|
| 8242 | unsigned long util = cpu_util(cpu, p, dst_cpu: -1, boost: 0); | 
|---|
| 8243 |  | 
|---|
| 8244 | busy_time += effective_cpu_util(cpu, util_cfs: util, NULL, NULL); | 
|---|
| 8245 | } | 
|---|
| 8246 |  | 
|---|
| 8247 | eenv->pd_busy_time = min(eenv->pd_cap, busy_time); | 
|---|
| 8248 | } | 
|---|
| 8249 |  | 
|---|
| 8250 | /* | 
|---|
| 8251 | * Compute the maximum utilization for compute_energy() when the task @p | 
|---|
| 8252 | * is placed on the cpu @dst_cpu. | 
|---|
| 8253 | * | 
|---|
| 8254 | * Returns the maximum utilization among @eenv->cpus. This utilization can't | 
|---|
| 8255 | * exceed @eenv->cpu_cap. | 
|---|
| 8256 | */ | 
|---|
| 8257 | static inline unsigned long | 
|---|
| 8258 | eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, | 
|---|
| 8259 | struct task_struct *p, int dst_cpu) | 
|---|
| 8260 | { | 
|---|
| 8261 | unsigned long max_util = 0; | 
|---|
| 8262 | int cpu; | 
|---|
| 8263 |  | 
|---|
| 8264 | for_each_cpu(cpu, pd_cpus) { | 
|---|
| 8265 | struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; | 
|---|
| 8266 | unsigned long util = cpu_util(cpu, p, dst_cpu, boost: 1); | 
|---|
| 8267 | unsigned long eff_util, min, max; | 
|---|
| 8268 |  | 
|---|
| 8269 | /* | 
|---|
| 8270 | * Performance domain frequency: utilization clamping | 
|---|
| 8271 | * must be considered since it affects the selection | 
|---|
| 8272 | * of the performance domain frequency. | 
|---|
| 8273 | * NOTE: in case RT tasks are running, by default the min | 
|---|
| 8274 | * utilization can be max OPP. | 
|---|
| 8275 | */ | 
|---|
| 8276 | eff_util = effective_cpu_util(cpu, util_cfs: util, min: &min, max: &max); | 
|---|
| 8277 |  | 
|---|
| 8278 | /* Task's uclamp can modify min and max value */ | 
|---|
| 8279 | if (tsk && uclamp_is_used()) { | 
|---|
| 8280 | min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); | 
|---|
| 8281 |  | 
|---|
| 8282 | /* | 
|---|
| 8283 | * If there is no active max uclamp constraint, | 
|---|
| 8284 | * directly use task's one, otherwise keep max. | 
|---|
| 8285 | */ | 
|---|
| 8286 | if (uclamp_rq_is_idle(cpu_rq(cpu))) | 
|---|
| 8287 | max = uclamp_eff_value(p, clamp_id: UCLAMP_MAX); | 
|---|
| 8288 | else | 
|---|
| 8289 | max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); | 
|---|
| 8290 | } | 
|---|
| 8291 |  | 
|---|
| 8292 | eff_util = sugov_effective_cpu_perf(cpu, actual: eff_util, min, max); | 
|---|
| 8293 | max_util = max(max_util, eff_util); | 
|---|
| 8294 | } | 
|---|
| 8295 |  | 
|---|
| 8296 | return min(max_util, eenv->cpu_cap); | 
|---|
| 8297 | } | 
|---|
| 8298 |  | 
|---|
| 8299 | /* | 
|---|
| 8300 | * compute_energy(): Use the Energy Model to estimate the energy that @pd would | 
|---|
| 8301 | * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task | 
|---|
| 8302 | * contribution is ignored. | 
|---|
| 8303 | */ | 
|---|
| 8304 | static inline unsigned long | 
|---|
| 8305 | compute_energy(struct energy_env *eenv, struct perf_domain *pd, | 
|---|
| 8306 | struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) | 
|---|
| 8307 | { | 
|---|
| 8308 | unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); | 
|---|
| 8309 | unsigned long busy_time = eenv->pd_busy_time; | 
|---|
| 8310 | unsigned long energy; | 
|---|
| 8311 |  | 
|---|
| 8312 | if (dst_cpu >= 0) | 
|---|
| 8313 | busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); | 
|---|
| 8314 |  | 
|---|
| 8315 | energy = em_cpu_energy(pd: pd->em_pd, max_util, sum_util: busy_time, allowed_cpu_cap: eenv->cpu_cap); | 
|---|
| 8316 |  | 
|---|
| 8317 | trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); | 
|---|
| 8318 |  | 
|---|
| 8319 | return energy; | 
|---|
| 8320 | } | 
|---|
| 8321 |  | 
|---|
| 8322 | /* | 
|---|
| 8323 | * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the | 
|---|
| 8324 | * waking task. find_energy_efficient_cpu() looks for the CPU with maximum | 
|---|
| 8325 | * spare capacity in each performance domain and uses it as a potential | 
|---|
| 8326 | * candidate to execute the task. Then, it uses the Energy Model to figure | 
|---|
| 8327 | * out which of the CPU candidates is the most energy-efficient. | 
|---|
| 8328 | * | 
|---|
| 8329 | * The rationale for this heuristic is as follows. In a performance domain, | 
|---|
| 8330 | * all the most energy efficient CPU candidates (according to the Energy | 
|---|
| 8331 | * Model) are those for which we'll request a low frequency. When there are | 
|---|
| 8332 | * several CPUs for which the frequency request will be the same, we don't | 
|---|
| 8333 | * have enough data to break the tie between them, because the Energy Model | 
|---|
| 8334 | * only includes active power costs. With this model, if we assume that | 
|---|
| 8335 | * frequency requests follow utilization (e.g. using schedutil), the CPU with | 
|---|
| 8336 | * the maximum spare capacity in a performance domain is guaranteed to be among | 
|---|
| 8337 | * the best candidates of the performance domain. | 
|---|
| 8338 | * | 
|---|
| 8339 | * In practice, it could be preferable from an energy standpoint to pack | 
|---|
| 8340 | * small tasks on a CPU in order to let other CPUs go in deeper idle states, | 
|---|
| 8341 | * but that could also hurt our chances to go cluster idle, and we have no | 
|---|
| 8342 | * ways to tell with the current Energy Model if this is actually a good | 
|---|
| 8343 | * idea or not. So, find_energy_efficient_cpu() basically favors | 
|---|
| 8344 | * cluster-packing, and spreading inside a cluster. That should at least be | 
|---|
| 8345 | * a good thing for latency, and this is consistent with the idea that most | 
|---|
| 8346 | * of the energy savings of EAS come from the asymmetry of the system, and | 
|---|
| 8347 | * not so much from breaking the tie between identical CPUs. That's also the | 
|---|
| 8348 | * reason why EAS is enabled in the topology code only for systems where | 
|---|
| 8349 | * SD_ASYM_CPUCAPACITY is set. | 
|---|
| 8350 | * | 
|---|
| 8351 | * NOTE: Forkees are not accepted in the energy-aware wake-up path because | 
|---|
| 8352 | * they don't have any useful utilization data yet and it's not possible to | 
|---|
| 8353 | * forecast their impact on energy consumption. Consequently, they will be | 
|---|
| 8354 | * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out | 
|---|
| 8355 | * to be energy-inefficient in some use-cases. The alternative would be to | 
|---|
| 8356 | * bias new tasks towards specific types of CPUs first, or to try to infer | 
|---|
| 8357 | * their util_avg from the parent task, but those heuristics could hurt | 
|---|
| 8358 | * other use-cases too. So, until someone finds a better way to solve this, | 
|---|
| 8359 | * let's keep things simple by re-using the existing slow path. | 
|---|
| 8360 | */ | 
|---|
| 8361 | static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) | 
|---|
| 8362 | { | 
|---|
| 8363 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); | 
|---|
| 8364 | unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; | 
|---|
| 8365 | unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, clamp_id: UCLAMP_MIN) : 0; | 
|---|
| 8366 | unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, clamp_id: UCLAMP_MAX) : 1024; | 
|---|
| 8367 | struct root_domain *rd = this_rq()->rd; | 
|---|
| 8368 | int cpu, best_energy_cpu, target = -1; | 
|---|
| 8369 | int prev_fits = -1, best_fits = -1; | 
|---|
| 8370 | unsigned long best_actual_cap = 0; | 
|---|
| 8371 | unsigned long prev_actual_cap = 0; | 
|---|
| 8372 | struct sched_domain *sd; | 
|---|
| 8373 | struct perf_domain *pd; | 
|---|
| 8374 | struct energy_env eenv; | 
|---|
| 8375 |  | 
|---|
| 8376 | rcu_read_lock(); | 
|---|
| 8377 | pd = rcu_dereference(rd->pd); | 
|---|
| 8378 | if (!pd) | 
|---|
| 8379 | goto unlock; | 
|---|
| 8380 |  | 
|---|
| 8381 | /* | 
|---|
| 8382 | * Energy-aware wake-up happens on the lowest sched_domain starting | 
|---|
| 8383 | * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. | 
|---|
| 8384 | */ | 
|---|
| 8385 | sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); | 
|---|
| 8386 | while (sd && !cpumask_test_cpu(cpu: prev_cpu, cpumask: sched_domain_span(sd))) | 
|---|
| 8387 | sd = sd->parent; | 
|---|
| 8388 | if (!sd) | 
|---|
| 8389 | goto unlock; | 
|---|
| 8390 |  | 
|---|
| 8391 | target = prev_cpu; | 
|---|
| 8392 |  | 
|---|
| 8393 | sync_entity_load_avg(se: &p->se); | 
|---|
| 8394 | if (!task_util_est(p) && p_util_min == 0) | 
|---|
| 8395 | goto unlock; | 
|---|
| 8396 |  | 
|---|
| 8397 | eenv_task_busy_time(eenv: &eenv, p, prev_cpu); | 
|---|
| 8398 |  | 
|---|
| 8399 | for (; pd; pd = pd->next) { | 
|---|
| 8400 | unsigned long util_min = p_util_min, util_max = p_util_max; | 
|---|
| 8401 | unsigned long cpu_cap, cpu_actual_cap, util; | 
|---|
| 8402 | long prev_spare_cap = -1, max_spare_cap = -1; | 
|---|
| 8403 | unsigned long rq_util_min, rq_util_max; | 
|---|
| 8404 | unsigned long cur_delta, base_energy; | 
|---|
| 8405 | int max_spare_cap_cpu = -1; | 
|---|
| 8406 | int fits, max_fits = -1; | 
|---|
| 8407 |  | 
|---|
| 8408 | cpumask_and(dstp: cpus, perf_domain_span(pd), cpu_online_mask); | 
|---|
| 8409 |  | 
|---|
| 8410 | if (cpumask_empty(srcp: cpus)) | 
|---|
| 8411 | continue; | 
|---|
| 8412 |  | 
|---|
| 8413 | /* Account external pressure for the energy estimation */ | 
|---|
| 8414 | cpu = cpumask_first(srcp: cpus); | 
|---|
| 8415 | cpu_actual_cap = get_actual_cpu_capacity(cpu); | 
|---|
| 8416 |  | 
|---|
| 8417 | eenv.cpu_cap = cpu_actual_cap; | 
|---|
| 8418 | eenv.pd_cap = 0; | 
|---|
| 8419 |  | 
|---|
| 8420 | for_each_cpu(cpu, cpus) { | 
|---|
| 8421 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 8422 |  | 
|---|
| 8423 | eenv.pd_cap += cpu_actual_cap; | 
|---|
| 8424 |  | 
|---|
| 8425 | if (!cpumask_test_cpu(cpu, cpumask: sched_domain_span(sd))) | 
|---|
| 8426 | continue; | 
|---|
| 8427 |  | 
|---|
| 8428 | if (!cpumask_test_cpu(cpu, cpumask: p->cpus_ptr)) | 
|---|
| 8429 | continue; | 
|---|
| 8430 |  | 
|---|
| 8431 | util = cpu_util(cpu, p, dst_cpu: cpu, boost: 0); | 
|---|
| 8432 | cpu_cap = capacity_of(cpu); | 
|---|
| 8433 |  | 
|---|
| 8434 | /* | 
|---|
| 8435 | * Skip CPUs that cannot satisfy the capacity request. | 
|---|
| 8436 | * IOW, placing the task there would make the CPU | 
|---|
| 8437 | * overutilized. Take uclamp into account to see how | 
|---|
| 8438 | * much capacity we can get out of the CPU; this is | 
|---|
| 8439 | * aligned with sched_cpu_util(). | 
|---|
| 8440 | */ | 
|---|
| 8441 | if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { | 
|---|
| 8442 | /* | 
|---|
| 8443 | * Open code uclamp_rq_util_with() except for | 
|---|
| 8444 | * the clamp() part. I.e.: apply max aggregation | 
|---|
| 8445 | * only. util_fits_cpu() logic requires to | 
|---|
| 8446 | * operate on non clamped util but must use the | 
|---|
| 8447 | * max-aggregated uclamp_{min, max}. | 
|---|
| 8448 | */ | 
|---|
| 8449 | rq_util_min = uclamp_rq_get(rq, clamp_id: UCLAMP_MIN); | 
|---|
| 8450 | rq_util_max = uclamp_rq_get(rq, clamp_id: UCLAMP_MAX); | 
|---|
| 8451 |  | 
|---|
| 8452 | util_min = max(rq_util_min, p_util_min); | 
|---|
| 8453 | util_max = max(rq_util_max, p_util_max); | 
|---|
| 8454 | } | 
|---|
| 8455 |  | 
|---|
| 8456 | fits = util_fits_cpu(util, uclamp_min: util_min, uclamp_max: util_max, cpu); | 
|---|
| 8457 | if (!fits) | 
|---|
| 8458 | continue; | 
|---|
| 8459 |  | 
|---|
| 8460 | lsub_positive(&cpu_cap, util); | 
|---|
| 8461 |  | 
|---|
| 8462 | if (cpu == prev_cpu) { | 
|---|
| 8463 | /* Always use prev_cpu as a candidate. */ | 
|---|
| 8464 | prev_spare_cap = cpu_cap; | 
|---|
| 8465 | prev_fits = fits; | 
|---|
| 8466 | } else if ((fits > max_fits) || | 
|---|
| 8467 | ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { | 
|---|
| 8468 | /* | 
|---|
| 8469 | * Find the CPU with the maximum spare capacity | 
|---|
| 8470 | * among the remaining CPUs in the performance | 
|---|
| 8471 | * domain. | 
|---|
| 8472 | */ | 
|---|
| 8473 | max_spare_cap = cpu_cap; | 
|---|
| 8474 | max_spare_cap_cpu = cpu; | 
|---|
| 8475 | max_fits = fits; | 
|---|
| 8476 | } | 
|---|
| 8477 | } | 
|---|
| 8478 |  | 
|---|
| 8479 | if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) | 
|---|
| 8480 | continue; | 
|---|
| 8481 |  | 
|---|
| 8482 | eenv_pd_busy_time(eenv: &eenv, pd_cpus: cpus, p); | 
|---|
| 8483 | /* Compute the 'base' energy of the pd, without @p */ | 
|---|
| 8484 | base_energy = compute_energy(eenv: &eenv, pd, pd_cpus: cpus, p, dst_cpu: -1); | 
|---|
| 8485 |  | 
|---|
| 8486 | /* Evaluate the energy impact of using prev_cpu. */ | 
|---|
| 8487 | if (prev_spare_cap > -1) { | 
|---|
| 8488 | prev_delta = compute_energy(eenv: &eenv, pd, pd_cpus: cpus, p, | 
|---|
| 8489 | dst_cpu: prev_cpu); | 
|---|
| 8490 | /* CPU utilization has changed */ | 
|---|
| 8491 | if (prev_delta < base_energy) | 
|---|
| 8492 | goto unlock; | 
|---|
| 8493 | prev_delta -= base_energy; | 
|---|
| 8494 | prev_actual_cap = cpu_actual_cap; | 
|---|
| 8495 | best_delta = min(best_delta, prev_delta); | 
|---|
| 8496 | } | 
|---|
| 8497 |  | 
|---|
| 8498 | /* Evaluate the energy impact of using max_spare_cap_cpu. */ | 
|---|
| 8499 | if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { | 
|---|
| 8500 | /* Current best energy cpu fits better */ | 
|---|
| 8501 | if (max_fits < best_fits) | 
|---|
| 8502 | continue; | 
|---|
| 8503 |  | 
|---|
| 8504 | /* | 
|---|
| 8505 | * Both don't fit performance hint (i.e. uclamp_min) | 
|---|
| 8506 | * but best energy cpu has better capacity. | 
|---|
| 8507 | */ | 
|---|
| 8508 | if ((max_fits < 0) && | 
|---|
| 8509 | (cpu_actual_cap <= best_actual_cap)) | 
|---|
| 8510 | continue; | 
|---|
| 8511 |  | 
|---|
| 8512 | cur_delta = compute_energy(eenv: &eenv, pd, pd_cpus: cpus, p, | 
|---|
| 8513 | dst_cpu: max_spare_cap_cpu); | 
|---|
| 8514 | /* CPU utilization has changed */ | 
|---|
| 8515 | if (cur_delta < base_energy) | 
|---|
| 8516 | goto unlock; | 
|---|
| 8517 | cur_delta -= base_energy; | 
|---|
| 8518 |  | 
|---|
| 8519 | /* | 
|---|
| 8520 | * Both fit for the task but best energy cpu has lower | 
|---|
| 8521 | * energy impact. | 
|---|
| 8522 | */ | 
|---|
| 8523 | if ((max_fits > 0) && (best_fits > 0) && | 
|---|
| 8524 | (cur_delta >= best_delta)) | 
|---|
| 8525 | continue; | 
|---|
| 8526 |  | 
|---|
| 8527 | best_delta = cur_delta; | 
|---|
| 8528 | best_energy_cpu = max_spare_cap_cpu; | 
|---|
| 8529 | best_fits = max_fits; | 
|---|
| 8530 | best_actual_cap = cpu_actual_cap; | 
|---|
| 8531 | } | 
|---|
| 8532 | } | 
|---|
| 8533 | rcu_read_unlock(); | 
|---|
| 8534 |  | 
|---|
| 8535 | if ((best_fits > prev_fits) || | 
|---|
| 8536 | ((best_fits > 0) && (best_delta < prev_delta)) || | 
|---|
| 8537 | ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) | 
|---|
| 8538 | target = best_energy_cpu; | 
|---|
| 8539 |  | 
|---|
| 8540 | return target; | 
|---|
| 8541 |  | 
|---|
| 8542 | unlock: | 
|---|
| 8543 | rcu_read_unlock(); | 
|---|
| 8544 |  | 
|---|
| 8545 | return target; | 
|---|
| 8546 | } | 
|---|
| 8547 |  | 
|---|
| 8548 | /* | 
|---|
| 8549 | * select_task_rq_fair: Select target runqueue for the waking task in domains | 
|---|
| 8550 | * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, | 
|---|
| 8551 | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. | 
|---|
| 8552 | * | 
|---|
| 8553 | * Balances load by selecting the idlest CPU in the idlest group, or under | 
|---|
| 8554 | * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. | 
|---|
| 8555 | * | 
|---|
| 8556 | * Returns the target CPU number. | 
|---|
| 8557 | */ | 
|---|
| 8558 | static int | 
|---|
| 8559 | select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) | 
|---|
| 8560 | { | 
|---|
| 8561 | int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); | 
|---|
| 8562 | struct sched_domain *tmp, *sd = NULL; | 
|---|
| 8563 | int cpu = smp_processor_id(); | 
|---|
| 8564 | int new_cpu = prev_cpu; | 
|---|
| 8565 | int want_affine = 0; | 
|---|
| 8566 | /* SD_flags and WF_flags share the first nibble */ | 
|---|
| 8567 | int sd_flag = wake_flags & 0xF; | 
|---|
| 8568 |  | 
|---|
| 8569 | /* | 
|---|
| 8570 | * required for stable ->cpus_allowed | 
|---|
| 8571 | */ | 
|---|
| 8572 | lockdep_assert_held(&p->pi_lock); | 
|---|
| 8573 | if (wake_flags & WF_TTWU) { | 
|---|
| 8574 | record_wakee(p); | 
|---|
| 8575 |  | 
|---|
| 8576 | if ((wake_flags & WF_CURRENT_CPU) && | 
|---|
| 8577 | cpumask_test_cpu(cpu, cpumask: p->cpus_ptr)) | 
|---|
| 8578 | return cpu; | 
|---|
| 8579 |  | 
|---|
| 8580 | if (!is_rd_overutilized(this_rq()->rd)) { | 
|---|
| 8581 | new_cpu = find_energy_efficient_cpu(p, prev_cpu); | 
|---|
| 8582 | if (new_cpu >= 0) | 
|---|
| 8583 | return new_cpu; | 
|---|
| 8584 | new_cpu = prev_cpu; | 
|---|
| 8585 | } | 
|---|
| 8586 |  | 
|---|
| 8587 | want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, cpumask: p->cpus_ptr); | 
|---|
| 8588 | } | 
|---|
| 8589 |  | 
|---|
| 8590 | rcu_read_lock(); | 
|---|
| 8591 | for_each_domain(cpu, tmp) { | 
|---|
| 8592 | /* | 
|---|
| 8593 | * If both 'cpu' and 'prev_cpu' are part of this domain, | 
|---|
| 8594 | * cpu is a valid SD_WAKE_AFFINE target. | 
|---|
| 8595 | */ | 
|---|
| 8596 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | 
|---|
| 8597 | cpumask_test_cpu(cpu: prev_cpu, cpumask: sched_domain_span(sd: tmp))) { | 
|---|
| 8598 | if (cpu != prev_cpu) | 
|---|
| 8599 | new_cpu = wake_affine(sd: tmp, p, this_cpu: cpu, prev_cpu, sync); | 
|---|
| 8600 |  | 
|---|
| 8601 | sd = NULL; /* Prefer wake_affine over balance flags */ | 
|---|
| 8602 | break; | 
|---|
| 8603 | } | 
|---|
| 8604 |  | 
|---|
| 8605 | /* | 
|---|
| 8606 | * Usually only true for WF_EXEC and WF_FORK, as sched_domains | 
|---|
| 8607 | * usually do not have SD_BALANCE_WAKE set. That means wakeup | 
|---|
| 8608 | * will usually go to the fast path. | 
|---|
| 8609 | */ | 
|---|
| 8610 | if (tmp->flags & sd_flag) | 
|---|
| 8611 | sd = tmp; | 
|---|
| 8612 | else if (!want_affine) | 
|---|
| 8613 | break; | 
|---|
| 8614 | } | 
|---|
| 8615 |  | 
|---|
| 8616 | if (unlikely(sd)) { | 
|---|
| 8617 | /* Slow path */ | 
|---|
| 8618 | new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); | 
|---|
| 8619 | } else if (wake_flags & WF_TTWU) { /* XXX always ? */ | 
|---|
| 8620 | /* Fast path */ | 
|---|
| 8621 | new_cpu = select_idle_sibling(p, prev: prev_cpu, target: new_cpu); | 
|---|
| 8622 | } | 
|---|
| 8623 | rcu_read_unlock(); | 
|---|
| 8624 |  | 
|---|
| 8625 | return new_cpu; | 
|---|
| 8626 | } | 
|---|
| 8627 |  | 
|---|
| 8628 | /* | 
|---|
| 8629 | * Called immediately before a task is migrated to a new CPU; task_cpu(p) and | 
|---|
| 8630 | * cfs_rq_of(p) references at time of call are still valid and identify the | 
|---|
| 8631 | * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. | 
|---|
| 8632 | */ | 
|---|
| 8633 | static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) | 
|---|
| 8634 | { | 
|---|
| 8635 | struct sched_entity *se = &p->se; | 
|---|
| 8636 |  | 
|---|
| 8637 | if (!task_on_rq_migrating(p)) { | 
|---|
| 8638 | remove_entity_load_avg(se); | 
|---|
| 8639 |  | 
|---|
| 8640 | /* | 
|---|
| 8641 | * Here, the task's PELT values have been updated according to | 
|---|
| 8642 | * the current rq's clock. But if that clock hasn't been | 
|---|
| 8643 | * updated in a while, a substantial idle time will be missed, | 
|---|
| 8644 | * leading to an inflation after wake-up on the new rq. | 
|---|
| 8645 | * | 
|---|
| 8646 | * Estimate the missing time from the cfs_rq last_update_time | 
|---|
| 8647 | * and update sched_avg to improve the PELT continuity after | 
|---|
| 8648 | * migration. | 
|---|
| 8649 | */ | 
|---|
| 8650 | migrate_se_pelt_lag(se); | 
|---|
| 8651 | } | 
|---|
| 8652 |  | 
|---|
| 8653 | /* Tell new CPU we are migrated */ | 
|---|
| 8654 | se->avg.last_update_time = 0; | 
|---|
| 8655 |  | 
|---|
| 8656 | update_scan_period(p, new_cpu); | 
|---|
| 8657 | } | 
|---|
| 8658 |  | 
|---|
| 8659 | static void task_dead_fair(struct task_struct *p) | 
|---|
| 8660 | { | 
|---|
| 8661 | struct sched_entity *se = &p->se; | 
|---|
| 8662 |  | 
|---|
| 8663 | if (se->sched_delayed) { | 
|---|
| 8664 | struct rq_flags rf; | 
|---|
| 8665 | struct rq *rq; | 
|---|
| 8666 |  | 
|---|
| 8667 | rq = task_rq_lock(p, rf: &rf); | 
|---|
| 8668 | if (se->sched_delayed) { | 
|---|
| 8669 | update_rq_clock(rq); | 
|---|
| 8670 | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); | 
|---|
| 8671 | } | 
|---|
| 8672 | task_rq_unlock(rq, p, rf: &rf); | 
|---|
| 8673 | } | 
|---|
| 8674 |  | 
|---|
| 8675 | remove_entity_load_avg(se); | 
|---|
| 8676 | } | 
|---|
| 8677 |  | 
|---|
| 8678 | /* | 
|---|
| 8679 | * Set the max capacity the task is allowed to run at for misfit detection. | 
|---|
| 8680 | */ | 
|---|
| 8681 | static void set_task_max_allowed_capacity(struct task_struct *p) | 
|---|
| 8682 | { | 
|---|
| 8683 | struct asym_cap_data *entry; | 
|---|
| 8684 |  | 
|---|
| 8685 | if (!sched_asym_cpucap_active()) | 
|---|
| 8686 | return; | 
|---|
| 8687 |  | 
|---|
| 8688 | rcu_read_lock(); | 
|---|
| 8689 | list_for_each_entry_rcu(entry, &asym_cap_list, link) { | 
|---|
| 8690 | cpumask_t *cpumask; | 
|---|
| 8691 |  | 
|---|
| 8692 | cpumask = cpu_capacity_span(entry); | 
|---|
| 8693 | if (!cpumask_intersects(src1p: p->cpus_ptr, src2p: cpumask)) | 
|---|
| 8694 | continue; | 
|---|
| 8695 |  | 
|---|
| 8696 | p->max_allowed_capacity = entry->capacity; | 
|---|
| 8697 | break; | 
|---|
| 8698 | } | 
|---|
| 8699 | rcu_read_unlock(); | 
|---|
| 8700 | } | 
|---|
| 8701 |  | 
|---|
| 8702 | static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) | 
|---|
| 8703 | { | 
|---|
| 8704 | set_cpus_allowed_common(p, ctx); | 
|---|
| 8705 | set_task_max_allowed_capacity(p); | 
|---|
| 8706 | } | 
|---|
| 8707 |  | 
|---|
| 8708 | static int | 
|---|
| 8709 | balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | 
|---|
| 8710 | { | 
|---|
| 8711 | if (sched_fair_runnable(rq)) | 
|---|
| 8712 | return 1; | 
|---|
| 8713 |  | 
|---|
| 8714 | return sched_balance_newidle(this_rq: rq, rf) != 0; | 
|---|
| 8715 | } | 
|---|
| 8716 |  | 
|---|
| 8717 | static void set_next_buddy(struct sched_entity *se) | 
|---|
| 8718 | { | 
|---|
| 8719 | for_each_sched_entity(se) { | 
|---|
| 8720 | if (WARN_ON_ONCE(!se->on_rq)) | 
|---|
| 8721 | return; | 
|---|
| 8722 | if (se_is_idle(se)) | 
|---|
| 8723 | return; | 
|---|
| 8724 | cfs_rq_of(se)->next = se; | 
|---|
| 8725 | } | 
|---|
| 8726 | } | 
|---|
| 8727 |  | 
|---|
| 8728 | /* | 
|---|
| 8729 | * Preempt the current task with a newly woken task if needed: | 
|---|
| 8730 | */ | 
|---|
| 8731 | static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) | 
|---|
| 8732 | { | 
|---|
| 8733 | struct task_struct *donor = rq->donor; | 
|---|
| 8734 | struct sched_entity *se = &donor->se, *pse = &p->se; | 
|---|
| 8735 | struct cfs_rq *cfs_rq = task_cfs_rq(p: donor); | 
|---|
| 8736 | int cse_is_idle, pse_is_idle; | 
|---|
| 8737 | bool do_preempt_short = false; | 
|---|
| 8738 |  | 
|---|
| 8739 | if (unlikely(se == pse)) | 
|---|
| 8740 | return; | 
|---|
| 8741 |  | 
|---|
| 8742 | /* | 
|---|
| 8743 | * This is possible from callers such as attach_tasks(), in which we | 
|---|
| 8744 | * unconditionally wakeup_preempt() after an enqueue (which may have | 
|---|
| 8745 | * lead to a throttle).  This both saves work and prevents false | 
|---|
| 8746 | * next-buddy nomination below. | 
|---|
| 8747 | */ | 
|---|
| 8748 | if (task_is_throttled(p)) | 
|---|
| 8749 | return; | 
|---|
| 8750 |  | 
|---|
| 8751 | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { | 
|---|
| 8752 | set_next_buddy(pse); | 
|---|
| 8753 | } | 
|---|
| 8754 |  | 
|---|
| 8755 | /* | 
|---|
| 8756 | * We can come here with TIF_NEED_RESCHED already set from new task | 
|---|
| 8757 | * wake up path. | 
|---|
| 8758 | * | 
|---|
| 8759 | * Note: this also catches the edge-case of curr being in a throttled | 
|---|
| 8760 | * group (e.g. via set_curr_task), since update_curr() (in the | 
|---|
| 8761 | * enqueue of curr) will have resulted in resched being set.  This | 
|---|
| 8762 | * prevents us from potentially nominating it as a false LAST_BUDDY | 
|---|
| 8763 | * below. | 
|---|
| 8764 | */ | 
|---|
| 8765 | if (test_tsk_need_resched(tsk: rq->curr)) | 
|---|
| 8766 | return; | 
|---|
| 8767 |  | 
|---|
| 8768 | if (!sched_feat(WAKEUP_PREEMPTION)) | 
|---|
| 8769 | return; | 
|---|
| 8770 |  | 
|---|
| 8771 | find_matching_se(se: &se, pse: &pse); | 
|---|
| 8772 | WARN_ON_ONCE(!pse); | 
|---|
| 8773 |  | 
|---|
| 8774 | cse_is_idle = se_is_idle(se); | 
|---|
| 8775 | pse_is_idle = se_is_idle(se: pse); | 
|---|
| 8776 |  | 
|---|
| 8777 | /* | 
|---|
| 8778 | * Preempt an idle entity in favor of a non-idle entity (and don't preempt | 
|---|
| 8779 | * in the inverse case). | 
|---|
| 8780 | */ | 
|---|
| 8781 | if (cse_is_idle && !pse_is_idle) { | 
|---|
| 8782 | /* | 
|---|
| 8783 | * When non-idle entity preempt an idle entity, | 
|---|
| 8784 | * don't give idle entity slice protection. | 
|---|
| 8785 | */ | 
|---|
| 8786 | do_preempt_short = true; | 
|---|
| 8787 | goto preempt; | 
|---|
| 8788 | } | 
|---|
| 8789 |  | 
|---|
| 8790 | if (cse_is_idle != pse_is_idle) | 
|---|
| 8791 | return; | 
|---|
| 8792 |  | 
|---|
| 8793 | /* | 
|---|
| 8794 | * BATCH and IDLE tasks do not preempt others. | 
|---|
| 8795 | */ | 
|---|
| 8796 | if (unlikely(!normal_policy(p->policy))) | 
|---|
| 8797 | return; | 
|---|
| 8798 |  | 
|---|
| 8799 | cfs_rq = cfs_rq_of(se); | 
|---|
| 8800 | update_curr(cfs_rq); | 
|---|
| 8801 | /* | 
|---|
| 8802 | * If @p has a shorter slice than current and @p is eligible, override | 
|---|
| 8803 | * current's slice protection in order to allow preemption. | 
|---|
| 8804 | */ | 
|---|
| 8805 | do_preempt_short = sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice); | 
|---|
| 8806 |  | 
|---|
| 8807 | /* | 
|---|
| 8808 | * If @p has become the most eligible task, force preemption. | 
|---|
| 8809 | */ | 
|---|
| 8810 | if (__pick_eevdf(cfs_rq, protect: !do_preempt_short) == pse) | 
|---|
| 8811 | goto preempt; | 
|---|
| 8812 |  | 
|---|
| 8813 | if (sched_feat(RUN_TO_PARITY) && do_preempt_short) | 
|---|
| 8814 | update_protect_slice(cfs_rq, se); | 
|---|
| 8815 |  | 
|---|
| 8816 | return; | 
|---|
| 8817 |  | 
|---|
| 8818 | preempt: | 
|---|
| 8819 | if (do_preempt_short) | 
|---|
| 8820 | cancel_protect_slice(se); | 
|---|
| 8821 |  | 
|---|
| 8822 | resched_curr_lazy(rq); | 
|---|
| 8823 | } | 
|---|
| 8824 |  | 
|---|
| 8825 | static struct task_struct *pick_task_fair(struct rq *rq) | 
|---|
| 8826 | { | 
|---|
| 8827 | struct sched_entity *se; | 
|---|
| 8828 | struct cfs_rq *cfs_rq; | 
|---|
| 8829 | struct task_struct *p; | 
|---|
| 8830 | bool throttled; | 
|---|
| 8831 |  | 
|---|
| 8832 | again: | 
|---|
| 8833 | cfs_rq = &rq->cfs; | 
|---|
| 8834 | if (!cfs_rq->nr_queued) | 
|---|
| 8835 | return NULL; | 
|---|
| 8836 |  | 
|---|
| 8837 | throttled = false; | 
|---|
| 8838 |  | 
|---|
| 8839 | do { | 
|---|
| 8840 | /* Might not have done put_prev_entity() */ | 
|---|
| 8841 | if (cfs_rq->curr && cfs_rq->curr->on_rq) | 
|---|
| 8842 | update_curr(cfs_rq); | 
|---|
| 8843 |  | 
|---|
| 8844 | throttled |= check_cfs_rq_runtime(cfs_rq); | 
|---|
| 8845 |  | 
|---|
| 8846 | se = pick_next_entity(rq, cfs_rq); | 
|---|
| 8847 | if (!se) | 
|---|
| 8848 | goto again; | 
|---|
| 8849 | cfs_rq = group_cfs_rq(grp: se); | 
|---|
| 8850 | } while (cfs_rq); | 
|---|
| 8851 |  | 
|---|
| 8852 | p = task_of(se); | 
|---|
| 8853 | if (unlikely(throttled)) | 
|---|
| 8854 | task_throttle_setup_work(p); | 
|---|
| 8855 | return p; | 
|---|
| 8856 | } | 
|---|
| 8857 |  | 
|---|
| 8858 | static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); | 
|---|
| 8859 | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); | 
|---|
| 8860 |  | 
|---|
| 8861 | struct task_struct * | 
|---|
| 8862 | pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | 
|---|
| 8863 | { | 
|---|
| 8864 | struct sched_entity *se; | 
|---|
| 8865 | struct task_struct *p; | 
|---|
| 8866 | int new_tasks; | 
|---|
| 8867 |  | 
|---|
| 8868 | again: | 
|---|
| 8869 | p = pick_task_fair(rq); | 
|---|
| 8870 | if (!p) | 
|---|
| 8871 | goto idle; | 
|---|
| 8872 | se = &p->se; | 
|---|
| 8873 |  | 
|---|
| 8874 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 8875 | if (prev->sched_class != &fair_sched_class) | 
|---|
| 8876 | goto simple; | 
|---|
| 8877 |  | 
|---|
| 8878 | __put_prev_set_next_dl_server(rq, prev, next: p); | 
|---|
| 8879 |  | 
|---|
| 8880 | /* | 
|---|
| 8881 | * Because of the set_next_buddy() in dequeue_task_fair() it is rather | 
|---|
| 8882 | * likely that a next task is from the same cgroup as the current. | 
|---|
| 8883 | * | 
|---|
| 8884 | * Therefore attempt to avoid putting and setting the entire cgroup | 
|---|
| 8885 | * hierarchy, only change the part that actually changes. | 
|---|
| 8886 | * | 
|---|
| 8887 | * Since we haven't yet done put_prev_entity and if the selected task | 
|---|
| 8888 | * is a different task than we started out with, try and touch the | 
|---|
| 8889 | * least amount of cfs_rqs. | 
|---|
| 8890 | */ | 
|---|
| 8891 | if (prev != p) { | 
|---|
| 8892 | struct sched_entity *pse = &prev->se; | 
|---|
| 8893 | struct cfs_rq *cfs_rq; | 
|---|
| 8894 |  | 
|---|
| 8895 | while (!(cfs_rq = is_same_group(se, pse))) { | 
|---|
| 8896 | int se_depth = se->depth; | 
|---|
| 8897 | int pse_depth = pse->depth; | 
|---|
| 8898 |  | 
|---|
| 8899 | if (se_depth <= pse_depth) { | 
|---|
| 8900 | put_prev_entity(cfs_rq: cfs_rq_of(se: pse), prev: pse); | 
|---|
| 8901 | pse = parent_entity(se: pse); | 
|---|
| 8902 | } | 
|---|
| 8903 | if (se_depth >= pse_depth) { | 
|---|
| 8904 | set_next_entity(cfs_rq: cfs_rq_of(se), se); | 
|---|
| 8905 | se = parent_entity(se); | 
|---|
| 8906 | } | 
|---|
| 8907 | } | 
|---|
| 8908 |  | 
|---|
| 8909 | put_prev_entity(cfs_rq, prev: pse); | 
|---|
| 8910 | set_next_entity(cfs_rq, se); | 
|---|
| 8911 |  | 
|---|
| 8912 | __set_next_task_fair(rq, p, first: true); | 
|---|
| 8913 | } | 
|---|
| 8914 |  | 
|---|
| 8915 | return p; | 
|---|
| 8916 |  | 
|---|
| 8917 | simple: | 
|---|
| 8918 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|---|
| 8919 | put_prev_set_next_task(rq, prev, next: p); | 
|---|
| 8920 | return p; | 
|---|
| 8921 |  | 
|---|
| 8922 | idle: | 
|---|
| 8923 | if (!rf) | 
|---|
| 8924 | return NULL; | 
|---|
| 8925 |  | 
|---|
| 8926 | new_tasks = sched_balance_newidle(this_rq: rq, rf); | 
|---|
| 8927 |  | 
|---|
| 8928 | /* | 
|---|
| 8929 | * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is | 
|---|
| 8930 | * possible for any higher priority task to appear. In that case we | 
|---|
| 8931 | * must re-start the pick_next_entity() loop. | 
|---|
| 8932 | */ | 
|---|
| 8933 | if (new_tasks < 0) | 
|---|
| 8934 | return RETRY_TASK; | 
|---|
| 8935 |  | 
|---|
| 8936 | if (new_tasks > 0) | 
|---|
| 8937 | goto again; | 
|---|
| 8938 |  | 
|---|
| 8939 | /* | 
|---|
| 8940 | * rq is about to be idle, check if we need to update the | 
|---|
| 8941 | * lost_idle_time of clock_pelt | 
|---|
| 8942 | */ | 
|---|
| 8943 | update_idle_rq_clock_pelt(rq); | 
|---|
| 8944 |  | 
|---|
| 8945 | return NULL; | 
|---|
| 8946 | } | 
|---|
| 8947 |  | 
|---|
| 8948 | static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) | 
|---|
| 8949 | { | 
|---|
| 8950 | return pick_next_task_fair(rq, prev, NULL); | 
|---|
| 8951 | } | 
|---|
| 8952 |  | 
|---|
| 8953 | static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) | 
|---|
| 8954 | { | 
|---|
| 8955 | return pick_task_fair(rq: dl_se->rq); | 
|---|
| 8956 | } | 
|---|
| 8957 |  | 
|---|
| 8958 | void fair_server_init(struct rq *rq) | 
|---|
| 8959 | { | 
|---|
| 8960 | struct sched_dl_entity *dl_se = &rq->fair_server; | 
|---|
| 8961 |  | 
|---|
| 8962 | init_dl_entity(dl_se); | 
|---|
| 8963 |  | 
|---|
| 8964 | dl_server_init(dl_se, rq, pick_task: fair_server_pick_task); | 
|---|
| 8965 | } | 
|---|
| 8966 |  | 
|---|
| 8967 | /* | 
|---|
| 8968 | * Account for a descheduled task: | 
|---|
| 8969 | */ | 
|---|
| 8970 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) | 
|---|
| 8971 | { | 
|---|
| 8972 | struct sched_entity *se = &prev->se; | 
|---|
| 8973 | struct cfs_rq *cfs_rq; | 
|---|
| 8974 |  | 
|---|
| 8975 | for_each_sched_entity(se) { | 
|---|
| 8976 | cfs_rq = cfs_rq_of(se); | 
|---|
| 8977 | put_prev_entity(cfs_rq, prev: se); | 
|---|
| 8978 | } | 
|---|
| 8979 | } | 
|---|
| 8980 |  | 
|---|
| 8981 | /* | 
|---|
| 8982 | * sched_yield() is very simple | 
|---|
| 8983 | */ | 
|---|
| 8984 | static void yield_task_fair(struct rq *rq) | 
|---|
| 8985 | { | 
|---|
| 8986 | struct task_struct *curr = rq->curr; | 
|---|
| 8987 | struct cfs_rq *cfs_rq = task_cfs_rq(p: curr); | 
|---|
| 8988 | struct sched_entity *se = &curr->se; | 
|---|
| 8989 |  | 
|---|
| 8990 | /* | 
|---|
| 8991 | * Are we the only task in the tree? | 
|---|
| 8992 | */ | 
|---|
| 8993 | if (unlikely(rq->nr_running == 1)) | 
|---|
| 8994 | return; | 
|---|
| 8995 |  | 
|---|
| 8996 | clear_buddies(cfs_rq, se); | 
|---|
| 8997 |  | 
|---|
| 8998 | update_rq_clock(rq); | 
|---|
| 8999 | /* | 
|---|
| 9000 | * Update run-time statistics of the 'current'. | 
|---|
| 9001 | */ | 
|---|
| 9002 | update_curr(cfs_rq); | 
|---|
| 9003 | /* | 
|---|
| 9004 | * Tell update_rq_clock() that we've just updated, | 
|---|
| 9005 | * so we don't do microscopic update in schedule() | 
|---|
| 9006 | * and double the fastpath cost. | 
|---|
| 9007 | */ | 
|---|
| 9008 | rq_clock_skip_update(rq); | 
|---|
| 9009 |  | 
|---|
| 9010 | se->deadline += calc_delta_fair(delta: se->slice, se); | 
|---|
| 9011 | } | 
|---|
| 9012 |  | 
|---|
| 9013 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) | 
|---|
| 9014 | { | 
|---|
| 9015 | struct sched_entity *se = &p->se; | 
|---|
| 9016 |  | 
|---|
| 9017 | /* !se->on_rq also covers throttled task */ | 
|---|
| 9018 | if (!se->on_rq) | 
|---|
| 9019 | return false; | 
|---|
| 9020 |  | 
|---|
| 9021 | /* Tell the scheduler that we'd really like se to run next. */ | 
|---|
| 9022 | set_next_buddy(se); | 
|---|
| 9023 |  | 
|---|
| 9024 | yield_task_fair(rq); | 
|---|
| 9025 |  | 
|---|
| 9026 | return true; | 
|---|
| 9027 | } | 
|---|
| 9028 |  | 
|---|
| 9029 | /************************************************** | 
|---|
| 9030 | * Fair scheduling class load-balancing methods. | 
|---|
| 9031 | * | 
|---|
| 9032 | * BASICS | 
|---|
| 9033 | * | 
|---|
| 9034 | * The purpose of load-balancing is to achieve the same basic fairness the | 
|---|
| 9035 | * per-CPU scheduler provides, namely provide a proportional amount of compute | 
|---|
| 9036 | * time to each task. This is expressed in the following equation: | 
|---|
| 9037 | * | 
|---|
| 9038 | *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1) | 
|---|
| 9039 | * | 
|---|
| 9040 | * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight | 
|---|
| 9041 | * W_i,0 is defined as: | 
|---|
| 9042 | * | 
|---|
| 9043 | *   W_i,0 = \Sum_j w_i,j                                             (2) | 
|---|
| 9044 | * | 
|---|
| 9045 | * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight | 
|---|
| 9046 | * is derived from the nice value as per sched_prio_to_weight[]. | 
|---|
| 9047 | * | 
|---|
| 9048 | * The weight average is an exponential decay average of the instantaneous | 
|---|
| 9049 | * weight: | 
|---|
| 9050 | * | 
|---|
| 9051 | *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3) | 
|---|
| 9052 | * | 
|---|
| 9053 | * C_i is the compute capacity of CPU i, typically it is the | 
|---|
| 9054 | * fraction of 'recent' time available for SCHED_OTHER task execution. But it | 
|---|
| 9055 | * can also include other factors [XXX]. | 
|---|
| 9056 | * | 
|---|
| 9057 | * To achieve this balance we define a measure of imbalance which follows | 
|---|
| 9058 | * directly from (1): | 
|---|
| 9059 | * | 
|---|
| 9060 | *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4) | 
|---|
| 9061 | * | 
|---|
| 9062 | * We them move tasks around to minimize the imbalance. In the continuous | 
|---|
| 9063 | * function space it is obvious this converges, in the discrete case we get | 
|---|
| 9064 | * a few fun cases generally called infeasible weight scenarios. | 
|---|
| 9065 | * | 
|---|
| 9066 | * [XXX expand on: | 
|---|
| 9067 | *     - infeasible weights; | 
|---|
| 9068 | *     - local vs global optima in the discrete case. ] | 
|---|
| 9069 | * | 
|---|
| 9070 | * | 
|---|
| 9071 | * SCHED DOMAINS | 
|---|
| 9072 | * | 
|---|
| 9073 | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) | 
|---|
| 9074 | * for all i,j solution, we create a tree of CPUs that follows the hardware | 
|---|
| 9075 | * topology where each level pairs two lower groups (or better). This results | 
|---|
| 9076 | * in O(log n) layers. Furthermore we reduce the number of CPUs going up the | 
|---|
| 9077 | * tree to only the first of the previous level and we decrease the frequency | 
|---|
| 9078 | * of load-balance at each level inversely proportional to the number of CPUs in | 
|---|
| 9079 | * the groups. | 
|---|
| 9080 | * | 
|---|
| 9081 | * This yields: | 
|---|
| 9082 | * | 
|---|
| 9083 | *     log_2 n     1     n | 
|---|
| 9084 | *   \Sum       { --- * --- * 2^i } = O(n)                            (5) | 
|---|
| 9085 | *     i = 0      2^i   2^i | 
|---|
| 9086 | *                               `- size of each group | 
|---|
| 9087 | *         |         |     `- number of CPUs doing load-balance | 
|---|
| 9088 | *         |         `- freq | 
|---|
| 9089 | *         `- sum over all levels | 
|---|
| 9090 | * | 
|---|
| 9091 | * Coupled with a limit on how many tasks we can migrate every balance pass, | 
|---|
| 9092 | * this makes (5) the runtime complexity of the balancer. | 
|---|
| 9093 | * | 
|---|
| 9094 | * An important property here is that each CPU is still (indirectly) connected | 
|---|
| 9095 | * to every other CPU in at most O(log n) steps: | 
|---|
| 9096 | * | 
|---|
| 9097 | * The adjacency matrix of the resulting graph is given by: | 
|---|
| 9098 | * | 
|---|
| 9099 | *             log_2 n | 
|---|
| 9100 | *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6) | 
|---|
| 9101 | *             k = 0 | 
|---|
| 9102 | * | 
|---|
| 9103 | * And you'll find that: | 
|---|
| 9104 | * | 
|---|
| 9105 | *   A^(log_2 n)_i,j != 0  for all i,j                                (7) | 
|---|
| 9106 | * | 
|---|
| 9107 | * Showing there's indeed a path between every CPU in at most O(log n) steps. | 
|---|
| 9108 | * The task movement gives a factor of O(m), giving a convergence complexity | 
|---|
| 9109 | * of: | 
|---|
| 9110 | * | 
|---|
| 9111 | *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8) | 
|---|
| 9112 | * | 
|---|
| 9113 | * | 
|---|
| 9114 | * WORK CONSERVING | 
|---|
| 9115 | * | 
|---|
| 9116 | * In order to avoid CPUs going idle while there's still work to do, new idle | 
|---|
| 9117 | * balancing is more aggressive and has the newly idle CPU iterate up the domain | 
|---|
| 9118 | * tree itself instead of relying on other CPUs to bring it work. | 
|---|
| 9119 | * | 
|---|
| 9120 | * This adds some complexity to both (5) and (8) but it reduces the total idle | 
|---|
| 9121 | * time. | 
|---|
| 9122 | * | 
|---|
| 9123 | * [XXX more?] | 
|---|
| 9124 | * | 
|---|
| 9125 | * | 
|---|
| 9126 | * CGROUPS | 
|---|
| 9127 | * | 
|---|
| 9128 | * Cgroups make a horror show out of (2), instead of a simple sum we get: | 
|---|
| 9129 | * | 
|---|
| 9130 | *                                s_k,i | 
|---|
| 9131 | *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9) | 
|---|
| 9132 | *                                 S_k | 
|---|
| 9133 | * | 
|---|
| 9134 | * Where | 
|---|
| 9135 | * | 
|---|
| 9136 | *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10) | 
|---|
| 9137 | * | 
|---|
| 9138 | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. | 
|---|
| 9139 | * | 
|---|
| 9140 | * The big problem is S_k, its a global sum needed to compute a local (W_i) | 
|---|
| 9141 | * property. | 
|---|
| 9142 | * | 
|---|
| 9143 | * [XXX write more on how we solve this.. _after_ merging pjt's patches that | 
|---|
| 9144 | *      rewrite all of this once again.] | 
|---|
| 9145 | */ | 
|---|
| 9146 |  | 
|---|
| 9147 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; | 
|---|
| 9148 |  | 
|---|
| 9149 | enum fbq_type { regular, remote, all }; | 
|---|
| 9150 |  | 
|---|
| 9151 | /* | 
|---|
| 9152 | * 'group_type' describes the group of CPUs at the moment of load balancing. | 
|---|
| 9153 | * | 
|---|
| 9154 | * The enum is ordered by pulling priority, with the group with lowest priority | 
|---|
| 9155 | * first so the group_type can simply be compared when selecting the busiest | 
|---|
| 9156 | * group. See update_sd_pick_busiest(). | 
|---|
| 9157 | */ | 
|---|
| 9158 | enum group_type { | 
|---|
| 9159 | /* The group has spare capacity that can be used to run more tasks.  */ | 
|---|
| 9160 | group_has_spare = 0, | 
|---|
| 9161 | /* | 
|---|
| 9162 | * The group is fully used and the tasks don't compete for more CPU | 
|---|
| 9163 | * cycles. Nevertheless, some tasks might wait before running. | 
|---|
| 9164 | */ | 
|---|
| 9165 | group_fully_busy, | 
|---|
| 9166 | /* | 
|---|
| 9167 | * One task doesn't fit with CPU's capacity and must be migrated to a | 
|---|
| 9168 | * more powerful CPU. | 
|---|
| 9169 | */ | 
|---|
| 9170 | group_misfit_task, | 
|---|
| 9171 | /* | 
|---|
| 9172 | * Balance SMT group that's fully busy. Can benefit from migration | 
|---|
| 9173 | * a task on SMT with busy sibling to another CPU on idle core. | 
|---|
| 9174 | */ | 
|---|
| 9175 | group_smt_balance, | 
|---|
| 9176 | /* | 
|---|
| 9177 | * SD_ASYM_PACKING only: One local CPU with higher capacity is available, | 
|---|
| 9178 | * and the task should be migrated to it instead of running on the | 
|---|
| 9179 | * current CPU. | 
|---|
| 9180 | */ | 
|---|
| 9181 | group_asym_packing, | 
|---|
| 9182 | /* | 
|---|
| 9183 | * The tasks' affinity constraints previously prevented the scheduler | 
|---|
| 9184 | * from balancing the load across the system. | 
|---|
| 9185 | */ | 
|---|
| 9186 | group_imbalanced, | 
|---|
| 9187 | /* | 
|---|
| 9188 | * The CPU is overloaded and can't provide expected CPU cycles to all | 
|---|
| 9189 | * tasks. | 
|---|
| 9190 | */ | 
|---|
| 9191 | group_overloaded | 
|---|
| 9192 | }; | 
|---|
| 9193 |  | 
|---|
| 9194 | enum migration_type { | 
|---|
| 9195 | migrate_load = 0, | 
|---|
| 9196 | migrate_util, | 
|---|
| 9197 | migrate_task, | 
|---|
| 9198 | migrate_misfit | 
|---|
| 9199 | }; | 
|---|
| 9200 |  | 
|---|
| 9201 | #define LBF_ALL_PINNED	0x01 | 
|---|
| 9202 | #define LBF_NEED_BREAK	0x02 | 
|---|
| 9203 | #define LBF_DST_PINNED  0x04 | 
|---|
| 9204 | #define LBF_SOME_PINNED	0x08 | 
|---|
| 9205 | #define LBF_ACTIVE_LB	0x10 | 
|---|
| 9206 |  | 
|---|
| 9207 | struct lb_env { | 
|---|
| 9208 | struct sched_domain	*sd; | 
|---|
| 9209 |  | 
|---|
| 9210 | struct rq		*src_rq; | 
|---|
| 9211 | int			src_cpu; | 
|---|
| 9212 |  | 
|---|
| 9213 | int			dst_cpu; | 
|---|
| 9214 | struct rq		*dst_rq; | 
|---|
| 9215 |  | 
|---|
| 9216 | struct cpumask		*dst_grpmask; | 
|---|
| 9217 | int			new_dst_cpu; | 
|---|
| 9218 | enum cpu_idle_type	idle; | 
|---|
| 9219 | long			imbalance; | 
|---|
| 9220 | /* The set of CPUs under consideration for load-balancing */ | 
|---|
| 9221 | struct cpumask		*cpus; | 
|---|
| 9222 |  | 
|---|
| 9223 | unsigned int		flags; | 
|---|
| 9224 |  | 
|---|
| 9225 | unsigned int		loop; | 
|---|
| 9226 | unsigned int		loop_break; | 
|---|
| 9227 | unsigned int		loop_max; | 
|---|
| 9228 |  | 
|---|
| 9229 | enum fbq_type		fbq_type; | 
|---|
| 9230 | enum migration_type	migration_type; | 
|---|
| 9231 | struct list_head	tasks; | 
|---|
| 9232 | }; | 
|---|
| 9233 |  | 
|---|
| 9234 | /* | 
|---|
| 9235 | * Is this task likely cache-hot: | 
|---|
| 9236 | */ | 
|---|
| 9237 | static int task_hot(struct task_struct *p, struct lb_env *env) | 
|---|
| 9238 | { | 
|---|
| 9239 | s64 delta; | 
|---|
| 9240 |  | 
|---|
| 9241 | lockdep_assert_rq_held(rq: env->src_rq); | 
|---|
| 9242 |  | 
|---|
| 9243 | if (p->sched_class != &fair_sched_class) | 
|---|
| 9244 | return 0; | 
|---|
| 9245 |  | 
|---|
| 9246 | if (unlikely(task_has_idle_policy(p))) | 
|---|
| 9247 | return 0; | 
|---|
| 9248 |  | 
|---|
| 9249 | /* SMT siblings share cache */ | 
|---|
| 9250 | if (env->sd->flags & SD_SHARE_CPUCAPACITY) | 
|---|
| 9251 | return 0; | 
|---|
| 9252 |  | 
|---|
| 9253 | /* | 
|---|
| 9254 | * Buddy candidates are cache hot: | 
|---|
| 9255 | */ | 
|---|
| 9256 | if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && | 
|---|
| 9257 | (&p->se == cfs_rq_of(se: &p->se)->next)) | 
|---|
| 9258 | return 1; | 
|---|
| 9259 |  | 
|---|
| 9260 | if (sysctl_sched_migration_cost == -1) | 
|---|
| 9261 | return 1; | 
|---|
| 9262 |  | 
|---|
| 9263 | /* | 
|---|
| 9264 | * Don't migrate task if the task's cookie does not match | 
|---|
| 9265 | * with the destination CPU's core cookie. | 
|---|
| 9266 | */ | 
|---|
| 9267 | if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) | 
|---|
| 9268 | return 1; | 
|---|
| 9269 |  | 
|---|
| 9270 | if (sysctl_sched_migration_cost == 0) | 
|---|
| 9271 | return 0; | 
|---|
| 9272 |  | 
|---|
| 9273 | delta = rq_clock_task(rq: env->src_rq) - p->se.exec_start; | 
|---|
| 9274 |  | 
|---|
| 9275 | return delta < (s64)sysctl_sched_migration_cost; | 
|---|
| 9276 | } | 
|---|
| 9277 |  | 
|---|
| 9278 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 9279 | /* | 
|---|
| 9280 | * Returns a positive value, if task migration degrades locality. | 
|---|
| 9281 | * Returns 0, if task migration is not affected by locality. | 
|---|
| 9282 | * Returns a negative value, if task migration improves locality i.e migration preferred. | 
|---|
| 9283 | */ | 
|---|
| 9284 | static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) | 
|---|
| 9285 | { | 
|---|
| 9286 | struct numa_group *numa_group = rcu_dereference(p->numa_group); | 
|---|
| 9287 | unsigned long src_weight, dst_weight; | 
|---|
| 9288 | int src_nid, dst_nid, dist; | 
|---|
| 9289 |  | 
|---|
| 9290 | if (!static_branch_likely(&sched_numa_balancing)) | 
|---|
| 9291 | return 0; | 
|---|
| 9292 |  | 
|---|
| 9293 | if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) | 
|---|
| 9294 | return 0; | 
|---|
| 9295 |  | 
|---|
| 9296 | src_nid = cpu_to_node(env->src_cpu); | 
|---|
| 9297 | dst_nid = cpu_to_node(env->dst_cpu); | 
|---|
| 9298 |  | 
|---|
| 9299 | if (src_nid == dst_nid) | 
|---|
| 9300 | return 0; | 
|---|
| 9301 |  | 
|---|
| 9302 | /* Migrating away from the preferred node is always bad. */ | 
|---|
| 9303 | if (src_nid == p->numa_preferred_nid) { | 
|---|
| 9304 | if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) | 
|---|
| 9305 | return 1; | 
|---|
| 9306 | else | 
|---|
| 9307 | return 0; | 
|---|
| 9308 | } | 
|---|
| 9309 |  | 
|---|
| 9310 | /* Encourage migration to the preferred node. */ | 
|---|
| 9311 | if (dst_nid == p->numa_preferred_nid) | 
|---|
| 9312 | return -1; | 
|---|
| 9313 |  | 
|---|
| 9314 | /* Leaving a core idle is often worse than degrading locality. */ | 
|---|
| 9315 | if (env->idle == CPU_IDLE) | 
|---|
| 9316 | return 0; | 
|---|
| 9317 |  | 
|---|
| 9318 | dist = node_distance(src_nid, dst_nid); | 
|---|
| 9319 | if (numa_group) { | 
|---|
| 9320 | src_weight = group_weight(p, src_nid, dist); | 
|---|
| 9321 | dst_weight = group_weight(p, dst_nid, dist); | 
|---|
| 9322 | } else { | 
|---|
| 9323 | src_weight = task_weight(p, src_nid, dist); | 
|---|
| 9324 | dst_weight = task_weight(p, dst_nid, dist); | 
|---|
| 9325 | } | 
|---|
| 9326 |  | 
|---|
| 9327 | return src_weight - dst_weight; | 
|---|
| 9328 | } | 
|---|
| 9329 |  | 
|---|
| 9330 | #else /* !CONFIG_NUMA_BALANCING: */ | 
|---|
| 9331 | static inline long migrate_degrades_locality(struct task_struct *p, | 
|---|
| 9332 | struct lb_env *env) | 
|---|
| 9333 | { | 
|---|
| 9334 | return 0; | 
|---|
| 9335 | } | 
|---|
| 9336 | #endif /* !CONFIG_NUMA_BALANCING */ | 
|---|
| 9337 |  | 
|---|
| 9338 | /* | 
|---|
| 9339 | * Check whether the task is ineligible on the destination cpu | 
|---|
| 9340 | * | 
|---|
| 9341 | * When the PLACE_LAG scheduling feature is enabled and | 
|---|
| 9342 | * dst_cfs_rq->nr_queued is greater than 1, if the task | 
|---|
| 9343 | * is ineligible, it will also be ineligible when | 
|---|
| 9344 | * it is migrated to the destination cpu. | 
|---|
| 9345 | */ | 
|---|
| 9346 | static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) | 
|---|
| 9347 | { | 
|---|
| 9348 | struct cfs_rq *dst_cfs_rq; | 
|---|
| 9349 |  | 
|---|
| 9350 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 9351 | dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; | 
|---|
| 9352 | #else | 
|---|
| 9353 | dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; | 
|---|
| 9354 | #endif | 
|---|
| 9355 | if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && | 
|---|
| 9356 | !entity_eligible(cfs_rq: task_cfs_rq(p), se: &p->se)) | 
|---|
| 9357 | return 1; | 
|---|
| 9358 |  | 
|---|
| 9359 | return 0; | 
|---|
| 9360 | } | 
|---|
| 9361 |  | 
|---|
| 9362 | /* | 
|---|
| 9363 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
|---|
| 9364 | */ | 
|---|
| 9365 | static | 
|---|
| 9366 | int can_migrate_task(struct task_struct *p, struct lb_env *env) | 
|---|
| 9367 | { | 
|---|
| 9368 | long degrades, hot; | 
|---|
| 9369 |  | 
|---|
| 9370 | lockdep_assert_rq_held(rq: env->src_rq); | 
|---|
| 9371 | if (p->sched_task_hot) | 
|---|
| 9372 | p->sched_task_hot = 0; | 
|---|
| 9373 |  | 
|---|
| 9374 | /* | 
|---|
| 9375 | * We do not migrate tasks that are: | 
|---|
| 9376 | * 1) delayed dequeued unless we migrate load, or | 
|---|
| 9377 | * 2) target cfs_rq is in throttled hierarchy, or | 
|---|
| 9378 | * 3) cannot be migrated to this CPU due to cpus_ptr, or | 
|---|
| 9379 | * 4) running (obviously), or | 
|---|
| 9380 | * 5) are cache-hot on their current CPU, or | 
|---|
| 9381 | * 6) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled) | 
|---|
| 9382 | */ | 
|---|
| 9383 | if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) | 
|---|
| 9384 | return 0; | 
|---|
| 9385 |  | 
|---|
| 9386 | if (lb_throttled_hierarchy(p, dst_cpu: env->dst_cpu)) | 
|---|
| 9387 | return 0; | 
|---|
| 9388 |  | 
|---|
| 9389 | /* | 
|---|
| 9390 | * We want to prioritize the migration of eligible tasks. | 
|---|
| 9391 | * For ineligible tasks we soft-limit them and only allow | 
|---|
| 9392 | * them to migrate when nr_balance_failed is non-zero to | 
|---|
| 9393 | * avoid load-balancing trying very hard to balance the load. | 
|---|
| 9394 | */ | 
|---|
| 9395 | if (!env->sd->nr_balance_failed && | 
|---|
| 9396 | task_is_ineligible_on_dst_cpu(p, dest_cpu: env->dst_cpu)) | 
|---|
| 9397 | return 0; | 
|---|
| 9398 |  | 
|---|
| 9399 | /* Disregard percpu kthreads; they are where they need to be. */ | 
|---|
| 9400 | if (kthread_is_per_cpu(k: p)) | 
|---|
| 9401 | return 0; | 
|---|
| 9402 |  | 
|---|
| 9403 | if (task_is_blocked(p)) | 
|---|
| 9404 | return 0; | 
|---|
| 9405 |  | 
|---|
| 9406 | if (!cpumask_test_cpu(cpu: env->dst_cpu, cpumask: p->cpus_ptr)) { | 
|---|
| 9407 | int cpu; | 
|---|
| 9408 |  | 
|---|
| 9409 | schedstat_inc(p->stats.nr_failed_migrations_affine); | 
|---|
| 9410 |  | 
|---|
| 9411 | env->flags |= LBF_SOME_PINNED; | 
|---|
| 9412 |  | 
|---|
| 9413 | /* | 
|---|
| 9414 | * Remember if this task can be migrated to any other CPU in | 
|---|
| 9415 | * our sched_group. We may want to revisit it if we couldn't | 
|---|
| 9416 | * meet load balance goals by pulling other tasks on src_cpu. | 
|---|
| 9417 | * | 
|---|
| 9418 | * Avoid computing new_dst_cpu | 
|---|
| 9419 | * - for NEWLY_IDLE | 
|---|
| 9420 | * - if we have already computed one in current iteration | 
|---|
| 9421 | * - if it's an active balance | 
|---|
| 9422 | */ | 
|---|
| 9423 | if (env->idle == CPU_NEWLY_IDLE || | 
|---|
| 9424 | env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) | 
|---|
| 9425 | return 0; | 
|---|
| 9426 |  | 
|---|
| 9427 | /* Prevent to re-select dst_cpu via env's CPUs: */ | 
|---|
| 9428 | cpu = cpumask_first_and_and(srcp1: env->dst_grpmask, srcp2: env->cpus, srcp3: p->cpus_ptr); | 
|---|
| 9429 |  | 
|---|
| 9430 | if (cpu < nr_cpu_ids) { | 
|---|
| 9431 | env->flags |= LBF_DST_PINNED; | 
|---|
| 9432 | env->new_dst_cpu = cpu; | 
|---|
| 9433 | } | 
|---|
| 9434 |  | 
|---|
| 9435 | return 0; | 
|---|
| 9436 | } | 
|---|
| 9437 |  | 
|---|
| 9438 | /* Record that we found at least one task that could run on dst_cpu */ | 
|---|
| 9439 | env->flags &= ~LBF_ALL_PINNED; | 
|---|
| 9440 |  | 
|---|
| 9441 | if (task_on_cpu(rq: env->src_rq, p) || | 
|---|
| 9442 | task_current_donor(rq: env->src_rq, p)) { | 
|---|
| 9443 | schedstat_inc(p->stats.nr_failed_migrations_running); | 
|---|
| 9444 | return 0; | 
|---|
| 9445 | } | 
|---|
| 9446 |  | 
|---|
| 9447 | /* | 
|---|
| 9448 | * Aggressive migration if: | 
|---|
| 9449 | * 1) active balance | 
|---|
| 9450 | * 2) destination numa is preferred | 
|---|
| 9451 | * 3) task is cache cold, or | 
|---|
| 9452 | * 4) too many balance attempts have failed. | 
|---|
| 9453 | */ | 
|---|
| 9454 | if (env->flags & LBF_ACTIVE_LB) | 
|---|
| 9455 | return 1; | 
|---|
| 9456 |  | 
|---|
| 9457 | degrades = migrate_degrades_locality(p, env); | 
|---|
| 9458 | if (!degrades) | 
|---|
| 9459 | hot = task_hot(p, env); | 
|---|
| 9460 | else | 
|---|
| 9461 | hot = degrades > 0; | 
|---|
| 9462 |  | 
|---|
| 9463 | if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { | 
|---|
| 9464 | if (hot) | 
|---|
| 9465 | p->sched_task_hot = 1; | 
|---|
| 9466 | return 1; | 
|---|
| 9467 | } | 
|---|
| 9468 |  | 
|---|
| 9469 | schedstat_inc(p->stats.nr_failed_migrations_hot); | 
|---|
| 9470 | return 0; | 
|---|
| 9471 | } | 
|---|
| 9472 |  | 
|---|
| 9473 | /* | 
|---|
| 9474 | * detach_task() -- detach the task for the migration specified in env | 
|---|
| 9475 | */ | 
|---|
| 9476 | static void detach_task(struct task_struct *p, struct lb_env *env) | 
|---|
| 9477 | { | 
|---|
| 9478 | lockdep_assert_rq_held(rq: env->src_rq); | 
|---|
| 9479 |  | 
|---|
| 9480 | if (p->sched_task_hot) { | 
|---|
| 9481 | p->sched_task_hot = 0; | 
|---|
| 9482 | schedstat_inc(env->sd->lb_hot_gained[env->idle]); | 
|---|
| 9483 | schedstat_inc(p->stats.nr_forced_migrations); | 
|---|
| 9484 | } | 
|---|
| 9485 |  | 
|---|
| 9486 | WARN_ON(task_current(env->src_rq, p)); | 
|---|
| 9487 | WARN_ON(task_current_donor(env->src_rq, p)); | 
|---|
| 9488 |  | 
|---|
| 9489 | deactivate_task(rq: env->src_rq, p, DEQUEUE_NOCLOCK); | 
|---|
| 9490 | set_task_cpu(p, cpu: env->dst_cpu); | 
|---|
| 9491 | } | 
|---|
| 9492 |  | 
|---|
| 9493 | /* | 
|---|
| 9494 | * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as | 
|---|
| 9495 | * part of active balancing operations within "domain". | 
|---|
| 9496 | * | 
|---|
| 9497 | * Returns a task if successful and NULL otherwise. | 
|---|
| 9498 | */ | 
|---|
| 9499 | static struct task_struct *detach_one_task(struct lb_env *env) | 
|---|
| 9500 | { | 
|---|
| 9501 | struct task_struct *p; | 
|---|
| 9502 |  | 
|---|
| 9503 | lockdep_assert_rq_held(rq: env->src_rq); | 
|---|
| 9504 |  | 
|---|
| 9505 | list_for_each_entry_reverse(p, | 
|---|
| 9506 | &env->src_rq->cfs_tasks, se.group_node) { | 
|---|
| 9507 | if (!can_migrate_task(p, env)) | 
|---|
| 9508 | continue; | 
|---|
| 9509 |  | 
|---|
| 9510 | detach_task(p, env); | 
|---|
| 9511 |  | 
|---|
| 9512 | /* | 
|---|
| 9513 | * Right now, this is only the second place where | 
|---|
| 9514 | * lb_gained[env->idle] is updated (other is detach_tasks) | 
|---|
| 9515 | * so we can safely collect stats here rather than | 
|---|
| 9516 | * inside detach_tasks(). | 
|---|
| 9517 | */ | 
|---|
| 9518 | schedstat_inc(env->sd->lb_gained[env->idle]); | 
|---|
| 9519 | return p; | 
|---|
| 9520 | } | 
|---|
| 9521 | return NULL; | 
|---|
| 9522 | } | 
|---|
| 9523 |  | 
|---|
| 9524 | /* | 
|---|
| 9525 | * detach_tasks() -- tries to detach up to imbalance load/util/tasks from | 
|---|
| 9526 | * busiest_rq, as part of a balancing operation within domain "sd". | 
|---|
| 9527 | * | 
|---|
| 9528 | * Returns number of detached tasks if successful and 0 otherwise. | 
|---|
| 9529 | */ | 
|---|
| 9530 | static int detach_tasks(struct lb_env *env) | 
|---|
| 9531 | { | 
|---|
| 9532 | struct list_head *tasks = &env->src_rq->cfs_tasks; | 
|---|
| 9533 | unsigned long util, load; | 
|---|
| 9534 | struct task_struct *p; | 
|---|
| 9535 | int detached = 0; | 
|---|
| 9536 |  | 
|---|
| 9537 | lockdep_assert_rq_held(rq: env->src_rq); | 
|---|
| 9538 |  | 
|---|
| 9539 | /* | 
|---|
| 9540 | * Source run queue has been emptied by another CPU, clear | 
|---|
| 9541 | * LBF_ALL_PINNED flag as we will not test any task. | 
|---|
| 9542 | */ | 
|---|
| 9543 | if (env->src_rq->nr_running <= 1) { | 
|---|
| 9544 | env->flags &= ~LBF_ALL_PINNED; | 
|---|
| 9545 | return 0; | 
|---|
| 9546 | } | 
|---|
| 9547 |  | 
|---|
| 9548 | if (env->imbalance <= 0) | 
|---|
| 9549 | return 0; | 
|---|
| 9550 |  | 
|---|
| 9551 | while (!list_empty(head: tasks)) { | 
|---|
| 9552 | /* | 
|---|
| 9553 | * We don't want to steal all, otherwise we may be treated likewise, | 
|---|
| 9554 | * which could at worst lead to a livelock crash. | 
|---|
| 9555 | */ | 
|---|
| 9556 | if (env->idle && env->src_rq->nr_running <= 1) | 
|---|
| 9557 | break; | 
|---|
| 9558 |  | 
|---|
| 9559 | env->loop++; | 
|---|
| 9560 | /* We've more or less seen every task there is, call it quits */ | 
|---|
| 9561 | if (env->loop > env->loop_max) | 
|---|
| 9562 | break; | 
|---|
| 9563 |  | 
|---|
| 9564 | /* take a breather every nr_migrate tasks */ | 
|---|
| 9565 | if (env->loop > env->loop_break) { | 
|---|
| 9566 | env->loop_break += SCHED_NR_MIGRATE_BREAK; | 
|---|
| 9567 | env->flags |= LBF_NEED_BREAK; | 
|---|
| 9568 | break; | 
|---|
| 9569 | } | 
|---|
| 9570 |  | 
|---|
| 9571 | p = list_last_entry(tasks, struct task_struct, se.group_node); | 
|---|
| 9572 |  | 
|---|
| 9573 | if (!can_migrate_task(p, env)) | 
|---|
| 9574 | goto next; | 
|---|
| 9575 |  | 
|---|
| 9576 | switch (env->migration_type) { | 
|---|
| 9577 | case migrate_load: | 
|---|
| 9578 | /* | 
|---|
| 9579 | * Depending of the number of CPUs and tasks and the | 
|---|
| 9580 | * cgroup hierarchy, task_h_load() can return a null | 
|---|
| 9581 | * value. Make sure that env->imbalance decreases | 
|---|
| 9582 | * otherwise detach_tasks() will stop only after | 
|---|
| 9583 | * detaching up to loop_max tasks. | 
|---|
| 9584 | */ | 
|---|
| 9585 | load = max_t(unsigned long, task_h_load(p), 1); | 
|---|
| 9586 |  | 
|---|
| 9587 | if (sched_feat(LB_MIN) && | 
|---|
| 9588 | load < 16 && !env->sd->nr_balance_failed) | 
|---|
| 9589 | goto next; | 
|---|
| 9590 |  | 
|---|
| 9591 | /* | 
|---|
| 9592 | * Make sure that we don't migrate too much load. | 
|---|
| 9593 | * Nevertheless, let relax the constraint if | 
|---|
| 9594 | * scheduler fails to find a good waiting task to | 
|---|
| 9595 | * migrate. | 
|---|
| 9596 | */ | 
|---|
| 9597 | if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) | 
|---|
| 9598 | goto next; | 
|---|
| 9599 |  | 
|---|
| 9600 | env->imbalance -= load; | 
|---|
| 9601 | break; | 
|---|
| 9602 |  | 
|---|
| 9603 | case migrate_util: | 
|---|
| 9604 | util = task_util_est(p); | 
|---|
| 9605 |  | 
|---|
| 9606 | if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) | 
|---|
| 9607 | goto next; | 
|---|
| 9608 |  | 
|---|
| 9609 | env->imbalance -= util; | 
|---|
| 9610 | break; | 
|---|
| 9611 |  | 
|---|
| 9612 | case migrate_task: | 
|---|
| 9613 | env->imbalance--; | 
|---|
| 9614 | break; | 
|---|
| 9615 |  | 
|---|
| 9616 | case migrate_misfit: | 
|---|
| 9617 | /* This is not a misfit task */ | 
|---|
| 9618 | if (task_fits_cpu(p, cpu: env->src_cpu)) | 
|---|
| 9619 | goto next; | 
|---|
| 9620 |  | 
|---|
| 9621 | env->imbalance = 0; | 
|---|
| 9622 | break; | 
|---|
| 9623 | } | 
|---|
| 9624 |  | 
|---|
| 9625 | detach_task(p, env); | 
|---|
| 9626 | list_add(new: &p->se.group_node, head: &env->tasks); | 
|---|
| 9627 |  | 
|---|
| 9628 | detached++; | 
|---|
| 9629 |  | 
|---|
| 9630 | #ifdef CONFIG_PREEMPTION | 
|---|
| 9631 | /* | 
|---|
| 9632 | * NEWIDLE balancing is a source of latency, so preemptible | 
|---|
| 9633 | * kernels will stop after the first task is detached to minimize | 
|---|
| 9634 | * the critical section. | 
|---|
| 9635 | */ | 
|---|
| 9636 | if (env->idle == CPU_NEWLY_IDLE) | 
|---|
| 9637 | break; | 
|---|
| 9638 | #endif | 
|---|
| 9639 |  | 
|---|
| 9640 | /* | 
|---|
| 9641 | * We only want to steal up to the prescribed amount of | 
|---|
| 9642 | * load/util/tasks. | 
|---|
| 9643 | */ | 
|---|
| 9644 | if (env->imbalance <= 0) | 
|---|
| 9645 | break; | 
|---|
| 9646 |  | 
|---|
| 9647 | continue; | 
|---|
| 9648 | next: | 
|---|
| 9649 | if (p->sched_task_hot) | 
|---|
| 9650 | schedstat_inc(p->stats.nr_failed_migrations_hot); | 
|---|
| 9651 |  | 
|---|
| 9652 | list_move(list: &p->se.group_node, head: tasks); | 
|---|
| 9653 | } | 
|---|
| 9654 |  | 
|---|
| 9655 | /* | 
|---|
| 9656 | * Right now, this is one of only two places we collect this stat | 
|---|
| 9657 | * so we can safely collect detach_one_task() stats here rather | 
|---|
| 9658 | * than inside detach_one_task(). | 
|---|
| 9659 | */ | 
|---|
| 9660 | schedstat_add(env->sd->lb_gained[env->idle], detached); | 
|---|
| 9661 |  | 
|---|
| 9662 | return detached; | 
|---|
| 9663 | } | 
|---|
| 9664 |  | 
|---|
| 9665 | /* | 
|---|
| 9666 | * attach_task() -- attach the task detached by detach_task() to its new rq. | 
|---|
| 9667 | */ | 
|---|
| 9668 | static void attach_task(struct rq *rq, struct task_struct *p) | 
|---|
| 9669 | { | 
|---|
| 9670 | lockdep_assert_rq_held(rq); | 
|---|
| 9671 |  | 
|---|
| 9672 | WARN_ON_ONCE(task_rq(p) != rq); | 
|---|
| 9673 | activate_task(rq, p, ENQUEUE_NOCLOCK); | 
|---|
| 9674 | wakeup_preempt(rq, p, flags: 0); | 
|---|
| 9675 | } | 
|---|
| 9676 |  | 
|---|
| 9677 | /* | 
|---|
| 9678 | * attach_one_task() -- attaches the task returned from detach_one_task() to | 
|---|
| 9679 | * its new rq. | 
|---|
| 9680 | */ | 
|---|
| 9681 | static void attach_one_task(struct rq *rq, struct task_struct *p) | 
|---|
| 9682 | { | 
|---|
| 9683 | struct rq_flags rf; | 
|---|
| 9684 |  | 
|---|
| 9685 | rq_lock(rq, rf: &rf); | 
|---|
| 9686 | update_rq_clock(rq); | 
|---|
| 9687 | attach_task(rq, p); | 
|---|
| 9688 | rq_unlock(rq, rf: &rf); | 
|---|
| 9689 | } | 
|---|
| 9690 |  | 
|---|
| 9691 | /* | 
|---|
| 9692 | * attach_tasks() -- attaches all tasks detached by detach_tasks() to their | 
|---|
| 9693 | * new rq. | 
|---|
| 9694 | */ | 
|---|
| 9695 | static void attach_tasks(struct lb_env *env) | 
|---|
| 9696 | { | 
|---|
| 9697 | struct list_head *tasks = &env->tasks; | 
|---|
| 9698 | struct task_struct *p; | 
|---|
| 9699 | struct rq_flags rf; | 
|---|
| 9700 |  | 
|---|
| 9701 | rq_lock(rq: env->dst_rq, rf: &rf); | 
|---|
| 9702 | update_rq_clock(rq: env->dst_rq); | 
|---|
| 9703 |  | 
|---|
| 9704 | while (!list_empty(head: tasks)) { | 
|---|
| 9705 | p = list_first_entry(tasks, struct task_struct, se.group_node); | 
|---|
| 9706 | list_del_init(entry: &p->se.group_node); | 
|---|
| 9707 |  | 
|---|
| 9708 | attach_task(rq: env->dst_rq, p); | 
|---|
| 9709 | } | 
|---|
| 9710 |  | 
|---|
| 9711 | rq_unlock(rq: env->dst_rq, rf: &rf); | 
|---|
| 9712 | } | 
|---|
| 9713 |  | 
|---|
| 9714 | #ifdef CONFIG_NO_HZ_COMMON | 
|---|
| 9715 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) | 
|---|
| 9716 | { | 
|---|
| 9717 | if (cfs_rq->avg.load_avg) | 
|---|
| 9718 | return true; | 
|---|
| 9719 |  | 
|---|
| 9720 | if (cfs_rq->avg.util_avg) | 
|---|
| 9721 | return true; | 
|---|
| 9722 |  | 
|---|
| 9723 | return false; | 
|---|
| 9724 | } | 
|---|
| 9725 |  | 
|---|
| 9726 | static inline bool others_have_blocked(struct rq *rq) | 
|---|
| 9727 | { | 
|---|
| 9728 | if (cpu_util_rt(rq)) | 
|---|
| 9729 | return true; | 
|---|
| 9730 |  | 
|---|
| 9731 | if (cpu_util_dl(rq)) | 
|---|
| 9732 | return true; | 
|---|
| 9733 |  | 
|---|
| 9734 | if (hw_load_avg(rq)) | 
|---|
| 9735 | return true; | 
|---|
| 9736 |  | 
|---|
| 9737 | if (cpu_util_irq(rq)) | 
|---|
| 9738 | return true; | 
|---|
| 9739 |  | 
|---|
| 9740 | return false; | 
|---|
| 9741 | } | 
|---|
| 9742 |  | 
|---|
| 9743 | static inline void update_blocked_load_tick(struct rq *rq) | 
|---|
| 9744 | { | 
|---|
| 9745 | WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); | 
|---|
| 9746 | } | 
|---|
| 9747 |  | 
|---|
| 9748 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) | 
|---|
| 9749 | { | 
|---|
| 9750 | if (!has_blocked) | 
|---|
| 9751 | rq->has_blocked_load = 0; | 
|---|
| 9752 | } | 
|---|
| 9753 | #else /* !CONFIG_NO_HZ_COMMON: */ | 
|---|
| 9754 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } | 
|---|
| 9755 | static inline bool others_have_blocked(struct rq *rq) { return false; } | 
|---|
| 9756 | static inline void update_blocked_load_tick(struct rq *rq) {} | 
|---|
| 9757 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} | 
|---|
| 9758 | #endif /* !CONFIG_NO_HZ_COMMON */ | 
|---|
| 9759 |  | 
|---|
| 9760 | static bool __update_blocked_others(struct rq *rq, bool *done) | 
|---|
| 9761 | { | 
|---|
| 9762 | bool updated; | 
|---|
| 9763 |  | 
|---|
| 9764 | /* | 
|---|
| 9765 | * update_load_avg() can call cpufreq_update_util(). Make sure that RT, | 
|---|
| 9766 | * DL and IRQ signals have been updated before updating CFS. | 
|---|
| 9767 | */ | 
|---|
| 9768 | updated = update_other_load_avgs(rq); | 
|---|
| 9769 |  | 
|---|
| 9770 | if (others_have_blocked(rq)) | 
|---|
| 9771 | *done = false; | 
|---|
| 9772 |  | 
|---|
| 9773 | return updated; | 
|---|
| 9774 | } | 
|---|
| 9775 |  | 
|---|
| 9776 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 9777 |  | 
|---|
| 9778 | static bool __update_blocked_fair(struct rq *rq, bool *done) | 
|---|
| 9779 | { | 
|---|
| 9780 | struct cfs_rq *cfs_rq, *pos; | 
|---|
| 9781 | bool decayed = false; | 
|---|
| 9782 | int cpu = cpu_of(rq); | 
|---|
| 9783 |  | 
|---|
| 9784 | /* | 
|---|
| 9785 | * Iterates the task_group tree in a bottom up fashion, see | 
|---|
| 9786 | * list_add_leaf_cfs_rq() for details. | 
|---|
| 9787 | */ | 
|---|
| 9788 | for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { | 
|---|
| 9789 | struct sched_entity *se; | 
|---|
| 9790 |  | 
|---|
| 9791 | if (update_cfs_rq_load_avg(now: cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { | 
|---|
| 9792 | update_tg_load_avg(cfs_rq); | 
|---|
| 9793 |  | 
|---|
| 9794 | if (cfs_rq->nr_queued == 0) | 
|---|
| 9795 | update_idle_cfs_rq_clock_pelt(cfs_rq); | 
|---|
| 9796 |  | 
|---|
| 9797 | if (cfs_rq == &rq->cfs) | 
|---|
| 9798 | decayed = true; | 
|---|
| 9799 | } | 
|---|
| 9800 |  | 
|---|
| 9801 | /* Propagate pending load changes to the parent, if any: */ | 
|---|
| 9802 | se = cfs_rq->tg->se[cpu]; | 
|---|
| 9803 | if (se && !skip_blocked_update(se)) | 
|---|
| 9804 | update_load_avg(cfs_rq: cfs_rq_of(se), se, UPDATE_TG); | 
|---|
| 9805 |  | 
|---|
| 9806 | /* | 
|---|
| 9807 | * There can be a lot of idle CPU cgroups.  Don't let fully | 
|---|
| 9808 | * decayed cfs_rqs linger on the list. | 
|---|
| 9809 | */ | 
|---|
| 9810 | if (cfs_rq_is_decayed(cfs_rq)) | 
|---|
| 9811 | list_del_leaf_cfs_rq(cfs_rq); | 
|---|
| 9812 |  | 
|---|
| 9813 | /* Don't need periodic decay once load/util_avg are null */ | 
|---|
| 9814 | if (cfs_rq_has_blocked(cfs_rq)) | 
|---|
| 9815 | *done = false; | 
|---|
| 9816 | } | 
|---|
| 9817 |  | 
|---|
| 9818 | return decayed; | 
|---|
| 9819 | } | 
|---|
| 9820 |  | 
|---|
| 9821 | /* | 
|---|
| 9822 | * Compute the hierarchical load factor for cfs_rq and all its ascendants. | 
|---|
| 9823 | * This needs to be done in a top-down fashion because the load of a child | 
|---|
| 9824 | * group is a fraction of its parents load. | 
|---|
| 9825 | */ | 
|---|
| 9826 | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) | 
|---|
| 9827 | { | 
|---|
| 9828 | struct rq *rq = rq_of(cfs_rq); | 
|---|
| 9829 | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | 
|---|
| 9830 | unsigned long now = jiffies; | 
|---|
| 9831 | unsigned long load; | 
|---|
| 9832 |  | 
|---|
| 9833 | if (cfs_rq->last_h_load_update == now) | 
|---|
| 9834 | return; | 
|---|
| 9835 |  | 
|---|
| 9836 | WRITE_ONCE(cfs_rq->h_load_next, NULL); | 
|---|
| 9837 | for_each_sched_entity(se) { | 
|---|
| 9838 | cfs_rq = cfs_rq_of(se); | 
|---|
| 9839 | WRITE_ONCE(cfs_rq->h_load_next, se); | 
|---|
| 9840 | if (cfs_rq->last_h_load_update == now) | 
|---|
| 9841 | break; | 
|---|
| 9842 | } | 
|---|
| 9843 |  | 
|---|
| 9844 | if (!se) { | 
|---|
| 9845 | cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); | 
|---|
| 9846 | cfs_rq->last_h_load_update = now; | 
|---|
| 9847 | } | 
|---|
| 9848 |  | 
|---|
| 9849 | while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { | 
|---|
| 9850 | load = cfs_rq->h_load; | 
|---|
| 9851 | load = div64_ul(load * se->avg.load_avg, | 
|---|
| 9852 | cfs_rq_load_avg(cfs_rq) + 1); | 
|---|
| 9853 | cfs_rq = group_cfs_rq(grp: se); | 
|---|
| 9854 | cfs_rq->h_load = load; | 
|---|
| 9855 | cfs_rq->last_h_load_update = now; | 
|---|
| 9856 | } | 
|---|
| 9857 | } | 
|---|
| 9858 |  | 
|---|
| 9859 | static unsigned long task_h_load(struct task_struct *p) | 
|---|
| 9860 | { | 
|---|
| 9861 | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
|---|
| 9862 |  | 
|---|
| 9863 | update_cfs_rq_h_load(cfs_rq); | 
|---|
| 9864 | return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, | 
|---|
| 9865 | cfs_rq_load_avg(cfs_rq) + 1); | 
|---|
| 9866 | } | 
|---|
| 9867 | #else /* !CONFIG_FAIR_GROUP_SCHED: */ | 
|---|
| 9868 | static bool __update_blocked_fair(struct rq *rq, bool *done) | 
|---|
| 9869 | { | 
|---|
| 9870 | struct cfs_rq *cfs_rq = &rq->cfs; | 
|---|
| 9871 | bool decayed; | 
|---|
| 9872 |  | 
|---|
| 9873 | decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); | 
|---|
| 9874 | if (cfs_rq_has_blocked(cfs_rq)) | 
|---|
| 9875 | *done = false; | 
|---|
| 9876 |  | 
|---|
| 9877 | return decayed; | 
|---|
| 9878 | } | 
|---|
| 9879 |  | 
|---|
| 9880 | static unsigned long task_h_load(struct task_struct *p) | 
|---|
| 9881 | { | 
|---|
| 9882 | return p->se.avg.load_avg; | 
|---|
| 9883 | } | 
|---|
| 9884 | #endif /* !CONFIG_FAIR_GROUP_SCHED */ | 
|---|
| 9885 |  | 
|---|
| 9886 | static void sched_balance_update_blocked_averages(int cpu) | 
|---|
| 9887 | { | 
|---|
| 9888 | bool decayed = false, done = true; | 
|---|
| 9889 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 9890 | struct rq_flags rf; | 
|---|
| 9891 |  | 
|---|
| 9892 | rq_lock_irqsave(rq, rf: &rf); | 
|---|
| 9893 | update_blocked_load_tick(rq); | 
|---|
| 9894 | update_rq_clock(rq); | 
|---|
| 9895 |  | 
|---|
| 9896 | decayed |= __update_blocked_others(rq, done: &done); | 
|---|
| 9897 | decayed |= __update_blocked_fair(rq, done: &done); | 
|---|
| 9898 |  | 
|---|
| 9899 | update_blocked_load_status(rq, has_blocked: !done); | 
|---|
| 9900 | if (decayed) | 
|---|
| 9901 | cpufreq_update_util(rq, flags: 0); | 
|---|
| 9902 | rq_unlock_irqrestore(rq, rf: &rf); | 
|---|
| 9903 | } | 
|---|
| 9904 |  | 
|---|
| 9905 | /********** Helpers for sched_balance_find_src_group ************************/ | 
|---|
| 9906 |  | 
|---|
| 9907 | /* | 
|---|
| 9908 | * sg_lb_stats - stats of a sched_group required for load-balancing: | 
|---|
| 9909 | */ | 
|---|
| 9910 | struct sg_lb_stats { | 
|---|
| 9911 | unsigned long avg_load;			/* Avg load            over the CPUs of the group */ | 
|---|
| 9912 | unsigned long group_load;		/* Total load          over the CPUs of the group */ | 
|---|
| 9913 | unsigned long group_capacity;		/* Capacity            over the CPUs of the group */ | 
|---|
| 9914 | unsigned long group_util;		/* Total utilization   over the CPUs of the group */ | 
|---|
| 9915 | unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */ | 
|---|
| 9916 | unsigned int sum_nr_running;		/* Nr of all tasks running in the group */ | 
|---|
| 9917 | unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */ | 
|---|
| 9918 | unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */ | 
|---|
| 9919 | unsigned int group_weight; | 
|---|
| 9920 | enum group_type group_type; | 
|---|
| 9921 | unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */ | 
|---|
| 9922 | unsigned int group_smt_balance;		/* Task on busy SMT be moved */ | 
|---|
| 9923 | unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */ | 
|---|
| 9924 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 9925 | unsigned int nr_numa_running; | 
|---|
| 9926 | unsigned int nr_preferred_running; | 
|---|
| 9927 | #endif | 
|---|
| 9928 | }; | 
|---|
| 9929 |  | 
|---|
| 9930 | /* | 
|---|
| 9931 | * sd_lb_stats - stats of a sched_domain required for load-balancing: | 
|---|
| 9932 | */ | 
|---|
| 9933 | struct sd_lb_stats { | 
|---|
| 9934 | struct sched_group *busiest;		/* Busiest group in this sd */ | 
|---|
| 9935 | struct sched_group *local;		/* Local group in this sd */ | 
|---|
| 9936 | unsigned long total_load;		/* Total load of all groups in sd */ | 
|---|
| 9937 | unsigned long total_capacity;		/* Total capacity of all groups in sd */ | 
|---|
| 9938 | unsigned long avg_load;			/* Average load across all groups in sd */ | 
|---|
| 9939 | unsigned int prefer_sibling;		/* Tasks should go to sibling first */ | 
|---|
| 9940 |  | 
|---|
| 9941 | struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */ | 
|---|
| 9942 | struct sg_lb_stats local_stat;		/* Statistics of the local group */ | 
|---|
| 9943 | }; | 
|---|
| 9944 |  | 
|---|
| 9945 | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) | 
|---|
| 9946 | { | 
|---|
| 9947 | /* | 
|---|
| 9948 | * Skimp on the clearing to avoid duplicate work. We can avoid clearing | 
|---|
| 9949 | * local_stat because update_sg_lb_stats() does a full clear/assignment. | 
|---|
| 9950 | * We must however set busiest_stat::group_type and | 
|---|
| 9951 | * busiest_stat::idle_cpus to the worst busiest group because | 
|---|
| 9952 | * update_sd_pick_busiest() reads these before assignment. | 
|---|
| 9953 | */ | 
|---|
| 9954 | *sds = (struct sd_lb_stats){ | 
|---|
| 9955 | .busiest = NULL, | 
|---|
| 9956 | .local = NULL, | 
|---|
| 9957 | .total_load = 0UL, | 
|---|
| 9958 | .total_capacity = 0UL, | 
|---|
| 9959 | .busiest_stat = { | 
|---|
| 9960 | .idle_cpus = UINT_MAX, | 
|---|
| 9961 | .group_type = group_has_spare, | 
|---|
| 9962 | }, | 
|---|
| 9963 | }; | 
|---|
| 9964 | } | 
|---|
| 9965 |  | 
|---|
| 9966 | static unsigned long scale_rt_capacity(int cpu) | 
|---|
| 9967 | { | 
|---|
| 9968 | unsigned long max = get_actual_cpu_capacity(cpu); | 
|---|
| 9969 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 9970 | unsigned long used, free; | 
|---|
| 9971 | unsigned long irq; | 
|---|
| 9972 |  | 
|---|
| 9973 | irq = cpu_util_irq(rq); | 
|---|
| 9974 |  | 
|---|
| 9975 | if (unlikely(irq >= max)) | 
|---|
| 9976 | return 1; | 
|---|
| 9977 |  | 
|---|
| 9978 | /* | 
|---|
| 9979 | * avg_rt.util_avg and avg_dl.util_avg track binary signals | 
|---|
| 9980 | * (running and not running) with weights 0 and 1024 respectively. | 
|---|
| 9981 | */ | 
|---|
| 9982 | used = cpu_util_rt(rq); | 
|---|
| 9983 | used += cpu_util_dl(rq); | 
|---|
| 9984 |  | 
|---|
| 9985 | if (unlikely(used >= max)) | 
|---|
| 9986 | return 1; | 
|---|
| 9987 |  | 
|---|
| 9988 | free = max - used; | 
|---|
| 9989 |  | 
|---|
| 9990 | return scale_irq_capacity(util: free, irq, max); | 
|---|
| 9991 | } | 
|---|
| 9992 |  | 
|---|
| 9993 | static void update_cpu_capacity(struct sched_domain *sd, int cpu) | 
|---|
| 9994 | { | 
|---|
| 9995 | unsigned long capacity = scale_rt_capacity(cpu); | 
|---|
| 9996 | struct sched_group *sdg = sd->groups; | 
|---|
| 9997 |  | 
|---|
| 9998 | if (!capacity) | 
|---|
| 9999 | capacity = 1; | 
|---|
| 10000 |  | 
|---|
| 10001 | cpu_rq(cpu)->cpu_capacity = capacity; | 
|---|
| 10002 | trace_sched_cpu_capacity_tp(cpu_rq(cpu)); | 
|---|
| 10003 |  | 
|---|
| 10004 | sdg->sgc->capacity = capacity; | 
|---|
| 10005 | sdg->sgc->min_capacity = capacity; | 
|---|
| 10006 | sdg->sgc->max_capacity = capacity; | 
|---|
| 10007 | } | 
|---|
| 10008 |  | 
|---|
| 10009 | void update_group_capacity(struct sched_domain *sd, int cpu) | 
|---|
| 10010 | { | 
|---|
| 10011 | struct sched_domain *child = sd->child; | 
|---|
| 10012 | struct sched_group *group, *sdg = sd->groups; | 
|---|
| 10013 | unsigned long capacity, min_capacity, max_capacity; | 
|---|
| 10014 | unsigned long interval; | 
|---|
| 10015 |  | 
|---|
| 10016 | interval = msecs_to_jiffies(m: sd->balance_interval); | 
|---|
| 10017 | interval = clamp(interval, 1UL, max_load_balance_interval); | 
|---|
| 10018 | sdg->sgc->next_update = jiffies + interval; | 
|---|
| 10019 |  | 
|---|
| 10020 | if (!child) { | 
|---|
| 10021 | update_cpu_capacity(sd, cpu); | 
|---|
| 10022 | return; | 
|---|
| 10023 | } | 
|---|
| 10024 |  | 
|---|
| 10025 | capacity = 0; | 
|---|
| 10026 | min_capacity = ULONG_MAX; | 
|---|
| 10027 | max_capacity = 0; | 
|---|
| 10028 |  | 
|---|
| 10029 | if (child->flags & SD_NUMA) { | 
|---|
| 10030 | /* | 
|---|
| 10031 | * SD_NUMA domains cannot assume that child groups | 
|---|
| 10032 | * span the current group. | 
|---|
| 10033 | */ | 
|---|
| 10034 |  | 
|---|
| 10035 | for_each_cpu(cpu, sched_group_span(sdg)) { | 
|---|
| 10036 | unsigned long cpu_cap = capacity_of(cpu); | 
|---|
| 10037 |  | 
|---|
| 10038 | capacity += cpu_cap; | 
|---|
| 10039 | min_capacity = min(cpu_cap, min_capacity); | 
|---|
| 10040 | max_capacity = max(cpu_cap, max_capacity); | 
|---|
| 10041 | } | 
|---|
| 10042 | } else  { | 
|---|
| 10043 | /* | 
|---|
| 10044 | * !SD_NUMA domains can assume that child groups | 
|---|
| 10045 | * span the current group. | 
|---|
| 10046 | */ | 
|---|
| 10047 |  | 
|---|
| 10048 | group = child->groups; | 
|---|
| 10049 | do { | 
|---|
| 10050 | struct sched_group_capacity *sgc = group->sgc; | 
|---|
| 10051 |  | 
|---|
| 10052 | capacity += sgc->capacity; | 
|---|
| 10053 | min_capacity = min(sgc->min_capacity, min_capacity); | 
|---|
| 10054 | max_capacity = max(sgc->max_capacity, max_capacity); | 
|---|
| 10055 | group = group->next; | 
|---|
| 10056 | } while (group != child->groups); | 
|---|
| 10057 | } | 
|---|
| 10058 |  | 
|---|
| 10059 | sdg->sgc->capacity = capacity; | 
|---|
| 10060 | sdg->sgc->min_capacity = min_capacity; | 
|---|
| 10061 | sdg->sgc->max_capacity = max_capacity; | 
|---|
| 10062 | } | 
|---|
| 10063 |  | 
|---|
| 10064 | /* | 
|---|
| 10065 | * Check whether the capacity of the rq has been noticeably reduced by side | 
|---|
| 10066 | * activity. The imbalance_pct is used for the threshold. | 
|---|
| 10067 | * Return true is the capacity is reduced | 
|---|
| 10068 | */ | 
|---|
| 10069 | static inline int | 
|---|
| 10070 | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) | 
|---|
| 10071 | { | 
|---|
| 10072 | return ((rq->cpu_capacity * sd->imbalance_pct) < | 
|---|
| 10073 | (arch_scale_cpu_capacity(cpu: cpu_of(rq)) * 100)); | 
|---|
| 10074 | } | 
|---|
| 10075 |  | 
|---|
| 10076 | /* Check if the rq has a misfit task */ | 
|---|
| 10077 | static inline bool check_misfit_status(struct rq *rq) | 
|---|
| 10078 | { | 
|---|
| 10079 | return rq->misfit_task_load; | 
|---|
| 10080 | } | 
|---|
| 10081 |  | 
|---|
| 10082 | /* | 
|---|
| 10083 | * Group imbalance indicates (and tries to solve) the problem where balancing | 
|---|
| 10084 | * groups is inadequate due to ->cpus_ptr constraints. | 
|---|
| 10085 | * | 
|---|
| 10086 | * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a | 
|---|
| 10087 | * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. | 
|---|
| 10088 | * Something like: | 
|---|
| 10089 | * | 
|---|
| 10090 | *	{ 0 1 2 3 } { 4 5 6 7 } | 
|---|
| 10091 | *	        *     * * * | 
|---|
| 10092 | * | 
|---|
| 10093 | * If we were to balance group-wise we'd place two tasks in the first group and | 
|---|
| 10094 | * two tasks in the second group. Clearly this is undesired as it will overload | 
|---|
| 10095 | * cpu 3 and leave one of the CPUs in the second group unused. | 
|---|
| 10096 | * | 
|---|
| 10097 | * The current solution to this issue is detecting the skew in the first group | 
|---|
| 10098 | * by noticing the lower domain failed to reach balance and had difficulty | 
|---|
| 10099 | * moving tasks due to affinity constraints. | 
|---|
| 10100 | * | 
|---|
| 10101 | * When this is so detected; this group becomes a candidate for busiest; see | 
|---|
| 10102 | * update_sd_pick_busiest(). And calculate_imbalance() and | 
|---|
| 10103 | * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it | 
|---|
| 10104 | * to create an effective group imbalance. | 
|---|
| 10105 | * | 
|---|
| 10106 | * This is a somewhat tricky proposition since the next run might not find the | 
|---|
| 10107 | * group imbalance and decide the groups need to be balanced again. A most | 
|---|
| 10108 | * subtle and fragile situation. | 
|---|
| 10109 | */ | 
|---|
| 10110 |  | 
|---|
| 10111 | static inline int sg_imbalanced(struct sched_group *group) | 
|---|
| 10112 | { | 
|---|
| 10113 | return group->sgc->imbalance; | 
|---|
| 10114 | } | 
|---|
| 10115 |  | 
|---|
| 10116 | /* | 
|---|
| 10117 | * group_has_capacity returns true if the group has spare capacity that could | 
|---|
| 10118 | * be used by some tasks. | 
|---|
| 10119 | * We consider that a group has spare capacity if the number of task is | 
|---|
| 10120 | * smaller than the number of CPUs or if the utilization is lower than the | 
|---|
| 10121 | * available capacity for CFS tasks. | 
|---|
| 10122 | * For the latter, we use a threshold to stabilize the state, to take into | 
|---|
| 10123 | * account the variance of the tasks' load and to return true if the available | 
|---|
| 10124 | * capacity in meaningful for the load balancer. | 
|---|
| 10125 | * As an example, an available capacity of 1% can appear but it doesn't make | 
|---|
| 10126 | * any benefit for the load balance. | 
|---|
| 10127 | */ | 
|---|
| 10128 | static inline bool | 
|---|
| 10129 | group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) | 
|---|
| 10130 | { | 
|---|
| 10131 | if (sgs->sum_nr_running < sgs->group_weight) | 
|---|
| 10132 | return true; | 
|---|
| 10133 |  | 
|---|
| 10134 | if ((sgs->group_capacity * imbalance_pct) < | 
|---|
| 10135 | (sgs->group_runnable * 100)) | 
|---|
| 10136 | return false; | 
|---|
| 10137 |  | 
|---|
| 10138 | if ((sgs->group_capacity * 100) > | 
|---|
| 10139 | (sgs->group_util * imbalance_pct)) | 
|---|
| 10140 | return true; | 
|---|
| 10141 |  | 
|---|
| 10142 | return false; | 
|---|
| 10143 | } | 
|---|
| 10144 |  | 
|---|
| 10145 | /* | 
|---|
| 10146 | *  group_is_overloaded returns true if the group has more tasks than it can | 
|---|
| 10147 | *  handle. | 
|---|
| 10148 | *  group_is_overloaded is not equals to !group_has_capacity because a group | 
|---|
| 10149 | *  with the exact right number of tasks, has no more spare capacity but is not | 
|---|
| 10150 | *  overloaded so both group_has_capacity and group_is_overloaded return | 
|---|
| 10151 | *  false. | 
|---|
| 10152 | */ | 
|---|
| 10153 | static inline bool | 
|---|
| 10154 | group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) | 
|---|
| 10155 | { | 
|---|
| 10156 | if (sgs->sum_nr_running <= sgs->group_weight) | 
|---|
| 10157 | return false; | 
|---|
| 10158 |  | 
|---|
| 10159 | if ((sgs->group_capacity * 100) < | 
|---|
| 10160 | (sgs->group_util * imbalance_pct)) | 
|---|
| 10161 | return true; | 
|---|
| 10162 |  | 
|---|
| 10163 | if ((sgs->group_capacity * imbalance_pct) < | 
|---|
| 10164 | (sgs->group_runnable * 100)) | 
|---|
| 10165 | return true; | 
|---|
| 10166 |  | 
|---|
| 10167 | return false; | 
|---|
| 10168 | } | 
|---|
| 10169 |  | 
|---|
| 10170 | static inline enum | 
|---|
| 10171 | group_type group_classify(unsigned int imbalance_pct, | 
|---|
| 10172 | struct sched_group *group, | 
|---|
| 10173 | struct sg_lb_stats *sgs) | 
|---|
| 10174 | { | 
|---|
| 10175 | if (group_is_overloaded(imbalance_pct, sgs)) | 
|---|
| 10176 | return group_overloaded; | 
|---|
| 10177 |  | 
|---|
| 10178 | if (sg_imbalanced(group)) | 
|---|
| 10179 | return group_imbalanced; | 
|---|
| 10180 |  | 
|---|
| 10181 | if (sgs->group_asym_packing) | 
|---|
| 10182 | return group_asym_packing; | 
|---|
| 10183 |  | 
|---|
| 10184 | if (sgs->group_smt_balance) | 
|---|
| 10185 | return group_smt_balance; | 
|---|
| 10186 |  | 
|---|
| 10187 | if (sgs->group_misfit_task_load) | 
|---|
| 10188 | return group_misfit_task; | 
|---|
| 10189 |  | 
|---|
| 10190 | if (!group_has_capacity(imbalance_pct, sgs)) | 
|---|
| 10191 | return group_fully_busy; | 
|---|
| 10192 |  | 
|---|
| 10193 | return group_has_spare; | 
|---|
| 10194 | } | 
|---|
| 10195 |  | 
|---|
| 10196 | /** | 
|---|
| 10197 | * sched_use_asym_prio - Check whether asym_packing priority must be used | 
|---|
| 10198 | * @sd:		The scheduling domain of the load balancing | 
|---|
| 10199 | * @cpu:	A CPU | 
|---|
| 10200 | * | 
|---|
| 10201 | * Always use CPU priority when balancing load between SMT siblings. When | 
|---|
| 10202 | * balancing load between cores, it is not sufficient that @cpu is idle. Only | 
|---|
| 10203 | * use CPU priority if the whole core is idle. | 
|---|
| 10204 | * | 
|---|
| 10205 | * Returns: True if the priority of @cpu must be followed. False otherwise. | 
|---|
| 10206 | */ | 
|---|
| 10207 | static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) | 
|---|
| 10208 | { | 
|---|
| 10209 | if (!(sd->flags & SD_ASYM_PACKING)) | 
|---|
| 10210 | return false; | 
|---|
| 10211 |  | 
|---|
| 10212 | if (!sched_smt_active()) | 
|---|
| 10213 | return true; | 
|---|
| 10214 |  | 
|---|
| 10215 | return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); | 
|---|
| 10216 | } | 
|---|
| 10217 |  | 
|---|
| 10218 | static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) | 
|---|
| 10219 | { | 
|---|
| 10220 | /* | 
|---|
| 10221 | * First check if @dst_cpu can do asym_packing load balance. Only do it | 
|---|
| 10222 | * if it has higher priority than @src_cpu. | 
|---|
| 10223 | */ | 
|---|
| 10224 | return sched_use_asym_prio(sd, cpu: dst_cpu) && | 
|---|
| 10225 | sched_asym_prefer(a: dst_cpu, b: src_cpu); | 
|---|
| 10226 | } | 
|---|
| 10227 |  | 
|---|
| 10228 | /** | 
|---|
| 10229 | * sched_group_asym - Check if the destination CPU can do asym_packing balance | 
|---|
| 10230 | * @env:	The load balancing environment | 
|---|
| 10231 | * @sgs:	Load-balancing statistics of the candidate busiest group | 
|---|
| 10232 | * @group:	The candidate busiest group | 
|---|
| 10233 | * | 
|---|
| 10234 | * @env::dst_cpu can do asym_packing if it has higher priority than the | 
|---|
| 10235 | * preferred CPU of @group. | 
|---|
| 10236 | * | 
|---|
| 10237 | * Return: true if @env::dst_cpu can do with asym_packing load balance. False | 
|---|
| 10238 | * otherwise. | 
|---|
| 10239 | */ | 
|---|
| 10240 | static inline bool | 
|---|
| 10241 | sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) | 
|---|
| 10242 | { | 
|---|
| 10243 | /* | 
|---|
| 10244 | * CPU priorities do not make sense for SMT cores with more than one | 
|---|
| 10245 | * busy sibling. | 
|---|
| 10246 | */ | 
|---|
| 10247 | if ((group->flags & SD_SHARE_CPUCAPACITY) && | 
|---|
| 10248 | (sgs->group_weight - sgs->idle_cpus != 1)) | 
|---|
| 10249 | return false; | 
|---|
| 10250 |  | 
|---|
| 10251 | return sched_asym(sd: env->sd, dst_cpu: env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); | 
|---|
| 10252 | } | 
|---|
| 10253 |  | 
|---|
| 10254 | /* One group has more than one SMT CPU while the other group does not */ | 
|---|
| 10255 | static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, | 
|---|
| 10256 | struct sched_group *sg2) | 
|---|
| 10257 | { | 
|---|
| 10258 | if (!sg1 || !sg2) | 
|---|
| 10259 | return false; | 
|---|
| 10260 |  | 
|---|
| 10261 | return (sg1->flags & SD_SHARE_CPUCAPACITY) != | 
|---|
| 10262 | (sg2->flags & SD_SHARE_CPUCAPACITY); | 
|---|
| 10263 | } | 
|---|
| 10264 |  | 
|---|
| 10265 | static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, | 
|---|
| 10266 | struct sched_group *group) | 
|---|
| 10267 | { | 
|---|
| 10268 | if (!env->idle) | 
|---|
| 10269 | return false; | 
|---|
| 10270 |  | 
|---|
| 10271 | /* | 
|---|
| 10272 | * For SMT source group, it is better to move a task | 
|---|
| 10273 | * to a CPU that doesn't have multiple tasks sharing its CPU capacity. | 
|---|
| 10274 | * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY | 
|---|
| 10275 | * will not be on. | 
|---|
| 10276 | */ | 
|---|
| 10277 | if (group->flags & SD_SHARE_CPUCAPACITY && | 
|---|
| 10278 | sgs->sum_h_nr_running > 1) | 
|---|
| 10279 | return true; | 
|---|
| 10280 |  | 
|---|
| 10281 | return false; | 
|---|
| 10282 | } | 
|---|
| 10283 |  | 
|---|
| 10284 | static inline long sibling_imbalance(struct lb_env *env, | 
|---|
| 10285 | struct sd_lb_stats *sds, | 
|---|
| 10286 | struct sg_lb_stats *busiest, | 
|---|
| 10287 | struct sg_lb_stats *local) | 
|---|
| 10288 | { | 
|---|
| 10289 | int ncores_busiest, ncores_local; | 
|---|
| 10290 | long imbalance; | 
|---|
| 10291 |  | 
|---|
| 10292 | if (!env->idle || !busiest->sum_nr_running) | 
|---|
| 10293 | return 0; | 
|---|
| 10294 |  | 
|---|
| 10295 | ncores_busiest = sds->busiest->cores; | 
|---|
| 10296 | ncores_local = sds->local->cores; | 
|---|
| 10297 |  | 
|---|
| 10298 | if (ncores_busiest == ncores_local) { | 
|---|
| 10299 | imbalance = busiest->sum_nr_running; | 
|---|
| 10300 | lsub_positive(&imbalance, local->sum_nr_running); | 
|---|
| 10301 | return imbalance; | 
|---|
| 10302 | } | 
|---|
| 10303 |  | 
|---|
| 10304 | /* Balance such that nr_running/ncores ratio are same on both groups */ | 
|---|
| 10305 | imbalance = ncores_local * busiest->sum_nr_running; | 
|---|
| 10306 | lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); | 
|---|
| 10307 | /* Normalize imbalance and do rounding on normalization */ | 
|---|
| 10308 | imbalance = 2 * imbalance + ncores_local + ncores_busiest; | 
|---|
| 10309 | imbalance /= ncores_local + ncores_busiest; | 
|---|
| 10310 |  | 
|---|
| 10311 | /* Take advantage of resource in an empty sched group */ | 
|---|
| 10312 | if (imbalance <= 1 && local->sum_nr_running == 0 && | 
|---|
| 10313 | busiest->sum_nr_running > 1) | 
|---|
| 10314 | imbalance = 2; | 
|---|
| 10315 |  | 
|---|
| 10316 | return imbalance; | 
|---|
| 10317 | } | 
|---|
| 10318 |  | 
|---|
| 10319 | static inline bool | 
|---|
| 10320 | sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) | 
|---|
| 10321 | { | 
|---|
| 10322 | /* | 
|---|
| 10323 | * When there is more than 1 task, the group_overloaded case already | 
|---|
| 10324 | * takes care of cpu with reduced capacity | 
|---|
| 10325 | */ | 
|---|
| 10326 | if (rq->cfs.h_nr_runnable != 1) | 
|---|
| 10327 | return false; | 
|---|
| 10328 |  | 
|---|
| 10329 | return check_cpu_capacity(rq, sd); | 
|---|
| 10330 | } | 
|---|
| 10331 |  | 
|---|
| 10332 | /** | 
|---|
| 10333 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | 
|---|
| 10334 | * @env: The load balancing environment. | 
|---|
| 10335 | * @sds: Load-balancing data with statistics of the local group. | 
|---|
| 10336 | * @group: sched_group whose statistics are to be updated. | 
|---|
| 10337 | * @sgs: variable to hold the statistics for this group. | 
|---|
| 10338 | * @sg_overloaded: sched_group is overloaded | 
|---|
| 10339 | * @sg_overutilized: sched_group is overutilized | 
|---|
| 10340 | */ | 
|---|
| 10341 | static inline void update_sg_lb_stats(struct lb_env *env, | 
|---|
| 10342 | struct sd_lb_stats *sds, | 
|---|
| 10343 | struct sched_group *group, | 
|---|
| 10344 | struct sg_lb_stats *sgs, | 
|---|
| 10345 | bool *sg_overloaded, | 
|---|
| 10346 | bool *sg_overutilized) | 
|---|
| 10347 | { | 
|---|
| 10348 | int i, nr_running, local_group, sd_flags = env->sd->flags; | 
|---|
| 10349 | bool balancing_at_rd = !env->sd->parent; | 
|---|
| 10350 |  | 
|---|
| 10351 | memset(s: sgs, c: 0, n: sizeof(*sgs)); | 
|---|
| 10352 |  | 
|---|
| 10353 | local_group = group == sds->local; | 
|---|
| 10354 |  | 
|---|
| 10355 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { | 
|---|
| 10356 | struct rq *rq = cpu_rq(i); | 
|---|
| 10357 | unsigned long load = cpu_load(rq); | 
|---|
| 10358 |  | 
|---|
| 10359 | sgs->group_load += load; | 
|---|
| 10360 | sgs->group_util += cpu_util_cfs(cpu: i); | 
|---|
| 10361 | sgs->group_runnable += cpu_runnable(rq); | 
|---|
| 10362 | sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; | 
|---|
| 10363 |  | 
|---|
| 10364 | nr_running = rq->nr_running; | 
|---|
| 10365 | sgs->sum_nr_running += nr_running; | 
|---|
| 10366 |  | 
|---|
| 10367 | if (cpu_overutilized(cpu: i)) | 
|---|
| 10368 | *sg_overutilized = 1; | 
|---|
| 10369 |  | 
|---|
| 10370 | /* | 
|---|
| 10371 | * No need to call idle_cpu() if nr_running is not 0 | 
|---|
| 10372 | */ | 
|---|
| 10373 | if (!nr_running && idle_cpu(cpu: i)) { | 
|---|
| 10374 | sgs->idle_cpus++; | 
|---|
| 10375 | /* Idle cpu can't have misfit task */ | 
|---|
| 10376 | continue; | 
|---|
| 10377 | } | 
|---|
| 10378 |  | 
|---|
| 10379 | /* Overload indicator is only updated at root domain */ | 
|---|
| 10380 | if (balancing_at_rd && nr_running > 1) | 
|---|
| 10381 | *sg_overloaded = 1; | 
|---|
| 10382 |  | 
|---|
| 10383 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 10384 | /* Only fbq_classify_group() uses this to classify NUMA groups */ | 
|---|
| 10385 | if (sd_flags & SD_NUMA) { | 
|---|
| 10386 | sgs->nr_numa_running += rq->nr_numa_running; | 
|---|
| 10387 | sgs->nr_preferred_running += rq->nr_preferred_running; | 
|---|
| 10388 | } | 
|---|
| 10389 | #endif | 
|---|
| 10390 | if (local_group) | 
|---|
| 10391 | continue; | 
|---|
| 10392 |  | 
|---|
| 10393 | if (sd_flags & SD_ASYM_CPUCAPACITY) { | 
|---|
| 10394 | /* Check for a misfit task on the cpu */ | 
|---|
| 10395 | if (sgs->group_misfit_task_load < rq->misfit_task_load) { | 
|---|
| 10396 | sgs->group_misfit_task_load = rq->misfit_task_load; | 
|---|
| 10397 | *sg_overloaded = 1; | 
|---|
| 10398 | } | 
|---|
| 10399 | } else if (env->idle && sched_reduced_capacity(rq, sd: env->sd)) { | 
|---|
| 10400 | /* Check for a task running on a CPU with reduced capacity */ | 
|---|
| 10401 | if (sgs->group_misfit_task_load < load) | 
|---|
| 10402 | sgs->group_misfit_task_load = load; | 
|---|
| 10403 | } | 
|---|
| 10404 | } | 
|---|
| 10405 |  | 
|---|
| 10406 | sgs->group_capacity = group->sgc->capacity; | 
|---|
| 10407 |  | 
|---|
| 10408 | sgs->group_weight = group->group_weight; | 
|---|
| 10409 |  | 
|---|
| 10410 | /* Check if dst CPU is idle and preferred to this group */ | 
|---|
| 10411 | if (!local_group && env->idle && sgs->sum_h_nr_running && | 
|---|
| 10412 | sched_group_asym(env, sgs, group)) | 
|---|
| 10413 | sgs->group_asym_packing = 1; | 
|---|
| 10414 |  | 
|---|
| 10415 | /* Check for loaded SMT group to be balanced to dst CPU */ | 
|---|
| 10416 | if (!local_group && smt_balance(env, sgs, group)) | 
|---|
| 10417 | sgs->group_smt_balance = 1; | 
|---|
| 10418 |  | 
|---|
| 10419 | sgs->group_type = group_classify(imbalance_pct: env->sd->imbalance_pct, group, sgs); | 
|---|
| 10420 |  | 
|---|
| 10421 | /* Computing avg_load makes sense only when group is overloaded */ | 
|---|
| 10422 | if (sgs->group_type == group_overloaded) | 
|---|
| 10423 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / | 
|---|
| 10424 | sgs->group_capacity; | 
|---|
| 10425 | } | 
|---|
| 10426 |  | 
|---|
| 10427 | /** | 
|---|
| 10428 | * update_sd_pick_busiest - return 1 on busiest group | 
|---|
| 10429 | * @env: The load balancing environment. | 
|---|
| 10430 | * @sds: sched_domain statistics | 
|---|
| 10431 | * @sg: sched_group candidate to be checked for being the busiest | 
|---|
| 10432 | * @sgs: sched_group statistics | 
|---|
| 10433 | * | 
|---|
| 10434 | * Determine if @sg is a busier group than the previously selected | 
|---|
| 10435 | * busiest group. | 
|---|
| 10436 | * | 
|---|
| 10437 | * Return: %true if @sg is a busier group than the previously selected | 
|---|
| 10438 | * busiest group. %false otherwise. | 
|---|
| 10439 | */ | 
|---|
| 10440 | static bool update_sd_pick_busiest(struct lb_env *env, | 
|---|
| 10441 | struct sd_lb_stats *sds, | 
|---|
| 10442 | struct sched_group *sg, | 
|---|
| 10443 | struct sg_lb_stats *sgs) | 
|---|
| 10444 | { | 
|---|
| 10445 | struct sg_lb_stats *busiest = &sds->busiest_stat; | 
|---|
| 10446 |  | 
|---|
| 10447 | /* Make sure that there is at least one task to pull */ | 
|---|
| 10448 | if (!sgs->sum_h_nr_running) | 
|---|
| 10449 | return false; | 
|---|
| 10450 |  | 
|---|
| 10451 | /* | 
|---|
| 10452 | * Don't try to pull misfit tasks we can't help. | 
|---|
| 10453 | * We can use max_capacity here as reduction in capacity on some | 
|---|
| 10454 | * CPUs in the group should either be possible to resolve | 
|---|
| 10455 | * internally or be covered by avg_load imbalance (eventually). | 
|---|
| 10456 | */ | 
|---|
| 10457 | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && | 
|---|
| 10458 | (sgs->group_type == group_misfit_task) && | 
|---|
| 10459 | (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || | 
|---|
| 10460 | sds->local_stat.group_type != group_has_spare)) | 
|---|
| 10461 | return false; | 
|---|
| 10462 |  | 
|---|
| 10463 | if (sgs->group_type > busiest->group_type) | 
|---|
| 10464 | return true; | 
|---|
| 10465 |  | 
|---|
| 10466 | if (sgs->group_type < busiest->group_type) | 
|---|
| 10467 | return false; | 
|---|
| 10468 |  | 
|---|
| 10469 | /* | 
|---|
| 10470 | * The candidate and the current busiest group are the same type of | 
|---|
| 10471 | * group. Let check which one is the busiest according to the type. | 
|---|
| 10472 | */ | 
|---|
| 10473 |  | 
|---|
| 10474 | switch (sgs->group_type) { | 
|---|
| 10475 | case group_overloaded: | 
|---|
| 10476 | /* Select the overloaded group with highest avg_load. */ | 
|---|
| 10477 | return sgs->avg_load > busiest->avg_load; | 
|---|
| 10478 |  | 
|---|
| 10479 | case group_imbalanced: | 
|---|
| 10480 | /* | 
|---|
| 10481 | * Select the 1st imbalanced group as we don't have any way to | 
|---|
| 10482 | * choose one more than another. | 
|---|
| 10483 | */ | 
|---|
| 10484 | return false; | 
|---|
| 10485 |  | 
|---|
| 10486 | case group_asym_packing: | 
|---|
| 10487 | /* Prefer to move from lowest priority CPU's work */ | 
|---|
| 10488 | return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), | 
|---|
| 10489 | READ_ONCE(sg->asym_prefer_cpu)); | 
|---|
| 10490 |  | 
|---|
| 10491 | case group_misfit_task: | 
|---|
| 10492 | /* | 
|---|
| 10493 | * If we have more than one misfit sg go with the biggest | 
|---|
| 10494 | * misfit. | 
|---|
| 10495 | */ | 
|---|
| 10496 | return sgs->group_misfit_task_load > busiest->group_misfit_task_load; | 
|---|
| 10497 |  | 
|---|
| 10498 | case group_smt_balance: | 
|---|
| 10499 | /* | 
|---|
| 10500 | * Check if we have spare CPUs on either SMT group to | 
|---|
| 10501 | * choose has spare or fully busy handling. | 
|---|
| 10502 | */ | 
|---|
| 10503 | if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) | 
|---|
| 10504 | goto has_spare; | 
|---|
| 10505 |  | 
|---|
| 10506 | fallthrough; | 
|---|
| 10507 |  | 
|---|
| 10508 | case group_fully_busy: | 
|---|
| 10509 | /* | 
|---|
| 10510 | * Select the fully busy group with highest avg_load. In | 
|---|
| 10511 | * theory, there is no need to pull task from such kind of | 
|---|
| 10512 | * group because tasks have all compute capacity that they need | 
|---|
| 10513 | * but we can still improve the overall throughput by reducing | 
|---|
| 10514 | * contention when accessing shared HW resources. | 
|---|
| 10515 | * | 
|---|
| 10516 | * XXX for now avg_load is not computed and always 0 so we | 
|---|
| 10517 | * select the 1st one, except if @sg is composed of SMT | 
|---|
| 10518 | * siblings. | 
|---|
| 10519 | */ | 
|---|
| 10520 |  | 
|---|
| 10521 | if (sgs->avg_load < busiest->avg_load) | 
|---|
| 10522 | return false; | 
|---|
| 10523 |  | 
|---|
| 10524 | if (sgs->avg_load == busiest->avg_load) { | 
|---|
| 10525 | /* | 
|---|
| 10526 | * SMT sched groups need more help than non-SMT groups. | 
|---|
| 10527 | * If @sg happens to also be SMT, either choice is good. | 
|---|
| 10528 | */ | 
|---|
| 10529 | if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) | 
|---|
| 10530 | return false; | 
|---|
| 10531 | } | 
|---|
| 10532 |  | 
|---|
| 10533 | break; | 
|---|
| 10534 |  | 
|---|
| 10535 | case group_has_spare: | 
|---|
| 10536 | /* | 
|---|
| 10537 | * Do not pick sg with SMT CPUs over sg with pure CPUs, | 
|---|
| 10538 | * as we do not want to pull task off SMT core with one task | 
|---|
| 10539 | * and make the core idle. | 
|---|
| 10540 | */ | 
|---|
| 10541 | if (smt_vs_nonsmt_groups(sg1: sds->busiest, sg2: sg)) { | 
|---|
| 10542 | if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) | 
|---|
| 10543 | return false; | 
|---|
| 10544 | else | 
|---|
| 10545 | return true; | 
|---|
| 10546 | } | 
|---|
| 10547 | has_spare: | 
|---|
| 10548 |  | 
|---|
| 10549 | /* | 
|---|
| 10550 | * Select not overloaded group with lowest number of idle CPUs | 
|---|
| 10551 | * and highest number of running tasks. We could also compare | 
|---|
| 10552 | * the spare capacity which is more stable but it can end up | 
|---|
| 10553 | * that the group has less spare capacity but finally more idle | 
|---|
| 10554 | * CPUs which means less opportunity to pull tasks. | 
|---|
| 10555 | */ | 
|---|
| 10556 | if (sgs->idle_cpus > busiest->idle_cpus) | 
|---|
| 10557 | return false; | 
|---|
| 10558 | else if ((sgs->idle_cpus == busiest->idle_cpus) && | 
|---|
| 10559 | (sgs->sum_nr_running <= busiest->sum_nr_running)) | 
|---|
| 10560 | return false; | 
|---|
| 10561 |  | 
|---|
| 10562 | break; | 
|---|
| 10563 | } | 
|---|
| 10564 |  | 
|---|
| 10565 | /* | 
|---|
| 10566 | * Candidate sg has no more than one task per CPU and has higher | 
|---|
| 10567 | * per-CPU capacity. Migrating tasks to less capable CPUs may harm | 
|---|
| 10568 | * throughput. Maximize throughput, power/energy consequences are not | 
|---|
| 10569 | * considered. | 
|---|
| 10570 | */ | 
|---|
| 10571 | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && | 
|---|
| 10572 | (sgs->group_type <= group_fully_busy) && | 
|---|
| 10573 | (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) | 
|---|
| 10574 | return false; | 
|---|
| 10575 |  | 
|---|
| 10576 | return true; | 
|---|
| 10577 | } | 
|---|
| 10578 |  | 
|---|
| 10579 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 10580 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | 
|---|
| 10581 | { | 
|---|
| 10582 | if (sgs->sum_h_nr_running > sgs->nr_numa_running) | 
|---|
| 10583 | return regular; | 
|---|
| 10584 | if (sgs->sum_h_nr_running > sgs->nr_preferred_running) | 
|---|
| 10585 | return remote; | 
|---|
| 10586 | return all; | 
|---|
| 10587 | } | 
|---|
| 10588 |  | 
|---|
| 10589 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | 
|---|
| 10590 | { | 
|---|
| 10591 | if (rq->nr_running > rq->nr_numa_running) | 
|---|
| 10592 | return regular; | 
|---|
| 10593 | if (rq->nr_running > rq->nr_preferred_running) | 
|---|
| 10594 | return remote; | 
|---|
| 10595 | return all; | 
|---|
| 10596 | } | 
|---|
| 10597 | #else /* !CONFIG_NUMA_BALANCING: */ | 
|---|
| 10598 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | 
|---|
| 10599 | { | 
|---|
| 10600 | return all; | 
|---|
| 10601 | } | 
|---|
| 10602 |  | 
|---|
| 10603 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | 
|---|
| 10604 | { | 
|---|
| 10605 | return regular; | 
|---|
| 10606 | } | 
|---|
| 10607 | #endif /* !CONFIG_NUMA_BALANCING */ | 
|---|
| 10608 |  | 
|---|
| 10609 |  | 
|---|
| 10610 | struct sg_lb_stats; | 
|---|
| 10611 |  | 
|---|
| 10612 | /* | 
|---|
| 10613 | * task_running_on_cpu - return 1 if @p is running on @cpu. | 
|---|
| 10614 | */ | 
|---|
| 10615 |  | 
|---|
| 10616 | static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) | 
|---|
| 10617 | { | 
|---|
| 10618 | /* Task has no contribution or is new */ | 
|---|
| 10619 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | 
|---|
| 10620 | return 0; | 
|---|
| 10621 |  | 
|---|
| 10622 | if (task_on_rq_queued(p)) | 
|---|
| 10623 | return 1; | 
|---|
| 10624 |  | 
|---|
| 10625 | return 0; | 
|---|
| 10626 | } | 
|---|
| 10627 |  | 
|---|
| 10628 | /** | 
|---|
| 10629 | * idle_cpu_without - would a given CPU be idle without p ? | 
|---|
| 10630 | * @cpu: the processor on which idleness is tested. | 
|---|
| 10631 | * @p: task which should be ignored. | 
|---|
| 10632 | * | 
|---|
| 10633 | * Return: 1 if the CPU would be idle. 0 otherwise. | 
|---|
| 10634 | */ | 
|---|
| 10635 | static int idle_cpu_without(int cpu, struct task_struct *p) | 
|---|
| 10636 | { | 
|---|
| 10637 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 10638 |  | 
|---|
| 10639 | if (rq->curr != rq->idle && rq->curr != p) | 
|---|
| 10640 | return 0; | 
|---|
| 10641 |  | 
|---|
| 10642 | /* | 
|---|
| 10643 | * rq->nr_running can't be used but an updated version without the | 
|---|
| 10644 | * impact of p on cpu must be used instead. The updated nr_running | 
|---|
| 10645 | * be computed and tested before calling idle_cpu_without(). | 
|---|
| 10646 | */ | 
|---|
| 10647 |  | 
|---|
| 10648 | if (rq->ttwu_pending) | 
|---|
| 10649 | return 0; | 
|---|
| 10650 |  | 
|---|
| 10651 | return 1; | 
|---|
| 10652 | } | 
|---|
| 10653 |  | 
|---|
| 10654 | /* | 
|---|
| 10655 | * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. | 
|---|
| 10656 | * @sd: The sched_domain level to look for idlest group. | 
|---|
| 10657 | * @group: sched_group whose statistics are to be updated. | 
|---|
| 10658 | * @sgs: variable to hold the statistics for this group. | 
|---|
| 10659 | * @p: The task for which we look for the idlest group/CPU. | 
|---|
| 10660 | */ | 
|---|
| 10661 | static inline void update_sg_wakeup_stats(struct sched_domain *sd, | 
|---|
| 10662 | struct sched_group *group, | 
|---|
| 10663 | struct sg_lb_stats *sgs, | 
|---|
| 10664 | struct task_struct *p) | 
|---|
| 10665 | { | 
|---|
| 10666 | int i, nr_running; | 
|---|
| 10667 |  | 
|---|
| 10668 | memset(s: sgs, c: 0, n: sizeof(*sgs)); | 
|---|
| 10669 |  | 
|---|
| 10670 | /* Assume that task can't fit any CPU of the group */ | 
|---|
| 10671 | if (sd->flags & SD_ASYM_CPUCAPACITY) | 
|---|
| 10672 | sgs->group_misfit_task_load = 1; | 
|---|
| 10673 |  | 
|---|
| 10674 | for_each_cpu(i, sched_group_span(group)) { | 
|---|
| 10675 | struct rq *rq = cpu_rq(i); | 
|---|
| 10676 | unsigned int local; | 
|---|
| 10677 |  | 
|---|
| 10678 | sgs->group_load += cpu_load_without(rq, p); | 
|---|
| 10679 | sgs->group_util += cpu_util_without(cpu: i, p); | 
|---|
| 10680 | sgs->group_runnable += cpu_runnable_without(rq, p); | 
|---|
| 10681 | local = task_running_on_cpu(cpu: i, p); | 
|---|
| 10682 | sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; | 
|---|
| 10683 |  | 
|---|
| 10684 | nr_running = rq->nr_running - local; | 
|---|
| 10685 | sgs->sum_nr_running += nr_running; | 
|---|
| 10686 |  | 
|---|
| 10687 | /* | 
|---|
| 10688 | * No need to call idle_cpu_without() if nr_running is not 0 | 
|---|
| 10689 | */ | 
|---|
| 10690 | if (!nr_running && idle_cpu_without(cpu: i, p)) | 
|---|
| 10691 | sgs->idle_cpus++; | 
|---|
| 10692 |  | 
|---|
| 10693 | /* Check if task fits in the CPU */ | 
|---|
| 10694 | if (sd->flags & SD_ASYM_CPUCAPACITY && | 
|---|
| 10695 | sgs->group_misfit_task_load && | 
|---|
| 10696 | task_fits_cpu(p, cpu: i)) | 
|---|
| 10697 | sgs->group_misfit_task_load = 0; | 
|---|
| 10698 |  | 
|---|
| 10699 | } | 
|---|
| 10700 |  | 
|---|
| 10701 | sgs->group_capacity = group->sgc->capacity; | 
|---|
| 10702 |  | 
|---|
| 10703 | sgs->group_weight = group->group_weight; | 
|---|
| 10704 |  | 
|---|
| 10705 | sgs->group_type = group_classify(imbalance_pct: sd->imbalance_pct, group, sgs); | 
|---|
| 10706 |  | 
|---|
| 10707 | /* | 
|---|
| 10708 | * Computing avg_load makes sense only when group is fully busy or | 
|---|
| 10709 | * overloaded | 
|---|
| 10710 | */ | 
|---|
| 10711 | if (sgs->group_type == group_fully_busy || | 
|---|
| 10712 | sgs->group_type == group_overloaded) | 
|---|
| 10713 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / | 
|---|
| 10714 | sgs->group_capacity; | 
|---|
| 10715 | } | 
|---|
| 10716 |  | 
|---|
| 10717 | static bool update_pick_idlest(struct sched_group *idlest, | 
|---|
| 10718 | struct sg_lb_stats *idlest_sgs, | 
|---|
| 10719 | struct sched_group *group, | 
|---|
| 10720 | struct sg_lb_stats *sgs) | 
|---|
| 10721 | { | 
|---|
| 10722 | if (sgs->group_type < idlest_sgs->group_type) | 
|---|
| 10723 | return true; | 
|---|
| 10724 |  | 
|---|
| 10725 | if (sgs->group_type > idlest_sgs->group_type) | 
|---|
| 10726 | return false; | 
|---|
| 10727 |  | 
|---|
| 10728 | /* | 
|---|
| 10729 | * The candidate and the current idlest group are the same type of | 
|---|
| 10730 | * group. Let check which one is the idlest according to the type. | 
|---|
| 10731 | */ | 
|---|
| 10732 |  | 
|---|
| 10733 | switch (sgs->group_type) { | 
|---|
| 10734 | case group_overloaded: | 
|---|
| 10735 | case group_fully_busy: | 
|---|
| 10736 | /* Select the group with lowest avg_load. */ | 
|---|
| 10737 | if (idlest_sgs->avg_load <= sgs->avg_load) | 
|---|
| 10738 | return false; | 
|---|
| 10739 | break; | 
|---|
| 10740 |  | 
|---|
| 10741 | case group_imbalanced: | 
|---|
| 10742 | case group_asym_packing: | 
|---|
| 10743 | case group_smt_balance: | 
|---|
| 10744 | /* Those types are not used in the slow wakeup path */ | 
|---|
| 10745 | return false; | 
|---|
| 10746 |  | 
|---|
| 10747 | case group_misfit_task: | 
|---|
| 10748 | /* Select group with the highest max capacity */ | 
|---|
| 10749 | if (idlest->sgc->max_capacity >= group->sgc->max_capacity) | 
|---|
| 10750 | return false; | 
|---|
| 10751 | break; | 
|---|
| 10752 |  | 
|---|
| 10753 | case group_has_spare: | 
|---|
| 10754 | /* Select group with most idle CPUs */ | 
|---|
| 10755 | if (idlest_sgs->idle_cpus > sgs->idle_cpus) | 
|---|
| 10756 | return false; | 
|---|
| 10757 |  | 
|---|
| 10758 | /* Select group with lowest group_util */ | 
|---|
| 10759 | if (idlest_sgs->idle_cpus == sgs->idle_cpus && | 
|---|
| 10760 | idlest_sgs->group_util <= sgs->group_util) | 
|---|
| 10761 | return false; | 
|---|
| 10762 |  | 
|---|
| 10763 | break; | 
|---|
| 10764 | } | 
|---|
| 10765 |  | 
|---|
| 10766 | return true; | 
|---|
| 10767 | } | 
|---|
| 10768 |  | 
|---|
| 10769 | /* | 
|---|
| 10770 | * sched_balance_find_dst_group() finds and returns the least busy CPU group within the | 
|---|
| 10771 | * domain. | 
|---|
| 10772 | * | 
|---|
| 10773 | * Assumes p is allowed on at least one CPU in sd. | 
|---|
| 10774 | */ | 
|---|
| 10775 | static struct sched_group * | 
|---|
| 10776 | sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | 
|---|
| 10777 | { | 
|---|
| 10778 | struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; | 
|---|
| 10779 | struct sg_lb_stats local_sgs, tmp_sgs; | 
|---|
| 10780 | struct sg_lb_stats *sgs; | 
|---|
| 10781 | unsigned long imbalance; | 
|---|
| 10782 | struct sg_lb_stats idlest_sgs = { | 
|---|
| 10783 | .avg_load = UINT_MAX, | 
|---|
| 10784 | .group_type = group_overloaded, | 
|---|
| 10785 | }; | 
|---|
| 10786 |  | 
|---|
| 10787 | do { | 
|---|
| 10788 | int local_group; | 
|---|
| 10789 |  | 
|---|
| 10790 | /* Skip over this group if it has no CPUs allowed */ | 
|---|
| 10791 | if (!cpumask_intersects(src1p: sched_group_span(sg: group), | 
|---|
| 10792 | src2p: p->cpus_ptr)) | 
|---|
| 10793 | continue; | 
|---|
| 10794 |  | 
|---|
| 10795 | /* Skip over this group if no cookie matched */ | 
|---|
| 10796 | if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) | 
|---|
| 10797 | continue; | 
|---|
| 10798 |  | 
|---|
| 10799 | local_group = cpumask_test_cpu(cpu: this_cpu, | 
|---|
| 10800 | cpumask: sched_group_span(sg: group)); | 
|---|
| 10801 |  | 
|---|
| 10802 | if (local_group) { | 
|---|
| 10803 | sgs = &local_sgs; | 
|---|
| 10804 | local = group; | 
|---|
| 10805 | } else { | 
|---|
| 10806 | sgs = &tmp_sgs; | 
|---|
| 10807 | } | 
|---|
| 10808 |  | 
|---|
| 10809 | update_sg_wakeup_stats(sd, group, sgs, p); | 
|---|
| 10810 |  | 
|---|
| 10811 | if (!local_group && update_pick_idlest(idlest, idlest_sgs: &idlest_sgs, group, sgs)) { | 
|---|
| 10812 | idlest = group; | 
|---|
| 10813 | idlest_sgs = *sgs; | 
|---|
| 10814 | } | 
|---|
| 10815 |  | 
|---|
| 10816 | } while (group = group->next, group != sd->groups); | 
|---|
| 10817 |  | 
|---|
| 10818 |  | 
|---|
| 10819 | /* There is no idlest group to push tasks to */ | 
|---|
| 10820 | if (!idlest) | 
|---|
| 10821 | return NULL; | 
|---|
| 10822 |  | 
|---|
| 10823 | /* The local group has been skipped because of CPU affinity */ | 
|---|
| 10824 | if (!local) | 
|---|
| 10825 | return idlest; | 
|---|
| 10826 |  | 
|---|
| 10827 | /* | 
|---|
| 10828 | * If the local group is idler than the selected idlest group | 
|---|
| 10829 | * don't try and push the task. | 
|---|
| 10830 | */ | 
|---|
| 10831 | if (local_sgs.group_type < idlest_sgs.group_type) | 
|---|
| 10832 | return NULL; | 
|---|
| 10833 |  | 
|---|
| 10834 | /* | 
|---|
| 10835 | * If the local group is busier than the selected idlest group | 
|---|
| 10836 | * try and push the task. | 
|---|
| 10837 | */ | 
|---|
| 10838 | if (local_sgs.group_type > idlest_sgs.group_type) | 
|---|
| 10839 | return idlest; | 
|---|
| 10840 |  | 
|---|
| 10841 | switch (local_sgs.group_type) { | 
|---|
| 10842 | case group_overloaded: | 
|---|
| 10843 | case group_fully_busy: | 
|---|
| 10844 |  | 
|---|
| 10845 | /* Calculate allowed imbalance based on load */ | 
|---|
| 10846 | imbalance = scale_load_down(NICE_0_LOAD) * | 
|---|
| 10847 | (sd->imbalance_pct-100) / 100; | 
|---|
| 10848 |  | 
|---|
| 10849 | /* | 
|---|
| 10850 | * When comparing groups across NUMA domains, it's possible for | 
|---|
| 10851 | * the local domain to be very lightly loaded relative to the | 
|---|
| 10852 | * remote domains but "imbalance" skews the comparison making | 
|---|
| 10853 | * remote CPUs look much more favourable. When considering | 
|---|
| 10854 | * cross-domain, add imbalance to the load on the remote node | 
|---|
| 10855 | * and consider staying local. | 
|---|
| 10856 | */ | 
|---|
| 10857 |  | 
|---|
| 10858 | if ((sd->flags & SD_NUMA) && | 
|---|
| 10859 | ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) | 
|---|
| 10860 | return NULL; | 
|---|
| 10861 |  | 
|---|
| 10862 | /* | 
|---|
| 10863 | * If the local group is less loaded than the selected | 
|---|
| 10864 | * idlest group don't try and push any tasks. | 
|---|
| 10865 | */ | 
|---|
| 10866 | if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) | 
|---|
| 10867 | return NULL; | 
|---|
| 10868 |  | 
|---|
| 10869 | if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) | 
|---|
| 10870 | return NULL; | 
|---|
| 10871 | break; | 
|---|
| 10872 |  | 
|---|
| 10873 | case group_imbalanced: | 
|---|
| 10874 | case group_asym_packing: | 
|---|
| 10875 | case group_smt_balance: | 
|---|
| 10876 | /* Those type are not used in the slow wakeup path */ | 
|---|
| 10877 | return NULL; | 
|---|
| 10878 |  | 
|---|
| 10879 | case group_misfit_task: | 
|---|
| 10880 | /* Select group with the highest max capacity */ | 
|---|
| 10881 | if (local->sgc->max_capacity >= idlest->sgc->max_capacity) | 
|---|
| 10882 | return NULL; | 
|---|
| 10883 | break; | 
|---|
| 10884 |  | 
|---|
| 10885 | case group_has_spare: | 
|---|
| 10886 | #ifdef CONFIG_NUMA | 
|---|
| 10887 | if (sd->flags & SD_NUMA) { | 
|---|
| 10888 | int imb_numa_nr = sd->imb_numa_nr; | 
|---|
| 10889 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 10890 | int idlest_cpu; | 
|---|
| 10891 | /* | 
|---|
| 10892 | * If there is spare capacity at NUMA, try to select | 
|---|
| 10893 | * the preferred node | 
|---|
| 10894 | */ | 
|---|
| 10895 | if (cpu_to_node(this_cpu) == p->numa_preferred_nid) | 
|---|
| 10896 | return NULL; | 
|---|
| 10897 |  | 
|---|
| 10898 | idlest_cpu = cpumask_first(sched_group_span(idlest)); | 
|---|
| 10899 | if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) | 
|---|
| 10900 | return idlest; | 
|---|
| 10901 | #endif /* CONFIG_NUMA_BALANCING */ | 
|---|
| 10902 | /* | 
|---|
| 10903 | * Otherwise, keep the task close to the wakeup source | 
|---|
| 10904 | * and improve locality if the number of running tasks | 
|---|
| 10905 | * would remain below threshold where an imbalance is | 
|---|
| 10906 | * allowed while accounting for the possibility the | 
|---|
| 10907 | * task is pinned to a subset of CPUs. If there is a | 
|---|
| 10908 | * real need of migration, periodic load balance will | 
|---|
| 10909 | * take care of it. | 
|---|
| 10910 | */ | 
|---|
| 10911 | if (p->nr_cpus_allowed != NR_CPUS) { | 
|---|
| 10912 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); | 
|---|
| 10913 |  | 
|---|
| 10914 | cpumask_and(dstp: cpus, src1p: sched_group_span(sg: local), src2p: p->cpus_ptr); | 
|---|
| 10915 | imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); | 
|---|
| 10916 | } | 
|---|
| 10917 |  | 
|---|
| 10918 | imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); | 
|---|
| 10919 | if (!adjust_numa_imbalance(imbalance, | 
|---|
| 10920 | dst_running: local_sgs.sum_nr_running + 1, | 
|---|
| 10921 | imb_numa_nr)) { | 
|---|
| 10922 | return NULL; | 
|---|
| 10923 | } | 
|---|
| 10924 | } | 
|---|
| 10925 | #endif /* CONFIG_NUMA */ | 
|---|
| 10926 |  | 
|---|
| 10927 | /* | 
|---|
| 10928 | * Select group with highest number of idle CPUs. We could also | 
|---|
| 10929 | * compare the utilization which is more stable but it can end | 
|---|
| 10930 | * up that the group has less spare capacity but finally more | 
|---|
| 10931 | * idle CPUs which means more opportunity to run task. | 
|---|
| 10932 | */ | 
|---|
| 10933 | if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) | 
|---|
| 10934 | return NULL; | 
|---|
| 10935 | break; | 
|---|
| 10936 | } | 
|---|
| 10937 |  | 
|---|
| 10938 | return idlest; | 
|---|
| 10939 | } | 
|---|
| 10940 |  | 
|---|
| 10941 | static void update_idle_cpu_scan(struct lb_env *env, | 
|---|
| 10942 | unsigned long sum_util) | 
|---|
| 10943 | { | 
|---|
| 10944 | struct sched_domain_shared *sd_share; | 
|---|
| 10945 | int llc_weight, pct; | 
|---|
| 10946 | u64 x, y, tmp; | 
|---|
| 10947 | /* | 
|---|
| 10948 | * Update the number of CPUs to scan in LLC domain, which could | 
|---|
| 10949 | * be used as a hint in select_idle_cpu(). The update of sd_share | 
|---|
| 10950 | * could be expensive because it is within a shared cache line. | 
|---|
| 10951 | * So the write of this hint only occurs during periodic load | 
|---|
| 10952 | * balancing, rather than CPU_NEWLY_IDLE, because the latter | 
|---|
| 10953 | * can fire way more frequently than the former. | 
|---|
| 10954 | */ | 
|---|
| 10955 | if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) | 
|---|
| 10956 | return; | 
|---|
| 10957 |  | 
|---|
| 10958 | llc_weight = per_cpu(sd_llc_size, env->dst_cpu); | 
|---|
| 10959 | if (env->sd->span_weight != llc_weight) | 
|---|
| 10960 | return; | 
|---|
| 10961 |  | 
|---|
| 10962 | sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); | 
|---|
| 10963 | if (!sd_share) | 
|---|
| 10964 | return; | 
|---|
| 10965 |  | 
|---|
| 10966 | /* | 
|---|
| 10967 | * The number of CPUs to search drops as sum_util increases, when | 
|---|
| 10968 | * sum_util hits 85% or above, the scan stops. | 
|---|
| 10969 | * The reason to choose 85% as the threshold is because this is the | 
|---|
| 10970 | * imbalance_pct(117) when a LLC sched group is overloaded. | 
|---|
| 10971 | * | 
|---|
| 10972 | * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1] | 
|---|
| 10973 | * and y'= y / SCHED_CAPACITY_SCALE | 
|---|
| 10974 | * | 
|---|
| 10975 | * x is the ratio of sum_util compared to the CPU capacity: | 
|---|
| 10976 | * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) | 
|---|
| 10977 | * y' is the ratio of CPUs to be scanned in the LLC domain, | 
|---|
| 10978 | * and the number of CPUs to scan is calculated by: | 
|---|
| 10979 | * | 
|---|
| 10980 | * nr_scan = llc_weight * y'                                    [2] | 
|---|
| 10981 | * | 
|---|
| 10982 | * When x hits the threshold of overloaded, AKA, when | 
|---|
| 10983 | * x = 100 / pct, y drops to 0. According to [1], | 
|---|
| 10984 | * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 | 
|---|
| 10985 | * | 
|---|
| 10986 | * Scale x by SCHED_CAPACITY_SCALE: | 
|---|
| 10987 | * x' = sum_util / llc_weight;                                  [3] | 
|---|
| 10988 | * | 
|---|
| 10989 | * and finally [1] becomes: | 
|---|
| 10990 | * y = SCHED_CAPACITY_SCALE - | 
|---|
| 10991 | *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4] | 
|---|
| 10992 | * | 
|---|
| 10993 | */ | 
|---|
| 10994 | /* equation [3] */ | 
|---|
| 10995 | x = sum_util; | 
|---|
| 10996 | do_div(x, llc_weight); | 
|---|
| 10997 |  | 
|---|
| 10998 | /* equation [4] */ | 
|---|
| 10999 | pct = env->sd->imbalance_pct; | 
|---|
| 11000 | tmp = x * x * pct * pct; | 
|---|
| 11001 | do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); | 
|---|
| 11002 | tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); | 
|---|
| 11003 | y = SCHED_CAPACITY_SCALE - tmp; | 
|---|
| 11004 |  | 
|---|
| 11005 | /* equation [2] */ | 
|---|
| 11006 | y *= llc_weight; | 
|---|
| 11007 | do_div(y, SCHED_CAPACITY_SCALE); | 
|---|
| 11008 | if ((int)y != sd_share->nr_idle_scan) | 
|---|
| 11009 | WRITE_ONCE(sd_share->nr_idle_scan, (int)y); | 
|---|
| 11010 | } | 
|---|
| 11011 |  | 
|---|
| 11012 | /** | 
|---|
| 11013 | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. | 
|---|
| 11014 | * @env: The load balancing environment. | 
|---|
| 11015 | * @sds: variable to hold the statistics for this sched_domain. | 
|---|
| 11016 | */ | 
|---|
| 11017 |  | 
|---|
| 11018 | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) | 
|---|
| 11019 | { | 
|---|
| 11020 | struct sched_group *sg = env->sd->groups; | 
|---|
| 11021 | struct sg_lb_stats *local = &sds->local_stat; | 
|---|
| 11022 | struct sg_lb_stats tmp_sgs; | 
|---|
| 11023 | unsigned long sum_util = 0; | 
|---|
| 11024 | bool sg_overloaded = 0, sg_overutilized = 0; | 
|---|
| 11025 |  | 
|---|
| 11026 | do { | 
|---|
| 11027 | struct sg_lb_stats *sgs = &tmp_sgs; | 
|---|
| 11028 | int local_group; | 
|---|
| 11029 |  | 
|---|
| 11030 | local_group = cpumask_test_cpu(cpu: env->dst_cpu, cpumask: sched_group_span(sg)); | 
|---|
| 11031 | if (local_group) { | 
|---|
| 11032 | sds->local = sg; | 
|---|
| 11033 | sgs = local; | 
|---|
| 11034 |  | 
|---|
| 11035 | if (env->idle != CPU_NEWLY_IDLE || | 
|---|
| 11036 | time_after_eq(jiffies, sg->sgc->next_update)) | 
|---|
| 11037 | update_group_capacity(sd: env->sd, cpu: env->dst_cpu); | 
|---|
| 11038 | } | 
|---|
| 11039 |  | 
|---|
| 11040 | update_sg_lb_stats(env, sds, group: sg, sgs, sg_overloaded: &sg_overloaded, sg_overutilized: &sg_overutilized); | 
|---|
| 11041 |  | 
|---|
| 11042 | if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { | 
|---|
| 11043 | sds->busiest = sg; | 
|---|
| 11044 | sds->busiest_stat = *sgs; | 
|---|
| 11045 | } | 
|---|
| 11046 |  | 
|---|
| 11047 | /* Now, start updating sd_lb_stats */ | 
|---|
| 11048 | sds->total_load += sgs->group_load; | 
|---|
| 11049 | sds->total_capacity += sgs->group_capacity; | 
|---|
| 11050 |  | 
|---|
| 11051 | sum_util += sgs->group_util; | 
|---|
| 11052 | sg = sg->next; | 
|---|
| 11053 | } while (sg != env->sd->groups); | 
|---|
| 11054 |  | 
|---|
| 11055 | /* | 
|---|
| 11056 | * Indicate that the child domain of the busiest group prefers tasks | 
|---|
| 11057 | * go to a child's sibling domains first. NB the flags of a sched group | 
|---|
| 11058 | * are those of the child domain. | 
|---|
| 11059 | */ | 
|---|
| 11060 | if (sds->busiest) | 
|---|
| 11061 | sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); | 
|---|
| 11062 |  | 
|---|
| 11063 |  | 
|---|
| 11064 | if (env->sd->flags & SD_NUMA) | 
|---|
| 11065 | env->fbq_type = fbq_classify_group(sgs: &sds->busiest_stat); | 
|---|
| 11066 |  | 
|---|
| 11067 | if (!env->sd->parent) { | 
|---|
| 11068 | /* update overload indicator if we are at root domain */ | 
|---|
| 11069 | set_rd_overloaded(rd: env->dst_rq->rd, status: sg_overloaded); | 
|---|
| 11070 |  | 
|---|
| 11071 | /* Update over-utilization (tipping point, U >= 0) indicator */ | 
|---|
| 11072 | set_rd_overutilized(rd: env->dst_rq->rd, flag: sg_overutilized); | 
|---|
| 11073 | } else if (sg_overutilized) { | 
|---|
| 11074 | set_rd_overutilized(rd: env->dst_rq->rd, flag: sg_overutilized); | 
|---|
| 11075 | } | 
|---|
| 11076 |  | 
|---|
| 11077 | update_idle_cpu_scan(env, sum_util); | 
|---|
| 11078 | } | 
|---|
| 11079 |  | 
|---|
| 11080 | /** | 
|---|
| 11081 | * calculate_imbalance - Calculate the amount of imbalance present within the | 
|---|
| 11082 | *			 groups of a given sched_domain during load balance. | 
|---|
| 11083 | * @env: load balance environment | 
|---|
| 11084 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | 
|---|
| 11085 | */ | 
|---|
| 11086 | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) | 
|---|
| 11087 | { | 
|---|
| 11088 | struct sg_lb_stats *local, *busiest; | 
|---|
| 11089 |  | 
|---|
| 11090 | local = &sds->local_stat; | 
|---|
| 11091 | busiest = &sds->busiest_stat; | 
|---|
| 11092 |  | 
|---|
| 11093 | if (busiest->group_type == group_misfit_task) { | 
|---|
| 11094 | if (env->sd->flags & SD_ASYM_CPUCAPACITY) { | 
|---|
| 11095 | /* Set imbalance to allow misfit tasks to be balanced. */ | 
|---|
| 11096 | env->migration_type = migrate_misfit; | 
|---|
| 11097 | env->imbalance = 1; | 
|---|
| 11098 | } else { | 
|---|
| 11099 | /* | 
|---|
| 11100 | * Set load imbalance to allow moving task from cpu | 
|---|
| 11101 | * with reduced capacity. | 
|---|
| 11102 | */ | 
|---|
| 11103 | env->migration_type = migrate_load; | 
|---|
| 11104 | env->imbalance = busiest->group_misfit_task_load; | 
|---|
| 11105 | } | 
|---|
| 11106 | return; | 
|---|
| 11107 | } | 
|---|
| 11108 |  | 
|---|
| 11109 | if (busiest->group_type == group_asym_packing) { | 
|---|
| 11110 | /* | 
|---|
| 11111 | * In case of asym capacity, we will try to migrate all load to | 
|---|
| 11112 | * the preferred CPU. | 
|---|
| 11113 | */ | 
|---|
| 11114 | env->migration_type = migrate_task; | 
|---|
| 11115 | env->imbalance = busiest->sum_h_nr_running; | 
|---|
| 11116 | return; | 
|---|
| 11117 | } | 
|---|
| 11118 |  | 
|---|
| 11119 | if (busiest->group_type == group_smt_balance) { | 
|---|
| 11120 | /* Reduce number of tasks sharing CPU capacity */ | 
|---|
| 11121 | env->migration_type = migrate_task; | 
|---|
| 11122 | env->imbalance = 1; | 
|---|
| 11123 | return; | 
|---|
| 11124 | } | 
|---|
| 11125 |  | 
|---|
| 11126 | if (busiest->group_type == group_imbalanced) { | 
|---|
| 11127 | /* | 
|---|
| 11128 | * In the group_imb case we cannot rely on group-wide averages | 
|---|
| 11129 | * to ensure CPU-load equilibrium, try to move any task to fix | 
|---|
| 11130 | * the imbalance. The next load balance will take care of | 
|---|
| 11131 | * balancing back the system. | 
|---|
| 11132 | */ | 
|---|
| 11133 | env->migration_type = migrate_task; | 
|---|
| 11134 | env->imbalance = 1; | 
|---|
| 11135 | return; | 
|---|
| 11136 | } | 
|---|
| 11137 |  | 
|---|
| 11138 | /* | 
|---|
| 11139 | * Try to use spare capacity of local group without overloading it or | 
|---|
| 11140 | * emptying busiest. | 
|---|
| 11141 | */ | 
|---|
| 11142 | if (local->group_type == group_has_spare) { | 
|---|
| 11143 | if ((busiest->group_type > group_fully_busy) && | 
|---|
| 11144 | !(env->sd->flags & SD_SHARE_LLC)) { | 
|---|
| 11145 | /* | 
|---|
| 11146 | * If busiest is overloaded, try to fill spare | 
|---|
| 11147 | * capacity. This might end up creating spare capacity | 
|---|
| 11148 | * in busiest or busiest still being overloaded but | 
|---|
| 11149 | * there is no simple way to directly compute the | 
|---|
| 11150 | * amount of load to migrate in order to balance the | 
|---|
| 11151 | * system. | 
|---|
| 11152 | */ | 
|---|
| 11153 | env->migration_type = migrate_util; | 
|---|
| 11154 | env->imbalance = max(local->group_capacity, local->group_util) - | 
|---|
| 11155 | local->group_util; | 
|---|
| 11156 |  | 
|---|
| 11157 | /* | 
|---|
| 11158 | * In some cases, the group's utilization is max or even | 
|---|
| 11159 | * higher than capacity because of migrations but the | 
|---|
| 11160 | * local CPU is (newly) idle. There is at least one | 
|---|
| 11161 | * waiting task in this overloaded busiest group. Let's | 
|---|
| 11162 | * try to pull it. | 
|---|
| 11163 | */ | 
|---|
| 11164 | if (env->idle && env->imbalance == 0) { | 
|---|
| 11165 | env->migration_type = migrate_task; | 
|---|
| 11166 | env->imbalance = 1; | 
|---|
| 11167 | } | 
|---|
| 11168 |  | 
|---|
| 11169 | return; | 
|---|
| 11170 | } | 
|---|
| 11171 |  | 
|---|
| 11172 | if (busiest->group_weight == 1 || sds->prefer_sibling) { | 
|---|
| 11173 | /* | 
|---|
| 11174 | * When prefer sibling, evenly spread running tasks on | 
|---|
| 11175 | * groups. | 
|---|
| 11176 | */ | 
|---|
| 11177 | env->migration_type = migrate_task; | 
|---|
| 11178 | env->imbalance = sibling_imbalance(env, sds, busiest, local); | 
|---|
| 11179 | } else { | 
|---|
| 11180 |  | 
|---|
| 11181 | /* | 
|---|
| 11182 | * If there is no overload, we just want to even the number of | 
|---|
| 11183 | * idle CPUs. | 
|---|
| 11184 | */ | 
|---|
| 11185 | env->migration_type = migrate_task; | 
|---|
| 11186 | env->imbalance = max_t(long, 0, | 
|---|
| 11187 | (local->idle_cpus - busiest->idle_cpus)); | 
|---|
| 11188 | } | 
|---|
| 11189 |  | 
|---|
| 11190 | #ifdef CONFIG_NUMA | 
|---|
| 11191 | /* Consider allowing a small imbalance between NUMA groups */ | 
|---|
| 11192 | if (env->sd->flags & SD_NUMA) { | 
|---|
| 11193 | env->imbalance = adjust_numa_imbalance(imbalance: env->imbalance, | 
|---|
| 11194 | dst_running: local->sum_nr_running + 1, | 
|---|
| 11195 | imb_numa_nr: env->sd->imb_numa_nr); | 
|---|
| 11196 | } | 
|---|
| 11197 | #endif | 
|---|
| 11198 |  | 
|---|
| 11199 | /* Number of tasks to move to restore balance */ | 
|---|
| 11200 | env->imbalance >>= 1; | 
|---|
| 11201 |  | 
|---|
| 11202 | return; | 
|---|
| 11203 | } | 
|---|
| 11204 |  | 
|---|
| 11205 | /* | 
|---|
| 11206 | * Local is fully busy but has to take more load to relieve the | 
|---|
| 11207 | * busiest group | 
|---|
| 11208 | */ | 
|---|
| 11209 | if (local->group_type < group_overloaded) { | 
|---|
| 11210 | /* | 
|---|
| 11211 | * Local will become overloaded so the avg_load metrics are | 
|---|
| 11212 | * finally needed. | 
|---|
| 11213 | */ | 
|---|
| 11214 |  | 
|---|
| 11215 | local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / | 
|---|
| 11216 | local->group_capacity; | 
|---|
| 11217 |  | 
|---|
| 11218 | /* | 
|---|
| 11219 | * If the local group is more loaded than the selected | 
|---|
| 11220 | * busiest group don't try to pull any tasks. | 
|---|
| 11221 | */ | 
|---|
| 11222 | if (local->avg_load >= busiest->avg_load) { | 
|---|
| 11223 | env->imbalance = 0; | 
|---|
| 11224 | return; | 
|---|
| 11225 | } | 
|---|
| 11226 |  | 
|---|
| 11227 | sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / | 
|---|
| 11228 | sds->total_capacity; | 
|---|
| 11229 |  | 
|---|
| 11230 | /* | 
|---|
| 11231 | * If the local group is more loaded than the average system | 
|---|
| 11232 | * load, don't try to pull any tasks. | 
|---|
| 11233 | */ | 
|---|
| 11234 | if (local->avg_load >= sds->avg_load) { | 
|---|
| 11235 | env->imbalance = 0; | 
|---|
| 11236 | return; | 
|---|
| 11237 | } | 
|---|
| 11238 |  | 
|---|
| 11239 | } | 
|---|
| 11240 |  | 
|---|
| 11241 | /* | 
|---|
| 11242 | * Both group are or will become overloaded and we're trying to get all | 
|---|
| 11243 | * the CPUs to the average_load, so we don't want to push ourselves | 
|---|
| 11244 | * above the average load, nor do we wish to reduce the max loaded CPU | 
|---|
| 11245 | * below the average load. At the same time, we also don't want to | 
|---|
| 11246 | * reduce the group load below the group capacity. Thus we look for | 
|---|
| 11247 | * the minimum possible imbalance. | 
|---|
| 11248 | */ | 
|---|
| 11249 | env->migration_type = migrate_load; | 
|---|
| 11250 | env->imbalance = min( | 
|---|
| 11251 | (busiest->avg_load - sds->avg_load) * busiest->group_capacity, | 
|---|
| 11252 | (sds->avg_load - local->avg_load) * local->group_capacity | 
|---|
| 11253 | ) / SCHED_CAPACITY_SCALE; | 
|---|
| 11254 | } | 
|---|
| 11255 |  | 
|---|
| 11256 | /******* sched_balance_find_src_group() helpers end here *********************/ | 
|---|
| 11257 |  | 
|---|
| 11258 | /* | 
|---|
| 11259 | * Decision matrix according to the local and busiest group type: | 
|---|
| 11260 | * | 
|---|
| 11261 | * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded | 
|---|
| 11262 | * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced | 
|---|
| 11263 | * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced | 
|---|
| 11264 | * misfit_task      force     N/A        N/A    N/A  N/A        N/A | 
|---|
| 11265 | * asym_packing     force     force      N/A    N/A  force      force | 
|---|
| 11266 | * imbalanced       force     force      N/A    N/A  force      force | 
|---|
| 11267 | * overloaded       force     force      N/A    N/A  force      avg_load | 
|---|
| 11268 | * | 
|---|
| 11269 | * N/A :      Not Applicable because already filtered while updating | 
|---|
| 11270 | *            statistics. | 
|---|
| 11271 | * balanced : The system is balanced for these 2 groups. | 
|---|
| 11272 | * force :    Calculate the imbalance as load migration is probably needed. | 
|---|
| 11273 | * avg_load : Only if imbalance is significant enough. | 
|---|
| 11274 | * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite | 
|---|
| 11275 | *            different in groups. | 
|---|
| 11276 | */ | 
|---|
| 11277 |  | 
|---|
| 11278 | /** | 
|---|
| 11279 | * sched_balance_find_src_group - Returns the busiest group within the sched_domain | 
|---|
| 11280 | * if there is an imbalance. | 
|---|
| 11281 | * @env: The load balancing environment. | 
|---|
| 11282 | * | 
|---|
| 11283 | * Also calculates the amount of runnable load which should be moved | 
|---|
| 11284 | * to restore balance. | 
|---|
| 11285 | * | 
|---|
| 11286 | * Return:	- The busiest group if imbalance exists. | 
|---|
| 11287 | */ | 
|---|
| 11288 | static struct sched_group *sched_balance_find_src_group(struct lb_env *env) | 
|---|
| 11289 | { | 
|---|
| 11290 | struct sg_lb_stats *local, *busiest; | 
|---|
| 11291 | struct sd_lb_stats sds; | 
|---|
| 11292 |  | 
|---|
| 11293 | init_sd_lb_stats(sds: &sds); | 
|---|
| 11294 |  | 
|---|
| 11295 | /* | 
|---|
| 11296 | * Compute the various statistics relevant for load balancing at | 
|---|
| 11297 | * this level. | 
|---|
| 11298 | */ | 
|---|
| 11299 | update_sd_lb_stats(env, sds: &sds); | 
|---|
| 11300 |  | 
|---|
| 11301 | /* There is no busy sibling group to pull tasks from */ | 
|---|
| 11302 | if (!sds.busiest) | 
|---|
| 11303 | goto out_balanced; | 
|---|
| 11304 |  | 
|---|
| 11305 | busiest = &sds.busiest_stat; | 
|---|
| 11306 |  | 
|---|
| 11307 | /* Misfit tasks should be dealt with regardless of the avg load */ | 
|---|
| 11308 | if (busiest->group_type == group_misfit_task) | 
|---|
| 11309 | goto force_balance; | 
|---|
| 11310 |  | 
|---|
| 11311 | if (!is_rd_overutilized(rd: env->dst_rq->rd) && | 
|---|
| 11312 | rcu_dereference(env->dst_rq->rd->pd)) | 
|---|
| 11313 | goto out_balanced; | 
|---|
| 11314 |  | 
|---|
| 11315 | /* ASYM feature bypasses nice load balance check */ | 
|---|
| 11316 | if (busiest->group_type == group_asym_packing) | 
|---|
| 11317 | goto force_balance; | 
|---|
| 11318 |  | 
|---|
| 11319 | /* | 
|---|
| 11320 | * If the busiest group is imbalanced the below checks don't | 
|---|
| 11321 | * work because they assume all things are equal, which typically | 
|---|
| 11322 | * isn't true due to cpus_ptr constraints and the like. | 
|---|
| 11323 | */ | 
|---|
| 11324 | if (busiest->group_type == group_imbalanced) | 
|---|
| 11325 | goto force_balance; | 
|---|
| 11326 |  | 
|---|
| 11327 | local = &sds.local_stat; | 
|---|
| 11328 | /* | 
|---|
| 11329 | * If the local group is busier than the selected busiest group | 
|---|
| 11330 | * don't try and pull any tasks. | 
|---|
| 11331 | */ | 
|---|
| 11332 | if (local->group_type > busiest->group_type) | 
|---|
| 11333 | goto out_balanced; | 
|---|
| 11334 |  | 
|---|
| 11335 | /* | 
|---|
| 11336 | * When groups are overloaded, use the avg_load to ensure fairness | 
|---|
| 11337 | * between tasks. | 
|---|
| 11338 | */ | 
|---|
| 11339 | if (local->group_type == group_overloaded) { | 
|---|
| 11340 | /* | 
|---|
| 11341 | * If the local group is more loaded than the selected | 
|---|
| 11342 | * busiest group don't try to pull any tasks. | 
|---|
| 11343 | */ | 
|---|
| 11344 | if (local->avg_load >= busiest->avg_load) | 
|---|
| 11345 | goto out_balanced; | 
|---|
| 11346 |  | 
|---|
| 11347 | /* XXX broken for overlapping NUMA groups */ | 
|---|
| 11348 | sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / | 
|---|
| 11349 | sds.total_capacity; | 
|---|
| 11350 |  | 
|---|
| 11351 | /* | 
|---|
| 11352 | * Don't pull any tasks if this group is already above the | 
|---|
| 11353 | * domain average load. | 
|---|
| 11354 | */ | 
|---|
| 11355 | if (local->avg_load >= sds.avg_load) | 
|---|
| 11356 | goto out_balanced; | 
|---|
| 11357 |  | 
|---|
| 11358 | /* | 
|---|
| 11359 | * If the busiest group is more loaded, use imbalance_pct to be | 
|---|
| 11360 | * conservative. | 
|---|
| 11361 | */ | 
|---|
| 11362 | if (100 * busiest->avg_load <= | 
|---|
| 11363 | env->sd->imbalance_pct * local->avg_load) | 
|---|
| 11364 | goto out_balanced; | 
|---|
| 11365 | } | 
|---|
| 11366 |  | 
|---|
| 11367 | /* | 
|---|
| 11368 | * Try to move all excess tasks to a sibling domain of the busiest | 
|---|
| 11369 | * group's child domain. | 
|---|
| 11370 | */ | 
|---|
| 11371 | if (sds.prefer_sibling && local->group_type == group_has_spare && | 
|---|
| 11372 | sibling_imbalance(env, sds: &sds, busiest, local) > 1) | 
|---|
| 11373 | goto force_balance; | 
|---|
| 11374 |  | 
|---|
| 11375 | if (busiest->group_type != group_overloaded) { | 
|---|
| 11376 | if (!env->idle) { | 
|---|
| 11377 | /* | 
|---|
| 11378 | * If the busiest group is not overloaded (and as a | 
|---|
| 11379 | * result the local one too) but this CPU is already | 
|---|
| 11380 | * busy, let another idle CPU try to pull task. | 
|---|
| 11381 | */ | 
|---|
| 11382 | goto out_balanced; | 
|---|
| 11383 | } | 
|---|
| 11384 |  | 
|---|
| 11385 | if (busiest->group_type == group_smt_balance && | 
|---|
| 11386 | smt_vs_nonsmt_groups(sg1: sds.local, sg2: sds.busiest)) { | 
|---|
| 11387 | /* Let non SMT CPU pull from SMT CPU sharing with sibling */ | 
|---|
| 11388 | goto force_balance; | 
|---|
| 11389 | } | 
|---|
| 11390 |  | 
|---|
| 11391 | if (busiest->group_weight > 1 && | 
|---|
| 11392 | local->idle_cpus <= (busiest->idle_cpus + 1)) { | 
|---|
| 11393 | /* | 
|---|
| 11394 | * If the busiest group is not overloaded | 
|---|
| 11395 | * and there is no imbalance between this and busiest | 
|---|
| 11396 | * group wrt idle CPUs, it is balanced. The imbalance | 
|---|
| 11397 | * becomes significant if the diff is greater than 1 | 
|---|
| 11398 | * otherwise we might end up to just move the imbalance | 
|---|
| 11399 | * on another group. Of course this applies only if | 
|---|
| 11400 | * there is more than 1 CPU per group. | 
|---|
| 11401 | */ | 
|---|
| 11402 | goto out_balanced; | 
|---|
| 11403 | } | 
|---|
| 11404 |  | 
|---|
| 11405 | if (busiest->sum_h_nr_running == 1) { | 
|---|
| 11406 | /* | 
|---|
| 11407 | * busiest doesn't have any tasks waiting to run | 
|---|
| 11408 | */ | 
|---|
| 11409 | goto out_balanced; | 
|---|
| 11410 | } | 
|---|
| 11411 | } | 
|---|
| 11412 |  | 
|---|
| 11413 | force_balance: | 
|---|
| 11414 | /* Looks like there is an imbalance. Compute it */ | 
|---|
| 11415 | calculate_imbalance(env, sds: &sds); | 
|---|
| 11416 | return env->imbalance ? sds.busiest : NULL; | 
|---|
| 11417 |  | 
|---|
| 11418 | out_balanced: | 
|---|
| 11419 | env->imbalance = 0; | 
|---|
| 11420 | return NULL; | 
|---|
| 11421 | } | 
|---|
| 11422 |  | 
|---|
| 11423 | /* | 
|---|
| 11424 | * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. | 
|---|
| 11425 | */ | 
|---|
| 11426 | static struct rq *sched_balance_find_src_rq(struct lb_env *env, | 
|---|
| 11427 | struct sched_group *group) | 
|---|
| 11428 | { | 
|---|
| 11429 | struct rq *busiest = NULL, *rq; | 
|---|
| 11430 | unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; | 
|---|
| 11431 | unsigned int busiest_nr = 0; | 
|---|
| 11432 | int i; | 
|---|
| 11433 |  | 
|---|
| 11434 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { | 
|---|
| 11435 | unsigned long capacity, load, util; | 
|---|
| 11436 | unsigned int nr_running; | 
|---|
| 11437 | enum fbq_type rt; | 
|---|
| 11438 |  | 
|---|
| 11439 | rq = cpu_rq(i); | 
|---|
| 11440 | rt = fbq_classify_rq(rq); | 
|---|
| 11441 |  | 
|---|
| 11442 | /* | 
|---|
| 11443 | * We classify groups/runqueues into three groups: | 
|---|
| 11444 | *  - regular: there are !numa tasks | 
|---|
| 11445 | *  - remote:  there are numa tasks that run on the 'wrong' node | 
|---|
| 11446 | *  - all:     there is no distinction | 
|---|
| 11447 | * | 
|---|
| 11448 | * In order to avoid migrating ideally placed numa tasks, | 
|---|
| 11449 | * ignore those when there's better options. | 
|---|
| 11450 | * | 
|---|
| 11451 | * If we ignore the actual busiest queue to migrate another | 
|---|
| 11452 | * task, the next balance pass can still reduce the busiest | 
|---|
| 11453 | * queue by moving tasks around inside the node. | 
|---|
| 11454 | * | 
|---|
| 11455 | * If we cannot move enough load due to this classification | 
|---|
| 11456 | * the next pass will adjust the group classification and | 
|---|
| 11457 | * allow migration of more tasks. | 
|---|
| 11458 | * | 
|---|
| 11459 | * Both cases only affect the total convergence complexity. | 
|---|
| 11460 | */ | 
|---|
| 11461 | if (rt > env->fbq_type) | 
|---|
| 11462 | continue; | 
|---|
| 11463 |  | 
|---|
| 11464 | nr_running = rq->cfs.h_nr_runnable; | 
|---|
| 11465 | if (!nr_running) | 
|---|
| 11466 | continue; | 
|---|
| 11467 |  | 
|---|
| 11468 | capacity = capacity_of(cpu: i); | 
|---|
| 11469 |  | 
|---|
| 11470 | /* | 
|---|
| 11471 | * For ASYM_CPUCAPACITY domains, don't pick a CPU that could | 
|---|
| 11472 | * eventually lead to active_balancing high->low capacity. | 
|---|
| 11473 | * Higher per-CPU capacity is considered better than balancing | 
|---|
| 11474 | * average load. | 
|---|
| 11475 | */ | 
|---|
| 11476 | if (env->sd->flags & SD_ASYM_CPUCAPACITY && | 
|---|
| 11477 | !capacity_greater(capacity_of(env->dst_cpu), capacity) && | 
|---|
| 11478 | nr_running == 1) | 
|---|
| 11479 | continue; | 
|---|
| 11480 |  | 
|---|
| 11481 | /* | 
|---|
| 11482 | * Make sure we only pull tasks from a CPU of lower priority | 
|---|
| 11483 | * when balancing between SMT siblings. | 
|---|
| 11484 | * | 
|---|
| 11485 | * If balancing between cores, let lower priority CPUs help | 
|---|
| 11486 | * SMT cores with more than one busy sibling. | 
|---|
| 11487 | */ | 
|---|
| 11488 | if (sched_asym(sd: env->sd, dst_cpu: i, src_cpu: env->dst_cpu) && nr_running == 1) | 
|---|
| 11489 | continue; | 
|---|
| 11490 |  | 
|---|
| 11491 | switch (env->migration_type) { | 
|---|
| 11492 | case migrate_load: | 
|---|
| 11493 | /* | 
|---|
| 11494 | * When comparing with load imbalance, use cpu_load() | 
|---|
| 11495 | * which is not scaled with the CPU capacity. | 
|---|
| 11496 | */ | 
|---|
| 11497 | load = cpu_load(rq); | 
|---|
| 11498 |  | 
|---|
| 11499 | if (nr_running == 1 && load > env->imbalance && | 
|---|
| 11500 | !check_cpu_capacity(rq, sd: env->sd)) | 
|---|
| 11501 | break; | 
|---|
| 11502 |  | 
|---|
| 11503 | /* | 
|---|
| 11504 | * For the load comparisons with the other CPUs, | 
|---|
| 11505 | * consider the cpu_load() scaled with the CPU | 
|---|
| 11506 | * capacity, so that the load can be moved away | 
|---|
| 11507 | * from the CPU that is potentially running at a | 
|---|
| 11508 | * lower capacity. | 
|---|
| 11509 | * | 
|---|
| 11510 | * Thus we're looking for max(load_i / capacity_i), | 
|---|
| 11511 | * crosswise multiplication to rid ourselves of the | 
|---|
| 11512 | * division works out to: | 
|---|
| 11513 | * load_i * capacity_j > load_j * capacity_i; | 
|---|
| 11514 | * where j is our previous maximum. | 
|---|
| 11515 | */ | 
|---|
| 11516 | if (load * busiest_capacity > busiest_load * capacity) { | 
|---|
| 11517 | busiest_load = load; | 
|---|
| 11518 | busiest_capacity = capacity; | 
|---|
| 11519 | busiest = rq; | 
|---|
| 11520 | } | 
|---|
| 11521 | break; | 
|---|
| 11522 |  | 
|---|
| 11523 | case migrate_util: | 
|---|
| 11524 | util = cpu_util_cfs_boost(cpu: i); | 
|---|
| 11525 |  | 
|---|
| 11526 | /* | 
|---|
| 11527 | * Don't try to pull utilization from a CPU with one | 
|---|
| 11528 | * running task. Whatever its utilization, we will fail | 
|---|
| 11529 | * detach the task. | 
|---|
| 11530 | */ | 
|---|
| 11531 | if (nr_running <= 1) | 
|---|
| 11532 | continue; | 
|---|
| 11533 |  | 
|---|
| 11534 | if (busiest_util < util) { | 
|---|
| 11535 | busiest_util = util; | 
|---|
| 11536 | busiest = rq; | 
|---|
| 11537 | } | 
|---|
| 11538 | break; | 
|---|
| 11539 |  | 
|---|
| 11540 | case migrate_task: | 
|---|
| 11541 | if (busiest_nr < nr_running) { | 
|---|
| 11542 | busiest_nr = nr_running; | 
|---|
| 11543 | busiest = rq; | 
|---|
| 11544 | } | 
|---|
| 11545 | break; | 
|---|
| 11546 |  | 
|---|
| 11547 | case migrate_misfit: | 
|---|
| 11548 | /* | 
|---|
| 11549 | * For ASYM_CPUCAPACITY domains with misfit tasks we | 
|---|
| 11550 | * simply seek the "biggest" misfit task. | 
|---|
| 11551 | */ | 
|---|
| 11552 | if (rq->misfit_task_load > busiest_load) { | 
|---|
| 11553 | busiest_load = rq->misfit_task_load; | 
|---|
| 11554 | busiest = rq; | 
|---|
| 11555 | } | 
|---|
| 11556 |  | 
|---|
| 11557 | break; | 
|---|
| 11558 |  | 
|---|
| 11559 | } | 
|---|
| 11560 | } | 
|---|
| 11561 |  | 
|---|
| 11562 | return busiest; | 
|---|
| 11563 | } | 
|---|
| 11564 |  | 
|---|
| 11565 | /* | 
|---|
| 11566 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
|---|
| 11567 | * so long as it is large enough. | 
|---|
| 11568 | */ | 
|---|
| 11569 | #define MAX_PINNED_INTERVAL	512 | 
|---|
| 11570 |  | 
|---|
| 11571 | static inline bool | 
|---|
| 11572 | asym_active_balance(struct lb_env *env) | 
|---|
| 11573 | { | 
|---|
| 11574 | /* | 
|---|
| 11575 | * ASYM_PACKING needs to force migrate tasks from busy but lower | 
|---|
| 11576 | * priority CPUs in order to pack all tasks in the highest priority | 
|---|
| 11577 | * CPUs. When done between cores, do it only if the whole core if the | 
|---|
| 11578 | * whole core is idle. | 
|---|
| 11579 | * | 
|---|
| 11580 | * If @env::src_cpu is an SMT core with busy siblings, let | 
|---|
| 11581 | * the lower priority @env::dst_cpu help it. Do not follow | 
|---|
| 11582 | * CPU priority. | 
|---|
| 11583 | */ | 
|---|
| 11584 | return env->idle && sched_use_asym_prio(sd: env->sd, cpu: env->dst_cpu) && | 
|---|
| 11585 | (sched_asym_prefer(a: env->dst_cpu, b: env->src_cpu) || | 
|---|
| 11586 | !sched_use_asym_prio(sd: env->sd, cpu: env->src_cpu)); | 
|---|
| 11587 | } | 
|---|
| 11588 |  | 
|---|
| 11589 | static inline bool | 
|---|
| 11590 | imbalanced_active_balance(struct lb_env *env) | 
|---|
| 11591 | { | 
|---|
| 11592 | struct sched_domain *sd = env->sd; | 
|---|
| 11593 |  | 
|---|
| 11594 | /* | 
|---|
| 11595 | * The imbalanced case includes the case of pinned tasks preventing a fair | 
|---|
| 11596 | * distribution of the load on the system but also the even distribution of the | 
|---|
| 11597 | * threads on a system with spare capacity | 
|---|
| 11598 | */ | 
|---|
| 11599 | if ((env->migration_type == migrate_task) && | 
|---|
| 11600 | (sd->nr_balance_failed > sd->cache_nice_tries+2)) | 
|---|
| 11601 | return 1; | 
|---|
| 11602 |  | 
|---|
| 11603 | return 0; | 
|---|
| 11604 | } | 
|---|
| 11605 |  | 
|---|
| 11606 | static int need_active_balance(struct lb_env *env) | 
|---|
| 11607 | { | 
|---|
| 11608 | struct sched_domain *sd = env->sd; | 
|---|
| 11609 |  | 
|---|
| 11610 | if (asym_active_balance(env)) | 
|---|
| 11611 | return 1; | 
|---|
| 11612 |  | 
|---|
| 11613 | if (imbalanced_active_balance(env)) | 
|---|
| 11614 | return 1; | 
|---|
| 11615 |  | 
|---|
| 11616 | /* | 
|---|
| 11617 | * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. | 
|---|
| 11618 | * It's worth migrating the task if the src_cpu's capacity is reduced | 
|---|
| 11619 | * because of other sched_class or IRQs if more capacity stays | 
|---|
| 11620 | * available on dst_cpu. | 
|---|
| 11621 | */ | 
|---|
| 11622 | if (env->idle && | 
|---|
| 11623 | (env->src_rq->cfs.h_nr_runnable == 1)) { | 
|---|
| 11624 | if ((check_cpu_capacity(rq: env->src_rq, sd)) && | 
|---|
| 11625 | (capacity_of(cpu: env->src_cpu)*sd->imbalance_pct < capacity_of(cpu: env->dst_cpu)*100)) | 
|---|
| 11626 | return 1; | 
|---|
| 11627 | } | 
|---|
| 11628 |  | 
|---|
| 11629 | if (env->migration_type == migrate_misfit) | 
|---|
| 11630 | return 1; | 
|---|
| 11631 |  | 
|---|
| 11632 | return 0; | 
|---|
| 11633 | } | 
|---|
| 11634 |  | 
|---|
| 11635 | static int active_load_balance_cpu_stop(void *data); | 
|---|
| 11636 |  | 
|---|
| 11637 | static int should_we_balance(struct lb_env *env) | 
|---|
| 11638 | { | 
|---|
| 11639 | struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); | 
|---|
| 11640 | struct sched_group *sg = env->sd->groups; | 
|---|
| 11641 | int cpu, idle_smt = -1; | 
|---|
| 11642 |  | 
|---|
| 11643 | /* | 
|---|
| 11644 | * Ensure the balancing environment is consistent; can happen | 
|---|
| 11645 | * when the softirq triggers 'during' hotplug. | 
|---|
| 11646 | */ | 
|---|
| 11647 | if (!cpumask_test_cpu(cpu: env->dst_cpu, cpumask: env->cpus)) | 
|---|
| 11648 | return 0; | 
|---|
| 11649 |  | 
|---|
| 11650 | /* | 
|---|
| 11651 | * In the newly idle case, we will allow all the CPUs | 
|---|
| 11652 | * to do the newly idle load balance. | 
|---|
| 11653 | * | 
|---|
| 11654 | * However, we bail out if we already have tasks or a wakeup pending, | 
|---|
| 11655 | * to optimize wakeup latency. | 
|---|
| 11656 | */ | 
|---|
| 11657 | if (env->idle == CPU_NEWLY_IDLE) { | 
|---|
| 11658 | if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) | 
|---|
| 11659 | return 0; | 
|---|
| 11660 | return 1; | 
|---|
| 11661 | } | 
|---|
| 11662 |  | 
|---|
| 11663 | cpumask_copy(dstp: swb_cpus, srcp: group_balance_mask(sg)); | 
|---|
| 11664 | /* Try to find first idle CPU */ | 
|---|
| 11665 | for_each_cpu_and(cpu, swb_cpus, env->cpus) { | 
|---|
| 11666 | if (!idle_cpu(cpu)) | 
|---|
| 11667 | continue; | 
|---|
| 11668 |  | 
|---|
| 11669 | /* | 
|---|
| 11670 | * Don't balance to idle SMT in busy core right away when | 
|---|
| 11671 | * balancing cores, but remember the first idle SMT CPU for | 
|---|
| 11672 | * later consideration.  Find CPU on an idle core first. | 
|---|
| 11673 | */ | 
|---|
| 11674 | if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { | 
|---|
| 11675 | if (idle_smt == -1) | 
|---|
| 11676 | idle_smt = cpu; | 
|---|
| 11677 | /* | 
|---|
| 11678 | * If the core is not idle, and first SMT sibling which is | 
|---|
| 11679 | * idle has been found, then its not needed to check other | 
|---|
| 11680 | * SMT siblings for idleness: | 
|---|
| 11681 | */ | 
|---|
| 11682 | #ifdef CONFIG_SCHED_SMT | 
|---|
| 11683 | cpumask_andnot(dstp: swb_cpus, src1p: swb_cpus, src2p: cpu_smt_mask(cpu)); | 
|---|
| 11684 | #endif | 
|---|
| 11685 | continue; | 
|---|
| 11686 | } | 
|---|
| 11687 |  | 
|---|
| 11688 | /* | 
|---|
| 11689 | * Are we the first idle core in a non-SMT domain or higher, | 
|---|
| 11690 | * or the first idle CPU in a SMT domain? | 
|---|
| 11691 | */ | 
|---|
| 11692 | return cpu == env->dst_cpu; | 
|---|
| 11693 | } | 
|---|
| 11694 |  | 
|---|
| 11695 | /* Are we the first idle CPU with busy siblings? */ | 
|---|
| 11696 | if (idle_smt != -1) | 
|---|
| 11697 | return idle_smt == env->dst_cpu; | 
|---|
| 11698 |  | 
|---|
| 11699 | /* Are we the first CPU of this group ? */ | 
|---|
| 11700 | return group_balance_cpu(sg) == env->dst_cpu; | 
|---|
| 11701 | } | 
|---|
| 11702 |  | 
|---|
| 11703 | static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, | 
|---|
| 11704 | enum cpu_idle_type idle) | 
|---|
| 11705 | { | 
|---|
| 11706 | if (!schedstat_enabled()) | 
|---|
| 11707 | return; | 
|---|
| 11708 |  | 
|---|
| 11709 | switch (env->migration_type) { | 
|---|
| 11710 | case migrate_load: | 
|---|
| 11711 | __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); | 
|---|
| 11712 | break; | 
|---|
| 11713 | case migrate_util: | 
|---|
| 11714 | __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); | 
|---|
| 11715 | break; | 
|---|
| 11716 | case migrate_task: | 
|---|
| 11717 | __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); | 
|---|
| 11718 | break; | 
|---|
| 11719 | case migrate_misfit: | 
|---|
| 11720 | __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); | 
|---|
| 11721 | break; | 
|---|
| 11722 | } | 
|---|
| 11723 | } | 
|---|
| 11724 |  | 
|---|
| 11725 | /* | 
|---|
| 11726 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|---|
| 11727 | * tasks if there is an imbalance. | 
|---|
| 11728 | */ | 
|---|
| 11729 | static int sched_balance_rq(int this_cpu, struct rq *this_rq, | 
|---|
| 11730 | struct sched_domain *sd, enum cpu_idle_type idle, | 
|---|
| 11731 | int *continue_balancing) | 
|---|
| 11732 | { | 
|---|
| 11733 | int ld_moved, cur_ld_moved, active_balance = 0; | 
|---|
| 11734 | struct sched_domain *sd_parent = sd->parent; | 
|---|
| 11735 | struct sched_group *group; | 
|---|
| 11736 | struct rq *busiest; | 
|---|
| 11737 | struct rq_flags rf; | 
|---|
| 11738 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); | 
|---|
| 11739 | struct lb_env env = { | 
|---|
| 11740 | .sd		= sd, | 
|---|
| 11741 | .dst_cpu	= this_cpu, | 
|---|
| 11742 | .dst_rq		= this_rq, | 
|---|
| 11743 | .dst_grpmask    = group_balance_mask(sg: sd->groups), | 
|---|
| 11744 | .idle		= idle, | 
|---|
| 11745 | .loop_break	= SCHED_NR_MIGRATE_BREAK, | 
|---|
| 11746 | .cpus		= cpus, | 
|---|
| 11747 | .fbq_type	= all, | 
|---|
| 11748 | .tasks		= LIST_HEAD_INIT(env.tasks), | 
|---|
| 11749 | }; | 
|---|
| 11750 |  | 
|---|
| 11751 | cpumask_and(dstp: cpus, src1p: sched_domain_span(sd), cpu_active_mask); | 
|---|
| 11752 |  | 
|---|
| 11753 | schedstat_inc(sd->lb_count[idle]); | 
|---|
| 11754 |  | 
|---|
| 11755 | redo: | 
|---|
| 11756 | if (!should_we_balance(env: &env)) { | 
|---|
| 11757 | *continue_balancing = 0; | 
|---|
| 11758 | goto out_balanced; | 
|---|
| 11759 | } | 
|---|
| 11760 |  | 
|---|
| 11761 | group = sched_balance_find_src_group(env: &env); | 
|---|
| 11762 | if (!group) { | 
|---|
| 11763 | schedstat_inc(sd->lb_nobusyg[idle]); | 
|---|
| 11764 | goto out_balanced; | 
|---|
| 11765 | } | 
|---|
| 11766 |  | 
|---|
| 11767 | busiest = sched_balance_find_src_rq(env: &env, group); | 
|---|
| 11768 | if (!busiest) { | 
|---|
| 11769 | schedstat_inc(sd->lb_nobusyq[idle]); | 
|---|
| 11770 | goto out_balanced; | 
|---|
| 11771 | } | 
|---|
| 11772 |  | 
|---|
| 11773 | WARN_ON_ONCE(busiest == env.dst_rq); | 
|---|
| 11774 |  | 
|---|
| 11775 | update_lb_imbalance_stat(env: &env, sd, idle); | 
|---|
| 11776 |  | 
|---|
| 11777 | env.src_cpu = busiest->cpu; | 
|---|
| 11778 | env.src_rq = busiest; | 
|---|
| 11779 |  | 
|---|
| 11780 | ld_moved = 0; | 
|---|
| 11781 | /* Clear this flag as soon as we find a pullable task */ | 
|---|
| 11782 | env.flags |= LBF_ALL_PINNED; | 
|---|
| 11783 | if (busiest->nr_running > 1) { | 
|---|
| 11784 | /* | 
|---|
| 11785 | * Attempt to move tasks. If sched_balance_find_src_group has found | 
|---|
| 11786 | * an imbalance but busiest->nr_running <= 1, the group is | 
|---|
| 11787 | * still unbalanced. ld_moved simply stays zero, so it is | 
|---|
| 11788 | * correctly treated as an imbalance. | 
|---|
| 11789 | */ | 
|---|
| 11790 | env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running); | 
|---|
| 11791 |  | 
|---|
| 11792 | more_balance: | 
|---|
| 11793 | rq_lock_irqsave(rq: busiest, rf: &rf); | 
|---|
| 11794 | update_rq_clock(rq: busiest); | 
|---|
| 11795 |  | 
|---|
| 11796 | /* | 
|---|
| 11797 | * cur_ld_moved - load moved in current iteration | 
|---|
| 11798 | * ld_moved     - cumulative load moved across iterations | 
|---|
| 11799 | */ | 
|---|
| 11800 | cur_ld_moved = detach_tasks(env: &env); | 
|---|
| 11801 |  | 
|---|
| 11802 | /* | 
|---|
| 11803 | * We've detached some tasks from busiest_rq. Every | 
|---|
| 11804 | * task is masked "TASK_ON_RQ_MIGRATING", so we can safely | 
|---|
| 11805 | * unlock busiest->lock, and we are able to be sure | 
|---|
| 11806 | * that nobody can manipulate the tasks in parallel. | 
|---|
| 11807 | * See task_rq_lock() family for the details. | 
|---|
| 11808 | */ | 
|---|
| 11809 |  | 
|---|
| 11810 | rq_unlock(rq: busiest, rf: &rf); | 
|---|
| 11811 |  | 
|---|
| 11812 | if (cur_ld_moved) { | 
|---|
| 11813 | attach_tasks(env: &env); | 
|---|
| 11814 | ld_moved += cur_ld_moved; | 
|---|
| 11815 | } | 
|---|
| 11816 |  | 
|---|
| 11817 | local_irq_restore(rf.flags); | 
|---|
| 11818 |  | 
|---|
| 11819 | if (env.flags & LBF_NEED_BREAK) { | 
|---|
| 11820 | env.flags &= ~LBF_NEED_BREAK; | 
|---|
| 11821 | goto more_balance; | 
|---|
| 11822 | } | 
|---|
| 11823 |  | 
|---|
| 11824 | /* | 
|---|
| 11825 | * Revisit (affine) tasks on src_cpu that couldn't be moved to | 
|---|
| 11826 | * us and move them to an alternate dst_cpu in our sched_group | 
|---|
| 11827 | * where they can run. The upper limit on how many times we | 
|---|
| 11828 | * iterate on same src_cpu is dependent on number of CPUs in our | 
|---|
| 11829 | * sched_group. | 
|---|
| 11830 | * | 
|---|
| 11831 | * This changes load balance semantics a bit on who can move | 
|---|
| 11832 | * load to a given_cpu. In addition to the given_cpu itself | 
|---|
| 11833 | * (or a ilb_cpu acting on its behalf where given_cpu is | 
|---|
| 11834 | * nohz-idle), we now have balance_cpu in a position to move | 
|---|
| 11835 | * load to given_cpu. In rare situations, this may cause | 
|---|
| 11836 | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding | 
|---|
| 11837 | * _independently_ and at _same_ time to move some load to | 
|---|
| 11838 | * given_cpu) causing excess load to be moved to given_cpu. | 
|---|
| 11839 | * This however should not happen so much in practice and | 
|---|
| 11840 | * moreover subsequent load balance cycles should correct the | 
|---|
| 11841 | * excess load moved. | 
|---|
| 11842 | */ | 
|---|
| 11843 | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { | 
|---|
| 11844 |  | 
|---|
| 11845 | /* Prevent to re-select dst_cpu via env's CPUs */ | 
|---|
| 11846 | __cpumask_clear_cpu(cpu: env.dst_cpu, dstp: env.cpus); | 
|---|
| 11847 |  | 
|---|
| 11848 | env.dst_rq	 = cpu_rq(env.new_dst_cpu); | 
|---|
| 11849 | env.dst_cpu	 = env.new_dst_cpu; | 
|---|
| 11850 | env.flags	&= ~LBF_DST_PINNED; | 
|---|
| 11851 | env.loop	 = 0; | 
|---|
| 11852 | env.loop_break	 = SCHED_NR_MIGRATE_BREAK; | 
|---|
| 11853 |  | 
|---|
| 11854 | /* | 
|---|
| 11855 | * Go back to "more_balance" rather than "redo" since we | 
|---|
| 11856 | * need to continue with same src_cpu. | 
|---|
| 11857 | */ | 
|---|
| 11858 | goto more_balance; | 
|---|
| 11859 | } | 
|---|
| 11860 |  | 
|---|
| 11861 | /* | 
|---|
| 11862 | * We failed to reach balance because of affinity. | 
|---|
| 11863 | */ | 
|---|
| 11864 | if (sd_parent) { | 
|---|
| 11865 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; | 
|---|
| 11866 |  | 
|---|
| 11867 | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) | 
|---|
| 11868 | *group_imbalance = 1; | 
|---|
| 11869 | } | 
|---|
| 11870 |  | 
|---|
| 11871 | /* All tasks on this runqueue were pinned by CPU affinity */ | 
|---|
| 11872 | if (unlikely(env.flags & LBF_ALL_PINNED)) { | 
|---|
| 11873 | __cpumask_clear_cpu(cpu: cpu_of(rq: busiest), dstp: cpus); | 
|---|
| 11874 | /* | 
|---|
| 11875 | * Attempting to continue load balancing at the current | 
|---|
| 11876 | * sched_domain level only makes sense if there are | 
|---|
| 11877 | * active CPUs remaining as possible busiest CPUs to | 
|---|
| 11878 | * pull load from which are not contained within the | 
|---|
| 11879 | * destination group that is receiving any migrated | 
|---|
| 11880 | * load. | 
|---|
| 11881 | */ | 
|---|
| 11882 | if (!cpumask_subset(src1p: cpus, src2p: env.dst_grpmask)) { | 
|---|
| 11883 | env.loop = 0; | 
|---|
| 11884 | env.loop_break = SCHED_NR_MIGRATE_BREAK; | 
|---|
| 11885 | goto redo; | 
|---|
| 11886 | } | 
|---|
| 11887 | goto out_all_pinned; | 
|---|
| 11888 | } | 
|---|
| 11889 | } | 
|---|
| 11890 |  | 
|---|
| 11891 | if (!ld_moved) { | 
|---|
| 11892 | schedstat_inc(sd->lb_failed[idle]); | 
|---|
| 11893 | /* | 
|---|
| 11894 | * Increment the failure counter only on periodic balance. | 
|---|
| 11895 | * We do not want newidle balance, which can be very | 
|---|
| 11896 | * frequent, pollute the failure counter causing | 
|---|
| 11897 | * excessive cache_hot migrations and active balances. | 
|---|
| 11898 | * | 
|---|
| 11899 | * Similarly for migration_misfit which is not related to | 
|---|
| 11900 | * load/util migration, don't pollute nr_balance_failed. | 
|---|
| 11901 | */ | 
|---|
| 11902 | if (idle != CPU_NEWLY_IDLE && | 
|---|
| 11903 | env.migration_type != migrate_misfit) | 
|---|
| 11904 | sd->nr_balance_failed++; | 
|---|
| 11905 |  | 
|---|
| 11906 | if (need_active_balance(env: &env)) { | 
|---|
| 11907 | unsigned long flags; | 
|---|
| 11908 |  | 
|---|
| 11909 | raw_spin_rq_lock_irqsave(busiest, flags); | 
|---|
| 11910 |  | 
|---|
| 11911 | /* | 
|---|
| 11912 | * Don't kick the active_load_balance_cpu_stop, | 
|---|
| 11913 | * if the curr task on busiest CPU can't be | 
|---|
| 11914 | * moved to this_cpu: | 
|---|
| 11915 | */ | 
|---|
| 11916 | if (!cpumask_test_cpu(cpu: this_cpu, cpumask: busiest->curr->cpus_ptr)) { | 
|---|
| 11917 | raw_spin_rq_unlock_irqrestore(rq: busiest, flags); | 
|---|
| 11918 | goto out_one_pinned; | 
|---|
| 11919 | } | 
|---|
| 11920 |  | 
|---|
| 11921 | /* Record that we found at least one task that could run on this_cpu */ | 
|---|
| 11922 | env.flags &= ~LBF_ALL_PINNED; | 
|---|
| 11923 |  | 
|---|
| 11924 | /* | 
|---|
| 11925 | * ->active_balance synchronizes accesses to | 
|---|
| 11926 | * ->active_balance_work.  Once set, it's cleared | 
|---|
| 11927 | * only after active load balance is finished. | 
|---|
| 11928 | */ | 
|---|
| 11929 | if (!busiest->active_balance) { | 
|---|
| 11930 | busiest->active_balance = 1; | 
|---|
| 11931 | busiest->push_cpu = this_cpu; | 
|---|
| 11932 | active_balance = 1; | 
|---|
| 11933 | } | 
|---|
| 11934 |  | 
|---|
| 11935 | preempt_disable(); | 
|---|
| 11936 | raw_spin_rq_unlock_irqrestore(rq: busiest, flags); | 
|---|
| 11937 | if (active_balance) { | 
|---|
| 11938 | stop_one_cpu_nowait(cpu: cpu_of(rq: busiest), | 
|---|
| 11939 | fn: active_load_balance_cpu_stop, arg: busiest, | 
|---|
| 11940 | work_buf: &busiest->active_balance_work); | 
|---|
| 11941 | } | 
|---|
| 11942 | preempt_enable(); | 
|---|
| 11943 | } | 
|---|
| 11944 | } else { | 
|---|
| 11945 | sd->nr_balance_failed = 0; | 
|---|
| 11946 | } | 
|---|
| 11947 |  | 
|---|
| 11948 | if (likely(!active_balance) || need_active_balance(env: &env)) { | 
|---|
| 11949 | /* We were unbalanced, so reset the balancing interval */ | 
|---|
| 11950 | sd->balance_interval = sd->min_interval; | 
|---|
| 11951 | } | 
|---|
| 11952 |  | 
|---|
| 11953 | goto out; | 
|---|
| 11954 |  | 
|---|
| 11955 | out_balanced: | 
|---|
| 11956 | /* | 
|---|
| 11957 | * We reach balance although we may have faced some affinity | 
|---|
| 11958 | * constraints. Clear the imbalance flag only if other tasks got | 
|---|
| 11959 | * a chance to move and fix the imbalance. | 
|---|
| 11960 | */ | 
|---|
| 11961 | if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { | 
|---|
| 11962 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; | 
|---|
| 11963 |  | 
|---|
| 11964 | if (*group_imbalance) | 
|---|
| 11965 | *group_imbalance = 0; | 
|---|
| 11966 | } | 
|---|
| 11967 |  | 
|---|
| 11968 | out_all_pinned: | 
|---|
| 11969 | /* | 
|---|
| 11970 | * We reach balance because all tasks are pinned at this level so | 
|---|
| 11971 | * we can't migrate them. Let the imbalance flag set so parent level | 
|---|
| 11972 | * can try to migrate them. | 
|---|
| 11973 | */ | 
|---|
| 11974 | schedstat_inc(sd->lb_balanced[idle]); | 
|---|
| 11975 |  | 
|---|
| 11976 | sd->nr_balance_failed = 0; | 
|---|
| 11977 |  | 
|---|
| 11978 | out_one_pinned: | 
|---|
| 11979 | ld_moved = 0; | 
|---|
| 11980 |  | 
|---|
| 11981 | /* | 
|---|
| 11982 | * sched_balance_newidle() disregards balance intervals, so we could | 
|---|
| 11983 | * repeatedly reach this code, which would lead to balance_interval | 
|---|
| 11984 | * skyrocketing in a short amount of time. Skip the balance_interval | 
|---|
| 11985 | * increase logic to avoid that. | 
|---|
| 11986 | * | 
|---|
| 11987 | * Similarly misfit migration which is not necessarily an indication of | 
|---|
| 11988 | * the system being busy and requires lb to backoff to let it settle | 
|---|
| 11989 | * down. | 
|---|
| 11990 | */ | 
|---|
| 11991 | if (env.idle == CPU_NEWLY_IDLE || | 
|---|
| 11992 | env.migration_type == migrate_misfit) | 
|---|
| 11993 | goto out; | 
|---|
| 11994 |  | 
|---|
| 11995 | /* tune up the balancing interval */ | 
|---|
| 11996 | if ((env.flags & LBF_ALL_PINNED && | 
|---|
| 11997 | sd->balance_interval < MAX_PINNED_INTERVAL) || | 
|---|
| 11998 | sd->balance_interval < sd->max_interval) | 
|---|
| 11999 | sd->balance_interval *= 2; | 
|---|
| 12000 | out: | 
|---|
| 12001 | return ld_moved; | 
|---|
| 12002 | } | 
|---|
| 12003 |  | 
|---|
| 12004 | static inline unsigned long | 
|---|
| 12005 | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) | 
|---|
| 12006 | { | 
|---|
| 12007 | unsigned long interval = sd->balance_interval; | 
|---|
| 12008 |  | 
|---|
| 12009 | if (cpu_busy) | 
|---|
| 12010 | interval *= sd->busy_factor; | 
|---|
| 12011 |  | 
|---|
| 12012 | /* scale ms to jiffies */ | 
|---|
| 12013 | interval = msecs_to_jiffies(m: interval); | 
|---|
| 12014 |  | 
|---|
| 12015 | /* | 
|---|
| 12016 | * Reduce likelihood of busy balancing at higher domains racing with | 
|---|
| 12017 | * balancing at lower domains by preventing their balancing periods | 
|---|
| 12018 | * from being multiples of each other. | 
|---|
| 12019 | */ | 
|---|
| 12020 | if (cpu_busy) | 
|---|
| 12021 | interval -= 1; | 
|---|
| 12022 |  | 
|---|
| 12023 | interval = clamp(interval, 1UL, max_load_balance_interval); | 
|---|
| 12024 |  | 
|---|
| 12025 | return interval; | 
|---|
| 12026 | } | 
|---|
| 12027 |  | 
|---|
| 12028 | static inline void | 
|---|
| 12029 | update_next_balance(struct sched_domain *sd, unsigned long *next_balance) | 
|---|
| 12030 | { | 
|---|
| 12031 | unsigned long interval, next; | 
|---|
| 12032 |  | 
|---|
| 12033 | /* used by idle balance, so cpu_busy = 0 */ | 
|---|
| 12034 | interval = get_sd_balance_interval(sd, cpu_busy: 0); | 
|---|
| 12035 | next = sd->last_balance + interval; | 
|---|
| 12036 |  | 
|---|
| 12037 | if (time_after(*next_balance, next)) | 
|---|
| 12038 | *next_balance = next; | 
|---|
| 12039 | } | 
|---|
| 12040 |  | 
|---|
| 12041 | /* | 
|---|
| 12042 | * active_load_balance_cpu_stop is run by the CPU stopper. It pushes | 
|---|
| 12043 | * running tasks off the busiest CPU onto idle CPUs. It requires at | 
|---|
| 12044 | * least 1 task to be running on each physical CPU where possible, and | 
|---|
| 12045 | * avoids physical / logical imbalances. | 
|---|
| 12046 | */ | 
|---|
| 12047 | static int active_load_balance_cpu_stop(void *data) | 
|---|
| 12048 | { | 
|---|
| 12049 | struct rq *busiest_rq = data; | 
|---|
| 12050 | int busiest_cpu = cpu_of(rq: busiest_rq); | 
|---|
| 12051 | int target_cpu = busiest_rq->push_cpu; | 
|---|
| 12052 | struct rq *target_rq = cpu_rq(target_cpu); | 
|---|
| 12053 | struct sched_domain *sd; | 
|---|
| 12054 | struct task_struct *p = NULL; | 
|---|
| 12055 | struct rq_flags rf; | 
|---|
| 12056 |  | 
|---|
| 12057 | rq_lock_irq(rq: busiest_rq, rf: &rf); | 
|---|
| 12058 | /* | 
|---|
| 12059 | * Between queueing the stop-work and running it is a hole in which | 
|---|
| 12060 | * CPUs can become inactive. We should not move tasks from or to | 
|---|
| 12061 | * inactive CPUs. | 
|---|
| 12062 | */ | 
|---|
| 12063 | if (!cpu_active(cpu: busiest_cpu) || !cpu_active(cpu: target_cpu)) | 
|---|
| 12064 | goto out_unlock; | 
|---|
| 12065 |  | 
|---|
| 12066 | /* Make sure the requested CPU hasn't gone down in the meantime: */ | 
|---|
| 12067 | if (unlikely(busiest_cpu != smp_processor_id() || | 
|---|
| 12068 | !busiest_rq->active_balance)) | 
|---|
| 12069 | goto out_unlock; | 
|---|
| 12070 |  | 
|---|
| 12071 | /* Is there any task to move? */ | 
|---|
| 12072 | if (busiest_rq->nr_running <= 1) | 
|---|
| 12073 | goto out_unlock; | 
|---|
| 12074 |  | 
|---|
| 12075 | /* | 
|---|
| 12076 | * This condition is "impossible", if it occurs | 
|---|
| 12077 | * we need to fix it. Originally reported by | 
|---|
| 12078 | * Bjorn Helgaas on a 128-CPU setup. | 
|---|
| 12079 | */ | 
|---|
| 12080 | WARN_ON_ONCE(busiest_rq == target_rq); | 
|---|
| 12081 |  | 
|---|
| 12082 | /* Search for an sd spanning us and the target CPU. */ | 
|---|
| 12083 | rcu_read_lock(); | 
|---|
| 12084 | for_each_domain(target_cpu, sd) { | 
|---|
| 12085 | if (cpumask_test_cpu(cpu: busiest_cpu, cpumask: sched_domain_span(sd))) | 
|---|
| 12086 | break; | 
|---|
| 12087 | } | 
|---|
| 12088 |  | 
|---|
| 12089 | if (likely(sd)) { | 
|---|
| 12090 | struct lb_env env = { | 
|---|
| 12091 | .sd		= sd, | 
|---|
| 12092 | .dst_cpu	= target_cpu, | 
|---|
| 12093 | .dst_rq		= target_rq, | 
|---|
| 12094 | .src_cpu	= busiest_rq->cpu, | 
|---|
| 12095 | .src_rq		= busiest_rq, | 
|---|
| 12096 | .idle		= CPU_IDLE, | 
|---|
| 12097 | .flags		= LBF_ACTIVE_LB, | 
|---|
| 12098 | }; | 
|---|
| 12099 |  | 
|---|
| 12100 | schedstat_inc(sd->alb_count); | 
|---|
| 12101 | update_rq_clock(rq: busiest_rq); | 
|---|
| 12102 |  | 
|---|
| 12103 | p = detach_one_task(env: &env); | 
|---|
| 12104 | if (p) { | 
|---|
| 12105 | schedstat_inc(sd->alb_pushed); | 
|---|
| 12106 | /* Active balancing done, reset the failure counter. */ | 
|---|
| 12107 | sd->nr_balance_failed = 0; | 
|---|
| 12108 | } else { | 
|---|
| 12109 | schedstat_inc(sd->alb_failed); | 
|---|
| 12110 | } | 
|---|
| 12111 | } | 
|---|
| 12112 | rcu_read_unlock(); | 
|---|
| 12113 | out_unlock: | 
|---|
| 12114 | busiest_rq->active_balance = 0; | 
|---|
| 12115 | rq_unlock(rq: busiest_rq, rf: &rf); | 
|---|
| 12116 |  | 
|---|
| 12117 | if (p) | 
|---|
| 12118 | attach_one_task(rq: target_rq, p); | 
|---|
| 12119 |  | 
|---|
| 12120 | local_irq_enable(); | 
|---|
| 12121 |  | 
|---|
| 12122 | return 0; | 
|---|
| 12123 | } | 
|---|
| 12124 |  | 
|---|
| 12125 | /* | 
|---|
| 12126 | * This flag serializes load-balancing passes over large domains | 
|---|
| 12127 | * (above the NODE topology level) - only one load-balancing instance | 
|---|
| 12128 | * may run at a time, to reduce overhead on very large systems with | 
|---|
| 12129 | * lots of CPUs and large NUMA distances. | 
|---|
| 12130 | * | 
|---|
| 12131 | * - Note that load-balancing passes triggered while another one | 
|---|
| 12132 | *   is executing are skipped and not re-tried. | 
|---|
| 12133 | * | 
|---|
| 12134 | * - Also note that this does not serialize rebalance_domains() | 
|---|
| 12135 | *   execution, as non-SD_SERIALIZE domains will still be | 
|---|
| 12136 | *   load-balanced in parallel. | 
|---|
| 12137 | */ | 
|---|
| 12138 | static atomic_t sched_balance_running = ATOMIC_INIT(0); | 
|---|
| 12139 |  | 
|---|
| 12140 | /* | 
|---|
| 12141 | * Scale the max sched_balance_rq interval with the number of CPUs in the system. | 
|---|
| 12142 | * This trades load-balance latency on larger machines for less cross talk. | 
|---|
| 12143 | */ | 
|---|
| 12144 | void update_max_interval(void) | 
|---|
| 12145 | { | 
|---|
| 12146 | max_load_balance_interval = HZ*num_online_cpus()/10; | 
|---|
| 12147 | } | 
|---|
| 12148 |  | 
|---|
| 12149 | static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) | 
|---|
| 12150 | { | 
|---|
| 12151 | if (cost > sd->max_newidle_lb_cost) { | 
|---|
| 12152 | /* | 
|---|
| 12153 | * Track max cost of a domain to make sure to not delay the | 
|---|
| 12154 | * next wakeup on the CPU. | 
|---|
| 12155 | * | 
|---|
| 12156 | * sched_balance_newidle() bumps the cost whenever newidle | 
|---|
| 12157 | * balance fails, and we don't want things to grow out of | 
|---|
| 12158 | * control.  Use the sysctl_sched_migration_cost as the upper | 
|---|
| 12159 | * limit, plus a litle extra to avoid off by ones. | 
|---|
| 12160 | */ | 
|---|
| 12161 | sd->max_newidle_lb_cost = | 
|---|
| 12162 | min(cost, sysctl_sched_migration_cost + 200); | 
|---|
| 12163 | sd->last_decay_max_lb_cost = jiffies; | 
|---|
| 12164 | } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { | 
|---|
| 12165 | /* | 
|---|
| 12166 | * Decay the newidle max times by ~1% per second to ensure that | 
|---|
| 12167 | * it is not outdated and the current max cost is actually | 
|---|
| 12168 | * shorter. | 
|---|
| 12169 | */ | 
|---|
| 12170 | sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; | 
|---|
| 12171 | sd->last_decay_max_lb_cost = jiffies; | 
|---|
| 12172 |  | 
|---|
| 12173 | return true; | 
|---|
| 12174 | } | 
|---|
| 12175 |  | 
|---|
| 12176 | return false; | 
|---|
| 12177 | } | 
|---|
| 12178 |  | 
|---|
| 12179 | /* | 
|---|
| 12180 | * It checks each scheduling domain to see if it is due to be balanced, | 
|---|
| 12181 | * and initiates a balancing operation if so. | 
|---|
| 12182 | * | 
|---|
| 12183 | * Balancing parameters are set up in init_sched_domains. | 
|---|
| 12184 | */ | 
|---|
| 12185 | static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) | 
|---|
| 12186 | { | 
|---|
| 12187 | int continue_balancing = 1; | 
|---|
| 12188 | int cpu = rq->cpu; | 
|---|
| 12189 | int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); | 
|---|
| 12190 | unsigned long interval; | 
|---|
| 12191 | struct sched_domain *sd; | 
|---|
| 12192 | /* Earliest time when we have to do rebalance again */ | 
|---|
| 12193 | unsigned long next_balance = jiffies + 60*HZ; | 
|---|
| 12194 | int update_next_balance = 0; | 
|---|
| 12195 | int need_serialize, need_decay = 0; | 
|---|
| 12196 | u64 max_cost = 0; | 
|---|
| 12197 |  | 
|---|
| 12198 | rcu_read_lock(); | 
|---|
| 12199 | for_each_domain(cpu, sd) { | 
|---|
| 12200 | /* | 
|---|
| 12201 | * Decay the newidle max times here because this is a regular | 
|---|
| 12202 | * visit to all the domains. | 
|---|
| 12203 | */ | 
|---|
| 12204 | need_decay = update_newidle_cost(sd, cost: 0); | 
|---|
| 12205 | max_cost += sd->max_newidle_lb_cost; | 
|---|
| 12206 |  | 
|---|
| 12207 | /* | 
|---|
| 12208 | * Stop the load balance at this level. There is another | 
|---|
| 12209 | * CPU in our sched group which is doing load balancing more | 
|---|
| 12210 | * actively. | 
|---|
| 12211 | */ | 
|---|
| 12212 | if (!continue_balancing) { | 
|---|
| 12213 | if (need_decay) | 
|---|
| 12214 | continue; | 
|---|
| 12215 | break; | 
|---|
| 12216 | } | 
|---|
| 12217 |  | 
|---|
| 12218 | interval = get_sd_balance_interval(sd, cpu_busy: busy); | 
|---|
| 12219 |  | 
|---|
| 12220 | need_serialize = sd->flags & SD_SERIALIZE; | 
|---|
| 12221 | if (need_serialize) { | 
|---|
| 12222 | if (atomic_cmpxchg_acquire(v: &sched_balance_running, old: 0, new: 1)) | 
|---|
| 12223 | goto out; | 
|---|
| 12224 | } | 
|---|
| 12225 |  | 
|---|
| 12226 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | 
|---|
| 12227 | if (sched_balance_rq(this_cpu: cpu, this_rq: rq, sd, idle, continue_balancing: &continue_balancing)) { | 
|---|
| 12228 | /* | 
|---|
| 12229 | * The LBF_DST_PINNED logic could have changed | 
|---|
| 12230 | * env->dst_cpu, so we can't know our idle | 
|---|
| 12231 | * state even if we migrated tasks. Update it. | 
|---|
| 12232 | */ | 
|---|
| 12233 | idle = idle_cpu(cpu); | 
|---|
| 12234 | busy = !idle && !sched_idle_cpu(cpu); | 
|---|
| 12235 | } | 
|---|
| 12236 | sd->last_balance = jiffies; | 
|---|
| 12237 | interval = get_sd_balance_interval(sd, cpu_busy: busy); | 
|---|
| 12238 | } | 
|---|
| 12239 | if (need_serialize) | 
|---|
| 12240 | atomic_set_release(v: &sched_balance_running, i: 0); | 
|---|
| 12241 | out: | 
|---|
| 12242 | if (time_after(next_balance, sd->last_balance + interval)) { | 
|---|
| 12243 | next_balance = sd->last_balance + interval; | 
|---|
| 12244 | update_next_balance = 1; | 
|---|
| 12245 | } | 
|---|
| 12246 | } | 
|---|
| 12247 | if (need_decay) { | 
|---|
| 12248 | /* | 
|---|
| 12249 | * Ensure the rq-wide value also decays but keep it at a | 
|---|
| 12250 | * reasonable floor to avoid funnies with rq->avg_idle. | 
|---|
| 12251 | */ | 
|---|
| 12252 | rq->max_idle_balance_cost = | 
|---|
| 12253 | max((u64)sysctl_sched_migration_cost, max_cost); | 
|---|
| 12254 | } | 
|---|
| 12255 | rcu_read_unlock(); | 
|---|
| 12256 |  | 
|---|
| 12257 | /* | 
|---|
| 12258 | * next_balance will be updated only when there is a need. | 
|---|
| 12259 | * When the cpu is attached to null domain for ex, it will not be | 
|---|
| 12260 | * updated. | 
|---|
| 12261 | */ | 
|---|
| 12262 | if (likely(update_next_balance)) | 
|---|
| 12263 | rq->next_balance = next_balance; | 
|---|
| 12264 |  | 
|---|
| 12265 | } | 
|---|
| 12266 |  | 
|---|
| 12267 | static inline int on_null_domain(struct rq *rq) | 
|---|
| 12268 | { | 
|---|
| 12269 | return unlikely(!rcu_dereference_sched(rq->sd)); | 
|---|
| 12270 | } | 
|---|
| 12271 |  | 
|---|
| 12272 | #ifdef CONFIG_NO_HZ_COMMON | 
|---|
| 12273 | /* | 
|---|
| 12274 | * NOHZ idle load balancing (ILB) details: | 
|---|
| 12275 | * | 
|---|
| 12276 | * - When one of the busy CPUs notices that there may be an idle rebalancing | 
|---|
| 12277 | *   needed, they will kick the idle load balancer, which then does idle | 
|---|
| 12278 | *   load balancing for all the idle CPUs. | 
|---|
| 12279 | */ | 
|---|
| 12280 | static inline int find_new_ilb(void) | 
|---|
| 12281 | { | 
|---|
| 12282 | const struct cpumask *hk_mask; | 
|---|
| 12283 | int ilb_cpu; | 
|---|
| 12284 |  | 
|---|
| 12285 | hk_mask = housekeeping_cpumask(type: HK_TYPE_KERNEL_NOISE); | 
|---|
| 12286 |  | 
|---|
| 12287 | for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { | 
|---|
| 12288 |  | 
|---|
| 12289 | if (ilb_cpu == smp_processor_id()) | 
|---|
| 12290 | continue; | 
|---|
| 12291 |  | 
|---|
| 12292 | if (idle_cpu(cpu: ilb_cpu)) | 
|---|
| 12293 | return ilb_cpu; | 
|---|
| 12294 | } | 
|---|
| 12295 |  | 
|---|
| 12296 | return -1; | 
|---|
| 12297 | } | 
|---|
| 12298 |  | 
|---|
| 12299 | /* | 
|---|
| 12300 | * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU | 
|---|
| 12301 | * SMP function call (IPI). | 
|---|
| 12302 | * | 
|---|
| 12303 | * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set | 
|---|
| 12304 | * (if there is one). | 
|---|
| 12305 | */ | 
|---|
| 12306 | static void kick_ilb(unsigned int flags) | 
|---|
| 12307 | { | 
|---|
| 12308 | int ilb_cpu; | 
|---|
| 12309 |  | 
|---|
| 12310 | /* | 
|---|
| 12311 | * Increase nohz.next_balance only when if full ilb is triggered but | 
|---|
| 12312 | * not if we only update stats. | 
|---|
| 12313 | */ | 
|---|
| 12314 | if (flags & NOHZ_BALANCE_KICK) | 
|---|
| 12315 | nohz.next_balance = jiffies+1; | 
|---|
| 12316 |  | 
|---|
| 12317 | ilb_cpu = find_new_ilb(); | 
|---|
| 12318 | if (ilb_cpu < 0) | 
|---|
| 12319 | return; | 
|---|
| 12320 |  | 
|---|
| 12321 | /* | 
|---|
| 12322 | * Don't bother if no new NOHZ balance work items for ilb_cpu, | 
|---|
| 12323 | * i.e. all bits in flags are already set in ilb_cpu. | 
|---|
| 12324 | */ | 
|---|
| 12325 | if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) | 
|---|
| 12326 | return; | 
|---|
| 12327 |  | 
|---|
| 12328 | /* | 
|---|
| 12329 | * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets | 
|---|
| 12330 | * the first flag owns it; cleared by nohz_csd_func(). | 
|---|
| 12331 | */ | 
|---|
| 12332 | flags = atomic_fetch_or(i: flags, nohz_flags(ilb_cpu)); | 
|---|
| 12333 | if (flags & NOHZ_KICK_MASK) | 
|---|
| 12334 | return; | 
|---|
| 12335 |  | 
|---|
| 12336 | /* | 
|---|
| 12337 | * This way we generate an IPI on the target CPU which | 
|---|
| 12338 | * is idle, and the softirq performing NOHZ idle load balancing | 
|---|
| 12339 | * will be run before returning from the IPI. | 
|---|
| 12340 | */ | 
|---|
| 12341 | smp_call_function_single_async(cpu: ilb_cpu, csd: &cpu_rq(ilb_cpu)->nohz_csd); | 
|---|
| 12342 | } | 
|---|
| 12343 |  | 
|---|
| 12344 | /* | 
|---|
| 12345 | * Current decision point for kicking the idle load balancer in the presence | 
|---|
| 12346 | * of idle CPUs in the system. | 
|---|
| 12347 | */ | 
|---|
| 12348 | static void nohz_balancer_kick(struct rq *rq) | 
|---|
| 12349 | { | 
|---|
| 12350 | unsigned long now = jiffies; | 
|---|
| 12351 | struct sched_domain_shared *sds; | 
|---|
| 12352 | struct sched_domain *sd; | 
|---|
| 12353 | int nr_busy, i, cpu = rq->cpu; | 
|---|
| 12354 | unsigned int flags = 0; | 
|---|
| 12355 |  | 
|---|
| 12356 | if (unlikely(rq->idle_balance)) | 
|---|
| 12357 | return; | 
|---|
| 12358 |  | 
|---|
| 12359 | /* | 
|---|
| 12360 | * We may be recently in ticked or tickless idle mode. At the first | 
|---|
| 12361 | * busy tick after returning from idle, we will update the busy stats. | 
|---|
| 12362 | */ | 
|---|
| 12363 | nohz_balance_exit_idle(rq); | 
|---|
| 12364 |  | 
|---|
| 12365 | /* | 
|---|
| 12366 | * None are in tickless mode and hence no need for NOHZ idle load | 
|---|
| 12367 | * balancing: | 
|---|
| 12368 | */ | 
|---|
| 12369 | if (likely(!atomic_read(&nohz.nr_cpus))) | 
|---|
| 12370 | return; | 
|---|
| 12371 |  | 
|---|
| 12372 | if (READ_ONCE(nohz.has_blocked) && | 
|---|
| 12373 | time_after(now, READ_ONCE(nohz.next_blocked))) | 
|---|
| 12374 | flags = NOHZ_STATS_KICK; | 
|---|
| 12375 |  | 
|---|
| 12376 | if (time_before(now, nohz.next_balance)) | 
|---|
| 12377 | goto out; | 
|---|
| 12378 |  | 
|---|
| 12379 | if (rq->nr_running >= 2) { | 
|---|
| 12380 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; | 
|---|
| 12381 | goto out; | 
|---|
| 12382 | } | 
|---|
| 12383 |  | 
|---|
| 12384 | rcu_read_lock(); | 
|---|
| 12385 |  | 
|---|
| 12386 | sd = rcu_dereference(rq->sd); | 
|---|
| 12387 | if (sd) { | 
|---|
| 12388 | /* | 
|---|
| 12389 | * If there's a runnable CFS task and the current CPU has reduced | 
|---|
| 12390 | * capacity, kick the ILB to see if there's a better CPU to run on: | 
|---|
| 12391 | */ | 
|---|
| 12392 | if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { | 
|---|
| 12393 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; | 
|---|
| 12394 | goto unlock; | 
|---|
| 12395 | } | 
|---|
| 12396 | } | 
|---|
| 12397 |  | 
|---|
| 12398 | sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); | 
|---|
| 12399 | if (sd) { | 
|---|
| 12400 | /* | 
|---|
| 12401 | * When ASYM_PACKING; see if there's a more preferred CPU | 
|---|
| 12402 | * currently idle; in which case, kick the ILB to move tasks | 
|---|
| 12403 | * around. | 
|---|
| 12404 | * | 
|---|
| 12405 | * When balancing between cores, all the SMT siblings of the | 
|---|
| 12406 | * preferred CPU must be idle. | 
|---|
| 12407 | */ | 
|---|
| 12408 | for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { | 
|---|
| 12409 | if (sched_asym(sd, dst_cpu: i, src_cpu: cpu)) { | 
|---|
| 12410 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; | 
|---|
| 12411 | goto unlock; | 
|---|
| 12412 | } | 
|---|
| 12413 | } | 
|---|
| 12414 | } | 
|---|
| 12415 |  | 
|---|
| 12416 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); | 
|---|
| 12417 | if (sd) { | 
|---|
| 12418 | /* | 
|---|
| 12419 | * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU | 
|---|
| 12420 | * to run the misfit task on. | 
|---|
| 12421 | */ | 
|---|
| 12422 | if (check_misfit_status(rq)) { | 
|---|
| 12423 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; | 
|---|
| 12424 | goto unlock; | 
|---|
| 12425 | } | 
|---|
| 12426 |  | 
|---|
| 12427 | /* | 
|---|
| 12428 | * For asymmetric systems, we do not want to nicely balance | 
|---|
| 12429 | * cache use, instead we want to embrace asymmetry and only | 
|---|
| 12430 | * ensure tasks have enough CPU capacity. | 
|---|
| 12431 | * | 
|---|
| 12432 | * Skip the LLC logic because it's not relevant in that case. | 
|---|
| 12433 | */ | 
|---|
| 12434 | goto unlock; | 
|---|
| 12435 | } | 
|---|
| 12436 |  | 
|---|
| 12437 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | 
|---|
| 12438 | if (sds) { | 
|---|
| 12439 | /* | 
|---|
| 12440 | * If there is an imbalance between LLC domains (IOW we could | 
|---|
| 12441 | * increase the overall cache utilization), we need a less-loaded LLC | 
|---|
| 12442 | * domain to pull some load from. Likewise, we may need to spread | 
|---|
| 12443 | * load within the current LLC domain (e.g. packed SMT cores but | 
|---|
| 12444 | * other CPUs are idle). We can't really know from here how busy | 
|---|
| 12445 | * the others are - so just get a NOHZ balance going if it looks | 
|---|
| 12446 | * like this LLC domain has tasks we could move. | 
|---|
| 12447 | */ | 
|---|
| 12448 | nr_busy = atomic_read(v: &sds->nr_busy_cpus); | 
|---|
| 12449 | if (nr_busy > 1) { | 
|---|
| 12450 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; | 
|---|
| 12451 | goto unlock; | 
|---|
| 12452 | } | 
|---|
| 12453 | } | 
|---|
| 12454 | unlock: | 
|---|
| 12455 | rcu_read_unlock(); | 
|---|
| 12456 | out: | 
|---|
| 12457 | if (READ_ONCE(nohz.needs_update)) | 
|---|
| 12458 | flags |= NOHZ_NEXT_KICK; | 
|---|
| 12459 |  | 
|---|
| 12460 | if (flags) | 
|---|
| 12461 | kick_ilb(flags); | 
|---|
| 12462 | } | 
|---|
| 12463 |  | 
|---|
| 12464 | static void set_cpu_sd_state_busy(int cpu) | 
|---|
| 12465 | { | 
|---|
| 12466 | struct sched_domain *sd; | 
|---|
| 12467 |  | 
|---|
| 12468 | rcu_read_lock(); | 
|---|
| 12469 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); | 
|---|
| 12470 |  | 
|---|
| 12471 | if (!sd || !sd->nohz_idle) | 
|---|
| 12472 | goto unlock; | 
|---|
| 12473 | sd->nohz_idle = 0; | 
|---|
| 12474 |  | 
|---|
| 12475 | atomic_inc(v: &sd->shared->nr_busy_cpus); | 
|---|
| 12476 | unlock: | 
|---|
| 12477 | rcu_read_unlock(); | 
|---|
| 12478 | } | 
|---|
| 12479 |  | 
|---|
| 12480 | void nohz_balance_exit_idle(struct rq *rq) | 
|---|
| 12481 | { | 
|---|
| 12482 | WARN_ON_ONCE(rq != this_rq()); | 
|---|
| 12483 |  | 
|---|
| 12484 | if (likely(!rq->nohz_tick_stopped)) | 
|---|
| 12485 | return; | 
|---|
| 12486 |  | 
|---|
| 12487 | rq->nohz_tick_stopped = 0; | 
|---|
| 12488 | cpumask_clear_cpu(cpu: rq->cpu, dstp: nohz.idle_cpus_mask); | 
|---|
| 12489 | atomic_dec(v: &nohz.nr_cpus); | 
|---|
| 12490 |  | 
|---|
| 12491 | set_cpu_sd_state_busy(rq->cpu); | 
|---|
| 12492 | } | 
|---|
| 12493 |  | 
|---|
| 12494 | static void set_cpu_sd_state_idle(int cpu) | 
|---|
| 12495 | { | 
|---|
| 12496 | struct sched_domain *sd; | 
|---|
| 12497 |  | 
|---|
| 12498 | rcu_read_lock(); | 
|---|
| 12499 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); | 
|---|
| 12500 |  | 
|---|
| 12501 | if (!sd || sd->nohz_idle) | 
|---|
| 12502 | goto unlock; | 
|---|
| 12503 | sd->nohz_idle = 1; | 
|---|
| 12504 |  | 
|---|
| 12505 | atomic_dec(v: &sd->shared->nr_busy_cpus); | 
|---|
| 12506 | unlock: | 
|---|
| 12507 | rcu_read_unlock(); | 
|---|
| 12508 | } | 
|---|
| 12509 |  | 
|---|
| 12510 | /* | 
|---|
| 12511 | * This routine will record that the CPU is going idle with tick stopped. | 
|---|
| 12512 | * This info will be used in performing idle load balancing in the future. | 
|---|
| 12513 | */ | 
|---|
| 12514 | void nohz_balance_enter_idle(int cpu) | 
|---|
| 12515 | { | 
|---|
| 12516 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 12517 |  | 
|---|
| 12518 | WARN_ON_ONCE(cpu != smp_processor_id()); | 
|---|
| 12519 |  | 
|---|
| 12520 | /* If this CPU is going down, then nothing needs to be done: */ | 
|---|
| 12521 | if (!cpu_active(cpu)) | 
|---|
| 12522 | return; | 
|---|
| 12523 |  | 
|---|
| 12524 | /* | 
|---|
| 12525 | * Can be set safely without rq->lock held | 
|---|
| 12526 | * If a clear happens, it will have evaluated last additions because | 
|---|
| 12527 | * rq->lock is held during the check and the clear | 
|---|
| 12528 | */ | 
|---|
| 12529 | rq->has_blocked_load = 1; | 
|---|
| 12530 |  | 
|---|
| 12531 | /* | 
|---|
| 12532 | * The tick is still stopped but load could have been added in the | 
|---|
| 12533 | * meantime. We set the nohz.has_blocked flag to trig a check of the | 
|---|
| 12534 | * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear | 
|---|
| 12535 | * of nohz.has_blocked can only happen after checking the new load | 
|---|
| 12536 | */ | 
|---|
| 12537 | if (rq->nohz_tick_stopped) | 
|---|
| 12538 | goto out; | 
|---|
| 12539 |  | 
|---|
| 12540 | /* If we're a completely isolated CPU, we don't play: */ | 
|---|
| 12541 | if (on_null_domain(rq)) | 
|---|
| 12542 | return; | 
|---|
| 12543 |  | 
|---|
| 12544 | rq->nohz_tick_stopped = 1; | 
|---|
| 12545 |  | 
|---|
| 12546 | cpumask_set_cpu(cpu, dstp: nohz.idle_cpus_mask); | 
|---|
| 12547 | atomic_inc(v: &nohz.nr_cpus); | 
|---|
| 12548 |  | 
|---|
| 12549 | /* | 
|---|
| 12550 | * Ensures that if nohz_idle_balance() fails to observe our | 
|---|
| 12551 | * @idle_cpus_mask store, it must observe the @has_blocked | 
|---|
| 12552 | * and @needs_update stores. | 
|---|
| 12553 | */ | 
|---|
| 12554 | smp_mb__after_atomic(); | 
|---|
| 12555 |  | 
|---|
| 12556 | set_cpu_sd_state_idle(cpu); | 
|---|
| 12557 |  | 
|---|
| 12558 | WRITE_ONCE(nohz.needs_update, 1); | 
|---|
| 12559 | out: | 
|---|
| 12560 | /* | 
|---|
| 12561 | * Each time a cpu enter idle, we assume that it has blocked load and | 
|---|
| 12562 | * enable the periodic update of the load of idle CPUs | 
|---|
| 12563 | */ | 
|---|
| 12564 | WRITE_ONCE(nohz.has_blocked, 1); | 
|---|
| 12565 | } | 
|---|
| 12566 |  | 
|---|
| 12567 | static bool update_nohz_stats(struct rq *rq) | 
|---|
| 12568 | { | 
|---|
| 12569 | unsigned int cpu = rq->cpu; | 
|---|
| 12570 |  | 
|---|
| 12571 | if (!rq->has_blocked_load) | 
|---|
| 12572 | return false; | 
|---|
| 12573 |  | 
|---|
| 12574 | if (!cpumask_test_cpu(cpu, cpumask: nohz.idle_cpus_mask)) | 
|---|
| 12575 | return false; | 
|---|
| 12576 |  | 
|---|
| 12577 | if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) | 
|---|
| 12578 | return true; | 
|---|
| 12579 |  | 
|---|
| 12580 | sched_balance_update_blocked_averages(cpu); | 
|---|
| 12581 |  | 
|---|
| 12582 | return rq->has_blocked_load; | 
|---|
| 12583 | } | 
|---|
| 12584 |  | 
|---|
| 12585 | /* | 
|---|
| 12586 | * Internal function that runs load balance for all idle CPUs. The load balance | 
|---|
| 12587 | * can be a simple update of blocked load or a complete load balance with | 
|---|
| 12588 | * tasks movement depending of flags. | 
|---|
| 12589 | */ | 
|---|
| 12590 | static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) | 
|---|
| 12591 | { | 
|---|
| 12592 | /* Earliest time when we have to do rebalance again */ | 
|---|
| 12593 | unsigned long now = jiffies; | 
|---|
| 12594 | unsigned long next_balance = now + 60*HZ; | 
|---|
| 12595 | bool has_blocked_load = false; | 
|---|
| 12596 | int update_next_balance = 0; | 
|---|
| 12597 | int this_cpu = this_rq->cpu; | 
|---|
| 12598 | int balance_cpu; | 
|---|
| 12599 | struct rq *rq; | 
|---|
| 12600 |  | 
|---|
| 12601 | WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); | 
|---|
| 12602 |  | 
|---|
| 12603 | /* | 
|---|
| 12604 | * We assume there will be no idle load after this update and clear | 
|---|
| 12605 | * the has_blocked flag. If a cpu enters idle in the mean time, it will | 
|---|
| 12606 | * set the has_blocked flag and trigger another update of idle load. | 
|---|
| 12607 | * Because a cpu that becomes idle, is added to idle_cpus_mask before | 
|---|
| 12608 | * setting the flag, we are sure to not clear the state and not | 
|---|
| 12609 | * check the load of an idle cpu. | 
|---|
| 12610 | * | 
|---|
| 12611 | * Same applies to idle_cpus_mask vs needs_update. | 
|---|
| 12612 | */ | 
|---|
| 12613 | if (flags & NOHZ_STATS_KICK) | 
|---|
| 12614 | WRITE_ONCE(nohz.has_blocked, 0); | 
|---|
| 12615 | if (flags & NOHZ_NEXT_KICK) | 
|---|
| 12616 | WRITE_ONCE(nohz.needs_update, 0); | 
|---|
| 12617 |  | 
|---|
| 12618 | /* | 
|---|
| 12619 | * Ensures that if we miss the CPU, we must see the has_blocked | 
|---|
| 12620 | * store from nohz_balance_enter_idle(). | 
|---|
| 12621 | */ | 
|---|
| 12622 | smp_mb(); | 
|---|
| 12623 |  | 
|---|
| 12624 | /* | 
|---|
| 12625 | * Start with the next CPU after this_cpu so we will end with this_cpu and let a | 
|---|
| 12626 | * chance for other idle cpu to pull load. | 
|---|
| 12627 | */ | 
|---|
| 12628 | for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) { | 
|---|
| 12629 | if (!idle_cpu(cpu: balance_cpu)) | 
|---|
| 12630 | continue; | 
|---|
| 12631 |  | 
|---|
| 12632 | /* | 
|---|
| 12633 | * If this CPU gets work to do, stop the load balancing | 
|---|
| 12634 | * work being done for other CPUs. Next load | 
|---|
| 12635 | * balancing owner will pick it up. | 
|---|
| 12636 | */ | 
|---|
| 12637 | if (!idle_cpu(cpu: this_cpu) && need_resched()) { | 
|---|
| 12638 | if (flags & NOHZ_STATS_KICK) | 
|---|
| 12639 | has_blocked_load = true; | 
|---|
| 12640 | if (flags & NOHZ_NEXT_KICK) | 
|---|
| 12641 | WRITE_ONCE(nohz.needs_update, 1); | 
|---|
| 12642 | goto abort; | 
|---|
| 12643 | } | 
|---|
| 12644 |  | 
|---|
| 12645 | rq = cpu_rq(balance_cpu); | 
|---|
| 12646 |  | 
|---|
| 12647 | if (flags & NOHZ_STATS_KICK) | 
|---|
| 12648 | has_blocked_load |= update_nohz_stats(rq); | 
|---|
| 12649 |  | 
|---|
| 12650 | /* | 
|---|
| 12651 | * If time for next balance is due, | 
|---|
| 12652 | * do the balance. | 
|---|
| 12653 | */ | 
|---|
| 12654 | if (time_after_eq(jiffies, rq->next_balance)) { | 
|---|
| 12655 | struct rq_flags rf; | 
|---|
| 12656 |  | 
|---|
| 12657 | rq_lock_irqsave(rq, rf: &rf); | 
|---|
| 12658 | update_rq_clock(rq); | 
|---|
| 12659 | rq_unlock_irqrestore(rq, rf: &rf); | 
|---|
| 12660 |  | 
|---|
| 12661 | if (flags & NOHZ_BALANCE_KICK) | 
|---|
| 12662 | sched_balance_domains(rq, idle: CPU_IDLE); | 
|---|
| 12663 | } | 
|---|
| 12664 |  | 
|---|
| 12665 | if (time_after(next_balance, rq->next_balance)) { | 
|---|
| 12666 | next_balance = rq->next_balance; | 
|---|
| 12667 | update_next_balance = 1; | 
|---|
| 12668 | } | 
|---|
| 12669 | } | 
|---|
| 12670 |  | 
|---|
| 12671 | /* | 
|---|
| 12672 | * next_balance will be updated only when there is a need. | 
|---|
| 12673 | * When the CPU is attached to null domain for ex, it will not be | 
|---|
| 12674 | * updated. | 
|---|
| 12675 | */ | 
|---|
| 12676 | if (likely(update_next_balance)) | 
|---|
| 12677 | nohz.next_balance = next_balance; | 
|---|
| 12678 |  | 
|---|
| 12679 | if (flags & NOHZ_STATS_KICK) | 
|---|
| 12680 | WRITE_ONCE(nohz.next_blocked, | 
|---|
| 12681 | now + msecs_to_jiffies(LOAD_AVG_PERIOD)); | 
|---|
| 12682 |  | 
|---|
| 12683 | abort: | 
|---|
| 12684 | /* There is still blocked load, enable periodic update */ | 
|---|
| 12685 | if (has_blocked_load) | 
|---|
| 12686 | WRITE_ONCE(nohz.has_blocked, 1); | 
|---|
| 12687 | } | 
|---|
| 12688 |  | 
|---|
| 12689 | /* | 
|---|
| 12690 | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the | 
|---|
| 12691 | * rebalancing for all the CPUs for whom scheduler ticks are stopped. | 
|---|
| 12692 | */ | 
|---|
| 12693 | static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | 
|---|
| 12694 | { | 
|---|
| 12695 | unsigned int flags = this_rq->nohz_idle_balance; | 
|---|
| 12696 |  | 
|---|
| 12697 | if (!flags) | 
|---|
| 12698 | return false; | 
|---|
| 12699 |  | 
|---|
| 12700 | this_rq->nohz_idle_balance = 0; | 
|---|
| 12701 |  | 
|---|
| 12702 | if (idle != CPU_IDLE) | 
|---|
| 12703 | return false; | 
|---|
| 12704 |  | 
|---|
| 12705 | _nohz_idle_balance(this_rq, flags); | 
|---|
| 12706 |  | 
|---|
| 12707 | return true; | 
|---|
| 12708 | } | 
|---|
| 12709 |  | 
|---|
| 12710 | /* | 
|---|
| 12711 | * Check if we need to directly run the ILB for updating blocked load before | 
|---|
| 12712 | * entering idle state. Here we run ILB directly without issuing IPIs. | 
|---|
| 12713 | * | 
|---|
| 12714 | * Note that when this function is called, the tick may not yet be stopped on | 
|---|
| 12715 | * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and | 
|---|
| 12716 | * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates | 
|---|
| 12717 | * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle | 
|---|
| 12718 | * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is | 
|---|
| 12719 | * called from this function on (this) CPU that's not yet in the mask. That's | 
|---|
| 12720 | * OK because the goal of nohz_run_idle_balance() is to run ILB only for | 
|---|
| 12721 | * updating the blocked load of already idle CPUs without waking up one of | 
|---|
| 12722 | * those idle CPUs and outside the preempt disable / IRQ off phase of the local | 
|---|
| 12723 | * cpu about to enter idle, because it can take a long time. | 
|---|
| 12724 | */ | 
|---|
| 12725 | void nohz_run_idle_balance(int cpu) | 
|---|
| 12726 | { | 
|---|
| 12727 | unsigned int flags; | 
|---|
| 12728 |  | 
|---|
| 12729 | flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); | 
|---|
| 12730 |  | 
|---|
| 12731 | /* | 
|---|
| 12732 | * Update the blocked load only if no SCHED_SOFTIRQ is about to happen | 
|---|
| 12733 | * (i.e. NOHZ_STATS_KICK set) and will do the same. | 
|---|
| 12734 | */ | 
|---|
| 12735 | if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) | 
|---|
| 12736 | _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); | 
|---|
| 12737 | } | 
|---|
| 12738 |  | 
|---|
| 12739 | static void nohz_newidle_balance(struct rq *this_rq) | 
|---|
| 12740 | { | 
|---|
| 12741 | int this_cpu = this_rq->cpu; | 
|---|
| 12742 |  | 
|---|
| 12743 | /* Will wake up very soon. No time for doing anything else*/ | 
|---|
| 12744 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | 
|---|
| 12745 | return; | 
|---|
| 12746 |  | 
|---|
| 12747 | /* Don't need to update blocked load of idle CPUs*/ | 
|---|
| 12748 | if (!READ_ONCE(nohz.has_blocked) || | 
|---|
| 12749 | time_before(jiffies, READ_ONCE(nohz.next_blocked))) | 
|---|
| 12750 | return; | 
|---|
| 12751 |  | 
|---|
| 12752 | /* | 
|---|
| 12753 | * Set the need to trigger ILB in order to update blocked load | 
|---|
| 12754 | * before entering idle state. | 
|---|
| 12755 | */ | 
|---|
| 12756 | atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); | 
|---|
| 12757 | } | 
|---|
| 12758 |  | 
|---|
| 12759 | #else /* !CONFIG_NO_HZ_COMMON: */ | 
|---|
| 12760 | static inline void nohz_balancer_kick(struct rq *rq) { } | 
|---|
| 12761 |  | 
|---|
| 12762 | static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | 
|---|
| 12763 | { | 
|---|
| 12764 | return false; | 
|---|
| 12765 | } | 
|---|
| 12766 |  | 
|---|
| 12767 | static inline void nohz_newidle_balance(struct rq *this_rq) { } | 
|---|
| 12768 | #endif /* !CONFIG_NO_HZ_COMMON */ | 
|---|
| 12769 |  | 
|---|
| 12770 | /* | 
|---|
| 12771 | * sched_balance_newidle is called by schedule() if this_cpu is about to become | 
|---|
| 12772 | * idle. Attempts to pull tasks from other CPUs. | 
|---|
| 12773 | * | 
|---|
| 12774 | * Returns: | 
|---|
| 12775 | *   < 0 - we released the lock and there are !fair tasks present | 
|---|
| 12776 | *     0 - failed, no new tasks | 
|---|
| 12777 | *   > 0 - success, new (fair) tasks present | 
|---|
| 12778 | */ | 
|---|
| 12779 | static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) | 
|---|
| 12780 | { | 
|---|
| 12781 | unsigned long next_balance = jiffies + HZ; | 
|---|
| 12782 | int this_cpu = this_rq->cpu; | 
|---|
| 12783 | int continue_balancing = 1; | 
|---|
| 12784 | u64 t0, t1, curr_cost = 0; | 
|---|
| 12785 | struct sched_domain *sd; | 
|---|
| 12786 | int pulled_task = 0; | 
|---|
| 12787 |  | 
|---|
| 12788 | update_misfit_status(NULL, rq: this_rq); | 
|---|
| 12789 |  | 
|---|
| 12790 | /* | 
|---|
| 12791 | * There is a task waiting to run. No need to search for one. | 
|---|
| 12792 | * Return 0; the task will be enqueued when switching to idle. | 
|---|
| 12793 | */ | 
|---|
| 12794 | if (this_rq->ttwu_pending) | 
|---|
| 12795 | return 0; | 
|---|
| 12796 |  | 
|---|
| 12797 | /* | 
|---|
| 12798 | * We must set idle_stamp _before_ calling sched_balance_rq() | 
|---|
| 12799 | * for CPU_NEWLY_IDLE, such that we measure the this duration | 
|---|
| 12800 | * as idle time. | 
|---|
| 12801 | */ | 
|---|
| 12802 | this_rq->idle_stamp = rq_clock(rq: this_rq); | 
|---|
| 12803 |  | 
|---|
| 12804 | /* | 
|---|
| 12805 | * Do not pull tasks towards !active CPUs... | 
|---|
| 12806 | */ | 
|---|
| 12807 | if (!cpu_active(cpu: this_cpu)) | 
|---|
| 12808 | return 0; | 
|---|
| 12809 |  | 
|---|
| 12810 | /* | 
|---|
| 12811 | * This is OK, because current is on_cpu, which avoids it being picked | 
|---|
| 12812 | * for load-balance and preemption/IRQs are still disabled avoiding | 
|---|
| 12813 | * further scheduler activity on it and we're being very careful to | 
|---|
| 12814 | * re-start the picking loop. | 
|---|
| 12815 | */ | 
|---|
| 12816 | rq_unpin_lock(rq: this_rq, rf); | 
|---|
| 12817 |  | 
|---|
| 12818 | rcu_read_lock(); | 
|---|
| 12819 | sd = rcu_dereference_check_sched_domain(this_rq->sd); | 
|---|
| 12820 |  | 
|---|
| 12821 | if (!get_rd_overloaded(rd: this_rq->rd) || | 
|---|
| 12822 | (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { | 
|---|
| 12823 |  | 
|---|
| 12824 | if (sd) | 
|---|
| 12825 | update_next_balance(sd, next_balance: &next_balance); | 
|---|
| 12826 | rcu_read_unlock(); | 
|---|
| 12827 |  | 
|---|
| 12828 | goto out; | 
|---|
| 12829 | } | 
|---|
| 12830 | rcu_read_unlock(); | 
|---|
| 12831 |  | 
|---|
| 12832 | raw_spin_rq_unlock(rq: this_rq); | 
|---|
| 12833 |  | 
|---|
| 12834 | t0 = sched_clock_cpu(cpu: this_cpu); | 
|---|
| 12835 | sched_balance_update_blocked_averages(cpu: this_cpu); | 
|---|
| 12836 |  | 
|---|
| 12837 | rcu_read_lock(); | 
|---|
| 12838 | for_each_domain(this_cpu, sd) { | 
|---|
| 12839 | u64 domain_cost; | 
|---|
| 12840 |  | 
|---|
| 12841 | update_next_balance(sd, next_balance: &next_balance); | 
|---|
| 12842 |  | 
|---|
| 12843 | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) | 
|---|
| 12844 | break; | 
|---|
| 12845 |  | 
|---|
| 12846 | if (sd->flags & SD_BALANCE_NEWIDLE) { | 
|---|
| 12847 |  | 
|---|
| 12848 | pulled_task = sched_balance_rq(this_cpu, this_rq, | 
|---|
| 12849 | sd, idle: CPU_NEWLY_IDLE, | 
|---|
| 12850 | continue_balancing: &continue_balancing); | 
|---|
| 12851 |  | 
|---|
| 12852 | t1 = sched_clock_cpu(cpu: this_cpu); | 
|---|
| 12853 | domain_cost = t1 - t0; | 
|---|
| 12854 | curr_cost += domain_cost; | 
|---|
| 12855 | t0 = t1; | 
|---|
| 12856 |  | 
|---|
| 12857 | /* | 
|---|
| 12858 | * Failing newidle means it is not effective; | 
|---|
| 12859 | * bump the cost so we end up doing less of it. | 
|---|
| 12860 | */ | 
|---|
| 12861 | if (!pulled_task) | 
|---|
| 12862 | domain_cost = (3 * sd->max_newidle_lb_cost) / 2; | 
|---|
| 12863 |  | 
|---|
| 12864 | update_newidle_cost(sd, cost: domain_cost); | 
|---|
| 12865 | } | 
|---|
| 12866 |  | 
|---|
| 12867 | /* | 
|---|
| 12868 | * Stop searching for tasks to pull if there are | 
|---|
| 12869 | * now runnable tasks on this rq. | 
|---|
| 12870 | */ | 
|---|
| 12871 | if (pulled_task || !continue_balancing) | 
|---|
| 12872 | break; | 
|---|
| 12873 | } | 
|---|
| 12874 | rcu_read_unlock(); | 
|---|
| 12875 |  | 
|---|
| 12876 | raw_spin_rq_lock(rq: this_rq); | 
|---|
| 12877 |  | 
|---|
| 12878 | if (curr_cost > this_rq->max_idle_balance_cost) | 
|---|
| 12879 | this_rq->max_idle_balance_cost = curr_cost; | 
|---|
| 12880 |  | 
|---|
| 12881 | /* | 
|---|
| 12882 | * While browsing the domains, we released the rq lock, a task could | 
|---|
| 12883 | * have been enqueued in the meantime. Since we're not going idle, | 
|---|
| 12884 | * pretend we pulled a task. | 
|---|
| 12885 | */ | 
|---|
| 12886 | if (this_rq->cfs.h_nr_queued && !pulled_task) | 
|---|
| 12887 | pulled_task = 1; | 
|---|
| 12888 |  | 
|---|
| 12889 | /* Is there a task of a high priority class? */ | 
|---|
| 12890 | if (this_rq->nr_running != this_rq->cfs.h_nr_queued) | 
|---|
| 12891 | pulled_task = -1; | 
|---|
| 12892 |  | 
|---|
| 12893 | out: | 
|---|
| 12894 | /* Move the next balance forward */ | 
|---|
| 12895 | if (time_after(this_rq->next_balance, next_balance)) | 
|---|
| 12896 | this_rq->next_balance = next_balance; | 
|---|
| 12897 |  | 
|---|
| 12898 | if (pulled_task) | 
|---|
| 12899 | this_rq->idle_stamp = 0; | 
|---|
| 12900 | else | 
|---|
| 12901 | nohz_newidle_balance(this_rq); | 
|---|
| 12902 |  | 
|---|
| 12903 | rq_repin_lock(rq: this_rq, rf); | 
|---|
| 12904 |  | 
|---|
| 12905 | return pulled_task; | 
|---|
| 12906 | } | 
|---|
| 12907 |  | 
|---|
| 12908 | /* | 
|---|
| 12909 | * This softirq handler is triggered via SCHED_SOFTIRQ from two places: | 
|---|
| 12910 | * | 
|---|
| 12911 | * - directly from the local sched_tick() for periodic load balancing | 
|---|
| 12912 | * | 
|---|
| 12913 | * - indirectly from a remote sched_tick() for NOHZ idle balancing | 
|---|
| 12914 | *   through the SMP cross-call nohz_csd_func() | 
|---|
| 12915 | */ | 
|---|
| 12916 | static __latent_entropy void sched_balance_softirq(void) | 
|---|
| 12917 | { | 
|---|
| 12918 | struct rq *this_rq = this_rq(); | 
|---|
| 12919 | enum cpu_idle_type idle = this_rq->idle_balance; | 
|---|
| 12920 | /* | 
|---|
| 12921 | * If this CPU has a pending NOHZ_BALANCE_KICK, then do the | 
|---|
| 12922 | * balancing on behalf of the other idle CPUs whose ticks are | 
|---|
| 12923 | * stopped. Do nohz_idle_balance *before* sched_balance_domains to | 
|---|
| 12924 | * give the idle CPUs a chance to load balance. Else we may | 
|---|
| 12925 | * load balance only within the local sched_domain hierarchy | 
|---|
| 12926 | * and abort nohz_idle_balance altogether if we pull some load. | 
|---|
| 12927 | */ | 
|---|
| 12928 | if (nohz_idle_balance(this_rq, idle)) | 
|---|
| 12929 | return; | 
|---|
| 12930 |  | 
|---|
| 12931 | /* normal load balance */ | 
|---|
| 12932 | sched_balance_update_blocked_averages(cpu: this_rq->cpu); | 
|---|
| 12933 | sched_balance_domains(rq: this_rq, idle); | 
|---|
| 12934 | } | 
|---|
| 12935 |  | 
|---|
| 12936 | /* | 
|---|
| 12937 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 
|---|
| 12938 | */ | 
|---|
| 12939 | void sched_balance_trigger(struct rq *rq) | 
|---|
| 12940 | { | 
|---|
| 12941 | /* | 
|---|
| 12942 | * Don't need to rebalance while attached to NULL domain or | 
|---|
| 12943 | * runqueue CPU is not active | 
|---|
| 12944 | */ | 
|---|
| 12945 | if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) | 
|---|
| 12946 | return; | 
|---|
| 12947 |  | 
|---|
| 12948 | if (time_after_eq(jiffies, rq->next_balance)) | 
|---|
| 12949 | raise_softirq(nr: SCHED_SOFTIRQ); | 
|---|
| 12950 |  | 
|---|
| 12951 | nohz_balancer_kick(rq); | 
|---|
| 12952 | } | 
|---|
| 12953 |  | 
|---|
| 12954 | static void rq_online_fair(struct rq *rq) | 
|---|
| 12955 | { | 
|---|
| 12956 | update_sysctl(); | 
|---|
| 12957 |  | 
|---|
| 12958 | update_runtime_enabled(rq); | 
|---|
| 12959 | } | 
|---|
| 12960 |  | 
|---|
| 12961 | static void rq_offline_fair(struct rq *rq) | 
|---|
| 12962 | { | 
|---|
| 12963 | update_sysctl(); | 
|---|
| 12964 |  | 
|---|
| 12965 | /* Ensure any throttled groups are reachable by pick_next_task */ | 
|---|
| 12966 | unthrottle_offline_cfs_rqs(rq); | 
|---|
| 12967 |  | 
|---|
| 12968 | /* Ensure that we remove rq contribution to group share: */ | 
|---|
| 12969 | clear_tg_offline_cfs_rqs(rq); | 
|---|
| 12970 | } | 
|---|
| 12971 |  | 
|---|
| 12972 | #ifdef CONFIG_SCHED_CORE | 
|---|
| 12973 | static inline bool | 
|---|
| 12974 | __entity_slice_used(struct sched_entity *se, int min_nr_tasks) | 
|---|
| 12975 | { | 
|---|
| 12976 | u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
|---|
| 12977 | u64 slice = se->slice; | 
|---|
| 12978 |  | 
|---|
| 12979 | return (rtime * min_nr_tasks > slice); | 
|---|
| 12980 | } | 
|---|
| 12981 |  | 
|---|
| 12982 | #define MIN_NR_TASKS_DURING_FORCEIDLE	2 | 
|---|
| 12983 | static inline void task_tick_core(struct rq *rq, struct task_struct *curr) | 
|---|
| 12984 | { | 
|---|
| 12985 | if (!sched_core_enabled(rq)) | 
|---|
| 12986 | return; | 
|---|
| 12987 |  | 
|---|
| 12988 | /* | 
|---|
| 12989 | * If runqueue has only one task which used up its slice and | 
|---|
| 12990 | * if the sibling is forced idle, then trigger schedule to | 
|---|
| 12991 | * give forced idle task a chance. | 
|---|
| 12992 | * | 
|---|
| 12993 | * sched_slice() considers only this active rq and it gets the | 
|---|
| 12994 | * whole slice. But during force idle, we have siblings acting | 
|---|
| 12995 | * like a single runqueue and hence we need to consider runnable | 
|---|
| 12996 | * tasks on this CPU and the forced idle CPU. Ideally, we should | 
|---|
| 12997 | * go through the forced idle rq, but that would be a perf hit. | 
|---|
| 12998 | * We can assume that the forced idle CPU has at least | 
|---|
| 12999 | * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check | 
|---|
| 13000 | * if we need to give up the CPU. | 
|---|
| 13001 | */ | 
|---|
| 13002 | if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && | 
|---|
| 13003 | __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) | 
|---|
| 13004 | resched_curr(rq); | 
|---|
| 13005 | } | 
|---|
| 13006 |  | 
|---|
| 13007 | /* | 
|---|
| 13008 | * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. | 
|---|
| 13009 | */ | 
|---|
| 13010 | static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, | 
|---|
| 13011 | bool forceidle) | 
|---|
| 13012 | { | 
|---|
| 13013 | for_each_sched_entity(se) { | 
|---|
| 13014 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 13015 |  | 
|---|
| 13016 | if (forceidle) { | 
|---|
| 13017 | if (cfs_rq->forceidle_seq == fi_seq) | 
|---|
| 13018 | break; | 
|---|
| 13019 | cfs_rq->forceidle_seq = fi_seq; | 
|---|
| 13020 | } | 
|---|
| 13021 |  | 
|---|
| 13022 | cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; | 
|---|
| 13023 | } | 
|---|
| 13024 | } | 
|---|
| 13025 |  | 
|---|
| 13026 | void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) | 
|---|
| 13027 | { | 
|---|
| 13028 | struct sched_entity *se = &p->se; | 
|---|
| 13029 |  | 
|---|
| 13030 | if (p->sched_class != &fair_sched_class) | 
|---|
| 13031 | return; | 
|---|
| 13032 |  | 
|---|
| 13033 | se_fi_update(se, rq->core->core_forceidle_seq, in_fi); | 
|---|
| 13034 | } | 
|---|
| 13035 |  | 
|---|
| 13036 | bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, | 
|---|
| 13037 | bool in_fi) | 
|---|
| 13038 | { | 
|---|
| 13039 | struct rq *rq = task_rq(a); | 
|---|
| 13040 | const struct sched_entity *sea = &a->se; | 
|---|
| 13041 | const struct sched_entity *seb = &b->se; | 
|---|
| 13042 | struct cfs_rq *cfs_rqa; | 
|---|
| 13043 | struct cfs_rq *cfs_rqb; | 
|---|
| 13044 | s64 delta; | 
|---|
| 13045 |  | 
|---|
| 13046 | WARN_ON_ONCE(task_rq(b)->core != rq->core); | 
|---|
| 13047 |  | 
|---|
| 13048 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 13049 | /* | 
|---|
| 13050 | * Find an se in the hierarchy for tasks a and b, such that the se's | 
|---|
| 13051 | * are immediate siblings. | 
|---|
| 13052 | */ | 
|---|
| 13053 | while (sea->cfs_rq->tg != seb->cfs_rq->tg) { | 
|---|
| 13054 | int sea_depth = sea->depth; | 
|---|
| 13055 | int seb_depth = seb->depth; | 
|---|
| 13056 |  | 
|---|
| 13057 | if (sea_depth >= seb_depth) | 
|---|
| 13058 | sea = parent_entity(sea); | 
|---|
| 13059 | if (sea_depth <= seb_depth) | 
|---|
| 13060 | seb = parent_entity(seb); | 
|---|
| 13061 | } | 
|---|
| 13062 |  | 
|---|
| 13063 | se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); | 
|---|
| 13064 | se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); | 
|---|
| 13065 |  | 
|---|
| 13066 | cfs_rqa = sea->cfs_rq; | 
|---|
| 13067 | cfs_rqb = seb->cfs_rq; | 
|---|
| 13068 | #else /* !CONFIG_FAIR_GROUP_SCHED: */ | 
|---|
| 13069 | cfs_rqa = &task_rq(a)->cfs; | 
|---|
| 13070 | cfs_rqb = &task_rq(b)->cfs; | 
|---|
| 13071 | #endif /* !CONFIG_FAIR_GROUP_SCHED */ | 
|---|
| 13072 |  | 
|---|
| 13073 | /* | 
|---|
| 13074 | * Find delta after normalizing se's vruntime with its cfs_rq's | 
|---|
| 13075 | * min_vruntime_fi, which would have been updated in prior calls | 
|---|
| 13076 | * to se_fi_update(). | 
|---|
| 13077 | */ | 
|---|
| 13078 | delta = (s64)(sea->vruntime - seb->vruntime) + | 
|---|
| 13079 | (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); | 
|---|
| 13080 |  | 
|---|
| 13081 | return delta > 0; | 
|---|
| 13082 | } | 
|---|
| 13083 |  | 
|---|
| 13084 | static int task_is_throttled_fair(struct task_struct *p, int cpu) | 
|---|
| 13085 | { | 
|---|
| 13086 | struct cfs_rq *cfs_rq; | 
|---|
| 13087 |  | 
|---|
| 13088 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 13089 | cfs_rq = task_group(p)->cfs_rq[cpu]; | 
|---|
| 13090 | #else | 
|---|
| 13091 | cfs_rq = &cpu_rq(cpu)->cfs; | 
|---|
| 13092 | #endif | 
|---|
| 13093 | return throttled_hierarchy(cfs_rq); | 
|---|
| 13094 | } | 
|---|
| 13095 | #else /* !CONFIG_SCHED_CORE: */ | 
|---|
| 13096 | static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} | 
|---|
| 13097 | #endif /* !CONFIG_SCHED_CORE */ | 
|---|
| 13098 |  | 
|---|
| 13099 | /* | 
|---|
| 13100 | * scheduler tick hitting a task of our scheduling class. | 
|---|
| 13101 | * | 
|---|
| 13102 | * NOTE: This function can be called remotely by the tick offload that | 
|---|
| 13103 | * goes along full dynticks. Therefore no local assumption can be made | 
|---|
| 13104 | * and everything must be accessed through the @rq and @curr passed in | 
|---|
| 13105 | * parameters. | 
|---|
| 13106 | */ | 
|---|
| 13107 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | 
|---|
| 13108 | { | 
|---|
| 13109 | struct cfs_rq *cfs_rq; | 
|---|
| 13110 | struct sched_entity *se = &curr->se; | 
|---|
| 13111 |  | 
|---|
| 13112 | for_each_sched_entity(se) { | 
|---|
| 13113 | cfs_rq = cfs_rq_of(se); | 
|---|
| 13114 | entity_tick(cfs_rq, curr: se, queued); | 
|---|
| 13115 | } | 
|---|
| 13116 |  | 
|---|
| 13117 | if (static_branch_unlikely(&sched_numa_balancing)) | 
|---|
| 13118 | task_tick_numa(rq, curr); | 
|---|
| 13119 |  | 
|---|
| 13120 | update_misfit_status(p: curr, rq); | 
|---|
| 13121 | check_update_overutilized_status(task_rq(curr)); | 
|---|
| 13122 |  | 
|---|
| 13123 | task_tick_core(rq, curr); | 
|---|
| 13124 | } | 
|---|
| 13125 |  | 
|---|
| 13126 | /* | 
|---|
| 13127 | * called on fork with the child task as argument from the parent's context | 
|---|
| 13128 | *  - child not yet on the tasklist | 
|---|
| 13129 | *  - preemption disabled | 
|---|
| 13130 | */ | 
|---|
| 13131 | static void task_fork_fair(struct task_struct *p) | 
|---|
| 13132 | { | 
|---|
| 13133 | set_task_max_allowed_capacity(p); | 
|---|
| 13134 | } | 
|---|
| 13135 |  | 
|---|
| 13136 | /* | 
|---|
| 13137 | * Priority of the task has changed. Check to see if we preempt | 
|---|
| 13138 | * the current task. | 
|---|
| 13139 | */ | 
|---|
| 13140 | static void | 
|---|
| 13141 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | 
|---|
| 13142 | { | 
|---|
| 13143 | if (!task_on_rq_queued(p)) | 
|---|
| 13144 | return; | 
|---|
| 13145 |  | 
|---|
| 13146 | if (rq->cfs.nr_queued == 1) | 
|---|
| 13147 | return; | 
|---|
| 13148 |  | 
|---|
| 13149 | /* | 
|---|
| 13150 | * Reschedule if we are currently running on this runqueue and | 
|---|
| 13151 | * our priority decreased, or if we are not currently running on | 
|---|
| 13152 | * this runqueue and our priority is higher than the current's | 
|---|
| 13153 | */ | 
|---|
| 13154 | if (task_current_donor(rq, p)) { | 
|---|
| 13155 | if (p->prio > oldprio) | 
|---|
| 13156 | resched_curr(rq); | 
|---|
| 13157 | } else | 
|---|
| 13158 | wakeup_preempt(rq, p, flags: 0); | 
|---|
| 13159 | } | 
|---|
| 13160 |  | 
|---|
| 13161 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 13162 | /* | 
|---|
| 13163 | * Propagate the changes of the sched_entity across the tg tree to make it | 
|---|
| 13164 | * visible to the root | 
|---|
| 13165 | */ | 
|---|
| 13166 | static void propagate_entity_cfs_rq(struct sched_entity *se) | 
|---|
| 13167 | { | 
|---|
| 13168 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 13169 |  | 
|---|
| 13170 | /* | 
|---|
| 13171 | * If a task gets attached to this cfs_rq and before being queued, | 
|---|
| 13172 | * it gets migrated to another CPU due to reasons like affinity | 
|---|
| 13173 | * change, make sure this cfs_rq stays on leaf cfs_rq list to have | 
|---|
| 13174 | * that removed load decayed or it can cause faireness problem. | 
|---|
| 13175 | */ | 
|---|
| 13176 | if (!cfs_rq_pelt_clock_throttled(cfs_rq)) | 
|---|
| 13177 | list_add_leaf_cfs_rq(cfs_rq); | 
|---|
| 13178 |  | 
|---|
| 13179 | /* Start to propagate at parent */ | 
|---|
| 13180 | se = se->parent; | 
|---|
| 13181 |  | 
|---|
| 13182 | for_each_sched_entity(se) { | 
|---|
| 13183 | cfs_rq = cfs_rq_of(se); | 
|---|
| 13184 |  | 
|---|
| 13185 | update_load_avg(cfs_rq, se, UPDATE_TG); | 
|---|
| 13186 |  | 
|---|
| 13187 | if (!cfs_rq_pelt_clock_throttled(cfs_rq)) | 
|---|
| 13188 | list_add_leaf_cfs_rq(cfs_rq); | 
|---|
| 13189 | } | 
|---|
| 13190 | } | 
|---|
| 13191 | #else /* !CONFIG_FAIR_GROUP_SCHED: */ | 
|---|
| 13192 | static void propagate_entity_cfs_rq(struct sched_entity *se) { } | 
|---|
| 13193 | #endif /* !CONFIG_FAIR_GROUP_SCHED */ | 
|---|
| 13194 |  | 
|---|
| 13195 | static void detach_entity_cfs_rq(struct sched_entity *se) | 
|---|
| 13196 | { | 
|---|
| 13197 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 13198 |  | 
|---|
| 13199 | /* | 
|---|
| 13200 | * In case the task sched_avg hasn't been attached: | 
|---|
| 13201 | * - A forked task which hasn't been woken up by wake_up_new_task(). | 
|---|
| 13202 | * - A task which has been woken up by try_to_wake_up() but is | 
|---|
| 13203 | *   waiting for actually being woken up by sched_ttwu_pending(). | 
|---|
| 13204 | */ | 
|---|
| 13205 | if (!se->avg.last_update_time) | 
|---|
| 13206 | return; | 
|---|
| 13207 |  | 
|---|
| 13208 | /* Catch up with the cfs_rq and remove our load when we leave */ | 
|---|
| 13209 | update_load_avg(cfs_rq, se, flags: 0); | 
|---|
| 13210 | detach_entity_load_avg(cfs_rq, se); | 
|---|
| 13211 | update_tg_load_avg(cfs_rq); | 
|---|
| 13212 | propagate_entity_cfs_rq(se); | 
|---|
| 13213 | } | 
|---|
| 13214 |  | 
|---|
| 13215 | static void attach_entity_cfs_rq(struct sched_entity *se) | 
|---|
| 13216 | { | 
|---|
| 13217 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 13218 |  | 
|---|
| 13219 | /* Synchronize entity with its cfs_rq */ | 
|---|
| 13220 | update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); | 
|---|
| 13221 | attach_entity_load_avg(cfs_rq, se); | 
|---|
| 13222 | update_tg_load_avg(cfs_rq); | 
|---|
| 13223 | propagate_entity_cfs_rq(se); | 
|---|
| 13224 | } | 
|---|
| 13225 |  | 
|---|
| 13226 | static void detach_task_cfs_rq(struct task_struct *p) | 
|---|
| 13227 | { | 
|---|
| 13228 | struct sched_entity *se = &p->se; | 
|---|
| 13229 |  | 
|---|
| 13230 | detach_entity_cfs_rq(se); | 
|---|
| 13231 | } | 
|---|
| 13232 |  | 
|---|
| 13233 | static void attach_task_cfs_rq(struct task_struct *p) | 
|---|
| 13234 | { | 
|---|
| 13235 | struct sched_entity *se = &p->se; | 
|---|
| 13236 |  | 
|---|
| 13237 | attach_entity_cfs_rq(se); | 
|---|
| 13238 | } | 
|---|
| 13239 |  | 
|---|
| 13240 | static void switched_from_fair(struct rq *rq, struct task_struct *p) | 
|---|
| 13241 | { | 
|---|
| 13242 | detach_task_cfs_rq(p); | 
|---|
| 13243 | } | 
|---|
| 13244 |  | 
|---|
| 13245 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | 
|---|
| 13246 | { | 
|---|
| 13247 | WARN_ON_ONCE(p->se.sched_delayed); | 
|---|
| 13248 |  | 
|---|
| 13249 | attach_task_cfs_rq(p); | 
|---|
| 13250 |  | 
|---|
| 13251 | set_task_max_allowed_capacity(p); | 
|---|
| 13252 |  | 
|---|
| 13253 | if (task_on_rq_queued(p)) { | 
|---|
| 13254 | /* | 
|---|
| 13255 | * We were most likely switched from sched_rt, so | 
|---|
| 13256 | * kick off the schedule if running, otherwise just see | 
|---|
| 13257 | * if we can still preempt the current task. | 
|---|
| 13258 | */ | 
|---|
| 13259 | if (task_current_donor(rq, p)) | 
|---|
| 13260 | resched_curr(rq); | 
|---|
| 13261 | else | 
|---|
| 13262 | wakeup_preempt(rq, p, flags: 0); | 
|---|
| 13263 | } | 
|---|
| 13264 | } | 
|---|
| 13265 |  | 
|---|
| 13266 | static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) | 
|---|
| 13267 | { | 
|---|
| 13268 | struct sched_entity *se = &p->se; | 
|---|
| 13269 |  | 
|---|
| 13270 | if (task_on_rq_queued(p)) { | 
|---|
| 13271 | /* | 
|---|
| 13272 | * Move the next running task to the front of the list, so our | 
|---|
| 13273 | * cfs_tasks list becomes MRU one. | 
|---|
| 13274 | */ | 
|---|
| 13275 | list_move(list: &se->group_node, head: &rq->cfs_tasks); | 
|---|
| 13276 | } | 
|---|
| 13277 | if (!first) | 
|---|
| 13278 | return; | 
|---|
| 13279 |  | 
|---|
| 13280 | WARN_ON_ONCE(se->sched_delayed); | 
|---|
| 13281 |  | 
|---|
| 13282 | if (hrtick_enabled_fair(rq)) | 
|---|
| 13283 | hrtick_start_fair(rq, p); | 
|---|
| 13284 |  | 
|---|
| 13285 | update_misfit_status(p, rq); | 
|---|
| 13286 | sched_fair_update_stop_tick(rq, p); | 
|---|
| 13287 | } | 
|---|
| 13288 |  | 
|---|
| 13289 | /* | 
|---|
| 13290 | * Account for a task changing its policy or group. | 
|---|
| 13291 | * | 
|---|
| 13292 | * This routine is mostly called to set cfs_rq->curr field when a task | 
|---|
| 13293 | * migrates between groups/classes. | 
|---|
| 13294 | */ | 
|---|
| 13295 | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) | 
|---|
| 13296 | { | 
|---|
| 13297 | struct sched_entity *se = &p->se; | 
|---|
| 13298 |  | 
|---|
| 13299 | for_each_sched_entity(se) { | 
|---|
| 13300 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 13301 |  | 
|---|
| 13302 | set_next_entity(cfs_rq, se); | 
|---|
| 13303 | /* ensure bandwidth has been allocated on our new cfs_rq */ | 
|---|
| 13304 | account_cfs_rq_runtime(cfs_rq, delta_exec: 0); | 
|---|
| 13305 | } | 
|---|
| 13306 |  | 
|---|
| 13307 | __set_next_task_fair(rq, p, first); | 
|---|
| 13308 | } | 
|---|
| 13309 |  | 
|---|
| 13310 | void init_cfs_rq(struct cfs_rq *cfs_rq) | 
|---|
| 13311 | { | 
|---|
| 13312 | cfs_rq->tasks_timeline = RB_ROOT_CACHED; | 
|---|
| 13313 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | 
|---|
| 13314 | raw_spin_lock_init(&cfs_rq->removed.lock); | 
|---|
| 13315 | } | 
|---|
| 13316 |  | 
|---|
| 13317 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 13318 | static void task_change_group_fair(struct task_struct *p) | 
|---|
| 13319 | { | 
|---|
| 13320 | /* | 
|---|
| 13321 | * We couldn't detach or attach a forked task which | 
|---|
| 13322 | * hasn't been woken up by wake_up_new_task(). | 
|---|
| 13323 | */ | 
|---|
| 13324 | if (READ_ONCE(p->__state) == TASK_NEW) | 
|---|
| 13325 | return; | 
|---|
| 13326 |  | 
|---|
| 13327 | detach_task_cfs_rq(p); | 
|---|
| 13328 |  | 
|---|
| 13329 | /* Tell se's cfs_rq has been changed -- migrated */ | 
|---|
| 13330 | p->se.avg.last_update_time = 0; | 
|---|
| 13331 | set_task_rq(p, cpu: task_cpu(p)); | 
|---|
| 13332 | attach_task_cfs_rq(p); | 
|---|
| 13333 | } | 
|---|
| 13334 |  | 
|---|
| 13335 | void free_fair_sched_group(struct task_group *tg) | 
|---|
| 13336 | { | 
|---|
| 13337 | int i; | 
|---|
| 13338 |  | 
|---|
| 13339 | for_each_possible_cpu(i) { | 
|---|
| 13340 | if (tg->cfs_rq) | 
|---|
| 13341 | kfree(objp: tg->cfs_rq[i]); | 
|---|
| 13342 | if (tg->se) | 
|---|
| 13343 | kfree(objp: tg->se[i]); | 
|---|
| 13344 | } | 
|---|
| 13345 |  | 
|---|
| 13346 | kfree(objp: tg->cfs_rq); | 
|---|
| 13347 | kfree(objp: tg->se); | 
|---|
| 13348 | } | 
|---|
| 13349 |  | 
|---|
| 13350 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
|---|
| 13351 | { | 
|---|
| 13352 | struct sched_entity *se; | 
|---|
| 13353 | struct cfs_rq *cfs_rq; | 
|---|
| 13354 | int i; | 
|---|
| 13355 |  | 
|---|
| 13356 | tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); | 
|---|
| 13357 | if (!tg->cfs_rq) | 
|---|
| 13358 | goto err; | 
|---|
| 13359 | tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); | 
|---|
| 13360 | if (!tg->se) | 
|---|
| 13361 | goto err; | 
|---|
| 13362 |  | 
|---|
| 13363 | tg->shares = NICE_0_LOAD; | 
|---|
| 13364 |  | 
|---|
| 13365 | init_cfs_bandwidth(cfs_b: tg_cfs_bandwidth(tg), parent: tg_cfs_bandwidth(tg: parent)); | 
|---|
| 13366 |  | 
|---|
| 13367 | for_each_possible_cpu(i) { | 
|---|
| 13368 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | 
|---|
| 13369 | GFP_KERNEL, cpu_to_node(i)); | 
|---|
| 13370 | if (!cfs_rq) | 
|---|
| 13371 | goto err; | 
|---|
| 13372 |  | 
|---|
| 13373 | se = kzalloc_node(sizeof(struct sched_entity_stats), | 
|---|
| 13374 | GFP_KERNEL, cpu_to_node(i)); | 
|---|
| 13375 | if (!se) | 
|---|
| 13376 | goto err_free_rq; | 
|---|
| 13377 |  | 
|---|
| 13378 | init_cfs_rq(cfs_rq); | 
|---|
| 13379 | init_tg_cfs_entry(tg, cfs_rq, se, cpu: i, parent: parent->se[i]); | 
|---|
| 13380 | init_entity_runnable_average(se); | 
|---|
| 13381 | } | 
|---|
| 13382 |  | 
|---|
| 13383 | return 1; | 
|---|
| 13384 |  | 
|---|
| 13385 | err_free_rq: | 
|---|
| 13386 | kfree(objp: cfs_rq); | 
|---|
| 13387 | err: | 
|---|
| 13388 | return 0; | 
|---|
| 13389 | } | 
|---|
| 13390 |  | 
|---|
| 13391 | void online_fair_sched_group(struct task_group *tg) | 
|---|
| 13392 | { | 
|---|
| 13393 | struct sched_entity *se; | 
|---|
| 13394 | struct rq_flags rf; | 
|---|
| 13395 | struct rq *rq; | 
|---|
| 13396 | int i; | 
|---|
| 13397 |  | 
|---|
| 13398 | for_each_possible_cpu(i) { | 
|---|
| 13399 | rq = cpu_rq(i); | 
|---|
| 13400 | se = tg->se[i]; | 
|---|
| 13401 | rq_lock_irq(rq, rf: &rf); | 
|---|
| 13402 | update_rq_clock(rq); | 
|---|
| 13403 | attach_entity_cfs_rq(se); | 
|---|
| 13404 | sync_throttle(tg, cpu: i); | 
|---|
| 13405 | rq_unlock_irq(rq, rf: &rf); | 
|---|
| 13406 | } | 
|---|
| 13407 | } | 
|---|
| 13408 |  | 
|---|
| 13409 | void unregister_fair_sched_group(struct task_group *tg) | 
|---|
| 13410 | { | 
|---|
| 13411 | int cpu; | 
|---|
| 13412 |  | 
|---|
| 13413 | destroy_cfs_bandwidth(cfs_b: tg_cfs_bandwidth(tg)); | 
|---|
| 13414 |  | 
|---|
| 13415 | for_each_possible_cpu(cpu) { | 
|---|
| 13416 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; | 
|---|
| 13417 | struct sched_entity *se = tg->se[cpu]; | 
|---|
| 13418 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 13419 |  | 
|---|
| 13420 | if (se) { | 
|---|
| 13421 | if (se->sched_delayed) { | 
|---|
| 13422 | guard(rq_lock_irqsave)(l: rq); | 
|---|
| 13423 | if (se->sched_delayed) { | 
|---|
| 13424 | update_rq_clock(rq); | 
|---|
| 13425 | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); | 
|---|
| 13426 | } | 
|---|
| 13427 | list_del_leaf_cfs_rq(cfs_rq); | 
|---|
| 13428 | } | 
|---|
| 13429 | remove_entity_load_avg(se); | 
|---|
| 13430 | } | 
|---|
| 13431 |  | 
|---|
| 13432 | /* | 
|---|
| 13433 | * Only empty task groups can be destroyed; so we can speculatively | 
|---|
| 13434 | * check on_list without danger of it being re-added. | 
|---|
| 13435 | */ | 
|---|
| 13436 | if (cfs_rq->on_list) { | 
|---|
| 13437 | guard(rq_lock_irqsave)(l: rq); | 
|---|
| 13438 | list_del_leaf_cfs_rq(cfs_rq); | 
|---|
| 13439 | } | 
|---|
| 13440 | } | 
|---|
| 13441 | } | 
|---|
| 13442 |  | 
|---|
| 13443 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 
|---|
| 13444 | struct sched_entity *se, int cpu, | 
|---|
| 13445 | struct sched_entity *parent) | 
|---|
| 13446 | { | 
|---|
| 13447 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 13448 |  | 
|---|
| 13449 | cfs_rq->tg = tg; | 
|---|
| 13450 | cfs_rq->rq = rq; | 
|---|
| 13451 | init_cfs_rq_runtime(cfs_rq); | 
|---|
| 13452 |  | 
|---|
| 13453 | tg->cfs_rq[cpu] = cfs_rq; | 
|---|
| 13454 | tg->se[cpu] = se; | 
|---|
| 13455 |  | 
|---|
| 13456 | /* se could be NULL for root_task_group */ | 
|---|
| 13457 | if (!se) | 
|---|
| 13458 | return; | 
|---|
| 13459 |  | 
|---|
| 13460 | if (!parent) { | 
|---|
| 13461 | se->cfs_rq = &rq->cfs; | 
|---|
| 13462 | se->depth = 0; | 
|---|
| 13463 | } else { | 
|---|
| 13464 | se->cfs_rq = parent->my_q; | 
|---|
| 13465 | se->depth = parent->depth + 1; | 
|---|
| 13466 | } | 
|---|
| 13467 |  | 
|---|
| 13468 | se->my_q = cfs_rq; | 
|---|
| 13469 | /* guarantee group entities always have weight */ | 
|---|
| 13470 | update_load_set(lw: &se->load, NICE_0_LOAD); | 
|---|
| 13471 | se->parent = parent; | 
|---|
| 13472 | } | 
|---|
| 13473 |  | 
|---|
| 13474 | static DEFINE_MUTEX(shares_mutex); | 
|---|
| 13475 |  | 
|---|
| 13476 | static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) | 
|---|
| 13477 | { | 
|---|
| 13478 | int i; | 
|---|
| 13479 |  | 
|---|
| 13480 | lockdep_assert_held(&shares_mutex); | 
|---|
| 13481 |  | 
|---|
| 13482 | /* | 
|---|
| 13483 | * We can't change the weight of the root cgroup. | 
|---|
| 13484 | */ | 
|---|
| 13485 | if (!tg->se[0]) | 
|---|
| 13486 | return -EINVAL; | 
|---|
| 13487 |  | 
|---|
| 13488 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | 
|---|
| 13489 |  | 
|---|
| 13490 | if (tg->shares == shares) | 
|---|
| 13491 | return 0; | 
|---|
| 13492 |  | 
|---|
| 13493 | tg->shares = shares; | 
|---|
| 13494 | for_each_possible_cpu(i) { | 
|---|
| 13495 | struct rq *rq = cpu_rq(i); | 
|---|
| 13496 | struct sched_entity *se = tg->se[i]; | 
|---|
| 13497 | struct rq_flags rf; | 
|---|
| 13498 |  | 
|---|
| 13499 | /* Propagate contribution to hierarchy */ | 
|---|
| 13500 | rq_lock_irqsave(rq, rf: &rf); | 
|---|
| 13501 | update_rq_clock(rq); | 
|---|
| 13502 | for_each_sched_entity(se) { | 
|---|
| 13503 | update_load_avg(cfs_rq: cfs_rq_of(se), se, UPDATE_TG); | 
|---|
| 13504 | update_cfs_group(se); | 
|---|
| 13505 | } | 
|---|
| 13506 | rq_unlock_irqrestore(rq, rf: &rf); | 
|---|
| 13507 | } | 
|---|
| 13508 |  | 
|---|
| 13509 | return 0; | 
|---|
| 13510 | } | 
|---|
| 13511 |  | 
|---|
| 13512 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | 
|---|
| 13513 | { | 
|---|
| 13514 | int ret; | 
|---|
| 13515 |  | 
|---|
| 13516 | mutex_lock(lock: &shares_mutex); | 
|---|
| 13517 | if (tg_is_idle(tg)) | 
|---|
| 13518 | ret = -EINVAL; | 
|---|
| 13519 | else | 
|---|
| 13520 | ret = __sched_group_set_shares(tg, shares); | 
|---|
| 13521 | mutex_unlock(lock: &shares_mutex); | 
|---|
| 13522 |  | 
|---|
| 13523 | return ret; | 
|---|
| 13524 | } | 
|---|
| 13525 |  | 
|---|
| 13526 | int sched_group_set_idle(struct task_group *tg, long idle) | 
|---|
| 13527 | { | 
|---|
| 13528 | int i; | 
|---|
| 13529 |  | 
|---|
| 13530 | if (tg == &root_task_group) | 
|---|
| 13531 | return -EINVAL; | 
|---|
| 13532 |  | 
|---|
| 13533 | if (idle < 0 || idle > 1) | 
|---|
| 13534 | return -EINVAL; | 
|---|
| 13535 |  | 
|---|
| 13536 | mutex_lock(lock: &shares_mutex); | 
|---|
| 13537 |  | 
|---|
| 13538 | if (tg->idle == idle) { | 
|---|
| 13539 | mutex_unlock(lock: &shares_mutex); | 
|---|
| 13540 | return 0; | 
|---|
| 13541 | } | 
|---|
| 13542 |  | 
|---|
| 13543 | tg->idle = idle; | 
|---|
| 13544 |  | 
|---|
| 13545 | for_each_possible_cpu(i) { | 
|---|
| 13546 | struct rq *rq = cpu_rq(i); | 
|---|
| 13547 | struct sched_entity *se = tg->se[i]; | 
|---|
| 13548 | struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; | 
|---|
| 13549 | bool was_idle = cfs_rq_is_idle(cfs_rq: grp_cfs_rq); | 
|---|
| 13550 | long idle_task_delta; | 
|---|
| 13551 | struct rq_flags rf; | 
|---|
| 13552 |  | 
|---|
| 13553 | rq_lock_irqsave(rq, rf: &rf); | 
|---|
| 13554 |  | 
|---|
| 13555 | grp_cfs_rq->idle = idle; | 
|---|
| 13556 | if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) | 
|---|
| 13557 | goto next_cpu; | 
|---|
| 13558 |  | 
|---|
| 13559 | idle_task_delta = grp_cfs_rq->h_nr_queued - | 
|---|
| 13560 | grp_cfs_rq->h_nr_idle; | 
|---|
| 13561 | if (!cfs_rq_is_idle(cfs_rq: grp_cfs_rq)) | 
|---|
| 13562 | idle_task_delta *= -1; | 
|---|
| 13563 |  | 
|---|
| 13564 | for_each_sched_entity(se) { | 
|---|
| 13565 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
|---|
| 13566 |  | 
|---|
| 13567 | if (!se->on_rq) | 
|---|
| 13568 | break; | 
|---|
| 13569 |  | 
|---|
| 13570 | cfs_rq->h_nr_idle += idle_task_delta; | 
|---|
| 13571 |  | 
|---|
| 13572 | /* Already accounted at parent level and above. */ | 
|---|
| 13573 | if (cfs_rq_is_idle(cfs_rq)) | 
|---|
| 13574 | break; | 
|---|
| 13575 | } | 
|---|
| 13576 |  | 
|---|
| 13577 | next_cpu: | 
|---|
| 13578 | rq_unlock_irqrestore(rq, rf: &rf); | 
|---|
| 13579 | } | 
|---|
| 13580 |  | 
|---|
| 13581 | /* Idle groups have minimum weight. */ | 
|---|
| 13582 | if (tg_is_idle(tg)) | 
|---|
| 13583 | __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); | 
|---|
| 13584 | else | 
|---|
| 13585 | __sched_group_set_shares(tg, NICE_0_LOAD); | 
|---|
| 13586 |  | 
|---|
| 13587 | mutex_unlock(lock: &shares_mutex); | 
|---|
| 13588 | return 0; | 
|---|
| 13589 | } | 
|---|
| 13590 |  | 
|---|
| 13591 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|---|
| 13592 |  | 
|---|
| 13593 |  | 
|---|
| 13594 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | 
|---|
| 13595 | { | 
|---|
| 13596 | struct sched_entity *se = &task->se; | 
|---|
| 13597 | unsigned int rr_interval = 0; | 
|---|
| 13598 |  | 
|---|
| 13599 | /* | 
|---|
| 13600 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | 
|---|
| 13601 | * idle runqueue: | 
|---|
| 13602 | */ | 
|---|
| 13603 | if (rq->cfs.load.weight) | 
|---|
| 13604 | rr_interval = NS_TO_JIFFIES(se->slice); | 
|---|
| 13605 |  | 
|---|
| 13606 | return rr_interval; | 
|---|
| 13607 | } | 
|---|
| 13608 |  | 
|---|
| 13609 | /* | 
|---|
| 13610 | * All the scheduling class methods: | 
|---|
| 13611 | */ | 
|---|
| 13612 | DEFINE_SCHED_CLASS(fair) = { | 
|---|
| 13613 |  | 
|---|
| 13614 | .enqueue_task		= enqueue_task_fair, | 
|---|
| 13615 | .dequeue_task		= dequeue_task_fair, | 
|---|
| 13616 | .yield_task		= yield_task_fair, | 
|---|
| 13617 | .yield_to_task		= yield_to_task_fair, | 
|---|
| 13618 |  | 
|---|
| 13619 | .wakeup_preempt		= check_preempt_wakeup_fair, | 
|---|
| 13620 |  | 
|---|
| 13621 | .pick_task		= pick_task_fair, | 
|---|
| 13622 | .pick_next_task		= __pick_next_task_fair, | 
|---|
| 13623 | .put_prev_task		= put_prev_task_fair, | 
|---|
| 13624 | .set_next_task          = set_next_task_fair, | 
|---|
| 13625 |  | 
|---|
| 13626 | .balance		= balance_fair, | 
|---|
| 13627 | .select_task_rq		= select_task_rq_fair, | 
|---|
| 13628 | .migrate_task_rq	= migrate_task_rq_fair, | 
|---|
| 13629 |  | 
|---|
| 13630 | .rq_online		= rq_online_fair, | 
|---|
| 13631 | .rq_offline		= rq_offline_fair, | 
|---|
| 13632 |  | 
|---|
| 13633 | .task_dead		= task_dead_fair, | 
|---|
| 13634 | .set_cpus_allowed	= set_cpus_allowed_fair, | 
|---|
| 13635 |  | 
|---|
| 13636 | .task_tick		= task_tick_fair, | 
|---|
| 13637 | .task_fork		= task_fork_fair, | 
|---|
| 13638 |  | 
|---|
| 13639 | .reweight_task		= reweight_task_fair, | 
|---|
| 13640 | .prio_changed		= prio_changed_fair, | 
|---|
| 13641 | .switched_from		= switched_from_fair, | 
|---|
| 13642 | .switched_to		= switched_to_fair, | 
|---|
| 13643 |  | 
|---|
| 13644 | .get_rr_interval	= get_rr_interval_fair, | 
|---|
| 13645 |  | 
|---|
| 13646 | .update_curr		= update_curr_fair, | 
|---|
| 13647 |  | 
|---|
| 13648 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 13649 | .task_change_group	= task_change_group_fair, | 
|---|
| 13650 | #endif | 
|---|
| 13651 |  | 
|---|
| 13652 | #ifdef CONFIG_SCHED_CORE | 
|---|
| 13653 | .task_is_throttled	= task_is_throttled_fair, | 
|---|
| 13654 | #endif | 
|---|
| 13655 |  | 
|---|
| 13656 | #ifdef CONFIG_UCLAMP_TASK | 
|---|
| 13657 | .uclamp_enabled		= 1, | 
|---|
| 13658 | #endif | 
|---|
| 13659 | }; | 
|---|
| 13660 |  | 
|---|
| 13661 | void print_cfs_stats(struct seq_file *m, int cpu) | 
|---|
| 13662 | { | 
|---|
| 13663 | struct cfs_rq *cfs_rq, *pos; | 
|---|
| 13664 |  | 
|---|
| 13665 | rcu_read_lock(); | 
|---|
| 13666 | for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) | 
|---|
| 13667 | print_cfs_rq(m, cpu, cfs_rq); | 
|---|
| 13668 | rcu_read_unlock(); | 
|---|
| 13669 | } | 
|---|
| 13670 |  | 
|---|
| 13671 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 13672 | void show_numa_stats(struct task_struct *p, struct seq_file *m) | 
|---|
| 13673 | { | 
|---|
| 13674 | int node; | 
|---|
| 13675 | unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; | 
|---|
| 13676 | struct numa_group *ng; | 
|---|
| 13677 |  | 
|---|
| 13678 | rcu_read_lock(); | 
|---|
| 13679 | ng = rcu_dereference(p->numa_group); | 
|---|
| 13680 | for_each_online_node(node) { | 
|---|
| 13681 | if (p->numa_faults) { | 
|---|
| 13682 | tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; | 
|---|
| 13683 | tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; | 
|---|
| 13684 | } | 
|---|
| 13685 | if (ng) { | 
|---|
| 13686 | gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], | 
|---|
| 13687 | gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | 
|---|
| 13688 | } | 
|---|
| 13689 | print_numa_stats(m, node, tsf, tpf, gsf, gpf); | 
|---|
| 13690 | } | 
|---|
| 13691 | rcu_read_unlock(); | 
|---|
| 13692 | } | 
|---|
| 13693 | #endif /* CONFIG_NUMA_BALANCING */ | 
|---|
| 13694 |  | 
|---|
| 13695 | __init void init_sched_fair_class(void) | 
|---|
| 13696 | { | 
|---|
| 13697 | int i; | 
|---|
| 13698 |  | 
|---|
| 13699 | for_each_possible_cpu(i) { | 
|---|
| 13700 | zalloc_cpumask_var_node(mask: &per_cpu(load_balance_mask, i), GFP_KERNEL, node: cpu_to_node(cpu: i)); | 
|---|
| 13701 | zalloc_cpumask_var_node(mask: &per_cpu(select_rq_mask,    i), GFP_KERNEL, node: cpu_to_node(cpu: i)); | 
|---|
| 13702 | zalloc_cpumask_var_node(mask: &per_cpu(should_we_balance_tmpmask, i), | 
|---|
| 13703 | GFP_KERNEL, node: cpu_to_node(cpu: i)); | 
|---|
| 13704 |  | 
|---|
| 13705 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 13706 | INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); | 
|---|
| 13707 | INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); | 
|---|
| 13708 | #endif | 
|---|
| 13709 | } | 
|---|
| 13710 |  | 
|---|
| 13711 | open_softirq(nr: SCHED_SOFTIRQ, action: sched_balance_softirq); | 
|---|
| 13712 |  | 
|---|
| 13713 | #ifdef CONFIG_NO_HZ_COMMON | 
|---|
| 13714 | nohz.next_balance = jiffies; | 
|---|
| 13715 | nohz.next_blocked = jiffies; | 
|---|
| 13716 | zalloc_cpumask_var(mask: &nohz.idle_cpus_mask, GFP_NOWAIT); | 
|---|
| 13717 | #endif | 
|---|
| 13718 | } | 
|---|
| 13719 |  | 
|---|