| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/mm/vmstat.c |
| 4 | * |
| 5 | * Manages VM statistics |
| 6 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 7 | * |
| 8 | * zoned VM statistics |
| 9 | * Copyright (C) 2006 Silicon Graphics, Inc., |
| 10 | * Christoph Lameter <cl@gentwo.org> |
| 11 | * Copyright (C) 2008-2014 Christoph Lameter |
| 12 | */ |
| 13 | #include <linux/fs.h> |
| 14 | #include <linux/mm.h> |
| 15 | #include <linux/err.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/cpu.h> |
| 19 | #include <linux/cpumask.h> |
| 20 | #include <linux/vmstat.h> |
| 21 | #include <linux/proc_fs.h> |
| 22 | #include <linux/seq_file.h> |
| 23 | #include <linux/debugfs.h> |
| 24 | #include <linux/sched.h> |
| 25 | #include <linux/math64.h> |
| 26 | #include <linux/writeback.h> |
| 27 | #include <linux/compaction.h> |
| 28 | #include <linux/mm_inline.h> |
| 29 | #include <linux/page_owner.h> |
| 30 | #include <linux/sched/isolation.h> |
| 31 | |
| 32 | #include "internal.h" |
| 33 | |
| 34 | #ifdef CONFIG_PROC_FS |
| 35 | #ifdef CONFIG_NUMA |
| 36 | #define ENABLE_NUMA_STAT 1 |
| 37 | static int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; |
| 38 | |
| 39 | /* zero numa counters within a zone */ |
| 40 | static void zero_zone_numa_counters(struct zone *zone) |
| 41 | { |
| 42 | int item, cpu; |
| 43 | |
| 44 | for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { |
| 45 | atomic_long_set(v: &zone->vm_numa_event[item], i: 0); |
| 46 | for_each_online_cpu(cpu) { |
| 47 | per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] |
| 48 | = 0; |
| 49 | } |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | /* zero numa counters of all the populated zones */ |
| 54 | static void zero_zones_numa_counters(void) |
| 55 | { |
| 56 | struct zone *zone; |
| 57 | |
| 58 | for_each_populated_zone(zone) |
| 59 | zero_zone_numa_counters(zone); |
| 60 | } |
| 61 | |
| 62 | /* zero global numa counters */ |
| 63 | static void zero_global_numa_counters(void) |
| 64 | { |
| 65 | int item; |
| 66 | |
| 67 | for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) |
| 68 | atomic_long_set(v: &vm_numa_event[item], i: 0); |
| 69 | } |
| 70 | |
| 71 | static void invalid_numa_statistics(void) |
| 72 | { |
| 73 | zero_zones_numa_counters(); |
| 74 | zero_global_numa_counters(); |
| 75 | } |
| 76 | |
| 77 | static DEFINE_MUTEX(vm_numa_stat_lock); |
| 78 | |
| 79 | static int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write, |
| 80 | void *buffer, size_t *length, loff_t *ppos) |
| 81 | { |
| 82 | int ret, oldval; |
| 83 | |
| 84 | mutex_lock(lock: &vm_numa_stat_lock); |
| 85 | if (write) |
| 86 | oldval = sysctl_vm_numa_stat; |
| 87 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| 88 | if (ret || !write) |
| 89 | goto out; |
| 90 | |
| 91 | if (oldval == sysctl_vm_numa_stat) |
| 92 | goto out; |
| 93 | else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { |
| 94 | static_branch_enable(&vm_numa_stat_key); |
| 95 | pr_info("enable numa statistics\n" ); |
| 96 | } else { |
| 97 | static_branch_disable(&vm_numa_stat_key); |
| 98 | invalid_numa_statistics(); |
| 99 | pr_info("disable numa statistics, and clear numa counters\n" ); |
| 100 | } |
| 101 | |
| 102 | out: |
| 103 | mutex_unlock(lock: &vm_numa_stat_lock); |
| 104 | return ret; |
| 105 | } |
| 106 | #endif |
| 107 | #endif /* CONFIG_PROC_FS */ |
| 108 | |
| 109 | #ifdef CONFIG_VM_EVENT_COUNTERS |
| 110 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; |
| 111 | EXPORT_PER_CPU_SYMBOL(vm_event_states); |
| 112 | |
| 113 | static void sum_vm_events(unsigned long *ret) |
| 114 | { |
| 115 | int cpu; |
| 116 | int i; |
| 117 | |
| 118 | memset(s: ret, c: 0, n: NR_VM_EVENT_ITEMS * sizeof(unsigned long)); |
| 119 | |
| 120 | for_each_online_cpu(cpu) { |
| 121 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
| 122 | |
| 123 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |
| 124 | ret[i] += this->event[i]; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | * Accumulate the vm event counters across all CPUs. |
| 130 | * The result is unavoidably approximate - it can change |
| 131 | * during and after execution of this function. |
| 132 | */ |
| 133 | void all_vm_events(unsigned long *ret) |
| 134 | { |
| 135 | cpus_read_lock(); |
| 136 | sum_vm_events(ret); |
| 137 | cpus_read_unlock(); |
| 138 | } |
| 139 | EXPORT_SYMBOL_GPL(all_vm_events); |
| 140 | |
| 141 | /* |
| 142 | * Fold the foreign cpu events into our own. |
| 143 | * |
| 144 | * This is adding to the events on one processor |
| 145 | * but keeps the global counts constant. |
| 146 | */ |
| 147 | void vm_events_fold_cpu(int cpu) |
| 148 | { |
| 149 | struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); |
| 150 | int i; |
| 151 | |
| 152 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { |
| 153 | count_vm_events(item: i, delta: fold_state->event[i]); |
| 154 | fold_state->event[i] = 0; |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | #endif /* CONFIG_VM_EVENT_COUNTERS */ |
| 159 | |
| 160 | /* |
| 161 | * Manage combined zone based / global counters |
| 162 | * |
| 163 | * vm_stat contains the global counters |
| 164 | */ |
| 165 | atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; |
| 166 | atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; |
| 167 | atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; |
| 168 | EXPORT_SYMBOL(vm_zone_stat); |
| 169 | EXPORT_SYMBOL(vm_node_stat); |
| 170 | |
| 171 | #ifdef CONFIG_NUMA |
| 172 | static void fold_vm_zone_numa_events(struct zone *zone) |
| 173 | { |
| 174 | unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; |
| 175 | int cpu; |
| 176 | enum numa_stat_item item; |
| 177 | |
| 178 | for_each_online_cpu(cpu) { |
| 179 | struct per_cpu_zonestat *pzstats; |
| 180 | |
| 181 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| 182 | for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) |
| 183 | zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); |
| 184 | } |
| 185 | |
| 186 | for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) |
| 187 | zone_numa_event_add(x: zone_numa_events[item], zone, item); |
| 188 | } |
| 189 | |
| 190 | void fold_vm_numa_events(void) |
| 191 | { |
| 192 | struct zone *zone; |
| 193 | |
| 194 | for_each_populated_zone(zone) |
| 195 | fold_vm_zone_numa_events(zone); |
| 196 | } |
| 197 | #endif |
| 198 | |
| 199 | #ifdef CONFIG_SMP |
| 200 | |
| 201 | int calculate_pressure_threshold(struct zone *zone) |
| 202 | { |
| 203 | int threshold; |
| 204 | int watermark_distance; |
| 205 | |
| 206 | /* |
| 207 | * As vmstats are not up to date, there is drift between the estimated |
| 208 | * and real values. For high thresholds and a high number of CPUs, it |
| 209 | * is possible for the min watermark to be breached while the estimated |
| 210 | * value looks fine. The pressure threshold is a reduced value such |
| 211 | * that even the maximum amount of drift will not accidentally breach |
| 212 | * the min watermark |
| 213 | */ |
| 214 | watermark_distance = low_wmark_pages(z: zone) - min_wmark_pages(z: zone); |
| 215 | threshold = max(1, (int)(watermark_distance / num_online_cpus())); |
| 216 | |
| 217 | /* |
| 218 | * Maximum threshold is 125 |
| 219 | */ |
| 220 | threshold = min(125, threshold); |
| 221 | |
| 222 | return threshold; |
| 223 | } |
| 224 | |
| 225 | int calculate_normal_threshold(struct zone *zone) |
| 226 | { |
| 227 | int threshold; |
| 228 | int mem; /* memory in 128 MB units */ |
| 229 | |
| 230 | /* |
| 231 | * The threshold scales with the number of processors and the amount |
| 232 | * of memory per zone. More memory means that we can defer updates for |
| 233 | * longer, more processors could lead to more contention. |
| 234 | * fls() is used to have a cheap way of logarithmic scaling. |
| 235 | * |
| 236 | * Some sample thresholds: |
| 237 | * |
| 238 | * Threshold Processors (fls) Zonesize fls(mem)+1 |
| 239 | * ------------------------------------------------------------------ |
| 240 | * 8 1 1 0.9-1 GB 4 |
| 241 | * 16 2 2 0.9-1 GB 4 |
| 242 | * 20 2 2 1-2 GB 5 |
| 243 | * 24 2 2 2-4 GB 6 |
| 244 | * 28 2 2 4-8 GB 7 |
| 245 | * 32 2 2 8-16 GB 8 |
| 246 | * 4 2 2 <128M 1 |
| 247 | * 30 4 3 2-4 GB 5 |
| 248 | * 48 4 3 8-16 GB 8 |
| 249 | * 32 8 4 1-2 GB 4 |
| 250 | * 32 8 4 0.9-1GB 4 |
| 251 | * 10 16 5 <128M 1 |
| 252 | * 40 16 5 900M 4 |
| 253 | * 70 64 7 2-4 GB 5 |
| 254 | * 84 64 7 4-8 GB 6 |
| 255 | * 108 512 9 4-8 GB 6 |
| 256 | * 125 1024 10 8-16 GB 8 |
| 257 | * 125 1024 10 16-32 GB 9 |
| 258 | */ |
| 259 | |
| 260 | mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); |
| 261 | |
| 262 | threshold = 2 * fls(x: num_online_cpus()) * (1 + fls(x: mem)); |
| 263 | |
| 264 | /* |
| 265 | * Maximum threshold is 125 |
| 266 | */ |
| 267 | threshold = min(125, threshold); |
| 268 | |
| 269 | return threshold; |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * Refresh the thresholds for each zone. |
| 274 | */ |
| 275 | void refresh_zone_stat_thresholds(void) |
| 276 | { |
| 277 | struct pglist_data *pgdat; |
| 278 | struct zone *zone; |
| 279 | int cpu; |
| 280 | int threshold; |
| 281 | |
| 282 | /* Zero current pgdat thresholds */ |
| 283 | for_each_online_pgdat(pgdat) { |
| 284 | for_each_online_cpu(cpu) { |
| 285 | per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | for_each_populated_zone(zone) { |
| 290 | struct pglist_data *pgdat = zone->zone_pgdat; |
| 291 | unsigned long max_drift, tolerate_drift; |
| 292 | |
| 293 | threshold = calculate_normal_threshold(zone); |
| 294 | |
| 295 | for_each_online_cpu(cpu) { |
| 296 | int pgdat_threshold; |
| 297 | |
| 298 | per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold |
| 299 | = threshold; |
| 300 | |
| 301 | /* Base nodestat threshold on the largest populated zone. */ |
| 302 | pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; |
| 303 | per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold |
| 304 | = max(threshold, pgdat_threshold); |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * Only set percpu_drift_mark if there is a danger that |
| 309 | * NR_FREE_PAGES reports the low watermark is ok when in fact |
| 310 | * the min watermark could be breached by an allocation |
| 311 | */ |
| 312 | tolerate_drift = low_wmark_pages(z: zone) - min_wmark_pages(z: zone); |
| 313 | max_drift = num_online_cpus() * threshold; |
| 314 | if (max_drift > tolerate_drift) |
| 315 | zone->percpu_drift_mark = high_wmark_pages(z: zone) + |
| 316 | max_drift; |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | void set_pgdat_percpu_threshold(pg_data_t *pgdat, |
| 321 | int (*calculate_pressure)(struct zone *)) |
| 322 | { |
| 323 | struct zone *zone; |
| 324 | int cpu; |
| 325 | int threshold; |
| 326 | int i; |
| 327 | |
| 328 | for (i = 0; i < pgdat->nr_zones; i++) { |
| 329 | zone = &pgdat->node_zones[i]; |
| 330 | if (!zone->percpu_drift_mark) |
| 331 | continue; |
| 332 | |
| 333 | threshold = (*calculate_pressure)(zone); |
| 334 | for_each_online_cpu(cpu) |
| 335 | per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold |
| 336 | = threshold; |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * For use when we know that interrupts are disabled, |
| 342 | * or when we know that preemption is disabled and that |
| 343 | * particular counter cannot be updated from interrupt context. |
| 344 | */ |
| 345 | void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
| 346 | long delta) |
| 347 | { |
| 348 | struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
| 349 | s8 __percpu *p = pcp->vm_stat_diff + item; |
| 350 | long x; |
| 351 | long t; |
| 352 | |
| 353 | /* |
| 354 | * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels, |
| 355 | * atomicity is provided by IRQs being disabled -- either explicitly |
| 356 | * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables |
| 357 | * CPU migrations and preemption potentially corrupts a counter so |
| 358 | * disable preemption. |
| 359 | */ |
| 360 | preempt_disable_nested(); |
| 361 | |
| 362 | x = delta + __this_cpu_read(*p); |
| 363 | |
| 364 | t = __this_cpu_read(pcp->stat_threshold); |
| 365 | |
| 366 | if (unlikely(abs(x) > t)) { |
| 367 | zone_page_state_add(x, zone, item); |
| 368 | x = 0; |
| 369 | } |
| 370 | __this_cpu_write(*p, x); |
| 371 | |
| 372 | preempt_enable_nested(); |
| 373 | } |
| 374 | EXPORT_SYMBOL(__mod_zone_page_state); |
| 375 | |
| 376 | void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, |
| 377 | long delta) |
| 378 | { |
| 379 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
| 380 | s8 __percpu *p = pcp->vm_node_stat_diff + item; |
| 381 | long x; |
| 382 | long t; |
| 383 | |
| 384 | if (vmstat_item_in_bytes(idx: item)) { |
| 385 | /* |
| 386 | * Only cgroups use subpage accounting right now; at |
| 387 | * the global level, these items still change in |
| 388 | * multiples of whole pages. Store them as pages |
| 389 | * internally to keep the per-cpu counters compact. |
| 390 | */ |
| 391 | VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); |
| 392 | delta >>= PAGE_SHIFT; |
| 393 | } |
| 394 | |
| 395 | /* See __mod_node_page_state */ |
| 396 | preempt_disable_nested(); |
| 397 | |
| 398 | x = delta + __this_cpu_read(*p); |
| 399 | |
| 400 | t = __this_cpu_read(pcp->stat_threshold); |
| 401 | |
| 402 | if (unlikely(abs(x) > t)) { |
| 403 | node_page_state_add(x, pgdat, item); |
| 404 | x = 0; |
| 405 | } |
| 406 | __this_cpu_write(*p, x); |
| 407 | |
| 408 | preempt_enable_nested(); |
| 409 | } |
| 410 | EXPORT_SYMBOL(__mod_node_page_state); |
| 411 | |
| 412 | /* |
| 413 | * Optimized increment and decrement functions. |
| 414 | * |
| 415 | * These are only for a single page and therefore can take a struct page * |
| 416 | * argument instead of struct zone *. This allows the inclusion of the code |
| 417 | * generated for page_zone(page) into the optimized functions. |
| 418 | * |
| 419 | * No overflow check is necessary and therefore the differential can be |
| 420 | * incremented or decremented in place which may allow the compilers to |
| 421 | * generate better code. |
| 422 | * The increment or decrement is known and therefore one boundary check can |
| 423 | * be omitted. |
| 424 | * |
| 425 | * NOTE: These functions are very performance sensitive. Change only |
| 426 | * with care. |
| 427 | * |
| 428 | * Some processors have inc/dec instructions that are atomic vs an interrupt. |
| 429 | * However, the code must first determine the differential location in a zone |
| 430 | * based on the processor number and then inc/dec the counter. There is no |
| 431 | * guarantee without disabling preemption that the processor will not change |
| 432 | * in between and therefore the atomicity vs. interrupt cannot be exploited |
| 433 | * in a useful way here. |
| 434 | */ |
| 435 | void __inc_zone_state(struct zone *zone, enum zone_stat_item item) |
| 436 | { |
| 437 | struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
| 438 | s8 __percpu *p = pcp->vm_stat_diff + item; |
| 439 | s8 v, t; |
| 440 | |
| 441 | /* See __mod_node_page_state */ |
| 442 | preempt_disable_nested(); |
| 443 | |
| 444 | v = __this_cpu_inc_return(*p); |
| 445 | t = __this_cpu_read(pcp->stat_threshold); |
| 446 | if (unlikely(v > t)) { |
| 447 | s8 overstep = t >> 1; |
| 448 | |
| 449 | zone_page_state_add(x: v + overstep, zone, item); |
| 450 | __this_cpu_write(*p, -overstep); |
| 451 | } |
| 452 | |
| 453 | preempt_enable_nested(); |
| 454 | } |
| 455 | |
| 456 | void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
| 457 | { |
| 458 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
| 459 | s8 __percpu *p = pcp->vm_node_stat_diff + item; |
| 460 | s8 v, t; |
| 461 | |
| 462 | VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); |
| 463 | |
| 464 | /* See __mod_node_page_state */ |
| 465 | preempt_disable_nested(); |
| 466 | |
| 467 | v = __this_cpu_inc_return(*p); |
| 468 | t = __this_cpu_read(pcp->stat_threshold); |
| 469 | if (unlikely(v > t)) { |
| 470 | s8 overstep = t >> 1; |
| 471 | |
| 472 | node_page_state_add(x: v + overstep, pgdat, item); |
| 473 | __this_cpu_write(*p, -overstep); |
| 474 | } |
| 475 | |
| 476 | preempt_enable_nested(); |
| 477 | } |
| 478 | |
| 479 | void __inc_zone_page_state(struct page *page, enum zone_stat_item item) |
| 480 | { |
| 481 | __inc_zone_state(zone: page_zone(page), item); |
| 482 | } |
| 483 | EXPORT_SYMBOL(__inc_zone_page_state); |
| 484 | |
| 485 | void __inc_node_page_state(struct page *page, enum node_stat_item item) |
| 486 | { |
| 487 | __inc_node_state(pgdat: page_pgdat(page), item); |
| 488 | } |
| 489 | EXPORT_SYMBOL(__inc_node_page_state); |
| 490 | |
| 491 | void __dec_zone_state(struct zone *zone, enum zone_stat_item item) |
| 492 | { |
| 493 | struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
| 494 | s8 __percpu *p = pcp->vm_stat_diff + item; |
| 495 | s8 v, t; |
| 496 | |
| 497 | /* See __mod_node_page_state */ |
| 498 | preempt_disable_nested(); |
| 499 | |
| 500 | v = __this_cpu_dec_return(*p); |
| 501 | t = __this_cpu_read(pcp->stat_threshold); |
| 502 | if (unlikely(v < - t)) { |
| 503 | s8 overstep = t >> 1; |
| 504 | |
| 505 | zone_page_state_add(x: v - overstep, zone, item); |
| 506 | __this_cpu_write(*p, overstep); |
| 507 | } |
| 508 | |
| 509 | preempt_enable_nested(); |
| 510 | } |
| 511 | |
| 512 | void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
| 513 | { |
| 514 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
| 515 | s8 __percpu *p = pcp->vm_node_stat_diff + item; |
| 516 | s8 v, t; |
| 517 | |
| 518 | VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); |
| 519 | |
| 520 | /* See __mod_node_page_state */ |
| 521 | preempt_disable_nested(); |
| 522 | |
| 523 | v = __this_cpu_dec_return(*p); |
| 524 | t = __this_cpu_read(pcp->stat_threshold); |
| 525 | if (unlikely(v < - t)) { |
| 526 | s8 overstep = t >> 1; |
| 527 | |
| 528 | node_page_state_add(x: v - overstep, pgdat, item); |
| 529 | __this_cpu_write(*p, overstep); |
| 530 | } |
| 531 | |
| 532 | preempt_enable_nested(); |
| 533 | } |
| 534 | |
| 535 | void __dec_zone_page_state(struct page *page, enum zone_stat_item item) |
| 536 | { |
| 537 | __dec_zone_state(zone: page_zone(page), item); |
| 538 | } |
| 539 | EXPORT_SYMBOL(__dec_zone_page_state); |
| 540 | |
| 541 | void __dec_node_page_state(struct page *page, enum node_stat_item item) |
| 542 | { |
| 543 | __dec_node_state(pgdat: page_pgdat(page), item); |
| 544 | } |
| 545 | EXPORT_SYMBOL(__dec_node_page_state); |
| 546 | |
| 547 | #ifdef CONFIG_HAVE_CMPXCHG_LOCAL |
| 548 | /* |
| 549 | * If we have cmpxchg_local support then we do not need to incur the overhead |
| 550 | * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. |
| 551 | * |
| 552 | * mod_state() modifies the zone counter state through atomic per cpu |
| 553 | * operations. |
| 554 | * |
| 555 | * Overstep mode specifies how overstep should handled: |
| 556 | * 0 No overstepping |
| 557 | * 1 Overstepping half of threshold |
| 558 | * -1 Overstepping minus half of threshold |
| 559 | */ |
| 560 | static inline void mod_zone_state(struct zone *zone, |
| 561 | enum zone_stat_item item, long delta, int overstep_mode) |
| 562 | { |
| 563 | struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; |
| 564 | s8 __percpu *p = pcp->vm_stat_diff + item; |
| 565 | long n, t, z; |
| 566 | s8 o; |
| 567 | |
| 568 | o = this_cpu_read(*p); |
| 569 | do { |
| 570 | z = 0; /* overflow to zone counters */ |
| 571 | |
| 572 | /* |
| 573 | * The fetching of the stat_threshold is racy. We may apply |
| 574 | * a counter threshold to the wrong the cpu if we get |
| 575 | * rescheduled while executing here. However, the next |
| 576 | * counter update will apply the threshold again and |
| 577 | * therefore bring the counter under the threshold again. |
| 578 | * |
| 579 | * Most of the time the thresholds are the same anyways |
| 580 | * for all cpus in a zone. |
| 581 | */ |
| 582 | t = this_cpu_read(pcp->stat_threshold); |
| 583 | |
| 584 | n = delta + (long)o; |
| 585 | |
| 586 | if (abs(n) > t) { |
| 587 | int os = overstep_mode * (t >> 1) ; |
| 588 | |
| 589 | /* Overflow must be added to zone counters */ |
| 590 | z = n + os; |
| 591 | n = -os; |
| 592 | } |
| 593 | } while (!this_cpu_try_cmpxchg(*p, &o, n)); |
| 594 | |
| 595 | if (z) |
| 596 | zone_page_state_add(x: z, zone, item); |
| 597 | } |
| 598 | |
| 599 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
| 600 | long delta) |
| 601 | { |
| 602 | mod_zone_state(zone, item, delta, overstep_mode: 0); |
| 603 | } |
| 604 | EXPORT_SYMBOL(mod_zone_page_state); |
| 605 | |
| 606 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
| 607 | { |
| 608 | mod_zone_state(zone: page_zone(page), item, delta: 1, overstep_mode: 1); |
| 609 | } |
| 610 | EXPORT_SYMBOL(inc_zone_page_state); |
| 611 | |
| 612 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) |
| 613 | { |
| 614 | mod_zone_state(zone: page_zone(page), item, delta: -1, overstep_mode: -1); |
| 615 | } |
| 616 | EXPORT_SYMBOL(dec_zone_page_state); |
| 617 | |
| 618 | static inline void mod_node_state(struct pglist_data *pgdat, |
| 619 | enum node_stat_item item, int delta, int overstep_mode) |
| 620 | { |
| 621 | struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; |
| 622 | s8 __percpu *p = pcp->vm_node_stat_diff + item; |
| 623 | long n, t, z; |
| 624 | s8 o; |
| 625 | |
| 626 | if (vmstat_item_in_bytes(idx: item)) { |
| 627 | /* |
| 628 | * Only cgroups use subpage accounting right now; at |
| 629 | * the global level, these items still change in |
| 630 | * multiples of whole pages. Store them as pages |
| 631 | * internally to keep the per-cpu counters compact. |
| 632 | */ |
| 633 | VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); |
| 634 | delta >>= PAGE_SHIFT; |
| 635 | } |
| 636 | |
| 637 | o = this_cpu_read(*p); |
| 638 | do { |
| 639 | z = 0; /* overflow to node counters */ |
| 640 | |
| 641 | /* |
| 642 | * The fetching of the stat_threshold is racy. We may apply |
| 643 | * a counter threshold to the wrong the cpu if we get |
| 644 | * rescheduled while executing here. However, the next |
| 645 | * counter update will apply the threshold again and |
| 646 | * therefore bring the counter under the threshold again. |
| 647 | * |
| 648 | * Most of the time the thresholds are the same anyways |
| 649 | * for all cpus in a node. |
| 650 | */ |
| 651 | t = this_cpu_read(pcp->stat_threshold); |
| 652 | |
| 653 | n = delta + (long)o; |
| 654 | |
| 655 | if (abs(n) > t) { |
| 656 | int os = overstep_mode * (t >> 1) ; |
| 657 | |
| 658 | /* Overflow must be added to node counters */ |
| 659 | z = n + os; |
| 660 | n = -os; |
| 661 | } |
| 662 | } while (!this_cpu_try_cmpxchg(*p, &o, n)); |
| 663 | |
| 664 | if (z) |
| 665 | node_page_state_add(x: z, pgdat, item); |
| 666 | } |
| 667 | |
| 668 | void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, |
| 669 | long delta) |
| 670 | { |
| 671 | mod_node_state(pgdat, item, delta, overstep_mode: 0); |
| 672 | } |
| 673 | EXPORT_SYMBOL(mod_node_page_state); |
| 674 | |
| 675 | void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
| 676 | { |
| 677 | mod_node_state(pgdat, item, delta: 1, overstep_mode: 1); |
| 678 | } |
| 679 | |
| 680 | void inc_node_page_state(struct page *page, enum node_stat_item item) |
| 681 | { |
| 682 | mod_node_state(pgdat: page_pgdat(page), item, delta: 1, overstep_mode: 1); |
| 683 | } |
| 684 | EXPORT_SYMBOL(inc_node_page_state); |
| 685 | |
| 686 | void dec_node_page_state(struct page *page, enum node_stat_item item) |
| 687 | { |
| 688 | mod_node_state(pgdat: page_pgdat(page), item, delta: -1, overstep_mode: -1); |
| 689 | } |
| 690 | EXPORT_SYMBOL(dec_node_page_state); |
| 691 | #else |
| 692 | /* |
| 693 | * Use interrupt disable to serialize counter updates |
| 694 | */ |
| 695 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
| 696 | long delta) |
| 697 | { |
| 698 | unsigned long flags; |
| 699 | |
| 700 | local_irq_save(flags); |
| 701 | __mod_zone_page_state(zone, item, delta); |
| 702 | local_irq_restore(flags); |
| 703 | } |
| 704 | EXPORT_SYMBOL(mod_zone_page_state); |
| 705 | |
| 706 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
| 707 | { |
| 708 | unsigned long flags; |
| 709 | struct zone *zone; |
| 710 | |
| 711 | zone = page_zone(page); |
| 712 | local_irq_save(flags); |
| 713 | __inc_zone_state(zone, item); |
| 714 | local_irq_restore(flags); |
| 715 | } |
| 716 | EXPORT_SYMBOL(inc_zone_page_state); |
| 717 | |
| 718 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) |
| 719 | { |
| 720 | unsigned long flags; |
| 721 | |
| 722 | local_irq_save(flags); |
| 723 | __dec_zone_page_state(page, item); |
| 724 | local_irq_restore(flags); |
| 725 | } |
| 726 | EXPORT_SYMBOL(dec_zone_page_state); |
| 727 | |
| 728 | void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) |
| 729 | { |
| 730 | unsigned long flags; |
| 731 | |
| 732 | local_irq_save(flags); |
| 733 | __inc_node_state(pgdat, item); |
| 734 | local_irq_restore(flags); |
| 735 | } |
| 736 | EXPORT_SYMBOL(inc_node_state); |
| 737 | |
| 738 | void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, |
| 739 | long delta) |
| 740 | { |
| 741 | unsigned long flags; |
| 742 | |
| 743 | local_irq_save(flags); |
| 744 | __mod_node_page_state(pgdat, item, delta); |
| 745 | local_irq_restore(flags); |
| 746 | } |
| 747 | EXPORT_SYMBOL(mod_node_page_state); |
| 748 | |
| 749 | void inc_node_page_state(struct page *page, enum node_stat_item item) |
| 750 | { |
| 751 | unsigned long flags; |
| 752 | struct pglist_data *pgdat; |
| 753 | |
| 754 | pgdat = page_pgdat(page); |
| 755 | local_irq_save(flags); |
| 756 | __inc_node_state(pgdat, item); |
| 757 | local_irq_restore(flags); |
| 758 | } |
| 759 | EXPORT_SYMBOL(inc_node_page_state); |
| 760 | |
| 761 | void dec_node_page_state(struct page *page, enum node_stat_item item) |
| 762 | { |
| 763 | unsigned long flags; |
| 764 | |
| 765 | local_irq_save(flags); |
| 766 | __dec_node_page_state(page, item); |
| 767 | local_irq_restore(flags); |
| 768 | } |
| 769 | EXPORT_SYMBOL(dec_node_page_state); |
| 770 | #endif |
| 771 | |
| 772 | /* |
| 773 | * Fold a differential into the global counters. |
| 774 | * Returns the number of counters updated. |
| 775 | */ |
| 776 | static int fold_diff(int *zone_diff, int *node_diff) |
| 777 | { |
| 778 | int i; |
| 779 | int changes = 0; |
| 780 | |
| 781 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
| 782 | if (zone_diff[i]) { |
| 783 | atomic_long_add(i: zone_diff[i], v: &vm_zone_stat[i]); |
| 784 | changes++; |
| 785 | } |
| 786 | |
| 787 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) |
| 788 | if (node_diff[i]) { |
| 789 | atomic_long_add(i: node_diff[i], v: &vm_node_stat[i]); |
| 790 | changes++; |
| 791 | } |
| 792 | return changes; |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * Update the zone counters for the current cpu. |
| 797 | * |
| 798 | * Note that refresh_cpu_vm_stats strives to only access |
| 799 | * node local memory. The per cpu pagesets on remote zones are placed |
| 800 | * in the memory local to the processor using that pageset. So the |
| 801 | * loop over all zones will access a series of cachelines local to |
| 802 | * the processor. |
| 803 | * |
| 804 | * The call to zone_page_state_add updates the cachelines with the |
| 805 | * statistics in the remote zone struct as well as the global cachelines |
| 806 | * with the global counters. These could cause remote node cache line |
| 807 | * bouncing and will have to be only done when necessary. |
| 808 | * |
| 809 | * The function returns the number of global counters updated. |
| 810 | */ |
| 811 | static int refresh_cpu_vm_stats(bool do_pagesets) |
| 812 | { |
| 813 | struct pglist_data *pgdat; |
| 814 | struct zone *zone; |
| 815 | int i; |
| 816 | int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
| 817 | int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; |
| 818 | int changes = 0; |
| 819 | |
| 820 | for_each_populated_zone(zone) { |
| 821 | struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; |
| 822 | struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; |
| 823 | |
| 824 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
| 825 | int v; |
| 826 | |
| 827 | v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); |
| 828 | if (v) { |
| 829 | |
| 830 | atomic_long_add(i: v, v: &zone->vm_stat[i]); |
| 831 | global_zone_diff[i] += v; |
| 832 | #ifdef CONFIG_NUMA |
| 833 | /* 3 seconds idle till flush */ |
| 834 | __this_cpu_write(pcp->expire, 3); |
| 835 | #endif |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | if (do_pagesets) { |
| 840 | cond_resched(); |
| 841 | |
| 842 | changes += decay_pcp_high(zone, this_cpu_ptr(pcp)); |
| 843 | #ifdef CONFIG_NUMA |
| 844 | /* |
| 845 | * Deal with draining the remote pageset of this |
| 846 | * processor |
| 847 | * |
| 848 | * Check if there are pages remaining in this pageset |
| 849 | * if not then there is nothing to expire. |
| 850 | */ |
| 851 | if (!__this_cpu_read(pcp->expire) || |
| 852 | !__this_cpu_read(pcp->count)) |
| 853 | continue; |
| 854 | |
| 855 | /* |
| 856 | * We never drain zones local to this processor. |
| 857 | */ |
| 858 | if (zone_to_nid(zone) == numa_node_id()) { |
| 859 | __this_cpu_write(pcp->expire, 0); |
| 860 | continue; |
| 861 | } |
| 862 | |
| 863 | if (__this_cpu_dec_return(pcp->expire)) { |
| 864 | changes++; |
| 865 | continue; |
| 866 | } |
| 867 | |
| 868 | if (__this_cpu_read(pcp->count)) { |
| 869 | drain_zone_pages(zone, this_cpu_ptr(pcp)); |
| 870 | changes++; |
| 871 | } |
| 872 | #endif |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | for_each_online_pgdat(pgdat) { |
| 877 | struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; |
| 878 | |
| 879 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
| 880 | int v; |
| 881 | |
| 882 | v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); |
| 883 | if (v) { |
| 884 | atomic_long_add(i: v, v: &pgdat->vm_stat[i]); |
| 885 | global_node_diff[i] += v; |
| 886 | } |
| 887 | } |
| 888 | } |
| 889 | |
| 890 | changes += fold_diff(zone_diff: global_zone_diff, node_diff: global_node_diff); |
| 891 | return changes; |
| 892 | } |
| 893 | |
| 894 | /* |
| 895 | * Fold the data for an offline cpu into the global array. |
| 896 | * There cannot be any access by the offline cpu and therefore |
| 897 | * synchronization is simplified. |
| 898 | */ |
| 899 | void cpu_vm_stats_fold(int cpu) |
| 900 | { |
| 901 | struct pglist_data *pgdat; |
| 902 | struct zone *zone; |
| 903 | int i; |
| 904 | int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
| 905 | int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; |
| 906 | |
| 907 | for_each_populated_zone(zone) { |
| 908 | struct per_cpu_zonestat *pzstats; |
| 909 | |
| 910 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| 911 | |
| 912 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
| 913 | if (pzstats->vm_stat_diff[i]) { |
| 914 | int v; |
| 915 | |
| 916 | v = pzstats->vm_stat_diff[i]; |
| 917 | pzstats->vm_stat_diff[i] = 0; |
| 918 | atomic_long_add(i: v, v: &zone->vm_stat[i]); |
| 919 | global_zone_diff[i] += v; |
| 920 | } |
| 921 | } |
| 922 | #ifdef CONFIG_NUMA |
| 923 | for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { |
| 924 | if (pzstats->vm_numa_event[i]) { |
| 925 | unsigned long v; |
| 926 | |
| 927 | v = pzstats->vm_numa_event[i]; |
| 928 | pzstats->vm_numa_event[i] = 0; |
| 929 | zone_numa_event_add(x: v, zone, item: i); |
| 930 | } |
| 931 | } |
| 932 | #endif |
| 933 | } |
| 934 | |
| 935 | for_each_online_pgdat(pgdat) { |
| 936 | struct per_cpu_nodestat *p; |
| 937 | |
| 938 | p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); |
| 939 | |
| 940 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) |
| 941 | if (p->vm_node_stat_diff[i]) { |
| 942 | int v; |
| 943 | |
| 944 | v = p->vm_node_stat_diff[i]; |
| 945 | p->vm_node_stat_diff[i] = 0; |
| 946 | atomic_long_add(i: v, v: &pgdat->vm_stat[i]); |
| 947 | global_node_diff[i] += v; |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | fold_diff(zone_diff: global_zone_diff, node_diff: global_node_diff); |
| 952 | } |
| 953 | |
| 954 | /* |
| 955 | * this is only called if !populated_zone(zone), which implies no other users of |
| 956 | * pset->vm_stat_diff[] exist. |
| 957 | */ |
| 958 | void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) |
| 959 | { |
| 960 | unsigned long v; |
| 961 | int i; |
| 962 | |
| 963 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
| 964 | if (pzstats->vm_stat_diff[i]) { |
| 965 | v = pzstats->vm_stat_diff[i]; |
| 966 | pzstats->vm_stat_diff[i] = 0; |
| 967 | zone_page_state_add(x: v, zone, item: i); |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | #ifdef CONFIG_NUMA |
| 972 | for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { |
| 973 | if (pzstats->vm_numa_event[i]) { |
| 974 | v = pzstats->vm_numa_event[i]; |
| 975 | pzstats->vm_numa_event[i] = 0; |
| 976 | zone_numa_event_add(x: v, zone, item: i); |
| 977 | } |
| 978 | } |
| 979 | #endif |
| 980 | } |
| 981 | #endif |
| 982 | |
| 983 | #ifdef CONFIG_NUMA |
| 984 | /* |
| 985 | * Determine the per node value of a stat item. This function |
| 986 | * is called frequently in a NUMA machine, so try to be as |
| 987 | * frugal as possible. |
| 988 | */ |
| 989 | unsigned long sum_zone_node_page_state(int node, |
| 990 | enum zone_stat_item item) |
| 991 | { |
| 992 | struct zone *zones = NODE_DATA(node)->node_zones; |
| 993 | int i; |
| 994 | unsigned long count = 0; |
| 995 | |
| 996 | for (i = 0; i < MAX_NR_ZONES; i++) |
| 997 | count += zone_page_state(zone: zones + i, item); |
| 998 | |
| 999 | return count; |
| 1000 | } |
| 1001 | |
| 1002 | /* Determine the per node value of a numa stat item. */ |
| 1003 | unsigned long sum_zone_numa_event_state(int node, |
| 1004 | enum numa_stat_item item) |
| 1005 | { |
| 1006 | struct zone *zones = NODE_DATA(node)->node_zones; |
| 1007 | unsigned long count = 0; |
| 1008 | int i; |
| 1009 | |
| 1010 | for (i = 0; i < MAX_NR_ZONES; i++) |
| 1011 | count += zone_numa_event_state(zone: zones + i, item); |
| 1012 | |
| 1013 | return count; |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * Determine the per node value of a stat item. |
| 1018 | */ |
| 1019 | unsigned long node_page_state_pages(struct pglist_data *pgdat, |
| 1020 | enum node_stat_item item) |
| 1021 | { |
| 1022 | long x = atomic_long_read(v: &pgdat->vm_stat[item]); |
| 1023 | #ifdef CONFIG_SMP |
| 1024 | if (x < 0) |
| 1025 | x = 0; |
| 1026 | #endif |
| 1027 | return x; |
| 1028 | } |
| 1029 | |
| 1030 | unsigned long node_page_state(struct pglist_data *pgdat, |
| 1031 | enum node_stat_item item) |
| 1032 | { |
| 1033 | VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); |
| 1034 | |
| 1035 | return node_page_state_pages(pgdat, item); |
| 1036 | } |
| 1037 | #endif |
| 1038 | |
| 1039 | /* |
| 1040 | * Count number of pages "struct page" and "struct page_ext" consume. |
| 1041 | * nr_memmap_boot_pages: # of pages allocated by boot allocator |
| 1042 | * nr_memmap_pages: # of pages that were allocated by buddy allocator |
| 1043 | */ |
| 1044 | static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0); |
| 1045 | static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0); |
| 1046 | |
| 1047 | void memmap_boot_pages_add(long delta) |
| 1048 | { |
| 1049 | atomic_long_add(i: delta, v: &nr_memmap_boot_pages); |
| 1050 | } |
| 1051 | |
| 1052 | void memmap_pages_add(long delta) |
| 1053 | { |
| 1054 | atomic_long_add(i: delta, v: &nr_memmap_pages); |
| 1055 | } |
| 1056 | |
| 1057 | #ifdef CONFIG_COMPACTION |
| 1058 | |
| 1059 | struct contig_page_info { |
| 1060 | unsigned long free_pages; |
| 1061 | unsigned long free_blocks_total; |
| 1062 | unsigned long free_blocks_suitable; |
| 1063 | }; |
| 1064 | |
| 1065 | /* |
| 1066 | * Calculate the number of free pages in a zone, how many contiguous |
| 1067 | * pages are free and how many are large enough to satisfy an allocation of |
| 1068 | * the target size. Note that this function makes no attempt to estimate |
| 1069 | * how many suitable free blocks there *might* be if MOVABLE pages were |
| 1070 | * migrated. Calculating that is possible, but expensive and can be |
| 1071 | * figured out from userspace |
| 1072 | */ |
| 1073 | static void fill_contig_page_info(struct zone *zone, |
| 1074 | unsigned int suitable_order, |
| 1075 | struct contig_page_info *info) |
| 1076 | { |
| 1077 | unsigned int order; |
| 1078 | |
| 1079 | info->free_pages = 0; |
| 1080 | info->free_blocks_total = 0; |
| 1081 | info->free_blocks_suitable = 0; |
| 1082 | |
| 1083 | for (order = 0; order < NR_PAGE_ORDERS; order++) { |
| 1084 | unsigned long blocks; |
| 1085 | |
| 1086 | /* |
| 1087 | * Count number of free blocks. |
| 1088 | * |
| 1089 | * Access to nr_free is lockless as nr_free is used only for |
| 1090 | * diagnostic purposes. Use data_race to avoid KCSAN warning. |
| 1091 | */ |
| 1092 | blocks = data_race(zone->free_area[order].nr_free); |
| 1093 | info->free_blocks_total += blocks; |
| 1094 | |
| 1095 | /* Count free base pages */ |
| 1096 | info->free_pages += blocks << order; |
| 1097 | |
| 1098 | /* Count the suitable free blocks */ |
| 1099 | if (order >= suitable_order) |
| 1100 | info->free_blocks_suitable += blocks << |
| 1101 | (order - suitable_order); |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | /* |
| 1106 | * A fragmentation index only makes sense if an allocation of a requested |
| 1107 | * size would fail. If that is true, the fragmentation index indicates |
| 1108 | * whether external fragmentation or a lack of memory was the problem. |
| 1109 | * The value can be used to determine if page reclaim or compaction |
| 1110 | * should be used |
| 1111 | */ |
| 1112 | static int __fragmentation_index(unsigned int order, struct contig_page_info *info) |
| 1113 | { |
| 1114 | unsigned long requested = 1UL << order; |
| 1115 | |
| 1116 | if (WARN_ON_ONCE(order > MAX_PAGE_ORDER)) |
| 1117 | return 0; |
| 1118 | |
| 1119 | if (!info->free_blocks_total) |
| 1120 | return 0; |
| 1121 | |
| 1122 | /* Fragmentation index only makes sense when a request would fail */ |
| 1123 | if (info->free_blocks_suitable) |
| 1124 | return -1000; |
| 1125 | |
| 1126 | /* |
| 1127 | * Index is between 0 and 1 so return within 3 decimal places |
| 1128 | * |
| 1129 | * 0 => allocation would fail due to lack of memory |
| 1130 | * 1 => allocation would fail due to fragmentation |
| 1131 | */ |
| 1132 | return 1000 - div_u64( dividend: (1000+(div_u64(dividend: info->free_pages * 1000ULL, divisor: requested))), divisor: info->free_blocks_total); |
| 1133 | } |
| 1134 | |
| 1135 | /* |
| 1136 | * Calculates external fragmentation within a zone wrt the given order. |
| 1137 | * It is defined as the percentage of pages found in blocks of size |
| 1138 | * less than 1 << order. It returns values in range [0, 100]. |
| 1139 | */ |
| 1140 | unsigned int extfrag_for_order(struct zone *zone, unsigned int order) |
| 1141 | { |
| 1142 | struct contig_page_info info; |
| 1143 | |
| 1144 | fill_contig_page_info(zone, suitable_order: order, info: &info); |
| 1145 | if (info.free_pages == 0) |
| 1146 | return 0; |
| 1147 | |
| 1148 | return div_u64(dividend: (info.free_pages - |
| 1149 | (info.free_blocks_suitable << order)) * 100, |
| 1150 | divisor: info.free_pages); |
| 1151 | } |
| 1152 | |
| 1153 | /* Same as __fragmentation index but allocs contig_page_info on stack */ |
| 1154 | int fragmentation_index(struct zone *zone, unsigned int order) |
| 1155 | { |
| 1156 | struct contig_page_info info; |
| 1157 | |
| 1158 | fill_contig_page_info(zone, suitable_order: order, info: &info); |
| 1159 | return __fragmentation_index(order, info: &info); |
| 1160 | } |
| 1161 | #endif |
| 1162 | |
| 1163 | #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ |
| 1164 | defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) |
| 1165 | #ifdef CONFIG_ZONE_DMA |
| 1166 | #define TEXT_FOR_DMA(xx, yy) [xx##_DMA] = yy "_dma", |
| 1167 | #else |
| 1168 | #define TEXT_FOR_DMA(xx, yy) |
| 1169 | #endif |
| 1170 | |
| 1171 | #ifdef CONFIG_ZONE_DMA32 |
| 1172 | #define TEXT_FOR_DMA32(xx, yy) [xx##_DMA32] = yy "_dma32", |
| 1173 | #else |
| 1174 | #define TEXT_FOR_DMA32(xx, yy) |
| 1175 | #endif |
| 1176 | |
| 1177 | #ifdef CONFIG_HIGHMEM |
| 1178 | #define TEXT_FOR_HIGHMEM(xx, yy) [xx##_HIGH] = yy "_high", |
| 1179 | #else |
| 1180 | #define TEXT_FOR_HIGHMEM(xx, yy) |
| 1181 | #endif |
| 1182 | |
| 1183 | #ifdef CONFIG_ZONE_DEVICE |
| 1184 | #define TEXT_FOR_DEVICE(xx, yy) [xx##_DEVICE] = yy "_device", |
| 1185 | #else |
| 1186 | #define TEXT_FOR_DEVICE(xx, yy) |
| 1187 | #endif |
| 1188 | |
| 1189 | #define TEXTS_FOR_ZONES(xx, yy) \ |
| 1190 | TEXT_FOR_DMA(xx, yy) \ |
| 1191 | TEXT_FOR_DMA32(xx, yy) \ |
| 1192 | [xx##_NORMAL] = yy "_normal", \ |
| 1193 | TEXT_FOR_HIGHMEM(xx, yy) \ |
| 1194 | [xx##_MOVABLE] = yy "_movable", \ |
| 1195 | TEXT_FOR_DEVICE(xx, yy) |
| 1196 | |
| 1197 | const char * const vmstat_text[] = { |
| 1198 | /* enum zone_stat_item counters */ |
| 1199 | #define I(x) (x) |
| 1200 | [I(NR_FREE_PAGES)] = "nr_free_pages" , |
| 1201 | [I(NR_FREE_PAGES_BLOCKS)] = "nr_free_pages_blocks" , |
| 1202 | [I(NR_ZONE_INACTIVE_ANON)] = "nr_zone_inactive_anon" , |
| 1203 | [I(NR_ZONE_ACTIVE_ANON)] = "nr_zone_active_anon" , |
| 1204 | [I(NR_ZONE_INACTIVE_FILE)] = "nr_zone_inactive_file" , |
| 1205 | [I(NR_ZONE_ACTIVE_FILE)] = "nr_zone_active_file" , |
| 1206 | [I(NR_ZONE_UNEVICTABLE)] = "nr_zone_unevictable" , |
| 1207 | [I(NR_ZONE_WRITE_PENDING)] = "nr_zone_write_pending" , |
| 1208 | [I(NR_MLOCK)] = "nr_mlock" , |
| 1209 | #if IS_ENABLED(CONFIG_ZSMALLOC) |
| 1210 | [I(NR_ZSPAGES)] = "nr_zspages" , |
| 1211 | #endif |
| 1212 | [I(NR_FREE_CMA_PAGES)] = "nr_free_cma" , |
| 1213 | #ifdef CONFIG_UNACCEPTED_MEMORY |
| 1214 | [I(NR_UNACCEPTED)] = "nr_unaccepted" , |
| 1215 | #endif |
| 1216 | #undef I |
| 1217 | |
| 1218 | /* enum numa_stat_item counters */ |
| 1219 | #define I(x) (NR_VM_ZONE_STAT_ITEMS + x) |
| 1220 | #ifdef CONFIG_NUMA |
| 1221 | [I(NUMA_HIT)] = "numa_hit" , |
| 1222 | [I(NUMA_MISS)] = "numa_miss" , |
| 1223 | [I(NUMA_FOREIGN)] = "numa_foreign" , |
| 1224 | [I(NUMA_INTERLEAVE_HIT)] = "numa_interleave" , |
| 1225 | [I(NUMA_LOCAL)] = "numa_local" , |
| 1226 | [I(NUMA_OTHER)] = "numa_other" , |
| 1227 | #endif |
| 1228 | #undef I |
| 1229 | |
| 1230 | /* enum node_stat_item counters */ |
| 1231 | #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + x) |
| 1232 | [I(NR_INACTIVE_ANON)] = "nr_inactive_anon" , |
| 1233 | [I(NR_ACTIVE_ANON)] = "nr_active_anon" , |
| 1234 | [I(NR_INACTIVE_FILE)] = "nr_inactive_file" , |
| 1235 | [I(NR_ACTIVE_FILE)] = "nr_active_file" , |
| 1236 | [I(NR_UNEVICTABLE)] = "nr_unevictable" , |
| 1237 | [I(NR_SLAB_RECLAIMABLE_B)] = "nr_slab_reclaimable" , |
| 1238 | [I(NR_SLAB_UNRECLAIMABLE_B)] = "nr_slab_unreclaimable" , |
| 1239 | [I(NR_ISOLATED_ANON)] = "nr_isolated_anon" , |
| 1240 | [I(NR_ISOLATED_FILE)] = "nr_isolated_file" , |
| 1241 | [I(WORKINGSET_NODES)] = "workingset_nodes" , |
| 1242 | [I(WORKINGSET_REFAULT_ANON)] = "workingset_refault_anon" , |
| 1243 | [I(WORKINGSET_REFAULT_FILE)] = "workingset_refault_file" , |
| 1244 | [I(WORKINGSET_ACTIVATE_ANON)] = "workingset_activate_anon" , |
| 1245 | [I(WORKINGSET_ACTIVATE_FILE)] = "workingset_activate_file" , |
| 1246 | [I(WORKINGSET_RESTORE_ANON)] = "workingset_restore_anon" , |
| 1247 | [I(WORKINGSET_RESTORE_FILE)] = "workingset_restore_file" , |
| 1248 | [I(WORKINGSET_NODERECLAIM)] = "workingset_nodereclaim" , |
| 1249 | [I(NR_ANON_MAPPED)] = "nr_anon_pages" , |
| 1250 | [I(NR_FILE_MAPPED)] = "nr_mapped" , |
| 1251 | [I(NR_FILE_PAGES)] = "nr_file_pages" , |
| 1252 | [I(NR_FILE_DIRTY)] = "nr_dirty" , |
| 1253 | [I(NR_WRITEBACK)] = "nr_writeback" , |
| 1254 | [I(NR_SHMEM)] = "nr_shmem" , |
| 1255 | [I(NR_SHMEM_THPS)] = "nr_shmem_hugepages" , |
| 1256 | [I(NR_SHMEM_PMDMAPPED)] = "nr_shmem_pmdmapped" , |
| 1257 | [I(NR_FILE_THPS)] = "nr_file_hugepages" , |
| 1258 | [I(NR_FILE_PMDMAPPED)] = "nr_file_pmdmapped" , |
| 1259 | [I(NR_ANON_THPS)] = "nr_anon_transparent_hugepages" , |
| 1260 | [I(NR_VMSCAN_WRITE)] = "nr_vmscan_write" , |
| 1261 | [I(NR_VMSCAN_IMMEDIATE)] = "nr_vmscan_immediate_reclaim" , |
| 1262 | [I(NR_DIRTIED)] = "nr_dirtied" , |
| 1263 | [I(NR_WRITTEN)] = "nr_written" , |
| 1264 | [I(NR_THROTTLED_WRITTEN)] = "nr_throttled_written" , |
| 1265 | [I(NR_KERNEL_MISC_RECLAIMABLE)] = "nr_kernel_misc_reclaimable" , |
| 1266 | [I(NR_FOLL_PIN_ACQUIRED)] = "nr_foll_pin_acquired" , |
| 1267 | [I(NR_FOLL_PIN_RELEASED)] = "nr_foll_pin_released" , |
| 1268 | [I(NR_KERNEL_STACK_KB)] = "nr_kernel_stack" , |
| 1269 | #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) |
| 1270 | [I(NR_KERNEL_SCS_KB)] = "nr_shadow_call_stack" , |
| 1271 | #endif |
| 1272 | [I(NR_PAGETABLE)] = "nr_page_table_pages" , |
| 1273 | [I(NR_SECONDARY_PAGETABLE)] = "nr_sec_page_table_pages" , |
| 1274 | #ifdef CONFIG_IOMMU_SUPPORT |
| 1275 | [I(NR_IOMMU_PAGES)] = "nr_iommu_pages" , |
| 1276 | #endif |
| 1277 | #ifdef CONFIG_SWAP |
| 1278 | [I(NR_SWAPCACHE)] = "nr_swapcached" , |
| 1279 | #endif |
| 1280 | #ifdef CONFIG_NUMA_BALANCING |
| 1281 | [I(PGPROMOTE_SUCCESS)] = "pgpromote_success" , |
| 1282 | [I(PGPROMOTE_CANDIDATE)] = "pgpromote_candidate" , |
| 1283 | [I(PGPROMOTE_CANDIDATE_NRL)] = "pgpromote_candidate_nrl" , |
| 1284 | #endif |
| 1285 | [I(PGDEMOTE_KSWAPD)] = "pgdemote_kswapd" , |
| 1286 | [I(PGDEMOTE_DIRECT)] = "pgdemote_direct" , |
| 1287 | [I(PGDEMOTE_KHUGEPAGED)] = "pgdemote_khugepaged" , |
| 1288 | [I(PGDEMOTE_PROACTIVE)] = "pgdemote_proactive" , |
| 1289 | #ifdef CONFIG_HUGETLB_PAGE |
| 1290 | [I(NR_HUGETLB)] = "nr_hugetlb" , |
| 1291 | #endif |
| 1292 | [I(NR_BALLOON_PAGES)] = "nr_balloon_pages" , |
| 1293 | [I(NR_KERNEL_FILE_PAGES)] = "nr_kernel_file_pages" , |
| 1294 | #undef I |
| 1295 | |
| 1296 | /* system-wide enum vm_stat_item counters */ |
| 1297 | #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \ |
| 1298 | NR_VM_NODE_STAT_ITEMS + x) |
| 1299 | [I(NR_DIRTY_THRESHOLD)] = "nr_dirty_threshold" , |
| 1300 | [I(NR_DIRTY_BG_THRESHOLD)] = "nr_dirty_background_threshold" , |
| 1301 | [I(NR_MEMMAP_PAGES)] = "nr_memmap_pages" , |
| 1302 | [I(NR_MEMMAP_BOOT_PAGES)] = "nr_memmap_boot_pages" , |
| 1303 | #undef I |
| 1304 | |
| 1305 | #if defined(CONFIG_VM_EVENT_COUNTERS) |
| 1306 | /* enum vm_event_item counters */ |
| 1307 | #define I(x) (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \ |
| 1308 | NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS + x) |
| 1309 | |
| 1310 | [I(PGPGIN)] = "pgpgin" , |
| 1311 | [I(PGPGOUT)] = "pgpgout" , |
| 1312 | [I(PSWPIN)] = "pswpin" , |
| 1313 | [I(PSWPOUT)] = "pswpout" , |
| 1314 | |
| 1315 | #define OFF (NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + \ |
| 1316 | NR_VM_NODE_STAT_ITEMS + NR_VM_STAT_ITEMS) |
| 1317 | TEXTS_FOR_ZONES(OFF+PGALLOC, "pgalloc" ) |
| 1318 | TEXTS_FOR_ZONES(OFF+ALLOCSTALL, "allocstall" ) |
| 1319 | TEXTS_FOR_ZONES(OFF+PGSCAN_SKIP, "pgskip" ) |
| 1320 | #undef OFF |
| 1321 | |
| 1322 | [I(PGFREE)] = "pgfree" , |
| 1323 | [I(PGACTIVATE)] = "pgactivate" , |
| 1324 | [I(PGDEACTIVATE)] = "pgdeactivate" , |
| 1325 | [I(PGLAZYFREE)] = "pglazyfree" , |
| 1326 | |
| 1327 | [I(PGFAULT)] = "pgfault" , |
| 1328 | [I(PGMAJFAULT)] = "pgmajfault" , |
| 1329 | [I(PGLAZYFREED)] = "pglazyfreed" , |
| 1330 | |
| 1331 | [I(PGREFILL)] = "pgrefill" , |
| 1332 | [I(PGREUSE)] = "pgreuse" , |
| 1333 | [I(PGSTEAL_KSWAPD)] = "pgsteal_kswapd" , |
| 1334 | [I(PGSTEAL_DIRECT)] = "pgsteal_direct" , |
| 1335 | [I(PGSTEAL_KHUGEPAGED)] = "pgsteal_khugepaged" , |
| 1336 | [I(PGSTEAL_PROACTIVE)] = "pgsteal_proactive" , |
| 1337 | [I(PGSCAN_KSWAPD)] = "pgscan_kswapd" , |
| 1338 | [I(PGSCAN_DIRECT)] = "pgscan_direct" , |
| 1339 | [I(PGSCAN_KHUGEPAGED)] = "pgscan_khugepaged" , |
| 1340 | [I(PGSCAN_PROACTIVE)] = "pgscan_proactive" , |
| 1341 | [I(PGSCAN_DIRECT_THROTTLE)] = "pgscan_direct_throttle" , |
| 1342 | [I(PGSCAN_ANON)] = "pgscan_anon" , |
| 1343 | [I(PGSCAN_FILE)] = "pgscan_file" , |
| 1344 | [I(PGSTEAL_ANON)] = "pgsteal_anon" , |
| 1345 | [I(PGSTEAL_FILE)] = "pgsteal_file" , |
| 1346 | |
| 1347 | #ifdef CONFIG_NUMA |
| 1348 | [I(PGSCAN_ZONE_RECLAIM_SUCCESS)] = "zone_reclaim_success" , |
| 1349 | [I(PGSCAN_ZONE_RECLAIM_FAILED)] = "zone_reclaim_failed" , |
| 1350 | #endif |
| 1351 | [I(PGINODESTEAL)] = "pginodesteal" , |
| 1352 | [I(SLABS_SCANNED)] = "slabs_scanned" , |
| 1353 | [I(KSWAPD_INODESTEAL)] = "kswapd_inodesteal" , |
| 1354 | [I(KSWAPD_LOW_WMARK_HIT_QUICKLY)] = "kswapd_low_wmark_hit_quickly" , |
| 1355 | [I(KSWAPD_HIGH_WMARK_HIT_QUICKLY)] = "kswapd_high_wmark_hit_quickly" , |
| 1356 | [I(PAGEOUTRUN)] = "pageoutrun" , |
| 1357 | |
| 1358 | [I(PGROTATED)] = "pgrotated" , |
| 1359 | |
| 1360 | [I(DROP_PAGECACHE)] = "drop_pagecache" , |
| 1361 | [I(DROP_SLAB)] = "drop_slab" , |
| 1362 | [I(OOM_KILL)] = "oom_kill" , |
| 1363 | |
| 1364 | #ifdef CONFIG_NUMA_BALANCING |
| 1365 | [I(NUMA_PTE_UPDATES)] = "numa_pte_updates" , |
| 1366 | [I(NUMA_HUGE_PTE_UPDATES)] = "numa_huge_pte_updates" , |
| 1367 | [I(NUMA_HINT_FAULTS)] = "numa_hint_faults" , |
| 1368 | [I(NUMA_HINT_FAULTS_LOCAL)] = "numa_hint_faults_local" , |
| 1369 | [I(NUMA_PAGE_MIGRATE)] = "numa_pages_migrated" , |
| 1370 | #endif |
| 1371 | #ifdef CONFIG_MIGRATION |
| 1372 | [I(PGMIGRATE_SUCCESS)] = "pgmigrate_success" , |
| 1373 | [I(PGMIGRATE_FAIL)] = "pgmigrate_fail" , |
| 1374 | [I(THP_MIGRATION_SUCCESS)] = "thp_migration_success" , |
| 1375 | [I(THP_MIGRATION_FAIL)] = "thp_migration_fail" , |
| 1376 | [I(THP_MIGRATION_SPLIT)] = "thp_migration_split" , |
| 1377 | #endif |
| 1378 | #ifdef CONFIG_COMPACTION |
| 1379 | [I(COMPACTMIGRATE_SCANNED)] = "compact_migrate_scanned" , |
| 1380 | [I(COMPACTFREE_SCANNED)] = "compact_free_scanned" , |
| 1381 | [I(COMPACTISOLATED)] = "compact_isolated" , |
| 1382 | [I(COMPACTSTALL)] = "compact_stall" , |
| 1383 | [I(COMPACTFAIL)] = "compact_fail" , |
| 1384 | [I(COMPACTSUCCESS)] = "compact_success" , |
| 1385 | [I(KCOMPACTD_WAKE)] = "compact_daemon_wake" , |
| 1386 | [I(KCOMPACTD_MIGRATE_SCANNED)] = "compact_daemon_migrate_scanned" , |
| 1387 | [I(KCOMPACTD_FREE_SCANNED)] = "compact_daemon_free_scanned" , |
| 1388 | #endif |
| 1389 | |
| 1390 | #ifdef CONFIG_HUGETLB_PAGE |
| 1391 | [I(HTLB_BUDDY_PGALLOC)] = "htlb_buddy_alloc_success" , |
| 1392 | [I(HTLB_BUDDY_PGALLOC_FAIL)] = "htlb_buddy_alloc_fail" , |
| 1393 | #endif |
| 1394 | #ifdef CONFIG_CMA |
| 1395 | [I(CMA_ALLOC_SUCCESS)] = "cma_alloc_success" , |
| 1396 | [I(CMA_ALLOC_FAIL)] = "cma_alloc_fail" , |
| 1397 | #endif |
| 1398 | [I(UNEVICTABLE_PGCULLED)] = "unevictable_pgs_culled" , |
| 1399 | [I(UNEVICTABLE_PGSCANNED)] = "unevictable_pgs_scanned" , |
| 1400 | [I(UNEVICTABLE_PGRESCUED)] = "unevictable_pgs_rescued" , |
| 1401 | [I(UNEVICTABLE_PGMLOCKED)] = "unevictable_pgs_mlocked" , |
| 1402 | [I(UNEVICTABLE_PGMUNLOCKED)] = "unevictable_pgs_munlocked" , |
| 1403 | [I(UNEVICTABLE_PGCLEARED)] = "unevictable_pgs_cleared" , |
| 1404 | [I(UNEVICTABLE_PGSTRANDED)] = "unevictable_pgs_stranded" , |
| 1405 | |
| 1406 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1407 | [I(THP_FAULT_ALLOC)] = "thp_fault_alloc" , |
| 1408 | [I(THP_FAULT_FALLBACK)] = "thp_fault_fallback" , |
| 1409 | [I(THP_FAULT_FALLBACK_CHARGE)] = "thp_fault_fallback_charge" , |
| 1410 | [I(THP_COLLAPSE_ALLOC)] = "thp_collapse_alloc" , |
| 1411 | [I(THP_COLLAPSE_ALLOC_FAILED)] = "thp_collapse_alloc_failed" , |
| 1412 | [I(THP_FILE_ALLOC)] = "thp_file_alloc" , |
| 1413 | [I(THP_FILE_FALLBACK)] = "thp_file_fallback" , |
| 1414 | [I(THP_FILE_FALLBACK_CHARGE)] = "thp_file_fallback_charge" , |
| 1415 | [I(THP_FILE_MAPPED)] = "thp_file_mapped" , |
| 1416 | [I(THP_SPLIT_PAGE)] = "thp_split_page" , |
| 1417 | [I(THP_SPLIT_PAGE_FAILED)] = "thp_split_page_failed" , |
| 1418 | [I(THP_DEFERRED_SPLIT_PAGE)] = "thp_deferred_split_page" , |
| 1419 | [I(THP_UNDERUSED_SPLIT_PAGE)] = "thp_underused_split_page" , |
| 1420 | [I(THP_SPLIT_PMD)] = "thp_split_pmd" , |
| 1421 | [I(THP_SCAN_EXCEED_NONE_PTE)] = "thp_scan_exceed_none_pte" , |
| 1422 | [I(THP_SCAN_EXCEED_SWAP_PTE)] = "thp_scan_exceed_swap_pte" , |
| 1423 | [I(THP_SCAN_EXCEED_SHARED_PTE)] = "thp_scan_exceed_share_pte" , |
| 1424 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 1425 | [I(THP_SPLIT_PUD)] = "thp_split_pud" , |
| 1426 | #endif |
| 1427 | [I(THP_ZERO_PAGE_ALLOC)] = "thp_zero_page_alloc" , |
| 1428 | [I(THP_ZERO_PAGE_ALLOC_FAILED)] = "thp_zero_page_alloc_failed" , |
| 1429 | [I(THP_SWPOUT)] = "thp_swpout" , |
| 1430 | [I(THP_SWPOUT_FALLBACK)] = "thp_swpout_fallback" , |
| 1431 | #endif |
| 1432 | #ifdef CONFIG_MEMORY_BALLOON |
| 1433 | [I(BALLOON_INFLATE)] = "balloon_inflate" , |
| 1434 | [I(BALLOON_DEFLATE)] = "balloon_deflate" , |
| 1435 | #ifdef CONFIG_BALLOON_COMPACTION |
| 1436 | [I(BALLOON_MIGRATE)] = "balloon_migrate" , |
| 1437 | #endif |
| 1438 | #endif /* CONFIG_MEMORY_BALLOON */ |
| 1439 | #ifdef CONFIG_DEBUG_TLBFLUSH |
| 1440 | [I(NR_TLB_REMOTE_FLUSH)] = "nr_tlb_remote_flush" , |
| 1441 | [I(NR_TLB_REMOTE_FLUSH_RECEIVED)] = "nr_tlb_remote_flush_received" , |
| 1442 | [I(NR_TLB_LOCAL_FLUSH_ALL)] = "nr_tlb_local_flush_all" , |
| 1443 | [I(NR_TLB_LOCAL_FLUSH_ONE)] = "nr_tlb_local_flush_one" , |
| 1444 | #endif /* CONFIG_DEBUG_TLBFLUSH */ |
| 1445 | |
| 1446 | #ifdef CONFIG_SWAP |
| 1447 | [I(SWAP_RA)] = "swap_ra" , |
| 1448 | [I(SWAP_RA_HIT)] = "swap_ra_hit" , |
| 1449 | [I(SWPIN_ZERO)] = "swpin_zero" , |
| 1450 | [I(SWPOUT_ZERO)] = "swpout_zero" , |
| 1451 | #ifdef CONFIG_KSM |
| 1452 | [I(KSM_SWPIN_COPY)] = "ksm_swpin_copy" , |
| 1453 | #endif |
| 1454 | #endif |
| 1455 | #ifdef CONFIG_KSM |
| 1456 | [I(COW_KSM)] = "cow_ksm" , |
| 1457 | #endif |
| 1458 | #ifdef CONFIG_ZSWAP |
| 1459 | [I(ZSWPIN)] = "zswpin" , |
| 1460 | [I(ZSWPOUT)] = "zswpout" , |
| 1461 | [I(ZSWPWB)] = "zswpwb" , |
| 1462 | #endif |
| 1463 | #ifdef CONFIG_X86 |
| 1464 | [I(DIRECT_MAP_LEVEL2_SPLIT)] = "direct_map_level2_splits" , |
| 1465 | [I(DIRECT_MAP_LEVEL3_SPLIT)] = "direct_map_level3_splits" , |
| 1466 | [I(DIRECT_MAP_LEVEL2_COLLAPSE)] = "direct_map_level2_collapses" , |
| 1467 | [I(DIRECT_MAP_LEVEL3_COLLAPSE)] = "direct_map_level3_collapses" , |
| 1468 | #endif |
| 1469 | #ifdef CONFIG_PER_VMA_LOCK_STATS |
| 1470 | [I(VMA_LOCK_SUCCESS)] = "vma_lock_success" , |
| 1471 | [I(VMA_LOCK_ABORT)] = "vma_lock_abort" , |
| 1472 | [I(VMA_LOCK_RETRY)] = "vma_lock_retry" , |
| 1473 | [I(VMA_LOCK_MISS)] = "vma_lock_miss" , |
| 1474 | #endif |
| 1475 | #ifdef CONFIG_DEBUG_STACK_USAGE |
| 1476 | [I(KSTACK_1K)] = "kstack_1k" , |
| 1477 | #if THREAD_SIZE > 1024 |
| 1478 | [I(KSTACK_2K)] = "kstack_2k" , |
| 1479 | #endif |
| 1480 | #if THREAD_SIZE > 2048 |
| 1481 | [I(KSTACK_4K)] = "kstack_4k" , |
| 1482 | #endif |
| 1483 | #if THREAD_SIZE > 4096 |
| 1484 | [I(KSTACK_8K)] = "kstack_8k" , |
| 1485 | #endif |
| 1486 | #if THREAD_SIZE > 8192 |
| 1487 | [I(KSTACK_16K)] = "kstack_16k" , |
| 1488 | #endif |
| 1489 | #if THREAD_SIZE > 16384 |
| 1490 | [I(KSTACK_32K)] = "kstack_32k" , |
| 1491 | #endif |
| 1492 | #if THREAD_SIZE > 32768 |
| 1493 | [I(KSTACK_64K)] = "kstack_64k" , |
| 1494 | #endif |
| 1495 | #if THREAD_SIZE > 65536 |
| 1496 | [I(KSTACK_REST)] = "kstack_rest" , |
| 1497 | #endif |
| 1498 | #endif |
| 1499 | #undef I |
| 1500 | #endif /* CONFIG_VM_EVENT_COUNTERS */ |
| 1501 | }; |
| 1502 | #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ |
| 1503 | |
| 1504 | #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ |
| 1505 | defined(CONFIG_PROC_FS) |
| 1506 | static void *frag_start(struct seq_file *m, loff_t *pos) |
| 1507 | { |
| 1508 | pg_data_t *pgdat; |
| 1509 | loff_t node = *pos; |
| 1510 | |
| 1511 | for (pgdat = first_online_pgdat(); |
| 1512 | pgdat && node; |
| 1513 | pgdat = next_online_pgdat(pgdat)) |
| 1514 | --node; |
| 1515 | |
| 1516 | return pgdat; |
| 1517 | } |
| 1518 | |
| 1519 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) |
| 1520 | { |
| 1521 | pg_data_t *pgdat = (pg_data_t *)arg; |
| 1522 | |
| 1523 | (*pos)++; |
| 1524 | return next_online_pgdat(pgdat); |
| 1525 | } |
| 1526 | |
| 1527 | static void frag_stop(struct seq_file *m, void *arg) |
| 1528 | { |
| 1529 | } |
| 1530 | |
| 1531 | /* |
| 1532 | * Walk zones in a node and print using a callback. |
| 1533 | * If @assert_populated is true, only use callback for zones that are populated. |
| 1534 | */ |
| 1535 | static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, |
| 1536 | bool assert_populated, bool nolock, |
| 1537 | void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) |
| 1538 | { |
| 1539 | struct zone *zone; |
| 1540 | struct zone *node_zones = pgdat->node_zones; |
| 1541 | unsigned long flags; |
| 1542 | |
| 1543 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { |
| 1544 | if (assert_populated && !populated_zone(zone)) |
| 1545 | continue; |
| 1546 | |
| 1547 | if (!nolock) |
| 1548 | spin_lock_irqsave(&zone->lock, flags); |
| 1549 | print(m, pgdat, zone); |
| 1550 | if (!nolock) |
| 1551 | spin_unlock_irqrestore(lock: &zone->lock, flags); |
| 1552 | } |
| 1553 | } |
| 1554 | #endif |
| 1555 | |
| 1556 | #ifdef CONFIG_PROC_FS |
| 1557 | static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, |
| 1558 | struct zone *zone) |
| 1559 | { |
| 1560 | int order; |
| 1561 | |
| 1562 | seq_printf(m, fmt: "Node %d, zone %8s " , pgdat->node_id, zone->name); |
| 1563 | for (order = 0; order < NR_PAGE_ORDERS; ++order) |
| 1564 | /* |
| 1565 | * Access to nr_free is lockless as nr_free is used only for |
| 1566 | * printing purposes. Use data_race to avoid KCSAN warning. |
| 1567 | */ |
| 1568 | seq_printf(m, fmt: "%6lu " , data_race(zone->free_area[order].nr_free)); |
| 1569 | seq_putc(m, c: '\n'); |
| 1570 | } |
| 1571 | |
| 1572 | /* |
| 1573 | * This walks the free areas for each zone. |
| 1574 | */ |
| 1575 | static int frag_show(struct seq_file *m, void *arg) |
| 1576 | { |
| 1577 | pg_data_t *pgdat = (pg_data_t *)arg; |
| 1578 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: frag_show_print); |
| 1579 | return 0; |
| 1580 | } |
| 1581 | |
| 1582 | static void pagetypeinfo_showfree_print(struct seq_file *m, |
| 1583 | pg_data_t *pgdat, struct zone *zone) |
| 1584 | { |
| 1585 | int order, mtype; |
| 1586 | |
| 1587 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { |
| 1588 | seq_printf(m, fmt: "Node %4d, zone %8s, type %12s " , |
| 1589 | pgdat->node_id, |
| 1590 | zone->name, |
| 1591 | migratetype_names[mtype]); |
| 1592 | for (order = 0; order < NR_PAGE_ORDERS; ++order) { |
| 1593 | unsigned long freecount = 0; |
| 1594 | struct free_area *area; |
| 1595 | struct list_head *curr; |
| 1596 | bool overflow = false; |
| 1597 | |
| 1598 | area = &(zone->free_area[order]); |
| 1599 | |
| 1600 | list_for_each(curr, &area->free_list[mtype]) { |
| 1601 | /* |
| 1602 | * Cap the free_list iteration because it might |
| 1603 | * be really large and we are under a spinlock |
| 1604 | * so a long time spent here could trigger a |
| 1605 | * hard lockup detector. Anyway this is a |
| 1606 | * debugging tool so knowing there is a handful |
| 1607 | * of pages of this order should be more than |
| 1608 | * sufficient. |
| 1609 | */ |
| 1610 | if (++freecount >= 100000) { |
| 1611 | overflow = true; |
| 1612 | break; |
| 1613 | } |
| 1614 | } |
| 1615 | seq_printf(m, fmt: "%s%6lu " , overflow ? ">" : "" , freecount); |
| 1616 | spin_unlock_irq(lock: &zone->lock); |
| 1617 | cond_resched(); |
| 1618 | spin_lock_irq(lock: &zone->lock); |
| 1619 | } |
| 1620 | seq_putc(m, c: '\n'); |
| 1621 | } |
| 1622 | } |
| 1623 | |
| 1624 | /* Print out the free pages at each order for each migatetype */ |
| 1625 | static void pagetypeinfo_showfree(struct seq_file *m, void *arg) |
| 1626 | { |
| 1627 | int order; |
| 1628 | pg_data_t *pgdat = (pg_data_t *)arg; |
| 1629 | |
| 1630 | /* Print header */ |
| 1631 | seq_printf(m, fmt: "%-43s " , "Free pages count per migrate type at order" ); |
| 1632 | for (order = 0; order < NR_PAGE_ORDERS; ++order) |
| 1633 | seq_printf(m, fmt: "%6d " , order); |
| 1634 | seq_putc(m, c: '\n'); |
| 1635 | |
| 1636 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: pagetypeinfo_showfree_print); |
| 1637 | } |
| 1638 | |
| 1639 | static void pagetypeinfo_showblockcount_print(struct seq_file *m, |
| 1640 | pg_data_t *pgdat, struct zone *zone) |
| 1641 | { |
| 1642 | int mtype; |
| 1643 | unsigned long pfn; |
| 1644 | unsigned long start_pfn = zone->zone_start_pfn; |
| 1645 | unsigned long end_pfn = zone_end_pfn(zone); |
| 1646 | unsigned long count[MIGRATE_TYPES] = { 0, }; |
| 1647 | |
| 1648 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
| 1649 | struct page *page; |
| 1650 | |
| 1651 | page = pfn_to_online_page(pfn); |
| 1652 | if (!page) |
| 1653 | continue; |
| 1654 | |
| 1655 | if (page_zone(page) != zone) |
| 1656 | continue; |
| 1657 | |
| 1658 | mtype = get_pageblock_migratetype(page); |
| 1659 | |
| 1660 | if (mtype < MIGRATE_TYPES) |
| 1661 | count[mtype]++; |
| 1662 | } |
| 1663 | |
| 1664 | /* Print counts */ |
| 1665 | seq_printf(m, fmt: "Node %d, zone %8s " , pgdat->node_id, zone->name); |
| 1666 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
| 1667 | seq_printf(m, fmt: "%12lu " , count[mtype]); |
| 1668 | seq_putc(m, c: '\n'); |
| 1669 | } |
| 1670 | |
| 1671 | /* Print out the number of pageblocks for each migratetype */ |
| 1672 | static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) |
| 1673 | { |
| 1674 | int mtype; |
| 1675 | pg_data_t *pgdat = (pg_data_t *)arg; |
| 1676 | |
| 1677 | seq_printf(m, fmt: "\n%-23s" , "Number of blocks type " ); |
| 1678 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
| 1679 | seq_printf(m, fmt: "%12s " , migratetype_names[mtype]); |
| 1680 | seq_putc(m, c: '\n'); |
| 1681 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, |
| 1682 | print: pagetypeinfo_showblockcount_print); |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | * Print out the number of pageblocks for each migratetype that contain pages |
| 1687 | * of other types. This gives an indication of how well fallbacks are being |
| 1688 | * contained by rmqueue_fallback(). It requires information from PAGE_OWNER |
| 1689 | * to determine what is going on |
| 1690 | */ |
| 1691 | static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) |
| 1692 | { |
| 1693 | #ifdef CONFIG_PAGE_OWNER |
| 1694 | int mtype; |
| 1695 | |
| 1696 | if (!static_branch_unlikely(&page_owner_inited)) |
| 1697 | return; |
| 1698 | |
| 1699 | drain_all_pages(NULL); |
| 1700 | |
| 1701 | seq_printf(m, "\n%-23s" , "Number of mixed blocks " ); |
| 1702 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
| 1703 | seq_printf(m, "%12s " , migratetype_names[mtype]); |
| 1704 | seq_putc(m, '\n'); |
| 1705 | |
| 1706 | walk_zones_in_node(m, pgdat, true, true, |
| 1707 | pagetypeinfo_showmixedcount_print); |
| 1708 | #endif /* CONFIG_PAGE_OWNER */ |
| 1709 | } |
| 1710 | |
| 1711 | /* |
| 1712 | * This prints out statistics in relation to grouping pages by mobility. |
| 1713 | * It is expensive to collect so do not constantly read the file. |
| 1714 | */ |
| 1715 | static int pagetypeinfo_show(struct seq_file *m, void *arg) |
| 1716 | { |
| 1717 | pg_data_t *pgdat = (pg_data_t *)arg; |
| 1718 | |
| 1719 | /* check memoryless node */ |
| 1720 | if (!node_state(node: pgdat->node_id, state: N_MEMORY)) |
| 1721 | return 0; |
| 1722 | |
| 1723 | seq_printf(m, fmt: "Page block order: %d\n" , pageblock_order); |
| 1724 | seq_printf(m, fmt: "Pages per block: %lu\n" , pageblock_nr_pages); |
| 1725 | seq_putc(m, c: '\n'); |
| 1726 | pagetypeinfo_showfree(m, arg: pgdat); |
| 1727 | pagetypeinfo_showblockcount(m, arg: pgdat); |
| 1728 | pagetypeinfo_showmixedcount(m, pgdat); |
| 1729 | |
| 1730 | return 0; |
| 1731 | } |
| 1732 | |
| 1733 | static const struct seq_operations fragmentation_op = { |
| 1734 | .start = frag_start, |
| 1735 | .next = frag_next, |
| 1736 | .stop = frag_stop, |
| 1737 | .show = frag_show, |
| 1738 | }; |
| 1739 | |
| 1740 | static const struct seq_operations pagetypeinfo_op = { |
| 1741 | .start = frag_start, |
| 1742 | .next = frag_next, |
| 1743 | .stop = frag_stop, |
| 1744 | .show = pagetypeinfo_show, |
| 1745 | }; |
| 1746 | |
| 1747 | static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) |
| 1748 | { |
| 1749 | int zid; |
| 1750 | |
| 1751 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
| 1752 | struct zone *compare = &pgdat->node_zones[zid]; |
| 1753 | |
| 1754 | if (populated_zone(zone: compare)) |
| 1755 | return zone == compare; |
| 1756 | } |
| 1757 | |
| 1758 | return false; |
| 1759 | } |
| 1760 | |
| 1761 | static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, |
| 1762 | struct zone *zone) |
| 1763 | { |
| 1764 | int i; |
| 1765 | seq_printf(m, fmt: "Node %d, zone %8s" , pgdat->node_id, zone->name); |
| 1766 | if (is_zone_first_populated(pgdat, zone)) { |
| 1767 | seq_printf(m, fmt: "\n per-node stats" ); |
| 1768 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
| 1769 | unsigned long pages = node_page_state_pages(pgdat, item: i); |
| 1770 | |
| 1771 | if (vmstat_item_print_in_thp(item: i)) |
| 1772 | pages /= HPAGE_PMD_NR; |
| 1773 | seq_printf(m, fmt: "\n %-12s %lu" , node_stat_name(item: i), |
| 1774 | pages); |
| 1775 | } |
| 1776 | } |
| 1777 | seq_printf(m, |
| 1778 | fmt: "\n pages free %lu" |
| 1779 | "\n boost %lu" |
| 1780 | "\n min %lu" |
| 1781 | "\n low %lu" |
| 1782 | "\n high %lu" |
| 1783 | "\n promo %lu" |
| 1784 | "\n spanned %lu" |
| 1785 | "\n present %lu" |
| 1786 | "\n managed %lu" |
| 1787 | "\n cma %lu" , |
| 1788 | zone_page_state(zone, item: NR_FREE_PAGES), |
| 1789 | zone->watermark_boost, |
| 1790 | min_wmark_pages(z: zone), |
| 1791 | low_wmark_pages(z: zone), |
| 1792 | high_wmark_pages(z: zone), |
| 1793 | promo_wmark_pages(z: zone), |
| 1794 | zone->spanned_pages, |
| 1795 | zone->present_pages, |
| 1796 | zone_managed_pages(zone), |
| 1797 | zone_cma_pages(zone)); |
| 1798 | |
| 1799 | seq_printf(m, |
| 1800 | fmt: "\n protection: (%ld" , |
| 1801 | zone->lowmem_reserve[0]); |
| 1802 | for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) |
| 1803 | seq_printf(m, fmt: ", %ld" , zone->lowmem_reserve[i]); |
| 1804 | seq_putc(m, c: ')'); |
| 1805 | |
| 1806 | /* If unpopulated, no other information is useful */ |
| 1807 | if (!populated_zone(zone)) { |
| 1808 | seq_putc(m, c: '\n'); |
| 1809 | return; |
| 1810 | } |
| 1811 | |
| 1812 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
| 1813 | seq_printf(m, fmt: "\n %-12s %lu" , zone_stat_name(item: i), |
| 1814 | zone_page_state(zone, item: i)); |
| 1815 | |
| 1816 | #ifdef CONFIG_NUMA |
| 1817 | fold_vm_zone_numa_events(zone); |
| 1818 | for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) |
| 1819 | seq_printf(m, fmt: "\n %-12s %lu" , numa_stat_name(item: i), |
| 1820 | zone_numa_event_state(zone, item: i)); |
| 1821 | #endif |
| 1822 | |
| 1823 | seq_printf(m, fmt: "\n pagesets" ); |
| 1824 | for_each_online_cpu(i) { |
| 1825 | struct per_cpu_pages *pcp; |
| 1826 | struct per_cpu_zonestat __maybe_unused *pzstats; |
| 1827 | |
| 1828 | pcp = per_cpu_ptr(zone->per_cpu_pageset, i); |
| 1829 | seq_printf(m, |
| 1830 | fmt: "\n cpu: %i" |
| 1831 | "\n count: %i" |
| 1832 | "\n high: %i" |
| 1833 | "\n batch: %i" |
| 1834 | "\n high_min: %i" |
| 1835 | "\n high_max: %i" , |
| 1836 | i, |
| 1837 | pcp->count, |
| 1838 | pcp->high, |
| 1839 | pcp->batch, |
| 1840 | pcp->high_min, |
| 1841 | pcp->high_max); |
| 1842 | #ifdef CONFIG_SMP |
| 1843 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); |
| 1844 | seq_printf(m, fmt: "\n vm stats threshold: %d" , |
| 1845 | pzstats->stat_threshold); |
| 1846 | #endif |
| 1847 | } |
| 1848 | seq_printf(m, |
| 1849 | fmt: "\n node_unreclaimable: %u" |
| 1850 | "\n start_pfn: %lu" , |
| 1851 | atomic_read(v: &pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES, |
| 1852 | zone->zone_start_pfn); |
| 1853 | seq_putc(m, c: '\n'); |
| 1854 | } |
| 1855 | |
| 1856 | /* |
| 1857 | * Output information about zones in @pgdat. All zones are printed regardless |
| 1858 | * of whether they are populated or not: lowmem_reserve_ratio operates on the |
| 1859 | * set of all zones and userspace would not be aware of such zones if they are |
| 1860 | * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). |
| 1861 | */ |
| 1862 | static int zoneinfo_show(struct seq_file *m, void *arg) |
| 1863 | { |
| 1864 | pg_data_t *pgdat = (pg_data_t *)arg; |
| 1865 | walk_zones_in_node(m, pgdat, assert_populated: false, nolock: false, print: zoneinfo_show_print); |
| 1866 | return 0; |
| 1867 | } |
| 1868 | |
| 1869 | static const struct seq_operations zoneinfo_op = { |
| 1870 | .start = frag_start, /* iterate over all zones. The same as in |
| 1871 | * fragmentation. */ |
| 1872 | .next = frag_next, |
| 1873 | .stop = frag_stop, |
| 1874 | .show = zoneinfo_show, |
| 1875 | }; |
| 1876 | |
| 1877 | #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ |
| 1878 | NR_VM_NUMA_EVENT_ITEMS + \ |
| 1879 | NR_VM_NODE_STAT_ITEMS + \ |
| 1880 | NR_VM_STAT_ITEMS + \ |
| 1881 | (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ |
| 1882 | NR_VM_EVENT_ITEMS : 0)) |
| 1883 | |
| 1884 | static void *vmstat_start(struct seq_file *m, loff_t *pos) |
| 1885 | { |
| 1886 | unsigned long *v; |
| 1887 | int i; |
| 1888 | |
| 1889 | if (*pos >= NR_VMSTAT_ITEMS) |
| 1890 | return NULL; |
| 1891 | |
| 1892 | BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) != NR_VMSTAT_ITEMS); |
| 1893 | fold_vm_numa_events(); |
| 1894 | v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); |
| 1895 | m->private = v; |
| 1896 | if (!v) |
| 1897 | return ERR_PTR(error: -ENOMEM); |
| 1898 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
| 1899 | v[i] = global_zone_page_state(item: i); |
| 1900 | v += NR_VM_ZONE_STAT_ITEMS; |
| 1901 | |
| 1902 | #ifdef CONFIG_NUMA |
| 1903 | for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) |
| 1904 | v[i] = global_numa_event_state(item: i); |
| 1905 | v += NR_VM_NUMA_EVENT_ITEMS; |
| 1906 | #endif |
| 1907 | |
| 1908 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
| 1909 | v[i] = global_node_page_state_pages(item: i); |
| 1910 | if (vmstat_item_print_in_thp(item: i)) |
| 1911 | v[i] /= HPAGE_PMD_NR; |
| 1912 | } |
| 1913 | v += NR_VM_NODE_STAT_ITEMS; |
| 1914 | |
| 1915 | global_dirty_limits(pbackground: v + NR_DIRTY_BG_THRESHOLD, |
| 1916 | pdirty: v + NR_DIRTY_THRESHOLD); |
| 1917 | v[NR_MEMMAP_PAGES] = atomic_long_read(v: &nr_memmap_pages); |
| 1918 | v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(v: &nr_memmap_boot_pages); |
| 1919 | v += NR_VM_STAT_ITEMS; |
| 1920 | |
| 1921 | #ifdef CONFIG_VM_EVENT_COUNTERS |
| 1922 | all_vm_events(v); |
| 1923 | v[PGPGIN] /= 2; /* sectors -> kbytes */ |
| 1924 | v[PGPGOUT] /= 2; |
| 1925 | #endif |
| 1926 | return (unsigned long *)m->private + *pos; |
| 1927 | } |
| 1928 | |
| 1929 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) |
| 1930 | { |
| 1931 | (*pos)++; |
| 1932 | if (*pos >= NR_VMSTAT_ITEMS) |
| 1933 | return NULL; |
| 1934 | return (unsigned long *)m->private + *pos; |
| 1935 | } |
| 1936 | |
| 1937 | static int vmstat_show(struct seq_file *m, void *arg) |
| 1938 | { |
| 1939 | unsigned long *l = arg; |
| 1940 | unsigned long off = l - (unsigned long *)m->private; |
| 1941 | |
| 1942 | seq_puts(m, s: vmstat_text[off]); |
| 1943 | seq_put_decimal_ull(m, delimiter: " " , num: *l); |
| 1944 | seq_putc(m, c: '\n'); |
| 1945 | |
| 1946 | if (off == NR_VMSTAT_ITEMS - 1) { |
| 1947 | /* |
| 1948 | * We've come to the end - add any deprecated counters to avoid |
| 1949 | * breaking userspace which might depend on them being present. |
| 1950 | */ |
| 1951 | seq_puts(m, s: "nr_unstable 0\n" ); |
| 1952 | } |
| 1953 | return 0; |
| 1954 | } |
| 1955 | |
| 1956 | static void vmstat_stop(struct seq_file *m, void *arg) |
| 1957 | { |
| 1958 | kfree(objp: m->private); |
| 1959 | m->private = NULL; |
| 1960 | } |
| 1961 | |
| 1962 | static const struct seq_operations vmstat_op = { |
| 1963 | .start = vmstat_start, |
| 1964 | .next = vmstat_next, |
| 1965 | .stop = vmstat_stop, |
| 1966 | .show = vmstat_show, |
| 1967 | }; |
| 1968 | #endif /* CONFIG_PROC_FS */ |
| 1969 | |
| 1970 | #ifdef CONFIG_SMP |
| 1971 | static DEFINE_PER_CPU(struct delayed_work, vmstat_work); |
| 1972 | static int sysctl_stat_interval __read_mostly = HZ; |
| 1973 | static int vmstat_late_init_done; |
| 1974 | |
| 1975 | #ifdef CONFIG_PROC_FS |
| 1976 | static void refresh_vm_stats(struct work_struct *work) |
| 1977 | { |
| 1978 | refresh_cpu_vm_stats(do_pagesets: true); |
| 1979 | } |
| 1980 | |
| 1981 | static int vmstat_refresh(const struct ctl_table *table, int write, |
| 1982 | void *buffer, size_t *lenp, loff_t *ppos) |
| 1983 | { |
| 1984 | long val; |
| 1985 | int err; |
| 1986 | int i; |
| 1987 | |
| 1988 | /* |
| 1989 | * The regular update, every sysctl_stat_interval, may come later |
| 1990 | * than expected: leaving a significant amount in per_cpu buckets. |
| 1991 | * This is particularly misleading when checking a quantity of HUGE |
| 1992 | * pages, immediately after running a test. /proc/sys/vm/stat_refresh, |
| 1993 | * which can equally be echo'ed to or cat'ted from (by root), |
| 1994 | * can be used to update the stats just before reading them. |
| 1995 | * |
| 1996 | * Oh, and since global_zone_page_state() etc. are so careful to hide |
| 1997 | * transiently negative values, report an error here if any of |
| 1998 | * the stats is negative, so we know to go looking for imbalance. |
| 1999 | */ |
| 2000 | err = schedule_on_each_cpu(func: refresh_vm_stats); |
| 2001 | if (err) |
| 2002 | return err; |
| 2003 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
| 2004 | /* |
| 2005 | * Skip checking stats known to go negative occasionally. |
| 2006 | */ |
| 2007 | switch (i) { |
| 2008 | case NR_ZONE_WRITE_PENDING: |
| 2009 | case NR_FREE_CMA_PAGES: |
| 2010 | continue; |
| 2011 | } |
| 2012 | val = atomic_long_read(v: &vm_zone_stat[i]); |
| 2013 | if (val < 0) { |
| 2014 | pr_warn("%s: %s %ld\n" , |
| 2015 | __func__, zone_stat_name(i), val); |
| 2016 | } |
| 2017 | } |
| 2018 | for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { |
| 2019 | /* |
| 2020 | * Skip checking stats known to go negative occasionally. |
| 2021 | */ |
| 2022 | switch (i) { |
| 2023 | case NR_WRITEBACK: |
| 2024 | continue; |
| 2025 | } |
| 2026 | val = atomic_long_read(v: &vm_node_stat[i]); |
| 2027 | if (val < 0) { |
| 2028 | pr_warn("%s: %s %ld\n" , |
| 2029 | __func__, node_stat_name(i), val); |
| 2030 | } |
| 2031 | } |
| 2032 | if (write) |
| 2033 | *ppos += *lenp; |
| 2034 | else |
| 2035 | *lenp = 0; |
| 2036 | return 0; |
| 2037 | } |
| 2038 | #endif /* CONFIG_PROC_FS */ |
| 2039 | |
| 2040 | static void vmstat_update(struct work_struct *w) |
| 2041 | { |
| 2042 | if (refresh_cpu_vm_stats(do_pagesets: true)) { |
| 2043 | /* |
| 2044 | * Counters were updated so we expect more updates |
| 2045 | * to occur in the future. Keep on running the |
| 2046 | * update worker thread. |
| 2047 | */ |
| 2048 | queue_delayed_work_on(smp_processor_id(), wq: mm_percpu_wq, |
| 2049 | this_cpu_ptr(&vmstat_work), |
| 2050 | delay: round_jiffies_relative(j: sysctl_stat_interval)); |
| 2051 | } |
| 2052 | } |
| 2053 | |
| 2054 | /* |
| 2055 | * Check if the diffs for a certain cpu indicate that |
| 2056 | * an update is needed. |
| 2057 | */ |
| 2058 | static bool need_update(int cpu) |
| 2059 | { |
| 2060 | pg_data_t *last_pgdat = NULL; |
| 2061 | struct zone *zone; |
| 2062 | |
| 2063 | for_each_populated_zone(zone) { |
| 2064 | struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| 2065 | struct per_cpu_nodestat *n; |
| 2066 | |
| 2067 | /* |
| 2068 | * The fast way of checking if there are any vmstat diffs. |
| 2069 | */ |
| 2070 | if (memchr_inv(s: pzstats->vm_stat_diff, c: 0, n: sizeof(pzstats->vm_stat_diff))) |
| 2071 | return true; |
| 2072 | |
| 2073 | if (last_pgdat == zone->zone_pgdat) |
| 2074 | continue; |
| 2075 | last_pgdat = zone->zone_pgdat; |
| 2076 | n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); |
| 2077 | if (memchr_inv(s: n->vm_node_stat_diff, c: 0, n: sizeof(n->vm_node_stat_diff))) |
| 2078 | return true; |
| 2079 | } |
| 2080 | return false; |
| 2081 | } |
| 2082 | |
| 2083 | /* |
| 2084 | * Switch off vmstat processing and then fold all the remaining differentials |
| 2085 | * until the diffs stay at zero. The function is used by NOHZ and can only be |
| 2086 | * invoked when tick processing is not active. |
| 2087 | */ |
| 2088 | void quiet_vmstat(void) |
| 2089 | { |
| 2090 | if (system_state != SYSTEM_RUNNING) |
| 2091 | return; |
| 2092 | |
| 2093 | if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) |
| 2094 | return; |
| 2095 | |
| 2096 | if (!need_update(smp_processor_id())) |
| 2097 | return; |
| 2098 | |
| 2099 | /* |
| 2100 | * Just refresh counters and do not care about the pending delayed |
| 2101 | * vmstat_update. It doesn't fire that often to matter and canceling |
| 2102 | * it would be too expensive from this path. |
| 2103 | * vmstat_shepherd will take care about that for us. |
| 2104 | */ |
| 2105 | refresh_cpu_vm_stats(do_pagesets: false); |
| 2106 | } |
| 2107 | |
| 2108 | /* |
| 2109 | * Shepherd worker thread that checks the |
| 2110 | * differentials of processors that have their worker |
| 2111 | * threads for vm statistics updates disabled because of |
| 2112 | * inactivity. |
| 2113 | */ |
| 2114 | static void vmstat_shepherd(struct work_struct *w); |
| 2115 | |
| 2116 | static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); |
| 2117 | |
| 2118 | static void vmstat_shepherd(struct work_struct *w) |
| 2119 | { |
| 2120 | int cpu; |
| 2121 | |
| 2122 | cpus_read_lock(); |
| 2123 | /* Check processors whose vmstat worker threads have been disabled */ |
| 2124 | for_each_online_cpu(cpu) { |
| 2125 | struct delayed_work *dw = &per_cpu(vmstat_work, cpu); |
| 2126 | |
| 2127 | /* |
| 2128 | * In kernel users of vmstat counters either require the precise value and |
| 2129 | * they are using zone_page_state_snapshot interface or they can live with |
| 2130 | * an imprecision as the regular flushing can happen at arbitrary time and |
| 2131 | * cumulative error can grow (see calculate_normal_threshold). |
| 2132 | * |
| 2133 | * From that POV the regular flushing can be postponed for CPUs that have |
| 2134 | * been isolated from the kernel interference without critical |
| 2135 | * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd |
| 2136 | * for all isolated CPUs to avoid interference with the isolated workload. |
| 2137 | */ |
| 2138 | if (cpu_is_isolated(cpu)) |
| 2139 | continue; |
| 2140 | |
| 2141 | if (!delayed_work_pending(dw) && need_update(cpu)) |
| 2142 | queue_delayed_work_on(cpu, wq: mm_percpu_wq, work: dw, delay: 0); |
| 2143 | |
| 2144 | cond_resched(); |
| 2145 | } |
| 2146 | cpus_read_unlock(); |
| 2147 | |
| 2148 | schedule_delayed_work(dwork: &shepherd, |
| 2149 | delay: round_jiffies_relative(j: sysctl_stat_interval)); |
| 2150 | } |
| 2151 | |
| 2152 | static void __init start_shepherd_timer(void) |
| 2153 | { |
| 2154 | int cpu; |
| 2155 | |
| 2156 | for_each_possible_cpu(cpu) { |
| 2157 | INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), |
| 2158 | vmstat_update); |
| 2159 | |
| 2160 | /* |
| 2161 | * For secondary CPUs during CPU hotplug scenarios, |
| 2162 | * vmstat_cpu_online() will enable the work. |
| 2163 | * mm/vmstat:online enables and disables vmstat_work |
| 2164 | * symmetrically during CPU hotplug events. |
| 2165 | */ |
| 2166 | if (!cpu_online(cpu)) |
| 2167 | disable_delayed_work_sync(dwork: &per_cpu(vmstat_work, cpu)); |
| 2168 | } |
| 2169 | |
| 2170 | schedule_delayed_work(dwork: &shepherd, |
| 2171 | delay: round_jiffies_relative(j: sysctl_stat_interval)); |
| 2172 | } |
| 2173 | |
| 2174 | static void __init init_cpu_node_state(void) |
| 2175 | { |
| 2176 | int node; |
| 2177 | |
| 2178 | for_each_online_node(node) { |
| 2179 | if (!cpumask_empty(srcp: cpumask_of_node(node))) |
| 2180 | node_set_state(node, state: N_CPU); |
| 2181 | } |
| 2182 | } |
| 2183 | |
| 2184 | static int vmstat_cpu_online(unsigned int cpu) |
| 2185 | { |
| 2186 | if (vmstat_late_init_done) |
| 2187 | refresh_zone_stat_thresholds(); |
| 2188 | |
| 2189 | if (!node_state(node: cpu_to_node(cpu), state: N_CPU)) { |
| 2190 | node_set_state(node: cpu_to_node(cpu), state: N_CPU); |
| 2191 | } |
| 2192 | enable_delayed_work(dwork: &per_cpu(vmstat_work, cpu)); |
| 2193 | |
| 2194 | return 0; |
| 2195 | } |
| 2196 | |
| 2197 | static int vmstat_cpu_down_prep(unsigned int cpu) |
| 2198 | { |
| 2199 | disable_delayed_work_sync(dwork: &per_cpu(vmstat_work, cpu)); |
| 2200 | return 0; |
| 2201 | } |
| 2202 | |
| 2203 | static int vmstat_cpu_dead(unsigned int cpu) |
| 2204 | { |
| 2205 | const struct cpumask *node_cpus; |
| 2206 | int node; |
| 2207 | |
| 2208 | node = cpu_to_node(cpu); |
| 2209 | |
| 2210 | refresh_zone_stat_thresholds(); |
| 2211 | node_cpus = cpumask_of_node(node); |
| 2212 | if (!cpumask_empty(srcp: node_cpus)) |
| 2213 | return 0; |
| 2214 | |
| 2215 | node_clear_state(node, state: N_CPU); |
| 2216 | |
| 2217 | return 0; |
| 2218 | } |
| 2219 | |
| 2220 | static int __init vmstat_late_init(void) |
| 2221 | { |
| 2222 | refresh_zone_stat_thresholds(); |
| 2223 | vmstat_late_init_done = 1; |
| 2224 | |
| 2225 | return 0; |
| 2226 | } |
| 2227 | late_initcall(vmstat_late_init); |
| 2228 | #endif |
| 2229 | |
| 2230 | #ifdef CONFIG_PROC_FS |
| 2231 | static const struct ctl_table vmstat_table[] = { |
| 2232 | #ifdef CONFIG_SMP |
| 2233 | { |
| 2234 | .procname = "stat_interval" , |
| 2235 | .data = &sysctl_stat_interval, |
| 2236 | .maxlen = sizeof(sysctl_stat_interval), |
| 2237 | .mode = 0644, |
| 2238 | .proc_handler = proc_dointvec_jiffies, |
| 2239 | }, |
| 2240 | { |
| 2241 | .procname = "stat_refresh" , |
| 2242 | .data = NULL, |
| 2243 | .maxlen = 0, |
| 2244 | .mode = 0600, |
| 2245 | .proc_handler = vmstat_refresh, |
| 2246 | }, |
| 2247 | #endif |
| 2248 | #ifdef CONFIG_NUMA |
| 2249 | { |
| 2250 | .procname = "numa_stat" , |
| 2251 | .data = &sysctl_vm_numa_stat, |
| 2252 | .maxlen = sizeof(int), |
| 2253 | .mode = 0644, |
| 2254 | .proc_handler = sysctl_vm_numa_stat_handler, |
| 2255 | .extra1 = SYSCTL_ZERO, |
| 2256 | .extra2 = SYSCTL_ONE, |
| 2257 | }, |
| 2258 | #endif |
| 2259 | }; |
| 2260 | #endif |
| 2261 | |
| 2262 | struct workqueue_struct *mm_percpu_wq; |
| 2263 | |
| 2264 | void __init init_mm_internals(void) |
| 2265 | { |
| 2266 | int ret __maybe_unused; |
| 2267 | |
| 2268 | mm_percpu_wq = alloc_workqueue("mm_percpu_wq" , WQ_MEM_RECLAIM, 0); |
| 2269 | |
| 2270 | #ifdef CONFIG_SMP |
| 2271 | ret = cpuhp_setup_state_nocalls(state: CPUHP_MM_VMSTAT_DEAD, name: "mm/vmstat:dead" , |
| 2272 | NULL, teardown: vmstat_cpu_dead); |
| 2273 | if (ret < 0) |
| 2274 | pr_err("vmstat: failed to register 'dead' hotplug state\n" ); |
| 2275 | |
| 2276 | ret = cpuhp_setup_state_nocalls(state: CPUHP_AP_ONLINE_DYN, name: "mm/vmstat:online" , |
| 2277 | startup: vmstat_cpu_online, |
| 2278 | teardown: vmstat_cpu_down_prep); |
| 2279 | if (ret < 0) |
| 2280 | pr_err("vmstat: failed to register 'online' hotplug state\n" ); |
| 2281 | |
| 2282 | cpus_read_lock(); |
| 2283 | init_cpu_node_state(); |
| 2284 | cpus_read_unlock(); |
| 2285 | |
| 2286 | start_shepherd_timer(); |
| 2287 | #endif |
| 2288 | #ifdef CONFIG_PROC_FS |
| 2289 | proc_create_seq("buddyinfo" , 0444, NULL, &fragmentation_op); |
| 2290 | proc_create_seq("pagetypeinfo" , 0400, NULL, &pagetypeinfo_op); |
| 2291 | proc_create_seq("vmstat" , 0444, NULL, &vmstat_op); |
| 2292 | proc_create_seq("zoneinfo" , 0444, NULL, &zoneinfo_op); |
| 2293 | register_sysctl_init("vm" , vmstat_table); |
| 2294 | #endif |
| 2295 | } |
| 2296 | |
| 2297 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) |
| 2298 | |
| 2299 | /* |
| 2300 | * Return an index indicating how much of the available free memory is |
| 2301 | * unusable for an allocation of the requested size. |
| 2302 | */ |
| 2303 | static int unusable_free_index(unsigned int order, |
| 2304 | struct contig_page_info *info) |
| 2305 | { |
| 2306 | /* No free memory is interpreted as all free memory is unusable */ |
| 2307 | if (info->free_pages == 0) |
| 2308 | return 1000; |
| 2309 | |
| 2310 | /* |
| 2311 | * Index should be a value between 0 and 1. Return a value to 3 |
| 2312 | * decimal places. |
| 2313 | * |
| 2314 | * 0 => no fragmentation |
| 2315 | * 1 => high fragmentation |
| 2316 | */ |
| 2317 | return div_u64(dividend: (info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, divisor: info->free_pages); |
| 2318 | |
| 2319 | } |
| 2320 | |
| 2321 | static void unusable_show_print(struct seq_file *m, |
| 2322 | pg_data_t *pgdat, struct zone *zone) |
| 2323 | { |
| 2324 | unsigned int order; |
| 2325 | int index; |
| 2326 | struct contig_page_info info; |
| 2327 | |
| 2328 | seq_printf(m, fmt: "Node %d, zone %8s " , |
| 2329 | pgdat->node_id, |
| 2330 | zone->name); |
| 2331 | for (order = 0; order < NR_PAGE_ORDERS; ++order) { |
| 2332 | fill_contig_page_info(zone, suitable_order: order, info: &info); |
| 2333 | index = unusable_free_index(order, info: &info); |
| 2334 | seq_printf(m, fmt: "%d.%03d " , index / 1000, index % 1000); |
| 2335 | } |
| 2336 | |
| 2337 | seq_putc(m, c: '\n'); |
| 2338 | } |
| 2339 | |
| 2340 | /* |
| 2341 | * Display unusable free space index |
| 2342 | * |
| 2343 | * The unusable free space index measures how much of the available free |
| 2344 | * memory cannot be used to satisfy an allocation of a given size and is a |
| 2345 | * value between 0 and 1. The higher the value, the more of free memory is |
| 2346 | * unusable and by implication, the worse the external fragmentation is. This |
| 2347 | * can be expressed as a percentage by multiplying by 100. |
| 2348 | */ |
| 2349 | static int unusable_show(struct seq_file *m, void *arg) |
| 2350 | { |
| 2351 | pg_data_t *pgdat = (pg_data_t *)arg; |
| 2352 | |
| 2353 | /* check memoryless node */ |
| 2354 | if (!node_state(node: pgdat->node_id, state: N_MEMORY)) |
| 2355 | return 0; |
| 2356 | |
| 2357 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: unusable_show_print); |
| 2358 | |
| 2359 | return 0; |
| 2360 | } |
| 2361 | |
| 2362 | static const struct seq_operations unusable_sops = { |
| 2363 | .start = frag_start, |
| 2364 | .next = frag_next, |
| 2365 | .stop = frag_stop, |
| 2366 | .show = unusable_show, |
| 2367 | }; |
| 2368 | |
| 2369 | DEFINE_SEQ_ATTRIBUTE(unusable); |
| 2370 | |
| 2371 | static void extfrag_show_print(struct seq_file *m, |
| 2372 | pg_data_t *pgdat, struct zone *zone) |
| 2373 | { |
| 2374 | unsigned int order; |
| 2375 | int index; |
| 2376 | |
| 2377 | /* Alloc on stack as interrupts are disabled for zone walk */ |
| 2378 | struct contig_page_info info; |
| 2379 | |
| 2380 | seq_printf(m, fmt: "Node %d, zone %8s " , |
| 2381 | pgdat->node_id, |
| 2382 | zone->name); |
| 2383 | for (order = 0; order < NR_PAGE_ORDERS; ++order) { |
| 2384 | fill_contig_page_info(zone, suitable_order: order, info: &info); |
| 2385 | index = __fragmentation_index(order, info: &info); |
| 2386 | seq_printf(m, fmt: "%2d.%03d " , index / 1000, index % 1000); |
| 2387 | } |
| 2388 | |
| 2389 | seq_putc(m, c: '\n'); |
| 2390 | } |
| 2391 | |
| 2392 | /* |
| 2393 | * Display fragmentation index for orders that allocations would fail for |
| 2394 | */ |
| 2395 | static int extfrag_show(struct seq_file *m, void *arg) |
| 2396 | { |
| 2397 | pg_data_t *pgdat = (pg_data_t *)arg; |
| 2398 | |
| 2399 | walk_zones_in_node(m, pgdat, assert_populated: true, nolock: false, print: extfrag_show_print); |
| 2400 | |
| 2401 | return 0; |
| 2402 | } |
| 2403 | |
| 2404 | static const struct seq_operations extfrag_sops = { |
| 2405 | .start = frag_start, |
| 2406 | .next = frag_next, |
| 2407 | .stop = frag_stop, |
| 2408 | .show = extfrag_show, |
| 2409 | }; |
| 2410 | |
| 2411 | DEFINE_SEQ_ATTRIBUTE(extfrag); |
| 2412 | |
| 2413 | static int __init extfrag_debug_init(void) |
| 2414 | { |
| 2415 | struct dentry *extfrag_debug_root; |
| 2416 | |
| 2417 | extfrag_debug_root = debugfs_create_dir(name: "extfrag" , NULL); |
| 2418 | |
| 2419 | debugfs_create_file("unusable_index" , 0444, extfrag_debug_root, NULL, |
| 2420 | &unusable_fops); |
| 2421 | |
| 2422 | debugfs_create_file("extfrag_index" , 0444, extfrag_debug_root, NULL, |
| 2423 | &extfrag_fops); |
| 2424 | |
| 2425 | return 0; |
| 2426 | } |
| 2427 | |
| 2428 | module_init(extfrag_debug_init); |
| 2429 | |
| 2430 | #endif |
| 2431 | |