| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include <linux/slab.h> |
| 3 | #include <linux/lockdep.h> |
| 4 | #include <linux/sysfs.h> |
| 5 | #include <linux/kobject.h> |
| 6 | #include <linux/memory.h> |
| 7 | #include <linux/memory-tiers.h> |
| 8 | #include <linux/notifier.h> |
| 9 | #include <linux/sched/sysctl.h> |
| 10 | |
| 11 | #include "internal.h" |
| 12 | |
| 13 | struct memory_tier { |
| 14 | /* hierarchy of memory tiers */ |
| 15 | struct list_head list; |
| 16 | /* list of all memory types part of this tier */ |
| 17 | struct list_head memory_types; |
| 18 | /* |
| 19 | * start value of abstract distance. memory tier maps |
| 20 | * an abstract distance range, |
| 21 | * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE |
| 22 | */ |
| 23 | int adistance_start; |
| 24 | struct device dev; |
| 25 | /* All the nodes that are part of all the lower memory tiers. */ |
| 26 | nodemask_t lower_tier_mask; |
| 27 | }; |
| 28 | |
| 29 | struct demotion_nodes { |
| 30 | nodemask_t preferred; |
| 31 | }; |
| 32 | |
| 33 | struct node_memory_type_map { |
| 34 | struct memory_dev_type *memtype; |
| 35 | int map_count; |
| 36 | }; |
| 37 | |
| 38 | static DEFINE_MUTEX(memory_tier_lock); |
| 39 | static LIST_HEAD(memory_tiers); |
| 40 | /* |
| 41 | * The list is used to store all memory types that are not created |
| 42 | * by a device driver. |
| 43 | */ |
| 44 | static LIST_HEAD(default_memory_types); |
| 45 | static struct node_memory_type_map node_memory_types[MAX_NUMNODES]; |
| 46 | struct memory_dev_type *default_dram_type; |
| 47 | nodemask_t default_dram_nodes __initdata = NODE_MASK_NONE; |
| 48 | |
| 49 | static const struct bus_type memory_tier_subsys = { |
| 50 | .name = "memory_tiering" , |
| 51 | .dev_name = "memory_tier" , |
| 52 | }; |
| 53 | |
| 54 | #ifdef CONFIG_NUMA_BALANCING |
| 55 | /** |
| 56 | * folio_use_access_time - check if a folio reuses cpupid for page access time |
| 57 | * @folio: folio to check |
| 58 | * |
| 59 | * folio's _last_cpupid field is repurposed by memory tiering. In memory |
| 60 | * tiering mode, cpupid of slow memory folio (not toptier memory) is used to |
| 61 | * record page access time. |
| 62 | * |
| 63 | * Return: the folio _last_cpupid is used to record page access time |
| 64 | */ |
| 65 | bool folio_use_access_time(struct folio *folio) |
| 66 | { |
| 67 | return (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && |
| 68 | !node_is_toptier(folio_nid(folio)); |
| 69 | } |
| 70 | #endif |
| 71 | |
| 72 | #ifdef CONFIG_MIGRATION |
| 73 | static int top_tier_adistance; |
| 74 | /* |
| 75 | * node_demotion[] examples: |
| 76 | * |
| 77 | * Example 1: |
| 78 | * |
| 79 | * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes. |
| 80 | * |
| 81 | * node distances: |
| 82 | * node 0 1 2 3 |
| 83 | * 0 10 20 30 40 |
| 84 | * 1 20 10 40 30 |
| 85 | * 2 30 40 10 40 |
| 86 | * 3 40 30 40 10 |
| 87 | * |
| 88 | * memory_tiers0 = 0-1 |
| 89 | * memory_tiers1 = 2-3 |
| 90 | * |
| 91 | * node_demotion[0].preferred = 2 |
| 92 | * node_demotion[1].preferred = 3 |
| 93 | * node_demotion[2].preferred = <empty> |
| 94 | * node_demotion[3].preferred = <empty> |
| 95 | * |
| 96 | * Example 2: |
| 97 | * |
| 98 | * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node. |
| 99 | * |
| 100 | * node distances: |
| 101 | * node 0 1 2 |
| 102 | * 0 10 20 30 |
| 103 | * 1 20 10 30 |
| 104 | * 2 30 30 10 |
| 105 | * |
| 106 | * memory_tiers0 = 0-2 |
| 107 | * |
| 108 | * node_demotion[0].preferred = <empty> |
| 109 | * node_demotion[1].preferred = <empty> |
| 110 | * node_demotion[2].preferred = <empty> |
| 111 | * |
| 112 | * Example 3: |
| 113 | * |
| 114 | * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node. |
| 115 | * |
| 116 | * node distances: |
| 117 | * node 0 1 2 |
| 118 | * 0 10 20 30 |
| 119 | * 1 20 10 40 |
| 120 | * 2 30 40 10 |
| 121 | * |
| 122 | * memory_tiers0 = 1 |
| 123 | * memory_tiers1 = 0 |
| 124 | * memory_tiers2 = 2 |
| 125 | * |
| 126 | * node_demotion[0].preferred = 2 |
| 127 | * node_demotion[1].preferred = 0 |
| 128 | * node_demotion[2].preferred = <empty> |
| 129 | * |
| 130 | */ |
| 131 | static struct demotion_nodes *node_demotion __read_mostly; |
| 132 | #endif /* CONFIG_MIGRATION */ |
| 133 | |
| 134 | static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms); |
| 135 | |
| 136 | /* The lock is used to protect `default_dram_perf*` info and nid. */ |
| 137 | static DEFINE_MUTEX(default_dram_perf_lock); |
| 138 | static bool default_dram_perf_error; |
| 139 | static struct access_coordinate default_dram_perf; |
| 140 | static int default_dram_perf_ref_nid = NUMA_NO_NODE; |
| 141 | static const char *default_dram_perf_ref_source; |
| 142 | |
| 143 | static inline struct memory_tier *to_memory_tier(struct device *device) |
| 144 | { |
| 145 | return container_of(device, struct memory_tier, dev); |
| 146 | } |
| 147 | |
| 148 | static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier) |
| 149 | { |
| 150 | nodemask_t nodes = NODE_MASK_NONE; |
| 151 | struct memory_dev_type *memtype; |
| 152 | |
| 153 | list_for_each_entry(memtype, &memtier->memory_types, tier_sibling) |
| 154 | nodes_or(nodes, nodes, memtype->nodes); |
| 155 | |
| 156 | return nodes; |
| 157 | } |
| 158 | |
| 159 | static void memory_tier_device_release(struct device *dev) |
| 160 | { |
| 161 | struct memory_tier *tier = to_memory_tier(device: dev); |
| 162 | /* |
| 163 | * synchronize_rcu in clear_node_memory_tier makes sure |
| 164 | * we don't have rcu access to this memory tier. |
| 165 | */ |
| 166 | kfree(objp: tier); |
| 167 | } |
| 168 | |
| 169 | static ssize_t nodelist_show(struct device *dev, |
| 170 | struct device_attribute *attr, char *buf) |
| 171 | { |
| 172 | int ret; |
| 173 | nodemask_t nmask; |
| 174 | |
| 175 | mutex_lock(lock: &memory_tier_lock); |
| 176 | nmask = get_memtier_nodemask(memtier: to_memory_tier(device: dev)); |
| 177 | ret = sysfs_emit(buf, fmt: "%*pbl\n" , nodemask_pr_args(&nmask)); |
| 178 | mutex_unlock(lock: &memory_tier_lock); |
| 179 | return ret; |
| 180 | } |
| 181 | static DEVICE_ATTR_RO(nodelist); |
| 182 | |
| 183 | static struct attribute *memtier_dev_attrs[] = { |
| 184 | &dev_attr_nodelist.attr, |
| 185 | NULL |
| 186 | }; |
| 187 | |
| 188 | static const struct attribute_group memtier_dev_group = { |
| 189 | .attrs = memtier_dev_attrs, |
| 190 | }; |
| 191 | |
| 192 | static const struct attribute_group *memtier_dev_groups[] = { |
| 193 | &memtier_dev_group, |
| 194 | NULL |
| 195 | }; |
| 196 | |
| 197 | static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype) |
| 198 | { |
| 199 | int ret; |
| 200 | bool found_slot = false; |
| 201 | struct memory_tier *memtier, *new_memtier; |
| 202 | int adistance = memtype->adistance; |
| 203 | unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE; |
| 204 | |
| 205 | lockdep_assert_held_once(&memory_tier_lock); |
| 206 | |
| 207 | adistance = round_down(adistance, memtier_adistance_chunk_size); |
| 208 | /* |
| 209 | * If the memtype is already part of a memory tier, |
| 210 | * just return that. |
| 211 | */ |
| 212 | if (!list_empty(head: &memtype->tier_sibling)) { |
| 213 | list_for_each_entry(memtier, &memory_tiers, list) { |
| 214 | if (adistance == memtier->adistance_start) |
| 215 | return memtier; |
| 216 | } |
| 217 | WARN_ON(1); |
| 218 | return ERR_PTR(error: -EINVAL); |
| 219 | } |
| 220 | |
| 221 | list_for_each_entry(memtier, &memory_tiers, list) { |
| 222 | if (adistance == memtier->adistance_start) { |
| 223 | goto link_memtype; |
| 224 | } else if (adistance < memtier->adistance_start) { |
| 225 | found_slot = true; |
| 226 | break; |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL); |
| 231 | if (!new_memtier) |
| 232 | return ERR_PTR(error: -ENOMEM); |
| 233 | |
| 234 | new_memtier->adistance_start = adistance; |
| 235 | INIT_LIST_HEAD(list: &new_memtier->list); |
| 236 | INIT_LIST_HEAD(list: &new_memtier->memory_types); |
| 237 | if (found_slot) |
| 238 | list_add_tail(new: &new_memtier->list, head: &memtier->list); |
| 239 | else |
| 240 | list_add_tail(new: &new_memtier->list, head: &memory_tiers); |
| 241 | |
| 242 | new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS; |
| 243 | new_memtier->dev.bus = &memory_tier_subsys; |
| 244 | new_memtier->dev.release = memory_tier_device_release; |
| 245 | new_memtier->dev.groups = memtier_dev_groups; |
| 246 | |
| 247 | ret = device_register(dev: &new_memtier->dev); |
| 248 | if (ret) { |
| 249 | list_del(entry: &new_memtier->list); |
| 250 | put_device(dev: &new_memtier->dev); |
| 251 | return ERR_PTR(error: ret); |
| 252 | } |
| 253 | memtier = new_memtier; |
| 254 | |
| 255 | link_memtype: |
| 256 | list_add(new: &memtype->tier_sibling, head: &memtier->memory_types); |
| 257 | return memtier; |
| 258 | } |
| 259 | |
| 260 | static struct memory_tier *__node_get_memory_tier(int node) |
| 261 | { |
| 262 | pg_data_t *pgdat; |
| 263 | |
| 264 | pgdat = NODE_DATA(node); |
| 265 | if (!pgdat) |
| 266 | return NULL; |
| 267 | /* |
| 268 | * Since we hold memory_tier_lock, we can avoid |
| 269 | * RCU read locks when accessing the details. No |
| 270 | * parallel updates are possible here. |
| 271 | */ |
| 272 | return rcu_dereference_check(pgdat->memtier, |
| 273 | lockdep_is_held(&memory_tier_lock)); |
| 274 | } |
| 275 | |
| 276 | #ifdef CONFIG_MIGRATION |
| 277 | bool node_is_toptier(int node) |
| 278 | { |
| 279 | bool toptier; |
| 280 | pg_data_t *pgdat; |
| 281 | struct memory_tier *memtier; |
| 282 | |
| 283 | pgdat = NODE_DATA(node); |
| 284 | if (!pgdat) |
| 285 | return false; |
| 286 | |
| 287 | rcu_read_lock(); |
| 288 | memtier = rcu_dereference(pgdat->memtier); |
| 289 | if (!memtier) { |
| 290 | toptier = true; |
| 291 | goto out; |
| 292 | } |
| 293 | if (memtier->adistance_start <= top_tier_adistance) |
| 294 | toptier = true; |
| 295 | else |
| 296 | toptier = false; |
| 297 | out: |
| 298 | rcu_read_unlock(); |
| 299 | return toptier; |
| 300 | } |
| 301 | |
| 302 | void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets) |
| 303 | { |
| 304 | struct memory_tier *memtier; |
| 305 | |
| 306 | /* |
| 307 | * pg_data_t.memtier updates includes a synchronize_rcu() |
| 308 | * which ensures that we either find NULL or a valid memtier |
| 309 | * in NODE_DATA. protect the access via rcu_read_lock(); |
| 310 | */ |
| 311 | rcu_read_lock(); |
| 312 | memtier = rcu_dereference(pgdat->memtier); |
| 313 | if (memtier) |
| 314 | *targets = memtier->lower_tier_mask; |
| 315 | else |
| 316 | *targets = NODE_MASK_NONE; |
| 317 | rcu_read_unlock(); |
| 318 | } |
| 319 | |
| 320 | /** |
| 321 | * next_demotion_node() - Get the next node in the demotion path |
| 322 | * @node: The starting node to lookup the next node |
| 323 | * |
| 324 | * Return: node id for next memory node in the demotion path hierarchy |
| 325 | * from @node; NUMA_NO_NODE if @node is terminal. This does not keep |
| 326 | * @node online or guarantee that it *continues* to be the next demotion |
| 327 | * target. |
| 328 | */ |
| 329 | int next_demotion_node(int node) |
| 330 | { |
| 331 | struct demotion_nodes *nd; |
| 332 | int target; |
| 333 | |
| 334 | if (!node_demotion) |
| 335 | return NUMA_NO_NODE; |
| 336 | |
| 337 | nd = &node_demotion[node]; |
| 338 | |
| 339 | /* |
| 340 | * node_demotion[] is updated without excluding this |
| 341 | * function from running. |
| 342 | * |
| 343 | * Make sure to use RCU over entire code blocks if |
| 344 | * node_demotion[] reads need to be consistent. |
| 345 | */ |
| 346 | rcu_read_lock(); |
| 347 | /* |
| 348 | * If there are multiple target nodes, just select one |
| 349 | * target node randomly. |
| 350 | * |
| 351 | * In addition, we can also use round-robin to select |
| 352 | * target node, but we should introduce another variable |
| 353 | * for node_demotion[] to record last selected target node, |
| 354 | * that may cause cache ping-pong due to the changing of |
| 355 | * last target node. Or introducing per-cpu data to avoid |
| 356 | * caching issue, which seems more complicated. So selecting |
| 357 | * target node randomly seems better until now. |
| 358 | */ |
| 359 | target = node_random(maskp: &nd->preferred); |
| 360 | rcu_read_unlock(); |
| 361 | |
| 362 | return target; |
| 363 | } |
| 364 | |
| 365 | static void disable_all_demotion_targets(void) |
| 366 | { |
| 367 | struct memory_tier *memtier; |
| 368 | int node; |
| 369 | |
| 370 | for_each_node_state(node, N_MEMORY) { |
| 371 | node_demotion[node].preferred = NODE_MASK_NONE; |
| 372 | /* |
| 373 | * We are holding memory_tier_lock, it is safe |
| 374 | * to access pgda->memtier. |
| 375 | */ |
| 376 | memtier = __node_get_memory_tier(node); |
| 377 | if (memtier) |
| 378 | memtier->lower_tier_mask = NODE_MASK_NONE; |
| 379 | } |
| 380 | /* |
| 381 | * Ensure that the "disable" is visible across the system. |
| 382 | * Readers will see either a combination of before+disable |
| 383 | * state or disable+after. They will never see before and |
| 384 | * after state together. |
| 385 | */ |
| 386 | synchronize_rcu(); |
| 387 | } |
| 388 | |
| 389 | static void dump_demotion_targets(void) |
| 390 | { |
| 391 | int node; |
| 392 | |
| 393 | for_each_node_state(node, N_MEMORY) { |
| 394 | struct memory_tier *memtier = __node_get_memory_tier(node); |
| 395 | nodemask_t preferred = node_demotion[node].preferred; |
| 396 | |
| 397 | if (!memtier) |
| 398 | continue; |
| 399 | |
| 400 | if (nodes_empty(preferred)) |
| 401 | pr_info("Demotion targets for Node %d: null\n" , node); |
| 402 | else |
| 403 | pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n" , |
| 404 | node, nodemask_pr_args(&preferred), |
| 405 | nodemask_pr_args(&memtier->lower_tier_mask)); |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * Find an automatic demotion target for all memory |
| 411 | * nodes. Failing here is OK. It might just indicate |
| 412 | * being at the end of a chain. |
| 413 | */ |
| 414 | static void establish_demotion_targets(void) |
| 415 | { |
| 416 | struct memory_tier *memtier; |
| 417 | struct demotion_nodes *nd; |
| 418 | int target = NUMA_NO_NODE, node; |
| 419 | int distance, best_distance; |
| 420 | nodemask_t tier_nodes, lower_tier; |
| 421 | |
| 422 | lockdep_assert_held_once(&memory_tier_lock); |
| 423 | |
| 424 | if (!node_demotion) |
| 425 | return; |
| 426 | |
| 427 | disable_all_demotion_targets(); |
| 428 | |
| 429 | for_each_node_state(node, N_MEMORY) { |
| 430 | best_distance = -1; |
| 431 | nd = &node_demotion[node]; |
| 432 | |
| 433 | memtier = __node_get_memory_tier(node); |
| 434 | if (!memtier || list_is_last(list: &memtier->list, head: &memory_tiers)) |
| 435 | continue; |
| 436 | /* |
| 437 | * Get the lower memtier to find the demotion node list. |
| 438 | */ |
| 439 | memtier = list_next_entry(memtier, list); |
| 440 | tier_nodes = get_memtier_nodemask(memtier); |
| 441 | /* |
| 442 | * find_next_best_node, use 'used' nodemask as a skip list. |
| 443 | * Add all memory nodes except the selected memory tier |
| 444 | * nodelist to skip list so that we find the best node from the |
| 445 | * memtier nodelist. |
| 446 | */ |
| 447 | nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes); |
| 448 | |
| 449 | /* |
| 450 | * Find all the nodes in the memory tier node list of same best distance. |
| 451 | * add them to the preferred mask. We randomly select between nodes |
| 452 | * in the preferred mask when allocating pages during demotion. |
| 453 | */ |
| 454 | do { |
| 455 | target = find_next_best_node(node, used_node_mask: &tier_nodes); |
| 456 | if (target == NUMA_NO_NODE) |
| 457 | break; |
| 458 | |
| 459 | distance = node_distance(node, target); |
| 460 | if (distance == best_distance || best_distance == -1) { |
| 461 | best_distance = distance; |
| 462 | node_set(target, nd->preferred); |
| 463 | } else { |
| 464 | break; |
| 465 | } |
| 466 | } while (1); |
| 467 | } |
| 468 | /* |
| 469 | * Promotion is allowed from a memory tier to higher |
| 470 | * memory tier only if the memory tier doesn't include |
| 471 | * compute. We want to skip promotion from a memory tier, |
| 472 | * if any node that is part of the memory tier have CPUs. |
| 473 | * Once we detect such a memory tier, we consider that tier |
| 474 | * as top tiper from which promotion is not allowed. |
| 475 | */ |
| 476 | list_for_each_entry_reverse(memtier, &memory_tiers, list) { |
| 477 | tier_nodes = get_memtier_nodemask(memtier); |
| 478 | nodes_and(tier_nodes, node_states[N_CPU], tier_nodes); |
| 479 | if (!nodes_empty(tier_nodes)) { |
| 480 | /* |
| 481 | * abstract distance below the max value of this memtier |
| 482 | * is considered toptier. |
| 483 | */ |
| 484 | top_tier_adistance = memtier->adistance_start + |
| 485 | MEMTIER_CHUNK_SIZE - 1; |
| 486 | break; |
| 487 | } |
| 488 | } |
| 489 | /* |
| 490 | * Now build the lower_tier mask for each node collecting node mask from |
| 491 | * all memory tier below it. This allows us to fallback demotion page |
| 492 | * allocation to a set of nodes that is closer the above selected |
| 493 | * preferred node. |
| 494 | */ |
| 495 | lower_tier = node_states[N_MEMORY]; |
| 496 | list_for_each_entry(memtier, &memory_tiers, list) { |
| 497 | /* |
| 498 | * Keep removing current tier from lower_tier nodes, |
| 499 | * This will remove all nodes in current and above |
| 500 | * memory tier from the lower_tier mask. |
| 501 | */ |
| 502 | tier_nodes = get_memtier_nodemask(memtier); |
| 503 | nodes_andnot(lower_tier, lower_tier, tier_nodes); |
| 504 | memtier->lower_tier_mask = lower_tier; |
| 505 | } |
| 506 | |
| 507 | dump_demotion_targets(); |
| 508 | } |
| 509 | |
| 510 | #else |
| 511 | static inline void establish_demotion_targets(void) {} |
| 512 | #endif /* CONFIG_MIGRATION */ |
| 513 | |
| 514 | static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype) |
| 515 | { |
| 516 | if (!node_memory_types[node].memtype) |
| 517 | node_memory_types[node].memtype = memtype; |
| 518 | /* |
| 519 | * for each device getting added in the same NUMA node |
| 520 | * with this specific memtype, bump the map count. We |
| 521 | * Only take memtype device reference once, so that |
| 522 | * changing a node memtype can be done by droping the |
| 523 | * only reference count taken here. |
| 524 | */ |
| 525 | |
| 526 | if (node_memory_types[node].memtype == memtype) { |
| 527 | if (!node_memory_types[node].map_count++) |
| 528 | kref_get(kref: &memtype->kref); |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | static struct memory_tier *set_node_memory_tier(int node) |
| 533 | { |
| 534 | struct memory_tier *memtier; |
| 535 | struct memory_dev_type *memtype = default_dram_type; |
| 536 | int adist = MEMTIER_ADISTANCE_DRAM; |
| 537 | pg_data_t *pgdat = NODE_DATA(node); |
| 538 | |
| 539 | |
| 540 | lockdep_assert_held_once(&memory_tier_lock); |
| 541 | |
| 542 | if (!node_state(node, state: N_MEMORY)) |
| 543 | return ERR_PTR(error: -EINVAL); |
| 544 | |
| 545 | mt_calc_adistance(node, adist: &adist); |
| 546 | if (!node_memory_types[node].memtype) { |
| 547 | memtype = mt_find_alloc_memory_type(adist, memory_types: &default_memory_types); |
| 548 | if (IS_ERR(ptr: memtype)) { |
| 549 | memtype = default_dram_type; |
| 550 | pr_info("Failed to allocate a memory type. Fall back.\n" ); |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | __init_node_memory_type(node, memtype); |
| 555 | |
| 556 | memtype = node_memory_types[node].memtype; |
| 557 | node_set(node, memtype->nodes); |
| 558 | memtier = find_create_memory_tier(memtype); |
| 559 | if (!IS_ERR(ptr: memtier)) |
| 560 | rcu_assign_pointer(pgdat->memtier, memtier); |
| 561 | return memtier; |
| 562 | } |
| 563 | |
| 564 | static void destroy_memory_tier(struct memory_tier *memtier) |
| 565 | { |
| 566 | list_del(entry: &memtier->list); |
| 567 | device_unregister(dev: &memtier->dev); |
| 568 | } |
| 569 | |
| 570 | static bool clear_node_memory_tier(int node) |
| 571 | { |
| 572 | bool cleared = false; |
| 573 | pg_data_t *pgdat; |
| 574 | struct memory_tier *memtier; |
| 575 | |
| 576 | pgdat = NODE_DATA(node); |
| 577 | if (!pgdat) |
| 578 | return false; |
| 579 | |
| 580 | /* |
| 581 | * Make sure that anybody looking at NODE_DATA who finds |
| 582 | * a valid memtier finds memory_dev_types with nodes still |
| 583 | * linked to the memtier. We achieve this by waiting for |
| 584 | * rcu read section to finish using synchronize_rcu. |
| 585 | * This also enables us to free the destroyed memory tier |
| 586 | * with kfree instead of kfree_rcu |
| 587 | */ |
| 588 | memtier = __node_get_memory_tier(node); |
| 589 | if (memtier) { |
| 590 | struct memory_dev_type *memtype; |
| 591 | |
| 592 | rcu_assign_pointer(pgdat->memtier, NULL); |
| 593 | synchronize_rcu(); |
| 594 | memtype = node_memory_types[node].memtype; |
| 595 | node_clear(node, memtype->nodes); |
| 596 | if (nodes_empty(memtype->nodes)) { |
| 597 | list_del_init(entry: &memtype->tier_sibling); |
| 598 | if (list_empty(head: &memtier->memory_types)) |
| 599 | destroy_memory_tier(memtier); |
| 600 | } |
| 601 | cleared = true; |
| 602 | } |
| 603 | return cleared; |
| 604 | } |
| 605 | |
| 606 | static void release_memtype(struct kref *kref) |
| 607 | { |
| 608 | struct memory_dev_type *memtype; |
| 609 | |
| 610 | memtype = container_of(kref, struct memory_dev_type, kref); |
| 611 | kfree(objp: memtype); |
| 612 | } |
| 613 | |
| 614 | struct memory_dev_type *alloc_memory_type(int adistance) |
| 615 | { |
| 616 | struct memory_dev_type *memtype; |
| 617 | |
| 618 | memtype = kmalloc(sizeof(*memtype), GFP_KERNEL); |
| 619 | if (!memtype) |
| 620 | return ERR_PTR(error: -ENOMEM); |
| 621 | |
| 622 | memtype->adistance = adistance; |
| 623 | INIT_LIST_HEAD(list: &memtype->tier_sibling); |
| 624 | memtype->nodes = NODE_MASK_NONE; |
| 625 | kref_init(kref: &memtype->kref); |
| 626 | return memtype; |
| 627 | } |
| 628 | EXPORT_SYMBOL_GPL(alloc_memory_type); |
| 629 | |
| 630 | void put_memory_type(struct memory_dev_type *memtype) |
| 631 | { |
| 632 | kref_put(kref: &memtype->kref, release: release_memtype); |
| 633 | } |
| 634 | EXPORT_SYMBOL_GPL(put_memory_type); |
| 635 | |
| 636 | void init_node_memory_type(int node, struct memory_dev_type *memtype) |
| 637 | { |
| 638 | |
| 639 | mutex_lock(lock: &memory_tier_lock); |
| 640 | __init_node_memory_type(node, memtype); |
| 641 | mutex_unlock(lock: &memory_tier_lock); |
| 642 | } |
| 643 | EXPORT_SYMBOL_GPL(init_node_memory_type); |
| 644 | |
| 645 | void clear_node_memory_type(int node, struct memory_dev_type *memtype) |
| 646 | { |
| 647 | mutex_lock(lock: &memory_tier_lock); |
| 648 | if (node_memory_types[node].memtype == memtype || !memtype) |
| 649 | node_memory_types[node].map_count--; |
| 650 | /* |
| 651 | * If we umapped all the attached devices to this node, |
| 652 | * clear the node memory type. |
| 653 | */ |
| 654 | if (!node_memory_types[node].map_count) { |
| 655 | memtype = node_memory_types[node].memtype; |
| 656 | node_memory_types[node].memtype = NULL; |
| 657 | put_memory_type(memtype); |
| 658 | } |
| 659 | mutex_unlock(lock: &memory_tier_lock); |
| 660 | } |
| 661 | EXPORT_SYMBOL_GPL(clear_node_memory_type); |
| 662 | |
| 663 | struct memory_dev_type *mt_find_alloc_memory_type(int adist, struct list_head *memory_types) |
| 664 | { |
| 665 | struct memory_dev_type *mtype; |
| 666 | |
| 667 | list_for_each_entry(mtype, memory_types, list) |
| 668 | if (mtype->adistance == adist) |
| 669 | return mtype; |
| 670 | |
| 671 | mtype = alloc_memory_type(adist); |
| 672 | if (IS_ERR(ptr: mtype)) |
| 673 | return mtype; |
| 674 | |
| 675 | list_add(new: &mtype->list, head: memory_types); |
| 676 | |
| 677 | return mtype; |
| 678 | } |
| 679 | EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type); |
| 680 | |
| 681 | void mt_put_memory_types(struct list_head *memory_types) |
| 682 | { |
| 683 | struct memory_dev_type *mtype, *mtn; |
| 684 | |
| 685 | list_for_each_entry_safe(mtype, mtn, memory_types, list) { |
| 686 | list_del(entry: &mtype->list); |
| 687 | put_memory_type(mtype); |
| 688 | } |
| 689 | } |
| 690 | EXPORT_SYMBOL_GPL(mt_put_memory_types); |
| 691 | |
| 692 | /* |
| 693 | * This is invoked via `late_initcall()` to initialize memory tiers for |
| 694 | * memory nodes, both with and without CPUs. After the initialization of |
| 695 | * firmware and devices, adistance algorithms are expected to be provided. |
| 696 | */ |
| 697 | static int __init memory_tier_late_init(void) |
| 698 | { |
| 699 | int nid; |
| 700 | struct memory_tier *memtier; |
| 701 | |
| 702 | get_online_mems(); |
| 703 | guard(mutex)(T: &memory_tier_lock); |
| 704 | |
| 705 | /* Assign each uninitialized N_MEMORY node to a memory tier. */ |
| 706 | for_each_node_state(nid, N_MEMORY) { |
| 707 | /* |
| 708 | * Some device drivers may have initialized |
| 709 | * memory tiers, potentially bringing memory nodes |
| 710 | * online and configuring memory tiers. |
| 711 | * Exclude them here. |
| 712 | */ |
| 713 | if (node_memory_types[nid].memtype) |
| 714 | continue; |
| 715 | |
| 716 | memtier = set_node_memory_tier(nid); |
| 717 | if (IS_ERR(ptr: memtier)) |
| 718 | continue; |
| 719 | } |
| 720 | |
| 721 | establish_demotion_targets(); |
| 722 | put_online_mems(); |
| 723 | |
| 724 | return 0; |
| 725 | } |
| 726 | late_initcall(memory_tier_late_init); |
| 727 | |
| 728 | static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix) |
| 729 | { |
| 730 | pr_info( |
| 731 | "%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n" , |
| 732 | prefix, coord->read_latency, coord->write_latency, |
| 733 | coord->read_bandwidth, coord->write_bandwidth); |
| 734 | } |
| 735 | |
| 736 | int mt_set_default_dram_perf(int nid, struct access_coordinate *perf, |
| 737 | const char *source) |
| 738 | { |
| 739 | guard(mutex)(T: &default_dram_perf_lock); |
| 740 | if (default_dram_perf_error) |
| 741 | return -EIO; |
| 742 | |
| 743 | if (perf->read_latency + perf->write_latency == 0 || |
| 744 | perf->read_bandwidth + perf->write_bandwidth == 0) |
| 745 | return -EINVAL; |
| 746 | |
| 747 | if (default_dram_perf_ref_nid == NUMA_NO_NODE) { |
| 748 | default_dram_perf = *perf; |
| 749 | default_dram_perf_ref_nid = nid; |
| 750 | default_dram_perf_ref_source = kstrdup(s: source, GFP_KERNEL); |
| 751 | return 0; |
| 752 | } |
| 753 | |
| 754 | /* |
| 755 | * The performance of all default DRAM nodes is expected to be |
| 756 | * same (that is, the variation is less than 10%). And it |
| 757 | * will be used as base to calculate the abstract distance of |
| 758 | * other memory nodes. |
| 759 | */ |
| 760 | if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 > |
| 761 | default_dram_perf.read_latency || |
| 762 | abs(perf->write_latency - default_dram_perf.write_latency) * 10 > |
| 763 | default_dram_perf.write_latency || |
| 764 | abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 > |
| 765 | default_dram_perf.read_bandwidth || |
| 766 | abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 > |
| 767 | default_dram_perf.write_bandwidth) { |
| 768 | pr_info( |
| 769 | "memory-tiers: the performance of DRAM node %d mismatches that of the reference\n" |
| 770 | "DRAM node %d.\n" , nid, default_dram_perf_ref_nid); |
| 771 | pr_info(" performance of reference DRAM node %d from %s:\n" , |
| 772 | default_dram_perf_ref_nid, default_dram_perf_ref_source); |
| 773 | dump_hmem_attrs(coord: &default_dram_perf, prefix: " " ); |
| 774 | pr_info(" performance of DRAM node %d from %s:\n" , nid, source); |
| 775 | dump_hmem_attrs(coord: perf, prefix: " " ); |
| 776 | pr_info( |
| 777 | " disable default DRAM node performance based abstract distance algorithm.\n" ); |
| 778 | default_dram_perf_error = true; |
| 779 | return -EINVAL; |
| 780 | } |
| 781 | |
| 782 | return 0; |
| 783 | } |
| 784 | |
| 785 | int mt_perf_to_adistance(struct access_coordinate *perf, int *adist) |
| 786 | { |
| 787 | guard(mutex)(T: &default_dram_perf_lock); |
| 788 | if (default_dram_perf_error) |
| 789 | return -EIO; |
| 790 | |
| 791 | if (perf->read_latency + perf->write_latency == 0 || |
| 792 | perf->read_bandwidth + perf->write_bandwidth == 0) |
| 793 | return -EINVAL; |
| 794 | |
| 795 | if (default_dram_perf_ref_nid == NUMA_NO_NODE) |
| 796 | return -ENOENT; |
| 797 | |
| 798 | /* |
| 799 | * The abstract distance of a memory node is in direct proportion to |
| 800 | * its memory latency (read + write) and inversely proportional to its |
| 801 | * memory bandwidth (read + write). The abstract distance, memory |
| 802 | * latency, and memory bandwidth of the default DRAM nodes are used as |
| 803 | * the base. |
| 804 | */ |
| 805 | *adist = MEMTIER_ADISTANCE_DRAM * |
| 806 | (perf->read_latency + perf->write_latency) / |
| 807 | (default_dram_perf.read_latency + default_dram_perf.write_latency) * |
| 808 | (default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) / |
| 809 | (perf->read_bandwidth + perf->write_bandwidth); |
| 810 | |
| 811 | return 0; |
| 812 | } |
| 813 | EXPORT_SYMBOL_GPL(mt_perf_to_adistance); |
| 814 | |
| 815 | /** |
| 816 | * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm |
| 817 | * @nb: The notifier block which describe the algorithm |
| 818 | * |
| 819 | * Return: 0 on success, errno on error. |
| 820 | * |
| 821 | * Every memory tiering abstract distance algorithm provider needs to |
| 822 | * register the algorithm with register_mt_adistance_algorithm(). To |
| 823 | * calculate the abstract distance for a specified memory node, the |
| 824 | * notifier function will be called unless some high priority |
| 825 | * algorithm has provided result. The prototype of the notifier |
| 826 | * function is as follows, |
| 827 | * |
| 828 | * int (*algorithm_notifier)(struct notifier_block *nb, |
| 829 | * unsigned long nid, void *data); |
| 830 | * |
| 831 | * Where "nid" specifies the memory node, "data" is the pointer to the |
| 832 | * returned abstract distance (that is, "int *adist"). If the |
| 833 | * algorithm provides the result, NOTIFY_STOP should be returned. |
| 834 | * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next |
| 835 | * algorithm in the chain to provide the result. |
| 836 | */ |
| 837 | int register_mt_adistance_algorithm(struct notifier_block *nb) |
| 838 | { |
| 839 | return blocking_notifier_chain_register(nh: &mt_adistance_algorithms, nb); |
| 840 | } |
| 841 | EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm); |
| 842 | |
| 843 | /** |
| 844 | * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm |
| 845 | * @nb: the notifier block which describe the algorithm |
| 846 | * |
| 847 | * Return: 0 on success, errno on error. |
| 848 | */ |
| 849 | int unregister_mt_adistance_algorithm(struct notifier_block *nb) |
| 850 | { |
| 851 | return blocking_notifier_chain_unregister(nh: &mt_adistance_algorithms, nb); |
| 852 | } |
| 853 | EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm); |
| 854 | |
| 855 | /** |
| 856 | * mt_calc_adistance() - Calculate abstract distance with registered algorithms |
| 857 | * @node: the node to calculate abstract distance for |
| 858 | * @adist: the returned abstract distance |
| 859 | * |
| 860 | * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some |
| 861 | * abstract distance algorithm provides the result, and return it via |
| 862 | * @adist. Otherwise, no algorithm can provide the result and @adist |
| 863 | * will be kept as it is. |
| 864 | */ |
| 865 | int mt_calc_adistance(int node, int *adist) |
| 866 | { |
| 867 | return blocking_notifier_call_chain(nh: &mt_adistance_algorithms, val: node, v: adist); |
| 868 | } |
| 869 | EXPORT_SYMBOL_GPL(mt_calc_adistance); |
| 870 | |
| 871 | static int __meminit memtier_hotplug_callback(struct notifier_block *self, |
| 872 | unsigned long action, void *_arg) |
| 873 | { |
| 874 | struct memory_tier *memtier; |
| 875 | struct node_notify *nn = _arg; |
| 876 | |
| 877 | switch (action) { |
| 878 | case NODE_REMOVED_LAST_MEMORY: |
| 879 | mutex_lock(lock: &memory_tier_lock); |
| 880 | if (clear_node_memory_tier(node: nn->nid)) |
| 881 | establish_demotion_targets(); |
| 882 | mutex_unlock(lock: &memory_tier_lock); |
| 883 | break; |
| 884 | case NODE_ADDED_FIRST_MEMORY: |
| 885 | mutex_lock(lock: &memory_tier_lock); |
| 886 | memtier = set_node_memory_tier(nn->nid); |
| 887 | if (!IS_ERR(ptr: memtier)) |
| 888 | establish_demotion_targets(); |
| 889 | mutex_unlock(lock: &memory_tier_lock); |
| 890 | break; |
| 891 | } |
| 892 | |
| 893 | return notifier_from_errno(err: 0); |
| 894 | } |
| 895 | |
| 896 | static int __init memory_tier_init(void) |
| 897 | { |
| 898 | int ret; |
| 899 | |
| 900 | ret = subsys_virtual_register(subsys: &memory_tier_subsys, NULL); |
| 901 | if (ret) |
| 902 | panic(fmt: "%s() failed to register memory tier subsystem\n" , __func__); |
| 903 | |
| 904 | #ifdef CONFIG_MIGRATION |
| 905 | node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes), |
| 906 | GFP_KERNEL); |
| 907 | WARN_ON(!node_demotion); |
| 908 | #endif |
| 909 | |
| 910 | mutex_lock(lock: &memory_tier_lock); |
| 911 | /* |
| 912 | * For now we can have 4 faster memory tiers with smaller adistance |
| 913 | * than default DRAM tier. |
| 914 | */ |
| 915 | default_dram_type = mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM, |
| 916 | &default_memory_types); |
| 917 | mutex_unlock(lock: &memory_tier_lock); |
| 918 | if (IS_ERR(ptr: default_dram_type)) |
| 919 | panic(fmt: "%s() failed to allocate default DRAM tier\n" , __func__); |
| 920 | |
| 921 | /* Record nodes with memory and CPU to set default DRAM performance. */ |
| 922 | nodes_and(default_dram_nodes, node_states[N_MEMORY], |
| 923 | node_states[N_CPU]); |
| 924 | |
| 925 | hotplug_node_notifier(fn: memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI); |
| 926 | return 0; |
| 927 | } |
| 928 | subsys_initcall(memory_tier_init); |
| 929 | |
| 930 | bool numa_demotion_enabled = false; |
| 931 | |
| 932 | #ifdef CONFIG_MIGRATION |
| 933 | #ifdef CONFIG_SYSFS |
| 934 | static ssize_t demotion_enabled_show(struct kobject *kobj, |
| 935 | struct kobj_attribute *attr, char *buf) |
| 936 | { |
| 937 | return sysfs_emit(buf, fmt: "%s\n" , str_true_false(v: numa_demotion_enabled)); |
| 938 | } |
| 939 | |
| 940 | static ssize_t demotion_enabled_store(struct kobject *kobj, |
| 941 | struct kobj_attribute *attr, |
| 942 | const char *buf, size_t count) |
| 943 | { |
| 944 | ssize_t ret; |
| 945 | bool before = numa_demotion_enabled; |
| 946 | |
| 947 | ret = kstrtobool(s: buf, res: &numa_demotion_enabled); |
| 948 | if (ret) |
| 949 | return ret; |
| 950 | |
| 951 | /* |
| 952 | * Reset kswapd_failures statistics. They may no longer be |
| 953 | * valid since the policy for kswapd has changed. |
| 954 | */ |
| 955 | if (before == false && numa_demotion_enabled == true) { |
| 956 | struct pglist_data *pgdat; |
| 957 | |
| 958 | for_each_online_pgdat(pgdat) |
| 959 | atomic_set(v: &pgdat->kswapd_failures, i: 0); |
| 960 | } |
| 961 | |
| 962 | return count; |
| 963 | } |
| 964 | |
| 965 | static struct kobj_attribute numa_demotion_enabled_attr = |
| 966 | __ATTR_RW(demotion_enabled); |
| 967 | |
| 968 | static struct attribute *numa_attrs[] = { |
| 969 | &numa_demotion_enabled_attr.attr, |
| 970 | NULL, |
| 971 | }; |
| 972 | |
| 973 | static const struct attribute_group numa_attr_group = { |
| 974 | .attrs = numa_attrs, |
| 975 | }; |
| 976 | |
| 977 | static int __init numa_init_sysfs(void) |
| 978 | { |
| 979 | int err; |
| 980 | struct kobject *numa_kobj; |
| 981 | |
| 982 | numa_kobj = kobject_create_and_add(name: "numa" , parent: mm_kobj); |
| 983 | if (!numa_kobj) { |
| 984 | pr_err("failed to create numa kobject\n" ); |
| 985 | return -ENOMEM; |
| 986 | } |
| 987 | err = sysfs_create_group(kobj: numa_kobj, grp: &numa_attr_group); |
| 988 | if (err) { |
| 989 | pr_err("failed to register numa group\n" ); |
| 990 | goto delete_obj; |
| 991 | } |
| 992 | return 0; |
| 993 | |
| 994 | delete_obj: |
| 995 | kobject_put(kobj: numa_kobj); |
| 996 | return err; |
| 997 | } |
| 998 | subsys_initcall(numa_init_sysfs); |
| 999 | #endif /* CONFIG_SYSFS */ |
| 1000 | #endif |
| 1001 | |