1/*
2 * Copyright © 2014-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include <drm/drm_print.h>
25
26#include "bxt_dpio_phy_regs.h"
27#include "i915_utils.h"
28#include "intel_ddi.h"
29#include "intel_ddi_buf_trans.h"
30#include "intel_de.h"
31#include "intel_display_power_well.h"
32#include "intel_display_regs.h"
33#include "intel_display_types.h"
34#include "intel_dp.h"
35#include "intel_dpio_phy.h"
36#include "vlv_dpio_phy_regs.h"
37#include "vlv_sideband.h"
38
39/**
40 * DOC: DPIO
41 *
42 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
43 * ports. DPIO is the name given to such a display PHY. These PHYs
44 * don't follow the standard programming model using direct MMIO
45 * registers, and instead their registers must be accessed through IOSF
46 * sideband. VLV has one such PHY for driving ports B and C, and CHV
47 * adds another PHY for driving port D. Each PHY responds to specific
48 * IOSF-SB port.
49 *
50 * Each display PHY is made up of one or two channels. Each channel
51 * houses a common lane part which contains the PLL and other common
52 * logic. CH0 common lane also contains the IOSF-SB logic for the
53 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
54 * must be running when any DPIO registers are accessed.
55 *
56 * In addition to having their own registers, the PHYs are also
57 * controlled through some dedicated signals from the display
58 * controller. These include PLL reference clock enable, PLL enable,
59 * and CRI clock selection, for example.
60 *
61 * Eeach channel also has two splines (also called data lanes), and
62 * each spline is made up of one Physical Access Coding Sub-Layer
63 * (PCS) block and two TX lanes. So each channel has two PCS blocks
64 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
65 * data/clock pairs depending on the output type.
66 *
67 * Additionally the PHY also contains an AUX lane with AUX blocks
68 * for each channel. This is used for DP AUX communication, but
69 * this fact isn't really relevant for the driver since AUX is
70 * controlled from the display controller side. No DPIO registers
71 * need to be accessed during AUX communication,
72 *
73 * Generally on VLV/CHV the common lane corresponds to the pipe and
74 * the spline (PCS/TX) corresponds to the port.
75 *
76 * For dual channel PHY (VLV/CHV):
77 *
78 * pipe A == CMN/PLL/REF CH0
79 *
80 * pipe B == CMN/PLL/REF CH1
81 *
82 * port B == PCS/TX CH0
83 *
84 * port C == PCS/TX CH1
85 *
86 * This is especially important when we cross the streams
87 * ie. drive port B with pipe B, or port C with pipe A.
88 *
89 * For single channel PHY (CHV):
90 *
91 * pipe C == CMN/PLL/REF CH0
92 *
93 * port D == PCS/TX CH0
94 *
95 * On BXT the entire PHY channel corresponds to the port. That means
96 * the PLL is also now associated with the port rather than the pipe,
97 * and so the clock needs to be routed to the appropriate transcoder.
98 * Port A PLL is directly connected to transcoder EDP and port B/C
99 * PLLs can be routed to any transcoder A/B/C.
100 *
101 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
102 * digital port D (CHV) or port A (BXT). ::
103 *
104 *
105 * Dual channel PHY (VLV/CHV/BXT)
106 * ---------------------------------
107 * | CH0 | CH1 |
108 * | CMN/PLL/REF | CMN/PLL/REF |
109 * |---------------|---------------| Display PHY
110 * | PCS01 | PCS23 | PCS01 | PCS23 |
111 * |-------|-------|-------|-------|
112 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
113 * ---------------------------------
114 * | DDI0 | DDI1 | DP/HDMI ports
115 * ---------------------------------
116 *
117 * Single channel PHY (CHV/BXT)
118 * -----------------
119 * | CH0 |
120 * | CMN/PLL/REF |
121 * |---------------| Display PHY
122 * | PCS01 | PCS23 |
123 * |-------|-------|
124 * |TX0|TX1|TX2|TX3|
125 * -----------------
126 * | DDI2 | DP/HDMI port
127 * -----------------
128 */
129
130/**
131 * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy
132 */
133struct bxt_dpio_phy_info {
134 /**
135 * @dual_channel: true if this phy has a second channel.
136 */
137 bool dual_channel;
138
139 /**
140 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
141 * Otherwise the GRC value will be copied from the phy indicated by
142 * this field.
143 */
144 enum dpio_phy rcomp_phy;
145
146 /**
147 * @reset_delay: delay in us to wait before setting the common reset
148 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
149 */
150 int reset_delay;
151
152 /**
153 * @pwron_mask: Mask with the appropriate bit set that would cause the
154 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
155 */
156 u32 pwron_mask;
157
158 /**
159 * @channel: struct containing per channel information.
160 */
161 struct {
162 /**
163 * @channel.port: which port maps to this channel.
164 */
165 enum port port;
166 } channel[2];
167};
168
169static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = {
170 [DPIO_PHY0] = {
171 .dual_channel = true,
172 .rcomp_phy = DPIO_PHY1,
173 .pwron_mask = BIT(0),
174
175 .channel = {
176 [DPIO_CH0] = { .port = PORT_B },
177 [DPIO_CH1] = { .port = PORT_C },
178 }
179 },
180 [DPIO_PHY1] = {
181 .dual_channel = false,
182 .rcomp_phy = -1,
183 .pwron_mask = BIT(1),
184
185 .channel = {
186 [DPIO_CH0] = { .port = PORT_A },
187 }
188 },
189};
190
191static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = {
192 [DPIO_PHY0] = {
193 .dual_channel = false,
194 .rcomp_phy = DPIO_PHY1,
195 .pwron_mask = BIT(0),
196 .reset_delay = 20,
197
198 .channel = {
199 [DPIO_CH0] = { .port = PORT_B },
200 }
201 },
202 [DPIO_PHY1] = {
203 .dual_channel = false,
204 .rcomp_phy = -1,
205 .pwron_mask = BIT(3),
206 .reset_delay = 20,
207
208 .channel = {
209 [DPIO_CH0] = { .port = PORT_A },
210 }
211 },
212 [DPIO_PHY2] = {
213 .dual_channel = false,
214 .rcomp_phy = DPIO_PHY1,
215 .pwron_mask = BIT(1),
216 .reset_delay = 20,
217
218 .channel = {
219 [DPIO_CH0] = { .port = PORT_C },
220 }
221 },
222};
223
224static const struct bxt_dpio_phy_info *
225bxt_get_phy_list(struct intel_display *display, int *count)
226{
227 if (display->platform.geminilake) {
228 *count = ARRAY_SIZE(glk_dpio_phy_info);
229 return glk_dpio_phy_info;
230 } else {
231 *count = ARRAY_SIZE(bxt_dpio_phy_info);
232 return bxt_dpio_phy_info;
233 }
234}
235
236static const struct bxt_dpio_phy_info *
237bxt_get_phy_info(struct intel_display *display, enum dpio_phy phy)
238{
239 int count;
240 const struct bxt_dpio_phy_info *phy_list =
241 bxt_get_phy_list(display, count: &count);
242
243 return &phy_list[phy];
244}
245
246void bxt_port_to_phy_channel(struct intel_display *display, enum port port,
247 enum dpio_phy *phy, enum dpio_channel *ch)
248{
249 const struct bxt_dpio_phy_info *phy_info, *phys;
250 int i, count;
251
252 phys = bxt_get_phy_list(display, count: &count);
253
254 for (i = 0; i < count; i++) {
255 phy_info = &phys[i];
256
257 if (port == phy_info->channel[DPIO_CH0].port) {
258 *phy = i;
259 *ch = DPIO_CH0;
260 return;
261 }
262
263 if (phy_info->dual_channel &&
264 port == phy_info->channel[DPIO_CH1].port) {
265 *phy = i;
266 *ch = DPIO_CH1;
267 return;
268 }
269 }
270
271 drm_WARN(display->drm, 1, "PHY not found for PORT %c",
272 port_name(port));
273 *phy = DPIO_PHY0;
274 *ch = DPIO_CH0;
275}
276
277/*
278 * Like intel_de_rmw() but reads from a single per-lane register and
279 * writes to the group register to write the same value to all the lanes.
280 */
281static u32 bxt_dpio_phy_rmw_grp(struct intel_display *display,
282 i915_reg_t reg_single,
283 i915_reg_t reg_group,
284 u32 clear, u32 set)
285{
286 u32 old, val;
287
288 old = intel_de_read(display, reg: reg_single);
289 val = (old & ~clear) | set;
290 intel_de_write(display, reg: reg_group, val);
291
292 return old;
293}
294
295void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder,
296 const struct intel_crtc_state *crtc_state)
297{
298 struct intel_display *display = to_intel_display(encoder);
299 const struct intel_ddi_buf_trans *trans;
300 enum dpio_channel ch;
301 enum dpio_phy phy;
302 int lane, n_entries;
303
304 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
305 if (drm_WARN_ON_ONCE(display->drm, !trans))
306 return;
307
308 bxt_port_to_phy_channel(display, port: encoder->port, phy: &phy, ch: &ch);
309
310 /*
311 * While we write to the group register to program all lanes at once we
312 * can read only lane registers and we pick lanes 0/1 for that.
313 */
314 bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
315 BXT_PORT_PCS_DW10_GRP(phy, ch),
316 TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, set: 0);
317
318 for (lane = 0; lane < crtc_state->lane_count; lane++) {
319 int level = intel_ddi_level(encoder, crtc_state, lane);
320
321 intel_de_rmw(display, BXT_PORT_TX_DW2_LN(phy, ch, lane),
322 MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK,
323 MARGIN_000(trans->entries[level].bxt.margin) |
324 UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale));
325 }
326
327 for (lane = 0; lane < crtc_state->lane_count; lane++) {
328 int level = intel_ddi_level(encoder, crtc_state, lane);
329 u32 val;
330
331 intel_de_rmw(display, BXT_PORT_TX_DW3_LN(phy, ch, lane),
332 SCALE_DCOMP_METHOD,
333 set: trans->entries[level].bxt.enable ?
334 SCALE_DCOMP_METHOD : 0);
335
336 val = intel_de_read(display, BXT_PORT_TX_DW3_LN(phy, ch, lane));
337 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
338 drm_err(display->drm,
339 "Disabled scaling while ouniqetrangenmethod was set");
340 }
341
342 for (lane = 0; lane < crtc_state->lane_count; lane++) {
343 int level = intel_ddi_level(encoder, crtc_state, lane);
344
345 intel_de_rmw(display, BXT_PORT_TX_DW4_LN(phy, ch, lane),
346 DE_EMPHASIS_MASK,
347 DE_EMPHASIS(trans->entries[level].bxt.deemphasis));
348 }
349
350 bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
351 BXT_PORT_PCS_DW10_GRP(phy, ch),
352 clear: 0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
353}
354
355bool bxt_dpio_phy_is_enabled(struct intel_display *display,
356 enum dpio_phy phy)
357{
358 const struct bxt_dpio_phy_info *phy_info;
359
360 phy_info = bxt_get_phy_info(display, phy);
361
362 if (!(intel_de_read(display, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
363 return false;
364
365 if ((intel_de_read(display, BXT_PORT_CL1CM_DW0(phy)) &
366 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
367 drm_dbg(display->drm,
368 "DDI PHY %d powered, but power hasn't settled\n", phy);
369
370 return false;
371 }
372
373 if (!(intel_de_read(display, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
374 drm_dbg(display->drm,
375 "DDI PHY %d powered, but still in reset\n", phy);
376
377 return false;
378 }
379
380 return true;
381}
382
383static u32 bxt_get_grc(struct intel_display *display, enum dpio_phy phy)
384{
385 u32 val = intel_de_read(display, BXT_PORT_REF_DW6(phy));
386
387 return REG_FIELD_GET(GRC_CODE_MASK, val);
388}
389
390static void bxt_phy_wait_grc_done(struct intel_display *display,
391 enum dpio_phy phy)
392{
393 if (intel_de_wait_for_set(display, BXT_PORT_REF_DW3(phy), GRC_DONE, timeout_ms: 10))
394 drm_err(display->drm, "timeout waiting for PHY%d GRC\n", phy);
395}
396
397static void _bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
398{
399 const struct bxt_dpio_phy_info *phy_info;
400 u32 val;
401
402 phy_info = bxt_get_phy_info(display, phy);
403
404 if (bxt_dpio_phy_is_enabled(display, phy)) {
405 /* Still read out the GRC value for state verification */
406 if (phy_info->rcomp_phy != -1)
407 display->state.bxt_phy_grc = bxt_get_grc(display, phy);
408
409 if (bxt_dpio_phy_verify_state(display, phy)) {
410 drm_dbg(display->drm, "DDI PHY %d already enabled, "
411 "won't reprogram it\n", phy);
412 return;
413 }
414
415 drm_dbg(display->drm,
416 "DDI PHY %d enabled with invalid state, "
417 "force reprogramming it\n", phy);
418 }
419
420 intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, clear: 0, set: phy_info->pwron_mask);
421
422 /*
423 * The PHY registers start out inaccessible and respond to reads with
424 * all 1s. Eventually they become accessible as they power up, then
425 * the reserved bit will give the default 0. Poll on the reserved bit
426 * becoming 0 to find when the PHY is accessible.
427 * The flag should get set in 100us according to the HW team, but
428 * use 1ms due to occasional timeouts observed with that.
429 */
430 if (intel_de_wait_fw(display, BXT_PORT_CL1CM_DW0(phy),
431 PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, timeout_ms: 1, NULL))
432 drm_err(display->drm, "timeout during PHY%d power on\n",
433 phy);
434
435 /* Program PLL Rcomp code offset */
436 intel_de_rmw(display, BXT_PORT_CL1CM_DW9(phy),
437 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4));
438
439 intel_de_rmw(display, BXT_PORT_CL1CM_DW10(phy),
440 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4));
441
442 /* Program power gating */
443 intel_de_rmw(display, BXT_PORT_CL1CM_DW28(phy), clear: 0,
444 OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG);
445
446 if (phy_info->dual_channel)
447 intel_de_rmw(display, BXT_PORT_CL2CM_DW6(phy), clear: 0,
448 DW6_OLDO_DYN_PWR_DOWN_EN);
449
450 if (phy_info->rcomp_phy != -1) {
451 u32 grc_code;
452
453 bxt_phy_wait_grc_done(display, phy: phy_info->rcomp_phy);
454
455 /*
456 * PHY0 isn't connected to an RCOMP resistor so copy over
457 * the corresponding calibrated value from PHY1, and disable
458 * the automatic calibration on PHY0.
459 */
460 val = bxt_get_grc(display, phy: phy_info->rcomp_phy);
461 display->state.bxt_phy_grc = val;
462
463 grc_code = GRC_CODE_FAST(val) |
464 GRC_CODE_SLOW(val) |
465 GRC_CODE_NOM(val);
466 intel_de_write(display, BXT_PORT_REF_DW6(phy), val: grc_code);
467 intel_de_rmw(display, BXT_PORT_REF_DW8(phy),
468 clear: 0, GRC_DIS | GRC_RDY_OVRD);
469 }
470
471 if (phy_info->reset_delay)
472 udelay(usec: phy_info->reset_delay);
473
474 intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), clear: 0, COMMON_RESET_DIS);
475}
476
477void bxt_dpio_phy_uninit(struct intel_display *display, enum dpio_phy phy)
478{
479 const struct bxt_dpio_phy_info *phy_info;
480
481 phy_info = bxt_get_phy_info(display, phy);
482
483 intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, set: 0);
484
485 intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, clear: phy_info->pwron_mask, set: 0);
486}
487
488void bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
489{
490 const struct bxt_dpio_phy_info *phy_info = bxt_get_phy_info(display, phy);
491 enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
492 bool was_enabled;
493
494 lockdep_assert_held(&display->power.domains.lock);
495
496 was_enabled = true;
497 if (rcomp_phy != -1)
498 was_enabled = bxt_dpio_phy_is_enabled(display, phy: rcomp_phy);
499
500 /*
501 * We need to copy the GRC calibration value from rcomp_phy,
502 * so make sure it's powered up.
503 */
504 if (!was_enabled)
505 _bxt_dpio_phy_init(display, phy: rcomp_phy);
506
507 _bxt_dpio_phy_init(display, phy);
508
509 if (!was_enabled)
510 bxt_dpio_phy_uninit(display, phy: rcomp_phy);
511}
512
513static bool __printf(6, 7)
514__phy_reg_verify_state(struct intel_display *display, enum dpio_phy phy,
515 i915_reg_t reg, u32 mask, u32 expected,
516 const char *reg_fmt, ...)
517{
518 struct va_format vaf;
519 va_list args;
520 u32 val;
521
522 val = intel_de_read(display, reg);
523 if ((val & mask) == expected)
524 return true;
525
526 va_start(args, reg_fmt);
527 vaf.fmt = reg_fmt;
528 vaf.va = &args;
529
530 drm_dbg(display->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
531 "current %08x, expected %08x (mask %08x)\n",
532 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
533 mask);
534
535 va_end(args);
536
537 return false;
538}
539
540bool bxt_dpio_phy_verify_state(struct intel_display *display,
541 enum dpio_phy phy)
542{
543 const struct bxt_dpio_phy_info *phy_info;
544 u32 mask;
545 bool ok;
546
547 phy_info = bxt_get_phy_info(display, phy);
548
549#define _CHK(reg, mask, exp, fmt, ...) \
550 __phy_reg_verify_state(display, phy, reg, mask, exp, fmt, \
551 ## __VA_ARGS__)
552
553 if (!bxt_dpio_phy_is_enabled(display, phy))
554 return false;
555
556 ok = true;
557
558 /* PLL Rcomp code offset */
559 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
560 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4),
561 "BXT_PORT_CL1CM_DW9(%d)", phy);
562 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
563 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4),
564 "BXT_PORT_CL1CM_DW10(%d)", phy);
565
566 /* Power gating */
567 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
568 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
569 "BXT_PORT_CL1CM_DW28(%d)", phy);
570
571 if (phy_info->dual_channel)
572 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
573 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
574 "BXT_PORT_CL2CM_DW6(%d)", phy);
575
576 if (phy_info->rcomp_phy != -1) {
577 u32 grc_code = display->state.bxt_phy_grc;
578
579 grc_code = GRC_CODE_FAST(grc_code) |
580 GRC_CODE_SLOW(grc_code) |
581 GRC_CODE_NOM(grc_code);
582 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
583 GRC_CODE_NOM_MASK;
584 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
585 "BXT_PORT_REF_DW6(%d)", phy);
586
587 mask = GRC_DIS | GRC_RDY_OVRD;
588 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
589 "BXT_PORT_REF_DW8(%d)", phy);
590 }
591
592 return ok;
593#undef _CHK
594}
595
596u8
597bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)
598{
599 switch (lane_count) {
600 case 1:
601 return 0;
602 case 2:
603 return BIT(2) | BIT(0);
604 case 4:
605 return BIT(3) | BIT(2) | BIT(0);
606 default:
607 MISSING_CASE(lane_count);
608
609 return 0;
610 }
611}
612
613void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder,
614 u8 lane_lat_optim_mask)
615{
616 struct intel_display *display = to_intel_display(encoder);
617 enum port port = encoder->port;
618 enum dpio_phy phy;
619 enum dpio_channel ch;
620 int lane;
621
622 bxt_port_to_phy_channel(display, port, phy: &phy, ch: &ch);
623
624 for (lane = 0; lane < 4; lane++) {
625 /*
626 * Note that on CHV this flag is called UPAR, but has
627 * the same function.
628 */
629 intel_de_rmw(display, BXT_PORT_TX_DW14_LN(phy, ch, lane),
630 LATENCY_OPTIM,
631 set: lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0);
632 }
633}
634
635u8
636bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
637{
638 struct intel_display *display = to_intel_display(encoder);
639 enum port port = encoder->port;
640 enum dpio_phy phy;
641 enum dpio_channel ch;
642 int lane;
643 u8 mask;
644
645 bxt_port_to_phy_channel(display, port, phy: &phy, ch: &ch);
646
647 mask = 0;
648 for (lane = 0; lane < 4; lane++) {
649 u32 val = intel_de_read(display,
650 BXT_PORT_TX_DW14_LN(phy, ch, lane));
651
652 if (val & LATENCY_OPTIM)
653 mask |= BIT(lane);
654 }
655
656 return mask;
657}
658
659enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
660{
661 switch (dig_port->base.port) {
662 default:
663 MISSING_CASE(dig_port->base.port);
664 fallthrough;
665 case PORT_B:
666 case PORT_D:
667 return DPIO_CH0;
668 case PORT_C:
669 return DPIO_CH1;
670 }
671}
672
673enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
674{
675 switch (dig_port->base.port) {
676 default:
677 MISSING_CASE(dig_port->base.port);
678 fallthrough;
679 case PORT_B:
680 case PORT_C:
681 return DPIO_PHY0;
682 case PORT_D:
683 return DPIO_PHY1;
684 }
685}
686
687enum dpio_phy vlv_pipe_to_phy(enum pipe pipe)
688{
689 switch (pipe) {
690 default:
691 MISSING_CASE(pipe);
692 fallthrough;
693 case PIPE_A:
694 case PIPE_B:
695 return DPIO_PHY0;
696 case PIPE_C:
697 return DPIO_PHY1;
698 }
699}
700
701enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
702{
703 switch (pipe) {
704 default:
705 MISSING_CASE(pipe);
706 fallthrough;
707 case PIPE_A:
708 case PIPE_C:
709 return DPIO_CH0;
710 case PIPE_B:
711 return DPIO_CH1;
712 }
713}
714
715void chv_set_phy_signal_level(struct intel_encoder *encoder,
716 const struct intel_crtc_state *crtc_state,
717 u32 deemph_reg_value, u32 margin_reg_value,
718 bool uniq_trans_scale)
719{
720 struct intel_display *display = to_intel_display(encoder);
721 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
722 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
723 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
724 u32 val;
725 int i;
726
727 vlv_dpio_get(drm: display->drm);
728
729 /* Clear calc init */
730 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS01_DW10(ch));
731 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
732 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
733 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
734 vlv_dpio_write(drm: display->drm, phy, VLV_PCS01_DW10(ch), val);
735
736 if (crtc_state->lane_count > 2) {
737 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS23_DW10(ch));
738 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
739 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
740 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
741 vlv_dpio_write(drm: display->drm, phy, VLV_PCS23_DW10(ch), val);
742 }
743
744 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS01_DW9(ch));
745 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
746 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
747 vlv_dpio_write(drm: display->drm, phy, VLV_PCS01_DW9(ch), val);
748
749 if (crtc_state->lane_count > 2) {
750 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS23_DW9(ch));
751 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
752 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
753 vlv_dpio_write(drm: display->drm, phy, VLV_PCS23_DW9(ch), val);
754 }
755
756 /* Program swing deemph */
757 for (i = 0; i < crtc_state->lane_count; i++) {
758 val = vlv_dpio_read(drm: display->drm, phy, CHV_TX_DW4(ch, i));
759 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
760 val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value);
761 vlv_dpio_write(drm: display->drm, phy, CHV_TX_DW4(ch, i), val);
762 }
763
764 /* Program swing margin */
765 for (i = 0; i < crtc_state->lane_count; i++) {
766 val = vlv_dpio_read(drm: display->drm, phy, CHV_TX_DW2(ch, i));
767
768 val &= ~DPIO_SWING_MARGIN000_MASK;
769 val |= DPIO_SWING_MARGIN000(margin_reg_value);
770
771 /*
772 * Supposedly this value shouldn't matter when unique transition
773 * scale is disabled, but in fact it does matter. Let's just
774 * always program the same value and hope it's OK.
775 */
776 val &= ~DPIO_UNIQ_TRANS_SCALE_MASK;
777 val |= DPIO_UNIQ_TRANS_SCALE(0x9a);
778
779 vlv_dpio_write(drm: display->drm, phy, CHV_TX_DW2(ch, i), val);
780 }
781
782 /*
783 * The document said it needs to set bit 27 for ch0 and bit 26
784 * for ch1. Might be a typo in the doc.
785 * For now, for this unique transition scale selection, set bit
786 * 27 for ch0 and ch1.
787 */
788 for (i = 0; i < crtc_state->lane_count; i++) {
789 val = vlv_dpio_read(drm: display->drm, phy, CHV_TX_DW3(ch, i));
790 if (uniq_trans_scale)
791 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
792 else
793 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
794 vlv_dpio_write(drm: display->drm, phy, CHV_TX_DW3(ch, i), val);
795 }
796
797 /* Start swing calculation */
798 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS01_DW10(ch));
799 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
800 vlv_dpio_write(drm: display->drm, phy, VLV_PCS01_DW10(ch), val);
801
802 if (crtc_state->lane_count > 2) {
803 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS23_DW10(ch));
804 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
805 vlv_dpio_write(drm: display->drm, phy, VLV_PCS23_DW10(ch), val);
806 }
807
808 vlv_dpio_put(drm: display->drm);
809}
810
811static void __chv_data_lane_soft_reset(struct intel_encoder *encoder,
812 const struct intel_crtc_state *crtc_state,
813 bool reset)
814{
815 struct intel_display *display = to_intel_display(encoder);
816 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
817 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
818 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
819 u32 val;
820
821 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS01_DW0(ch));
822 if (reset)
823 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
824 else
825 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
826 vlv_dpio_write(drm: display->drm, phy, VLV_PCS01_DW0(ch), val);
827
828 if (crtc_state->lane_count > 2) {
829 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS23_DW0(ch));
830 if (reset)
831 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
832 else
833 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
834 vlv_dpio_write(drm: display->drm, phy, VLV_PCS23_DW0(ch), val);
835 }
836
837 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS01_DW1(ch));
838 val |= CHV_PCS_REQ_SOFTRESET_EN;
839 if (reset)
840 val &= ~DPIO_PCS_CLK_SOFT_RESET;
841 else
842 val |= DPIO_PCS_CLK_SOFT_RESET;
843 vlv_dpio_write(drm: display->drm, phy, VLV_PCS01_DW1(ch), val);
844
845 if (crtc_state->lane_count > 2) {
846 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS23_DW1(ch));
847 val |= CHV_PCS_REQ_SOFTRESET_EN;
848 if (reset)
849 val &= ~DPIO_PCS_CLK_SOFT_RESET;
850 else
851 val |= DPIO_PCS_CLK_SOFT_RESET;
852 vlv_dpio_write(drm: display->drm, phy, VLV_PCS23_DW1(ch), val);
853 }
854}
855
856void chv_data_lane_soft_reset(struct intel_encoder *encoder,
857 const struct intel_crtc_state *crtc_state,
858 bool reset)
859{
860 struct intel_display *display = to_intel_display(encoder);
861
862 vlv_dpio_get(drm: display->drm);
863 __chv_data_lane_soft_reset(encoder, crtc_state, reset);
864 vlv_dpio_put(drm: display->drm);
865}
866
867void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
868 const struct intel_crtc_state *crtc_state)
869{
870 struct intel_display *display = to_intel_display(encoder);
871 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
872 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
873 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
874 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
875 enum pipe pipe = crtc->pipe;
876 unsigned int lane_mask =
877 intel_dp_unused_lane_mask(lane_count: crtc_state->lane_count);
878 u32 val;
879
880 /*
881 * Must trick the second common lane into life.
882 * Otherwise we can't even access the PLL.
883 */
884 if (ch == DPIO_CH0 && pipe == PIPE_B)
885 dig_port->release_cl2_override =
886 !chv_phy_powergate_ch(display, phy: DPIO_PHY0, ch: DPIO_CH1, override: true);
887
888 chv_phy_powergate_lanes(encoder, override: true, mask: lane_mask);
889
890 vlv_dpio_get(drm: display->drm);
891
892 /* Assert data lane reset */
893 __chv_data_lane_soft_reset(encoder, crtc_state, reset: true);
894
895 /* program left/right clock distribution */
896 if (pipe != PIPE_B) {
897 val = vlv_dpio_read(drm: display->drm, phy, CHV_CMN_DW5_CH0);
898 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
899 if (ch == DPIO_CH0)
900 val |= CHV_BUFLEFTENA1_FORCE;
901 if (ch == DPIO_CH1)
902 val |= CHV_BUFRIGHTENA1_FORCE;
903 vlv_dpio_write(drm: display->drm, phy, CHV_CMN_DW5_CH0, val);
904 } else {
905 val = vlv_dpio_read(drm: display->drm, phy, CHV_CMN_DW1_CH1);
906 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
907 if (ch == DPIO_CH0)
908 val |= CHV_BUFLEFTENA2_FORCE;
909 if (ch == DPIO_CH1)
910 val |= CHV_BUFRIGHTENA2_FORCE;
911 vlv_dpio_write(drm: display->drm, phy, CHV_CMN_DW1_CH1, val);
912 }
913
914 /* program clock channel usage */
915 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS01_DW8(ch));
916 val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
917 if (pipe == PIPE_B)
918 val |= DPIO_PCS_USEDCLKCHANNEL;
919 else
920 val &= ~DPIO_PCS_USEDCLKCHANNEL;
921 vlv_dpio_write(drm: display->drm, phy, VLV_PCS01_DW8(ch), val);
922
923 if (crtc_state->lane_count > 2) {
924 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS23_DW8(ch));
925 val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
926 if (pipe == PIPE_B)
927 val |= DPIO_PCS_USEDCLKCHANNEL;
928 else
929 val &= ~DPIO_PCS_USEDCLKCHANNEL;
930 vlv_dpio_write(drm: display->drm, phy, VLV_PCS23_DW8(ch), val);
931 }
932
933 /*
934 * This a a bit weird since generally CL
935 * matches the pipe, but here we need to
936 * pick the CL based on the port.
937 */
938 val = vlv_dpio_read(drm: display->drm, phy, CHV_CMN_DW19(ch));
939 if (pipe == PIPE_B)
940 val |= CHV_CMN_USEDCLKCHANNEL;
941 else
942 val &= ~CHV_CMN_USEDCLKCHANNEL;
943 vlv_dpio_write(drm: display->drm, phy, CHV_CMN_DW19(ch), val);
944
945 vlv_dpio_put(drm: display->drm);
946}
947
948void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
949 const struct intel_crtc_state *crtc_state)
950{
951 struct intel_display *display = to_intel_display(encoder);
952 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
953 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
954 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
955 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
956 int data, i, stagger;
957 u32 val;
958
959 vlv_dpio_get(drm: display->drm);
960
961 /* allow hardware to manage TX FIFO reset source */
962 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS01_DW11(ch));
963 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
964 vlv_dpio_write(drm: display->drm, phy, VLV_PCS01_DW11(ch), val);
965
966 if (crtc_state->lane_count > 2) {
967 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS23_DW11(ch));
968 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
969 vlv_dpio_write(drm: display->drm, phy, VLV_PCS23_DW11(ch), val);
970 }
971
972 /* Program Tx lane latency optimal setting*/
973 for (i = 0; i < crtc_state->lane_count; i++) {
974 /* Set the upar bit */
975 if (crtc_state->lane_count == 1)
976 data = 0;
977 else
978 data = (i == 1) ? 0 : DPIO_UPAR;
979 vlv_dpio_write(drm: display->drm, phy, CHV_TX_DW14(ch, i), val: data);
980 }
981
982 /* Data lane stagger programming */
983 if (crtc_state->port_clock > 270000)
984 stagger = 0x18;
985 else if (crtc_state->port_clock > 135000)
986 stagger = 0xd;
987 else if (crtc_state->port_clock > 67500)
988 stagger = 0x7;
989 else if (crtc_state->port_clock > 33750)
990 stagger = 0x4;
991 else
992 stagger = 0x2;
993
994 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS01_DW11(ch));
995 val |= DPIO_TX2_STAGGER_MASK(0x1f);
996 vlv_dpio_write(drm: display->drm, phy, VLV_PCS01_DW11(ch), val);
997
998 if (crtc_state->lane_count > 2) {
999 val = vlv_dpio_read(drm: display->drm, phy, VLV_PCS23_DW11(ch));
1000 val |= DPIO_TX2_STAGGER_MASK(0x1f);
1001 vlv_dpio_write(drm: display->drm, phy, VLV_PCS23_DW11(ch), val);
1002 }
1003
1004 vlv_dpio_write(drm: display->drm, phy, VLV_PCS01_DW12(ch),
1005 DPIO_LANESTAGGER_STRAP(stagger) |
1006 DPIO_LANESTAGGER_STRAP_OVRD |
1007 DPIO_TX1_STAGGER_MASK(0x1f) |
1008 DPIO_TX1_STAGGER_MULT(6) |
1009 DPIO_TX2_STAGGER_MULT(0));
1010
1011 if (crtc_state->lane_count > 2) {
1012 vlv_dpio_write(drm: display->drm, phy, VLV_PCS23_DW12(ch),
1013 DPIO_LANESTAGGER_STRAP(stagger) |
1014 DPIO_LANESTAGGER_STRAP_OVRD |
1015 DPIO_TX1_STAGGER_MASK(0x1f) |
1016 DPIO_TX1_STAGGER_MULT(7) |
1017 DPIO_TX2_STAGGER_MULT(5));
1018 }
1019
1020 /* Deassert data lane reset */
1021 __chv_data_lane_soft_reset(encoder, crtc_state, reset: false);
1022
1023 vlv_dpio_put(drm: display->drm);
1024}
1025
1026void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1027{
1028 struct intel_display *display = to_intel_display(encoder);
1029 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1030
1031 if (dig_port->release_cl2_override) {
1032 chv_phy_powergate_ch(display, phy: DPIO_PHY0, ch: DPIO_CH1, override: false);
1033 dig_port->release_cl2_override = false;
1034 }
1035}
1036
1037void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1038 const struct intel_crtc_state *old_crtc_state)
1039{
1040 struct intel_display *display = to_intel_display(encoder);
1041 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port: enc_to_dig_port(encoder));
1042 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1043 u32 val;
1044
1045 vlv_dpio_get(drm: display->drm);
1046
1047 /* disable left/right clock distribution */
1048 if (pipe != PIPE_B) {
1049 val = vlv_dpio_read(drm: display->drm, phy, CHV_CMN_DW5_CH0);
1050 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1051 vlv_dpio_write(drm: display->drm, phy, CHV_CMN_DW5_CH0, val);
1052 } else {
1053 val = vlv_dpio_read(drm: display->drm, phy, CHV_CMN_DW1_CH1);
1054 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1055 vlv_dpio_write(drm: display->drm, phy, CHV_CMN_DW1_CH1, val);
1056 }
1057
1058 vlv_dpio_put(drm: display->drm);
1059
1060 /*
1061 * Leave the power down bit cleared for at least one
1062 * lane so that chv_powergate_phy_ch() will power
1063 * on something when the channel is otherwise unused.
1064 * When the port is off and the override is removed
1065 * the lanes power down anyway, so otherwise it doesn't
1066 * really matter what the state of power down bits is
1067 * after this.
1068 */
1069 chv_phy_powergate_lanes(encoder, override: false, mask: 0x0);
1070}
1071
1072void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1073 const struct intel_crtc_state *crtc_state,
1074 u32 demph_reg_value, u32 preemph_reg_value,
1075 u32 uniqtranscale_reg_value, u32 tx3_demph)
1076{
1077 struct intel_display *display = to_intel_display(encoder);
1078 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1079 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1080 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1081
1082 vlv_dpio_get(drm: display->drm);
1083
1084 vlv_dpio_write(drm: display->drm, phy, VLV_TX_DW5_GRP(ch), val: 0x00000000);
1085 vlv_dpio_write(drm: display->drm, phy, VLV_TX_DW4_GRP(ch), val: demph_reg_value);
1086 vlv_dpio_write(drm: display->drm, phy, VLV_TX_DW2_GRP(ch),
1087 val: uniqtranscale_reg_value);
1088 vlv_dpio_write(drm: display->drm, phy, VLV_TX_DW3_GRP(ch), val: 0x0C782040);
1089
1090 if (tx3_demph)
1091 vlv_dpio_write(drm: display->drm, phy, VLV_TX_DW4(ch, 3), val: tx3_demph);
1092
1093 vlv_dpio_write(drm: display->drm, phy, VLV_PCS_DW11_GRP(ch), val: 0x00030000);
1094 vlv_dpio_write(drm: display->drm, phy, VLV_PCS_DW9_GRP(ch), val: preemph_reg_value);
1095 vlv_dpio_write(drm: display->drm, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN);
1096
1097 vlv_dpio_put(drm: display->drm);
1098}
1099
1100void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1101 const struct intel_crtc_state *crtc_state)
1102{
1103 struct intel_display *display = to_intel_display(encoder);
1104 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1105 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1106 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1107
1108 /* Program Tx lane resets to default */
1109 vlv_dpio_get(drm: display->drm);
1110
1111 vlv_dpio_write(drm: display->drm, phy, VLV_PCS_DW0_GRP(ch),
1112 DPIO_PCS_TX_LANE2_RESET |
1113 DPIO_PCS_TX_LANE1_RESET);
1114 vlv_dpio_write(drm: display->drm, phy, VLV_PCS_DW1_GRP(ch),
1115 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1116 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1117 DPIO_PCS_CLK_DATAWIDTH_8_10 |
1118 DPIO_PCS_CLK_SOFT_RESET);
1119
1120 /* Fix up inter-pair skew failure */
1121 vlv_dpio_write(drm: display->drm, phy, VLV_PCS_DW12_GRP(ch), val: 0x00750f00);
1122 vlv_dpio_write(drm: display->drm, phy, VLV_TX_DW11_GRP(ch), val: 0x00001500);
1123 vlv_dpio_write(drm: display->drm, phy, VLV_TX_DW14_GRP(ch), val: 0x40400000);
1124
1125 vlv_dpio_put(drm: display->drm);
1126}
1127
1128void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1129 const struct intel_crtc_state *crtc_state)
1130{
1131 struct intel_display *display = to_intel_display(encoder);
1132 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1133 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1134 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1135 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1136 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1137 enum pipe pipe = crtc->pipe;
1138 u32 val;
1139
1140 vlv_dpio_get(drm: display->drm);
1141
1142 /* Enable clock channels for this port */
1143 val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
1144 if (pipe == PIPE_B)
1145 val |= DPIO_PCS_USEDCLKCHANNEL;
1146 val |= 0xc4;
1147 vlv_dpio_write(drm: display->drm, phy, VLV_PCS_DW8_GRP(ch), val);
1148
1149 /* Program lane clock */
1150 vlv_dpio_write(drm: display->drm, phy, VLV_PCS_DW14_GRP(ch), val: 0x00760018);
1151 vlv_dpio_write(drm: display->drm, phy, VLV_PCS_DW23_GRP(ch), val: 0x00400888);
1152
1153 vlv_dpio_put(drm: display->drm);
1154}
1155
1156void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1157 const struct intel_crtc_state *old_crtc_state)
1158{
1159 struct intel_display *display = to_intel_display(encoder);
1160 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1161 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1162 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1163
1164 vlv_dpio_get(drm: display->drm);
1165 vlv_dpio_write(drm: display->drm, phy, VLV_PCS_DW0_GRP(ch), val: 0x00000000);
1166 vlv_dpio_write(drm: display->drm, phy, VLV_PCS_DW1_GRP(ch), val: 0x00e00060);
1167 vlv_dpio_put(drm: display->drm);
1168}
1169
1170void vlv_wait_port_ready(struct intel_encoder *encoder,
1171 unsigned int expected_mask)
1172{
1173 struct intel_display *display = to_intel_display(encoder);
1174 u32 port_mask;
1175 i915_reg_t dpll_reg;
1176
1177 switch (encoder->port) {
1178 default:
1179 MISSING_CASE(encoder->port);
1180 fallthrough;
1181 case PORT_B:
1182 port_mask = DPLL_PORTB_READY_MASK;
1183 dpll_reg = DPLL(display, 0);
1184 break;
1185 case PORT_C:
1186 port_mask = DPLL_PORTC_READY_MASK;
1187 dpll_reg = DPLL(display, 0);
1188 expected_mask <<= 4;
1189 break;
1190 case PORT_D:
1191 port_mask = DPLL_PORTD_READY_MASK;
1192 dpll_reg = DPIO_PHY_STATUS;
1193 break;
1194 }
1195
1196 if (intel_de_wait(display, reg: dpll_reg, mask: port_mask, value: expected_mask, timeout_ms: 1000))
1197 drm_WARN(display->drm, 1,
1198 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1199 encoder->base.base.id, encoder->base.name,
1200 intel_de_read(display, dpll_reg) & port_mask,
1201 expected_mask);
1202}
1203