| 1 | #include <linux/gfp.h> | 
|---|
| 2 | #include <linux/initrd.h> | 
|---|
| 3 | #include <linux/ioport.h> | 
|---|
| 4 | #include <linux/swap.h> | 
|---|
| 5 | #include <linux/memblock.h> | 
|---|
| 6 | #include <linux/swapfile.h> | 
|---|
| 7 | #include <linux/swapops.h> | 
|---|
| 8 | #include <linux/kmemleak.h> | 
|---|
| 9 | #include <linux/sched/task.h> | 
|---|
| 10 | #include <linux/execmem.h> | 
|---|
| 11 |  | 
|---|
| 12 | #include <asm/set_memory.h> | 
|---|
| 13 | #include <asm/cpu_device_id.h> | 
|---|
| 14 | #include <asm/e820/api.h> | 
|---|
| 15 | #include <asm/init.h> | 
|---|
| 16 | #include <asm/page.h> | 
|---|
| 17 | #include <asm/page_types.h> | 
|---|
| 18 | #include <asm/sections.h> | 
|---|
| 19 | #include <asm/setup.h> | 
|---|
| 20 | #include <asm/tlbflush.h> | 
|---|
| 21 | #include <asm/tlb.h> | 
|---|
| 22 | #include <asm/proto.h> | 
|---|
| 23 | #include <asm/dma.h>		/* for MAX_DMA_PFN */ | 
|---|
| 24 | #include <asm/kaslr.h> | 
|---|
| 25 | #include <asm/hypervisor.h> | 
|---|
| 26 | #include <asm/cpufeature.h> | 
|---|
| 27 | #include <asm/pti.h> | 
|---|
| 28 | #include <asm/text-patching.h> | 
|---|
| 29 | #include <asm/memtype.h> | 
|---|
| 30 | #include <asm/paravirt.h> | 
|---|
| 31 | #include <asm/mmu_context.h> | 
|---|
| 32 |  | 
|---|
| 33 | /* | 
|---|
| 34 | * We need to define the tracepoints somewhere, and tlb.c | 
|---|
| 35 | * is only compiled when SMP=y. | 
|---|
| 36 | */ | 
|---|
| 37 | #define CREATE_TRACE_POINTS | 
|---|
| 38 | #include <trace/events/tlb.h> | 
|---|
| 39 |  | 
|---|
| 40 | #include "mm_internal.h" | 
|---|
| 41 |  | 
|---|
| 42 | /* | 
|---|
| 43 | * Tables translating between page_cache_type_t and pte encoding. | 
|---|
| 44 | * | 
|---|
| 45 | * The default values are defined statically as minimal supported mode; | 
|---|
| 46 | * WC and WT fall back to UC-.  pat_init() updates these values to support | 
|---|
| 47 | * more cache modes, WC and WT, when it is safe to do so.  See pat_init() | 
|---|
| 48 | * for the details.  Note, __early_ioremap() used during early boot-time | 
|---|
| 49 | * takes pgprot_t (pte encoding) and does not use these tables. | 
|---|
| 50 | * | 
|---|
| 51 | *   Index into __cachemode2pte_tbl[] is the cachemode. | 
|---|
| 52 | * | 
|---|
| 53 | *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte | 
|---|
| 54 | *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. | 
|---|
| 55 | */ | 
|---|
| 56 | static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { | 
|---|
| 57 | [_PAGE_CACHE_MODE_WB      ]	= 0         | 0        , | 
|---|
| 58 | [_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD, | 
|---|
| 59 | [_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD, | 
|---|
| 60 | [_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD, | 
|---|
| 61 | [_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD, | 
|---|
| 62 | [_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD, | 
|---|
| 63 | }; | 
|---|
| 64 |  | 
|---|
| 65 | unsigned long cachemode2protval(enum page_cache_mode pcm) | 
|---|
| 66 | { | 
|---|
| 67 | if (likely(pcm == 0)) | 
|---|
| 68 | return 0; | 
|---|
| 69 | return __cachemode2pte_tbl[pcm]; | 
|---|
| 70 | } | 
|---|
| 71 | EXPORT_SYMBOL(cachemode2protval); | 
|---|
| 72 |  | 
|---|
| 73 | static uint8_t __pte2cachemode_tbl[8] = { | 
|---|
| 74 | [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB, | 
|---|
| 75 | [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS, | 
|---|
| 76 | [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS, | 
|---|
| 77 | [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC, | 
|---|
| 78 | [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, | 
|---|
| 79 | [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, | 
|---|
| 80 | [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, | 
|---|
| 81 | [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, | 
|---|
| 82 | }; | 
|---|
| 83 |  | 
|---|
| 84 | /* | 
|---|
| 85 | * Check that the write-protect PAT entry is set for write-protect. | 
|---|
| 86 | * To do this without making assumptions how PAT has been set up (Xen has | 
|---|
| 87 | * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache | 
|---|
| 88 | * mode via the __cachemode2pte_tbl[] into protection bits (those protection | 
|---|
| 89 | * bits will select a cache mode of WP or better), and then translate the | 
|---|
| 90 | * protection bits back into the cache mode using __pte2cm_idx() and the | 
|---|
| 91 | * __pte2cachemode_tbl[] array. This will return the really used cache mode. | 
|---|
| 92 | */ | 
|---|
| 93 | bool x86_has_pat_wp(void) | 
|---|
| 94 | { | 
|---|
| 95 | uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP]; | 
|---|
| 96 |  | 
|---|
| 97 | return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP; | 
|---|
| 98 | } | 
|---|
| 99 |  | 
|---|
| 100 | enum page_cache_mode pgprot2cachemode(pgprot_t pgprot) | 
|---|
| 101 | { | 
|---|
| 102 | unsigned long masked; | 
|---|
| 103 |  | 
|---|
| 104 | masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK; | 
|---|
| 105 | if (likely(masked == 0)) | 
|---|
| 106 | return 0; | 
|---|
| 107 | return __pte2cachemode_tbl[__pte2cm_idx(masked)]; | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 | static unsigned long __initdata pgt_buf_start; | 
|---|
| 111 | static unsigned long __initdata pgt_buf_end; | 
|---|
| 112 | static unsigned long __initdata pgt_buf_top; | 
|---|
| 113 |  | 
|---|
| 114 | static unsigned long min_pfn_mapped; | 
|---|
| 115 |  | 
|---|
| 116 | static bool __initdata can_use_brk_pgt = true; | 
|---|
| 117 |  | 
|---|
| 118 | /* | 
|---|
| 119 | * Pages returned are already directly mapped. | 
|---|
| 120 | * | 
|---|
| 121 | * Changing that is likely to break Xen, see commit: | 
|---|
| 122 | * | 
|---|
| 123 | *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve | 
|---|
| 124 | * | 
|---|
| 125 | * for detailed information. | 
|---|
| 126 | */ | 
|---|
| 127 | __ref void *alloc_low_pages(unsigned int num) | 
|---|
| 128 | { | 
|---|
| 129 | unsigned long pfn; | 
|---|
| 130 | int i; | 
|---|
| 131 |  | 
|---|
| 132 | if (after_bootmem) { | 
|---|
| 133 | unsigned int order; | 
|---|
| 134 |  | 
|---|
| 135 | order = get_order(size: (unsigned long)num << PAGE_SHIFT); | 
|---|
| 136 | return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 | if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { | 
|---|
| 140 | unsigned long ret = 0; | 
|---|
| 141 |  | 
|---|
| 142 | if (min_pfn_mapped < max_pfn_mapped) { | 
|---|
| 143 | ret = memblock_phys_alloc_range( | 
|---|
| 144 | PAGE_SIZE * num, PAGE_SIZE, | 
|---|
| 145 | start: min_pfn_mapped << PAGE_SHIFT, | 
|---|
| 146 | end: max_pfn_mapped << PAGE_SHIFT); | 
|---|
| 147 | } | 
|---|
| 148 | if (!ret && can_use_brk_pgt) | 
|---|
| 149 | ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); | 
|---|
| 150 |  | 
|---|
| 151 | if (!ret) | 
|---|
| 152 | panic(fmt: "alloc_low_pages: can not alloc memory"); | 
|---|
| 153 |  | 
|---|
| 154 | pfn = ret >> PAGE_SHIFT; | 
|---|
| 155 | } else { | 
|---|
| 156 | pfn = pgt_buf_end; | 
|---|
| 157 | pgt_buf_end += num; | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 | for (i = 0; i < num; i++) { | 
|---|
| 161 | void *adr; | 
|---|
| 162 |  | 
|---|
| 163 | adr = __va((pfn + i) << PAGE_SHIFT); | 
|---|
| 164 | clear_page(page: adr); | 
|---|
| 165 | } | 
|---|
| 166 |  | 
|---|
| 167 | return __va(pfn << PAGE_SHIFT); | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 | /* | 
|---|
| 171 | * By default need to be able to allocate page tables below PGD firstly for | 
|---|
| 172 | * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping. | 
|---|
| 173 | * With KASLR memory randomization, depending on the machine e820 memory and the | 
|---|
| 174 | * PUD alignment, twice that many pages may be needed when KASLR memory | 
|---|
| 175 | * randomization is enabled. | 
|---|
| 176 | */ | 
|---|
| 177 |  | 
|---|
| 178 | #define INIT_PGD_PAGE_TABLES    4 | 
|---|
| 179 |  | 
|---|
| 180 | #ifndef CONFIG_RANDOMIZE_MEMORY | 
|---|
| 181 | #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES) | 
|---|
| 182 | #else | 
|---|
| 183 | #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES) | 
|---|
| 184 | #endif | 
|---|
| 185 |  | 
|---|
| 186 | #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE) | 
|---|
| 187 | RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); | 
|---|
| 188 | void  __init early_alloc_pgt_buf(void) | 
|---|
| 189 | { | 
|---|
| 190 | unsigned long tables = INIT_PGT_BUF_SIZE; | 
|---|
| 191 | phys_addr_t base; | 
|---|
| 192 |  | 
|---|
| 193 | base = __pa(extend_brk(tables, PAGE_SIZE)); | 
|---|
| 194 |  | 
|---|
| 195 | pgt_buf_start = base >> PAGE_SHIFT; | 
|---|
| 196 | pgt_buf_end = pgt_buf_start; | 
|---|
| 197 | pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); | 
|---|
| 198 | } | 
|---|
| 199 |  | 
|---|
| 200 | int after_bootmem; | 
|---|
| 201 |  | 
|---|
| 202 | early_param_on_off( "gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); | 
|---|
| 203 |  | 
|---|
| 204 | struct map_range { | 
|---|
| 205 | unsigned long start; | 
|---|
| 206 | unsigned long end; | 
|---|
| 207 | unsigned page_size_mask; | 
|---|
| 208 | }; | 
|---|
| 209 |  | 
|---|
| 210 | static int page_size_mask; | 
|---|
| 211 |  | 
|---|
| 212 | /* | 
|---|
| 213 | * Save some of cr4 feature set we're using (e.g.  Pentium 4MB | 
|---|
| 214 | * enable and PPro Global page enable), so that any CPU's that boot | 
|---|
| 215 | * up after us can get the correct flags. Invoked on the boot CPU. | 
|---|
| 216 | */ | 
|---|
| 217 | static inline void cr4_set_bits_and_update_boot(unsigned long mask) | 
|---|
| 218 | { | 
|---|
| 219 | mmu_cr4_features |= mask; | 
|---|
| 220 | if (trampoline_cr4_features) | 
|---|
| 221 | *trampoline_cr4_features = mmu_cr4_features; | 
|---|
| 222 | cr4_set_bits(mask); | 
|---|
| 223 | } | 
|---|
| 224 |  | 
|---|
| 225 | static void __init probe_page_size_mask(void) | 
|---|
| 226 | { | 
|---|
| 227 | /* | 
|---|
| 228 | * For pagealloc debugging, identity mapping will use small pages. | 
|---|
| 229 | * This will simplify cpa(), which otherwise needs to support splitting | 
|---|
| 230 | * large pages into small in interrupt context, etc. | 
|---|
| 231 | */ | 
|---|
| 232 | if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) | 
|---|
| 233 | page_size_mask |= 1 << PG_LEVEL_2M; | 
|---|
| 234 | else | 
|---|
| 235 | direct_gbpages = 0; | 
|---|
| 236 |  | 
|---|
| 237 | /* Enable PSE if available */ | 
|---|
| 238 | if (boot_cpu_has(X86_FEATURE_PSE)) | 
|---|
| 239 | cr4_set_bits_and_update_boot(X86_CR4_PSE); | 
|---|
| 240 |  | 
|---|
| 241 | /* Enable PGE if available */ | 
|---|
| 242 | __supported_pte_mask &= ~_PAGE_GLOBAL; | 
|---|
| 243 | if (boot_cpu_has(X86_FEATURE_PGE)) { | 
|---|
| 244 | cr4_set_bits_and_update_boot(X86_CR4_PGE); | 
|---|
| 245 | __supported_pte_mask |= _PAGE_GLOBAL; | 
|---|
| 246 | } | 
|---|
| 247 |  | 
|---|
| 248 | /* By the default is everything supported: */ | 
|---|
| 249 | __default_kernel_pte_mask = __supported_pte_mask; | 
|---|
| 250 | /* Except when with PTI where the kernel is mostly non-Global: */ | 
|---|
| 251 | if (cpu_feature_enabled(X86_FEATURE_PTI)) | 
|---|
| 252 | __default_kernel_pte_mask &= ~_PAGE_GLOBAL; | 
|---|
| 253 |  | 
|---|
| 254 | /* Enable 1 GB linear kernel mappings if available: */ | 
|---|
| 255 | if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { | 
|---|
| 256 | printk(KERN_INFO "Using GB pages for direct mapping\n"); | 
|---|
| 257 | page_size_mask |= 1 << PG_LEVEL_1G; | 
|---|
| 258 | } else { | 
|---|
| 259 | direct_gbpages = 0; | 
|---|
| 260 | } | 
|---|
| 261 | } | 
|---|
| 262 |  | 
|---|
| 263 | /* | 
|---|
| 264 | * INVLPG may not properly flush Global entries on | 
|---|
| 265 | * these CPUs.  New microcode fixes the issue. | 
|---|
| 266 | */ | 
|---|
| 267 | static const struct x86_cpu_id invlpg_miss_ids[] = { | 
|---|
| 268 | X86_MATCH_VFM(INTEL_ALDERLAKE,	    0x2e), | 
|---|
| 269 | X86_MATCH_VFM(INTEL_ALDERLAKE_L,    0x42c), | 
|---|
| 270 | X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0x11), | 
|---|
| 271 | X86_MATCH_VFM(INTEL_RAPTORLAKE,	    0x118), | 
|---|
| 272 | X86_MATCH_VFM(INTEL_RAPTORLAKE_P,   0x4117), | 
|---|
| 273 | X86_MATCH_VFM(INTEL_RAPTORLAKE_S,   0x2e), | 
|---|
| 274 | {} | 
|---|
| 275 | }; | 
|---|
| 276 |  | 
|---|
| 277 | static void setup_pcid(void) | 
|---|
| 278 | { | 
|---|
| 279 | const struct x86_cpu_id *invlpg_miss_match; | 
|---|
| 280 |  | 
|---|
| 281 | if (!IS_ENABLED(CONFIG_X86_64)) | 
|---|
| 282 | return; | 
|---|
| 283 |  | 
|---|
| 284 | if (!boot_cpu_has(X86_FEATURE_PCID)) | 
|---|
| 285 | return; | 
|---|
| 286 |  | 
|---|
| 287 | invlpg_miss_match = x86_match_cpu(match: invlpg_miss_ids); | 
|---|
| 288 |  | 
|---|
| 289 | if (invlpg_miss_match && | 
|---|
| 290 | boot_cpu_data.microcode < invlpg_miss_match->driver_data) { | 
|---|
| 291 | pr_info( "Incomplete global flushes, disabling PCID"); | 
|---|
| 292 | setup_clear_cpu_cap(X86_FEATURE_PCID); | 
|---|
| 293 | return; | 
|---|
| 294 | } | 
|---|
| 295 |  | 
|---|
| 296 | if (boot_cpu_has(X86_FEATURE_PGE)) { | 
|---|
| 297 | /* | 
|---|
| 298 | * This can't be cr4_set_bits_and_update_boot() -- the | 
|---|
| 299 | * trampoline code can't handle CR4.PCIDE and it wouldn't | 
|---|
| 300 | * do any good anyway.  Despite the name, | 
|---|
| 301 | * cr4_set_bits_and_update_boot() doesn't actually cause | 
|---|
| 302 | * the bits in question to remain set all the way through | 
|---|
| 303 | * the secondary boot asm. | 
|---|
| 304 | * | 
|---|
| 305 | * Instead, we brute-force it and set CR4.PCIDE manually in | 
|---|
| 306 | * start_secondary(). | 
|---|
| 307 | */ | 
|---|
| 308 | cr4_set_bits(X86_CR4_PCIDE); | 
|---|
| 309 | } else { | 
|---|
| 310 | /* | 
|---|
| 311 | * flush_tlb_all(), as currently implemented, won't work if | 
|---|
| 312 | * PCID is on but PGE is not.  Since that combination | 
|---|
| 313 | * doesn't exist on real hardware, there's no reason to try | 
|---|
| 314 | * to fully support it, but it's polite to avoid corrupting | 
|---|
| 315 | * data if we're on an improperly configured VM. | 
|---|
| 316 | */ | 
|---|
| 317 | setup_clear_cpu_cap(X86_FEATURE_PCID); | 
|---|
| 318 | } | 
|---|
| 319 | } | 
|---|
| 320 |  | 
|---|
| 321 | #ifdef CONFIG_X86_32 | 
|---|
| 322 | #define NR_RANGE_MR 3 | 
|---|
| 323 | #else /* CONFIG_X86_64 */ | 
|---|
| 324 | #define NR_RANGE_MR 5 | 
|---|
| 325 | #endif | 
|---|
| 326 |  | 
|---|
| 327 | static int __meminit save_mr(struct map_range *mr, int nr_range, | 
|---|
| 328 | unsigned long start_pfn, unsigned long end_pfn, | 
|---|
| 329 | unsigned long page_size_mask) | 
|---|
| 330 | { | 
|---|
| 331 | if (start_pfn < end_pfn) { | 
|---|
| 332 | if (nr_range >= NR_RANGE_MR) | 
|---|
| 333 | panic(fmt: "run out of range for init_memory_mapping\n"); | 
|---|
| 334 | mr[nr_range].start = start_pfn<<PAGE_SHIFT; | 
|---|
| 335 | mr[nr_range].end   = end_pfn<<PAGE_SHIFT; | 
|---|
| 336 | mr[nr_range].page_size_mask = page_size_mask; | 
|---|
| 337 | nr_range++; | 
|---|
| 338 | } | 
|---|
| 339 |  | 
|---|
| 340 | return nr_range; | 
|---|
| 341 | } | 
|---|
| 342 |  | 
|---|
| 343 | /* | 
|---|
| 344 | * adjust the page_size_mask for small range to go with | 
|---|
| 345 | *	big page size instead small one if nearby are ram too. | 
|---|
| 346 | */ | 
|---|
| 347 | static void __ref adjust_range_page_size_mask(struct map_range *mr, | 
|---|
| 348 | int nr_range) | 
|---|
| 349 | { | 
|---|
| 350 | int i; | 
|---|
| 351 |  | 
|---|
| 352 | for (i = 0; i < nr_range; i++) { | 
|---|
| 353 | if ((page_size_mask & (1<<PG_LEVEL_2M)) && | 
|---|
| 354 | !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { | 
|---|
| 355 | unsigned long start = round_down(mr[i].start, PMD_SIZE); | 
|---|
| 356 | unsigned long end = round_up(mr[i].end, PMD_SIZE); | 
|---|
| 357 |  | 
|---|
| 358 | #ifdef CONFIG_X86_32 | 
|---|
| 359 | if ((end >> PAGE_SHIFT) > max_low_pfn) | 
|---|
| 360 | continue; | 
|---|
| 361 | #endif | 
|---|
| 362 |  | 
|---|
| 363 | if (memblock_is_region_memory(base: start, size: end - start)) | 
|---|
| 364 | mr[i].page_size_mask |= 1<<PG_LEVEL_2M; | 
|---|
| 365 | } | 
|---|
| 366 | if ((page_size_mask & (1<<PG_LEVEL_1G)) && | 
|---|
| 367 | !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { | 
|---|
| 368 | unsigned long start = round_down(mr[i].start, PUD_SIZE); | 
|---|
| 369 | unsigned long end = round_up(mr[i].end, PUD_SIZE); | 
|---|
| 370 |  | 
|---|
| 371 | if (memblock_is_region_memory(base: start, size: end - start)) | 
|---|
| 372 | mr[i].page_size_mask |= 1<<PG_LEVEL_1G; | 
|---|
| 373 | } | 
|---|
| 374 | } | 
|---|
| 375 | } | 
|---|
| 376 |  | 
|---|
| 377 | static const char *page_size_string(struct map_range *mr) | 
|---|
| 378 | { | 
|---|
| 379 | static const char str_1g[] = "1G"; | 
|---|
| 380 | static const char str_2m[] = "2M"; | 
|---|
| 381 | static const char str_4m[] = "4M"; | 
|---|
| 382 | static const char str_4k[] = "4k"; | 
|---|
| 383 |  | 
|---|
| 384 | if (mr->page_size_mask & (1<<PG_LEVEL_1G)) | 
|---|
| 385 | return str_1g; | 
|---|
| 386 | /* | 
|---|
| 387 | * 32-bit without PAE has a 4M large page size. | 
|---|
| 388 | * PG_LEVEL_2M is misnamed, but we can at least | 
|---|
| 389 | * print out the right size in the string. | 
|---|
| 390 | */ | 
|---|
| 391 | if (IS_ENABLED(CONFIG_X86_32) && | 
|---|
| 392 | !IS_ENABLED(CONFIG_X86_PAE) && | 
|---|
| 393 | mr->page_size_mask & (1<<PG_LEVEL_2M)) | 
|---|
| 394 | return str_4m; | 
|---|
| 395 |  | 
|---|
| 396 | if (mr->page_size_mask & (1<<PG_LEVEL_2M)) | 
|---|
| 397 | return str_2m; | 
|---|
| 398 |  | 
|---|
| 399 | return str_4k; | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | static int __meminit split_mem_range(struct map_range *mr, int nr_range, | 
|---|
| 403 | unsigned long start, | 
|---|
| 404 | unsigned long end) | 
|---|
| 405 | { | 
|---|
| 406 | unsigned long start_pfn, end_pfn, limit_pfn; | 
|---|
| 407 | unsigned long pfn; | 
|---|
| 408 | int i; | 
|---|
| 409 |  | 
|---|
| 410 | limit_pfn = PFN_DOWN(end); | 
|---|
| 411 |  | 
|---|
| 412 | /* head if not big page alignment ? */ | 
|---|
| 413 | pfn = start_pfn = PFN_DOWN(start); | 
|---|
| 414 | #ifdef CONFIG_X86_32 | 
|---|
| 415 | /* | 
|---|
| 416 | * Don't use a large page for the first 2/4MB of memory | 
|---|
| 417 | * because there are often fixed size MTRRs in there | 
|---|
| 418 | * and overlapping MTRRs into large pages can cause | 
|---|
| 419 | * slowdowns. | 
|---|
| 420 | */ | 
|---|
| 421 | if (pfn == 0) | 
|---|
| 422 | end_pfn = PFN_DOWN(PMD_SIZE); | 
|---|
| 423 | else | 
|---|
| 424 | end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|---|
| 425 | #else /* CONFIG_X86_64 */ | 
|---|
| 426 | end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|---|
| 427 | #endif | 
|---|
| 428 | if (end_pfn > limit_pfn) | 
|---|
| 429 | end_pfn = limit_pfn; | 
|---|
| 430 | if (start_pfn < end_pfn) { | 
|---|
| 431 | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask: 0); | 
|---|
| 432 | pfn = end_pfn; | 
|---|
| 433 | } | 
|---|
| 434 |  | 
|---|
| 435 | /* big page (2M) range */ | 
|---|
| 436 | start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|---|
| 437 | #ifdef CONFIG_X86_32 | 
|---|
| 438 | end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); | 
|---|
| 439 | #else /* CONFIG_X86_64 */ | 
|---|
| 440 | end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); | 
|---|
| 441 | if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) | 
|---|
| 442 | end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); | 
|---|
| 443 | #endif | 
|---|
| 444 |  | 
|---|
| 445 | if (start_pfn < end_pfn) { | 
|---|
| 446 | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|---|
| 447 | page_size_mask: page_size_mask & (1<<PG_LEVEL_2M)); | 
|---|
| 448 | pfn = end_pfn; | 
|---|
| 449 | } | 
|---|
| 450 |  | 
|---|
| 451 | #ifdef CONFIG_X86_64 | 
|---|
| 452 | /* big page (1G) range */ | 
|---|
| 453 | start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); | 
|---|
| 454 | end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); | 
|---|
| 455 | if (start_pfn < end_pfn) { | 
|---|
| 456 | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|---|
| 457 | page_size_mask: page_size_mask & | 
|---|
| 458 | ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); | 
|---|
| 459 | pfn = end_pfn; | 
|---|
| 460 | } | 
|---|
| 461 |  | 
|---|
| 462 | /* tail is not big page (1G) alignment */ | 
|---|
| 463 | start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); | 
|---|
| 464 | end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); | 
|---|
| 465 | if (start_pfn < end_pfn) { | 
|---|
| 466 | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|---|
| 467 | page_size_mask: page_size_mask & (1<<PG_LEVEL_2M)); | 
|---|
| 468 | pfn = end_pfn; | 
|---|
| 469 | } | 
|---|
| 470 | #endif | 
|---|
| 471 |  | 
|---|
| 472 | /* tail is not big page (2M) alignment */ | 
|---|
| 473 | start_pfn = pfn; | 
|---|
| 474 | end_pfn = limit_pfn; | 
|---|
| 475 | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask: 0); | 
|---|
| 476 |  | 
|---|
| 477 | if (!after_bootmem) | 
|---|
| 478 | adjust_range_page_size_mask(mr, nr_range); | 
|---|
| 479 |  | 
|---|
| 480 | /* try to merge same page size and continuous */ | 
|---|
| 481 | for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { | 
|---|
| 482 | unsigned long old_start; | 
|---|
| 483 | if (mr[i].end != mr[i+1].start || | 
|---|
| 484 | mr[i].page_size_mask != mr[i+1].page_size_mask) | 
|---|
| 485 | continue; | 
|---|
| 486 | /* move it */ | 
|---|
| 487 | old_start = mr[i].start; | 
|---|
| 488 | memmove(dest: &mr[i], src: &mr[i+1], | 
|---|
| 489 | count: (nr_range - 1 - i) * sizeof(struct map_range)); | 
|---|
| 490 | mr[i--].start = old_start; | 
|---|
| 491 | nr_range--; | 
|---|
| 492 | } | 
|---|
| 493 |  | 
|---|
| 494 | for (i = 0; i < nr_range; i++) | 
|---|
| 495 | pr_debug( " [mem %#010lx-%#010lx] page %s\n", | 
|---|
| 496 | mr[i].start, mr[i].end - 1, | 
|---|
| 497 | page_size_string(&mr[i])); | 
|---|
| 498 |  | 
|---|
| 499 | return nr_range; | 
|---|
| 500 | } | 
|---|
| 501 |  | 
|---|
| 502 | struct range pfn_mapped[E820_MAX_ENTRIES]; | 
|---|
| 503 | int nr_pfn_mapped; | 
|---|
| 504 |  | 
|---|
| 505 | static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) | 
|---|
| 506 | { | 
|---|
| 507 | nr_pfn_mapped = add_range_with_merge(range: pfn_mapped, E820_MAX_ENTRIES, | 
|---|
| 508 | nr_range: nr_pfn_mapped, start: start_pfn, end: end_pfn); | 
|---|
| 509 | nr_pfn_mapped = clean_sort_range(range: pfn_mapped, E820_MAX_ENTRIES); | 
|---|
| 510 |  | 
|---|
| 511 | max_pfn_mapped = max(max_pfn_mapped, end_pfn); | 
|---|
| 512 |  | 
|---|
| 513 | if (start_pfn < (1UL<<(32-PAGE_SHIFT))) | 
|---|
| 514 | max_low_pfn_mapped = max(max_low_pfn_mapped, | 
|---|
| 515 | min(end_pfn, 1UL<<(32-PAGE_SHIFT))); | 
|---|
| 516 | } | 
|---|
| 517 |  | 
|---|
| 518 | bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) | 
|---|
| 519 | { | 
|---|
| 520 | int i; | 
|---|
| 521 |  | 
|---|
| 522 | for (i = 0; i < nr_pfn_mapped; i++) | 
|---|
| 523 | if ((start_pfn >= pfn_mapped[i].start) && | 
|---|
| 524 | (end_pfn <= pfn_mapped[i].end)) | 
|---|
| 525 | return true; | 
|---|
| 526 |  | 
|---|
| 527 | return false; | 
|---|
| 528 | } | 
|---|
| 529 |  | 
|---|
| 530 | /* | 
|---|
| 531 | * Setup the direct mapping of the physical memory at PAGE_OFFSET. | 
|---|
| 532 | * This runs before bootmem is initialized and gets pages directly from | 
|---|
| 533 | * the physical memory. To access them they are temporarily mapped. | 
|---|
| 534 | */ | 
|---|
| 535 | unsigned long __ref init_memory_mapping(unsigned long start, | 
|---|
| 536 | unsigned long end, pgprot_t prot) | 
|---|
| 537 | { | 
|---|
| 538 | struct map_range mr[NR_RANGE_MR]; | 
|---|
| 539 | unsigned long ret = 0; | 
|---|
| 540 | int nr_range, i; | 
|---|
| 541 |  | 
|---|
| 542 | pr_debug( "init_memory_mapping: [mem %#010lx-%#010lx]\n", | 
|---|
| 543 | start, end - 1); | 
|---|
| 544 |  | 
|---|
| 545 | memset(s: mr, c: 0, n: sizeof(mr)); | 
|---|
| 546 | nr_range = split_mem_range(mr, nr_range: 0, start, end); | 
|---|
| 547 |  | 
|---|
| 548 | for (i = 0; i < nr_range; i++) | 
|---|
| 549 | ret = kernel_physical_mapping_init(start: mr[i].start, end: mr[i].end, | 
|---|
| 550 | page_size_mask: mr[i].page_size_mask, | 
|---|
| 551 | prot); | 
|---|
| 552 |  | 
|---|
| 553 | add_pfn_range_mapped(start_pfn: start >> PAGE_SHIFT, end_pfn: ret >> PAGE_SHIFT); | 
|---|
| 554 |  | 
|---|
| 555 | return ret >> PAGE_SHIFT; | 
|---|
| 556 | } | 
|---|
| 557 |  | 
|---|
| 558 | /* | 
|---|
| 559 | * We need to iterate through the E820 memory map and create direct mappings | 
|---|
| 560 | * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply | 
|---|
| 561 | * create direct mappings for all pfns from [0 to max_low_pfn) and | 
|---|
| 562 | * [4GB to max_pfn) because of possible memory holes in high addresses | 
|---|
| 563 | * that cannot be marked as UC by fixed/variable range MTRRs. | 
|---|
| 564 | * Depending on the alignment of E820 ranges, this may possibly result | 
|---|
| 565 | * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. | 
|---|
| 566 | * | 
|---|
| 567 | * init_mem_mapping() calls init_range_memory_mapping() with big range. | 
|---|
| 568 | * That range would have hole in the middle or ends, and only ram parts | 
|---|
| 569 | * will be mapped in init_range_memory_mapping(). | 
|---|
| 570 | */ | 
|---|
| 571 | static unsigned long __init init_range_memory_mapping( | 
|---|
| 572 | unsigned long r_start, | 
|---|
| 573 | unsigned long r_end) | 
|---|
| 574 | { | 
|---|
| 575 | unsigned long start_pfn, end_pfn; | 
|---|
| 576 | unsigned long mapped_ram_size = 0; | 
|---|
| 577 | int i; | 
|---|
| 578 |  | 
|---|
| 579 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { | 
|---|
| 580 | u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); | 
|---|
| 581 | u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); | 
|---|
| 582 | if (start >= end) | 
|---|
| 583 | continue; | 
|---|
| 584 |  | 
|---|
| 585 | /* | 
|---|
| 586 | * if it is overlapping with brk pgt, we need to | 
|---|
| 587 | * alloc pgt buf from memblock instead. | 
|---|
| 588 | */ | 
|---|
| 589 | can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= | 
|---|
| 590 | min(end, (u64)pgt_buf_top<<PAGE_SHIFT); | 
|---|
| 591 | init_memory_mapping(start, end, PAGE_KERNEL); | 
|---|
| 592 | mapped_ram_size += end - start; | 
|---|
| 593 | can_use_brk_pgt = true; | 
|---|
| 594 | } | 
|---|
| 595 |  | 
|---|
| 596 | return mapped_ram_size; | 
|---|
| 597 | } | 
|---|
| 598 |  | 
|---|
| 599 | static unsigned long __init get_new_step_size(unsigned long step_size) | 
|---|
| 600 | { | 
|---|
| 601 | /* | 
|---|
| 602 | * Initial mapped size is PMD_SIZE (2M). | 
|---|
| 603 | * We can not set step_size to be PUD_SIZE (1G) yet. | 
|---|
| 604 | * In worse case, when we cross the 1G boundary, and | 
|---|
| 605 | * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) | 
|---|
| 606 | * to map 1G range with PTE. Hence we use one less than the | 
|---|
| 607 | * difference of page table level shifts. | 
|---|
| 608 | * | 
|---|
| 609 | * Don't need to worry about overflow in the top-down case, on 32bit, | 
|---|
| 610 | * when step_size is 0, round_down() returns 0 for start, and that | 
|---|
| 611 | * turns it into 0x100000000ULL. | 
|---|
| 612 | * In the bottom-up case, round_up(x, 0) returns 0 though too, which | 
|---|
| 613 | * needs to be taken into consideration by the code below. | 
|---|
| 614 | */ | 
|---|
| 615 | return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); | 
|---|
| 616 | } | 
|---|
| 617 |  | 
|---|
| 618 | /** | 
|---|
| 619 | * memory_map_top_down - Map [map_start, map_end) top down | 
|---|
| 620 | * @map_start: start address of the target memory range | 
|---|
| 621 | * @map_end: end address of the target memory range | 
|---|
| 622 | * | 
|---|
| 623 | * This function will setup direct mapping for memory range | 
|---|
| 624 | * [map_start, map_end) in top-down. That said, the page tables | 
|---|
| 625 | * will be allocated at the end of the memory, and we map the | 
|---|
| 626 | * memory in top-down. | 
|---|
| 627 | */ | 
|---|
| 628 | static void __init memory_map_top_down(unsigned long map_start, | 
|---|
| 629 | unsigned long map_end) | 
|---|
| 630 | { | 
|---|
| 631 | unsigned long real_end, last_start; | 
|---|
| 632 | unsigned long step_size; | 
|---|
| 633 | unsigned long addr; | 
|---|
| 634 | unsigned long mapped_ram_size = 0; | 
|---|
| 635 |  | 
|---|
| 636 | /* | 
|---|
| 637 | * Systems that have many reserved areas near top of the memory, | 
|---|
| 638 | * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will | 
|---|
| 639 | * require lots of 4K mappings which may exhaust pgt_buf. | 
|---|
| 640 | * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure | 
|---|
| 641 | * there is enough mapped memory that can be allocated from | 
|---|
| 642 | * memblock. | 
|---|
| 643 | */ | 
|---|
| 644 | addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, start: map_start, | 
|---|
| 645 | end: map_end); | 
|---|
| 646 | if (!addr) { | 
|---|
| 647 | pr_warn( "Failed to release memory for alloc_low_pages()"); | 
|---|
| 648 | real_end = max(map_start, ALIGN_DOWN(map_end, PMD_SIZE)); | 
|---|
| 649 | } else { | 
|---|
| 650 | memblock_phys_free(base: addr, PMD_SIZE); | 
|---|
| 651 | real_end = addr + PMD_SIZE; | 
|---|
| 652 | } | 
|---|
| 653 |  | 
|---|
| 654 | /* step_size need to be small so pgt_buf from BRK could cover it */ | 
|---|
| 655 | step_size = PMD_SIZE; | 
|---|
| 656 | max_pfn_mapped = 0; /* will get exact value next */ | 
|---|
| 657 | min_pfn_mapped = real_end >> PAGE_SHIFT; | 
|---|
| 658 | last_start = real_end; | 
|---|
| 659 |  | 
|---|
| 660 | /* | 
|---|
| 661 | * We start from the top (end of memory) and go to the bottom. | 
|---|
| 662 | * The memblock_find_in_range() gets us a block of RAM from the | 
|---|
| 663 | * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages | 
|---|
| 664 | * for page table. | 
|---|
| 665 | */ | 
|---|
| 666 | while (last_start > map_start) { | 
|---|
| 667 | unsigned long start; | 
|---|
| 668 |  | 
|---|
| 669 | if (last_start > step_size) { | 
|---|
| 670 | start = round_down(last_start - 1, step_size); | 
|---|
| 671 | if (start < map_start) | 
|---|
| 672 | start = map_start; | 
|---|
| 673 | } else | 
|---|
| 674 | start = map_start; | 
|---|
| 675 | mapped_ram_size += init_range_memory_mapping(r_start: start, | 
|---|
| 676 | r_end: last_start); | 
|---|
| 677 | last_start = start; | 
|---|
| 678 | min_pfn_mapped = last_start >> PAGE_SHIFT; | 
|---|
| 679 | if (mapped_ram_size >= step_size) | 
|---|
| 680 | step_size = get_new_step_size(step_size); | 
|---|
| 681 | } | 
|---|
| 682 |  | 
|---|
| 683 | if (real_end < map_end) | 
|---|
| 684 | init_range_memory_mapping(r_start: real_end, r_end: map_end); | 
|---|
| 685 | } | 
|---|
| 686 |  | 
|---|
| 687 | /** | 
|---|
| 688 | * memory_map_bottom_up - Map [map_start, map_end) bottom up | 
|---|
| 689 | * @map_start: start address of the target memory range | 
|---|
| 690 | * @map_end: end address of the target memory range | 
|---|
| 691 | * | 
|---|
| 692 | * This function will setup direct mapping for memory range | 
|---|
| 693 | * [map_start, map_end) in bottom-up. Since we have limited the | 
|---|
| 694 | * bottom-up allocation above the kernel, the page tables will | 
|---|
| 695 | * be allocated just above the kernel and we map the memory | 
|---|
| 696 | * in [map_start, map_end) in bottom-up. | 
|---|
| 697 | */ | 
|---|
| 698 | static void __init memory_map_bottom_up(unsigned long map_start, | 
|---|
| 699 | unsigned long map_end) | 
|---|
| 700 | { | 
|---|
| 701 | unsigned long next, start; | 
|---|
| 702 | unsigned long mapped_ram_size = 0; | 
|---|
| 703 | /* step_size need to be small so pgt_buf from BRK could cover it */ | 
|---|
| 704 | unsigned long step_size = PMD_SIZE; | 
|---|
| 705 |  | 
|---|
| 706 | start = map_start; | 
|---|
| 707 | min_pfn_mapped = start >> PAGE_SHIFT; | 
|---|
| 708 |  | 
|---|
| 709 | /* | 
|---|
| 710 | * We start from the bottom (@map_start) and go to the top (@map_end). | 
|---|
| 711 | * The memblock_find_in_range() gets us a block of RAM from the | 
|---|
| 712 | * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages | 
|---|
| 713 | * for page table. | 
|---|
| 714 | */ | 
|---|
| 715 | while (start < map_end) { | 
|---|
| 716 | if (step_size && map_end - start > step_size) { | 
|---|
| 717 | next = round_up(start + 1, step_size); | 
|---|
| 718 | if (next > map_end) | 
|---|
| 719 | next = map_end; | 
|---|
| 720 | } else { | 
|---|
| 721 | next = map_end; | 
|---|
| 722 | } | 
|---|
| 723 |  | 
|---|
| 724 | mapped_ram_size += init_range_memory_mapping(r_start: start, r_end: next); | 
|---|
| 725 | start = next; | 
|---|
| 726 |  | 
|---|
| 727 | if (mapped_ram_size >= step_size) | 
|---|
| 728 | step_size = get_new_step_size(step_size); | 
|---|
| 729 | } | 
|---|
| 730 | } | 
|---|
| 731 |  | 
|---|
| 732 | /* | 
|---|
| 733 | * The real mode trampoline, which is required for bootstrapping CPUs | 
|---|
| 734 | * occupies only a small area under the low 1MB.  See reserve_real_mode() | 
|---|
| 735 | * for details. | 
|---|
| 736 | * | 
|---|
| 737 | * If KASLR is disabled the first PGD entry of the direct mapping is copied | 
|---|
| 738 | * to map the real mode trampoline. | 
|---|
| 739 | * | 
|---|
| 740 | * If KASLR is enabled, copy only the PUD which covers the low 1MB | 
|---|
| 741 | * area. This limits the randomization granularity to 1GB for both 4-level | 
|---|
| 742 | * and 5-level paging. | 
|---|
| 743 | */ | 
|---|
| 744 | static void __init init_trampoline(void) | 
|---|
| 745 | { | 
|---|
| 746 | #ifdef CONFIG_X86_64 | 
|---|
| 747 | /* | 
|---|
| 748 | * The code below will alias kernel page-tables in the user-range of the | 
|---|
| 749 | * address space, including the Global bit. So global TLB entries will | 
|---|
| 750 | * be created when using the trampoline page-table. | 
|---|
| 751 | */ | 
|---|
| 752 | if (!kaslr_memory_enabled()) | 
|---|
| 753 | trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; | 
|---|
| 754 | else | 
|---|
| 755 | init_trampoline_kaslr(); | 
|---|
| 756 | #endif | 
|---|
| 757 | } | 
|---|
| 758 |  | 
|---|
| 759 | void __init init_mem_mapping(void) | 
|---|
| 760 | { | 
|---|
| 761 | unsigned long end; | 
|---|
| 762 |  | 
|---|
| 763 | pti_check_boottime_disable(); | 
|---|
| 764 | probe_page_size_mask(); | 
|---|
| 765 | setup_pcid(); | 
|---|
| 766 |  | 
|---|
| 767 | #ifdef CONFIG_X86_64 | 
|---|
| 768 | end = max_pfn << PAGE_SHIFT; | 
|---|
| 769 | #else | 
|---|
| 770 | end = max_low_pfn << PAGE_SHIFT; | 
|---|
| 771 | #endif | 
|---|
| 772 |  | 
|---|
| 773 | /* the ISA range is always mapped regardless of memory holes */ | 
|---|
| 774 | init_memory_mapping(start: 0, ISA_END_ADDRESS, PAGE_KERNEL); | 
|---|
| 775 |  | 
|---|
| 776 | /* Init the trampoline, possibly with KASLR memory offset */ | 
|---|
| 777 | init_trampoline(); | 
|---|
| 778 |  | 
|---|
| 779 | /* | 
|---|
| 780 | * If the allocation is in bottom-up direction, we setup direct mapping | 
|---|
| 781 | * in bottom-up, otherwise we setup direct mapping in top-down. | 
|---|
| 782 | */ | 
|---|
| 783 | if (memblock_bottom_up()) { | 
|---|
| 784 | unsigned long kernel_end = __pa_symbol(_end); | 
|---|
| 785 |  | 
|---|
| 786 | /* | 
|---|
| 787 | * we need two separate calls here. This is because we want to | 
|---|
| 788 | * allocate page tables above the kernel. So we first map | 
|---|
| 789 | * [kernel_end, end) to make memory above the kernel be mapped | 
|---|
| 790 | * as soon as possible. And then use page tables allocated above | 
|---|
| 791 | * the kernel to map [ISA_END_ADDRESS, kernel_end). | 
|---|
| 792 | */ | 
|---|
| 793 | memory_map_bottom_up(map_start: kernel_end, map_end: end); | 
|---|
| 794 | memory_map_bottom_up(ISA_END_ADDRESS, map_end: kernel_end); | 
|---|
| 795 | } else { | 
|---|
| 796 | memory_map_top_down(ISA_END_ADDRESS, map_end: end); | 
|---|
| 797 | } | 
|---|
| 798 |  | 
|---|
| 799 | #ifdef CONFIG_X86_64 | 
|---|
| 800 | if (max_pfn > max_low_pfn) { | 
|---|
| 801 | /* can we preserve max_low_pfn ?*/ | 
|---|
| 802 | max_low_pfn = max_pfn; | 
|---|
| 803 | } | 
|---|
| 804 | #else | 
|---|
| 805 | early_ioremap_page_table_range_init(); | 
|---|
| 806 | #endif | 
|---|
| 807 |  | 
|---|
| 808 | load_cr3(swapper_pg_dir); | 
|---|
| 809 | __flush_tlb_all(); | 
|---|
| 810 |  | 
|---|
| 811 | x86_init.hyper.init_mem_mapping(); | 
|---|
| 812 |  | 
|---|
| 813 | early_memtest(start: 0, end: max_pfn_mapped << PAGE_SHIFT); | 
|---|
| 814 | } | 
|---|
| 815 |  | 
|---|
| 816 | /* | 
|---|
| 817 | * Initialize an mm_struct to be used during poking and a pointer to be used | 
|---|
| 818 | * during patching. | 
|---|
| 819 | */ | 
|---|
| 820 | void __init poking_init(void) | 
|---|
| 821 | { | 
|---|
| 822 | spinlock_t *ptl; | 
|---|
| 823 | pte_t *ptep; | 
|---|
| 824 |  | 
|---|
| 825 | text_poke_mm = mm_alloc(); | 
|---|
| 826 | BUG_ON(!text_poke_mm); | 
|---|
| 827 |  | 
|---|
| 828 | /* Xen PV guests need the PGD to be pinned. */ | 
|---|
| 829 | paravirt_enter_mmap(mm: text_poke_mm); | 
|---|
| 830 |  | 
|---|
| 831 | set_notrack_mm(text_poke_mm); | 
|---|
| 832 |  | 
|---|
| 833 | /* | 
|---|
| 834 | * Randomize the poking address, but make sure that the following page | 
|---|
| 835 | * will be mapped at the same PMD. We need 2 pages, so find space for 3, | 
|---|
| 836 | * and adjust the address if the PMD ends after the first one. | 
|---|
| 837 | */ | 
|---|
| 838 | text_poke_mm_addr = TASK_UNMAPPED_BASE; | 
|---|
| 839 | if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) | 
|---|
| 840 | text_poke_mm_addr += (kaslr_get_random_long(purpose: "Poking") & PAGE_MASK) % | 
|---|
| 841 | (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE); | 
|---|
| 842 |  | 
|---|
| 843 | if (((text_poke_mm_addr + PAGE_SIZE) & ~PMD_MASK) == 0) | 
|---|
| 844 | text_poke_mm_addr += PAGE_SIZE; | 
|---|
| 845 |  | 
|---|
| 846 | /* | 
|---|
| 847 | * We need to trigger the allocation of the page-tables that will be | 
|---|
| 848 | * needed for poking now. Later, poking may be performed in an atomic | 
|---|
| 849 | * section, which might cause allocation to fail. | 
|---|
| 850 | */ | 
|---|
| 851 | ptep = get_locked_pte(mm: text_poke_mm, addr: text_poke_mm_addr, ptl: &ptl); | 
|---|
| 852 | BUG_ON(!ptep); | 
|---|
| 853 | pte_unmap_unlock(ptep, ptl); | 
|---|
| 854 | } | 
|---|
| 855 |  | 
|---|
| 856 | /* | 
|---|
| 857 | * devmem_is_allowed() checks to see if /dev/mem access to a certain address | 
|---|
| 858 | * is valid. The argument is a physical page number. | 
|---|
| 859 | * | 
|---|
| 860 | * On x86, access has to be given to the first megabyte of RAM because that | 
|---|
| 861 | * area traditionally contains BIOS code and data regions used by X, dosemu, | 
|---|
| 862 | * and similar apps. Since they map the entire memory range, the whole range | 
|---|
| 863 | * must be allowed (for mapping), but any areas that would otherwise be | 
|---|
| 864 | * disallowed are flagged as being "zero filled" instead of rejected. | 
|---|
| 865 | * Access has to be given to non-kernel-ram areas as well, these contain the | 
|---|
| 866 | * PCI mmio resources as well as potential bios/acpi data regions. | 
|---|
| 867 | */ | 
|---|
| 868 | int devmem_is_allowed(unsigned long pagenr) | 
|---|
| 869 | { | 
|---|
| 870 | if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, | 
|---|
| 871 | IORESOURCE_SYSTEM_RAM, desc: IORES_DESC_NONE) | 
|---|
| 872 | != REGION_DISJOINT) { | 
|---|
| 873 | /* | 
|---|
| 874 | * For disallowed memory regions in the low 1MB range, | 
|---|
| 875 | * request that the page be shown as all zeros. | 
|---|
| 876 | */ | 
|---|
| 877 | if (pagenr < 256) | 
|---|
| 878 | return 2; | 
|---|
| 879 |  | 
|---|
| 880 | return 0; | 
|---|
| 881 | } | 
|---|
| 882 |  | 
|---|
| 883 | /* | 
|---|
| 884 | * This must follow RAM test, since System RAM is considered a | 
|---|
| 885 | * restricted resource under CONFIG_STRICT_DEVMEM. | 
|---|
| 886 | */ | 
|---|
| 887 | if (iomem_is_exclusive(addr: pagenr << PAGE_SHIFT)) { | 
|---|
| 888 | /* Low 1MB bypasses iomem restrictions. */ | 
|---|
| 889 | if (pagenr < 256) | 
|---|
| 890 | return 1; | 
|---|
| 891 |  | 
|---|
| 892 | return 0; | 
|---|
| 893 | } | 
|---|
| 894 |  | 
|---|
| 895 | return 1; | 
|---|
| 896 | } | 
|---|
| 897 |  | 
|---|
| 898 | void free_init_pages(const char *what, unsigned long begin, unsigned long end) | 
|---|
| 899 | { | 
|---|
| 900 | unsigned long begin_aligned, end_aligned; | 
|---|
| 901 |  | 
|---|
| 902 | /* Make sure boundaries are page aligned */ | 
|---|
| 903 | begin_aligned = PAGE_ALIGN(begin); | 
|---|
| 904 | end_aligned   = end & PAGE_MASK; | 
|---|
| 905 |  | 
|---|
| 906 | if (WARN_ON(begin_aligned != begin || end_aligned != end)) { | 
|---|
| 907 | begin = begin_aligned; | 
|---|
| 908 | end   = end_aligned; | 
|---|
| 909 | } | 
|---|
| 910 |  | 
|---|
| 911 | if (begin >= end) | 
|---|
| 912 | return; | 
|---|
| 913 |  | 
|---|
| 914 | /* | 
|---|
| 915 | * If debugging page accesses then do not free this memory but | 
|---|
| 916 | * mark them not present - any buggy init-section access will | 
|---|
| 917 | * create a kernel page fault: | 
|---|
| 918 | */ | 
|---|
| 919 | if (debug_pagealloc_enabled()) { | 
|---|
| 920 | pr_info( "debug: unmapping init [mem %#010lx-%#010lx]\n", | 
|---|
| 921 | begin, end - 1); | 
|---|
| 922 | /* | 
|---|
| 923 | * Inform kmemleak about the hole in the memory since the | 
|---|
| 924 | * corresponding pages will be unmapped. | 
|---|
| 925 | */ | 
|---|
| 926 | kmemleak_free_part(ptr: (void *)begin, size: end - begin); | 
|---|
| 927 | set_memory_np(addr: begin, numpages: (end - begin) >> PAGE_SHIFT); | 
|---|
| 928 | } else { | 
|---|
| 929 | /* | 
|---|
| 930 | * We just marked the kernel text read only above, now that | 
|---|
| 931 | * we are going to free part of that, we need to make that | 
|---|
| 932 | * writeable and non-executable first. | 
|---|
| 933 | */ | 
|---|
| 934 | set_memory_nx(addr: begin, numpages: (end - begin) >> PAGE_SHIFT); | 
|---|
| 935 | set_memory_rw(addr: begin, numpages: (end - begin) >> PAGE_SHIFT); | 
|---|
| 936 |  | 
|---|
| 937 | free_reserved_area(start: (void *)begin, end: (void *)end, | 
|---|
| 938 | POISON_FREE_INITMEM, s: what); | 
|---|
| 939 | } | 
|---|
| 940 | } | 
|---|
| 941 |  | 
|---|
| 942 | /* | 
|---|
| 943 | * begin/end can be in the direct map or the "high kernel mapping" | 
|---|
| 944 | * used for the kernel image only.  free_init_pages() will do the | 
|---|
| 945 | * right thing for either kind of address. | 
|---|
| 946 | */ | 
|---|
| 947 | void free_kernel_image_pages(const char *what, void *begin, void *end) | 
|---|
| 948 | { | 
|---|
| 949 | unsigned long begin_ul = (unsigned long)begin; | 
|---|
| 950 | unsigned long end_ul = (unsigned long)end; | 
|---|
| 951 | unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; | 
|---|
| 952 |  | 
|---|
| 953 | free_init_pages(what, begin: begin_ul, end: end_ul); | 
|---|
| 954 |  | 
|---|
| 955 | /* | 
|---|
| 956 | * PTI maps some of the kernel into userspace.  For performance, | 
|---|
| 957 | * this includes some kernel areas that do not contain secrets. | 
|---|
| 958 | * Those areas might be adjacent to the parts of the kernel image | 
|---|
| 959 | * being freed, which may contain secrets.  Remove the "high kernel | 
|---|
| 960 | * image mapping" for these freed areas, ensuring they are not even | 
|---|
| 961 | * potentially vulnerable to Meltdown regardless of the specific | 
|---|
| 962 | * optimizations PTI is currently using. | 
|---|
| 963 | * | 
|---|
| 964 | * The "noalias" prevents unmapping the direct map alias which is | 
|---|
| 965 | * needed to access the freed pages. | 
|---|
| 966 | * | 
|---|
| 967 | * This is only valid for 64bit kernels. 32bit has only one mapping | 
|---|
| 968 | * which can't be treated in this way for obvious reasons. | 
|---|
| 969 | */ | 
|---|
| 970 | if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) | 
|---|
| 971 | set_memory_np_noalias(addr: begin_ul, numpages: len_pages); | 
|---|
| 972 | } | 
|---|
| 973 |  | 
|---|
| 974 | void __ref free_initmem(void) | 
|---|
| 975 | { | 
|---|
| 976 | e820__reallocate_tables(); | 
|---|
| 977 |  | 
|---|
| 978 | mem_encrypt_free_decrypted_mem(); | 
|---|
| 979 |  | 
|---|
| 980 | free_kernel_image_pages(what: "unused kernel image (initmem)", | 
|---|
| 981 | begin: &__init_begin, end: &__init_end); | 
|---|
| 982 | } | 
|---|
| 983 |  | 
|---|
| 984 | #ifdef CONFIG_BLK_DEV_INITRD | 
|---|
| 985 | void __init free_initrd_mem(unsigned long start, unsigned long end) | 
|---|
| 986 | { | 
|---|
| 987 | /* | 
|---|
| 988 | * end could be not aligned, and We can not align that, | 
|---|
| 989 | * decompressor could be confused by aligned initrd_end | 
|---|
| 990 | * We already reserve the end partial page before in | 
|---|
| 991 | *   - i386_start_kernel() | 
|---|
| 992 | *   - x86_64_start_kernel() | 
|---|
| 993 | *   - relocate_initrd() | 
|---|
| 994 | * So here We can do PAGE_ALIGN() safely to get partial page to be freed | 
|---|
| 995 | */ | 
|---|
| 996 | free_init_pages(what: "initrd", begin: start, PAGE_ALIGN(end)); | 
|---|
| 997 | } | 
|---|
| 998 | #endif | 
|---|
| 999 |  | 
|---|
| 1000 | void __init zone_sizes_init(void) | 
|---|
| 1001 | { | 
|---|
| 1002 | unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
|---|
| 1003 |  | 
|---|
| 1004 | memset(s: max_zone_pfns, c: 0, n: sizeof(max_zone_pfns)); | 
|---|
| 1005 |  | 
|---|
| 1006 | #ifdef CONFIG_ZONE_DMA | 
|---|
| 1007 | max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn); | 
|---|
| 1008 | #endif | 
|---|
| 1009 | #ifdef CONFIG_ZONE_DMA32 | 
|---|
| 1010 | max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn); | 
|---|
| 1011 | #endif | 
|---|
| 1012 | max_zone_pfns[ZONE_NORMAL]	= max_low_pfn; | 
|---|
| 1013 | #ifdef CONFIG_HIGHMEM | 
|---|
| 1014 | max_zone_pfns[ZONE_HIGHMEM]	= max_pfn; | 
|---|
| 1015 | #endif | 
|---|
| 1016 |  | 
|---|
| 1017 | free_area_init(max_zone_pfn: max_zone_pfns); | 
|---|
| 1018 | } | 
|---|
| 1019 |  | 
|---|
| 1020 | __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = { | 
|---|
| 1021 | .loaded_mm = &init_mm, | 
|---|
| 1022 | .next_asid = 1, | 
|---|
| 1023 | .cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */ | 
|---|
| 1024 | }; | 
|---|
| 1025 |  | 
|---|
| 1026 | #ifdef CONFIG_ADDRESS_MASKING | 
|---|
| 1027 | DEFINE_PER_CPU(u64, tlbstate_untag_mask); | 
|---|
| 1028 | EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask); | 
|---|
| 1029 | #endif | 
|---|
| 1030 |  | 
|---|
| 1031 | void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) | 
|---|
| 1032 | { | 
|---|
| 1033 | /* entry 0 MUST be WB (hardwired to speed up translations) */ | 
|---|
| 1034 | BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); | 
|---|
| 1035 |  | 
|---|
| 1036 | __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); | 
|---|
| 1037 | __pte2cachemode_tbl[entry] = cache; | 
|---|
| 1038 | } | 
|---|
| 1039 |  | 
|---|
| 1040 | #ifdef CONFIG_SWAP | 
|---|
| 1041 | unsigned long arch_max_swapfile_size(void) | 
|---|
| 1042 | { | 
|---|
| 1043 | unsigned long pages; | 
|---|
| 1044 |  | 
|---|
| 1045 | pages = generic_max_swapfile_size(); | 
|---|
| 1046 |  | 
|---|
| 1047 | if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { | 
|---|
| 1048 | /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ | 
|---|
| 1049 | unsigned long long l1tf_limit = l1tf_pfn_limit(); | 
|---|
| 1050 | /* | 
|---|
| 1051 | * We encode swap offsets also with 3 bits below those for pfn | 
|---|
| 1052 | * which makes the usable limit higher. | 
|---|
| 1053 | */ | 
|---|
| 1054 | #if CONFIG_PGTABLE_LEVELS > 2 | 
|---|
| 1055 | l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; | 
|---|
| 1056 | #endif | 
|---|
| 1057 | pages = min_t(unsigned long long, l1tf_limit, pages); | 
|---|
| 1058 | } | 
|---|
| 1059 | return pages; | 
|---|
| 1060 | } | 
|---|
| 1061 | #endif | 
|---|
| 1062 |  | 
|---|
| 1063 | #ifdef CONFIG_EXECMEM | 
|---|
| 1064 | static struct execmem_info execmem_info __ro_after_init; | 
|---|
| 1065 |  | 
|---|
| 1066 | #ifdef CONFIG_ARCH_HAS_EXECMEM_ROX | 
|---|
| 1067 | void execmem_fill_trapping_insns(void *ptr, size_t size) | 
|---|
| 1068 | { | 
|---|
| 1069 | memset(s: ptr, INT3_INSN_OPCODE, n: size); | 
|---|
| 1070 | } | 
|---|
| 1071 | #endif | 
|---|
| 1072 |  | 
|---|
| 1073 | struct execmem_info __init *execmem_arch_setup(void) | 
|---|
| 1074 | { | 
|---|
| 1075 | unsigned long start, offset = 0; | 
|---|
| 1076 | enum execmem_range_flags flags; | 
|---|
| 1077 | pgprot_t pgprot; | 
|---|
| 1078 |  | 
|---|
| 1079 | if (kaslr_enabled()) | 
|---|
| 1080 | offset = get_random_u32_inclusive(floor: 1, ceil: 1024) * PAGE_SIZE; | 
|---|
| 1081 |  | 
|---|
| 1082 | start = MODULES_VADDR + offset; | 
|---|
| 1083 |  | 
|---|
| 1084 | if (IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX) && | 
|---|
| 1085 | cpu_feature_enabled(X86_FEATURE_PSE)) { | 
|---|
| 1086 | pgprot = PAGE_KERNEL_ROX; | 
|---|
| 1087 | flags = EXECMEM_KASAN_SHADOW | EXECMEM_ROX_CACHE; | 
|---|
| 1088 | } else { | 
|---|
| 1089 | pgprot = PAGE_KERNEL; | 
|---|
| 1090 | flags = EXECMEM_KASAN_SHADOW; | 
|---|
| 1091 | } | 
|---|
| 1092 |  | 
|---|
| 1093 | execmem_info = (struct execmem_info){ | 
|---|
| 1094 | .ranges = { | 
|---|
| 1095 | [EXECMEM_MODULE_TEXT] = { | 
|---|
| 1096 | .flags	= flags, | 
|---|
| 1097 | .start	= start, | 
|---|
| 1098 | .end	= MODULES_END, | 
|---|
| 1099 | .pgprot	= pgprot, | 
|---|
| 1100 | .alignment = MODULE_ALIGN, | 
|---|
| 1101 | }, | 
|---|
| 1102 | [EXECMEM_KPROBES] = { | 
|---|
| 1103 | .flags	= flags, | 
|---|
| 1104 | .start	= start, | 
|---|
| 1105 | .end	= MODULES_END, | 
|---|
| 1106 | .pgprot	= PAGE_KERNEL_ROX, | 
|---|
| 1107 | .alignment = MODULE_ALIGN, | 
|---|
| 1108 | }, | 
|---|
| 1109 | [EXECMEM_FTRACE] = { | 
|---|
| 1110 | .flags	= flags, | 
|---|
| 1111 | .start	= start, | 
|---|
| 1112 | .end	= MODULES_END, | 
|---|
| 1113 | .pgprot	= pgprot, | 
|---|
| 1114 | .alignment = MODULE_ALIGN, | 
|---|
| 1115 | }, | 
|---|
| 1116 | [EXECMEM_BPF] = { | 
|---|
| 1117 | .flags	= EXECMEM_KASAN_SHADOW, | 
|---|
| 1118 | .start	= start, | 
|---|
| 1119 | .end	= MODULES_END, | 
|---|
| 1120 | .pgprot	= PAGE_KERNEL, | 
|---|
| 1121 | .alignment = MODULE_ALIGN, | 
|---|
| 1122 | }, | 
|---|
| 1123 | [EXECMEM_MODULE_DATA] = { | 
|---|
| 1124 | .flags	= EXECMEM_KASAN_SHADOW, | 
|---|
| 1125 | .start	= start, | 
|---|
| 1126 | .end	= MODULES_END, | 
|---|
| 1127 | .pgprot	= PAGE_KERNEL, | 
|---|
| 1128 | .alignment = MODULE_ALIGN, | 
|---|
| 1129 | }, | 
|---|
| 1130 | }, | 
|---|
| 1131 | }; | 
|---|
| 1132 |  | 
|---|
| 1133 | return &execmem_info; | 
|---|
| 1134 | } | 
|---|
| 1135 | #endif /* CONFIG_EXECMEM */ | 
|---|
| 1136 |  | 
|---|