| 1 | // SPDX-License-Identifier: GPL-2.0-only | 
|---|
| 2 | /* | 
|---|
| 3 | * lib/bitmap.c | 
|---|
| 4 | * Helper functions for bitmap.h. | 
|---|
| 5 | */ | 
|---|
| 6 |  | 
|---|
| 7 | #include <linux/bitmap.h> | 
|---|
| 8 | #include <linux/bitops.h> | 
|---|
| 9 | #include <linux/ctype.h> | 
|---|
| 10 | #include <linux/device.h> | 
|---|
| 11 | #include <linux/export.h> | 
|---|
| 12 | #include <linux/slab.h> | 
|---|
| 13 |  | 
|---|
| 14 | /** | 
|---|
| 15 | * DOC: bitmap introduction | 
|---|
| 16 | * | 
|---|
| 17 | * bitmaps provide an array of bits, implemented using an | 
|---|
| 18 | * array of unsigned longs.  The number of valid bits in a | 
|---|
| 19 | * given bitmap does _not_ need to be an exact multiple of | 
|---|
| 20 | * BITS_PER_LONG. | 
|---|
| 21 | * | 
|---|
| 22 | * The possible unused bits in the last, partially used word | 
|---|
| 23 | * of a bitmap are 'don't care'.  The implementation makes | 
|---|
| 24 | * no particular effort to keep them zero.  It ensures that | 
|---|
| 25 | * their value will not affect the results of any operation. | 
|---|
| 26 | * The bitmap operations that return Boolean (bitmap_empty, | 
|---|
| 27 | * for example) or scalar (bitmap_weight, for example) results | 
|---|
| 28 | * carefully filter out these unused bits from impacting their | 
|---|
| 29 | * results. | 
|---|
| 30 | * | 
|---|
| 31 | * The byte ordering of bitmaps is more natural on little | 
|---|
| 32 | * endian architectures.  See the big-endian headers | 
|---|
| 33 | * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h | 
|---|
| 34 | * for the best explanations of this ordering. | 
|---|
| 35 | */ | 
|---|
| 36 |  | 
|---|
| 37 | bool __bitmap_equal(const unsigned long *bitmap1, | 
|---|
| 38 | const unsigned long *bitmap2, unsigned int bits) | 
|---|
| 39 | { | 
|---|
| 40 | unsigned int k, lim = bits/BITS_PER_LONG; | 
|---|
| 41 | for (k = 0; k < lim; ++k) | 
|---|
| 42 | if (bitmap1[k] != bitmap2[k]) | 
|---|
| 43 | return false; | 
|---|
| 44 |  | 
|---|
| 45 | if (bits % BITS_PER_LONG) | 
|---|
| 46 | if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
|---|
| 47 | return false; | 
|---|
| 48 |  | 
|---|
| 49 | return true; | 
|---|
| 50 | } | 
|---|
| 51 | EXPORT_SYMBOL(__bitmap_equal); | 
|---|
| 52 |  | 
|---|
| 53 | bool __bitmap_or_equal(const unsigned long *bitmap1, | 
|---|
| 54 | const unsigned long *bitmap2, | 
|---|
| 55 | const unsigned long *bitmap3, | 
|---|
| 56 | unsigned int bits) | 
|---|
| 57 | { | 
|---|
| 58 | unsigned int k, lim = bits / BITS_PER_LONG; | 
|---|
| 59 | unsigned long tmp; | 
|---|
| 60 |  | 
|---|
| 61 | for (k = 0; k < lim; ++k) { | 
|---|
| 62 | if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) | 
|---|
| 63 | return false; | 
|---|
| 64 | } | 
|---|
| 65 |  | 
|---|
| 66 | if (!(bits % BITS_PER_LONG)) | 
|---|
| 67 | return true; | 
|---|
| 68 |  | 
|---|
| 69 | tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; | 
|---|
| 70 | return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; | 
|---|
| 71 | } | 
|---|
| 72 |  | 
|---|
| 73 | void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) | 
|---|
| 74 | { | 
|---|
| 75 | unsigned int k, lim = BITS_TO_LONGS(bits); | 
|---|
| 76 | for (k = 0; k < lim; ++k) | 
|---|
| 77 | dst[k] = ~src[k]; | 
|---|
| 78 | } | 
|---|
| 79 | EXPORT_SYMBOL(__bitmap_complement); | 
|---|
| 80 |  | 
|---|
| 81 | /** | 
|---|
| 82 | * __bitmap_shift_right - logical right shift of the bits in a bitmap | 
|---|
| 83 | *   @dst : destination bitmap | 
|---|
| 84 | *   @src : source bitmap | 
|---|
| 85 | *   @shift : shift by this many bits | 
|---|
| 86 | *   @nbits : bitmap size, in bits | 
|---|
| 87 | * | 
|---|
| 88 | * Shifting right (dividing) means moving bits in the MS -> LS bit | 
|---|
| 89 | * direction.  Zeros are fed into the vacated MS positions and the | 
|---|
| 90 | * LS bits shifted off the bottom are lost. | 
|---|
| 91 | */ | 
|---|
| 92 | void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, | 
|---|
| 93 | unsigned shift, unsigned nbits) | 
|---|
| 94 | { | 
|---|
| 95 | unsigned k, lim = BITS_TO_LONGS(nbits); | 
|---|
| 96 | unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; | 
|---|
| 97 | unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); | 
|---|
| 98 | for (k = 0; off + k < lim; ++k) { | 
|---|
| 99 | unsigned long upper, lower; | 
|---|
| 100 |  | 
|---|
| 101 | /* | 
|---|
| 102 | * If shift is not word aligned, take lower rem bits of | 
|---|
| 103 | * word above and make them the top rem bits of result. | 
|---|
| 104 | */ | 
|---|
| 105 | if (!rem || off + k + 1 >= lim) | 
|---|
| 106 | upper = 0; | 
|---|
| 107 | else { | 
|---|
| 108 | upper = src[off + k + 1]; | 
|---|
| 109 | if (off + k + 1 == lim - 1) | 
|---|
| 110 | upper &= mask; | 
|---|
| 111 | upper <<= (BITS_PER_LONG - rem); | 
|---|
| 112 | } | 
|---|
| 113 | lower = src[off + k]; | 
|---|
| 114 | if (off + k == lim - 1) | 
|---|
| 115 | lower &= mask; | 
|---|
| 116 | lower >>= rem; | 
|---|
| 117 | dst[k] = lower | upper; | 
|---|
| 118 | } | 
|---|
| 119 | if (off) | 
|---|
| 120 | memset(s: &dst[lim - off], c: 0, n: off*sizeof(unsigned long)); | 
|---|
| 121 | } | 
|---|
| 122 | EXPORT_SYMBOL(__bitmap_shift_right); | 
|---|
| 123 |  | 
|---|
| 124 |  | 
|---|
| 125 | /** | 
|---|
| 126 | * __bitmap_shift_left - logical left shift of the bits in a bitmap | 
|---|
| 127 | *   @dst : destination bitmap | 
|---|
| 128 | *   @src : source bitmap | 
|---|
| 129 | *   @shift : shift by this many bits | 
|---|
| 130 | *   @nbits : bitmap size, in bits | 
|---|
| 131 | * | 
|---|
| 132 | * Shifting left (multiplying) means moving bits in the LS -> MS | 
|---|
| 133 | * direction.  Zeros are fed into the vacated LS bit positions | 
|---|
| 134 | * and those MS bits shifted off the top are lost. | 
|---|
| 135 | */ | 
|---|
| 136 |  | 
|---|
| 137 | void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, | 
|---|
| 138 | unsigned int shift, unsigned int nbits) | 
|---|
| 139 | { | 
|---|
| 140 | int k; | 
|---|
| 141 | unsigned int lim = BITS_TO_LONGS(nbits); | 
|---|
| 142 | unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; | 
|---|
| 143 | for (k = lim - off - 1; k >= 0; --k) { | 
|---|
| 144 | unsigned long upper, lower; | 
|---|
| 145 |  | 
|---|
| 146 | /* | 
|---|
| 147 | * If shift is not word aligned, take upper rem bits of | 
|---|
| 148 | * word below and make them the bottom rem bits of result. | 
|---|
| 149 | */ | 
|---|
| 150 | if (rem && k > 0) | 
|---|
| 151 | lower = src[k - 1] >> (BITS_PER_LONG - rem); | 
|---|
| 152 | else | 
|---|
| 153 | lower = 0; | 
|---|
| 154 | upper = src[k] << rem; | 
|---|
| 155 | dst[k + off] = lower | upper; | 
|---|
| 156 | } | 
|---|
| 157 | if (off) | 
|---|
| 158 | memset(s: dst, c: 0, n: off*sizeof(unsigned long)); | 
|---|
| 159 | } | 
|---|
| 160 | EXPORT_SYMBOL(__bitmap_shift_left); | 
|---|
| 161 |  | 
|---|
| 162 | /** | 
|---|
| 163 | * bitmap_cut() - remove bit region from bitmap and right shift remaining bits | 
|---|
| 164 | * @dst: destination bitmap, might overlap with src | 
|---|
| 165 | * @src: source bitmap | 
|---|
| 166 | * @first: start bit of region to be removed | 
|---|
| 167 | * @cut: number of bits to remove | 
|---|
| 168 | * @nbits: bitmap size, in bits | 
|---|
| 169 | * | 
|---|
| 170 | * Set the n-th bit of @dst iff the n-th bit of @src is set and | 
|---|
| 171 | * n is less than @first, or the m-th bit of @src is set for any | 
|---|
| 172 | * m such that @first <= n < nbits, and m = n + @cut. | 
|---|
| 173 | * | 
|---|
| 174 | * In pictures, example for a big-endian 32-bit architecture: | 
|---|
| 175 | * | 
|---|
| 176 | * The @src bitmap is:: | 
|---|
| 177 | * | 
|---|
| 178 | *   31                                   63 | 
|---|
| 179 | *   |                                    | | 
|---|
| 180 | *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101 | 
|---|
| 181 | *                   |  |              |                                    | | 
|---|
| 182 | *                  16  14             0                                   32 | 
|---|
| 183 | * | 
|---|
| 184 | * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: | 
|---|
| 185 | * | 
|---|
| 186 | *   31                                   63 | 
|---|
| 187 | *   |                                    | | 
|---|
| 188 | *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010 | 
|---|
| 189 | *                      |              |                                    | | 
|---|
| 190 | *                      14 (bit 17     0                                   32 | 
|---|
| 191 | *                          from @src) | 
|---|
| 192 | * | 
|---|
| 193 | * Note that @dst and @src might overlap partially or entirely. | 
|---|
| 194 | * | 
|---|
| 195 | * This is implemented in the obvious way, with a shift and carry | 
|---|
| 196 | * step for each moved bit. Optimisation is left as an exercise | 
|---|
| 197 | * for the compiler. | 
|---|
| 198 | */ | 
|---|
| 199 | void bitmap_cut(unsigned long *dst, const unsigned long *src, | 
|---|
| 200 | unsigned int first, unsigned int cut, unsigned int nbits) | 
|---|
| 201 | { | 
|---|
| 202 | unsigned int len = BITS_TO_LONGS(nbits); | 
|---|
| 203 | unsigned long keep = 0, carry; | 
|---|
| 204 | int i; | 
|---|
| 205 |  | 
|---|
| 206 | if (first % BITS_PER_LONG) { | 
|---|
| 207 | keep = src[first / BITS_PER_LONG] & | 
|---|
| 208 | (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); | 
|---|
| 209 | } | 
|---|
| 210 |  | 
|---|
| 211 | memmove(dest: dst, src, count: len * sizeof(*dst)); | 
|---|
| 212 |  | 
|---|
| 213 | while (cut--) { | 
|---|
| 214 | for (i = first / BITS_PER_LONG; i < len; i++) { | 
|---|
| 215 | if (i < len - 1) | 
|---|
| 216 | carry = dst[i + 1] & 1UL; | 
|---|
| 217 | else | 
|---|
| 218 | carry = 0; | 
|---|
| 219 |  | 
|---|
| 220 | dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); | 
|---|
| 221 | } | 
|---|
| 222 | } | 
|---|
| 223 |  | 
|---|
| 224 | dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); | 
|---|
| 225 | dst[first / BITS_PER_LONG] |= keep; | 
|---|
| 226 | } | 
|---|
| 227 | EXPORT_SYMBOL(bitmap_cut); | 
|---|
| 228 |  | 
|---|
| 229 | bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, | 
|---|
| 230 | const unsigned long *bitmap2, unsigned int bits) | 
|---|
| 231 | { | 
|---|
| 232 | unsigned int k; | 
|---|
| 233 | unsigned int lim = bits/BITS_PER_LONG; | 
|---|
| 234 | unsigned long result = 0; | 
|---|
| 235 |  | 
|---|
| 236 | for (k = 0; k < lim; k++) | 
|---|
| 237 | result |= (dst[k] = bitmap1[k] & bitmap2[k]); | 
|---|
| 238 | if (bits % BITS_PER_LONG) | 
|---|
| 239 | result |= (dst[k] = bitmap1[k] & bitmap2[k] & | 
|---|
| 240 | BITMAP_LAST_WORD_MASK(bits)); | 
|---|
| 241 | return result != 0; | 
|---|
| 242 | } | 
|---|
| 243 | EXPORT_SYMBOL(__bitmap_and); | 
|---|
| 244 |  | 
|---|
| 245 | void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, | 
|---|
| 246 | const unsigned long *bitmap2, unsigned int bits) | 
|---|
| 247 | { | 
|---|
| 248 | unsigned int k; | 
|---|
| 249 | unsigned int nr = BITS_TO_LONGS(bits); | 
|---|
| 250 |  | 
|---|
| 251 | for (k = 0; k < nr; k++) | 
|---|
| 252 | dst[k] = bitmap1[k] | bitmap2[k]; | 
|---|
| 253 | } | 
|---|
| 254 | EXPORT_SYMBOL(__bitmap_or); | 
|---|
| 255 |  | 
|---|
| 256 | void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, | 
|---|
| 257 | const unsigned long *bitmap2, unsigned int bits) | 
|---|
| 258 | { | 
|---|
| 259 | unsigned int k; | 
|---|
| 260 | unsigned int nr = BITS_TO_LONGS(bits); | 
|---|
| 261 |  | 
|---|
| 262 | for (k = 0; k < nr; k++) | 
|---|
| 263 | dst[k] = bitmap1[k] ^ bitmap2[k]; | 
|---|
| 264 | } | 
|---|
| 265 | EXPORT_SYMBOL(__bitmap_xor); | 
|---|
| 266 |  | 
|---|
| 267 | bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, | 
|---|
| 268 | const unsigned long *bitmap2, unsigned int bits) | 
|---|
| 269 | { | 
|---|
| 270 | unsigned int k; | 
|---|
| 271 | unsigned int lim = bits/BITS_PER_LONG; | 
|---|
| 272 | unsigned long result = 0; | 
|---|
| 273 |  | 
|---|
| 274 | for (k = 0; k < lim; k++) | 
|---|
| 275 | result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); | 
|---|
| 276 | if (bits % BITS_PER_LONG) | 
|---|
| 277 | result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & | 
|---|
| 278 | BITMAP_LAST_WORD_MASK(bits)); | 
|---|
| 279 | return result != 0; | 
|---|
| 280 | } | 
|---|
| 281 | EXPORT_SYMBOL(__bitmap_andnot); | 
|---|
| 282 |  | 
|---|
| 283 | void __bitmap_replace(unsigned long *dst, | 
|---|
| 284 | const unsigned long *old, const unsigned long *new, | 
|---|
| 285 | const unsigned long *mask, unsigned int nbits) | 
|---|
| 286 | { | 
|---|
| 287 | unsigned int k; | 
|---|
| 288 | unsigned int nr = BITS_TO_LONGS(nbits); | 
|---|
| 289 |  | 
|---|
| 290 | for (k = 0; k < nr; k++) | 
|---|
| 291 | dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); | 
|---|
| 292 | } | 
|---|
| 293 | EXPORT_SYMBOL(__bitmap_replace); | 
|---|
| 294 |  | 
|---|
| 295 | bool __bitmap_intersects(const unsigned long *bitmap1, | 
|---|
| 296 | const unsigned long *bitmap2, unsigned int bits) | 
|---|
| 297 | { | 
|---|
| 298 | unsigned int k, lim = bits/BITS_PER_LONG; | 
|---|
| 299 | for (k = 0; k < lim; ++k) | 
|---|
| 300 | if (bitmap1[k] & bitmap2[k]) | 
|---|
| 301 | return true; | 
|---|
| 302 |  | 
|---|
| 303 | if (bits % BITS_PER_LONG) | 
|---|
| 304 | if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
|---|
| 305 | return true; | 
|---|
| 306 | return false; | 
|---|
| 307 | } | 
|---|
| 308 | EXPORT_SYMBOL(__bitmap_intersects); | 
|---|
| 309 |  | 
|---|
| 310 | bool __bitmap_subset(const unsigned long *bitmap1, | 
|---|
| 311 | const unsigned long *bitmap2, unsigned int bits) | 
|---|
| 312 | { | 
|---|
| 313 | unsigned int k, lim = bits/BITS_PER_LONG; | 
|---|
| 314 | for (k = 0; k < lim; ++k) | 
|---|
| 315 | if (bitmap1[k] & ~bitmap2[k]) | 
|---|
| 316 | return false; | 
|---|
| 317 |  | 
|---|
| 318 | if (bits % BITS_PER_LONG) | 
|---|
| 319 | if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
|---|
| 320 | return false; | 
|---|
| 321 | return true; | 
|---|
| 322 | } | 
|---|
| 323 | EXPORT_SYMBOL(__bitmap_subset); | 
|---|
| 324 |  | 
|---|
| 325 | #define BITMAP_WEIGHT(FETCH, bits)	\ | 
|---|
| 326 | ({										\ | 
|---|
| 327 | unsigned int __bits = (bits), idx, w = 0;				\ | 
|---|
| 328 | \ | 
|---|
| 329 | for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\ | 
|---|
| 330 | w += hweight_long(FETCH);					\ | 
|---|
| 331 | \ | 
|---|
| 332 | if (__bits % BITS_PER_LONG)						\ | 
|---|
| 333 | w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\ | 
|---|
| 334 | \ | 
|---|
| 335 | w;									\ | 
|---|
| 336 | }) | 
|---|
| 337 |  | 
|---|
| 338 | unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) | 
|---|
| 339 | { | 
|---|
| 340 | return BITMAP_WEIGHT(bitmap[idx], bits); | 
|---|
| 341 | } | 
|---|
| 342 | EXPORT_SYMBOL(__bitmap_weight); | 
|---|
| 343 |  | 
|---|
| 344 | unsigned int __bitmap_weight_and(const unsigned long *bitmap1, | 
|---|
| 345 | const unsigned long *bitmap2, unsigned int bits) | 
|---|
| 346 | { | 
|---|
| 347 | return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits); | 
|---|
| 348 | } | 
|---|
| 349 | EXPORT_SYMBOL(__bitmap_weight_and); | 
|---|
| 350 |  | 
|---|
| 351 | unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1, | 
|---|
| 352 | const unsigned long *bitmap2, unsigned int bits) | 
|---|
| 353 | { | 
|---|
| 354 | return BITMAP_WEIGHT(bitmap1[idx] & ~bitmap2[idx], bits); | 
|---|
| 355 | } | 
|---|
| 356 | EXPORT_SYMBOL(__bitmap_weight_andnot); | 
|---|
| 357 |  | 
|---|
| 358 | void __bitmap_set(unsigned long *map, unsigned int start, int len) | 
|---|
| 359 | { | 
|---|
| 360 | unsigned long *p = map + BIT_WORD(start); | 
|---|
| 361 | const unsigned int size = start + len; | 
|---|
| 362 | int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); | 
|---|
| 363 | unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); | 
|---|
| 364 |  | 
|---|
| 365 | while (len - bits_to_set >= 0) { | 
|---|
| 366 | *p |= mask_to_set; | 
|---|
| 367 | len -= bits_to_set; | 
|---|
| 368 | bits_to_set = BITS_PER_LONG; | 
|---|
| 369 | mask_to_set = ~0UL; | 
|---|
| 370 | p++; | 
|---|
| 371 | } | 
|---|
| 372 | if (len) { | 
|---|
| 373 | mask_to_set &= BITMAP_LAST_WORD_MASK(size); | 
|---|
| 374 | *p |= mask_to_set; | 
|---|
| 375 | } | 
|---|
| 376 | } | 
|---|
| 377 | EXPORT_SYMBOL(__bitmap_set); | 
|---|
| 378 |  | 
|---|
| 379 | void __bitmap_clear(unsigned long *map, unsigned int start, int len) | 
|---|
| 380 | { | 
|---|
| 381 | unsigned long *p = map + BIT_WORD(start); | 
|---|
| 382 | const unsigned int size = start + len; | 
|---|
| 383 | int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); | 
|---|
| 384 | unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); | 
|---|
| 385 |  | 
|---|
| 386 | while (len - bits_to_clear >= 0) { | 
|---|
| 387 | *p &= ~mask_to_clear; | 
|---|
| 388 | len -= bits_to_clear; | 
|---|
| 389 | bits_to_clear = BITS_PER_LONG; | 
|---|
| 390 | mask_to_clear = ~0UL; | 
|---|
| 391 | p++; | 
|---|
| 392 | } | 
|---|
| 393 | if (len) { | 
|---|
| 394 | mask_to_clear &= BITMAP_LAST_WORD_MASK(size); | 
|---|
| 395 | *p &= ~mask_to_clear; | 
|---|
| 396 | } | 
|---|
| 397 | } | 
|---|
| 398 | EXPORT_SYMBOL(__bitmap_clear); | 
|---|
| 399 |  | 
|---|
| 400 | /** | 
|---|
| 401 | * bitmap_find_next_zero_area_off - find a contiguous aligned zero area | 
|---|
| 402 | * @map: The address to base the search on | 
|---|
| 403 | * @size: The bitmap size in bits | 
|---|
| 404 | * @start: The bitnumber to start searching at | 
|---|
| 405 | * @nr: The number of zeroed bits we're looking for | 
|---|
| 406 | * @align_mask: Alignment mask for zero area | 
|---|
| 407 | * @align_offset: Alignment offset for zero area. | 
|---|
| 408 | * | 
|---|
| 409 | * The @align_mask should be one less than a power of 2; the effect is that | 
|---|
| 410 | * the bit offset of all zero areas this function finds plus @align_offset | 
|---|
| 411 | * is multiple of that power of 2. | 
|---|
| 412 | */ | 
|---|
| 413 | unsigned long bitmap_find_next_zero_area_off(unsigned long *map, | 
|---|
| 414 | unsigned long size, | 
|---|
| 415 | unsigned long start, | 
|---|
| 416 | unsigned int nr, | 
|---|
| 417 | unsigned long align_mask, | 
|---|
| 418 | unsigned long align_offset) | 
|---|
| 419 | { | 
|---|
| 420 | unsigned long index, end, i; | 
|---|
| 421 | again: | 
|---|
| 422 | index = find_next_zero_bit(addr: map, size, offset: start); | 
|---|
| 423 |  | 
|---|
| 424 | /* Align allocation */ | 
|---|
| 425 | index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; | 
|---|
| 426 |  | 
|---|
| 427 | end = index + nr; | 
|---|
| 428 | if (end > size) | 
|---|
| 429 | return end; | 
|---|
| 430 | i = find_next_bit(addr: map, size: end, offset: index); | 
|---|
| 431 | if (i < end) { | 
|---|
| 432 | start = i + 1; | 
|---|
| 433 | goto again; | 
|---|
| 434 | } | 
|---|
| 435 | return index; | 
|---|
| 436 | } | 
|---|
| 437 | EXPORT_SYMBOL(bitmap_find_next_zero_area_off); | 
|---|
| 438 |  | 
|---|
| 439 | /** | 
|---|
| 440 | * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap | 
|---|
| 441 | *	@buf: pointer to a bitmap | 
|---|
| 442 | *	@pos: a bit position in @buf (0 <= @pos < @nbits) | 
|---|
| 443 | *	@nbits: number of valid bit positions in @buf | 
|---|
| 444 | * | 
|---|
| 445 | * Map the bit at position @pos in @buf (of length @nbits) to the | 
|---|
| 446 | * ordinal of which set bit it is.  If it is not set or if @pos | 
|---|
| 447 | * is not a valid bit position, map to -1. | 
|---|
| 448 | * | 
|---|
| 449 | * If for example, just bits 4 through 7 are set in @buf, then @pos | 
|---|
| 450 | * values 4 through 7 will get mapped to 0 through 3, respectively, | 
|---|
| 451 | * and other @pos values will get mapped to -1.  When @pos value 7 | 
|---|
| 452 | * gets mapped to (returns) @ord value 3 in this example, that means | 
|---|
| 453 | * that bit 7 is the 3rd (starting with 0th) set bit in @buf. | 
|---|
| 454 | * | 
|---|
| 455 | * The bit positions 0 through @bits are valid positions in @buf. | 
|---|
| 456 | */ | 
|---|
| 457 | static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) | 
|---|
| 458 | { | 
|---|
| 459 | if (pos >= nbits || !test_bit(pos, buf)) | 
|---|
| 460 | return -1; | 
|---|
| 461 |  | 
|---|
| 462 | return bitmap_weight(src: buf, nbits: pos); | 
|---|
| 463 | } | 
|---|
| 464 |  | 
|---|
| 465 | /** | 
|---|
| 466 | * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap | 
|---|
| 467 | *	@dst: remapped result | 
|---|
| 468 | *	@src: subset to be remapped | 
|---|
| 469 | *	@old: defines domain of map | 
|---|
| 470 | *	@new: defines range of map | 
|---|
| 471 | *	@nbits: number of bits in each of these bitmaps | 
|---|
| 472 | * | 
|---|
| 473 | * Let @old and @new define a mapping of bit positions, such that | 
|---|
| 474 | * whatever position is held by the n-th set bit in @old is mapped | 
|---|
| 475 | * to the n-th set bit in @new.  In the more general case, allowing | 
|---|
| 476 | * for the possibility that the weight 'w' of @new is less than the | 
|---|
| 477 | * weight of @old, map the position of the n-th set bit in @old to | 
|---|
| 478 | * the position of the m-th set bit in @new, where m == n % w. | 
|---|
| 479 | * | 
|---|
| 480 | * If either of the @old and @new bitmaps are empty, or if @src and | 
|---|
| 481 | * @dst point to the same location, then this routine copies @src | 
|---|
| 482 | * to @dst. | 
|---|
| 483 | * | 
|---|
| 484 | * The positions of unset bits in @old are mapped to themselves | 
|---|
| 485 | * (the identity map). | 
|---|
| 486 | * | 
|---|
| 487 | * Apply the above specified mapping to @src, placing the result in | 
|---|
| 488 | * @dst, clearing any bits previously set in @dst. | 
|---|
| 489 | * | 
|---|
| 490 | * For example, lets say that @old has bits 4 through 7 set, and | 
|---|
| 491 | * @new has bits 12 through 15 set.  This defines the mapping of bit | 
|---|
| 492 | * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other | 
|---|
| 493 | * bit positions unchanged.  So if say @src comes into this routine | 
|---|
| 494 | * with bits 1, 5 and 7 set, then @dst should leave with bits 1, | 
|---|
| 495 | * 13 and 15 set. | 
|---|
| 496 | */ | 
|---|
| 497 | void bitmap_remap(unsigned long *dst, const unsigned long *src, | 
|---|
| 498 | const unsigned long *old, const unsigned long *new, | 
|---|
| 499 | unsigned int nbits) | 
|---|
| 500 | { | 
|---|
| 501 | unsigned int oldbit, w; | 
|---|
| 502 |  | 
|---|
| 503 | if (dst == src)		/* following doesn't handle inplace remaps */ | 
|---|
| 504 | return; | 
|---|
| 505 | bitmap_zero(dst, nbits); | 
|---|
| 506 |  | 
|---|
| 507 | w = bitmap_weight(src: new, nbits); | 
|---|
| 508 | for_each_set_bit(oldbit, src, nbits) { | 
|---|
| 509 | int n = bitmap_pos_to_ord(buf: old, pos: oldbit, nbits); | 
|---|
| 510 |  | 
|---|
| 511 | if (n < 0 || w == 0) | 
|---|
| 512 | set_bit(nr: oldbit, addr: dst);	/* identity map */ | 
|---|
| 513 | else | 
|---|
| 514 | set_bit(nr: find_nth_bit(addr: new, size: nbits, n: n % w), addr: dst); | 
|---|
| 515 | } | 
|---|
| 516 | } | 
|---|
| 517 | EXPORT_SYMBOL(bitmap_remap); | 
|---|
| 518 |  | 
|---|
| 519 | /** | 
|---|
| 520 | * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit | 
|---|
| 521 | *	@oldbit: bit position to be mapped | 
|---|
| 522 | *	@old: defines domain of map | 
|---|
| 523 | *	@new: defines range of map | 
|---|
| 524 | *	@bits: number of bits in each of these bitmaps | 
|---|
| 525 | * | 
|---|
| 526 | * Let @old and @new define a mapping of bit positions, such that | 
|---|
| 527 | * whatever position is held by the n-th set bit in @old is mapped | 
|---|
| 528 | * to the n-th set bit in @new.  In the more general case, allowing | 
|---|
| 529 | * for the possibility that the weight 'w' of @new is less than the | 
|---|
| 530 | * weight of @old, map the position of the n-th set bit in @old to | 
|---|
| 531 | * the position of the m-th set bit in @new, where m == n % w. | 
|---|
| 532 | * | 
|---|
| 533 | * The positions of unset bits in @old are mapped to themselves | 
|---|
| 534 | * (the identity map). | 
|---|
| 535 | * | 
|---|
| 536 | * Apply the above specified mapping to bit position @oldbit, returning | 
|---|
| 537 | * the new bit position. | 
|---|
| 538 | * | 
|---|
| 539 | * For example, lets say that @old has bits 4 through 7 set, and | 
|---|
| 540 | * @new has bits 12 through 15 set.  This defines the mapping of bit | 
|---|
| 541 | * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other | 
|---|
| 542 | * bit positions unchanged.  So if say @oldbit is 5, then this routine | 
|---|
| 543 | * returns 13. | 
|---|
| 544 | */ | 
|---|
| 545 | int bitmap_bitremap(int oldbit, const unsigned long *old, | 
|---|
| 546 | const unsigned long *new, int bits) | 
|---|
| 547 | { | 
|---|
| 548 | int w = bitmap_weight(src: new, nbits: bits); | 
|---|
| 549 | int n = bitmap_pos_to_ord(buf: old, pos: oldbit, nbits: bits); | 
|---|
| 550 | if (n < 0 || w == 0) | 
|---|
| 551 | return oldbit; | 
|---|
| 552 | else | 
|---|
| 553 | return find_nth_bit(addr: new, size: bits, n: n % w); | 
|---|
| 554 | } | 
|---|
| 555 | EXPORT_SYMBOL(bitmap_bitremap); | 
|---|
| 556 |  | 
|---|
| 557 | #ifdef CONFIG_NUMA | 
|---|
| 558 | /** | 
|---|
| 559 | * bitmap_onto - translate one bitmap relative to another | 
|---|
| 560 | *	@dst: resulting translated bitmap | 
|---|
| 561 | * 	@orig: original untranslated bitmap | 
|---|
| 562 | * 	@relmap: bitmap relative to which translated | 
|---|
| 563 | *	@bits: number of bits in each of these bitmaps | 
|---|
| 564 | * | 
|---|
| 565 | * Set the n-th bit of @dst iff there exists some m such that the | 
|---|
| 566 | * n-th bit of @relmap is set, the m-th bit of @orig is set, and | 
|---|
| 567 | * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. | 
|---|
| 568 | * (If you understood the previous sentence the first time your | 
|---|
| 569 | * read it, you're overqualified for your current job.) | 
|---|
| 570 | * | 
|---|
| 571 | * In other words, @orig is mapped onto (surjectively) @dst, | 
|---|
| 572 | * using the map { <n, m> | the n-th bit of @relmap is the | 
|---|
| 573 | * m-th set bit of @relmap }. | 
|---|
| 574 | * | 
|---|
| 575 | * Any set bits in @orig above bit number W, where W is the | 
|---|
| 576 | * weight of (number of set bits in) @relmap are mapped nowhere. | 
|---|
| 577 | * In particular, if for all bits m set in @orig, m >= W, then | 
|---|
| 578 | * @dst will end up empty.  In situations where the possibility | 
|---|
| 579 | * of such an empty result is not desired, one way to avoid it is | 
|---|
| 580 | * to use the bitmap_fold() operator, below, to first fold the | 
|---|
| 581 | * @orig bitmap over itself so that all its set bits x are in the | 
|---|
| 582 | * range 0 <= x < W.  The bitmap_fold() operator does this by | 
|---|
| 583 | * setting the bit (m % W) in @dst, for each bit (m) set in @orig. | 
|---|
| 584 | * | 
|---|
| 585 | * Example [1] for bitmap_onto(): | 
|---|
| 586 | *  Let's say @relmap has bits 30-39 set, and @orig has bits | 
|---|
| 587 | *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine, | 
|---|
| 588 | *  @dst will have bits 31, 33, 35, 37 and 39 set. | 
|---|
| 589 | * | 
|---|
| 590 | *  When bit 0 is set in @orig, it means turn on the bit in | 
|---|
| 591 | *  @dst corresponding to whatever is the first bit (if any) | 
|---|
| 592 | *  that is turned on in @relmap.  Since bit 0 was off in the | 
|---|
| 593 | *  above example, we leave off that bit (bit 30) in @dst. | 
|---|
| 594 | * | 
|---|
| 595 | *  When bit 1 is set in @orig (as in the above example), it | 
|---|
| 596 | *  means turn on the bit in @dst corresponding to whatever | 
|---|
| 597 | *  is the second bit that is turned on in @relmap.  The second | 
|---|
| 598 | *  bit in @relmap that was turned on in the above example was | 
|---|
| 599 | *  bit 31, so we turned on bit 31 in @dst. | 
|---|
| 600 | * | 
|---|
| 601 | *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst, | 
|---|
| 602 | *  because they were the 4th, 6th, 8th and 10th set bits | 
|---|
| 603 | *  set in @relmap, and the 4th, 6th, 8th and 10th bits of | 
|---|
| 604 | *  @orig (i.e. bits 3, 5, 7 and 9) were also set. | 
|---|
| 605 | * | 
|---|
| 606 | *  When bit 11 is set in @orig, it means turn on the bit in | 
|---|
| 607 | *  @dst corresponding to whatever is the twelfth bit that is | 
|---|
| 608 | *  turned on in @relmap.  In the above example, there were | 
|---|
| 609 | *  only ten bits turned on in @relmap (30..39), so that bit | 
|---|
| 610 | *  11 was set in @orig had no affect on @dst. | 
|---|
| 611 | * | 
|---|
| 612 | * Example [2] for bitmap_fold() + bitmap_onto(): | 
|---|
| 613 | *  Let's say @relmap has these ten bits set:: | 
|---|
| 614 | * | 
|---|
| 615 | *		40 41 42 43 45 48 53 61 74 95 | 
|---|
| 616 | * | 
|---|
| 617 | *  (for the curious, that's 40 plus the first ten terms of the | 
|---|
| 618 | *  Fibonacci sequence.) | 
|---|
| 619 | * | 
|---|
| 620 | *  Further lets say we use the following code, invoking | 
|---|
| 621 | *  bitmap_fold() then bitmap_onto, as suggested above to | 
|---|
| 622 | *  avoid the possibility of an empty @dst result:: | 
|---|
| 623 | * | 
|---|
| 624 | *	unsigned long *tmp;	// a temporary bitmap's bits | 
|---|
| 625 | * | 
|---|
| 626 | *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); | 
|---|
| 627 | *	bitmap_onto(dst, tmp, relmap, bits); | 
|---|
| 628 | * | 
|---|
| 629 | *  Then this table shows what various values of @dst would be, for | 
|---|
| 630 | *  various @orig's.  I list the zero-based positions of each set bit. | 
|---|
| 631 | *  The tmp column shows the intermediate result, as computed by | 
|---|
| 632 | *  using bitmap_fold() to fold the @orig bitmap modulo ten | 
|---|
| 633 | *  (the weight of @relmap): | 
|---|
| 634 | * | 
|---|
| 635 | *      =============== ============== ================= | 
|---|
| 636 | *      @orig           tmp            @dst | 
|---|
| 637 | *      0                0             40 | 
|---|
| 638 | *      1                1             41 | 
|---|
| 639 | *      9                9             95 | 
|---|
| 640 | *      10               0             40 [#f1]_ | 
|---|
| 641 | *      1 3 5 7          1 3 5 7       41 43 48 61 | 
|---|
| 642 | *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45 | 
|---|
| 643 | *      0 9 18 27        0 9 8 7       40 61 74 95 | 
|---|
| 644 | *      0 10 20 30       0             40 | 
|---|
| 645 | *      0 11 22 33       0 1 2 3       40 41 42 43 | 
|---|
| 646 | *      0 12 24 36       0 2 4 6       40 42 45 53 | 
|---|
| 647 | *      78 102 211       1 2 8         41 42 74 [#f1]_ | 
|---|
| 648 | *      =============== ============== ================= | 
|---|
| 649 | * | 
|---|
| 650 | * .. [#f1] | 
|---|
| 651 | * | 
|---|
| 652 | *     For these marked lines, if we hadn't first done bitmap_fold() | 
|---|
| 653 | *     into tmp, then the @dst result would have been empty. | 
|---|
| 654 | * | 
|---|
| 655 | * If either of @orig or @relmap is empty (no set bits), then @dst | 
|---|
| 656 | * will be returned empty. | 
|---|
| 657 | * | 
|---|
| 658 | * If (as explained above) the only set bits in @orig are in positions | 
|---|
| 659 | * m where m >= W, (where W is the weight of @relmap) then @dst will | 
|---|
| 660 | * once again be returned empty. | 
|---|
| 661 | * | 
|---|
| 662 | * All bits in @dst not set by the above rule are cleared. | 
|---|
| 663 | */ | 
|---|
| 664 | void bitmap_onto(unsigned long *dst, const unsigned long *orig, | 
|---|
| 665 | const unsigned long *relmap, unsigned int bits) | 
|---|
| 666 | { | 
|---|
| 667 | unsigned int n, m;	/* same meaning as in above comment */ | 
|---|
| 668 |  | 
|---|
| 669 | if (dst == orig)	/* following doesn't handle inplace mappings */ | 
|---|
| 670 | return; | 
|---|
| 671 | bitmap_zero(dst, nbits: bits); | 
|---|
| 672 |  | 
|---|
| 673 | /* | 
|---|
| 674 | * The following code is a more efficient, but less | 
|---|
| 675 | * obvious, equivalent to the loop: | 
|---|
| 676 | *	for (m = 0; m < bitmap_weight(relmap, bits); m++) { | 
|---|
| 677 | *		n = find_nth_bit(orig, bits, m); | 
|---|
| 678 | *		if (test_bit(m, orig)) | 
|---|
| 679 | *			set_bit(n, dst); | 
|---|
| 680 | *	} | 
|---|
| 681 | */ | 
|---|
| 682 |  | 
|---|
| 683 | m = 0; | 
|---|
| 684 | for_each_set_bit(n, relmap, bits) { | 
|---|
| 685 | /* m == bitmap_pos_to_ord(relmap, n, bits) */ | 
|---|
| 686 | if (test_bit(m, orig)) | 
|---|
| 687 | set_bit(nr: n, addr: dst); | 
|---|
| 688 | m++; | 
|---|
| 689 | } | 
|---|
| 690 | } | 
|---|
| 691 |  | 
|---|
| 692 | /** | 
|---|
| 693 | * bitmap_fold - fold larger bitmap into smaller, modulo specified size | 
|---|
| 694 | *	@dst: resulting smaller bitmap | 
|---|
| 695 | *	@orig: original larger bitmap | 
|---|
| 696 | *	@sz: specified size | 
|---|
| 697 | *	@nbits: number of bits in each of these bitmaps | 
|---|
| 698 | * | 
|---|
| 699 | * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. | 
|---|
| 700 | * Clear all other bits in @dst.  See further the comment and | 
|---|
| 701 | * Example [2] for bitmap_onto() for why and how to use this. | 
|---|
| 702 | */ | 
|---|
| 703 | void bitmap_fold(unsigned long *dst, const unsigned long *orig, | 
|---|
| 704 | unsigned int sz, unsigned int nbits) | 
|---|
| 705 | { | 
|---|
| 706 | unsigned int oldbit; | 
|---|
| 707 |  | 
|---|
| 708 | if (dst == orig)	/* following doesn't handle inplace mappings */ | 
|---|
| 709 | return; | 
|---|
| 710 | bitmap_zero(dst, nbits); | 
|---|
| 711 |  | 
|---|
| 712 | for_each_set_bit(oldbit, orig, nbits) | 
|---|
| 713 | set_bit(nr: oldbit % sz, addr: dst); | 
|---|
| 714 | } | 
|---|
| 715 | #endif /* CONFIG_NUMA */ | 
|---|
| 716 |  | 
|---|
| 717 | unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) | 
|---|
| 718 | { | 
|---|
| 719 | return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), | 
|---|
| 720 | flags); | 
|---|
| 721 | } | 
|---|
| 722 | EXPORT_SYMBOL(bitmap_alloc); | 
|---|
| 723 |  | 
|---|
| 724 | unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) | 
|---|
| 725 | { | 
|---|
| 726 | return bitmap_alloc(nbits, flags | __GFP_ZERO); | 
|---|
| 727 | } | 
|---|
| 728 | EXPORT_SYMBOL(bitmap_zalloc); | 
|---|
| 729 |  | 
|---|
| 730 | unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node) | 
|---|
| 731 | { | 
|---|
| 732 | return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long), | 
|---|
| 733 | flags, node); | 
|---|
| 734 | } | 
|---|
| 735 | EXPORT_SYMBOL(bitmap_alloc_node); | 
|---|
| 736 |  | 
|---|
| 737 | unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node) | 
|---|
| 738 | { | 
|---|
| 739 | return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node); | 
|---|
| 740 | } | 
|---|
| 741 | EXPORT_SYMBOL(bitmap_zalloc_node); | 
|---|
| 742 |  | 
|---|
| 743 | void bitmap_free(const unsigned long *bitmap) | 
|---|
| 744 | { | 
|---|
| 745 | kfree(objp: bitmap); | 
|---|
| 746 | } | 
|---|
| 747 | EXPORT_SYMBOL(bitmap_free); | 
|---|
| 748 |  | 
|---|
| 749 | static void devm_bitmap_free(void *data) | 
|---|
| 750 | { | 
|---|
| 751 | unsigned long *bitmap = data; | 
|---|
| 752 |  | 
|---|
| 753 | bitmap_free(bitmap); | 
|---|
| 754 | } | 
|---|
| 755 |  | 
|---|
| 756 | unsigned long *devm_bitmap_alloc(struct device *dev, | 
|---|
| 757 | unsigned int nbits, gfp_t flags) | 
|---|
| 758 | { | 
|---|
| 759 | unsigned long *bitmap; | 
|---|
| 760 | int ret; | 
|---|
| 761 |  | 
|---|
| 762 | bitmap = bitmap_alloc(nbits, flags); | 
|---|
| 763 | if (!bitmap) | 
|---|
| 764 | return NULL; | 
|---|
| 765 |  | 
|---|
| 766 | ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); | 
|---|
| 767 | if (ret) | 
|---|
| 768 | return NULL; | 
|---|
| 769 |  | 
|---|
| 770 | return bitmap; | 
|---|
| 771 | } | 
|---|
| 772 | EXPORT_SYMBOL_GPL(devm_bitmap_alloc); | 
|---|
| 773 |  | 
|---|
| 774 | unsigned long *devm_bitmap_zalloc(struct device *dev, | 
|---|
| 775 | unsigned int nbits, gfp_t flags) | 
|---|
| 776 | { | 
|---|
| 777 | return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); | 
|---|
| 778 | } | 
|---|
| 779 | EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); | 
|---|
| 780 |  | 
|---|
| 781 | #if BITS_PER_LONG == 64 | 
|---|
| 782 | /** | 
|---|
| 783 | * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap | 
|---|
| 784 | *	@bitmap: array of unsigned longs, the destination bitmap | 
|---|
| 785 | *	@buf: array of u32 (in host byte order), the source bitmap | 
|---|
| 786 | *	@nbits: number of bits in @bitmap | 
|---|
| 787 | */ | 
|---|
| 788 | void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) | 
|---|
| 789 | { | 
|---|
| 790 | unsigned int i, halfwords; | 
|---|
| 791 |  | 
|---|
| 792 | halfwords = DIV_ROUND_UP(nbits, 32); | 
|---|
| 793 | for (i = 0; i < halfwords; i++) { | 
|---|
| 794 | bitmap[i/2] = (unsigned long) buf[i]; | 
|---|
| 795 | if (++i < halfwords) | 
|---|
| 796 | bitmap[i/2] |= ((unsigned long) buf[i]) << 32; | 
|---|
| 797 | } | 
|---|
| 798 |  | 
|---|
| 799 | /* Clear tail bits in last word beyond nbits. */ | 
|---|
| 800 | if (nbits % BITS_PER_LONG) | 
|---|
| 801 | bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); | 
|---|
| 802 | } | 
|---|
| 803 | EXPORT_SYMBOL(bitmap_from_arr32); | 
|---|
| 804 |  | 
|---|
| 805 | /** | 
|---|
| 806 | * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits | 
|---|
| 807 | *	@buf: array of u32 (in host byte order), the dest bitmap | 
|---|
| 808 | *	@bitmap: array of unsigned longs, the source bitmap | 
|---|
| 809 | *	@nbits: number of bits in @bitmap | 
|---|
| 810 | */ | 
|---|
| 811 | void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) | 
|---|
| 812 | { | 
|---|
| 813 | unsigned int i, halfwords; | 
|---|
| 814 |  | 
|---|
| 815 | halfwords = DIV_ROUND_UP(nbits, 32); | 
|---|
| 816 | for (i = 0; i < halfwords; i++) { | 
|---|
| 817 | buf[i] = (u32) (bitmap[i/2] & UINT_MAX); | 
|---|
| 818 | if (++i < halfwords) | 
|---|
| 819 | buf[i] = (u32) (bitmap[i/2] >> 32); | 
|---|
| 820 | } | 
|---|
| 821 |  | 
|---|
| 822 | /* Clear tail bits in last element of array beyond nbits. */ | 
|---|
| 823 | if (nbits % BITS_PER_LONG) | 
|---|
| 824 | buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); | 
|---|
| 825 | } | 
|---|
| 826 | EXPORT_SYMBOL(bitmap_to_arr32); | 
|---|
| 827 | #endif | 
|---|
| 828 |  | 
|---|
| 829 | #if BITS_PER_LONG == 32 | 
|---|
| 830 | /** | 
|---|
| 831 | * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap | 
|---|
| 832 | *	@bitmap: array of unsigned longs, the destination bitmap | 
|---|
| 833 | *	@buf: array of u64 (in host byte order), the source bitmap | 
|---|
| 834 | *	@nbits: number of bits in @bitmap | 
|---|
| 835 | */ | 
|---|
| 836 | void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits) | 
|---|
| 837 | { | 
|---|
| 838 | int n; | 
|---|
| 839 |  | 
|---|
| 840 | for (n = nbits; n > 0; n -= 64) { | 
|---|
| 841 | u64 val = *buf++; | 
|---|
| 842 |  | 
|---|
| 843 | *bitmap++ = val; | 
|---|
| 844 | if (n > 32) | 
|---|
| 845 | *bitmap++ = val >> 32; | 
|---|
| 846 | } | 
|---|
| 847 |  | 
|---|
| 848 | /* | 
|---|
| 849 | * Clear tail bits in the last word beyond nbits. | 
|---|
| 850 | * | 
|---|
| 851 | * Negative index is OK because here we point to the word next | 
|---|
| 852 | * to the last word of the bitmap, except for nbits == 0, which | 
|---|
| 853 | * is tested implicitly. | 
|---|
| 854 | */ | 
|---|
| 855 | if (nbits % BITS_PER_LONG) | 
|---|
| 856 | bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits); | 
|---|
| 857 | } | 
|---|
| 858 | EXPORT_SYMBOL(bitmap_from_arr64); | 
|---|
| 859 |  | 
|---|
| 860 | /** | 
|---|
| 861 | * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits | 
|---|
| 862 | *	@buf: array of u64 (in host byte order), the dest bitmap | 
|---|
| 863 | *	@bitmap: array of unsigned longs, the source bitmap | 
|---|
| 864 | *	@nbits: number of bits in @bitmap | 
|---|
| 865 | */ | 
|---|
| 866 | void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits) | 
|---|
| 867 | { | 
|---|
| 868 | const unsigned long *end = bitmap + BITS_TO_LONGS(nbits); | 
|---|
| 869 |  | 
|---|
| 870 | while (bitmap < end) { | 
|---|
| 871 | *buf = *bitmap++; | 
|---|
| 872 | if (bitmap < end) | 
|---|
| 873 | *buf |= (u64)(*bitmap++) << 32; | 
|---|
| 874 | buf++; | 
|---|
| 875 | } | 
|---|
| 876 |  | 
|---|
| 877 | /* Clear tail bits in the last element of array beyond nbits. */ | 
|---|
| 878 | if (nbits % 64) | 
|---|
| 879 | buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0); | 
|---|
| 880 | } | 
|---|
| 881 | EXPORT_SYMBOL(bitmap_to_arr64); | 
|---|
| 882 | #endif | 
|---|
| 883 |  | 
|---|