1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright (C) 2015-2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2025 Intel Corporation
10 *
11 * utilities for mac80211
12 */
13
14#include <net/mac80211.h>
15#include <linux/netdevice.h>
16#include <linux/export.h>
17#include <linux/types.h>
18#include <linux/slab.h>
19#include <linux/skbuff.h>
20#include <linux/etherdevice.h>
21#include <linux/if_arp.h>
22#include <linux/bitmap.h>
23#include <linux/crc32.h>
24#include <net/net_namespace.h>
25#include <net/cfg80211.h>
26#include <net/rtnetlink.h>
27#include <kunit/visibility.h>
28
29#include "ieee80211_i.h"
30#include "driver-ops.h"
31#include "rate.h"
32#include "mesh.h"
33#include "wme.h"
34#include "led.h"
35#include "wep.h"
36
37/* privid for wiphys to determine whether they belong to us or not */
38const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid;
39
40struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
41{
42 struct ieee80211_local *local;
43
44 local = wiphy_priv(wiphy);
45 return &local->hw;
46}
47EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48
49const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = {
50 .mode = IEEE80211_CONN_MODE_EHT,
51 .bw_limit = IEEE80211_CONN_BW_LIMIT_320,
52};
53
54u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
55 enum nl80211_iftype type)
56{
57 __le16 fc = hdr->frame_control;
58
59 if (ieee80211_is_data(fc)) {
60 if (len < 24) /* drop incorrect hdr len (data) */
61 return NULL;
62
63 if (ieee80211_has_a4(fc))
64 return NULL;
65 if (ieee80211_has_tods(fc))
66 return hdr->addr1;
67 if (ieee80211_has_fromds(fc))
68 return hdr->addr2;
69
70 return hdr->addr3;
71 }
72
73 if (ieee80211_is_s1g_beacon(fc)) {
74 struct ieee80211_ext *ext = (void *) hdr;
75
76 return ext->u.s1g_beacon.sa;
77 }
78
79 if (ieee80211_is_mgmt(fc)) {
80 if (len < 24) /* drop incorrect hdr len (mgmt) */
81 return NULL;
82 return hdr->addr3;
83 }
84
85 if (ieee80211_is_ctl(fc)) {
86 if (ieee80211_is_pspoll(fc))
87 return hdr->addr1;
88
89 if (ieee80211_is_back_req(fc)) {
90 switch (type) {
91 case NL80211_IFTYPE_STATION:
92 return hdr->addr2;
93 case NL80211_IFTYPE_AP:
94 case NL80211_IFTYPE_AP_VLAN:
95 return hdr->addr1;
96 default:
97 break; /* fall through to the return */
98 }
99 }
100 }
101
102 return NULL;
103}
104EXPORT_SYMBOL(ieee80211_get_bssid);
105
106void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
107{
108 struct sk_buff *skb;
109 struct ieee80211_hdr *hdr;
110
111 skb_queue_walk(&tx->skbs, skb) {
112 hdr = (struct ieee80211_hdr *) skb->data;
113 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
114 }
115}
116
117int ieee80211_frame_duration(enum nl80211_band band, size_t len,
118 int rate, int erp, int short_preamble)
119{
120 int dur;
121
122 /* calculate duration (in microseconds, rounded up to next higher
123 * integer if it includes a fractional microsecond) to send frame of
124 * len bytes (does not include FCS) at the given rate. Duration will
125 * also include SIFS.
126 *
127 * rate is in 100 kbps, so divident is multiplied by 10 in the
128 * DIV_ROUND_UP() operations.
129 */
130
131 if (band == NL80211_BAND_5GHZ || erp) {
132 /*
133 * OFDM:
134 *
135 * N_DBPS = DATARATE x 4
136 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
137 * (16 = SIGNAL time, 6 = tail bits)
138 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
139 *
140 * T_SYM = 4 usec
141 * 802.11a - 18.5.2: aSIFSTime = 16 usec
142 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
143 * signal ext = 6 usec
144 */
145 dur = 16; /* SIFS + signal ext */
146 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */
147 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */
148
149 /* rates should already consider the channel bandwidth,
150 * don't apply divisor again.
151 */
152 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
153 4 * rate); /* T_SYM x N_SYM */
154 } else {
155 /*
156 * 802.11b or 802.11g with 802.11b compatibility:
157 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
158 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
159 *
160 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
161 * aSIFSTime = 10 usec
162 * aPreambleLength = 144 usec or 72 usec with short preamble
163 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
164 */
165 dur = 10; /* aSIFSTime = 10 usec */
166 dur += short_preamble ? (72 + 24) : (144 + 48);
167
168 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
169 }
170
171 return dur;
172}
173
174/* Exported duration function for driver use */
175__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
176 struct ieee80211_vif *vif,
177 enum nl80211_band band,
178 size_t frame_len,
179 struct ieee80211_rate *rate)
180{
181 struct ieee80211_sub_if_data *sdata;
182 u16 dur;
183 int erp;
184 bool short_preamble = false;
185
186 erp = 0;
187 if (vif) {
188 sdata = vif_to_sdata(p: vif);
189 short_preamble = sdata->vif.bss_conf.use_short_preamble;
190 if (sdata->deflink.operating_11g_mode)
191 erp = rate->flags & IEEE80211_RATE_ERP_G;
192 }
193
194 dur = ieee80211_frame_duration(band, len: frame_len, rate: rate->bitrate, erp,
195 short_preamble);
196
197 return cpu_to_le16(dur);
198}
199EXPORT_SYMBOL(ieee80211_generic_frame_duration);
200
201__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
202 struct ieee80211_vif *vif, size_t frame_len,
203 const struct ieee80211_tx_info *frame_txctl)
204{
205 struct ieee80211_local *local = hw_to_local(hw);
206 struct ieee80211_rate *rate;
207 struct ieee80211_sub_if_data *sdata;
208 bool short_preamble;
209 int erp, bitrate;
210 u16 dur;
211 struct ieee80211_supported_band *sband;
212
213 sband = local->hw.wiphy->bands[frame_txctl->band];
214
215 short_preamble = false;
216
217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
218
219 erp = 0;
220 if (vif) {
221 sdata = vif_to_sdata(p: vif);
222 short_preamble = sdata->vif.bss_conf.use_short_preamble;
223 if (sdata->deflink.operating_11g_mode)
224 erp = rate->flags & IEEE80211_RATE_ERP_G;
225 }
226
227 bitrate = rate->bitrate;
228
229 /* CTS duration */
230 dur = ieee80211_frame_duration(band: sband->band, len: 10, rate: bitrate,
231 erp, short_preamble);
232 /* Data frame duration */
233 dur += ieee80211_frame_duration(band: sband->band, len: frame_len, rate: bitrate,
234 erp, short_preamble);
235 /* ACK duration */
236 dur += ieee80211_frame_duration(band: sband->band, len: 10, rate: bitrate,
237 erp, short_preamble);
238
239 return cpu_to_le16(dur);
240}
241EXPORT_SYMBOL(ieee80211_rts_duration);
242
243__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
244 struct ieee80211_vif *vif,
245 size_t frame_len,
246 const struct ieee80211_tx_info *frame_txctl)
247{
248 struct ieee80211_local *local = hw_to_local(hw);
249 struct ieee80211_rate *rate;
250 struct ieee80211_sub_if_data *sdata;
251 bool short_preamble;
252 int erp, bitrate;
253 u16 dur;
254 struct ieee80211_supported_band *sband;
255
256 sband = local->hw.wiphy->bands[frame_txctl->band];
257
258 short_preamble = false;
259
260 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
261 erp = 0;
262 if (vif) {
263 sdata = vif_to_sdata(p: vif);
264 short_preamble = sdata->vif.bss_conf.use_short_preamble;
265 if (sdata->deflink.operating_11g_mode)
266 erp = rate->flags & IEEE80211_RATE_ERP_G;
267 }
268
269 bitrate = rate->bitrate;
270
271 /* Data frame duration */
272 dur = ieee80211_frame_duration(band: sband->band, len: frame_len, rate: bitrate,
273 erp, short_preamble);
274 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
275 /* ACK duration */
276 dur += ieee80211_frame_duration(band: sband->band, len: 10, rate: bitrate,
277 erp, short_preamble);
278 }
279
280 return cpu_to_le16(dur);
281}
282EXPORT_SYMBOL(ieee80211_ctstoself_duration);
283
284static void wake_tx_push_queue(struct ieee80211_local *local,
285 struct ieee80211_sub_if_data *sdata,
286 struct ieee80211_txq *queue)
287{
288 struct ieee80211_tx_control control = {
289 .sta = queue->sta,
290 };
291 struct sk_buff *skb;
292
293 while (1) {
294 skb = ieee80211_tx_dequeue(hw: &local->hw, txq: queue);
295 if (!skb)
296 break;
297
298 drv_tx(local, control: &control, skb);
299 }
300}
301
302/* wake_tx_queue handler for driver not implementing a custom one*/
303void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw,
304 struct ieee80211_txq *txq)
305{
306 struct ieee80211_local *local = hw_to_local(hw);
307 struct ieee80211_sub_if_data *sdata = vif_to_sdata(p: txq->vif);
308 struct ieee80211_txq *queue;
309
310 spin_lock(lock: &local->handle_wake_tx_queue_lock);
311
312 /* Use ieee80211_next_txq() for airtime fairness accounting */
313 ieee80211_txq_schedule_start(hw, ac: txq->ac);
314 while ((queue = ieee80211_next_txq(hw, ac: txq->ac))) {
315 wake_tx_push_queue(local, sdata, queue);
316 ieee80211_return_txq(hw, txq: queue, force: false);
317 }
318 ieee80211_txq_schedule_end(hw, ac: txq->ac);
319 spin_unlock(lock: &local->handle_wake_tx_queue_lock);
320}
321EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue);
322
323static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac)
324{
325 struct ieee80211_local *local = sdata->local;
326 struct ieee80211_vif *vif = &sdata->vif;
327 struct fq *fq = &local->fq;
328 struct ps_data *ps = NULL;
329 struct txq_info *txqi;
330 struct sta_info *sta;
331 int i;
332
333 local_bh_disable();
334 spin_lock(lock: &fq->lock);
335
336 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state))
337 goto out;
338
339 if (sdata->vif.type == NL80211_IFTYPE_AP)
340 ps = &sdata->bss->ps;
341
342 list_for_each_entry_rcu(sta, &local->sta_list, list) {
343 if (sdata != sta->sdata)
344 continue;
345
346 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
347 struct ieee80211_txq *txq = sta->sta.txq[i];
348
349 if (!txq)
350 continue;
351
352 txqi = to_txq_info(txq);
353
354 if (ac != txq->ac)
355 continue;
356
357 if (!test_and_clear_bit(nr: IEEE80211_TXQ_DIRTY,
358 addr: &txqi->flags))
359 continue;
360
361 spin_unlock(lock: &fq->lock);
362 drv_wake_tx_queue(local, txq: txqi);
363 spin_lock(lock: &fq->lock);
364 }
365 }
366
367 if (!vif->txq)
368 goto out;
369
370 txqi = to_txq_info(txq: vif->txq);
371
372 if (!test_and_clear_bit(nr: IEEE80211_TXQ_DIRTY, addr: &txqi->flags) ||
373 (ps && atomic_read(v: &ps->num_sta_ps)) || ac != vif->txq->ac)
374 goto out;
375
376 spin_unlock(lock: &fq->lock);
377
378 drv_wake_tx_queue(local, txq: txqi);
379 local_bh_enable();
380 return;
381out:
382 spin_unlock(lock: &fq->lock);
383 local_bh_enable();
384}
385
386static void
387__releases(&local->queue_stop_reason_lock)
388__acquires(&local->queue_stop_reason_lock)
389_ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags)
390{
391 struct ieee80211_sub_if_data *sdata;
392 int n_acs = IEEE80211_NUM_ACS;
393 int i;
394
395 rcu_read_lock();
396
397 if (local->hw.queues < IEEE80211_NUM_ACS)
398 n_acs = 1;
399
400 for (i = 0; i < local->hw.queues; i++) {
401 if (local->queue_stop_reasons[i])
402 continue;
403
404 spin_unlock_irqrestore(lock: &local->queue_stop_reason_lock, flags: *flags);
405 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
406 int ac;
407
408 for (ac = 0; ac < n_acs; ac++) {
409 int ac_queue = sdata->vif.hw_queue[ac];
410
411 if (ac_queue == i ||
412 sdata->vif.cab_queue == i)
413 __ieee80211_wake_txqs(sdata, ac);
414 }
415 }
416 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags);
417 }
418
419 rcu_read_unlock();
420}
421
422void ieee80211_wake_txqs(struct tasklet_struct *t)
423{
424 struct ieee80211_local *local = from_tasklet(local, t,
425 wake_txqs_tasklet);
426 unsigned long flags;
427
428 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
429 _ieee80211_wake_txqs(local, flags: &flags);
430 spin_unlock_irqrestore(lock: &local->queue_stop_reason_lock, flags);
431}
432
433static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
434 enum queue_stop_reason reason,
435 bool refcounted,
436 unsigned long *flags)
437{
438 struct ieee80211_local *local = hw_to_local(hw);
439
440 if (WARN_ON(queue >= hw->queues))
441 return;
442
443 if (!test_bit(reason, &local->queue_stop_reasons[queue]))
444 return;
445
446 if (!refcounted) {
447 local->q_stop_reasons[queue][reason] = 0;
448 } else {
449 local->q_stop_reasons[queue][reason]--;
450 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0))
451 local->q_stop_reasons[queue][reason] = 0;
452 }
453
454 if (local->q_stop_reasons[queue][reason] == 0)
455 __clear_bit(reason, &local->queue_stop_reasons[queue]);
456
457 trace_wake_queue(local, queue, reason,
458 refcount: local->q_stop_reasons[queue][reason]);
459
460 if (local->queue_stop_reasons[queue] != 0)
461 /* someone still has this queue stopped */
462 return;
463
464 if (!skb_queue_empty(list: &local->pending[queue]))
465 tasklet_schedule(t: &local->tx_pending_tasklet);
466
467 /*
468 * Calling _ieee80211_wake_txqs here can be a problem because it may
469 * release queue_stop_reason_lock which has been taken by
470 * __ieee80211_wake_queue's caller. It is certainly not very nice to
471 * release someone's lock, but it is fine because all the callers of
472 * __ieee80211_wake_queue call it right before releasing the lock.
473 */
474 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER)
475 tasklet_schedule(t: &local->wake_txqs_tasklet);
476 else
477 _ieee80211_wake_txqs(local, flags);
478}
479
480void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
481 enum queue_stop_reason reason,
482 bool refcounted)
483{
484 struct ieee80211_local *local = hw_to_local(hw);
485 unsigned long flags;
486
487 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
488 __ieee80211_wake_queue(hw, queue, reason, refcounted, flags: &flags);
489 spin_unlock_irqrestore(lock: &local->queue_stop_reason_lock, flags);
490}
491
492void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
493{
494 ieee80211_wake_queue_by_reason(hw, queue,
495 reason: IEEE80211_QUEUE_STOP_REASON_DRIVER,
496 refcounted: false);
497}
498EXPORT_SYMBOL(ieee80211_wake_queue);
499
500static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
501 enum queue_stop_reason reason,
502 bool refcounted)
503{
504 struct ieee80211_local *local = hw_to_local(hw);
505
506 if (WARN_ON(queue >= hw->queues))
507 return;
508
509 if (!refcounted)
510 local->q_stop_reasons[queue][reason] = 1;
511 else
512 local->q_stop_reasons[queue][reason]++;
513
514 trace_stop_queue(local, queue, reason,
515 refcount: local->q_stop_reasons[queue][reason]);
516
517 set_bit(nr: reason, addr: &local->queue_stop_reasons[queue]);
518}
519
520void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
521 enum queue_stop_reason reason,
522 bool refcounted)
523{
524 struct ieee80211_local *local = hw_to_local(hw);
525 unsigned long flags;
526
527 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
528 __ieee80211_stop_queue(hw, queue, reason, refcounted);
529 spin_unlock_irqrestore(lock: &local->queue_stop_reason_lock, flags);
530}
531
532void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
533{
534 ieee80211_stop_queue_by_reason(hw, queue,
535 reason: IEEE80211_QUEUE_STOP_REASON_DRIVER,
536 refcounted: false);
537}
538EXPORT_SYMBOL(ieee80211_stop_queue);
539
540void ieee80211_add_pending_skb(struct ieee80211_local *local,
541 struct sk_buff *skb)
542{
543 struct ieee80211_hw *hw = &local->hw;
544 unsigned long flags;
545 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
546 int queue = info->hw_queue;
547
548 if (WARN_ON(!info->control.vif)) {
549 ieee80211_free_txskb(hw: &local->hw, skb);
550 return;
551 }
552
553 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
554 __ieee80211_stop_queue(hw, queue, reason: IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
555 refcounted: false);
556 __skb_queue_tail(list: &local->pending[queue], newsk: skb);
557 __ieee80211_wake_queue(hw, queue, reason: IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
558 refcounted: false, flags: &flags);
559 spin_unlock_irqrestore(lock: &local->queue_stop_reason_lock, flags);
560}
561
562void ieee80211_add_pending_skbs(struct ieee80211_local *local,
563 struct sk_buff_head *skbs)
564{
565 struct ieee80211_hw *hw = &local->hw;
566 struct sk_buff *skb;
567 unsigned long flags;
568 int queue, i;
569
570 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
571 while ((skb = skb_dequeue(list: skbs))) {
572 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
573
574 if (WARN_ON(!info->control.vif)) {
575 ieee80211_free_txskb(hw: &local->hw, skb);
576 continue;
577 }
578
579 queue = info->hw_queue;
580
581 __ieee80211_stop_queue(hw, queue,
582 reason: IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
583 refcounted: false);
584
585 __skb_queue_tail(list: &local->pending[queue], newsk: skb);
586 }
587
588 for (i = 0; i < hw->queues; i++)
589 __ieee80211_wake_queue(hw, queue: i,
590 reason: IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
591 refcounted: false, flags: &flags);
592 spin_unlock_irqrestore(lock: &local->queue_stop_reason_lock, flags);
593}
594
595void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
596 unsigned long queues,
597 enum queue_stop_reason reason,
598 bool refcounted)
599{
600 struct ieee80211_local *local = hw_to_local(hw);
601 unsigned long flags;
602 int i;
603
604 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
605
606 for_each_set_bit(i, &queues, hw->queues)
607 __ieee80211_stop_queue(hw, queue: i, reason, refcounted);
608
609 spin_unlock_irqrestore(lock: &local->queue_stop_reason_lock, flags);
610}
611
612void ieee80211_stop_queues(struct ieee80211_hw *hw)
613{
614 ieee80211_stop_queues_by_reason(hw, queues: IEEE80211_MAX_QUEUE_MAP,
615 reason: IEEE80211_QUEUE_STOP_REASON_DRIVER,
616 refcounted: false);
617}
618EXPORT_SYMBOL(ieee80211_stop_queues);
619
620int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
621{
622 struct ieee80211_local *local = hw_to_local(hw);
623 unsigned long flags;
624 int ret;
625
626 if (WARN_ON(queue >= hw->queues))
627 return true;
628
629 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
630 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
631 &local->queue_stop_reasons[queue]);
632 spin_unlock_irqrestore(lock: &local->queue_stop_reason_lock, flags);
633 return ret;
634}
635EXPORT_SYMBOL(ieee80211_queue_stopped);
636
637void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
638 unsigned long queues,
639 enum queue_stop_reason reason,
640 bool refcounted)
641{
642 struct ieee80211_local *local = hw_to_local(hw);
643 unsigned long flags;
644 int i;
645
646 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
647
648 for_each_set_bit(i, &queues, hw->queues)
649 __ieee80211_wake_queue(hw, queue: i, reason, refcounted, flags: &flags);
650
651 spin_unlock_irqrestore(lock: &local->queue_stop_reason_lock, flags);
652}
653
654void ieee80211_wake_queues(struct ieee80211_hw *hw)
655{
656 ieee80211_wake_queues_by_reason(hw, queues: IEEE80211_MAX_QUEUE_MAP,
657 reason: IEEE80211_QUEUE_STOP_REASON_DRIVER,
658 refcounted: false);
659}
660EXPORT_SYMBOL(ieee80211_wake_queues);
661
662unsigned int
663ieee80211_get_vif_queues(struct ieee80211_local *local,
664 struct ieee80211_sub_if_data *sdata)
665{
666 unsigned int queues;
667
668 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
669 int ac;
670
671 queues = 0;
672
673 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
674 if (sdata->vif.hw_queue[ac] != IEEE80211_INVAL_HW_QUEUE)
675 queues |= BIT(sdata->vif.hw_queue[ac]);
676 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
677 queues |= BIT(sdata->vif.cab_queue);
678 } else {
679 /* all queues */
680 queues = BIT(local->hw.queues) - 1;
681 }
682
683 return queues;
684}
685
686void __ieee80211_flush_queues(struct ieee80211_local *local,
687 struct ieee80211_sub_if_data *sdata,
688 unsigned int queues, bool drop)
689{
690 if (!local->ops->flush && !drop)
691 return;
692
693 /*
694 * If no queue was set, or if the HW doesn't support
695 * IEEE80211_HW_QUEUE_CONTROL - flush all queues
696 */
697 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
698 queues = ieee80211_get_vif_queues(local, sdata);
699
700 ieee80211_stop_queues_by_reason(hw: &local->hw, queues,
701 reason: IEEE80211_QUEUE_STOP_REASON_FLUSH,
702 refcounted: false);
703
704 if (drop) {
705 struct sta_info *sta;
706
707 /* Purge the queues, so the frames on them won't be
708 * sent during __ieee80211_wake_queue()
709 */
710 list_for_each_entry(sta, &local->sta_list, list) {
711 if (sdata != sta->sdata)
712 continue;
713 ieee80211_purge_sta_txqs(sta);
714 }
715 }
716
717 if (local->ops->flush)
718 drv_flush(local, sdata, queues, drop);
719
720 ieee80211_wake_queues_by_reason(hw: &local->hw, queues,
721 reason: IEEE80211_QUEUE_STOP_REASON_FLUSH,
722 refcounted: false);
723}
724
725void ieee80211_flush_queues(struct ieee80211_local *local,
726 struct ieee80211_sub_if_data *sdata, bool drop)
727{
728 __ieee80211_flush_queues(local, sdata, queues: 0, drop);
729}
730
731static void __iterate_interfaces(struct ieee80211_local *local,
732 u32 iter_flags,
733 void (*iterator)(void *data, u8 *mac,
734 struct ieee80211_vif *vif),
735 void *data)
736{
737 struct ieee80211_sub_if_data *sdata;
738 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE;
739
740 list_for_each_entry_rcu(sdata, &local->interfaces, list,
741 lockdep_is_held(&local->iflist_mtx) ||
742 lockdep_is_held(&local->hw.wiphy->mtx)) {
743 switch (sdata->vif.type) {
744 case NL80211_IFTYPE_MONITOR:
745 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) &&
746 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR))
747 continue;
748 break;
749 case NL80211_IFTYPE_AP_VLAN:
750 continue;
751 default:
752 break;
753 }
754 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
755 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
756 continue;
757 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) &&
758 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
759 continue;
760 if (ieee80211_sdata_running(sdata) || !active_only)
761 iterator(data, sdata->vif.addr,
762 &sdata->vif);
763 }
764
765 sdata = rcu_dereference_check(local->monitor_sdata,
766 lockdep_is_held(&local->iflist_mtx) ||
767 lockdep_is_held(&local->hw.wiphy->mtx));
768 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) &&
769 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only ||
770 sdata->flags & IEEE80211_SDATA_IN_DRIVER))
771 iterator(data, sdata->vif.addr, &sdata->vif);
772}
773
774void ieee80211_iterate_interfaces(
775 struct ieee80211_hw *hw, u32 iter_flags,
776 void (*iterator)(void *data, u8 *mac,
777 struct ieee80211_vif *vif),
778 void *data)
779{
780 struct ieee80211_local *local = hw_to_local(hw);
781
782 mutex_lock(lock: &local->iflist_mtx);
783 __iterate_interfaces(local, iter_flags, iterator, data);
784 mutex_unlock(lock: &local->iflist_mtx);
785}
786EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces);
787
788void ieee80211_iterate_active_interfaces_atomic(
789 struct ieee80211_hw *hw, u32 iter_flags,
790 void (*iterator)(void *data, u8 *mac,
791 struct ieee80211_vif *vif),
792 void *data)
793{
794 struct ieee80211_local *local = hw_to_local(hw);
795
796 rcu_read_lock();
797 __iterate_interfaces(local, iter_flags: iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
798 iterator, data);
799 rcu_read_unlock();
800}
801EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
802
803void ieee80211_iterate_active_interfaces_mtx(
804 struct ieee80211_hw *hw, u32 iter_flags,
805 void (*iterator)(void *data, u8 *mac,
806 struct ieee80211_vif *vif),
807 void *data)
808{
809 struct ieee80211_local *local = hw_to_local(hw);
810
811 lockdep_assert_wiphy(hw->wiphy);
812
813 __iterate_interfaces(local, iter_flags: iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
814 iterator, data);
815}
816EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx);
817
818static void __iterate_stations(struct ieee80211_local *local,
819 void (*iterator)(void *data,
820 struct ieee80211_sta *sta),
821 void *data)
822{
823 struct sta_info *sta;
824
825 list_for_each_entry_rcu(sta, &local->sta_list, list,
826 lockdep_is_held(&local->hw.wiphy->mtx)) {
827 if (!sta->uploaded)
828 continue;
829
830 iterator(data, &sta->sta);
831 }
832}
833
834void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw,
835 void (*iterator)(void *data,
836 struct ieee80211_sta *sta),
837 void *data)
838{
839 struct ieee80211_local *local = hw_to_local(hw);
840
841 rcu_read_lock();
842 __iterate_stations(local, iterator, data);
843 rcu_read_unlock();
844}
845EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic);
846
847void ieee80211_iterate_stations_mtx(struct ieee80211_hw *hw,
848 void (*iterator)(void *data,
849 struct ieee80211_sta *sta),
850 void *data)
851{
852 struct ieee80211_local *local = hw_to_local(hw);
853
854 lockdep_assert_wiphy(local->hw.wiphy);
855
856 __iterate_stations(local, iterator, data);
857}
858EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_mtx);
859
860struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev)
861{
862 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
863
864 if (!ieee80211_sdata_running(sdata) ||
865 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
866 return NULL;
867 return &sdata->vif;
868}
869EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif);
870
871struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif)
872{
873 if (!vif)
874 return NULL;
875
876 return &vif_to_sdata(p: vif)->wdev;
877}
878EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev);
879
880/*
881 * Nothing should have been stuffed into the workqueue during
882 * the suspend->resume cycle. Since we can't check each caller
883 * of this function if we are already quiescing / suspended,
884 * check here and don't WARN since this can actually happen when
885 * the rx path (for example) is racing against __ieee80211_suspend
886 * and suspending / quiescing was set after the rx path checked
887 * them.
888 */
889static bool ieee80211_can_queue_work(struct ieee80211_local *local)
890{
891 if (local->quiescing || (local->suspended && !local->resuming)) {
892 pr_warn("queueing ieee80211 work while going to suspend\n");
893 return false;
894 }
895
896 return true;
897}
898
899void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
900{
901 struct ieee80211_local *local = hw_to_local(hw);
902
903 if (!ieee80211_can_queue_work(local))
904 return;
905
906 queue_work(wq: local->workqueue, work);
907}
908EXPORT_SYMBOL(ieee80211_queue_work);
909
910void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
911 struct delayed_work *dwork,
912 unsigned long delay)
913{
914 struct ieee80211_local *local = hw_to_local(hw);
915
916 if (!ieee80211_can_queue_work(local))
917 return;
918
919 queue_delayed_work(wq: local->workqueue, dwork, delay);
920}
921EXPORT_SYMBOL(ieee80211_queue_delayed_work);
922
923void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata,
924 struct ieee80211_tx_queue_params
925 *qparam, int ac)
926{
927 struct ieee80211_chanctx_conf *chanctx_conf;
928 const struct ieee80211_reg_rule *rrule;
929 const struct ieee80211_wmm_ac *wmm_ac;
930 u16 center_freq = 0;
931
932 if (sdata->vif.type != NL80211_IFTYPE_AP &&
933 sdata->vif.type != NL80211_IFTYPE_STATION)
934 return;
935
936 rcu_read_lock();
937 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf);
938 if (chanctx_conf)
939 center_freq = chanctx_conf->def.chan->center_freq;
940
941 if (!center_freq) {
942 rcu_read_unlock();
943 return;
944 }
945
946 rrule = freq_reg_info(wiphy: sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq));
947
948 if (IS_ERR_OR_NULL(ptr: rrule) || !rrule->has_wmm) {
949 rcu_read_unlock();
950 return;
951 }
952
953 if (sdata->vif.type == NL80211_IFTYPE_AP)
954 wmm_ac = &rrule->wmm_rule.ap[ac];
955 else
956 wmm_ac = &rrule->wmm_rule.client[ac];
957 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min);
958 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max);
959 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn);
960 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32);
961 rcu_read_unlock();
962}
963
964void ieee80211_set_wmm_default(struct ieee80211_link_data *link,
965 bool bss_notify, bool enable_qos)
966{
967 struct ieee80211_sub_if_data *sdata = link->sdata;
968 struct ieee80211_local *local = sdata->local;
969 struct ieee80211_tx_queue_params qparam;
970 struct ieee80211_chanctx_conf *chanctx_conf;
971 int ac;
972 bool use_11b;
973 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */
974 int aCWmin, aCWmax;
975
976 if (!local->ops->conf_tx)
977 return;
978
979 if (local->hw.queues < IEEE80211_NUM_ACS)
980 return;
981
982 memset(s: &qparam, c: 0, n: sizeof(qparam));
983
984 rcu_read_lock();
985 chanctx_conf = rcu_dereference(link->conf->chanctx_conf);
986 use_11b = (chanctx_conf &&
987 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) &&
988 !link->operating_11g_mode;
989 rcu_read_unlock();
990
991 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB);
992
993 /* Set defaults according to 802.11-2007 Table 7-37 */
994 aCWmax = 1023;
995 if (use_11b)
996 aCWmin = 31;
997 else
998 aCWmin = 15;
999
1000 /* Configure old 802.11b/g medium access rules. */
1001 qparam.cw_max = aCWmax;
1002 qparam.cw_min = aCWmin;
1003 qparam.txop = 0;
1004 qparam.aifs = 2;
1005
1006 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1007 /* Update if QoS is enabled. */
1008 if (enable_qos) {
1009 switch (ac) {
1010 case IEEE80211_AC_BK:
1011 qparam.cw_max = aCWmax;
1012 qparam.cw_min = aCWmin;
1013 qparam.txop = 0;
1014 if (is_ocb)
1015 qparam.aifs = 9;
1016 else
1017 qparam.aifs = 7;
1018 break;
1019 /* never happens but let's not leave undefined */
1020 default:
1021 case IEEE80211_AC_BE:
1022 qparam.cw_max = aCWmax;
1023 qparam.cw_min = aCWmin;
1024 qparam.txop = 0;
1025 if (is_ocb)
1026 qparam.aifs = 6;
1027 else
1028 qparam.aifs = 3;
1029 break;
1030 case IEEE80211_AC_VI:
1031 qparam.cw_max = aCWmin;
1032 qparam.cw_min = (aCWmin + 1) / 2 - 1;
1033 if (is_ocb)
1034 qparam.txop = 0;
1035 else if (use_11b)
1036 qparam.txop = 6016/32;
1037 else
1038 qparam.txop = 3008/32;
1039
1040 if (is_ocb)
1041 qparam.aifs = 3;
1042 else
1043 qparam.aifs = 2;
1044 break;
1045 case IEEE80211_AC_VO:
1046 qparam.cw_max = (aCWmin + 1) / 2 - 1;
1047 qparam.cw_min = (aCWmin + 1) / 4 - 1;
1048 if (is_ocb)
1049 qparam.txop = 0;
1050 else if (use_11b)
1051 qparam.txop = 3264/32;
1052 else
1053 qparam.txop = 1504/32;
1054 qparam.aifs = 2;
1055 break;
1056 }
1057 }
1058 ieee80211_regulatory_limit_wmm_params(sdata, qparam: &qparam, ac);
1059
1060 qparam.uapsd = false;
1061
1062 link->tx_conf[ac] = qparam;
1063 drv_conf_tx(local, link, ac, params: &qparam);
1064 }
1065
1066 if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1067 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE &&
1068 sdata->vif.type != NL80211_IFTYPE_NAN) {
1069 link->conf->qos = enable_qos;
1070 if (bss_notify)
1071 ieee80211_link_info_change_notify(sdata, link,
1072 changed: BSS_CHANGED_QOS);
1073 }
1074}
1075
1076void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1077 u16 transaction, u16 auth_alg, u16 status,
1078 const u8 *extra, size_t extra_len, const u8 *da,
1079 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1080 u32 tx_flags)
1081{
1082 struct ieee80211_local *local = sdata->local;
1083 struct sk_buff *skb;
1084 struct ieee80211_mgmt *mgmt;
1085 bool multi_link = ieee80211_vif_is_mld(vif: &sdata->vif);
1086 struct {
1087 u8 id;
1088 u8 len;
1089 u8 ext_id;
1090 struct ieee80211_multi_link_elem ml;
1091 struct ieee80211_mle_basic_common_info basic;
1092 } __packed mle = {
1093 .id = WLAN_EID_EXTENSION,
1094 .len = sizeof(mle) - 2,
1095 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK,
1096 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC),
1097 .basic.len = sizeof(mle.basic),
1098 };
1099 int err;
1100
1101 memcpy(to: mle.basic.mld_mac_addr, from: sdata->vif.addr, ETH_ALEN);
1102
1103 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */
1104 skb = dev_alloc_skb(length: local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN +
1105 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN +
1106 multi_link * sizeof(mle));
1107 if (!skb)
1108 return;
1109
1110 skb_reserve(skb, len: local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN);
1111
1112 mgmt = skb_put_zero(skb, len: 24 + 6);
1113 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1114 IEEE80211_STYPE_AUTH);
1115 memcpy(to: mgmt->da, from: da, ETH_ALEN);
1116 memcpy(to: mgmt->sa, from: sdata->vif.addr, ETH_ALEN);
1117 memcpy(to: mgmt->bssid, from: bssid, ETH_ALEN);
1118 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1119 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1120 mgmt->u.auth.status_code = cpu_to_le16(status);
1121 if (extra)
1122 skb_put_data(skb, data: extra, len: extra_len);
1123 if (multi_link)
1124 skb_put_data(skb, data: &mle, len: sizeof(mle));
1125
1126 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1127 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1128 err = ieee80211_wep_encrypt(local, skb, key, keylen: key_len, keyidx: key_idx);
1129 if (WARN_ON(err)) {
1130 kfree_skb(skb);
1131 return;
1132 }
1133 }
1134
1135 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1136 tx_flags;
1137 ieee80211_tx_skb(sdata, skb);
1138}
1139
1140void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1141 const u8 *da, const u8 *bssid,
1142 u16 stype, u16 reason,
1143 bool send_frame, u8 *frame_buf)
1144{
1145 struct ieee80211_local *local = sdata->local;
1146 struct sk_buff *skb;
1147 struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1148
1149 /* build frame */
1150 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1151 mgmt->duration = 0; /* initialize only */
1152 mgmt->seq_ctrl = 0; /* initialize only */
1153 memcpy(to: mgmt->da, from: da, ETH_ALEN);
1154 memcpy(to: mgmt->sa, from: sdata->vif.addr, ETH_ALEN);
1155 memcpy(to: mgmt->bssid, from: bssid, ETH_ALEN);
1156 /* u.deauth.reason_code == u.disassoc.reason_code */
1157 mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1158
1159 if (send_frame) {
1160 skb = dev_alloc_skb(length: local->hw.extra_tx_headroom +
1161 IEEE80211_DEAUTH_FRAME_LEN);
1162 if (!skb)
1163 return;
1164
1165 skb_reserve(skb, len: local->hw.extra_tx_headroom);
1166
1167 /* copy in frame */
1168 skb_put_data(skb, data: mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1169
1170 if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1171 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1172 IEEE80211_SKB_CB(skb)->flags |=
1173 IEEE80211_TX_INTFL_DONT_ENCRYPT;
1174
1175 ieee80211_tx_skb(sdata, skb);
1176 }
1177}
1178
1179static int ieee80211_put_s1g_cap(struct sk_buff *skb,
1180 struct ieee80211_sta_s1g_cap *s1g_cap)
1181{
1182 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap))
1183 return -ENOBUFS;
1184
1185 skb_put_u8(skb, val: WLAN_EID_S1G_CAPABILITIES);
1186 skb_put_u8(skb, val: sizeof(struct ieee80211_s1g_cap));
1187
1188 skb_put_data(skb, data: &s1g_cap->cap, len: sizeof(s1g_cap->cap));
1189 skb_put_data(skb, data: &s1g_cap->nss_mcs, len: sizeof(s1g_cap->nss_mcs));
1190
1191 return 0;
1192}
1193
1194static int ieee80211_put_preq_ies_band(struct sk_buff *skb,
1195 struct ieee80211_sub_if_data *sdata,
1196 const u8 *ie, size_t ie_len,
1197 size_t *offset,
1198 enum nl80211_band band,
1199 u32 rate_mask,
1200 struct cfg80211_chan_def *chandef,
1201 u32 flags)
1202{
1203 struct ieee80211_local *local = sdata->local;
1204 struct ieee80211_supported_band *sband;
1205 int i, err;
1206 size_t noffset;
1207 bool have_80mhz = false;
1208
1209 *offset = 0;
1210
1211 sband = local->hw.wiphy->bands[band];
1212 if (WARN_ON_ONCE(!sband))
1213 return 0;
1214
1215 /* For direct scan add S1G IE and consider its override bits */
1216 if (band == NL80211_BAND_S1GHZ)
1217 return ieee80211_put_s1g_cap(skb, s1g_cap: &sband->s1g_cap);
1218
1219 err = ieee80211_put_srates_elem(skb, sband, basic_rates: 0,
1220 masked_rates: ~rate_mask, element_id: WLAN_EID_SUPP_RATES);
1221 if (err)
1222 return err;
1223
1224 /* insert "request information" if in custom IEs */
1225 if (ie && ie_len) {
1226 static const u8 before_extrates[] = {
1227 WLAN_EID_SSID,
1228 WLAN_EID_SUPP_RATES,
1229 WLAN_EID_REQUEST,
1230 };
1231 noffset = ieee80211_ie_split(ies: ie, ielen: ie_len,
1232 ids: before_extrates,
1233 ARRAY_SIZE(before_extrates),
1234 offset: *offset);
1235 if (skb_tailroom(skb) < noffset - *offset)
1236 return -ENOBUFS;
1237 skb_put_data(skb, data: ie + *offset, len: noffset - *offset);
1238 *offset = noffset;
1239 }
1240
1241 err = ieee80211_put_srates_elem(skb, sband, basic_rates: 0,
1242 masked_rates: ~rate_mask, element_id: WLAN_EID_EXT_SUPP_RATES);
1243 if (err)
1244 return err;
1245
1246 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) {
1247 if (skb_tailroom(skb) < 3)
1248 return -ENOBUFS;
1249 skb_put_u8(skb, val: WLAN_EID_DS_PARAMS);
1250 skb_put_u8(skb, val: 1);
1251 skb_put_u8(skb,
1252 val: ieee80211_frequency_to_channel(freq: chandef->chan->center_freq));
1253 }
1254
1255 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT)
1256 return 0;
1257
1258 /* insert custom IEs that go before HT */
1259 if (ie && ie_len) {
1260 static const u8 before_ht[] = {
1261 /*
1262 * no need to list the ones split off already
1263 * (or generated here)
1264 */
1265 WLAN_EID_DS_PARAMS,
1266 WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1267 };
1268 noffset = ieee80211_ie_split(ies: ie, ielen: ie_len,
1269 ids: before_ht, ARRAY_SIZE(before_ht),
1270 offset: *offset);
1271 if (skb_tailroom(skb) < noffset - *offset)
1272 return -ENOBUFS;
1273 skb_put_data(skb, data: ie + *offset, len: noffset - *offset);
1274 *offset = noffset;
1275 }
1276
1277 if (sband->ht_cap.ht_supported) {
1278 u8 *pos;
1279
1280 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap))
1281 return -ENOBUFS;
1282
1283 pos = skb_put(skb, len: 2 + sizeof(struct ieee80211_ht_cap));
1284 ieee80211_ie_build_ht_cap(pos, ht_cap: &sband->ht_cap,
1285 cap: sband->ht_cap.cap);
1286 }
1287
1288 /* insert custom IEs that go before VHT */
1289 if (ie && ie_len) {
1290 static const u8 before_vht[] = {
1291 /*
1292 * no need to list the ones split off already
1293 * (or generated here)
1294 */
1295 WLAN_EID_BSS_COEX_2040,
1296 WLAN_EID_EXT_CAPABILITY,
1297 WLAN_EID_SSID_LIST,
1298 WLAN_EID_CHANNEL_USAGE,
1299 WLAN_EID_INTERWORKING,
1300 WLAN_EID_MESH_ID,
1301 /* 60 GHz (Multi-band, DMG, MMS) can't happen */
1302 };
1303 noffset = ieee80211_ie_split(ies: ie, ielen: ie_len,
1304 ids: before_vht, ARRAY_SIZE(before_vht),
1305 offset: *offset);
1306 if (skb_tailroom(skb) < noffset - *offset)
1307 return -ENOBUFS;
1308 skb_put_data(skb, data: ie + *offset, len: noffset - *offset);
1309 *offset = noffset;
1310 }
1311
1312 /* Check if any channel in this sband supports at least 80 MHz */
1313 for (i = 0; i < sband->n_channels; i++) {
1314 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
1315 IEEE80211_CHAN_NO_80MHZ))
1316 continue;
1317
1318 have_80mhz = true;
1319 break;
1320 }
1321
1322 if (sband->vht_cap.vht_supported && have_80mhz) {
1323 u8 *pos;
1324
1325 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap))
1326 return -ENOBUFS;
1327
1328 pos = skb_put(skb, len: 2 + sizeof(struct ieee80211_vht_cap));
1329 ieee80211_ie_build_vht_cap(pos, vht_cap: &sband->vht_cap,
1330 cap: sband->vht_cap.cap);
1331 }
1332
1333 /* insert custom IEs that go before HE */
1334 if (ie && ie_len) {
1335 static const u8 before_he[] = {
1336 /*
1337 * no need to list the ones split off before VHT
1338 * or generated here
1339 */
1340 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS,
1341 WLAN_EID_AP_CSN,
1342 /* TODO: add 11ah/11aj/11ak elements */
1343 };
1344 noffset = ieee80211_ie_split(ies: ie, ielen: ie_len,
1345 ids: before_he, ARRAY_SIZE(before_he),
1346 offset: *offset);
1347 if (skb_tailroom(skb) < noffset - *offset)
1348 return -ENOBUFS;
1349 skb_put_data(skb, data: ie + *offset, len: noffset - *offset);
1350 *offset = noffset;
1351 }
1352
1353 if (cfg80211_any_usable_channels(wiphy: local->hw.wiphy, BIT(sband->band),
1354 prohibited_flags: IEEE80211_CHAN_NO_HE)) {
1355 err = ieee80211_put_he_cap(skb, sdata, sband, NULL);
1356 if (err)
1357 return err;
1358 }
1359
1360 if (cfg80211_any_usable_channels(wiphy: local->hw.wiphy, BIT(sband->band),
1361 prohibited_flags: IEEE80211_CHAN_NO_HE |
1362 IEEE80211_CHAN_NO_EHT)) {
1363 err = ieee80211_put_eht_cap(skb, sdata, sband, NULL);
1364 if (err)
1365 return err;
1366 }
1367
1368 err = ieee80211_put_he_6ghz_cap(skb, sdata, smps_mode: IEEE80211_SMPS_OFF);
1369 if (err)
1370 return err;
1371
1372 /*
1373 * If adding more here, adjust code in main.c
1374 * that calculates local->scan_ies_len.
1375 */
1376
1377 return 0;
1378}
1379
1380static int ieee80211_put_preq_ies(struct sk_buff *skb,
1381 struct ieee80211_sub_if_data *sdata,
1382 struct ieee80211_scan_ies *ie_desc,
1383 const u8 *ie, size_t ie_len,
1384 u8 bands_used, u32 *rate_masks,
1385 struct cfg80211_chan_def *chandef,
1386 u32 flags)
1387{
1388 size_t custom_ie_offset = 0;
1389 int i, err;
1390
1391 memset(s: ie_desc, c: 0, n: sizeof(*ie_desc));
1392
1393 for (i = 0; i < NUM_NL80211_BANDS; i++) {
1394 if (bands_used & BIT(i)) {
1395 ie_desc->ies[i] = skb_tail_pointer(skb);
1396 err = ieee80211_put_preq_ies_band(skb, sdata,
1397 ie, ie_len,
1398 offset: &custom_ie_offset,
1399 band: i, rate_mask: rate_masks[i],
1400 chandef, flags);
1401 if (err)
1402 return err;
1403 ie_desc->len[i] = skb_tail_pointer(skb) -
1404 ie_desc->ies[i];
1405 }
1406 }
1407
1408 /* add any remaining custom IEs */
1409 if (ie && ie_len) {
1410 if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset,
1411 "not enough space for preq custom IEs\n"))
1412 return -ENOBUFS;
1413 ie_desc->common_ies = skb_tail_pointer(skb);
1414 skb_put_data(skb, data: ie + custom_ie_offset,
1415 len: ie_len - custom_ie_offset);
1416 ie_desc->common_ie_len = skb_tail_pointer(skb) -
1417 ie_desc->common_ies;
1418 }
1419
1420 return 0;
1421};
1422
1423int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer,
1424 size_t buffer_len,
1425 struct ieee80211_scan_ies *ie_desc,
1426 const u8 *ie, size_t ie_len,
1427 u8 bands_used, u32 *rate_masks,
1428 struct cfg80211_chan_def *chandef,
1429 u32 flags)
1430{
1431 struct sk_buff *skb = alloc_skb(size: buffer_len, GFP_KERNEL);
1432 uintptr_t offs;
1433 int ret, i;
1434 u8 *start;
1435
1436 if (!skb)
1437 return -ENOMEM;
1438
1439 start = skb_tail_pointer(skb);
1440 memset(s: start, c: 0, n: skb_tailroom(skb));
1441 ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len,
1442 bands_used, rate_masks, chandef,
1443 flags);
1444 if (ret < 0) {
1445 goto out;
1446 }
1447
1448 if (skb->len > buffer_len) {
1449 ret = -ENOBUFS;
1450 goto out;
1451 }
1452
1453 memcpy(to: buffer, from: start, len: skb->len);
1454
1455 /* adjust ie_desc for copy */
1456 for (i = 0; i < NUM_NL80211_BANDS; i++) {
1457 offs = ie_desc->ies[i] - start;
1458 ie_desc->ies[i] = buffer + offs;
1459 }
1460 offs = ie_desc->common_ies - start;
1461 ie_desc->common_ies = buffer + offs;
1462
1463 ret = skb->len;
1464out:
1465 consume_skb(skb);
1466 return ret;
1467}
1468
1469struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1470 const u8 *src, const u8 *dst,
1471 u32 ratemask,
1472 struct ieee80211_channel *chan,
1473 const u8 *ssid, size_t ssid_len,
1474 const u8 *ie, size_t ie_len,
1475 u32 flags)
1476{
1477 struct ieee80211_local *local = sdata->local;
1478 struct cfg80211_chan_def chandef;
1479 struct sk_buff *skb;
1480 struct ieee80211_mgmt *mgmt;
1481 u32 rate_masks[NUM_NL80211_BANDS] = {};
1482 struct ieee80211_scan_ies dummy_ie_desc;
1483
1484 /*
1485 * Do not send DS Channel parameter for directed probe requests
1486 * in order to maximize the chance that we get a response. Some
1487 * badly-behaved APs don't respond when this parameter is included.
1488 */
1489 chandef.width = sdata->vif.bss_conf.chanreq.oper.width;
1490 if (flags & IEEE80211_PROBE_FLAG_DIRECTED)
1491 chandef.chan = NULL;
1492 else
1493 chandef.chan = chan;
1494
1495 skb = ieee80211_probereq_get(hw: &local->hw, src_addr: src, ssid, ssid_len,
1496 tailroom: local->scan_ies_len + ie_len);
1497 if (!skb)
1498 return NULL;
1499
1500 rate_masks[chan->band] = ratemask;
1501 ieee80211_put_preq_ies(skb, sdata, ie_desc: &dummy_ie_desc,
1502 ie, ie_len, BIT(chan->band),
1503 rate_masks, chandef: &chandef, flags);
1504
1505 if (dst) {
1506 mgmt = (struct ieee80211_mgmt *) skb->data;
1507 memcpy(to: mgmt->da, from: dst, ETH_ALEN);
1508 memcpy(to: mgmt->bssid, from: dst, ETH_ALEN);
1509 }
1510
1511 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1512
1513 return skb;
1514}
1515
1516u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata,
1517 struct ieee802_11_elems *elems,
1518 enum nl80211_band band, u32 *basic_rates)
1519{
1520 struct ieee80211_supported_band *sband;
1521 size_t num_rates;
1522 u32 supp_rates;
1523 int i, j;
1524
1525 sband = sdata->local->hw.wiphy->bands[band];
1526 if (WARN_ON(!sband))
1527 return 1;
1528
1529 num_rates = sband->n_bitrates;
1530 supp_rates = 0;
1531 for (i = 0; i < elems->supp_rates_len +
1532 elems->ext_supp_rates_len; i++) {
1533 u8 rate = 0;
1534 int own_rate;
1535 bool is_basic;
1536 if (i < elems->supp_rates_len)
1537 rate = elems->supp_rates[i];
1538 else if (elems->ext_supp_rates)
1539 rate = elems->ext_supp_rates
1540 [i - elems->supp_rates_len];
1541 own_rate = 5 * (rate & 0x7f);
1542 is_basic = !!(rate & 0x80);
1543
1544 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1545 continue;
1546
1547 for (j = 0; j < num_rates; j++) {
1548 int brate = sband->bitrates[j].bitrate;
1549
1550 if (brate == own_rate) {
1551 supp_rates |= BIT(j);
1552 if (basic_rates && is_basic)
1553 *basic_rates |= BIT(j);
1554 }
1555 }
1556 }
1557 return supp_rates;
1558}
1559
1560void ieee80211_stop_device(struct ieee80211_local *local, bool suspend)
1561{
1562 local_bh_disable();
1563 ieee80211_handle_queued_frames(local);
1564 local_bh_enable();
1565
1566 ieee80211_led_radio(local, enabled: false);
1567 ieee80211_mod_tpt_led_trig(local, types_on: 0, types_off: IEEE80211_TPT_LEDTRIG_FL_RADIO);
1568
1569 wiphy_work_cancel(wiphy: local->hw.wiphy, work: &local->reconfig_filter);
1570
1571 flush_workqueue(local->workqueue);
1572 wiphy_work_flush(wiphy: local->hw.wiphy, NULL);
1573 drv_stop(local, suspend);
1574}
1575
1576static void ieee80211_flush_completed_scan(struct ieee80211_local *local,
1577 bool aborted)
1578{
1579 /* It's possible that we don't handle the scan completion in
1580 * time during suspend, so if it's still marked as completed
1581 * here, queue the work and flush it to clean things up.
1582 * Instead of calling the worker function directly here, we
1583 * really queue it to avoid potential races with other flows
1584 * scheduling the same work.
1585 */
1586 if (test_bit(SCAN_COMPLETED, &local->scanning)) {
1587 /* If coming from reconfiguration failure, abort the scan so
1588 * we don't attempt to continue a partial HW scan - which is
1589 * possible otherwise if (e.g.) the 2.4 GHz portion was the
1590 * completed scan, and a 5 GHz portion is still pending.
1591 */
1592 if (aborted)
1593 set_bit(nr: SCAN_ABORTED, addr: &local->scanning);
1594 wiphy_delayed_work_queue(wiphy: local->hw.wiphy, dwork: &local->scan_work, delay: 0);
1595 wiphy_delayed_work_flush(wiphy: local->hw.wiphy, dwork: &local->scan_work);
1596 }
1597}
1598
1599static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local)
1600{
1601 struct ieee80211_sub_if_data *sdata;
1602 struct ieee80211_chanctx *ctx;
1603
1604 lockdep_assert_wiphy(local->hw.wiphy);
1605
1606 /*
1607 * We get here if during resume the device can't be restarted properly.
1608 * We might also get here if this happens during HW reset, which is a
1609 * slightly different situation and we need to drop all connections in
1610 * the latter case.
1611 *
1612 * Ask cfg80211 to turn off all interfaces, this will result in more
1613 * warnings but at least we'll then get into a clean stopped state.
1614 */
1615
1616 local->resuming = false;
1617 local->suspended = false;
1618 local->in_reconfig = false;
1619 local->reconfig_failure = true;
1620
1621 ieee80211_flush_completed_scan(local, aborted: true);
1622
1623 /* scheduled scan clearly can't be running any more, but tell
1624 * cfg80211 and clear local state
1625 */
1626 ieee80211_sched_scan_end(local);
1627
1628 list_for_each_entry(sdata, &local->interfaces, list)
1629 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER;
1630
1631 /* Mark channel contexts as not being in the driver any more to avoid
1632 * removing them from the driver during the shutdown process...
1633 */
1634 list_for_each_entry(ctx, &local->chanctx_list, list)
1635 ctx->driver_present = false;
1636}
1637
1638static void ieee80211_assign_chanctx(struct ieee80211_local *local,
1639 struct ieee80211_sub_if_data *sdata,
1640 struct ieee80211_link_data *link)
1641{
1642 struct ieee80211_chanctx_conf *conf;
1643 struct ieee80211_chanctx *ctx;
1644
1645 lockdep_assert_wiphy(local->hw.wiphy);
1646
1647 conf = rcu_dereference_protected(link->conf->chanctx_conf,
1648 lockdep_is_held(&local->hw.wiphy->mtx));
1649 if (conf) {
1650 ctx = container_of(conf, struct ieee80211_chanctx, conf);
1651 drv_assign_vif_chanctx(local, sdata, link_conf: link->conf, ctx);
1652 }
1653}
1654
1655static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata)
1656{
1657 struct ieee80211_local *local = sdata->local;
1658 struct sta_info *sta;
1659
1660 lockdep_assert_wiphy(local->hw.wiphy);
1661
1662 /* add STAs back */
1663 list_for_each_entry(sta, &local->sta_list, list) {
1664 enum ieee80211_sta_state state;
1665
1666 if (!sta->uploaded || sta->sdata != sdata)
1667 continue;
1668
1669 for (state = IEEE80211_STA_NOTEXIST;
1670 state < sta->sta_state; state++)
1671 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1672 state + 1));
1673 }
1674}
1675
1676static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata)
1677{
1678 struct cfg80211_nan_func *func, **funcs;
1679 int res, id, i = 0;
1680
1681 res = drv_start_nan(local: sdata->local, sdata,
1682 conf: &sdata->u.nan.conf);
1683 if (WARN_ON(res))
1684 return res;
1685
1686 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1,
1687 sizeof(*funcs),
1688 GFP_KERNEL);
1689 if (!funcs)
1690 return -ENOMEM;
1691
1692 /* Add all the functions:
1693 * This is a little bit ugly. We need to call a potentially sleeping
1694 * callback for each NAN function, so we can't hold the spinlock.
1695 */
1696 spin_lock_bh(lock: &sdata->u.nan.func_lock);
1697
1698 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id)
1699 funcs[i++] = func;
1700
1701 spin_unlock_bh(lock: &sdata->u.nan.func_lock);
1702
1703 for (i = 0; funcs[i]; i++) {
1704 res = drv_add_nan_func(local: sdata->local, sdata, nan_func: funcs[i]);
1705 if (WARN_ON(res))
1706 ieee80211_nan_func_terminated(vif: &sdata->vif,
1707 inst_id: funcs[i]->instance_id,
1708 reason: NL80211_NAN_FUNC_TERM_REASON_ERROR,
1709 GFP_KERNEL);
1710 }
1711
1712 kfree(objp: funcs);
1713
1714 return 0;
1715}
1716
1717static void ieee80211_reconfig_ap_links(struct ieee80211_local *local,
1718 struct ieee80211_sub_if_data *sdata,
1719 u64 changed)
1720{
1721 int link_id;
1722
1723 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) {
1724 struct ieee80211_link_data *link;
1725
1726 if (!(sdata->vif.active_links & BIT(link_id)))
1727 continue;
1728
1729 link = sdata_dereference(sdata->link[link_id], sdata);
1730 if (!link)
1731 continue;
1732
1733 if (rcu_access_pointer(link->u.ap.beacon))
1734 drv_start_ap(local, sdata, link_conf: link->conf);
1735
1736 if (!link->conf->enable_beacon)
1737 continue;
1738
1739 changed |= BSS_CHANGED_BEACON |
1740 BSS_CHANGED_BEACON_ENABLED;
1741
1742 ieee80211_link_info_change_notify(sdata, link, changed);
1743 }
1744}
1745
1746int ieee80211_reconfig(struct ieee80211_local *local)
1747{
1748 struct ieee80211_hw *hw = &local->hw;
1749 struct ieee80211_sub_if_data *sdata;
1750 struct ieee80211_chanctx *ctx;
1751 struct sta_info *sta;
1752 int res, i;
1753 bool reconfig_due_to_wowlan = false;
1754 struct ieee80211_sub_if_data *sched_scan_sdata;
1755 struct cfg80211_sched_scan_request *sched_scan_req;
1756 bool sched_scan_stopped = false;
1757 bool suspended = local->suspended;
1758 bool in_reconfig = false;
1759
1760 lockdep_assert_wiphy(local->hw.wiphy);
1761
1762 /* nothing to do if HW shouldn't run */
1763 if (!local->open_count)
1764 goto wake_up;
1765
1766#ifdef CONFIG_PM
1767 if (suspended)
1768 local->resuming = true;
1769
1770 if (local->wowlan) {
1771 /*
1772 * In the wowlan case, both mac80211 and the device
1773 * are functional when the resume op is called, so
1774 * clear local->suspended so the device could operate
1775 * normally (e.g. pass rx frames).
1776 */
1777 local->suspended = false;
1778 res = drv_resume(local);
1779 local->wowlan = false;
1780 if (res < 0) {
1781 local->resuming = false;
1782 return res;
1783 }
1784 if (res == 0)
1785 goto wake_up;
1786 WARN_ON(res > 1);
1787 /*
1788 * res is 1, which means the driver requested
1789 * to go through a regular reset on wakeup.
1790 * restore local->suspended in this case.
1791 */
1792 reconfig_due_to_wowlan = true;
1793 local->suspended = true;
1794 }
1795#endif
1796
1797 /*
1798 * In case of hw_restart during suspend (without wowlan),
1799 * cancel restart work, as we are reconfiguring the device
1800 * anyway.
1801 * Note that restart_work is scheduled on a frozen workqueue,
1802 * so we can't deadlock in this case.
1803 */
1804 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan)
1805 cancel_work_sync(work: &local->restart_work);
1806
1807 local->started = false;
1808
1809 /*
1810 * Upon resume hardware can sometimes be goofy due to
1811 * various platform / driver / bus issues, so restarting
1812 * the device may at times not work immediately. Propagate
1813 * the error.
1814 */
1815 res = drv_start(local);
1816 if (res) {
1817 if (suspended)
1818 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n");
1819 else
1820 WARN(1, "Hardware became unavailable during restart.\n");
1821 ieee80211_wake_queues_by_reason(hw, queues: IEEE80211_MAX_QUEUE_MAP,
1822 reason: IEEE80211_QUEUE_STOP_REASON_SUSPEND,
1823 refcounted: false);
1824 ieee80211_handle_reconfig_failure(local);
1825 return res;
1826 }
1827
1828 /* setup fragmentation threshold */
1829 drv_set_frag_threshold(local, radio_idx: -1, value: hw->wiphy->frag_threshold);
1830
1831 /* setup RTS threshold */
1832 if (hw->wiphy->n_radio > 0) {
1833 for (i = 0; i < hw->wiphy->n_radio; i++) {
1834 u32 rts_threshold =
1835 hw->wiphy->radio_cfg[i].rts_threshold;
1836
1837 drv_set_rts_threshold(local, radio_idx: i, value: rts_threshold);
1838 }
1839 } else {
1840 drv_set_rts_threshold(local, radio_idx: -1, value: hw->wiphy->rts_threshold);
1841 }
1842
1843 /* reset coverage class */
1844 drv_set_coverage_class(local, radio_idx: -1, value: hw->wiphy->coverage_class);
1845
1846 ieee80211_led_radio(local, enabled: true);
1847 ieee80211_mod_tpt_led_trig(local,
1848 types_on: IEEE80211_TPT_LEDTRIG_FL_RADIO, types_off: 0);
1849
1850 /* add interfaces */
1851 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata);
1852 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) {
1853 /* in HW restart it exists already */
1854 WARN_ON(local->resuming);
1855 res = drv_add_interface(local, sdata);
1856 if (WARN_ON(res)) {
1857 RCU_INIT_POINTER(local->monitor_sdata, NULL);
1858 synchronize_net();
1859 kfree(objp: sdata);
1860 }
1861 }
1862
1863 list_for_each_entry(sdata, &local->interfaces, list) {
1864 if (sdata->vif.type == NL80211_IFTYPE_MONITOR &&
1865 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR))
1866 continue;
1867 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1868 ieee80211_sdata_running(sdata)) {
1869 res = drv_add_interface(local, sdata);
1870 if (WARN_ON(res))
1871 break;
1872 }
1873 }
1874
1875 /* If adding any of the interfaces failed above, roll back and
1876 * report failure.
1877 */
1878 if (res) {
1879 list_for_each_entry_continue_reverse(sdata, &local->interfaces,
1880 list) {
1881 if (sdata->vif.type == NL80211_IFTYPE_MONITOR &&
1882 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR))
1883 continue;
1884 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1885 ieee80211_sdata_running(sdata))
1886 drv_remove_interface(local, sdata);
1887 }
1888 ieee80211_handle_reconfig_failure(local);
1889 return res;
1890 }
1891
1892 /* add channel contexts */
1893 list_for_each_entry(ctx, &local->chanctx_list, list)
1894 if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER)
1895 WARN_ON(drv_add_chanctx(local, ctx));
1896
1897 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata);
1898 if (sdata && ieee80211_sdata_running(sdata))
1899 ieee80211_assign_chanctx(local, sdata, link: &sdata->deflink);
1900
1901 /* reconfigure hardware */
1902 ieee80211_hw_config(local, radio_idx: -1, changed: IEEE80211_CONF_CHANGE_LISTEN_INTERVAL |
1903 IEEE80211_CONF_CHANGE_MONITOR |
1904 IEEE80211_CONF_CHANGE_PS |
1905 IEEE80211_CONF_CHANGE_RETRY_LIMITS |
1906 IEEE80211_CONF_CHANGE_IDLE);
1907
1908 ieee80211_configure_filter(local);
1909
1910 /* Finally also reconfigure all the BSS information */
1911 list_for_each_entry(sdata, &local->interfaces, list) {
1912 /* common change flags for all interface types - link only */
1913 u64 changed = BSS_CHANGED_ERP_CTS_PROT |
1914 BSS_CHANGED_ERP_PREAMBLE |
1915 BSS_CHANGED_ERP_SLOT |
1916 BSS_CHANGED_HT |
1917 BSS_CHANGED_BASIC_RATES |
1918 BSS_CHANGED_BEACON_INT |
1919 BSS_CHANGED_BSSID |
1920 BSS_CHANGED_CQM |
1921 BSS_CHANGED_QOS |
1922 BSS_CHANGED_TXPOWER |
1923 BSS_CHANGED_MCAST_RATE;
1924 struct ieee80211_link_data *link = NULL;
1925 unsigned int link_id;
1926 u32 active_links = 0;
1927
1928 if (!ieee80211_sdata_running(sdata))
1929 continue;
1930
1931 if (ieee80211_vif_is_mld(vif: &sdata->vif)) {
1932 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = {
1933 [0] = &sdata->vif.bss_conf,
1934 };
1935
1936 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
1937 /* start with a single active link */
1938 active_links = sdata->vif.active_links;
1939 link_id = ffs(active_links) - 1;
1940 sdata->vif.active_links = BIT(link_id);
1941 }
1942
1943 drv_change_vif_links(local, sdata, old_links: 0,
1944 new_links: sdata->vif.active_links,
1945 old);
1946 }
1947
1948 sdata->restart_active_links = active_links;
1949
1950 for (link_id = 0;
1951 link_id < ARRAY_SIZE(sdata->vif.link_conf);
1952 link_id++) {
1953 if (!ieee80211_vif_link_active(vif: &sdata->vif, link_id))
1954 continue;
1955
1956 link = sdata_dereference(sdata->link[link_id], sdata);
1957 if (!link)
1958 continue;
1959
1960 ieee80211_assign_chanctx(local, sdata, link);
1961 }
1962
1963 switch (sdata->vif.type) {
1964 case NL80211_IFTYPE_AP_VLAN:
1965 case NL80211_IFTYPE_MONITOR:
1966 break;
1967 case NL80211_IFTYPE_ADHOC:
1968 if (sdata->vif.cfg.ibss_joined)
1969 WARN_ON(drv_join_ibss(local, sdata));
1970 fallthrough;
1971 default:
1972 ieee80211_reconfig_stations(sdata);
1973 fallthrough;
1974 case NL80211_IFTYPE_AP: /* AP stations are handled later */
1975 for (i = 0; i < IEEE80211_NUM_ACS; i++)
1976 drv_conf_tx(local, link: &sdata->deflink, ac: i,
1977 params: &sdata->deflink.tx_conf[i]);
1978 break;
1979 }
1980
1981 if (sdata->vif.bss_conf.mu_mimo_owner)
1982 changed |= BSS_CHANGED_MU_GROUPS;
1983
1984 if (!ieee80211_vif_is_mld(vif: &sdata->vif))
1985 changed |= BSS_CHANGED_IDLE;
1986
1987 switch (sdata->vif.type) {
1988 case NL80211_IFTYPE_STATION:
1989 if (!ieee80211_vif_is_mld(vif: &sdata->vif)) {
1990 changed |= BSS_CHANGED_ASSOC |
1991 BSS_CHANGED_ARP_FILTER |
1992 BSS_CHANGED_PS;
1993
1994 /* Re-send beacon info report to the driver */
1995 if (sdata->deflink.u.mgd.have_beacon)
1996 changed |= BSS_CHANGED_BEACON_INFO;
1997
1998 if (sdata->vif.bss_conf.max_idle_period ||
1999 sdata->vif.bss_conf.protected_keep_alive)
2000 changed |= BSS_CHANGED_KEEP_ALIVE;
2001
2002 ieee80211_bss_info_change_notify(sdata,
2003 changed);
2004 } else if (!WARN_ON(!link)) {
2005 ieee80211_link_info_change_notify(sdata, link,
2006 changed);
2007 changed = BSS_CHANGED_ASSOC |
2008 BSS_CHANGED_IDLE |
2009 BSS_CHANGED_PS |
2010 BSS_CHANGED_ARP_FILTER;
2011 ieee80211_vif_cfg_change_notify(sdata, changed);
2012 }
2013 break;
2014 case NL80211_IFTYPE_OCB:
2015 changed |= BSS_CHANGED_OCB;
2016 ieee80211_bss_info_change_notify(sdata, changed);
2017 break;
2018 case NL80211_IFTYPE_ADHOC:
2019 changed |= BSS_CHANGED_IBSS;
2020 fallthrough;
2021 case NL80211_IFTYPE_AP:
2022 changed |= BSS_CHANGED_P2P_PS;
2023
2024 if (ieee80211_vif_is_mld(vif: &sdata->vif))
2025 ieee80211_vif_cfg_change_notify(sdata,
2026 changed: BSS_CHANGED_SSID);
2027 else
2028 changed |= BSS_CHANGED_SSID;
2029
2030 if (sdata->vif.bss_conf.ftm_responder == 1 &&
2031 wiphy_ext_feature_isset(wiphy: sdata->local->hw.wiphy,
2032 ftidx: NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER))
2033 changed |= BSS_CHANGED_FTM_RESPONDER;
2034
2035 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2036 changed |= BSS_CHANGED_AP_PROBE_RESP;
2037
2038 if (ieee80211_vif_is_mld(vif: &sdata->vif)) {
2039 ieee80211_reconfig_ap_links(local,
2040 sdata,
2041 changed);
2042 break;
2043 }
2044
2045 if (rcu_access_pointer(sdata->deflink.u.ap.beacon))
2046 drv_start_ap(local, sdata,
2047 link_conf: sdata->deflink.conf);
2048 }
2049 fallthrough;
2050 case NL80211_IFTYPE_MESH_POINT:
2051 if (sdata->vif.bss_conf.enable_beacon) {
2052 changed |= BSS_CHANGED_BEACON |
2053 BSS_CHANGED_BEACON_ENABLED;
2054 ieee80211_bss_info_change_notify(sdata, changed);
2055 }
2056 break;
2057 case NL80211_IFTYPE_NAN:
2058 res = ieee80211_reconfig_nan(sdata);
2059 if (res < 0) {
2060 ieee80211_handle_reconfig_failure(local);
2061 return res;
2062 }
2063 break;
2064 case NL80211_IFTYPE_AP_VLAN:
2065 case NL80211_IFTYPE_MONITOR:
2066 case NL80211_IFTYPE_P2P_DEVICE:
2067 /* nothing to do */
2068 break;
2069 case NL80211_IFTYPE_UNSPECIFIED:
2070 case NUM_NL80211_IFTYPES:
2071 case NL80211_IFTYPE_P2P_CLIENT:
2072 case NL80211_IFTYPE_P2P_GO:
2073 case NL80211_IFTYPE_WDS:
2074 WARN_ON(1);
2075 break;
2076 }
2077 }
2078
2079 ieee80211_recalc_ps(local);
2080
2081 /*
2082 * The sta might be in psm against the ap (e.g. because
2083 * this was the state before a hw restart), so we
2084 * explicitly send a null packet in order to make sure
2085 * it'll sync against the ap (and get out of psm).
2086 */
2087 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
2088 list_for_each_entry(sdata, &local->interfaces, list) {
2089 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2090 continue;
2091 if (!sdata->u.mgd.associated)
2092 continue;
2093
2094 ieee80211_send_nullfunc(local, sdata, powersave: false);
2095 }
2096 }
2097
2098 /* APs are now beaconing, add back stations */
2099 list_for_each_entry(sdata, &local->interfaces, list) {
2100 if (!ieee80211_sdata_running(sdata))
2101 continue;
2102
2103 switch (sdata->vif.type) {
2104 case NL80211_IFTYPE_AP_VLAN:
2105 case NL80211_IFTYPE_AP:
2106 ieee80211_reconfig_stations(sdata);
2107 break;
2108 default:
2109 break;
2110 }
2111 }
2112
2113 /* add back keys */
2114 list_for_each_entry(sdata, &local->interfaces, list)
2115 ieee80211_reenable_keys(sdata);
2116
2117 /* re-enable multi-link for client interfaces */
2118 list_for_each_entry(sdata, &local->interfaces, list) {
2119 if (sdata->restart_active_links)
2120 ieee80211_set_active_links(vif: &sdata->vif,
2121 active_links: sdata->restart_active_links);
2122 /*
2123 * If a link switch was scheduled before the restart, and ran
2124 * before reconfig, it will do nothing, so re-schedule.
2125 */
2126 if (sdata->desired_active_links)
2127 wiphy_work_queue(wiphy: sdata->local->hw.wiphy,
2128 work: &sdata->activate_links_work);
2129 }
2130
2131 /* Reconfigure sched scan if it was interrupted by FW restart */
2132 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata,
2133 lockdep_is_held(&local->hw.wiphy->mtx));
2134 sched_scan_req = rcu_dereference_protected(local->sched_scan_req,
2135 lockdep_is_held(&local->hw.wiphy->mtx));
2136 if (sched_scan_sdata && sched_scan_req)
2137 /*
2138 * Sched scan stopped, but we don't want to report it. Instead,
2139 * we're trying to reschedule. However, if more than one scan
2140 * plan was set, we cannot reschedule since we don't know which
2141 * scan plan was currently running (and some scan plans may have
2142 * already finished).
2143 */
2144 if (sched_scan_req->n_scan_plans > 1 ||
2145 __ieee80211_request_sched_scan_start(sdata: sched_scan_sdata,
2146 req: sched_scan_req)) {
2147 RCU_INIT_POINTER(local->sched_scan_sdata, NULL);
2148 RCU_INIT_POINTER(local->sched_scan_req, NULL);
2149 sched_scan_stopped = true;
2150 }
2151
2152 if (sched_scan_stopped)
2153 cfg80211_sched_scan_stopped_locked(wiphy: local->hw.wiphy, reqid: 0);
2154
2155 wake_up:
2156 /*
2157 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
2158 * sessions can be established after a resume.
2159 *
2160 * Also tear down aggregation sessions since reconfiguring
2161 * them in a hardware restart scenario is not easily done
2162 * right now, and the hardware will have lost information
2163 * about the sessions, but we and the AP still think they
2164 * are active. This is really a workaround though.
2165 */
2166 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) {
2167 list_for_each_entry(sta, &local->sta_list, list) {
2168 if (!local->resuming)
2169 ieee80211_sta_tear_down_BA_sessions(
2170 sta, reason: AGG_STOP_LOCAL_REQUEST);
2171 clear_sta_flag(sta, flag: WLAN_STA_BLOCK_BA);
2172 }
2173 }
2174
2175 /*
2176 * If this is for hw restart things are still running.
2177 * We may want to change that later, however.
2178 */
2179 if (local->open_count && (!suspended || reconfig_due_to_wowlan))
2180 drv_reconfig_complete(local, reconfig_type: IEEE80211_RECONFIG_TYPE_RESTART);
2181
2182 if (local->in_reconfig) {
2183 in_reconfig = local->in_reconfig;
2184 local->in_reconfig = false;
2185 barrier();
2186
2187 ieee80211_reconfig_roc(local);
2188
2189 /* Requeue all works */
2190 list_for_each_entry(sdata, &local->interfaces, list) {
2191 if (ieee80211_sdata_running(sdata))
2192 wiphy_work_queue(wiphy: local->hw.wiphy, work: &sdata->work);
2193 }
2194 }
2195
2196 ieee80211_wake_queues_by_reason(hw, queues: IEEE80211_MAX_QUEUE_MAP,
2197 reason: IEEE80211_QUEUE_STOP_REASON_SUSPEND,
2198 refcounted: false);
2199
2200 if (in_reconfig) {
2201 list_for_each_entry(sdata, &local->interfaces, list) {
2202 if (!ieee80211_sdata_running(sdata))
2203 continue;
2204 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2205 ieee80211_sta_restart(sdata);
2206 }
2207 }
2208
2209 if (local->virt_monitors > 0 &&
2210 local->virt_monitors == local->open_count)
2211 ieee80211_add_virtual_monitor(local);
2212
2213 if (!suspended)
2214 return 0;
2215
2216#ifdef CONFIG_PM
2217 /* first set suspended false, then resuming */
2218 local->suspended = false;
2219 mb();
2220 local->resuming = false;
2221
2222 ieee80211_flush_completed_scan(local, aborted: false);
2223
2224 if (local->open_count && !reconfig_due_to_wowlan)
2225 drv_reconfig_complete(local, reconfig_type: IEEE80211_RECONFIG_TYPE_SUSPEND);
2226
2227 list_for_each_entry(sdata, &local->interfaces, list) {
2228 if (!ieee80211_sdata_running(sdata))
2229 continue;
2230 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2231 ieee80211_sta_restart(sdata);
2232 }
2233
2234 mod_timer(timer: &local->sta_cleanup, expires: jiffies + 1);
2235#else
2236 WARN_ON(1);
2237#endif
2238
2239 return 0;
2240}
2241
2242static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag)
2243{
2244 struct ieee80211_sub_if_data *sdata;
2245 struct ieee80211_local *local;
2246 struct ieee80211_key *key;
2247
2248 if (WARN_ON(!vif))
2249 return;
2250
2251 sdata = vif_to_sdata(p: vif);
2252 local = sdata->local;
2253
2254 lockdep_assert_wiphy(local->hw.wiphy);
2255
2256 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME &&
2257 !local->resuming))
2258 return;
2259
2260 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART &&
2261 !local->in_reconfig))
2262 return;
2263
2264 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2265 return;
2266
2267 sdata->flags |= flag;
2268
2269 list_for_each_entry(key, &sdata->key_list, list)
2270 key->flags |= KEY_FLAG_TAINTED;
2271}
2272
2273void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif)
2274{
2275 ieee80211_reconfig_disconnect(vif, flag: IEEE80211_SDATA_DISCONNECT_HW_RESTART);
2276}
2277EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect);
2278
2279void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
2280{
2281 ieee80211_reconfig_disconnect(vif, flag: IEEE80211_SDATA_DISCONNECT_RESUME);
2282}
2283EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
2284
2285void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata,
2286 struct ieee80211_link_data *link)
2287{
2288 struct ieee80211_local *local = sdata->local;
2289 struct ieee80211_chanctx_conf *chanctx_conf;
2290 struct ieee80211_chanctx *chanctx;
2291
2292 lockdep_assert_wiphy(local->hw.wiphy);
2293
2294 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf,
2295 lockdep_is_held(&local->hw.wiphy->mtx));
2296
2297 /*
2298 * This function can be called from a work, thus it may be possible
2299 * that the chanctx_conf is removed (due to a disconnection, for
2300 * example).
2301 * So nothing should be done in such case.
2302 */
2303 if (!chanctx_conf)
2304 return;
2305
2306 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2307 ieee80211_recalc_smps_chanctx(local, chanctx);
2308}
2309
2310void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata,
2311 int link_id)
2312{
2313 struct ieee80211_local *local = sdata->local;
2314 struct ieee80211_chanctx_conf *chanctx_conf;
2315 struct ieee80211_chanctx *chanctx;
2316 int i;
2317
2318 lockdep_assert_wiphy(local->hw.wiphy);
2319
2320 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) {
2321 struct ieee80211_bss_conf *bss_conf;
2322
2323 if (link_id >= 0 && link_id != i)
2324 continue;
2325
2326 rcu_read_lock();
2327 bss_conf = rcu_dereference(sdata->vif.link_conf[i]);
2328 if (!bss_conf) {
2329 rcu_read_unlock();
2330 continue;
2331 }
2332
2333 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf,
2334 lockdep_is_held(&local->hw.wiphy->mtx));
2335 /*
2336 * Since we hold the wiphy mutex (checked above)
2337 * we can take the chanctx_conf pointer out of the
2338 * RCU critical section, it cannot go away without
2339 * the mutex. Just the way we reached it could - in
2340 * theory - go away, but we don't really care and
2341 * it really shouldn't happen anyway.
2342 */
2343 rcu_read_unlock();
2344
2345 if (!chanctx_conf)
2346 return;
2347
2348 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx,
2349 conf);
2350 ieee80211_recalc_chanctx_min_def(local, ctx: chanctx, NULL, check_reserved: false);
2351 }
2352}
2353
2354size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
2355{
2356 size_t pos = offset;
2357
2358 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
2359 pos += 2 + ies[pos + 1];
2360
2361 return pos;
2362}
2363
2364u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
2365 u16 cap)
2366{
2367 __le16 tmp;
2368
2369 *pos++ = WLAN_EID_HT_CAPABILITY;
2370 *pos++ = sizeof(struct ieee80211_ht_cap);
2371 memset(s: pos, c: 0, n: sizeof(struct ieee80211_ht_cap));
2372
2373 /* capability flags */
2374 tmp = cpu_to_le16(cap);
2375 memcpy(to: pos, from: &tmp, len: sizeof(u16));
2376 pos += sizeof(u16);
2377
2378 /* AMPDU parameters */
2379 *pos++ = ht_cap->ampdu_factor |
2380 (ht_cap->ampdu_density <<
2381 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
2382
2383 /* MCS set */
2384 memcpy(to: pos, from: &ht_cap->mcs, len: sizeof(ht_cap->mcs));
2385 pos += sizeof(ht_cap->mcs);
2386
2387 /* extended capabilities */
2388 pos += sizeof(__le16);
2389
2390 /* BF capabilities */
2391 pos += sizeof(__le32);
2392
2393 /* antenna selection */
2394 pos += sizeof(u8);
2395
2396 return pos;
2397}
2398
2399u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
2400 u32 cap)
2401{
2402 __le32 tmp;
2403
2404 *pos++ = WLAN_EID_VHT_CAPABILITY;
2405 *pos++ = sizeof(struct ieee80211_vht_cap);
2406 memset(s: pos, c: 0, n: sizeof(struct ieee80211_vht_cap));
2407
2408 /* capability flags */
2409 tmp = cpu_to_le32(cap);
2410 memcpy(to: pos, from: &tmp, len: sizeof(u32));
2411 pos += sizeof(u32);
2412
2413 /* VHT MCS set */
2414 memcpy(to: pos, from: &vht_cap->vht_mcs, len: sizeof(vht_cap->vht_mcs));
2415 pos += sizeof(vht_cap->vht_mcs);
2416
2417 return pos;
2418}
2419
2420/* this may return more than ieee80211_put_he_6ghz_cap() will need */
2421u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata)
2422{
2423 const struct ieee80211_sta_he_cap *he_cap;
2424 struct ieee80211_supported_band *sband;
2425 u8 n;
2426
2427 sband = ieee80211_get_sband(sdata);
2428 if (!sband)
2429 return 0;
2430
2431 he_cap = ieee80211_get_he_iftype_cap_vif(sband, vif: &sdata->vif);
2432 if (!he_cap)
2433 return 0;
2434
2435 n = ieee80211_he_mcs_nss_size(he_cap: &he_cap->he_cap_elem);
2436 return 2 + 1 +
2437 sizeof(he_cap->he_cap_elem) + n +
2438 ieee80211_he_ppe_size(ppe_thres_hdr: he_cap->ppe_thres[0],
2439 phy_cap_info: he_cap->he_cap_elem.phy_cap_info);
2440}
2441
2442static void
2443ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn,
2444 const struct ieee80211_sta_he_cap *he_cap,
2445 struct ieee80211_he_cap_elem *elem)
2446{
2447 u8 ru_limit, max_ru;
2448
2449 *elem = he_cap->he_cap_elem;
2450
2451 switch (conn->bw_limit) {
2452 case IEEE80211_CONN_BW_LIMIT_20:
2453 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242;
2454 break;
2455 case IEEE80211_CONN_BW_LIMIT_40:
2456 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484;
2457 break;
2458 case IEEE80211_CONN_BW_LIMIT_80:
2459 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996;
2460 break;
2461 default:
2462 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996;
2463 break;
2464 }
2465
2466 max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK;
2467 max_ru = min(max_ru, ru_limit);
2468 elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK;
2469 elem->phy_cap_info[8] |= max_ru;
2470
2471 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) {
2472 elem->phy_cap_info[0] &=
2473 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
2474 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G);
2475 elem->phy_cap_info[9] &=
2476 ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM;
2477 }
2478
2479 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) {
2480 elem->phy_cap_info[0] &=
2481 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
2482 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G);
2483 elem->phy_cap_info[5] &=
2484 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK;
2485 elem->phy_cap_info[7] &=
2486 ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ |
2487 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ);
2488 }
2489}
2490
2491int ieee80211_put_he_cap(struct sk_buff *skb,
2492 struct ieee80211_sub_if_data *sdata,
2493 const struct ieee80211_supported_band *sband,
2494 const struct ieee80211_conn_settings *conn)
2495{
2496 const struct ieee80211_sta_he_cap *he_cap;
2497 struct ieee80211_he_cap_elem elem;
2498 u8 *len;
2499 u8 n;
2500 u8 ie_len;
2501
2502 if (!conn)
2503 conn = &ieee80211_conn_settings_unlimited;
2504
2505 he_cap = ieee80211_get_he_iftype_cap_vif(sband, vif: &sdata->vif);
2506 if (!he_cap)
2507 return 0;
2508
2509 /* modify on stack first to calculate 'n' and 'ie_len' correctly */
2510 ieee80211_get_adjusted_he_cap(conn, he_cap, elem: &elem);
2511
2512 n = ieee80211_he_mcs_nss_size(he_cap: &elem);
2513 ie_len = 2 + 1 +
2514 sizeof(he_cap->he_cap_elem) + n +
2515 ieee80211_he_ppe_size(ppe_thres_hdr: he_cap->ppe_thres[0],
2516 phy_cap_info: he_cap->he_cap_elem.phy_cap_info);
2517
2518 if (skb_tailroom(skb) < ie_len)
2519 return -ENOBUFS;
2520
2521 skb_put_u8(skb, val: WLAN_EID_EXTENSION);
2522 len = skb_put(skb, len: 1); /* We'll set the size later below */
2523 skb_put_u8(skb, val: WLAN_EID_EXT_HE_CAPABILITY);
2524
2525 /* Fixed data */
2526 skb_put_data(skb, data: &elem, len: sizeof(elem));
2527
2528 skb_put_data(skb, data: &he_cap->he_mcs_nss_supp, len: n);
2529
2530 /* Check if PPE Threshold should be present */
2531 if ((he_cap->he_cap_elem.phy_cap_info[6] &
2532 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2533 goto end;
2534
2535 /*
2536 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm:
2537 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK)
2538 */
2539 n = hweight8(he_cap->ppe_thres[0] &
2540 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2541 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >>
2542 IEEE80211_PPE_THRES_NSS_POS));
2543
2544 /*
2545 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2546 * total size.
2547 */
2548 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2549 n = DIV_ROUND_UP(n, 8);
2550
2551 /* Copy PPE Thresholds */
2552 skb_put_data(skb, data: &he_cap->ppe_thres, len: n);
2553
2554end:
2555 *len = skb_tail_pointer(skb) - len - 1;
2556 return 0;
2557}
2558
2559int ieee80211_put_reg_conn(struct sk_buff *skb,
2560 enum ieee80211_channel_flags flags)
2561{
2562 u8 reg_conn = IEEE80211_REG_CONN_LPI_VALID |
2563 IEEE80211_REG_CONN_LPI_VALUE |
2564 IEEE80211_REG_CONN_SP_VALID;
2565
2566 if (!(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT))
2567 reg_conn |= IEEE80211_REG_CONN_SP_VALUE;
2568
2569 skb_put_u8(skb, val: WLAN_EID_EXTENSION);
2570 skb_put_u8(skb, val: 1 + sizeof(reg_conn));
2571 skb_put_u8(skb, val: WLAN_EID_EXT_NON_AP_STA_REG_CON);
2572 skb_put_u8(skb, val: reg_conn);
2573 return 0;
2574}
2575
2576int ieee80211_put_he_6ghz_cap(struct sk_buff *skb,
2577 struct ieee80211_sub_if_data *sdata,
2578 enum ieee80211_smps_mode smps_mode)
2579{
2580 struct ieee80211_supported_band *sband;
2581 const struct ieee80211_sband_iftype_data *iftd;
2582 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(vif: &sdata->vif);
2583 __le16 cap;
2584
2585 if (!cfg80211_any_usable_channels(wiphy: sdata->local->hw.wiphy,
2586 BIT(NL80211_BAND_6GHZ),
2587 prohibited_flags: IEEE80211_CHAN_NO_HE))
2588 return 0;
2589
2590 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ];
2591
2592 iftd = ieee80211_get_sband_iftype_data(sband, iftype);
2593 if (!iftd)
2594 return 0;
2595
2596 /* Check for device HE 6 GHz capability before adding element */
2597 if (!iftd->he_6ghz_capa.capa)
2598 return 0;
2599
2600 cap = iftd->he_6ghz_capa.capa;
2601 cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS);
2602
2603 switch (smps_mode) {
2604 case IEEE80211_SMPS_AUTOMATIC:
2605 case IEEE80211_SMPS_NUM_MODES:
2606 WARN_ON(1);
2607 fallthrough;
2608 case IEEE80211_SMPS_OFF:
2609 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED,
2610 IEEE80211_HE_6GHZ_CAP_SM_PS);
2611 break;
2612 case IEEE80211_SMPS_STATIC:
2613 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC,
2614 IEEE80211_HE_6GHZ_CAP_SM_PS);
2615 break;
2616 case IEEE80211_SMPS_DYNAMIC:
2617 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC,
2618 IEEE80211_HE_6GHZ_CAP_SM_PS);
2619 break;
2620 }
2621
2622 if (skb_tailroom(skb) < 2 + 1 + sizeof(cap))
2623 return -ENOBUFS;
2624
2625 skb_put_u8(skb, val: WLAN_EID_EXTENSION);
2626 skb_put_u8(skb, val: 1 + sizeof(cap));
2627 skb_put_u8(skb, val: WLAN_EID_EXT_HE_6GHZ_CAPA);
2628 skb_put_data(skb, data: &cap, len: sizeof(cap));
2629 return 0;
2630}
2631
2632u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
2633 const struct cfg80211_chan_def *chandef,
2634 u16 prot_mode, bool rifs_mode)
2635{
2636 struct ieee80211_ht_operation *ht_oper;
2637 /* Build HT Information */
2638 *pos++ = WLAN_EID_HT_OPERATION;
2639 *pos++ = sizeof(struct ieee80211_ht_operation);
2640 ht_oper = (struct ieee80211_ht_operation *)pos;
2641 ht_oper->primary_chan = ieee80211_frequency_to_channel(
2642 freq: chandef->chan->center_freq);
2643 switch (chandef->width) {
2644 case NL80211_CHAN_WIDTH_160:
2645 case NL80211_CHAN_WIDTH_80P80:
2646 case NL80211_CHAN_WIDTH_80:
2647 case NL80211_CHAN_WIDTH_40:
2648 if (chandef->center_freq1 > chandef->chan->center_freq)
2649 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
2650 else
2651 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
2652 break;
2653 case NL80211_CHAN_WIDTH_320:
2654 /* HT information element should not be included on 6GHz */
2655 WARN_ON(1);
2656 return pos;
2657 default:
2658 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
2659 break;
2660 }
2661 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
2662 chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
2663 chandef->width != NL80211_CHAN_WIDTH_20)
2664 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
2665
2666 if (rifs_mode)
2667 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE;
2668
2669 ht_oper->operation_mode = cpu_to_le16(prot_mode);
2670 ht_oper->stbc_param = 0x0000;
2671
2672 /* It seems that Basic MCS set and Supported MCS set
2673 are identical for the first 10 bytes */
2674 memset(s: &ht_oper->basic_set, c: 0, n: 16);
2675 memcpy(to: &ht_oper->basic_set, from: &ht_cap->mcs, len: 10);
2676
2677 return pos + sizeof(struct ieee80211_ht_operation);
2678}
2679
2680void ieee80211_ie_build_wide_bw_cs(u8 *pos,
2681 const struct cfg80211_chan_def *chandef)
2682{
2683 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */
2684 *pos++ = 3; /* IE length */
2685 /* New channel width */
2686 switch (chandef->width) {
2687 case NL80211_CHAN_WIDTH_80:
2688 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ;
2689 break;
2690 case NL80211_CHAN_WIDTH_160:
2691 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ;
2692 break;
2693 case NL80211_CHAN_WIDTH_80P80:
2694 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ;
2695 break;
2696 case NL80211_CHAN_WIDTH_320:
2697 /* The behavior is not defined for 320 MHz channels */
2698 WARN_ON(1);
2699 fallthrough;
2700 default:
2701 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT;
2702 }
2703
2704 /* new center frequency segment 0 */
2705 *pos++ = ieee80211_frequency_to_channel(freq: chandef->center_freq1);
2706 /* new center frequency segment 1 */
2707 if (chandef->center_freq2)
2708 *pos++ = ieee80211_frequency_to_channel(freq: chandef->center_freq2);
2709 else
2710 *pos++ = 0;
2711}
2712
2713u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
2714 const struct cfg80211_chan_def *chandef)
2715{
2716 struct ieee80211_vht_operation *vht_oper;
2717
2718 *pos++ = WLAN_EID_VHT_OPERATION;
2719 *pos++ = sizeof(struct ieee80211_vht_operation);
2720 vht_oper = (struct ieee80211_vht_operation *)pos;
2721 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel(
2722 freq: chandef->center_freq1);
2723 if (chandef->center_freq2)
2724 vht_oper->center_freq_seg1_idx =
2725 ieee80211_frequency_to_channel(freq: chandef->center_freq2);
2726 else
2727 vht_oper->center_freq_seg1_idx = 0x00;
2728
2729 switch (chandef->width) {
2730 case NL80211_CHAN_WIDTH_160:
2731 /*
2732 * Convert 160 MHz channel width to new style as interop
2733 * workaround.
2734 */
2735 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
2736 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx;
2737 if (chandef->chan->center_freq < chandef->center_freq1)
2738 vht_oper->center_freq_seg0_idx -= 8;
2739 else
2740 vht_oper->center_freq_seg0_idx += 8;
2741 break;
2742 case NL80211_CHAN_WIDTH_80P80:
2743 /*
2744 * Convert 80+80 MHz channel width to new style as interop
2745 * workaround.
2746 */
2747 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
2748 break;
2749 case NL80211_CHAN_WIDTH_80:
2750 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
2751 break;
2752 case NL80211_CHAN_WIDTH_320:
2753 /* VHT information element should not be included on 6GHz */
2754 WARN_ON(1);
2755 return pos;
2756 default:
2757 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT;
2758 break;
2759 }
2760
2761 /* don't require special VHT peer rates */
2762 vht_oper->basic_mcs_set = cpu_to_le16(0xffff);
2763
2764 return pos + sizeof(struct ieee80211_vht_operation);
2765}
2766
2767u8 *ieee80211_ie_build_he_oper(u8 *pos, const struct cfg80211_chan_def *chandef)
2768{
2769 struct ieee80211_he_operation *he_oper;
2770 struct ieee80211_he_6ghz_oper *he_6ghz_op;
2771 struct cfg80211_chan_def he_chandef;
2772 u32 he_oper_params;
2773 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation);
2774
2775 if (chandef->chan->band == NL80211_BAND_6GHZ)
2776 ie_len += sizeof(struct ieee80211_he_6ghz_oper);
2777
2778 *pos++ = WLAN_EID_EXTENSION;
2779 *pos++ = ie_len;
2780 *pos++ = WLAN_EID_EXT_HE_OPERATION;
2781
2782 he_oper_params = 0;
2783 he_oper_params |= u32_encode_bits(v: 1023, /* disabled */
2784 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK);
2785 he_oper_params |= u32_encode_bits(v: 1,
2786 IEEE80211_HE_OPERATION_ER_SU_DISABLE);
2787 he_oper_params |= u32_encode_bits(v: 1,
2788 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED);
2789 if (chandef->chan->band == NL80211_BAND_6GHZ)
2790 he_oper_params |= u32_encode_bits(v: 1,
2791 IEEE80211_HE_OPERATION_6GHZ_OP_INFO);
2792
2793 he_oper = (struct ieee80211_he_operation *)pos;
2794 he_oper->he_oper_params = cpu_to_le32(he_oper_params);
2795
2796 /* don't require special HE peer rates */
2797 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff);
2798 pos += sizeof(struct ieee80211_he_operation);
2799
2800 if (chandef->chan->band != NL80211_BAND_6GHZ)
2801 goto out;
2802
2803 cfg80211_chandef_create(chandef: &he_chandef, channel: chandef->chan, chantype: NL80211_CHAN_NO_HT);
2804 he_chandef.center_freq1 = chandef->center_freq1;
2805 he_chandef.center_freq2 = chandef->center_freq2;
2806 he_chandef.width = chandef->width;
2807
2808 /* TODO add VHT operational */
2809 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos;
2810 he_6ghz_op->minrate = 6; /* 6 Mbps */
2811 he_6ghz_op->primary =
2812 ieee80211_frequency_to_channel(freq: he_chandef.chan->center_freq);
2813 he_6ghz_op->ccfs0 =
2814 ieee80211_frequency_to_channel(freq: he_chandef.center_freq1);
2815 if (he_chandef.center_freq2)
2816 he_6ghz_op->ccfs1 =
2817 ieee80211_frequency_to_channel(freq: he_chandef.center_freq2);
2818 else
2819 he_6ghz_op->ccfs1 = 0;
2820
2821 switch (he_chandef.width) {
2822 case NL80211_CHAN_WIDTH_320:
2823 /* Downgrade EHT 320 MHz BW to 160 MHz for HE and set new
2824 * center_freq1
2825 */
2826 ieee80211_chandef_downgrade(chandef: &he_chandef, NULL);
2827 he_6ghz_op->ccfs0 =
2828 ieee80211_frequency_to_channel(freq: he_chandef.center_freq1);
2829 fallthrough;
2830 case NL80211_CHAN_WIDTH_160:
2831 /* Convert 160 MHz channel width to new style as interop
2832 * workaround.
2833 */
2834 he_6ghz_op->control =
2835 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
2836 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0;
2837 if (he_chandef.chan->center_freq < he_chandef.center_freq1)
2838 he_6ghz_op->ccfs0 -= 8;
2839 else
2840 he_6ghz_op->ccfs0 += 8;
2841 fallthrough;
2842 case NL80211_CHAN_WIDTH_80P80:
2843 he_6ghz_op->control =
2844 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
2845 break;
2846 case NL80211_CHAN_WIDTH_80:
2847 he_6ghz_op->control =
2848 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ;
2849 break;
2850 case NL80211_CHAN_WIDTH_40:
2851 he_6ghz_op->control =
2852 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ;
2853 break;
2854 default:
2855 he_6ghz_op->control =
2856 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ;
2857 break;
2858 }
2859
2860 pos += sizeof(struct ieee80211_he_6ghz_oper);
2861
2862out:
2863 return pos;
2864}
2865
2866u8 *ieee80211_ie_build_eht_oper(u8 *pos, const struct cfg80211_chan_def *chandef,
2867 const struct ieee80211_sta_eht_cap *eht_cap)
2868
2869{
2870 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss =
2871 &eht_cap->eht_mcs_nss_supp.only_20mhz;
2872 struct ieee80211_eht_operation *eht_oper;
2873 struct ieee80211_eht_operation_info *eht_oper_info;
2874 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional);
2875 u8 eht_oper_info_len =
2876 offsetof(struct ieee80211_eht_operation_info, optional);
2877 u8 chan_width = 0;
2878
2879 *pos++ = WLAN_EID_EXTENSION;
2880 *pos++ = 1 + eht_oper_len + eht_oper_info_len;
2881 *pos++ = WLAN_EID_EXT_EHT_OPERATION;
2882
2883 eht_oper = (struct ieee80211_eht_operation *)pos;
2884
2885 memcpy(to: &eht_oper->basic_mcs_nss, from: eht_mcs_nss, len: sizeof(*eht_mcs_nss));
2886 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT;
2887 pos += eht_oper_len;
2888
2889 eht_oper_info =
2890 (struct ieee80211_eht_operation_info *)eht_oper->optional;
2891
2892 eht_oper_info->ccfs0 =
2893 ieee80211_frequency_to_channel(freq: chandef->center_freq1);
2894 if (chandef->center_freq2)
2895 eht_oper_info->ccfs1 =
2896 ieee80211_frequency_to_channel(freq: chandef->center_freq2);
2897 else
2898 eht_oper_info->ccfs1 = 0;
2899
2900 switch (chandef->width) {
2901 case NL80211_CHAN_WIDTH_320:
2902 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ;
2903 eht_oper_info->ccfs1 = eht_oper_info->ccfs0;
2904 if (chandef->chan->center_freq < chandef->center_freq1)
2905 eht_oper_info->ccfs0 -= 16;
2906 else
2907 eht_oper_info->ccfs0 += 16;
2908 break;
2909 case NL80211_CHAN_WIDTH_160:
2910 eht_oper_info->ccfs1 = eht_oper_info->ccfs0;
2911 if (chandef->chan->center_freq < chandef->center_freq1)
2912 eht_oper_info->ccfs0 -= 8;
2913 else
2914 eht_oper_info->ccfs0 += 8;
2915 fallthrough;
2916 case NL80211_CHAN_WIDTH_80P80:
2917 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ;
2918 break;
2919 case NL80211_CHAN_WIDTH_80:
2920 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ;
2921 break;
2922 case NL80211_CHAN_WIDTH_40:
2923 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ;
2924 break;
2925 default:
2926 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ;
2927 break;
2928 }
2929 eht_oper_info->control = chan_width;
2930 pos += eht_oper_info_len;
2931
2932 /* TODO: eht_oper_info->optional */
2933
2934 return pos;
2935}
2936
2937bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper,
2938 struct cfg80211_chan_def *chandef)
2939{
2940 enum nl80211_channel_type channel_type;
2941
2942 if (!ht_oper)
2943 return false;
2944
2945 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
2946 case IEEE80211_HT_PARAM_CHA_SEC_NONE:
2947 channel_type = NL80211_CHAN_HT20;
2948 break;
2949 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
2950 channel_type = NL80211_CHAN_HT40PLUS;
2951 break;
2952 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
2953 channel_type = NL80211_CHAN_HT40MINUS;
2954 break;
2955 default:
2956 return false;
2957 }
2958
2959 cfg80211_chandef_create(chandef, channel: chandef->chan, chantype: channel_type);
2960 return true;
2961}
2962
2963bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info,
2964 const struct ieee80211_vht_operation *oper,
2965 const struct ieee80211_ht_operation *htop,
2966 struct cfg80211_chan_def *chandef)
2967{
2968 struct cfg80211_chan_def new = *chandef;
2969 int cf0, cf1;
2970 int ccfs0, ccfs1, ccfs2;
2971 int ccf0, ccf1;
2972 u32 vht_cap;
2973 bool support_80_80 = false;
2974 bool support_160 = false;
2975 u8 ext_nss_bw_supp = u32_get_bits(v: vht_cap_info,
2976 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2977 u8 supp_chwidth = u32_get_bits(v: vht_cap_info,
2978 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2979
2980 if (!oper || !htop)
2981 return false;
2982
2983 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap;
2984 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK |
2985 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK));
2986 support_80_80 = ((vht_cap &
2987 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
2988 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
2989 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
2990 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >>
2991 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1));
2992 ccfs0 = oper->center_freq_seg0_idx;
2993 ccfs1 = oper->center_freq_seg1_idx;
2994 ccfs2 = (le16_to_cpu(htop->operation_mode) &
2995 IEEE80211_HT_OP_MODE_CCFS2_MASK)
2996 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT;
2997
2998 ccf0 = ccfs0;
2999
3000 /* if not supported, parse as though we didn't understand it */
3001 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW))
3002 ext_nss_bw_supp = 0;
3003
3004 /*
3005 * Cf. IEEE 802.11 Table 9-250
3006 *
3007 * We really just consider that because it's inefficient to connect
3008 * at a higher bandwidth than we'll actually be able to use.
3009 */
3010 switch ((supp_chwidth << 4) | ext_nss_bw_supp) {
3011 default:
3012 case 0x00:
3013 ccf1 = 0;
3014 support_160 = false;
3015 support_80_80 = false;
3016 break;
3017 case 0x01:
3018 support_80_80 = false;
3019 fallthrough;
3020 case 0x02:
3021 case 0x03:
3022 ccf1 = ccfs2;
3023 break;
3024 case 0x10:
3025 ccf1 = ccfs1;
3026 break;
3027 case 0x11:
3028 case 0x12:
3029 if (!ccfs1)
3030 ccf1 = ccfs2;
3031 else
3032 ccf1 = ccfs1;
3033 break;
3034 case 0x13:
3035 case 0x20:
3036 case 0x23:
3037 ccf1 = ccfs1;
3038 break;
3039 }
3040
3041 cf0 = ieee80211_channel_to_frequency(chan: ccf0, band: chandef->chan->band);
3042 cf1 = ieee80211_channel_to_frequency(chan: ccf1, band: chandef->chan->band);
3043
3044 switch (oper->chan_width) {
3045 case IEEE80211_VHT_CHANWIDTH_USE_HT:
3046 /* just use HT information directly */
3047 break;
3048 case IEEE80211_VHT_CHANWIDTH_80MHZ:
3049 new.width = NL80211_CHAN_WIDTH_80;
3050 new.center_freq1 = cf0;
3051 /* If needed, adjust based on the newer interop workaround. */
3052 if (ccf1) {
3053 unsigned int diff;
3054
3055 diff = abs(ccf1 - ccf0);
3056 if ((diff == 8) && support_160) {
3057 new.width = NL80211_CHAN_WIDTH_160;
3058 new.center_freq1 = cf1;
3059 } else if ((diff > 8) && support_80_80) {
3060 new.width = NL80211_CHAN_WIDTH_80P80;
3061 new.center_freq2 = cf1;
3062 }
3063 }
3064 break;
3065 case IEEE80211_VHT_CHANWIDTH_160MHZ:
3066 /* deprecated encoding */
3067 new.width = NL80211_CHAN_WIDTH_160;
3068 new.center_freq1 = cf0;
3069 break;
3070 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
3071 /* deprecated encoding */
3072 new.width = NL80211_CHAN_WIDTH_80P80;
3073 new.center_freq1 = cf0;
3074 new.center_freq2 = cf1;
3075 break;
3076 default:
3077 return false;
3078 }
3079
3080 if (!cfg80211_chandef_valid(chandef: &new))
3081 return false;
3082
3083 *chandef = new;
3084 return true;
3085}
3086
3087void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info,
3088 struct cfg80211_chan_def *chandef)
3089{
3090 chandef->center_freq1 =
3091 ieee80211_channel_to_frequency(chan: info->ccfs0,
3092 band: chandef->chan->band);
3093
3094 switch (u8_get_bits(v: info->control,
3095 IEEE80211_EHT_OPER_CHAN_WIDTH)) {
3096 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ:
3097 chandef->width = NL80211_CHAN_WIDTH_20;
3098 break;
3099 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ:
3100 chandef->width = NL80211_CHAN_WIDTH_40;
3101 break;
3102 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ:
3103 chandef->width = NL80211_CHAN_WIDTH_80;
3104 break;
3105 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ:
3106 chandef->width = NL80211_CHAN_WIDTH_160;
3107 chandef->center_freq1 =
3108 ieee80211_channel_to_frequency(chan: info->ccfs1,
3109 band: chandef->chan->band);
3110 break;
3111 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ:
3112 chandef->width = NL80211_CHAN_WIDTH_320;
3113 chandef->center_freq1 =
3114 ieee80211_channel_to_frequency(chan: info->ccfs1,
3115 band: chandef->chan->band);
3116 break;
3117 }
3118}
3119
3120bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local,
3121 const struct ieee80211_he_operation *he_oper,
3122 const struct ieee80211_eht_operation *eht_oper,
3123 struct cfg80211_chan_def *chandef)
3124{
3125 struct cfg80211_chan_def he_chandef = *chandef;
3126 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
3127 u32 freq;
3128
3129 if (chandef->chan->band != NL80211_BAND_6GHZ)
3130 return true;
3131
3132 if (!he_oper)
3133 return false;
3134
3135 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
3136 if (!he_6ghz_oper)
3137 return false;
3138
3139 /*
3140 * The EHT operation IE does not contain the primary channel so the
3141 * primary channel frequency should be taken from the 6 GHz operation
3142 * information.
3143 */
3144 freq = ieee80211_channel_to_frequency(chan: he_6ghz_oper->primary,
3145 band: NL80211_BAND_6GHZ);
3146 he_chandef.chan = ieee80211_get_channel(wiphy: local->hw.wiphy, freq);
3147
3148 if (!he_chandef.chan)
3149 return false;
3150
3151 if (!eht_oper ||
3152 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) {
3153 switch (u8_get_bits(v: he_6ghz_oper->control,
3154 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) {
3155 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ:
3156 he_chandef.width = NL80211_CHAN_WIDTH_20;
3157 break;
3158 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ:
3159 he_chandef.width = NL80211_CHAN_WIDTH_40;
3160 break;
3161 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ:
3162 he_chandef.width = NL80211_CHAN_WIDTH_80;
3163 break;
3164 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ:
3165 he_chandef.width = NL80211_CHAN_WIDTH_80;
3166 if (!he_6ghz_oper->ccfs1)
3167 break;
3168 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8)
3169 he_chandef.width = NL80211_CHAN_WIDTH_160;
3170 else
3171 he_chandef.width = NL80211_CHAN_WIDTH_80P80;
3172 break;
3173 }
3174
3175 if (he_chandef.width == NL80211_CHAN_WIDTH_160) {
3176 he_chandef.center_freq1 =
3177 ieee80211_channel_to_frequency(chan: he_6ghz_oper->ccfs1,
3178 band: NL80211_BAND_6GHZ);
3179 } else {
3180 he_chandef.center_freq1 =
3181 ieee80211_channel_to_frequency(chan: he_6ghz_oper->ccfs0,
3182 band: NL80211_BAND_6GHZ);
3183 he_chandef.center_freq2 =
3184 ieee80211_channel_to_frequency(chan: he_6ghz_oper->ccfs1,
3185 band: NL80211_BAND_6GHZ);
3186 }
3187 } else {
3188 ieee80211_chandef_eht_oper(info: (const void *)eht_oper->optional,
3189 chandef: &he_chandef);
3190 he_chandef.punctured =
3191 ieee80211_eht_oper_dis_subchan_bitmap(eht_oper);
3192 }
3193
3194 if (!cfg80211_chandef_valid(chandef: &he_chandef))
3195 return false;
3196
3197 *chandef = he_chandef;
3198
3199 return true;
3200}
3201
3202bool ieee80211_chandef_s1g_oper(struct ieee80211_local *local,
3203 const struct ieee80211_s1g_oper_ie *oper,
3204 struct cfg80211_chan_def *chandef)
3205{
3206 u32 oper_khz, pri_1mhz_khz, pri_2mhz_khz;
3207
3208 if (!oper)
3209 return false;
3210
3211 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) {
3212 case IEEE80211_S1G_CHANWIDTH_1MHZ:
3213 chandef->width = NL80211_CHAN_WIDTH_1;
3214 break;
3215 case IEEE80211_S1G_CHANWIDTH_2MHZ:
3216 chandef->width = NL80211_CHAN_WIDTH_2;
3217 break;
3218 case IEEE80211_S1G_CHANWIDTH_4MHZ:
3219 chandef->width = NL80211_CHAN_WIDTH_4;
3220 break;
3221 case IEEE80211_S1G_CHANWIDTH_8MHZ:
3222 chandef->width = NL80211_CHAN_WIDTH_8;
3223 break;
3224 case IEEE80211_S1G_CHANWIDTH_16MHZ:
3225 chandef->width = NL80211_CHAN_WIDTH_16;
3226 break;
3227 default:
3228 return false;
3229 }
3230
3231 chandef->s1g_primary_2mhz = false;
3232
3233 switch (u8_get_bits(v: oper->ch_width, S1G_OPER_CH_WIDTH_PRIMARY)) {
3234 case IEEE80211_S1G_PRI_CHANWIDTH_1MHZ:
3235 pri_1mhz_khz = ieee80211_channel_to_freq_khz(
3236 chan: oper->primary_ch, band: NL80211_BAND_S1GHZ);
3237 break;
3238 case IEEE80211_S1G_PRI_CHANWIDTH_2MHZ:
3239 chandef->s1g_primary_2mhz = true;
3240 pri_2mhz_khz = ieee80211_channel_to_freq_khz(
3241 chan: oper->primary_ch, band: NL80211_BAND_S1GHZ);
3242
3243 if (u8_get_bits(v: oper->ch_width, S1G_OPER_CH_PRIMARY_LOCATION) ==
3244 S1G_2M_PRIMARY_LOCATION_LOWER)
3245 pri_1mhz_khz = pri_2mhz_khz - 500;
3246 else
3247 pri_1mhz_khz = pri_2mhz_khz + 500;
3248 break;
3249 default:
3250 return false;
3251 }
3252
3253 oper_khz = ieee80211_channel_to_freq_khz(chan: oper->oper_ch,
3254 band: NL80211_BAND_S1GHZ);
3255 chandef->center_freq1 = KHZ_TO_MHZ(oper_khz);
3256 chandef->freq1_offset = oper_khz % 1000;
3257 chandef->chan =
3258 ieee80211_get_channel_khz(wiphy: local->hw.wiphy, freq: pri_1mhz_khz);
3259
3260 return chandef->chan;
3261}
3262
3263int ieee80211_put_srates_elem(struct sk_buff *skb,
3264 const struct ieee80211_supported_band *sband,
3265 u32 basic_rates, u32 masked_rates,
3266 u8 element_id)
3267{
3268 u8 i, rates, skip;
3269
3270 rates = 0;
3271 for (i = 0; i < sband->n_bitrates; i++) {
3272 if (masked_rates & BIT(i))
3273 continue;
3274 rates++;
3275 }
3276
3277 if (element_id == WLAN_EID_SUPP_RATES) {
3278 rates = min_t(u8, rates, 8);
3279 skip = 0;
3280 } else {
3281 skip = 8;
3282 if (rates <= skip)
3283 return 0;
3284 rates -= skip;
3285 }
3286
3287 if (skb_tailroom(skb) < rates + 2)
3288 return -ENOBUFS;
3289
3290 skb_put_u8(skb, val: element_id);
3291 skb_put_u8(skb, val: rates);
3292
3293 for (i = 0; i < sband->n_bitrates && rates; i++) {
3294 int rate;
3295 u8 basic;
3296
3297 if (masked_rates & BIT(i))
3298 continue;
3299
3300 if (skip > 0) {
3301 skip--;
3302 continue;
3303 }
3304
3305 basic = basic_rates & BIT(i) ? 0x80 : 0;
3306
3307 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5);
3308 skb_put_u8(skb, val: basic | (u8)rate);
3309 rates--;
3310 }
3311
3312 WARN(rates > 0, "rates confused: rates:%d, element:%d\n",
3313 rates, element_id);
3314
3315 return 0;
3316}
3317
3318int ieee80211_ave_rssi(struct ieee80211_vif *vif, int link_id)
3319{
3320 struct ieee80211_sub_if_data *sdata = vif_to_sdata(p: vif);
3321 struct ieee80211_link_data *link_data;
3322
3323 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION))
3324 return 0;
3325
3326 if (link_id < 0)
3327 link_data = &sdata->deflink;
3328 else
3329 link_data = wiphy_dereference(sdata->local->hw.wiphy,
3330 sdata->link[link_id]);
3331
3332 if (WARN_ON_ONCE(!link_data))
3333 return -99;
3334
3335 return -ewma_beacon_signal_read(e: &link_data->u.mgd.ave_beacon_signal);
3336}
3337EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
3338
3339u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
3340{
3341 if (!mcs)
3342 return 1;
3343
3344 /* TODO: consider rx_highest */
3345
3346 if (mcs->rx_mask[3])
3347 return 4;
3348 if (mcs->rx_mask[2])
3349 return 3;
3350 if (mcs->rx_mask[1])
3351 return 2;
3352 return 1;
3353}
3354
3355/**
3356 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
3357 * @local: mac80211 hw info struct
3358 * @status: RX status
3359 * @mpdu_len: total MPDU length (including FCS)
3360 * @mpdu_offset: offset into MPDU to calculate timestamp at
3361 *
3362 * This function calculates the RX timestamp at the given MPDU offset, taking
3363 * into account what the RX timestamp was. An offset of 0 will just normalize
3364 * the timestamp to TSF at beginning of MPDU reception.
3365 *
3366 * Returns: the calculated timestamp
3367 */
3368u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
3369 struct ieee80211_rx_status *status,
3370 unsigned int mpdu_len,
3371 unsigned int mpdu_offset)
3372{
3373 u64 ts = status->mactime;
3374 bool mactime_plcp_start;
3375 struct rate_info ri;
3376 u16 rate;
3377 u8 n_ltf;
3378
3379 if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
3380 return 0;
3381
3382 mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) ==
3383 RX_FLAG_MACTIME_PLCP_START;
3384
3385 memset(s: &ri, c: 0, n: sizeof(ri));
3386
3387 ri.bw = status->bw;
3388
3389 /* Fill cfg80211 rate info */
3390 switch (status->encoding) {
3391 case RX_ENC_EHT:
3392 ri.flags |= RATE_INFO_FLAGS_EHT_MCS;
3393 ri.mcs = status->rate_idx;
3394 ri.nss = status->nss;
3395 ri.eht_ru_alloc = status->eht.ru;
3396 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3397 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3398 /* TODO/FIXME: is this right? handle other PPDUs */
3399 if (mactime_plcp_start) {
3400 mpdu_offset += 2;
3401 ts += 36;
3402 }
3403 break;
3404 case RX_ENC_HE:
3405 ri.flags |= RATE_INFO_FLAGS_HE_MCS;
3406 ri.mcs = status->rate_idx;
3407 ri.nss = status->nss;
3408 ri.he_ru_alloc = status->he_ru;
3409 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3410 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3411
3412 /*
3413 * See P802.11ax_D6.0, section 27.3.4 for
3414 * VHT PPDU format.
3415 */
3416 if (mactime_plcp_start) {
3417 mpdu_offset += 2;
3418 ts += 36;
3419
3420 /*
3421 * TODO:
3422 * For HE MU PPDU, add the HE-SIG-B.
3423 * For HE ER PPDU, add 8us for the HE-SIG-A.
3424 * For HE TB PPDU, add 4us for the HE-STF.
3425 * Add the HE-LTF durations - variable.
3426 */
3427 }
3428
3429 break;
3430 case RX_ENC_HT:
3431 ri.mcs = status->rate_idx;
3432 ri.flags |= RATE_INFO_FLAGS_MCS;
3433 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3434 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3435
3436 /*
3437 * See P802.11REVmd_D3.0, section 19.3.2 for
3438 * HT PPDU format.
3439 */
3440 if (mactime_plcp_start) {
3441 mpdu_offset += 2;
3442 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
3443 ts += 24;
3444 else
3445 ts += 32;
3446
3447 /*
3448 * Add Data HT-LTFs per streams
3449 * TODO: add Extension HT-LTFs, 4us per LTF
3450 */
3451 n_ltf = ((ri.mcs >> 3) & 3) + 1;
3452 n_ltf = n_ltf == 3 ? 4 : n_ltf;
3453 ts += n_ltf * 4;
3454 }
3455
3456 break;
3457 case RX_ENC_VHT:
3458 ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
3459 ri.mcs = status->rate_idx;
3460 ri.nss = status->nss;
3461 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3462 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3463
3464 /*
3465 * See P802.11REVmd_D3.0, section 21.3.2 for
3466 * VHT PPDU format.
3467 */
3468 if (mactime_plcp_start) {
3469 mpdu_offset += 2;
3470 ts += 36;
3471
3472 /*
3473 * Add VHT-LTFs per streams
3474 */
3475 n_ltf = (ri.nss != 1) && (ri.nss % 2) ?
3476 ri.nss + 1 : ri.nss;
3477 ts += 4 * n_ltf;
3478 }
3479
3480 break;
3481 default:
3482 WARN_ON(1);
3483 fallthrough;
3484 case RX_ENC_LEGACY: {
3485 struct ieee80211_supported_band *sband;
3486
3487 sband = local->hw.wiphy->bands[status->band];
3488 ri.legacy = sband->bitrates[status->rate_idx].bitrate;
3489
3490 if (mactime_plcp_start) {
3491 if (status->band == NL80211_BAND_5GHZ) {
3492 ts += 20;
3493 mpdu_offset += 2;
3494 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) {
3495 ts += 96;
3496 } else {
3497 ts += 192;
3498 }
3499 }
3500 break;
3501 }
3502 }
3503
3504 rate = cfg80211_calculate_bitrate(rate: &ri);
3505 if (WARN_ONCE(!rate,
3506 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n",
3507 (unsigned long long)status->flag, status->rate_idx,
3508 status->nss))
3509 return 0;
3510
3511 /* rewind from end of MPDU */
3512 if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END)
3513 ts -= mpdu_len * 8 * 10 / rate;
3514
3515 ts += mpdu_offset * 8 * 10 / rate;
3516
3517 return ts;
3518}
3519
3520/* Cancel CAC for the interfaces under the specified @local. If @ctx is
3521 * also provided, only the interfaces using that ctx will be canceled.
3522 */
3523void ieee80211_dfs_cac_cancel(struct ieee80211_local *local,
3524 struct ieee80211_chanctx *ctx)
3525{
3526 struct ieee80211_sub_if_data *sdata;
3527 struct cfg80211_chan_def chandef;
3528 struct ieee80211_link_data *link;
3529 struct ieee80211_chanctx_conf *chanctx_conf;
3530 unsigned int link_id;
3531
3532 lockdep_assert_wiphy(local->hw.wiphy);
3533
3534 list_for_each_entry(sdata, &local->interfaces, list) {
3535 for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS;
3536 link_id++) {
3537 link = sdata_dereference(sdata->link[link_id],
3538 sdata);
3539 if (!link)
3540 continue;
3541
3542 chanctx_conf = sdata_dereference(link->conf->chanctx_conf,
3543 sdata);
3544 if (ctx && &ctx->conf != chanctx_conf)
3545 continue;
3546
3547 wiphy_delayed_work_cancel(wiphy: local->hw.wiphy,
3548 dwork: &link->dfs_cac_timer_work);
3549
3550 if (!sdata->wdev.links[link_id].cac_started)
3551 continue;
3552
3553 chandef = link->conf->chanreq.oper;
3554 ieee80211_link_release_channel(link);
3555 cfg80211_cac_event(netdev: sdata->dev, chandef: &chandef,
3556 event: NL80211_RADAR_CAC_ABORTED,
3557 GFP_KERNEL, link_id);
3558 }
3559 }
3560}
3561
3562void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy,
3563 struct wiphy_work *work)
3564{
3565 struct ieee80211_local *local =
3566 container_of(work, struct ieee80211_local, radar_detected_work);
3567 struct cfg80211_chan_def chandef;
3568 struct ieee80211_chanctx *ctx;
3569
3570 lockdep_assert_wiphy(local->hw.wiphy);
3571
3572 list_for_each_entry(ctx, &local->chanctx_list, list) {
3573 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
3574 continue;
3575
3576 if (!ctx->radar_detected)
3577 continue;
3578
3579 ctx->radar_detected = false;
3580
3581 chandef = ctx->conf.def;
3582
3583 ieee80211_dfs_cac_cancel(local, ctx);
3584 cfg80211_radar_event(wiphy: local->hw.wiphy, chandef: &chandef, GFP_KERNEL);
3585 }
3586}
3587
3588static void
3589ieee80211_radar_mark_chan_ctx_iterator(struct ieee80211_hw *hw,
3590 struct ieee80211_chanctx_conf *chanctx_conf,
3591 void *data)
3592{
3593 struct ieee80211_chanctx *ctx =
3594 container_of(chanctx_conf, struct ieee80211_chanctx,
3595 conf);
3596
3597 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
3598 return;
3599
3600 if (data && data != chanctx_conf)
3601 return;
3602
3603 ctx->radar_detected = true;
3604}
3605
3606void ieee80211_radar_detected(struct ieee80211_hw *hw,
3607 struct ieee80211_chanctx_conf *chanctx_conf)
3608{
3609 struct ieee80211_local *local = hw_to_local(hw);
3610
3611 trace_api_radar_detected(local);
3612
3613 ieee80211_iter_chan_contexts_atomic(hw, iter: ieee80211_radar_mark_chan_ctx_iterator,
3614 iter_data: chanctx_conf);
3615
3616 wiphy_work_queue(wiphy: hw->wiphy, work: &local->radar_detected_work);
3617}
3618EXPORT_SYMBOL(ieee80211_radar_detected);
3619
3620void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c,
3621 struct ieee80211_conn_settings *conn)
3622{
3623 enum nl80211_chan_width new_primary_width;
3624 struct ieee80211_conn_settings _ignored = {};
3625
3626 /* allow passing NULL if caller doesn't care */
3627 if (!conn)
3628 conn = &_ignored;
3629
3630again:
3631 /* no-HT indicates nothing to do */
3632 new_primary_width = NL80211_CHAN_WIDTH_20_NOHT;
3633
3634 switch (c->width) {
3635 default:
3636 case NL80211_CHAN_WIDTH_20_NOHT:
3637 WARN_ON_ONCE(1);
3638 fallthrough;
3639 case NL80211_CHAN_WIDTH_20:
3640 c->width = NL80211_CHAN_WIDTH_20_NOHT;
3641 conn->mode = IEEE80211_CONN_MODE_LEGACY;
3642 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
3643 c->punctured = 0;
3644 break;
3645 case NL80211_CHAN_WIDTH_40:
3646 c->width = NL80211_CHAN_WIDTH_20;
3647 c->center_freq1 = c->chan->center_freq;
3648 if (conn->mode == IEEE80211_CONN_MODE_VHT)
3649 conn->mode = IEEE80211_CONN_MODE_HT;
3650 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
3651 c->punctured = 0;
3652 break;
3653 case NL80211_CHAN_WIDTH_80:
3654 new_primary_width = NL80211_CHAN_WIDTH_40;
3655 if (conn->mode == IEEE80211_CONN_MODE_VHT)
3656 conn->mode = IEEE80211_CONN_MODE_HT;
3657 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40;
3658 break;
3659 case NL80211_CHAN_WIDTH_80P80:
3660 c->center_freq2 = 0;
3661 c->width = NL80211_CHAN_WIDTH_80;
3662 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80;
3663 break;
3664 case NL80211_CHAN_WIDTH_160:
3665 new_primary_width = NL80211_CHAN_WIDTH_80;
3666 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80;
3667 break;
3668 case NL80211_CHAN_WIDTH_320:
3669 new_primary_width = NL80211_CHAN_WIDTH_160;
3670 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160;
3671 break;
3672 case NL80211_CHAN_WIDTH_1:
3673 case NL80211_CHAN_WIDTH_2:
3674 case NL80211_CHAN_WIDTH_4:
3675 case NL80211_CHAN_WIDTH_8:
3676 case NL80211_CHAN_WIDTH_16:
3677 WARN_ON_ONCE(1);
3678 /* keep c->width */
3679 conn->mode = IEEE80211_CONN_MODE_S1G;
3680 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
3681 break;
3682 case NL80211_CHAN_WIDTH_5:
3683 case NL80211_CHAN_WIDTH_10:
3684 WARN_ON_ONCE(1);
3685 /* keep c->width */
3686 conn->mode = IEEE80211_CONN_MODE_LEGACY;
3687 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
3688 break;
3689 }
3690
3691 if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) {
3692 c->center_freq1 = cfg80211_chandef_primary(chandef: c, primary_chan_width: new_primary_width,
3693 punctured: &c->punctured);
3694 c->width = new_primary_width;
3695 }
3696
3697 /*
3698 * With an 80 MHz channel, we might have the puncturing in the primary
3699 * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width.
3700 * In that case, downgrade again.
3701 */
3702 if (!cfg80211_chandef_valid(chandef: c) && c->punctured)
3703 goto again;
3704
3705 WARN_ON_ONCE(!cfg80211_chandef_valid(c));
3706}
3707
3708int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata,
3709 struct cfg80211_csa_settings *csa_settings)
3710{
3711 struct sk_buff *skb;
3712 struct ieee80211_mgmt *mgmt;
3713 struct ieee80211_local *local = sdata->local;
3714 int freq;
3715 int hdr_len = offsetofend(struct ieee80211_mgmt,
3716 u.action.u.chan_switch);
3717 u8 *pos;
3718
3719 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3720 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3721 return -EOPNOTSUPP;
3722
3723 skb = dev_alloc_skb(length: local->tx_headroom + hdr_len +
3724 5 + /* channel switch announcement element */
3725 3 + /* secondary channel offset element */
3726 5 + /* wide bandwidth channel switch announcement */
3727 8); /* mesh channel switch parameters element */
3728 if (!skb)
3729 return -ENOMEM;
3730
3731 skb_reserve(skb, len: local->tx_headroom);
3732 mgmt = skb_put_zero(skb, len: hdr_len);
3733 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3734 IEEE80211_STYPE_ACTION);
3735
3736 eth_broadcast_addr(addr: mgmt->da);
3737 memcpy(to: mgmt->sa, from: sdata->vif.addr, ETH_ALEN);
3738 if (ieee80211_vif_is_mesh(vif: &sdata->vif)) {
3739 memcpy(to: mgmt->bssid, from: sdata->vif.addr, ETH_ALEN);
3740 } else {
3741 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
3742 memcpy(to: mgmt->bssid, from: ifibss->bssid, ETH_ALEN);
3743 }
3744 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
3745 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH;
3746 pos = skb_put(skb, len: 5);
3747 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */
3748 *pos++ = 3; /* IE length */
3749 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */
3750 freq = csa_settings->chandef.chan->center_freq;
3751 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */
3752 *pos++ = csa_settings->count; /* count */
3753
3754 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) {
3755 enum nl80211_channel_type ch_type;
3756
3757 skb_put(skb, len: 3);
3758 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */
3759 *pos++ = 1; /* IE length */
3760 ch_type = cfg80211_get_chandef_type(chandef: &csa_settings->chandef);
3761 if (ch_type == NL80211_CHAN_HT40PLUS)
3762 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
3763 else
3764 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
3765 }
3766
3767 if (ieee80211_vif_is_mesh(vif: &sdata->vif)) {
3768 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
3769
3770 skb_put(skb, len: 8);
3771 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */
3772 *pos++ = 6; /* IE length */
3773 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */
3774 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */
3775 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR;
3776 *pos++ |= csa_settings->block_tx ?
3777 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00;
3778 put_unaligned_le16(val: WLAN_REASON_MESH_CHAN, p: pos); /* Reason Cd */
3779 pos += 2;
3780 put_unaligned_le16(val: ifmsh->pre_value, p: pos);/* Precedence Value */
3781 pos += 2;
3782 }
3783
3784 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 ||
3785 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 ||
3786 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) {
3787 skb_put(skb, len: 5);
3788 ieee80211_ie_build_wide_bw_cs(pos, chandef: &csa_settings->chandef);
3789 }
3790
3791 ieee80211_tx_skb(sdata, skb);
3792 return 0;
3793}
3794
3795static bool
3796ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i)
3797{
3798 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1);
3799 int skip;
3800
3801 if (end > 0)
3802 return false;
3803
3804 /* One shot NOA */
3805 if (data->count[i] == 1)
3806 return false;
3807
3808 if (data->desc[i].interval == 0)
3809 return false;
3810
3811 /* End time is in the past, check for repetitions */
3812 skip = DIV_ROUND_UP(-end, data->desc[i].interval);
3813 if (data->count[i] < 255) {
3814 if (data->count[i] <= skip) {
3815 data->count[i] = 0;
3816 return false;
3817 }
3818
3819 data->count[i] -= skip;
3820 }
3821
3822 data->desc[i].start += skip * data->desc[i].interval;
3823
3824 return true;
3825}
3826
3827static bool
3828ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf,
3829 s32 *offset)
3830{
3831 bool ret = false;
3832 int i;
3833
3834 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
3835 s32 cur;
3836
3837 if (!data->count[i])
3838 continue;
3839
3840 if (ieee80211_extend_noa_desc(data, tsf: tsf + *offset, i))
3841 ret = true;
3842
3843 cur = data->desc[i].start - tsf;
3844 if (cur > *offset)
3845 continue;
3846
3847 cur = data->desc[i].start + data->desc[i].duration - tsf;
3848 if (cur > *offset)
3849 *offset = cur;
3850 }
3851
3852 return ret;
3853}
3854
3855static u32
3856ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf)
3857{
3858 s32 offset = 0;
3859 int tries = 0;
3860 /*
3861 * arbitrary limit, used to avoid infinite loops when combined NoA
3862 * descriptors cover the full time period.
3863 */
3864 int max_tries = 5;
3865
3866 ieee80211_extend_absent_time(data, tsf, offset: &offset);
3867 do {
3868 if (!ieee80211_extend_absent_time(data, tsf, offset: &offset))
3869 break;
3870
3871 tries++;
3872 } while (tries < max_tries);
3873
3874 return offset;
3875}
3876
3877void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf)
3878{
3879 u32 next_offset = BIT(31) - 1;
3880 int i;
3881
3882 data->absent = 0;
3883 data->has_next_tsf = false;
3884 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
3885 s32 start;
3886
3887 if (!data->count[i])
3888 continue;
3889
3890 ieee80211_extend_noa_desc(data, tsf, i);
3891 start = data->desc[i].start - tsf;
3892 if (start <= 0)
3893 data->absent |= BIT(i);
3894
3895 if (next_offset > start)
3896 next_offset = start;
3897
3898 data->has_next_tsf = true;
3899 }
3900
3901 if (data->absent)
3902 next_offset = ieee80211_get_noa_absent_time(data, tsf);
3903
3904 data->next_tsf = tsf + next_offset;
3905}
3906EXPORT_SYMBOL(ieee80211_update_p2p_noa);
3907
3908int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
3909 struct ieee80211_noa_data *data, u32 tsf)
3910{
3911 int ret = 0;
3912 int i;
3913
3914 memset(s: data, c: 0, n: sizeof(*data));
3915
3916 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
3917 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i];
3918
3919 if (!desc->count || !desc->duration)
3920 continue;
3921
3922 data->count[i] = desc->count;
3923 data->desc[i].start = le32_to_cpu(desc->start_time);
3924 data->desc[i].duration = le32_to_cpu(desc->duration);
3925 data->desc[i].interval = le32_to_cpu(desc->interval);
3926
3927 if (data->count[i] > 1 &&
3928 data->desc[i].interval < data->desc[i].duration)
3929 continue;
3930
3931 ieee80211_extend_noa_desc(data, tsf, i);
3932 ret++;
3933 }
3934
3935 if (ret)
3936 ieee80211_update_p2p_noa(data, tsf);
3937
3938 return ret;
3939}
3940EXPORT_SYMBOL(ieee80211_parse_p2p_noa);
3941
3942void ieee80211_recalc_dtim(struct ieee80211_sub_if_data *sdata, u64 tsf)
3943{
3944 u64 dtim_count = 0;
3945 u32 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
3946 u8 dtim_period = sdata->vif.bss_conf.dtim_period;
3947 struct ps_data *ps;
3948 u8 bcns_from_dtim;
3949
3950 if (tsf == -1ULL || !beacon_int || !dtim_period)
3951 return;
3952
3953 if (sdata->vif.type == NL80211_IFTYPE_AP ||
3954 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
3955 if (!sdata->bss)
3956 return;
3957
3958 ps = &sdata->bss->ps;
3959 } else if (ieee80211_vif_is_mesh(vif: &sdata->vif)) {
3960 ps = &sdata->u.mesh.ps;
3961 } else {
3962 return;
3963 }
3964
3965 /*
3966 * actually finds last dtim_count, mac80211 will update in
3967 * __beacon_add_tim().
3968 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period
3969 */
3970 do_div(tsf, beacon_int);
3971 bcns_from_dtim = do_div(tsf, dtim_period);
3972 /* just had a DTIM */
3973 if (!bcns_from_dtim)
3974 dtim_count = 0;
3975 else
3976 dtim_count = dtim_period - bcns_from_dtim;
3977
3978 ps->dtim_count = dtim_count;
3979}
3980
3981/*
3982 * Given a long beacon period, calculate the current index into
3983 * that period to determine the number of TSBTTs until the next TBTT.
3984 * It is completely valid to have a short beacon period that differs
3985 * from the dtim period (i.e a TBTT thats not a DTIM).
3986 */
3987void ieee80211_recalc_sb_count(struct ieee80211_sub_if_data *sdata, u64 tsf)
3988{
3989 u32 sb_idx;
3990 struct ps_data *ps = &sdata->bss->ps;
3991 u8 lb_period = sdata->vif.bss_conf.s1g_long_beacon_period;
3992 u32 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
3993
3994 /* No mesh / IBSS support for short beaconing */
3995 if (tsf == -1ULL || !lb_period ||
3996 (sdata->vif.type != NL80211_IFTYPE_AP &&
3997 sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
3998 return;
3999
4000 /* find the current TSBTT index in our lb_period */
4001 do_div(tsf, beacon_int);
4002 sb_idx = do_div(tsf, lb_period);
4003
4004 /* num TSBTTs until the next TBTT */
4005 ps->sb_count = sb_idx ? lb_period - sb_idx : 0;
4006}
4007
4008static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local,
4009 struct ieee80211_chanctx *ctx)
4010{
4011 struct ieee80211_link_data *link;
4012 u8 radar_detect = 0;
4013
4014 lockdep_assert_wiphy(local->hw.wiphy);
4015
4016 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED))
4017 return 0;
4018
4019 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list)
4020 if (link->reserved_radar_required)
4021 radar_detect |= BIT(link->reserved.oper.width);
4022
4023 /*
4024 * An in-place reservation context should not have any assigned vifs
4025 * until it replaces the other context.
4026 */
4027 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER &&
4028 !list_empty(&ctx->assigned_links));
4029
4030 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) {
4031 if (!link->radar_required)
4032 continue;
4033
4034 radar_detect |=
4035 BIT(link->conf->chanreq.oper.width);
4036 }
4037
4038 return radar_detect;
4039}
4040
4041bool ieee80211_is_radio_idx_in_scan_req(struct wiphy *wiphy,
4042 struct cfg80211_scan_request *scan_req,
4043 int radio_idx)
4044{
4045 struct ieee80211_channel *chan;
4046 int i, chan_radio_idx;
4047
4048 for (i = 0; i < scan_req->n_channels; i++) {
4049 chan = scan_req->channels[i];
4050 chan_radio_idx = cfg80211_get_radio_idx_by_chan(wiphy, chan);
4051
4052 /* The radio index either matched successfully, or an error
4053 * occurred. For example, if radio-level information is
4054 * missing, the same error value is returned. This
4055 * typically implies a single-radio setup, in which case
4056 * the operation should not be allowed.
4057 */
4058 if (chan_radio_idx == radio_idx)
4059 return true;
4060 }
4061
4062 return false;
4063}
4064
4065static u32
4066__ieee80211_get_radio_mask(struct ieee80211_sub_if_data *sdata)
4067{
4068 struct ieee80211_bss_conf *link_conf;
4069 struct ieee80211_chanctx_conf *conf;
4070 unsigned int link_id;
4071 u32 mask = 0;
4072
4073 for_each_vif_active_link(&sdata->vif, link_conf, link_id) {
4074 conf = sdata_dereference(link_conf->chanctx_conf, sdata);
4075 if (!conf || conf->radio_idx < 0)
4076 continue;
4077
4078 mask |= BIT(conf->radio_idx);
4079 }
4080
4081 return mask;
4082}
4083
4084u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev)
4085{
4086 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
4087
4088 return __ieee80211_get_radio_mask(sdata);
4089}
4090
4091static bool
4092ieee80211_sdata_uses_radio(struct ieee80211_sub_if_data *sdata, int radio_idx)
4093{
4094 if (radio_idx < 0)
4095 return true;
4096
4097 return __ieee80211_get_radio_mask(sdata) & BIT(radio_idx);
4098}
4099
4100static int
4101ieee80211_fill_ifcomb_params(struct ieee80211_local *local,
4102 struct iface_combination_params *params,
4103 const struct cfg80211_chan_def *chandef,
4104 struct ieee80211_sub_if_data *sdata)
4105{
4106 struct ieee80211_sub_if_data *sdata_iter;
4107 struct ieee80211_chanctx *ctx;
4108 int total = !!sdata;
4109
4110 list_for_each_entry(ctx, &local->chanctx_list, list) {
4111 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4112 continue;
4113
4114 if (params->radio_idx >= 0 &&
4115 ctx->conf.radio_idx != params->radio_idx)
4116 continue;
4117
4118 params->radar_detect |=
4119 ieee80211_chanctx_radar_detect(local, ctx);
4120
4121 if (chandef && ctx->mode != IEEE80211_CHANCTX_EXCLUSIVE &&
4122 cfg80211_chandef_compatible(chandef1: chandef, chandef2: &ctx->conf.def))
4123 continue;
4124
4125 params->num_different_channels++;
4126 }
4127
4128 list_for_each_entry(sdata_iter, &local->interfaces, list) {
4129 struct wireless_dev *wdev_iter;
4130
4131 wdev_iter = &sdata_iter->wdev;
4132
4133 if (sdata_iter == sdata ||
4134 !ieee80211_sdata_running(sdata: sdata_iter) ||
4135 cfg80211_iftype_allowed(wiphy: local->hw.wiphy,
4136 iftype: wdev_iter->iftype, is_4addr: 0, check_swif: 1))
4137 continue;
4138
4139 if (!ieee80211_sdata_uses_radio(sdata: sdata_iter, radio_idx: params->radio_idx))
4140 continue;
4141
4142 params->iftype_num[wdev_iter->iftype]++;
4143 total++;
4144 }
4145
4146 return total;
4147}
4148
4149int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata,
4150 const struct cfg80211_chan_def *chandef,
4151 enum ieee80211_chanctx_mode chanmode,
4152 u8 radar_detect, int radio_idx)
4153{
4154 bool shared = chanmode == IEEE80211_CHANCTX_SHARED;
4155 struct ieee80211_local *local = sdata->local;
4156 enum nl80211_iftype iftype = sdata->wdev.iftype;
4157 struct iface_combination_params params = {
4158 .radar_detect = radar_detect,
4159 .radio_idx = radio_idx,
4160 };
4161 int total;
4162
4163 lockdep_assert_wiphy(local->hw.wiphy);
4164
4165 if (WARN_ON(hweight32(radar_detect) > 1))
4166 return -EINVAL;
4167
4168 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4169 !chandef->chan))
4170 return -EINVAL;
4171
4172 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
4173 return -EINVAL;
4174
4175 if (sdata->vif.type == NL80211_IFTYPE_AP ||
4176 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) {
4177 /*
4178 * always passing this is harmless, since it'll be the
4179 * same value that cfg80211 finds if it finds the same
4180 * interface ... and that's always allowed
4181 */
4182 params.new_beacon_int = sdata->vif.bss_conf.beacon_int;
4183 }
4184
4185 /* Always allow software iftypes */
4186 if (cfg80211_iftype_allowed(wiphy: local->hw.wiphy, iftype, is_4addr: 0, check_swif: 1)) {
4187 if (radar_detect)
4188 return -EINVAL;
4189 return 0;
4190 }
4191
4192 if (chandef)
4193 params.num_different_channels = 1;
4194
4195 if (iftype != NL80211_IFTYPE_UNSPECIFIED)
4196 params.iftype_num[iftype] = 1;
4197
4198 total = ieee80211_fill_ifcomb_params(local, params: &params,
4199 chandef: shared ? chandef : NULL,
4200 sdata);
4201 if (total == 1 && !params.radar_detect)
4202 return 0;
4203
4204 return cfg80211_check_combinations(wiphy: local->hw.wiphy, params: &params);
4205}
4206
4207static void
4208ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c,
4209 void *data)
4210{
4211 u32 *max_num_different_channels = data;
4212
4213 *max_num_different_channels = max(*max_num_different_channels,
4214 c->num_different_channels);
4215}
4216
4217int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx)
4218{
4219 u32 max_num_different_channels = 1;
4220 int err;
4221 struct iface_combination_params params = {
4222 .radio_idx = radio_idx,
4223 };
4224
4225 lockdep_assert_wiphy(local->hw.wiphy);
4226
4227 ieee80211_fill_ifcomb_params(local, params: &params, NULL, NULL);
4228
4229 err = cfg80211_iter_combinations(wiphy: local->hw.wiphy, params: &params,
4230 iter: ieee80211_iter_max_chans,
4231 data: &max_num_different_channels);
4232 if (err < 0)
4233 return err;
4234
4235 return max_num_different_channels;
4236}
4237
4238void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata,
4239 struct ieee80211_sta_s1g_cap *caps,
4240 struct sk_buff *skb)
4241{
4242 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
4243 struct ieee80211_s1g_cap s1g_capab;
4244 u8 *pos;
4245 int i;
4246
4247 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
4248 return;
4249
4250 if (!caps->s1g)
4251 return;
4252
4253 memcpy(to: s1g_capab.capab_info, from: caps->cap, len: sizeof(caps->cap));
4254 memcpy(to: s1g_capab.supp_mcs_nss, from: caps->nss_mcs, len: sizeof(caps->nss_mcs));
4255
4256 /* override the capability info */
4257 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) {
4258 u8 mask = ifmgd->s1g_capa_mask.capab_info[i];
4259
4260 s1g_capab.capab_info[i] &= ~mask;
4261 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask;
4262 }
4263
4264 /* then MCS and NSS set */
4265 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) {
4266 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i];
4267
4268 s1g_capab.supp_mcs_nss[i] &= ~mask;
4269 s1g_capab.supp_mcs_nss[i] |=
4270 ifmgd->s1g_capa.supp_mcs_nss[i] & mask;
4271 }
4272
4273 pos = skb_put(skb, len: 2 + sizeof(s1g_capab));
4274 *pos++ = WLAN_EID_S1G_CAPABILITIES;
4275 *pos++ = sizeof(s1g_capab);
4276
4277 memcpy(to: pos, from: &s1g_capab, len: sizeof(s1g_capab));
4278}
4279
4280void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata,
4281 struct sk_buff *skb)
4282{
4283 u8 *pos = skb_put(skb, len: 3);
4284
4285 *pos++ = WLAN_EID_AID_REQUEST;
4286 *pos++ = 1;
4287 *pos++ = 0;
4288}
4289
4290u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo)
4291{
4292 *buf++ = WLAN_EID_VENDOR_SPECIFIC;
4293 *buf++ = 7; /* len */
4294 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */
4295 *buf++ = 0x50;
4296 *buf++ = 0xf2;
4297 *buf++ = 2; /* WME */
4298 *buf++ = 0; /* WME info */
4299 *buf++ = 1; /* WME ver */
4300 *buf++ = qosinfo; /* U-APSD no in use */
4301
4302 return buf;
4303}
4304
4305void ieee80211_txq_get_depth(struct ieee80211_txq *txq,
4306 unsigned long *frame_cnt,
4307 unsigned long *byte_cnt)
4308{
4309 struct txq_info *txqi = to_txq_info(txq);
4310 u32 frag_cnt = 0, frag_bytes = 0;
4311 struct sk_buff *skb;
4312
4313 skb_queue_walk(&txqi->frags, skb) {
4314 frag_cnt++;
4315 frag_bytes += skb->len;
4316 }
4317
4318 if (frame_cnt)
4319 *frame_cnt = txqi->tin.backlog_packets + frag_cnt;
4320
4321 if (byte_cnt)
4322 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes;
4323}
4324EXPORT_SYMBOL(ieee80211_txq_get_depth);
4325
4326const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = {
4327 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO,
4328 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI,
4329 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE,
4330 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK
4331};
4332
4333u16 ieee80211_encode_usf(int listen_interval)
4334{
4335 static const int listen_int_usf[] = { 1, 10, 1000, 10000 };
4336 u16 ui, usf = 0;
4337
4338 /* find greatest USF */
4339 while (usf < IEEE80211_MAX_USF) {
4340 if (listen_interval % listen_int_usf[usf + 1])
4341 break;
4342 usf += 1;
4343 }
4344 ui = listen_interval / listen_int_usf[usf];
4345
4346 /* error if there is a remainder. Should've been checked by user */
4347 WARN_ON_ONCE(ui > IEEE80211_MAX_UI);
4348 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) |
4349 FIELD_PREP(LISTEN_INT_UI, ui);
4350
4351 return (u16) listen_interval;
4352}
4353
4354/* this may return more than ieee80211_put_eht_cap() will need */
4355u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata)
4356{
4357 const struct ieee80211_sta_he_cap *he_cap;
4358 const struct ieee80211_sta_eht_cap *eht_cap;
4359 struct ieee80211_supported_band *sband;
4360 bool is_ap;
4361 u8 n;
4362
4363 sband = ieee80211_get_sband(sdata);
4364 if (!sband)
4365 return 0;
4366
4367 he_cap = ieee80211_get_he_iftype_cap_vif(sband, vif: &sdata->vif);
4368 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, vif: &sdata->vif);
4369 if (!he_cap || !eht_cap)
4370 return 0;
4371
4372 is_ap = sdata->vif.type == NL80211_IFTYPE_AP;
4373
4374 n = ieee80211_eht_mcs_nss_size(he_cap: &he_cap->he_cap_elem,
4375 eht_cap: &eht_cap->eht_cap_elem,
4376 from_ap: is_ap);
4377 return 2 + 1 +
4378 sizeof(eht_cap->eht_cap_elem) + n +
4379 ieee80211_eht_ppe_size(ppe_thres_hdr: eht_cap->eht_ppe_thres[0],
4380 phy_cap_info: eht_cap->eht_cap_elem.phy_cap_info);
4381 return 0;
4382}
4383
4384int ieee80211_put_eht_cap(struct sk_buff *skb,
4385 struct ieee80211_sub_if_data *sdata,
4386 const struct ieee80211_supported_band *sband,
4387 const struct ieee80211_conn_settings *conn)
4388{
4389 const struct ieee80211_sta_he_cap *he_cap =
4390 ieee80211_get_he_iftype_cap_vif(sband, vif: &sdata->vif);
4391 const struct ieee80211_sta_eht_cap *eht_cap =
4392 ieee80211_get_eht_iftype_cap_vif(sband, vif: &sdata->vif);
4393 bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP;
4394 struct ieee80211_eht_cap_elem_fixed fixed;
4395 struct ieee80211_he_cap_elem he;
4396 u8 mcs_nss_len, ppet_len;
4397 u8 orig_mcs_nss_len;
4398 u8 ie_len;
4399
4400 if (!conn)
4401 conn = &ieee80211_conn_settings_unlimited;
4402
4403 /* Make sure we have place for the IE */
4404 if (!he_cap || !eht_cap)
4405 return 0;
4406
4407 orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(he_cap: &he_cap->he_cap_elem,
4408 eht_cap: &eht_cap->eht_cap_elem,
4409 from_ap: for_ap);
4410
4411 ieee80211_get_adjusted_he_cap(conn, he_cap, elem: &he);
4412
4413 fixed = eht_cap->eht_cap_elem;
4414
4415 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80)
4416 fixed.phy_cap_info[6] &=
4417 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ;
4418
4419 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) {
4420 fixed.phy_cap_info[1] &=
4421 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK;
4422 fixed.phy_cap_info[2] &=
4423 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK;
4424 fixed.phy_cap_info[6] &=
4425 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ;
4426 }
4427
4428 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) {
4429 fixed.phy_cap_info[0] &=
4430 ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
4431 fixed.phy_cap_info[1] &=
4432 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
4433 fixed.phy_cap_info[2] &=
4434 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
4435 fixed.phy_cap_info[6] &=
4436 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ;
4437 }
4438
4439 if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20)
4440 fixed.phy_cap_info[0] &=
4441 ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ;
4442
4443 mcs_nss_len = ieee80211_eht_mcs_nss_size(he_cap: &he, eht_cap: &fixed, from_ap: for_ap);
4444 ppet_len = ieee80211_eht_ppe_size(ppe_thres_hdr: eht_cap->eht_ppe_thres[0],
4445 phy_cap_info: fixed.phy_cap_info);
4446
4447 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len;
4448 if (skb_tailroom(skb) < ie_len)
4449 return -ENOBUFS;
4450
4451 skb_put_u8(skb, val: WLAN_EID_EXTENSION);
4452 skb_put_u8(skb, val: ie_len - 2);
4453 skb_put_u8(skb, val: WLAN_EID_EXT_EHT_CAPABILITY);
4454 skb_put_data(skb, data: &fixed, len: sizeof(fixed));
4455
4456 if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) {
4457 /*
4458 * If the (non-AP) STA became 20 MHz only, then convert from
4459 * <=80 to 20-MHz-only format, where MCSes are indicated in
4460 * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9,
4461 * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9.
4462 */
4463 skb_put_u8(skb, val: eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss);
4464 skb_put_u8(skb, val: eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss);
4465 skb_put_u8(skb, val: eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss);
4466 skb_put_u8(skb, val: eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss);
4467 } else {
4468 skb_put_data(skb, data: &eht_cap->eht_mcs_nss_supp, len: mcs_nss_len);
4469 }
4470
4471 if (ppet_len)
4472 skb_put_data(skb, data: &eht_cap->eht_ppe_thres, len: ppet_len);
4473
4474 return 0;
4475}
4476
4477const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode)
4478{
4479 static const char * const modes[] = {
4480 [IEEE80211_CONN_MODE_S1G] = "S1G",
4481 [IEEE80211_CONN_MODE_LEGACY] = "legacy",
4482 [IEEE80211_CONN_MODE_HT] = "HT",
4483 [IEEE80211_CONN_MODE_VHT] = "VHT",
4484 [IEEE80211_CONN_MODE_HE] = "HE",
4485 [IEEE80211_CONN_MODE_EHT] = "EHT",
4486 };
4487
4488 if (WARN_ON(mode >= ARRAY_SIZE(modes)))
4489 return "<out of range>";
4490
4491 return modes[mode] ?: "<missing string>";
4492}
4493
4494enum ieee80211_conn_bw_limit
4495ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef)
4496{
4497 switch (chandef->width) {
4498 case NL80211_CHAN_WIDTH_20_NOHT:
4499 case NL80211_CHAN_WIDTH_20:
4500 return IEEE80211_CONN_BW_LIMIT_20;
4501 case NL80211_CHAN_WIDTH_40:
4502 return IEEE80211_CONN_BW_LIMIT_40;
4503 case NL80211_CHAN_WIDTH_80:
4504 return IEEE80211_CONN_BW_LIMIT_80;
4505 case NL80211_CHAN_WIDTH_80P80:
4506 case NL80211_CHAN_WIDTH_160:
4507 return IEEE80211_CONN_BW_LIMIT_160;
4508 case NL80211_CHAN_WIDTH_320:
4509 return IEEE80211_CONN_BW_LIMIT_320;
4510 default:
4511 WARN(1, "unhandled chandef width %d\n", chandef->width);
4512 return IEEE80211_CONN_BW_LIMIT_20;
4513 }
4514}
4515
4516void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe)
4517{
4518 for (int i = 0; i < 2; i++) {
4519 tpe->max_local[i].valid = false;
4520 memset(s: tpe->max_local[i].power,
4521 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT,
4522 n: sizeof(tpe->max_local[i].power));
4523
4524 tpe->max_reg_client[i].valid = false;
4525 memset(s: tpe->max_reg_client[i].power,
4526 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT,
4527 n: sizeof(tpe->max_reg_client[i].power));
4528
4529 tpe->psd_local[i].valid = false;
4530 memset(s: tpe->psd_local[i].power,
4531 IEEE80211_TPE_PSD_NO_LIMIT,
4532 n: sizeof(tpe->psd_local[i].power));
4533
4534 tpe->psd_reg_client[i].valid = false;
4535 memset(s: tpe->psd_reg_client[i].power,
4536 IEEE80211_TPE_PSD_NO_LIMIT,
4537 n: sizeof(tpe->psd_reg_client[i].power));
4538 }
4539}
4540
4541bool ieee80211_vif_nan_started(struct ieee80211_vif *vif)
4542{
4543 struct ieee80211_sub_if_data *sdata = vif_to_sdata(p: vif);
4544
4545 return vif->type == NL80211_IFTYPE_NAN && sdata->u.nan.started;
4546}
4547EXPORT_SYMBOL_GPL(ieee80211_vif_nan_started);
4548