| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | * xHCI host controller driver | 
|---|
| 4 | * | 
|---|
| 5 | * Copyright (C) 2008 Intel Corp. | 
|---|
| 6 | * | 
|---|
| 7 | * Author: Sarah Sharp | 
|---|
| 8 | * Some code borrowed from the Linux EHCI driver. | 
|---|
| 9 | */ | 
|---|
| 10 |  | 
|---|
| 11 | #include <linux/usb.h> | 
|---|
| 12 | #include <linux/overflow.h> | 
|---|
| 13 | #include <linux/pci.h> | 
|---|
| 14 | #include <linux/slab.h> | 
|---|
| 15 | #include <linux/dmapool.h> | 
|---|
| 16 | #include <linux/dma-mapping.h> | 
|---|
| 17 |  | 
|---|
| 18 | #include "xhci.h" | 
|---|
| 19 | #include "xhci-trace.h" | 
|---|
| 20 | #include "xhci-debugfs.h" | 
|---|
| 21 |  | 
|---|
| 22 | /* | 
|---|
| 23 | * Allocates a generic ring segment from the ring pool, sets the dma address, | 
|---|
| 24 | * initializes the segment to zero, and sets the private next pointer to NULL. | 
|---|
| 25 | * | 
|---|
| 26 | * Section 4.11.1.1: | 
|---|
| 27 | * "All components of all Command and Transfer TRBs shall be initialized to '0'" | 
|---|
| 28 | */ | 
|---|
| 29 | static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, | 
|---|
| 30 | unsigned int max_packet, | 
|---|
| 31 | unsigned int num, | 
|---|
| 32 | gfp_t flags) | 
|---|
| 33 | { | 
|---|
| 34 | struct xhci_segment *seg; | 
|---|
| 35 | dma_addr_t	dma; | 
|---|
| 36 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 37 |  | 
|---|
| 38 | seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); | 
|---|
| 39 | if (!seg) | 
|---|
| 40 | return NULL; | 
|---|
| 41 |  | 
|---|
| 42 | seg->trbs = dma_pool_zalloc(pool: xhci->segment_pool, mem_flags: flags, handle: &dma); | 
|---|
| 43 | if (!seg->trbs) { | 
|---|
| 44 | kfree(objp: seg); | 
|---|
| 45 | return NULL; | 
|---|
| 46 | } | 
|---|
| 47 |  | 
|---|
| 48 | if (max_packet) { | 
|---|
| 49 | seg->bounce_buf = kzalloc_node(max_packet, flags, | 
|---|
| 50 | dev_to_node(dev)); | 
|---|
| 51 | if (!seg->bounce_buf) { | 
|---|
| 52 | dma_pool_free(pool: xhci->segment_pool, vaddr: seg->trbs, addr: dma); | 
|---|
| 53 | kfree(objp: seg); | 
|---|
| 54 | return NULL; | 
|---|
| 55 | } | 
|---|
| 56 | } | 
|---|
| 57 | seg->num = num; | 
|---|
| 58 | seg->dma = dma; | 
|---|
| 59 | seg->next = NULL; | 
|---|
| 60 |  | 
|---|
| 61 | return seg; | 
|---|
| 62 | } | 
|---|
| 63 |  | 
|---|
| 64 | static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) | 
|---|
| 65 | { | 
|---|
| 66 | if (seg->trbs) { | 
|---|
| 67 | dma_pool_free(pool: xhci->segment_pool, vaddr: seg->trbs, addr: seg->dma); | 
|---|
| 68 | seg->trbs = NULL; | 
|---|
| 69 | } | 
|---|
| 70 | kfree(objp: seg->bounce_buf); | 
|---|
| 71 | kfree(objp: seg); | 
|---|
| 72 | } | 
|---|
| 73 |  | 
|---|
| 74 | static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
|---|
| 75 | { | 
|---|
| 76 | struct xhci_segment *seg, *next; | 
|---|
| 77 |  | 
|---|
| 78 | ring->last_seg->next = NULL; | 
|---|
| 79 | seg = ring->first_seg; | 
|---|
| 80 |  | 
|---|
| 81 | while (seg) { | 
|---|
| 82 | next = seg->next; | 
|---|
| 83 | xhci_segment_free(xhci, seg); | 
|---|
| 84 | seg = next; | 
|---|
| 85 | } | 
|---|
| 86 | } | 
|---|
| 87 |  | 
|---|
| 88 | /* | 
|---|
| 89 | * Only for transfer and command rings where driver is the producer, not for | 
|---|
| 90 | * event rings. | 
|---|
| 91 | * | 
|---|
| 92 | * Change the last TRB in the segment to be a Link TRB which points to the | 
|---|
| 93 | * DMA address of the next segment.  The caller needs to set any Link TRB | 
|---|
| 94 | * related flags, such as End TRB, Toggle Cycle, and no snoop. | 
|---|
| 95 | */ | 
|---|
| 96 | static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links) | 
|---|
| 97 | { | 
|---|
| 98 | union xhci_trb *trb; | 
|---|
| 99 | u32 val; | 
|---|
| 100 |  | 
|---|
| 101 | if (!seg || !seg->next) | 
|---|
| 102 | return; | 
|---|
| 103 |  | 
|---|
| 104 | trb = &seg->trbs[TRBS_PER_SEGMENT - 1]; | 
|---|
| 105 |  | 
|---|
| 106 | /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ | 
|---|
| 107 | val = le32_to_cpu(trb->link.control); | 
|---|
| 108 | val &= ~TRB_TYPE_BITMASK; | 
|---|
| 109 | val |= TRB_TYPE(TRB_LINK); | 
|---|
| 110 | if (chain_links) | 
|---|
| 111 | val |= TRB_CHAIN; | 
|---|
| 112 | trb->link.control = cpu_to_le32(val); | 
|---|
| 113 | trb->link.segment_ptr = cpu_to_le64(seg->next->dma); | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 | static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
|---|
| 117 | { | 
|---|
| 118 | struct xhci_segment *seg; | 
|---|
| 119 | bool chain_links; | 
|---|
| 120 |  | 
|---|
| 121 | if (ring->type == TYPE_EVENT) | 
|---|
| 122 | return; | 
|---|
| 123 |  | 
|---|
| 124 | chain_links = xhci_link_chain_quirk(xhci, type: ring->type); | 
|---|
| 125 | xhci_for_each_ring_seg(ring->first_seg, seg) | 
|---|
| 126 | xhci_set_link_trb(seg, chain_links); | 
|---|
| 127 |  | 
|---|
| 128 | /* See section 4.9.2.1 and 6.4.4.1 */ | 
|---|
| 129 | ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE); | 
|---|
| 130 | } | 
|---|
| 131 |  | 
|---|
| 132 | /* | 
|---|
| 133 | * Link the src ring segments to the dst ring. | 
|---|
| 134 | * Set Toggle Cycle for the new ring if needed. | 
|---|
| 135 | */ | 
|---|
| 136 | static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst) | 
|---|
| 137 | { | 
|---|
| 138 | struct xhci_segment *seg; | 
|---|
| 139 | bool chain_links; | 
|---|
| 140 |  | 
|---|
| 141 | if (!src || !dst) | 
|---|
| 142 | return; | 
|---|
| 143 |  | 
|---|
| 144 | /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ | 
|---|
| 145 | if (dst->cycle_state == 0) { | 
|---|
| 146 | xhci_for_each_ring_seg(src->first_seg, seg) { | 
|---|
| 147 | for (int i = 0; i < TRBS_PER_SEGMENT; i++) | 
|---|
| 148 | seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); | 
|---|
| 149 | } | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | src->last_seg->next = dst->enq_seg->next; | 
|---|
| 153 | dst->enq_seg->next = src->first_seg; | 
|---|
| 154 | if (dst->type != TYPE_EVENT) { | 
|---|
| 155 | chain_links = xhci_link_chain_quirk(xhci, type: dst->type); | 
|---|
| 156 | xhci_set_link_trb(seg: dst->enq_seg, chain_links); | 
|---|
| 157 | xhci_set_link_trb(seg: src->last_seg, chain_links); | 
|---|
| 158 | } | 
|---|
| 159 | dst->num_segs += src->num_segs; | 
|---|
| 160 |  | 
|---|
| 161 | if (dst->enq_seg == dst->last_seg) { | 
|---|
| 162 | if (dst->type != TYPE_EVENT) | 
|---|
| 163 | dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control | 
|---|
| 164 | &= ~cpu_to_le32(LINK_TOGGLE); | 
|---|
| 165 |  | 
|---|
| 166 | dst->last_seg = src->last_seg; | 
|---|
| 167 | } else if (dst->type != TYPE_EVENT) { | 
|---|
| 168 | src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE); | 
|---|
| 169 | } | 
|---|
| 170 |  | 
|---|
| 171 | for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next) | 
|---|
| 172 | seg->next->num = seg->num + 1; | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | /* | 
|---|
| 176 | * We need a radix tree for mapping physical addresses of TRBs to which stream | 
|---|
| 177 | * ID they belong to.  We need to do this because the host controller won't tell | 
|---|
| 178 | * us which stream ring the TRB came from.  We could store the stream ID in an | 
|---|
| 179 | * event data TRB, but that doesn't help us for the cancellation case, since the | 
|---|
| 180 | * endpoint may stop before it reaches that event data TRB. | 
|---|
| 181 | * | 
|---|
| 182 | * The radix tree maps the upper portion of the TRB DMA address to a ring | 
|---|
| 183 | * segment that has the same upper portion of DMA addresses.  For example, say I | 
|---|
| 184 | * have segments of size 1KB, that are always 1KB aligned.  A segment may | 
|---|
| 185 | * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the | 
|---|
| 186 | * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to | 
|---|
| 187 | * pass the radix tree a key to get the right stream ID: | 
|---|
| 188 | * | 
|---|
| 189 | *	0x10c90fff >> 10 = 0x43243 | 
|---|
| 190 | *	0x10c912c0 >> 10 = 0x43244 | 
|---|
| 191 | *	0x10c91400 >> 10 = 0x43245 | 
|---|
| 192 | * | 
|---|
| 193 | * Obviously, only those TRBs with DMA addresses that are within the segment | 
|---|
| 194 | * will make the radix tree return the stream ID for that ring. | 
|---|
| 195 | * | 
|---|
| 196 | * Caveats for the radix tree: | 
|---|
| 197 | * | 
|---|
| 198 | * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an | 
|---|
| 199 | * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be | 
|---|
| 200 | * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the | 
|---|
| 201 | * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit | 
|---|
| 202 | * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit | 
|---|
| 203 | * extended systems (where the DMA address can be bigger than 32-bits), | 
|---|
| 204 | * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that. | 
|---|
| 205 | */ | 
|---|
| 206 | static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, | 
|---|
| 207 | struct xhci_ring *ring, | 
|---|
| 208 | struct xhci_segment *seg, | 
|---|
| 209 | gfp_t mem_flags) | 
|---|
| 210 | { | 
|---|
| 211 | unsigned long key; | 
|---|
| 212 | int ret; | 
|---|
| 213 |  | 
|---|
| 214 | key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); | 
|---|
| 215 | /* Skip any segments that were already added. */ | 
|---|
| 216 | if (radix_tree_lookup(trb_address_map, key)) | 
|---|
| 217 | return 0; | 
|---|
| 218 |  | 
|---|
| 219 | ret = radix_tree_maybe_preload(gfp_mask: mem_flags); | 
|---|
| 220 | if (ret) | 
|---|
| 221 | return ret; | 
|---|
| 222 | ret = radix_tree_insert(trb_address_map, | 
|---|
| 223 | index: key, ring); | 
|---|
| 224 | radix_tree_preload_end(); | 
|---|
| 225 | return ret; | 
|---|
| 226 | } | 
|---|
| 227 |  | 
|---|
| 228 | static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, | 
|---|
| 229 | struct xhci_segment *seg) | 
|---|
| 230 | { | 
|---|
| 231 | unsigned long key; | 
|---|
| 232 |  | 
|---|
| 233 | key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); | 
|---|
| 234 | if (radix_tree_lookup(trb_address_map, key)) | 
|---|
| 235 | radix_tree_delete(trb_address_map, key); | 
|---|
| 236 | } | 
|---|
| 237 |  | 
|---|
| 238 | static int xhci_update_stream_segment_mapping( | 
|---|
| 239 | struct radix_tree_root *trb_address_map, | 
|---|
| 240 | struct xhci_ring *ring, | 
|---|
| 241 | struct xhci_segment *first_seg, | 
|---|
| 242 | gfp_t mem_flags) | 
|---|
| 243 | { | 
|---|
| 244 | struct xhci_segment *seg; | 
|---|
| 245 | struct xhci_segment *failed_seg; | 
|---|
| 246 | int ret; | 
|---|
| 247 |  | 
|---|
| 248 | if (WARN_ON_ONCE(trb_address_map == NULL)) | 
|---|
| 249 | return 0; | 
|---|
| 250 |  | 
|---|
| 251 | xhci_for_each_ring_seg(first_seg, seg) { | 
|---|
| 252 | ret = xhci_insert_segment_mapping(trb_address_map, | 
|---|
| 253 | ring, seg, mem_flags); | 
|---|
| 254 | if (ret) | 
|---|
| 255 | goto remove_streams; | 
|---|
| 256 | } | 
|---|
| 257 |  | 
|---|
| 258 | return 0; | 
|---|
| 259 |  | 
|---|
| 260 | remove_streams: | 
|---|
| 261 | failed_seg = seg; | 
|---|
| 262 | xhci_for_each_ring_seg(first_seg, seg) { | 
|---|
| 263 | xhci_remove_segment_mapping(trb_address_map, seg); | 
|---|
| 264 | if (seg == failed_seg) | 
|---|
| 265 | return ret; | 
|---|
| 266 | } | 
|---|
| 267 |  | 
|---|
| 268 | return ret; | 
|---|
| 269 | } | 
|---|
| 270 |  | 
|---|
| 271 | static void xhci_remove_stream_mapping(struct xhci_ring *ring) | 
|---|
| 272 | { | 
|---|
| 273 | struct xhci_segment *seg; | 
|---|
| 274 |  | 
|---|
| 275 | if (WARN_ON_ONCE(ring->trb_address_map == NULL)) | 
|---|
| 276 | return; | 
|---|
| 277 |  | 
|---|
| 278 | xhci_for_each_ring_seg(ring->first_seg, seg) | 
|---|
| 279 | xhci_remove_segment_mapping(trb_address_map: ring->trb_address_map, seg); | 
|---|
| 280 | } | 
|---|
| 281 |  | 
|---|
| 282 | static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) | 
|---|
| 283 | { | 
|---|
| 284 | return xhci_update_stream_segment_mapping(trb_address_map: ring->trb_address_map, ring, | 
|---|
| 285 | first_seg: ring->first_seg, mem_flags); | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 | /* XXX: Do we need the hcd structure in all these functions? */ | 
|---|
| 289 | void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) | 
|---|
| 290 | { | 
|---|
| 291 | if (!ring) | 
|---|
| 292 | return; | 
|---|
| 293 |  | 
|---|
| 294 | trace_xhci_ring_free(ring); | 
|---|
| 295 |  | 
|---|
| 296 | if (ring->first_seg) { | 
|---|
| 297 | if (ring->type == TYPE_STREAM) | 
|---|
| 298 | xhci_remove_stream_mapping(ring); | 
|---|
| 299 | xhci_ring_segments_free(xhci, ring); | 
|---|
| 300 | } | 
|---|
| 301 |  | 
|---|
| 302 | kfree(objp: ring); | 
|---|
| 303 | } | 
|---|
| 304 |  | 
|---|
| 305 | void xhci_initialize_ring_info(struct xhci_ring *ring) | 
|---|
| 306 | { | 
|---|
| 307 | /* The ring is empty, so the enqueue pointer == dequeue pointer */ | 
|---|
| 308 | ring->enqueue = ring->first_seg->trbs; | 
|---|
| 309 | ring->enq_seg = ring->first_seg; | 
|---|
| 310 | ring->dequeue = ring->enqueue; | 
|---|
| 311 | ring->deq_seg = ring->first_seg; | 
|---|
| 312 | /* The ring is initialized to 0. The producer must write 1 to the cycle | 
|---|
| 313 | * bit to handover ownership of the TRB, so PCS = 1.  The consumer must | 
|---|
| 314 | * compare CCS to the cycle bit to check ownership, so CCS = 1. | 
|---|
| 315 | * | 
|---|
| 316 | * New rings are initialized with cycle state equal to 1; if we are | 
|---|
| 317 | * handling ring expansion, set the cycle state equal to the old ring. | 
|---|
| 318 | */ | 
|---|
| 319 | ring->cycle_state = 1; | 
|---|
| 320 |  | 
|---|
| 321 | /* | 
|---|
| 322 | * Each segment has a link TRB, and leave an extra TRB for SW | 
|---|
| 323 | * accounting purpose | 
|---|
| 324 | */ | 
|---|
| 325 | ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; | 
|---|
| 326 | } | 
|---|
| 327 | EXPORT_SYMBOL_GPL(xhci_initialize_ring_info); | 
|---|
| 328 |  | 
|---|
| 329 | /* Allocate segments and link them for a ring */ | 
|---|
| 330 | static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags) | 
|---|
| 331 | { | 
|---|
| 332 | struct xhci_segment *prev; | 
|---|
| 333 | unsigned int num = 0; | 
|---|
| 334 |  | 
|---|
| 335 | prev = xhci_segment_alloc(xhci, max_packet: ring->bounce_buf_len, num, flags); | 
|---|
| 336 | if (!prev) | 
|---|
| 337 | return -ENOMEM; | 
|---|
| 338 | num++; | 
|---|
| 339 |  | 
|---|
| 340 | ring->first_seg = prev; | 
|---|
| 341 | while (num < ring->num_segs) { | 
|---|
| 342 | struct xhci_segment	*next; | 
|---|
| 343 |  | 
|---|
| 344 | next = xhci_segment_alloc(xhci, max_packet: ring->bounce_buf_len, num, flags); | 
|---|
| 345 | if (!next) | 
|---|
| 346 | goto free_segments; | 
|---|
| 347 |  | 
|---|
| 348 | prev->next = next; | 
|---|
| 349 | prev = next; | 
|---|
| 350 | num++; | 
|---|
| 351 | } | 
|---|
| 352 | ring->last_seg = prev; | 
|---|
| 353 |  | 
|---|
| 354 | ring->last_seg->next = ring->first_seg; | 
|---|
| 355 | return 0; | 
|---|
| 356 |  | 
|---|
| 357 | free_segments: | 
|---|
| 358 | ring->last_seg = prev; | 
|---|
| 359 | xhci_ring_segments_free(xhci, ring); | 
|---|
| 360 | return -ENOMEM; | 
|---|
| 361 | } | 
|---|
| 362 |  | 
|---|
| 363 | /* | 
|---|
| 364 | * Create a new ring with zero or more segments. | 
|---|
| 365 | * | 
|---|
| 366 | * Link each segment together into a ring. | 
|---|
| 367 | * Set the end flag and the cycle toggle bit on the last segment. | 
|---|
| 368 | * See section 4.9.1 and figures 15 and 16. | 
|---|
| 369 | */ | 
|---|
| 370 | struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs, | 
|---|
| 371 | enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) | 
|---|
| 372 | { | 
|---|
| 373 | struct xhci_ring	*ring; | 
|---|
| 374 | int ret; | 
|---|
| 375 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 376 |  | 
|---|
| 377 | ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); | 
|---|
| 378 | if (!ring) | 
|---|
| 379 | return NULL; | 
|---|
| 380 |  | 
|---|
| 381 | ring->num_segs = num_segs; | 
|---|
| 382 | ring->bounce_buf_len = max_packet; | 
|---|
| 383 | INIT_LIST_HEAD(list: &ring->td_list); | 
|---|
| 384 | ring->type = type; | 
|---|
| 385 | if (num_segs == 0) | 
|---|
| 386 | return ring; | 
|---|
| 387 |  | 
|---|
| 388 | ret = xhci_alloc_segments_for_ring(xhci, ring, flags); | 
|---|
| 389 | if (ret) | 
|---|
| 390 | goto fail; | 
|---|
| 391 |  | 
|---|
| 392 | xhci_initialize_ring_segments(xhci, ring); | 
|---|
| 393 | xhci_initialize_ring_info(ring); | 
|---|
| 394 | trace_xhci_ring_alloc(ring); | 
|---|
| 395 | return ring; | 
|---|
| 396 |  | 
|---|
| 397 | fail: | 
|---|
| 398 | kfree(objp: ring); | 
|---|
| 399 | return NULL; | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | void xhci_free_endpoint_ring(struct xhci_hcd *xhci, | 
|---|
| 403 | struct xhci_virt_device *virt_dev, | 
|---|
| 404 | unsigned int ep_index) | 
|---|
| 405 | { | 
|---|
| 406 | xhci_ring_free(xhci, ring: virt_dev->eps[ep_index].ring); | 
|---|
| 407 | virt_dev->eps[ep_index].ring = NULL; | 
|---|
| 408 | } | 
|---|
| 409 |  | 
|---|
| 410 | /* | 
|---|
| 411 | * Expand an existing ring. | 
|---|
| 412 | * Allocate a new ring which has same segment numbers and link the two rings. | 
|---|
| 413 | */ | 
|---|
| 414 | int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
|---|
| 415 | unsigned int num_new_segs, gfp_t flags) | 
|---|
| 416 | { | 
|---|
| 417 | struct xhci_ring new_ring; | 
|---|
| 418 | int ret; | 
|---|
| 419 |  | 
|---|
| 420 | if (num_new_segs == 0) | 
|---|
| 421 | return 0; | 
|---|
| 422 |  | 
|---|
| 423 | new_ring.num_segs = num_new_segs; | 
|---|
| 424 | new_ring.bounce_buf_len = ring->bounce_buf_len; | 
|---|
| 425 | new_ring.type = ring->type; | 
|---|
| 426 | ret = xhci_alloc_segments_for_ring(xhci, ring: &new_ring, flags); | 
|---|
| 427 | if (ret) | 
|---|
| 428 | return -ENOMEM; | 
|---|
| 429 |  | 
|---|
| 430 | xhci_initialize_ring_segments(xhci, ring: &new_ring); | 
|---|
| 431 |  | 
|---|
| 432 | if (ring->type == TYPE_STREAM) { | 
|---|
| 433 | ret = xhci_update_stream_segment_mapping(trb_address_map: ring->trb_address_map, ring, | 
|---|
| 434 | first_seg: new_ring.first_seg, mem_flags: flags); | 
|---|
| 435 | if (ret) | 
|---|
| 436 | goto free_segments; | 
|---|
| 437 | } | 
|---|
| 438 |  | 
|---|
| 439 | xhci_link_rings(xhci, src: &new_ring, dst: ring); | 
|---|
| 440 | trace_xhci_ring_expansion(ring); | 
|---|
| 441 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_ring_expansion, | 
|---|
| 442 | fmt: "ring expansion succeed, now has %d segments", | 
|---|
| 443 | ring->num_segs); | 
|---|
| 444 |  | 
|---|
| 445 | return 0; | 
|---|
| 446 |  | 
|---|
| 447 | free_segments: | 
|---|
| 448 | xhci_ring_segments_free(xhci, ring: &new_ring); | 
|---|
| 449 | return ret; | 
|---|
| 450 | } | 
|---|
| 451 |  | 
|---|
| 452 | struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, | 
|---|
| 453 | int type, gfp_t flags) | 
|---|
| 454 | { | 
|---|
| 455 | struct xhci_container_ctx *ctx; | 
|---|
| 456 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 457 |  | 
|---|
| 458 | if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) | 
|---|
| 459 | return NULL; | 
|---|
| 460 |  | 
|---|
| 461 | ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); | 
|---|
| 462 | if (!ctx) | 
|---|
| 463 | return NULL; | 
|---|
| 464 |  | 
|---|
| 465 | ctx->type = type; | 
|---|
| 466 | ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; | 
|---|
| 467 | if (type == XHCI_CTX_TYPE_INPUT) | 
|---|
| 468 | ctx->size += CTX_SIZE(xhci->hcc_params); | 
|---|
| 469 |  | 
|---|
| 470 | ctx->bytes = dma_pool_zalloc(pool: xhci->device_pool, mem_flags: flags, handle: &ctx->dma); | 
|---|
| 471 | if (!ctx->bytes) { | 
|---|
| 472 | kfree(objp: ctx); | 
|---|
| 473 | return NULL; | 
|---|
| 474 | } | 
|---|
| 475 | return ctx; | 
|---|
| 476 | } | 
|---|
| 477 |  | 
|---|
| 478 | void xhci_free_container_ctx(struct xhci_hcd *xhci, | 
|---|
| 479 | struct xhci_container_ctx *ctx) | 
|---|
| 480 | { | 
|---|
| 481 | if (!ctx) | 
|---|
| 482 | return; | 
|---|
| 483 | dma_pool_free(pool: xhci->device_pool, vaddr: ctx->bytes, addr: ctx->dma); | 
|---|
| 484 | kfree(objp: ctx); | 
|---|
| 485 | } | 
|---|
| 486 |  | 
|---|
| 487 | struct xhci_container_ctx *xhci_alloc_port_bw_ctx(struct xhci_hcd *xhci, | 
|---|
| 488 | gfp_t flags) | 
|---|
| 489 | { | 
|---|
| 490 | struct xhci_container_ctx *ctx; | 
|---|
| 491 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 492 |  | 
|---|
| 493 | ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); | 
|---|
| 494 | if (!ctx) | 
|---|
| 495 | return NULL; | 
|---|
| 496 |  | 
|---|
| 497 | ctx->size = GET_PORT_BW_ARRAY_SIZE; | 
|---|
| 498 |  | 
|---|
| 499 | ctx->bytes = dma_pool_zalloc(pool: xhci->port_bw_pool, mem_flags: flags, handle: &ctx->dma); | 
|---|
| 500 | if (!ctx->bytes) { | 
|---|
| 501 | kfree(objp: ctx); | 
|---|
| 502 | return NULL; | 
|---|
| 503 | } | 
|---|
| 504 | return ctx; | 
|---|
| 505 | } | 
|---|
| 506 |  | 
|---|
| 507 | void xhci_free_port_bw_ctx(struct xhci_hcd *xhci, | 
|---|
| 508 | struct xhci_container_ctx *ctx) | 
|---|
| 509 | { | 
|---|
| 510 | if (!ctx) | 
|---|
| 511 | return; | 
|---|
| 512 | dma_pool_free(pool: xhci->port_bw_pool, vaddr: ctx->bytes, addr: ctx->dma); | 
|---|
| 513 | kfree(objp: ctx); | 
|---|
| 514 | } | 
|---|
| 515 |  | 
|---|
| 516 | struct xhci_input_control_ctx *xhci_get_input_control_ctx( | 
|---|
| 517 | struct xhci_container_ctx *ctx) | 
|---|
| 518 | { | 
|---|
| 519 | if (ctx->type != XHCI_CTX_TYPE_INPUT) | 
|---|
| 520 | return NULL; | 
|---|
| 521 |  | 
|---|
| 522 | return (struct xhci_input_control_ctx *)ctx->bytes; | 
|---|
| 523 | } | 
|---|
| 524 |  | 
|---|
| 525 | struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, | 
|---|
| 526 | struct xhci_container_ctx *ctx) | 
|---|
| 527 | { | 
|---|
| 528 | if (ctx->type == XHCI_CTX_TYPE_DEVICE) | 
|---|
| 529 | return (struct xhci_slot_ctx *)ctx->bytes; | 
|---|
| 530 |  | 
|---|
| 531 | return (struct xhci_slot_ctx *) | 
|---|
| 532 | (ctx->bytes + CTX_SIZE(xhci->hcc_params)); | 
|---|
| 533 | } | 
|---|
| 534 |  | 
|---|
| 535 | struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, | 
|---|
| 536 | struct xhci_container_ctx *ctx, | 
|---|
| 537 | unsigned int ep_index) | 
|---|
| 538 | { | 
|---|
| 539 | /* increment ep index by offset of start of ep ctx array */ | 
|---|
| 540 | ep_index++; | 
|---|
| 541 | if (ctx->type == XHCI_CTX_TYPE_INPUT) | 
|---|
| 542 | ep_index++; | 
|---|
| 543 |  | 
|---|
| 544 | return (struct xhci_ep_ctx *) | 
|---|
| 545 | (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); | 
|---|
| 546 | } | 
|---|
| 547 | EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); | 
|---|
| 548 |  | 
|---|
| 549 | /***************** Streams structures manipulation *************************/ | 
|---|
| 550 |  | 
|---|
| 551 | static void xhci_free_stream_ctx(struct xhci_hcd *xhci, | 
|---|
| 552 | unsigned int num_stream_ctxs, | 
|---|
| 553 | struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) | 
|---|
| 554 | { | 
|---|
| 555 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 556 | size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs); | 
|---|
| 557 |  | 
|---|
| 558 | if (size > MEDIUM_STREAM_ARRAY_SIZE) | 
|---|
| 559 | dma_free_coherent(dev, size, cpu_addr: stream_ctx, dma_handle: dma); | 
|---|
| 560 | else if (size > SMALL_STREAM_ARRAY_SIZE) | 
|---|
| 561 | dma_pool_free(pool: xhci->medium_streams_pool, vaddr: stream_ctx, addr: dma); | 
|---|
| 562 | else | 
|---|
| 563 | dma_pool_free(pool: xhci->small_streams_pool, vaddr: stream_ctx, addr: dma); | 
|---|
| 564 | } | 
|---|
| 565 |  | 
|---|
| 566 | /* | 
|---|
| 567 | * The stream context array for each endpoint with bulk streams enabled can | 
|---|
| 568 | * vary in size, based on: | 
|---|
| 569 | *  - how many streams the endpoint supports, | 
|---|
| 570 | *  - the maximum primary stream array size the host controller supports, | 
|---|
| 571 | *  - and how many streams the device driver asks for. | 
|---|
| 572 | * | 
|---|
| 573 | * The stream context array must be a power of 2, and can be as small as | 
|---|
| 574 | * 64 bytes or as large as 1MB. | 
|---|
| 575 | */ | 
|---|
| 576 | static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, | 
|---|
| 577 | unsigned int num_stream_ctxs, dma_addr_t *dma, | 
|---|
| 578 | gfp_t mem_flags) | 
|---|
| 579 | { | 
|---|
| 580 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 581 | size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs); | 
|---|
| 582 |  | 
|---|
| 583 | if (size > MEDIUM_STREAM_ARRAY_SIZE) | 
|---|
| 584 | return dma_alloc_coherent(dev, size, dma_handle: dma, gfp: mem_flags); | 
|---|
| 585 | if (size > SMALL_STREAM_ARRAY_SIZE) | 
|---|
| 586 | return dma_pool_zalloc(pool: xhci->medium_streams_pool, mem_flags, handle: dma); | 
|---|
| 587 | else | 
|---|
| 588 | return dma_pool_zalloc(pool: xhci->small_streams_pool, mem_flags, handle: dma); | 
|---|
| 589 | } | 
|---|
| 590 |  | 
|---|
| 591 | struct xhci_ring *xhci_dma_to_transfer_ring( | 
|---|
| 592 | struct xhci_virt_ep *ep, | 
|---|
| 593 | u64 address) | 
|---|
| 594 | { | 
|---|
| 595 | if (ep->ep_state & EP_HAS_STREAMS) | 
|---|
| 596 | return radix_tree_lookup(&ep->stream_info->trb_address_map, | 
|---|
| 597 | address >> TRB_SEGMENT_SHIFT); | 
|---|
| 598 | return ep->ring; | 
|---|
| 599 | } | 
|---|
| 600 |  | 
|---|
| 601 | /* | 
|---|
| 602 | * Change an endpoint's internal structure so it supports stream IDs.  The | 
|---|
| 603 | * number of requested streams includes stream 0, which cannot be used by device | 
|---|
| 604 | * drivers. | 
|---|
| 605 | * | 
|---|
| 606 | * The number of stream contexts in the stream context array may be bigger than | 
|---|
| 607 | * the number of streams the driver wants to use.  This is because the number of | 
|---|
| 608 | * stream context array entries must be a power of two. | 
|---|
| 609 | */ | 
|---|
| 610 | struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, | 
|---|
| 611 | unsigned int num_stream_ctxs, | 
|---|
| 612 | unsigned int num_streams, | 
|---|
| 613 | unsigned int max_packet, gfp_t mem_flags) | 
|---|
| 614 | { | 
|---|
| 615 | struct xhci_stream_info *stream_info; | 
|---|
| 616 | u32 cur_stream; | 
|---|
| 617 | struct xhci_ring *cur_ring; | 
|---|
| 618 | u64 addr; | 
|---|
| 619 | int ret; | 
|---|
| 620 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 621 |  | 
|---|
| 622 | xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n", | 
|---|
| 623 | num_streams, num_stream_ctxs); | 
|---|
| 624 | if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { | 
|---|
| 625 | xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); | 
|---|
| 626 | return NULL; | 
|---|
| 627 | } | 
|---|
| 628 | xhci->cmd_ring_reserved_trbs++; | 
|---|
| 629 |  | 
|---|
| 630 | stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, | 
|---|
| 631 | dev_to_node(dev)); | 
|---|
| 632 | if (!stream_info) | 
|---|
| 633 | goto cleanup_trbs; | 
|---|
| 634 |  | 
|---|
| 635 | stream_info->num_streams = num_streams; | 
|---|
| 636 | stream_info->num_stream_ctxs = num_stream_ctxs; | 
|---|
| 637 |  | 
|---|
| 638 | /* Initialize the array of virtual pointers to stream rings. */ | 
|---|
| 639 | stream_info->stream_rings = kcalloc_node( | 
|---|
| 640 | num_streams, sizeof(struct xhci_ring *), mem_flags, | 
|---|
| 641 | dev_to_node(dev)); | 
|---|
| 642 | if (!stream_info->stream_rings) | 
|---|
| 643 | goto cleanup_info; | 
|---|
| 644 |  | 
|---|
| 645 | /* Initialize the array of DMA addresses for stream rings for the HW. */ | 
|---|
| 646 | stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, | 
|---|
| 647 | num_stream_ctxs, dma: &stream_info->ctx_array_dma, | 
|---|
| 648 | mem_flags); | 
|---|
| 649 | if (!stream_info->stream_ctx_array) | 
|---|
| 650 | goto cleanup_ring_array; | 
|---|
| 651 |  | 
|---|
| 652 | /* Allocate everything needed to free the stream rings later */ | 
|---|
| 653 | stream_info->free_streams_command = | 
|---|
| 654 | xhci_alloc_command_with_ctx(xhci, allocate_completion: true, mem_flags); | 
|---|
| 655 | if (!stream_info->free_streams_command) | 
|---|
| 656 | goto cleanup_ctx; | 
|---|
| 657 |  | 
|---|
| 658 | INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); | 
|---|
| 659 |  | 
|---|
| 660 | /* Allocate rings for all the streams that the driver will use, | 
|---|
| 661 | * and add their segment DMA addresses to the radix tree. | 
|---|
| 662 | * Stream 0 is reserved. | 
|---|
| 663 | */ | 
|---|
| 664 |  | 
|---|
| 665 | for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { | 
|---|
| 666 | stream_info->stream_rings[cur_stream] = | 
|---|
| 667 | xhci_ring_alloc(xhci, num_segs: 2, type: TYPE_STREAM, max_packet, flags: mem_flags); | 
|---|
| 668 | cur_ring = stream_info->stream_rings[cur_stream]; | 
|---|
| 669 | if (!cur_ring) | 
|---|
| 670 | goto cleanup_rings; | 
|---|
| 671 | cur_ring->stream_id = cur_stream; | 
|---|
| 672 | cur_ring->trb_address_map = &stream_info->trb_address_map; | 
|---|
| 673 | /* Set deq ptr, cycle bit, and stream context type */ | 
|---|
| 674 | addr = cur_ring->first_seg->dma | | 
|---|
| 675 | SCT_FOR_CTX(SCT_PRI_TR) | | 
|---|
| 676 | cur_ring->cycle_state; | 
|---|
| 677 | stream_info->stream_ctx_array[cur_stream].stream_ring = | 
|---|
| 678 | cpu_to_le64(addr); | 
|---|
| 679 | xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr); | 
|---|
| 680 |  | 
|---|
| 681 | ret = xhci_update_stream_mapping(ring: cur_ring, mem_flags); | 
|---|
| 682 |  | 
|---|
| 683 | trace_xhci_alloc_stream_info_ctx(info: stream_info, stream_id: cur_stream); | 
|---|
| 684 | if (ret) { | 
|---|
| 685 | xhci_ring_free(xhci, ring: cur_ring); | 
|---|
| 686 | stream_info->stream_rings[cur_stream] = NULL; | 
|---|
| 687 | goto cleanup_rings; | 
|---|
| 688 | } | 
|---|
| 689 | } | 
|---|
| 690 | /* Leave the other unused stream ring pointers in the stream context | 
|---|
| 691 | * array initialized to zero.  This will cause the xHC to give us an | 
|---|
| 692 | * error if the device asks for a stream ID we don't have setup (if it | 
|---|
| 693 | * was any other way, the host controller would assume the ring is | 
|---|
| 694 | * "empty" and wait forever for data to be queued to that stream ID). | 
|---|
| 695 | */ | 
|---|
| 696 |  | 
|---|
| 697 | return stream_info; | 
|---|
| 698 |  | 
|---|
| 699 | cleanup_rings: | 
|---|
| 700 | for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { | 
|---|
| 701 | cur_ring = stream_info->stream_rings[cur_stream]; | 
|---|
| 702 | if (cur_ring) { | 
|---|
| 703 | xhci_ring_free(xhci, ring: cur_ring); | 
|---|
| 704 | stream_info->stream_rings[cur_stream] = NULL; | 
|---|
| 705 | } | 
|---|
| 706 | } | 
|---|
| 707 | xhci_free_command(xhci, command: stream_info->free_streams_command); | 
|---|
| 708 | cleanup_ctx: | 
|---|
| 709 | xhci_free_stream_ctx(xhci, | 
|---|
| 710 | num_stream_ctxs: stream_info->num_stream_ctxs, | 
|---|
| 711 | stream_ctx: stream_info->stream_ctx_array, | 
|---|
| 712 | dma: stream_info->ctx_array_dma); | 
|---|
| 713 | cleanup_ring_array: | 
|---|
| 714 | kfree(objp: stream_info->stream_rings); | 
|---|
| 715 | cleanup_info: | 
|---|
| 716 | kfree(objp: stream_info); | 
|---|
| 717 | cleanup_trbs: | 
|---|
| 718 | xhci->cmd_ring_reserved_trbs--; | 
|---|
| 719 | return NULL; | 
|---|
| 720 | } | 
|---|
| 721 | /* | 
|---|
| 722 | * Sets the MaxPStreams field and the Linear Stream Array field. | 
|---|
| 723 | * Sets the dequeue pointer to the stream context array. | 
|---|
| 724 | */ | 
|---|
| 725 | void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, | 
|---|
| 726 | struct xhci_ep_ctx *ep_ctx, | 
|---|
| 727 | struct xhci_stream_info *stream_info) | 
|---|
| 728 | { | 
|---|
| 729 | u32 max_primary_streams; | 
|---|
| 730 | /* MaxPStreams is the number of stream context array entries, not the | 
|---|
| 731 | * number we're actually using.  Must be in 2^(MaxPstreams + 1) format. | 
|---|
| 732 | * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. | 
|---|
| 733 | */ | 
|---|
| 734 | max_primary_streams = fls(x: stream_info->num_stream_ctxs) - 2; | 
|---|
| 735 | xhci_dbg_trace(xhci,  trace: trace_xhci_dbg_context_change, | 
|---|
| 736 | fmt: "Setting number of stream ctx array entries to %u", | 
|---|
| 737 | 1 << (max_primary_streams + 1)); | 
|---|
| 738 | ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); | 
|---|
| 739 | ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) | 
|---|
| 740 | | EP_HAS_LSA); | 
|---|
| 741 | ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma); | 
|---|
| 742 | } | 
|---|
| 743 |  | 
|---|
| 744 | /* | 
|---|
| 745 | * Sets the MaxPStreams field and the Linear Stream Array field to 0. | 
|---|
| 746 | * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, | 
|---|
| 747 | * not at the beginning of the ring). | 
|---|
| 748 | */ | 
|---|
| 749 | void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, | 
|---|
| 750 | struct xhci_virt_ep *ep) | 
|---|
| 751 | { | 
|---|
| 752 | dma_addr_t addr; | 
|---|
| 753 | ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); | 
|---|
| 754 | addr = xhci_trb_virt_to_dma(seg: ep->ring->deq_seg, trb: ep->ring->dequeue); | 
|---|
| 755 | ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state); | 
|---|
| 756 | } | 
|---|
| 757 |  | 
|---|
| 758 | /* Frees all stream contexts associated with the endpoint, | 
|---|
| 759 | * | 
|---|
| 760 | * Caller should fix the endpoint context streams fields. | 
|---|
| 761 | */ | 
|---|
| 762 | void xhci_free_stream_info(struct xhci_hcd *xhci, | 
|---|
| 763 | struct xhci_stream_info *stream_info) | 
|---|
| 764 | { | 
|---|
| 765 | int cur_stream; | 
|---|
| 766 | struct xhci_ring *cur_ring; | 
|---|
| 767 |  | 
|---|
| 768 | if (!stream_info) | 
|---|
| 769 | return; | 
|---|
| 770 |  | 
|---|
| 771 | for (cur_stream = 1; cur_stream < stream_info->num_streams; | 
|---|
| 772 | cur_stream++) { | 
|---|
| 773 | cur_ring = stream_info->stream_rings[cur_stream]; | 
|---|
| 774 | if (cur_ring) { | 
|---|
| 775 | xhci_ring_free(xhci, ring: cur_ring); | 
|---|
| 776 | stream_info->stream_rings[cur_stream] = NULL; | 
|---|
| 777 | } | 
|---|
| 778 | } | 
|---|
| 779 | xhci_free_command(xhci, command: stream_info->free_streams_command); | 
|---|
| 780 | xhci->cmd_ring_reserved_trbs--; | 
|---|
| 781 | if (stream_info->stream_ctx_array) | 
|---|
| 782 | xhci_free_stream_ctx(xhci, | 
|---|
| 783 | num_stream_ctxs: stream_info->num_stream_ctxs, | 
|---|
| 784 | stream_ctx: stream_info->stream_ctx_array, | 
|---|
| 785 | dma: stream_info->ctx_array_dma); | 
|---|
| 786 |  | 
|---|
| 787 | kfree(objp: stream_info->stream_rings); | 
|---|
| 788 | kfree(objp: stream_info); | 
|---|
| 789 | } | 
|---|
| 790 |  | 
|---|
| 791 |  | 
|---|
| 792 | /***************** Device context manipulation *************************/ | 
|---|
| 793 |  | 
|---|
| 794 | static void xhci_free_tt_info(struct xhci_hcd *xhci, | 
|---|
| 795 | struct xhci_virt_device *virt_dev, | 
|---|
| 796 | int slot_id) | 
|---|
| 797 | { | 
|---|
| 798 | struct list_head *tt_list_head; | 
|---|
| 799 | struct xhci_tt_bw_info *tt_info, *next; | 
|---|
| 800 | bool slot_found = false; | 
|---|
| 801 |  | 
|---|
| 802 | /* If the device never made it past the Set Address stage, | 
|---|
| 803 | * it may not have the root hub port pointer set correctly. | 
|---|
| 804 | */ | 
|---|
| 805 | if (!virt_dev->rhub_port) { | 
|---|
| 806 | xhci_dbg(xhci, "Bad rhub port.\n"); | 
|---|
| 807 | return; | 
|---|
| 808 | } | 
|---|
| 809 |  | 
|---|
| 810 | tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts); | 
|---|
| 811 | list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { | 
|---|
| 812 | /* Multi-TT hubs will have more than one entry */ | 
|---|
| 813 | if (tt_info->slot_id == slot_id) { | 
|---|
| 814 | slot_found = true; | 
|---|
| 815 | list_del(entry: &tt_info->tt_list); | 
|---|
| 816 | kfree(objp: tt_info); | 
|---|
| 817 | } else if (slot_found) { | 
|---|
| 818 | break; | 
|---|
| 819 | } | 
|---|
| 820 | } | 
|---|
| 821 | } | 
|---|
| 822 |  | 
|---|
| 823 | int xhci_alloc_tt_info(struct xhci_hcd *xhci, | 
|---|
| 824 | struct xhci_virt_device *virt_dev, | 
|---|
| 825 | struct usb_device *hdev, | 
|---|
| 826 | struct usb_tt *tt, gfp_t mem_flags) | 
|---|
| 827 | { | 
|---|
| 828 | struct xhci_tt_bw_info		*tt_info; | 
|---|
| 829 | unsigned int			num_ports; | 
|---|
| 830 | int				i, j; | 
|---|
| 831 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 832 |  | 
|---|
| 833 | if (!tt->multi) | 
|---|
| 834 | num_ports = 1; | 
|---|
| 835 | else | 
|---|
| 836 | num_ports = hdev->maxchild; | 
|---|
| 837 |  | 
|---|
| 838 | for (i = 0; i < num_ports; i++, tt_info++) { | 
|---|
| 839 | struct xhci_interval_bw_table *bw_table; | 
|---|
| 840 |  | 
|---|
| 841 | tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, | 
|---|
| 842 | dev_to_node(dev)); | 
|---|
| 843 | if (!tt_info) | 
|---|
| 844 | goto free_tts; | 
|---|
| 845 | INIT_LIST_HEAD(list: &tt_info->tt_list); | 
|---|
| 846 | list_add(new: &tt_info->tt_list, | 
|---|
| 847 | head: &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts); | 
|---|
| 848 | tt_info->slot_id = virt_dev->udev->slot_id; | 
|---|
| 849 | if (tt->multi) | 
|---|
| 850 | tt_info->ttport = i+1; | 
|---|
| 851 | bw_table = &tt_info->bw_table; | 
|---|
| 852 | for (j = 0; j < XHCI_MAX_INTERVAL; j++) | 
|---|
| 853 | INIT_LIST_HEAD(list: &bw_table->interval_bw[j].endpoints); | 
|---|
| 854 | } | 
|---|
| 855 | return 0; | 
|---|
| 856 |  | 
|---|
| 857 | free_tts: | 
|---|
| 858 | xhci_free_tt_info(xhci, virt_dev, slot_id: virt_dev->udev->slot_id); | 
|---|
| 859 | return -ENOMEM; | 
|---|
| 860 | } | 
|---|
| 861 |  | 
|---|
| 862 |  | 
|---|
| 863 | /* All the xhci_tds in the ring's TD list should be freed at this point. | 
|---|
| 864 | * Should be called with xhci->lock held if there is any chance the TT lists | 
|---|
| 865 | * will be manipulated by the configure endpoint, allocate device, or update | 
|---|
| 866 | * hub functions while this function is removing the TT entries from the list. | 
|---|
| 867 | */ | 
|---|
| 868 | void xhci_free_virt_device(struct xhci_hcd *xhci, struct xhci_virt_device *dev, | 
|---|
| 869 | int slot_id) | 
|---|
| 870 | { | 
|---|
| 871 | int i; | 
|---|
| 872 | int old_active_eps = 0; | 
|---|
| 873 |  | 
|---|
| 874 | /* Slot ID 0 is reserved */ | 
|---|
| 875 | if (slot_id == 0 || !dev) | 
|---|
| 876 | return; | 
|---|
| 877 |  | 
|---|
| 878 | /* If device ctx array still points to _this_ device, clear it */ | 
|---|
| 879 | if (dev->out_ctx && | 
|---|
| 880 | xhci->dcbaa->dev_context_ptrs[slot_id] == cpu_to_le64(dev->out_ctx->dma)) | 
|---|
| 881 | xhci->dcbaa->dev_context_ptrs[slot_id] = 0; | 
|---|
| 882 |  | 
|---|
| 883 | trace_xhci_free_virt_device(vdev: dev); | 
|---|
| 884 |  | 
|---|
| 885 | if (dev->tt_info) | 
|---|
| 886 | old_active_eps = dev->tt_info->active_eps; | 
|---|
| 887 |  | 
|---|
| 888 | for (i = 0; i < 31; i++) { | 
|---|
| 889 | if (dev->eps[i].ring) | 
|---|
| 890 | xhci_ring_free(xhci, ring: dev->eps[i].ring); | 
|---|
| 891 | if (dev->eps[i].stream_info) | 
|---|
| 892 | xhci_free_stream_info(xhci, | 
|---|
| 893 | stream_info: dev->eps[i].stream_info); | 
|---|
| 894 | /* | 
|---|
| 895 | * Endpoints are normally deleted from the bandwidth list when | 
|---|
| 896 | * endpoints are dropped, before device is freed. | 
|---|
| 897 | * If host is dying or being removed then endpoints aren't | 
|---|
| 898 | * dropped cleanly, so delete the endpoint from list here. | 
|---|
| 899 | * Only applicable for hosts with software bandwidth checking. | 
|---|
| 900 | */ | 
|---|
| 901 |  | 
|---|
| 902 | if (!list_empty(head: &dev->eps[i].bw_endpoint_list)) { | 
|---|
| 903 | list_del_init(entry: &dev->eps[i].bw_endpoint_list); | 
|---|
| 904 | xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n", | 
|---|
| 905 | slot_id, i); | 
|---|
| 906 | } | 
|---|
| 907 | } | 
|---|
| 908 | /* If this is a hub, free the TT(s) from the TT list */ | 
|---|
| 909 | xhci_free_tt_info(xhci, virt_dev: dev, slot_id); | 
|---|
| 910 | /* If necessary, update the number of active TTs on this root port */ | 
|---|
| 911 | xhci_update_tt_active_eps(xhci, virt_dev: dev, old_active_eps); | 
|---|
| 912 |  | 
|---|
| 913 | if (dev->in_ctx) | 
|---|
| 914 | xhci_free_container_ctx(xhci, ctx: dev->in_ctx); | 
|---|
| 915 | if (dev->out_ctx) | 
|---|
| 916 | xhci_free_container_ctx(xhci, ctx: dev->out_ctx); | 
|---|
| 917 |  | 
|---|
| 918 | if (dev->udev && dev->udev->slot_id) | 
|---|
| 919 | dev->udev->slot_id = 0; | 
|---|
| 920 | if (dev->rhub_port && dev->rhub_port->slot_id == slot_id) | 
|---|
| 921 | dev->rhub_port->slot_id = 0; | 
|---|
| 922 | if (xhci->devs[slot_id] == dev) | 
|---|
| 923 | xhci->devs[slot_id] = NULL; | 
|---|
| 924 | kfree(objp: dev); | 
|---|
| 925 | } | 
|---|
| 926 |  | 
|---|
| 927 | /* | 
|---|
| 928 | * Free a virt_device structure. | 
|---|
| 929 | * If the virt_device added a tt_info (a hub) and has children pointing to | 
|---|
| 930 | * that tt_info, then free the child first. Recursive. | 
|---|
| 931 | * We can't rely on udev at this point to find child-parent relationships. | 
|---|
| 932 | */ | 
|---|
| 933 | static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) | 
|---|
| 934 | { | 
|---|
| 935 | struct xhci_virt_device *vdev; | 
|---|
| 936 | struct list_head *tt_list_head; | 
|---|
| 937 | struct xhci_tt_bw_info *tt_info, *next; | 
|---|
| 938 | int i; | 
|---|
| 939 |  | 
|---|
| 940 | vdev = xhci->devs[slot_id]; | 
|---|
| 941 | if (!vdev) | 
|---|
| 942 | return; | 
|---|
| 943 |  | 
|---|
| 944 | if (!vdev->rhub_port) { | 
|---|
| 945 | xhci_dbg(xhci, "Bad rhub port.\n"); | 
|---|
| 946 | goto out; | 
|---|
| 947 | } | 
|---|
| 948 |  | 
|---|
| 949 | tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts); | 
|---|
| 950 | list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { | 
|---|
| 951 | /* is this a hub device that added a tt_info to the tts list */ | 
|---|
| 952 | if (tt_info->slot_id == slot_id) { | 
|---|
| 953 | /* are any devices using this tt_info? */ | 
|---|
| 954 | for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { | 
|---|
| 955 | vdev = xhci->devs[i]; | 
|---|
| 956 | if (vdev && (vdev->tt_info == tt_info)) | 
|---|
| 957 | xhci_free_virt_devices_depth_first( | 
|---|
| 958 | xhci, slot_id: i); | 
|---|
| 959 | } | 
|---|
| 960 | } | 
|---|
| 961 | } | 
|---|
| 962 | out: | 
|---|
| 963 | /* we are now at a leaf device */ | 
|---|
| 964 | xhci_debugfs_remove_slot(xhci, slot_id); | 
|---|
| 965 | xhci_free_virt_device(xhci, dev: xhci->devs[slot_id], slot_id); | 
|---|
| 966 | } | 
|---|
| 967 |  | 
|---|
| 968 | int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, | 
|---|
| 969 | struct usb_device *udev, gfp_t flags) | 
|---|
| 970 | { | 
|---|
| 971 | struct xhci_virt_device *dev; | 
|---|
| 972 | int i; | 
|---|
| 973 |  | 
|---|
| 974 | /* Slot ID 0 is reserved */ | 
|---|
| 975 | if (slot_id == 0 || xhci->devs[slot_id]) { | 
|---|
| 976 | xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); | 
|---|
| 977 | return 0; | 
|---|
| 978 | } | 
|---|
| 979 |  | 
|---|
| 980 | dev = kzalloc(sizeof(*dev), flags); | 
|---|
| 981 | if (!dev) | 
|---|
| 982 | return 0; | 
|---|
| 983 |  | 
|---|
| 984 | dev->slot_id = slot_id; | 
|---|
| 985 |  | 
|---|
| 986 | /* Allocate the (output) device context that will be used in the HC. */ | 
|---|
| 987 | dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); | 
|---|
| 988 | if (!dev->out_ctx) | 
|---|
| 989 | goto fail; | 
|---|
| 990 |  | 
|---|
| 991 | xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma); | 
|---|
| 992 |  | 
|---|
| 993 | /* Allocate the (input) device context for address device command */ | 
|---|
| 994 | dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); | 
|---|
| 995 | if (!dev->in_ctx) | 
|---|
| 996 | goto fail; | 
|---|
| 997 |  | 
|---|
| 998 | xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma); | 
|---|
| 999 |  | 
|---|
| 1000 | /* Initialize the cancellation and bandwidth list for each ep */ | 
|---|
| 1001 | for (i = 0; i < 31; i++) { | 
|---|
| 1002 | dev->eps[i].ep_index = i; | 
|---|
| 1003 | dev->eps[i].vdev = dev; | 
|---|
| 1004 | dev->eps[i].xhci = xhci; | 
|---|
| 1005 | INIT_LIST_HEAD(list: &dev->eps[i].cancelled_td_list); | 
|---|
| 1006 | INIT_LIST_HEAD(list: &dev->eps[i].bw_endpoint_list); | 
|---|
| 1007 | } | 
|---|
| 1008 |  | 
|---|
| 1009 | /* Allocate endpoint 0 ring */ | 
|---|
| 1010 | dev->eps[0].ring = xhci_ring_alloc(xhci, num_segs: 2, type: TYPE_CTRL, max_packet: 0, flags); | 
|---|
| 1011 | if (!dev->eps[0].ring) | 
|---|
| 1012 | goto fail; | 
|---|
| 1013 |  | 
|---|
| 1014 | dev->udev = udev; | 
|---|
| 1015 |  | 
|---|
| 1016 | /* Point to output device context in dcbaa. */ | 
|---|
| 1017 | xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); | 
|---|
| 1018 | xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", | 
|---|
| 1019 | slot_id, | 
|---|
| 1020 | &xhci->dcbaa->dev_context_ptrs[slot_id], | 
|---|
| 1021 | le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); | 
|---|
| 1022 |  | 
|---|
| 1023 | trace_xhci_alloc_virt_device(vdev: dev); | 
|---|
| 1024 |  | 
|---|
| 1025 | xhci->devs[slot_id] = dev; | 
|---|
| 1026 |  | 
|---|
| 1027 | return 1; | 
|---|
| 1028 | fail: | 
|---|
| 1029 |  | 
|---|
| 1030 | if (dev->in_ctx) | 
|---|
| 1031 | xhci_free_container_ctx(xhci, ctx: dev->in_ctx); | 
|---|
| 1032 | if (dev->out_ctx) | 
|---|
| 1033 | xhci_free_container_ctx(xhci, ctx: dev->out_ctx); | 
|---|
| 1034 | kfree(objp: dev); | 
|---|
| 1035 |  | 
|---|
| 1036 | return 0; | 
|---|
| 1037 | } | 
|---|
| 1038 |  | 
|---|
| 1039 | void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, | 
|---|
| 1040 | struct usb_device *udev) | 
|---|
| 1041 | { | 
|---|
| 1042 | struct xhci_virt_device *virt_dev; | 
|---|
| 1043 | struct xhci_ep_ctx	*ep0_ctx; | 
|---|
| 1044 | struct xhci_ring	*ep_ring; | 
|---|
| 1045 |  | 
|---|
| 1046 | virt_dev = xhci->devs[udev->slot_id]; | 
|---|
| 1047 | ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); | 
|---|
| 1048 | ep_ring = virt_dev->eps[0].ring; | 
|---|
| 1049 | /* | 
|---|
| 1050 | * FIXME we don't keep track of the dequeue pointer very well after a | 
|---|
| 1051 | * Set TR dequeue pointer, so we're setting the dequeue pointer of the | 
|---|
| 1052 | * host to our enqueue pointer.  This should only be called after a | 
|---|
| 1053 | * configured device has reset, so all control transfers should have | 
|---|
| 1054 | * been completed or cancelled before the reset. | 
|---|
| 1055 | */ | 
|---|
| 1056 | ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, | 
|---|
| 1057 | ep_ring->enqueue) | 
|---|
| 1058 | | ep_ring->cycle_state); | 
|---|
| 1059 | } | 
|---|
| 1060 |  | 
|---|
| 1061 | /* | 
|---|
| 1062 | * The xHCI roothub may have ports of differing speeds in any order in the port | 
|---|
| 1063 | * status registers. | 
|---|
| 1064 | * | 
|---|
| 1065 | * The xHCI hardware wants to know the roothub port that the USB device | 
|---|
| 1066 | * is attached to (or the roothub port its ancestor hub is attached to).  All we | 
|---|
| 1067 | * know is the index of that port under either the USB 2.0 or the USB 3.0 | 
|---|
| 1068 | * roothub, but that doesn't give us the real index into the HW port status | 
|---|
| 1069 | * registers. | 
|---|
| 1070 | */ | 
|---|
| 1071 | static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev) | 
|---|
| 1072 | { | 
|---|
| 1073 | struct usb_device *top_dev; | 
|---|
| 1074 | struct xhci_hub *rhub; | 
|---|
| 1075 | struct usb_hcd *hcd; | 
|---|
| 1076 |  | 
|---|
| 1077 | if (udev->speed >= USB_SPEED_SUPER) | 
|---|
| 1078 | hcd = xhci_get_usb3_hcd(xhci); | 
|---|
| 1079 | else | 
|---|
| 1080 | hcd = xhci->main_hcd; | 
|---|
| 1081 |  | 
|---|
| 1082 | for (top_dev = udev; top_dev->parent && top_dev->parent->parent; | 
|---|
| 1083 | top_dev = top_dev->parent) | 
|---|
| 1084 | /* Found device below root hub */; | 
|---|
| 1085 |  | 
|---|
| 1086 | rhub = xhci_get_rhub(hcd); | 
|---|
| 1087 | return rhub->ports[top_dev->portnum - 1]; | 
|---|
| 1088 | } | 
|---|
| 1089 |  | 
|---|
| 1090 | /* Setup an xHCI virtual device for a Set Address command */ | 
|---|
| 1091 | int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) | 
|---|
| 1092 | { | 
|---|
| 1093 | struct xhci_virt_device *dev; | 
|---|
| 1094 | struct xhci_ep_ctx	*ep0_ctx; | 
|---|
| 1095 | struct xhci_slot_ctx    *slot_ctx; | 
|---|
| 1096 | u32			max_packets; | 
|---|
| 1097 |  | 
|---|
| 1098 | dev = xhci->devs[udev->slot_id]; | 
|---|
| 1099 | /* Slot ID 0 is reserved */ | 
|---|
| 1100 | if (udev->slot_id == 0 || !dev) { | 
|---|
| 1101 | xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", | 
|---|
| 1102 | udev->slot_id); | 
|---|
| 1103 | return -EINVAL; | 
|---|
| 1104 | } | 
|---|
| 1105 | ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); | 
|---|
| 1106 | slot_ctx = xhci_get_slot_ctx(xhci, ctx: dev->in_ctx); | 
|---|
| 1107 |  | 
|---|
| 1108 | /* 3) Only the control endpoint is valid - one endpoint context */ | 
|---|
| 1109 | slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); | 
|---|
| 1110 | switch (udev->speed) { | 
|---|
| 1111 | case USB_SPEED_SUPER_PLUS: | 
|---|
| 1112 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); | 
|---|
| 1113 | max_packets = MAX_PACKET(512); | 
|---|
| 1114 | break; | 
|---|
| 1115 | case USB_SPEED_SUPER: | 
|---|
| 1116 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); | 
|---|
| 1117 | max_packets = MAX_PACKET(512); | 
|---|
| 1118 | break; | 
|---|
| 1119 | case USB_SPEED_HIGH: | 
|---|
| 1120 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); | 
|---|
| 1121 | max_packets = MAX_PACKET(64); | 
|---|
| 1122 | break; | 
|---|
| 1123 | /* USB core guesses at a 64-byte max packet first for FS devices */ | 
|---|
| 1124 | case USB_SPEED_FULL: | 
|---|
| 1125 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); | 
|---|
| 1126 | max_packets = MAX_PACKET(64); | 
|---|
| 1127 | break; | 
|---|
| 1128 | case USB_SPEED_LOW: | 
|---|
| 1129 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); | 
|---|
| 1130 | max_packets = MAX_PACKET(8); | 
|---|
| 1131 | break; | 
|---|
| 1132 | default: | 
|---|
| 1133 | /* Speed was set earlier, this shouldn't happen. */ | 
|---|
| 1134 | return -EINVAL; | 
|---|
| 1135 | } | 
|---|
| 1136 | /* Find the root hub port this device is under */ | 
|---|
| 1137 | dev->rhub_port = xhci_find_rhub_port(xhci, udev); | 
|---|
| 1138 | if (!dev->rhub_port) | 
|---|
| 1139 | return -EINVAL; | 
|---|
| 1140 | /* Slot ID is set to the device directly below the root hub */ | 
|---|
| 1141 | if (!udev->parent->parent) | 
|---|
| 1142 | dev->rhub_port->slot_id = udev->slot_id; | 
|---|
| 1143 | slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1)); | 
|---|
| 1144 | xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n", | 
|---|
| 1145 | udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum); | 
|---|
| 1146 |  | 
|---|
| 1147 | /* Find the right bandwidth table that this device will be a part of. | 
|---|
| 1148 | * If this is a full speed device attached directly to a root port (or a | 
|---|
| 1149 | * decendent of one), it counts as a primary bandwidth domain, not a | 
|---|
| 1150 | * secondary bandwidth domain under a TT.  An xhci_tt_info structure | 
|---|
| 1151 | * will never be created for the HS root hub. | 
|---|
| 1152 | */ | 
|---|
| 1153 | if (!udev->tt || !udev->tt->hub->parent) { | 
|---|
| 1154 | dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table; | 
|---|
| 1155 | } else { | 
|---|
| 1156 | struct xhci_root_port_bw_info *rh_bw; | 
|---|
| 1157 | struct xhci_tt_bw_info *tt_bw; | 
|---|
| 1158 |  | 
|---|
| 1159 | rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum]; | 
|---|
| 1160 | /* Find the right TT. */ | 
|---|
| 1161 | list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { | 
|---|
| 1162 | if (tt_bw->slot_id != udev->tt->hub->slot_id) | 
|---|
| 1163 | continue; | 
|---|
| 1164 |  | 
|---|
| 1165 | if (!dev->udev->tt->multi || | 
|---|
| 1166 | (udev->tt->multi && | 
|---|
| 1167 | tt_bw->ttport == dev->udev->ttport)) { | 
|---|
| 1168 | dev->bw_table = &tt_bw->bw_table; | 
|---|
| 1169 | dev->tt_info = tt_bw; | 
|---|
| 1170 | break; | 
|---|
| 1171 | } | 
|---|
| 1172 | } | 
|---|
| 1173 | if (!dev->tt_info) | 
|---|
| 1174 | xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); | 
|---|
| 1175 | } | 
|---|
| 1176 |  | 
|---|
| 1177 | /* Is this a LS/FS device under an external HS hub? */ | 
|---|
| 1178 | if (udev->tt && udev->tt->hub->parent) { | 
|---|
| 1179 | slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | | 
|---|
| 1180 | (udev->ttport << 8)); | 
|---|
| 1181 | if (udev->tt->multi) | 
|---|
| 1182 | slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); | 
|---|
| 1183 | } | 
|---|
| 1184 | xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); | 
|---|
| 1185 | xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); | 
|---|
| 1186 |  | 
|---|
| 1187 | /* Step 4 - ring already allocated */ | 
|---|
| 1188 | /* Step 5 */ | 
|---|
| 1189 | ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); | 
|---|
| 1190 |  | 
|---|
| 1191 | /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ | 
|---|
| 1192 | ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | | 
|---|
| 1193 | max_packets); | 
|---|
| 1194 |  | 
|---|
| 1195 | ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | | 
|---|
| 1196 | dev->eps[0].ring->cycle_state); | 
|---|
| 1197 |  | 
|---|
| 1198 | ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8)); | 
|---|
| 1199 |  | 
|---|
| 1200 | trace_xhci_setup_addressable_virt_device(vdev: dev); | 
|---|
| 1201 |  | 
|---|
| 1202 | /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ | 
|---|
| 1203 |  | 
|---|
| 1204 | return 0; | 
|---|
| 1205 | } | 
|---|
| 1206 |  | 
|---|
| 1207 | /* | 
|---|
| 1208 | * Convert interval expressed as 2^(bInterval - 1) == interval into | 
|---|
| 1209 | * straight exponent value 2^n == interval. | 
|---|
| 1210 | * | 
|---|
| 1211 | */ | 
|---|
| 1212 | static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, | 
|---|
| 1213 | struct usb_host_endpoint *ep) | 
|---|
| 1214 | { | 
|---|
| 1215 | unsigned int interval; | 
|---|
| 1216 |  | 
|---|
| 1217 | interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; | 
|---|
| 1218 | if (interval != ep->desc.bInterval - 1) | 
|---|
| 1219 | dev_warn(&udev->dev, | 
|---|
| 1220 | "ep %#x - rounding interval to %d %sframes\n", | 
|---|
| 1221 | ep->desc.bEndpointAddress, | 
|---|
| 1222 | 1 << interval, | 
|---|
| 1223 | udev->speed == USB_SPEED_FULL ? "": "micro"); | 
|---|
| 1224 |  | 
|---|
| 1225 | if (udev->speed == USB_SPEED_FULL) { | 
|---|
| 1226 | /* | 
|---|
| 1227 | * Full speed isoc endpoints specify interval in frames, | 
|---|
| 1228 | * not microframes. We are using microframes everywhere, | 
|---|
| 1229 | * so adjust accordingly. | 
|---|
| 1230 | */ | 
|---|
| 1231 | interval += 3;	/* 1 frame = 2^3 uframes */ | 
|---|
| 1232 | } | 
|---|
| 1233 |  | 
|---|
| 1234 | return interval; | 
|---|
| 1235 | } | 
|---|
| 1236 |  | 
|---|
| 1237 | /* | 
|---|
| 1238 | * Convert bInterval expressed in microframes (in 1-255 range) to exponent of | 
|---|
| 1239 | * microframes, rounded down to nearest power of 2. | 
|---|
| 1240 | */ | 
|---|
| 1241 | static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, | 
|---|
| 1242 | struct usb_host_endpoint *ep, unsigned int desc_interval, | 
|---|
| 1243 | unsigned int min_exponent, unsigned int max_exponent) | 
|---|
| 1244 | { | 
|---|
| 1245 | unsigned int interval; | 
|---|
| 1246 |  | 
|---|
| 1247 | interval = fls(x: desc_interval) - 1; | 
|---|
| 1248 | interval = clamp_val(interval, min_exponent, max_exponent); | 
|---|
| 1249 | if ((1 << interval) != desc_interval) | 
|---|
| 1250 | dev_dbg(&udev->dev, | 
|---|
| 1251 | "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", | 
|---|
| 1252 | ep->desc.bEndpointAddress, | 
|---|
| 1253 | 1 << interval, | 
|---|
| 1254 | desc_interval); | 
|---|
| 1255 |  | 
|---|
| 1256 | return interval; | 
|---|
| 1257 | } | 
|---|
| 1258 |  | 
|---|
| 1259 | static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, | 
|---|
| 1260 | struct usb_host_endpoint *ep) | 
|---|
| 1261 | { | 
|---|
| 1262 | if (ep->desc.bInterval == 0) | 
|---|
| 1263 | return 0; | 
|---|
| 1264 | return xhci_microframes_to_exponent(udev, ep, | 
|---|
| 1265 | desc_interval: ep->desc.bInterval, min_exponent: 0, max_exponent: 15); | 
|---|
| 1266 | } | 
|---|
| 1267 |  | 
|---|
| 1268 |  | 
|---|
| 1269 | static unsigned int xhci_parse_frame_interval(struct usb_device *udev, | 
|---|
| 1270 | struct usb_host_endpoint *ep) | 
|---|
| 1271 | { | 
|---|
| 1272 | return xhci_microframes_to_exponent(udev, ep, | 
|---|
| 1273 | desc_interval: ep->desc.bInterval * 8, min_exponent: 3, max_exponent: 10); | 
|---|
| 1274 | } | 
|---|
| 1275 |  | 
|---|
| 1276 | /* Return the polling or NAK interval. | 
|---|
| 1277 | * | 
|---|
| 1278 | * The polling interval is expressed in "microframes".  If xHCI's Interval field | 
|---|
| 1279 | * is set to N, it will service the endpoint every 2^(Interval)*125us. | 
|---|
| 1280 | * | 
|---|
| 1281 | * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval | 
|---|
| 1282 | * is set to 0. | 
|---|
| 1283 | */ | 
|---|
| 1284 | static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, | 
|---|
| 1285 | struct usb_host_endpoint *ep) | 
|---|
| 1286 | { | 
|---|
| 1287 | unsigned int interval = 0; | 
|---|
| 1288 |  | 
|---|
| 1289 | switch (udev->speed) { | 
|---|
| 1290 | case USB_SPEED_HIGH: | 
|---|
| 1291 | /* Max NAK rate */ | 
|---|
| 1292 | if (usb_endpoint_xfer_control(epd: &ep->desc) || | 
|---|
| 1293 | usb_endpoint_xfer_bulk(epd: &ep->desc)) { | 
|---|
| 1294 | interval = xhci_parse_microframe_interval(udev, ep); | 
|---|
| 1295 | break; | 
|---|
| 1296 | } | 
|---|
| 1297 | fallthrough;	/* SS and HS isoc/int have same decoding */ | 
|---|
| 1298 |  | 
|---|
| 1299 | case USB_SPEED_SUPER_PLUS: | 
|---|
| 1300 | case USB_SPEED_SUPER: | 
|---|
| 1301 | if (usb_endpoint_xfer_int(epd: &ep->desc) || | 
|---|
| 1302 | usb_endpoint_xfer_isoc(epd: &ep->desc)) { | 
|---|
| 1303 | interval = xhci_parse_exponent_interval(udev, ep); | 
|---|
| 1304 | } | 
|---|
| 1305 | break; | 
|---|
| 1306 |  | 
|---|
| 1307 | case USB_SPEED_FULL: | 
|---|
| 1308 | if (usb_endpoint_xfer_isoc(epd: &ep->desc)) { | 
|---|
| 1309 | interval = xhci_parse_exponent_interval(udev, ep); | 
|---|
| 1310 | break; | 
|---|
| 1311 | } | 
|---|
| 1312 | /* | 
|---|
| 1313 | * Fall through for interrupt endpoint interval decoding | 
|---|
| 1314 | * since it uses the same rules as low speed interrupt | 
|---|
| 1315 | * endpoints. | 
|---|
| 1316 | */ | 
|---|
| 1317 | fallthrough; | 
|---|
| 1318 |  | 
|---|
| 1319 | case USB_SPEED_LOW: | 
|---|
| 1320 | if (usb_endpoint_xfer_int(epd: &ep->desc) || | 
|---|
| 1321 | usb_endpoint_xfer_isoc(epd: &ep->desc)) { | 
|---|
| 1322 |  | 
|---|
| 1323 | interval = xhci_parse_frame_interval(udev, ep); | 
|---|
| 1324 | } | 
|---|
| 1325 | break; | 
|---|
| 1326 |  | 
|---|
| 1327 | default: | 
|---|
| 1328 | BUG(); | 
|---|
| 1329 | } | 
|---|
| 1330 | return interval; | 
|---|
| 1331 | } | 
|---|
| 1332 |  | 
|---|
| 1333 | /* | 
|---|
| 1334 | * xHCs without LEC use the "Mult" field in the endpoint context for SuperSpeed | 
|---|
| 1335 | * isoc eps, and High speed isoc eps that support bandwidth doubling. Standard | 
|---|
| 1336 | * High speed endpoint descriptors can define "the number of additional | 
|---|
| 1337 | * transaction opportunities per microframe", but that goes in the Max Burst | 
|---|
| 1338 | * endpoint context field. | 
|---|
| 1339 | */ | 
|---|
| 1340 | static u32 xhci_get_endpoint_mult(struct xhci_hcd *xhci, | 
|---|
| 1341 | struct usb_device *udev, | 
|---|
| 1342 | struct usb_host_endpoint *ep) | 
|---|
| 1343 | { | 
|---|
| 1344 | bool lec; | 
|---|
| 1345 |  | 
|---|
| 1346 | /* xHCI 1.1 with LEC set does not use mult field, except intel eUSB2 */ | 
|---|
| 1347 | lec = xhci->hci_version > 0x100 && HCC2_LEC(xhci->hcc_params2); | 
|---|
| 1348 |  | 
|---|
| 1349 | /* eUSB2 double isoc bw devices are the only USB2 devices using mult */ | 
|---|
| 1350 | if (usb_endpoint_is_hs_isoc_double(udev, ep) && | 
|---|
| 1351 | (!lec || xhci->quirks & XHCI_INTEL_HOST)) | 
|---|
| 1352 | return 1; | 
|---|
| 1353 |  | 
|---|
| 1354 | /* SuperSpeed isoc transfers on hosts without LEC uses mult field */ | 
|---|
| 1355 | if (udev->speed >= USB_SPEED_SUPER && | 
|---|
| 1356 | usb_endpoint_xfer_isoc(epd: &ep->desc) && !lec) | 
|---|
| 1357 | return ep->ss_ep_comp.bmAttributes; | 
|---|
| 1358 |  | 
|---|
| 1359 | return 0; | 
|---|
| 1360 | } | 
|---|
| 1361 |  | 
|---|
| 1362 | static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, | 
|---|
| 1363 | struct usb_host_endpoint *ep) | 
|---|
| 1364 | { | 
|---|
| 1365 | /* Super speed and Plus have max burst in ep companion desc */ | 
|---|
| 1366 | if (udev->speed >= USB_SPEED_SUPER) | 
|---|
| 1367 | return ep->ss_ep_comp.bMaxBurst; | 
|---|
| 1368 |  | 
|---|
| 1369 | if (udev->speed == USB_SPEED_HIGH && | 
|---|
| 1370 | (usb_endpoint_xfer_isoc(epd: &ep->desc) || | 
|---|
| 1371 | usb_endpoint_xfer_int(epd: &ep->desc))) { | 
|---|
| 1372 | /* | 
|---|
| 1373 | * USB 2 Isochronous Double IN Bandwidth ECN uses fixed burst | 
|---|
| 1374 | * size and max packets bits 12:11 are invalid. | 
|---|
| 1375 | */ | 
|---|
| 1376 | if (usb_endpoint_is_hs_isoc_double(udev, ep)) | 
|---|
| 1377 | return 2; | 
|---|
| 1378 |  | 
|---|
| 1379 | return usb_endpoint_maxp_mult(epd: &ep->desc) - 1; | 
|---|
| 1380 | } | 
|---|
| 1381 |  | 
|---|
| 1382 | return 0; | 
|---|
| 1383 | } | 
|---|
| 1384 |  | 
|---|
| 1385 | static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) | 
|---|
| 1386 | { | 
|---|
| 1387 | int in; | 
|---|
| 1388 |  | 
|---|
| 1389 | in = usb_endpoint_dir_in(epd: &ep->desc); | 
|---|
| 1390 |  | 
|---|
| 1391 | switch (usb_endpoint_type(epd: &ep->desc)) { | 
|---|
| 1392 | case USB_ENDPOINT_XFER_CONTROL: | 
|---|
| 1393 | return CTRL_EP; | 
|---|
| 1394 | case USB_ENDPOINT_XFER_BULK: | 
|---|
| 1395 | return in ? BULK_IN_EP : BULK_OUT_EP; | 
|---|
| 1396 | case USB_ENDPOINT_XFER_ISOC: | 
|---|
| 1397 | return in ? ISOC_IN_EP : ISOC_OUT_EP; | 
|---|
| 1398 | case USB_ENDPOINT_XFER_INT: | 
|---|
| 1399 | return in ? INT_IN_EP : INT_OUT_EP; | 
|---|
| 1400 | } | 
|---|
| 1401 | return 0; | 
|---|
| 1402 | } | 
|---|
| 1403 |  | 
|---|
| 1404 | /* Set up an endpoint with one ring segment.  Do not allocate stream rings. | 
|---|
| 1405 | * Drivers will have to call usb_alloc_streams() to do that. | 
|---|
| 1406 | */ | 
|---|
| 1407 | int xhci_endpoint_init(struct xhci_hcd *xhci, | 
|---|
| 1408 | struct xhci_virt_device *virt_dev, | 
|---|
| 1409 | struct usb_device *udev, | 
|---|
| 1410 | struct usb_host_endpoint *ep, | 
|---|
| 1411 | gfp_t mem_flags) | 
|---|
| 1412 | { | 
|---|
| 1413 | unsigned int ep_index; | 
|---|
| 1414 | struct xhci_ep_ctx *ep_ctx; | 
|---|
| 1415 | struct xhci_ring *ep_ring; | 
|---|
| 1416 | unsigned int max_packet; | 
|---|
| 1417 | enum xhci_ring_type ring_type; | 
|---|
| 1418 | u32 max_esit_payload; | 
|---|
| 1419 | u32 endpoint_type; | 
|---|
| 1420 | unsigned int max_burst; | 
|---|
| 1421 | unsigned int interval; | 
|---|
| 1422 | unsigned int mult; | 
|---|
| 1423 | unsigned int avg_trb_len; | 
|---|
| 1424 | unsigned int err_count = 0; | 
|---|
| 1425 |  | 
|---|
| 1426 | ep_index = xhci_get_endpoint_index(desc: &ep->desc); | 
|---|
| 1427 | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
|---|
| 1428 |  | 
|---|
| 1429 | endpoint_type = xhci_get_endpoint_type(ep); | 
|---|
| 1430 | if (!endpoint_type) | 
|---|
| 1431 | return -EINVAL; | 
|---|
| 1432 |  | 
|---|
| 1433 | ring_type = usb_endpoint_type(epd: &ep->desc); | 
|---|
| 1434 |  | 
|---|
| 1435 | /* Ensure host supports double isoc bandwidth for eUSB2 devices */ | 
|---|
| 1436 | if (usb_endpoint_is_hs_isoc_double(udev, ep) && | 
|---|
| 1437 | !HCC2_EUSB2_DIC(xhci->hcc_params2))	{ | 
|---|
| 1438 | dev_dbg(&udev->dev, "Double Isoc Bandwidth not supported by xhci\n"); | 
|---|
| 1439 | return -EINVAL; | 
|---|
| 1440 | } | 
|---|
| 1441 |  | 
|---|
| 1442 | /* | 
|---|
| 1443 | * Get values to fill the endpoint context, mostly from ep descriptor. | 
|---|
| 1444 | * The average TRB buffer lengt for bulk endpoints is unclear as we | 
|---|
| 1445 | * have no clue on scatter gather list entry size. For Isoc and Int, | 
|---|
| 1446 | * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. | 
|---|
| 1447 | */ | 
|---|
| 1448 | max_esit_payload = usb_endpoint_max_periodic_payload(udev, ep); | 
|---|
| 1449 | interval = xhci_get_endpoint_interval(udev, ep); | 
|---|
| 1450 |  | 
|---|
| 1451 | /* Periodic endpoint bInterval limit quirk */ | 
|---|
| 1452 | if (usb_endpoint_xfer_int(epd: &ep->desc) || | 
|---|
| 1453 | usb_endpoint_xfer_isoc(epd: &ep->desc)) { | 
|---|
| 1454 | if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_9) && | 
|---|
| 1455 | interval >= 9) { | 
|---|
| 1456 | interval = 8; | 
|---|
| 1457 | } | 
|---|
| 1458 | if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && | 
|---|
| 1459 | udev->speed >= USB_SPEED_HIGH && | 
|---|
| 1460 | interval >= 7) { | 
|---|
| 1461 | interval = 6; | 
|---|
| 1462 | } | 
|---|
| 1463 | } | 
|---|
| 1464 |  | 
|---|
| 1465 | mult = xhci_get_endpoint_mult(xhci, udev, ep); | 
|---|
| 1466 | max_packet = xhci_usb_endpoint_maxp(udev, host_ep: ep); | 
|---|
| 1467 | max_burst = xhci_get_endpoint_max_burst(udev, ep); | 
|---|
| 1468 | avg_trb_len = max_esit_payload; | 
|---|
| 1469 |  | 
|---|
| 1470 | /* FIXME dig Mult and streams info out of ep companion desc */ | 
|---|
| 1471 |  | 
|---|
| 1472 | /* Allow 3 retries for everything but isoc, set CErr = 3 */ | 
|---|
| 1473 | if (!usb_endpoint_xfer_isoc(epd: &ep->desc)) | 
|---|
| 1474 | err_count = 3; | 
|---|
| 1475 | /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ | 
|---|
| 1476 | if (usb_endpoint_xfer_bulk(epd: &ep->desc)) { | 
|---|
| 1477 | if (udev->speed == USB_SPEED_HIGH) | 
|---|
| 1478 | max_packet = 512; | 
|---|
| 1479 | if (udev->speed == USB_SPEED_FULL) { | 
|---|
| 1480 | max_packet = rounddown_pow_of_two(max_packet); | 
|---|
| 1481 | max_packet = clamp_val(max_packet, 8, 64); | 
|---|
| 1482 | } | 
|---|
| 1483 | } | 
|---|
| 1484 | /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ | 
|---|
| 1485 | if (usb_endpoint_xfer_control(epd: &ep->desc) && xhci->hci_version >= 0x100) | 
|---|
| 1486 | avg_trb_len = 8; | 
|---|
| 1487 |  | 
|---|
| 1488 | /* Set up the endpoint ring */ | 
|---|
| 1489 | virt_dev->eps[ep_index].new_ring = | 
|---|
| 1490 | xhci_ring_alloc(xhci, num_segs: 2, type: ring_type, max_packet, flags: mem_flags); | 
|---|
| 1491 | if (!virt_dev->eps[ep_index].new_ring) | 
|---|
| 1492 | return -ENOMEM; | 
|---|
| 1493 |  | 
|---|
| 1494 | virt_dev->eps[ep_index].skip = false; | 
|---|
| 1495 | ep_ring = virt_dev->eps[ep_index].new_ring; | 
|---|
| 1496 |  | 
|---|
| 1497 | /* Fill the endpoint context */ | 
|---|
| 1498 | ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | | 
|---|
| 1499 | EP_INTERVAL(interval) | | 
|---|
| 1500 | EP_MULT(mult)); | 
|---|
| 1501 | ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | | 
|---|
| 1502 | MAX_PACKET(max_packet) | | 
|---|
| 1503 | MAX_BURST(max_burst) | | 
|---|
| 1504 | ERROR_COUNT(err_count)); | 
|---|
| 1505 | ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | | 
|---|
| 1506 | ep_ring->cycle_state); | 
|---|
| 1507 |  | 
|---|
| 1508 | ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | | 
|---|
| 1509 | EP_AVG_TRB_LENGTH(avg_trb_len)); | 
|---|
| 1510 |  | 
|---|
| 1511 | return 0; | 
|---|
| 1512 | } | 
|---|
| 1513 |  | 
|---|
| 1514 | void xhci_endpoint_zero(struct xhci_hcd *xhci, | 
|---|
| 1515 | struct xhci_virt_device *virt_dev, | 
|---|
| 1516 | struct usb_host_endpoint *ep) | 
|---|
| 1517 | { | 
|---|
| 1518 | unsigned int ep_index; | 
|---|
| 1519 | struct xhci_ep_ctx *ep_ctx; | 
|---|
| 1520 |  | 
|---|
| 1521 | ep_index = xhci_get_endpoint_index(desc: &ep->desc); | 
|---|
| 1522 | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
|---|
| 1523 |  | 
|---|
| 1524 | ep_ctx->ep_info = 0; | 
|---|
| 1525 | ep_ctx->ep_info2 = 0; | 
|---|
| 1526 | ep_ctx->deq = 0; | 
|---|
| 1527 | ep_ctx->tx_info = 0; | 
|---|
| 1528 | /* Don't free the endpoint ring until the set interface or configuration | 
|---|
| 1529 | * request succeeds. | 
|---|
| 1530 | */ | 
|---|
| 1531 | } | 
|---|
| 1532 |  | 
|---|
| 1533 | void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) | 
|---|
| 1534 | { | 
|---|
| 1535 | bw_info->ep_interval = 0; | 
|---|
| 1536 | bw_info->mult = 0; | 
|---|
| 1537 | bw_info->num_packets = 0; | 
|---|
| 1538 | bw_info->max_packet_size = 0; | 
|---|
| 1539 | bw_info->type = 0; | 
|---|
| 1540 | bw_info->max_esit_payload = 0; | 
|---|
| 1541 | } | 
|---|
| 1542 |  | 
|---|
| 1543 | void xhci_update_bw_info(struct xhci_hcd *xhci, | 
|---|
| 1544 | struct xhci_container_ctx *in_ctx, | 
|---|
| 1545 | struct xhci_input_control_ctx *ctrl_ctx, | 
|---|
| 1546 | struct xhci_virt_device *virt_dev) | 
|---|
| 1547 | { | 
|---|
| 1548 | struct xhci_bw_info *bw_info; | 
|---|
| 1549 | struct xhci_ep_ctx *ep_ctx; | 
|---|
| 1550 | unsigned int ep_type; | 
|---|
| 1551 | int i; | 
|---|
| 1552 |  | 
|---|
| 1553 | for (i = 1; i < 31; i++) { | 
|---|
| 1554 | bw_info = &virt_dev->eps[i].bw_info; | 
|---|
| 1555 |  | 
|---|
| 1556 | /* We can't tell what endpoint type is being dropped, but | 
|---|
| 1557 | * unconditionally clearing the bandwidth info for non-periodic | 
|---|
| 1558 | * endpoints should be harmless because the info will never be | 
|---|
| 1559 | * set in the first place. | 
|---|
| 1560 | */ | 
|---|
| 1561 | if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { | 
|---|
| 1562 | /* Dropped endpoint */ | 
|---|
| 1563 | xhci_clear_endpoint_bw_info(bw_info); | 
|---|
| 1564 | continue; | 
|---|
| 1565 | } | 
|---|
| 1566 |  | 
|---|
| 1567 | if (EP_IS_ADDED(ctrl_ctx, i)) { | 
|---|
| 1568 | ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); | 
|---|
| 1569 | ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); | 
|---|
| 1570 |  | 
|---|
| 1571 | /* Ignore non-periodic endpoints */ | 
|---|
| 1572 | if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && | 
|---|
| 1573 | ep_type != ISOC_IN_EP && | 
|---|
| 1574 | ep_type != INT_IN_EP) | 
|---|
| 1575 | continue; | 
|---|
| 1576 |  | 
|---|
| 1577 | /* Added or changed endpoint */ | 
|---|
| 1578 | bw_info->ep_interval = CTX_TO_EP_INTERVAL( | 
|---|
| 1579 | le32_to_cpu(ep_ctx->ep_info)); | 
|---|
| 1580 | /* Number of packets and mult are zero-based in the | 
|---|
| 1581 | * input context, but we want one-based for the | 
|---|
| 1582 | * interval table. | 
|---|
| 1583 | */ | 
|---|
| 1584 | bw_info->mult = CTX_TO_EP_MULT( | 
|---|
| 1585 | le32_to_cpu(ep_ctx->ep_info)) + 1; | 
|---|
| 1586 | bw_info->num_packets = CTX_TO_MAX_BURST( | 
|---|
| 1587 | le32_to_cpu(ep_ctx->ep_info2)) + 1; | 
|---|
| 1588 | bw_info->max_packet_size = MAX_PACKET_DECODED( | 
|---|
| 1589 | le32_to_cpu(ep_ctx->ep_info2)); | 
|---|
| 1590 | bw_info->type = ep_type; | 
|---|
| 1591 | bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( | 
|---|
| 1592 | le32_to_cpu(ep_ctx->tx_info)); | 
|---|
| 1593 | } | 
|---|
| 1594 | } | 
|---|
| 1595 | } | 
|---|
| 1596 |  | 
|---|
| 1597 | /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. | 
|---|
| 1598 | * Useful when you want to change one particular aspect of the endpoint and then | 
|---|
| 1599 | * issue a configure endpoint command. | 
|---|
| 1600 | */ | 
|---|
| 1601 | void xhci_endpoint_copy(struct xhci_hcd *xhci, | 
|---|
| 1602 | struct xhci_container_ctx *in_ctx, | 
|---|
| 1603 | struct xhci_container_ctx *out_ctx, | 
|---|
| 1604 | unsigned int ep_index) | 
|---|
| 1605 | { | 
|---|
| 1606 | struct xhci_ep_ctx *out_ep_ctx; | 
|---|
| 1607 | struct xhci_ep_ctx *in_ep_ctx; | 
|---|
| 1608 |  | 
|---|
| 1609 | out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
|---|
| 1610 | in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); | 
|---|
| 1611 |  | 
|---|
| 1612 | in_ep_ctx->ep_info = out_ep_ctx->ep_info; | 
|---|
| 1613 | in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; | 
|---|
| 1614 | in_ep_ctx->deq = out_ep_ctx->deq; | 
|---|
| 1615 | in_ep_ctx->tx_info = out_ep_ctx->tx_info; | 
|---|
| 1616 | if (xhci->quirks & XHCI_MTK_HOST) { | 
|---|
| 1617 | in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; | 
|---|
| 1618 | in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; | 
|---|
| 1619 | } | 
|---|
| 1620 | } | 
|---|
| 1621 |  | 
|---|
| 1622 | /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. | 
|---|
| 1623 | * Useful when you want to change one particular aspect of the endpoint and then | 
|---|
| 1624 | * issue a configure endpoint command.  Only the context entries field matters, | 
|---|
| 1625 | * but we'll copy the whole thing anyway. | 
|---|
| 1626 | */ | 
|---|
| 1627 | void xhci_slot_copy(struct xhci_hcd *xhci, | 
|---|
| 1628 | struct xhci_container_ctx *in_ctx, | 
|---|
| 1629 | struct xhci_container_ctx *out_ctx) | 
|---|
| 1630 | { | 
|---|
| 1631 | struct xhci_slot_ctx *in_slot_ctx; | 
|---|
| 1632 | struct xhci_slot_ctx *out_slot_ctx; | 
|---|
| 1633 |  | 
|---|
| 1634 | in_slot_ctx = xhci_get_slot_ctx(xhci, ctx: in_ctx); | 
|---|
| 1635 | out_slot_ctx = xhci_get_slot_ctx(xhci, ctx: out_ctx); | 
|---|
| 1636 |  | 
|---|
| 1637 | in_slot_ctx->dev_info = out_slot_ctx->dev_info; | 
|---|
| 1638 | in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; | 
|---|
| 1639 | in_slot_ctx->tt_info = out_slot_ctx->tt_info; | 
|---|
| 1640 | in_slot_ctx->dev_state = out_slot_ctx->dev_state; | 
|---|
| 1641 | } | 
|---|
| 1642 |  | 
|---|
| 1643 | /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ | 
|---|
| 1644 | static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) | 
|---|
| 1645 | { | 
|---|
| 1646 | int i; | 
|---|
| 1647 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 1648 | int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); | 
|---|
| 1649 |  | 
|---|
| 1650 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 1651 | fmt: "Allocating %d scratchpad buffers", num_sp); | 
|---|
| 1652 |  | 
|---|
| 1653 | if (!num_sp) | 
|---|
| 1654 | return 0; | 
|---|
| 1655 |  | 
|---|
| 1656 | xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, | 
|---|
| 1657 | dev_to_node(dev)); | 
|---|
| 1658 | if (!xhci->scratchpad) | 
|---|
| 1659 | goto fail_sp; | 
|---|
| 1660 |  | 
|---|
| 1661 | xhci->scratchpad->sp_array = dma_alloc_coherent(dev, | 
|---|
| 1662 | array_size(sizeof(u64), num_sp), | 
|---|
| 1663 | dma_handle: &xhci->scratchpad->sp_dma, gfp: flags); | 
|---|
| 1664 | if (!xhci->scratchpad->sp_array) | 
|---|
| 1665 | goto fail_sp2; | 
|---|
| 1666 |  | 
|---|
| 1667 | xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), | 
|---|
| 1668 | flags, dev_to_node(dev)); | 
|---|
| 1669 | if (!xhci->scratchpad->sp_buffers) | 
|---|
| 1670 | goto fail_sp3; | 
|---|
| 1671 |  | 
|---|
| 1672 | xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); | 
|---|
| 1673 | for (i = 0; i < num_sp; i++) { | 
|---|
| 1674 | dma_addr_t dma; | 
|---|
| 1675 | void *buf = dma_alloc_coherent(dev, size: xhci->page_size, dma_handle: &dma, | 
|---|
| 1676 | gfp: flags); | 
|---|
| 1677 | if (!buf) | 
|---|
| 1678 | goto fail_sp4; | 
|---|
| 1679 |  | 
|---|
| 1680 | xhci->scratchpad->sp_array[i] = dma; | 
|---|
| 1681 | xhci->scratchpad->sp_buffers[i] = buf; | 
|---|
| 1682 | } | 
|---|
| 1683 |  | 
|---|
| 1684 | return 0; | 
|---|
| 1685 |  | 
|---|
| 1686 | fail_sp4: | 
|---|
| 1687 | while (i--) | 
|---|
| 1688 | dma_free_coherent(dev, size: xhci->page_size, | 
|---|
| 1689 | cpu_addr: xhci->scratchpad->sp_buffers[i], | 
|---|
| 1690 | dma_handle: xhci->scratchpad->sp_array[i]); | 
|---|
| 1691 |  | 
|---|
| 1692 | kfree(objp: xhci->scratchpad->sp_buffers); | 
|---|
| 1693 |  | 
|---|
| 1694 | fail_sp3: | 
|---|
| 1695 | dma_free_coherent(dev, array_size(sizeof(u64), num_sp), | 
|---|
| 1696 | cpu_addr: xhci->scratchpad->sp_array, | 
|---|
| 1697 | dma_handle: xhci->scratchpad->sp_dma); | 
|---|
| 1698 |  | 
|---|
| 1699 | fail_sp2: | 
|---|
| 1700 | kfree(objp: xhci->scratchpad); | 
|---|
| 1701 | xhci->scratchpad = NULL; | 
|---|
| 1702 |  | 
|---|
| 1703 | fail_sp: | 
|---|
| 1704 | return -ENOMEM; | 
|---|
| 1705 | } | 
|---|
| 1706 |  | 
|---|
| 1707 | static void scratchpad_free(struct xhci_hcd *xhci) | 
|---|
| 1708 | { | 
|---|
| 1709 | int num_sp; | 
|---|
| 1710 | int i; | 
|---|
| 1711 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 1712 |  | 
|---|
| 1713 | if (!xhci->scratchpad) | 
|---|
| 1714 | return; | 
|---|
| 1715 |  | 
|---|
| 1716 | num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); | 
|---|
| 1717 |  | 
|---|
| 1718 | for (i = 0; i < num_sp; i++) { | 
|---|
| 1719 | dma_free_coherent(dev, size: xhci->page_size, | 
|---|
| 1720 | cpu_addr: xhci->scratchpad->sp_buffers[i], | 
|---|
| 1721 | dma_handle: xhci->scratchpad->sp_array[i]); | 
|---|
| 1722 | } | 
|---|
| 1723 | kfree(objp: xhci->scratchpad->sp_buffers); | 
|---|
| 1724 | dma_free_coherent(dev, array_size(sizeof(u64), num_sp), | 
|---|
| 1725 | cpu_addr: xhci->scratchpad->sp_array, | 
|---|
| 1726 | dma_handle: xhci->scratchpad->sp_dma); | 
|---|
| 1727 | kfree(objp: xhci->scratchpad); | 
|---|
| 1728 | xhci->scratchpad = NULL; | 
|---|
| 1729 | } | 
|---|
| 1730 |  | 
|---|
| 1731 | struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, | 
|---|
| 1732 | bool allocate_completion, gfp_t mem_flags) | 
|---|
| 1733 | { | 
|---|
| 1734 | struct xhci_command *command; | 
|---|
| 1735 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 1736 |  | 
|---|
| 1737 | command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); | 
|---|
| 1738 | if (!command) | 
|---|
| 1739 | return NULL; | 
|---|
| 1740 |  | 
|---|
| 1741 | if (allocate_completion) { | 
|---|
| 1742 | command->completion = | 
|---|
| 1743 | kzalloc_node(sizeof(struct completion), mem_flags, | 
|---|
| 1744 | dev_to_node(dev)); | 
|---|
| 1745 | if (!command->completion) { | 
|---|
| 1746 | kfree(objp: command); | 
|---|
| 1747 | return NULL; | 
|---|
| 1748 | } | 
|---|
| 1749 | init_completion(x: command->completion); | 
|---|
| 1750 | } | 
|---|
| 1751 |  | 
|---|
| 1752 | command->status = 0; | 
|---|
| 1753 | /* set default timeout to 5000 ms */ | 
|---|
| 1754 | command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT; | 
|---|
| 1755 | INIT_LIST_HEAD(list: &command->cmd_list); | 
|---|
| 1756 | return command; | 
|---|
| 1757 | } | 
|---|
| 1758 |  | 
|---|
| 1759 | struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, | 
|---|
| 1760 | bool allocate_completion, gfp_t mem_flags) | 
|---|
| 1761 | { | 
|---|
| 1762 | struct xhci_command *command; | 
|---|
| 1763 |  | 
|---|
| 1764 | command = xhci_alloc_command(xhci, allocate_completion, mem_flags); | 
|---|
| 1765 | if (!command) | 
|---|
| 1766 | return NULL; | 
|---|
| 1767 |  | 
|---|
| 1768 | command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, | 
|---|
| 1769 | flags: mem_flags); | 
|---|
| 1770 | if (!command->in_ctx) { | 
|---|
| 1771 | kfree(objp: command->completion); | 
|---|
| 1772 | kfree(objp: command); | 
|---|
| 1773 | return NULL; | 
|---|
| 1774 | } | 
|---|
| 1775 | return command; | 
|---|
| 1776 | } | 
|---|
| 1777 |  | 
|---|
| 1778 | void xhci_urb_free_priv(struct urb_priv *urb_priv) | 
|---|
| 1779 | { | 
|---|
| 1780 | kfree(objp: urb_priv); | 
|---|
| 1781 | } | 
|---|
| 1782 |  | 
|---|
| 1783 | void xhci_free_command(struct xhci_hcd *xhci, | 
|---|
| 1784 | struct xhci_command *command) | 
|---|
| 1785 | { | 
|---|
| 1786 | xhci_free_container_ctx(xhci, | 
|---|
| 1787 | ctx: command->in_ctx); | 
|---|
| 1788 | kfree(objp: command->completion); | 
|---|
| 1789 | kfree(objp: command); | 
|---|
| 1790 | } | 
|---|
| 1791 |  | 
|---|
| 1792 | static int xhci_alloc_erst(struct xhci_hcd *xhci, | 
|---|
| 1793 | struct xhci_ring *evt_ring, | 
|---|
| 1794 | struct xhci_erst *erst, | 
|---|
| 1795 | gfp_t flags) | 
|---|
| 1796 | { | 
|---|
| 1797 | size_t size; | 
|---|
| 1798 | unsigned int val; | 
|---|
| 1799 | struct xhci_segment *seg; | 
|---|
| 1800 | struct xhci_erst_entry *entry; | 
|---|
| 1801 |  | 
|---|
| 1802 | size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs); | 
|---|
| 1803 | erst->entries = dma_alloc_coherent(dev: xhci_to_hcd(xhci)->self.sysdev, | 
|---|
| 1804 | size, dma_handle: &erst->erst_dma_addr, gfp: flags); | 
|---|
| 1805 | if (!erst->entries) | 
|---|
| 1806 | return -ENOMEM; | 
|---|
| 1807 |  | 
|---|
| 1808 | erst->num_entries = evt_ring->num_segs; | 
|---|
| 1809 |  | 
|---|
| 1810 | seg = evt_ring->first_seg; | 
|---|
| 1811 | for (val = 0; val < evt_ring->num_segs; val++) { | 
|---|
| 1812 | entry = &erst->entries[val]; | 
|---|
| 1813 | entry->seg_addr = cpu_to_le64(seg->dma); | 
|---|
| 1814 | entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); | 
|---|
| 1815 | entry->rsvd = 0; | 
|---|
| 1816 | seg = seg->next; | 
|---|
| 1817 | } | 
|---|
| 1818 |  | 
|---|
| 1819 | return 0; | 
|---|
| 1820 | } | 
|---|
| 1821 |  | 
|---|
| 1822 | static void | 
|---|
| 1823 | xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) | 
|---|
| 1824 | { | 
|---|
| 1825 | u32 tmp; | 
|---|
| 1826 |  | 
|---|
| 1827 | if (!ir) | 
|---|
| 1828 | return; | 
|---|
| 1829 |  | 
|---|
| 1830 | /* | 
|---|
| 1831 | * Clean out interrupter registers except ERSTBA. Clearing either the | 
|---|
| 1832 | * low or high 32 bits of ERSTBA immediately causes the controller to | 
|---|
| 1833 | * dereference the partially cleared 64 bit address, causing IOMMU error. | 
|---|
| 1834 | */ | 
|---|
| 1835 | if (ir->ir_set) { | 
|---|
| 1836 | tmp = readl(addr: &ir->ir_set->erst_size); | 
|---|
| 1837 | tmp &= ~ERST_SIZE_MASK; | 
|---|
| 1838 | writel(val: tmp, addr: &ir->ir_set->erst_size); | 
|---|
| 1839 |  | 
|---|
| 1840 | xhci_update_erst_dequeue(xhci, ir, clear_ehb: true); | 
|---|
| 1841 | } | 
|---|
| 1842 | } | 
|---|
| 1843 |  | 
|---|
| 1844 | static void | 
|---|
| 1845 | xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) | 
|---|
| 1846 | { | 
|---|
| 1847 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 1848 | size_t erst_size; | 
|---|
| 1849 |  | 
|---|
| 1850 | if (!ir) | 
|---|
| 1851 | return; | 
|---|
| 1852 |  | 
|---|
| 1853 | erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries); | 
|---|
| 1854 | if (ir->erst.entries) | 
|---|
| 1855 | dma_free_coherent(dev, size: erst_size, | 
|---|
| 1856 | cpu_addr: ir->erst.entries, | 
|---|
| 1857 | dma_handle: ir->erst.erst_dma_addr); | 
|---|
| 1858 | ir->erst.entries = NULL; | 
|---|
| 1859 |  | 
|---|
| 1860 | /* free interrupter event ring */ | 
|---|
| 1861 | if (ir->event_ring) | 
|---|
| 1862 | xhci_ring_free(xhci, ring: ir->event_ring); | 
|---|
| 1863 |  | 
|---|
| 1864 | ir->event_ring = NULL; | 
|---|
| 1865 |  | 
|---|
| 1866 | kfree(objp: ir); | 
|---|
| 1867 | } | 
|---|
| 1868 |  | 
|---|
| 1869 | void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir) | 
|---|
| 1870 | { | 
|---|
| 1871 | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|---|
| 1872 | unsigned int intr_num; | 
|---|
| 1873 |  | 
|---|
| 1874 | spin_lock_irq(lock: &xhci->lock); | 
|---|
| 1875 |  | 
|---|
| 1876 | /* interrupter 0 is primary interrupter, don't touch it */ | 
|---|
| 1877 | if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) { | 
|---|
| 1878 | xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n"); | 
|---|
| 1879 | spin_unlock_irq(lock: &xhci->lock); | 
|---|
| 1880 | return; | 
|---|
| 1881 | } | 
|---|
| 1882 |  | 
|---|
| 1883 | /* | 
|---|
| 1884 | * Cleanup secondary interrupter to ensure there are no pending events. | 
|---|
| 1885 | * This also updates event ring dequeue pointer back to the start. | 
|---|
| 1886 | */ | 
|---|
| 1887 | xhci_skip_sec_intr_events(xhci, ring: ir->event_ring, ir); | 
|---|
| 1888 | intr_num = ir->intr_num; | 
|---|
| 1889 |  | 
|---|
| 1890 | xhci_remove_interrupter(xhci, ir); | 
|---|
| 1891 | xhci->interrupters[intr_num] = NULL; | 
|---|
| 1892 |  | 
|---|
| 1893 | spin_unlock_irq(lock: &xhci->lock); | 
|---|
| 1894 |  | 
|---|
| 1895 | xhci_free_interrupter(xhci, ir); | 
|---|
| 1896 | } | 
|---|
| 1897 | EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter); | 
|---|
| 1898 |  | 
|---|
| 1899 | void xhci_mem_cleanup(struct xhci_hcd *xhci) | 
|---|
| 1900 | { | 
|---|
| 1901 | struct device	*dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 1902 | int i, j, num_ports; | 
|---|
| 1903 |  | 
|---|
| 1904 | cancel_delayed_work_sync(dwork: &xhci->cmd_timer); | 
|---|
| 1905 |  | 
|---|
| 1906 | for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) { | 
|---|
| 1907 | if (xhci->interrupters[i]) { | 
|---|
| 1908 | xhci_remove_interrupter(xhci, ir: xhci->interrupters[i]); | 
|---|
| 1909 | xhci_free_interrupter(xhci, ir: xhci->interrupters[i]); | 
|---|
| 1910 | xhci->interrupters[i] = NULL; | 
|---|
| 1911 | } | 
|---|
| 1912 | } | 
|---|
| 1913 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed interrupters"); | 
|---|
| 1914 |  | 
|---|
| 1915 | if (xhci->cmd_ring) | 
|---|
| 1916 | xhci_ring_free(xhci, ring: xhci->cmd_ring); | 
|---|
| 1917 | xhci->cmd_ring = NULL; | 
|---|
| 1918 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed command ring"); | 
|---|
| 1919 | xhci_cleanup_command_queue(xhci); | 
|---|
| 1920 |  | 
|---|
| 1921 | num_ports = HCS_MAX_PORTS(xhci->hcs_params1); | 
|---|
| 1922 | for (i = 0; i < num_ports && xhci->rh_bw; i++) { | 
|---|
| 1923 | struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; | 
|---|
| 1924 | for (j = 0; j < XHCI_MAX_INTERVAL; j++) { | 
|---|
| 1925 | struct list_head *ep = &bwt->interval_bw[j].endpoints; | 
|---|
| 1926 | while (!list_empty(head: ep)) | 
|---|
| 1927 | list_del_init(entry: ep->next); | 
|---|
| 1928 | } | 
|---|
| 1929 | } | 
|---|
| 1930 |  | 
|---|
| 1931 | for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) | 
|---|
| 1932 | xhci_free_virt_devices_depth_first(xhci, slot_id: i); | 
|---|
| 1933 |  | 
|---|
| 1934 | dma_pool_destroy(pool: xhci->segment_pool); | 
|---|
| 1935 | xhci->segment_pool = NULL; | 
|---|
| 1936 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed segment pool"); | 
|---|
| 1937 |  | 
|---|
| 1938 | dma_pool_destroy(pool: xhci->device_pool); | 
|---|
| 1939 | xhci->device_pool = NULL; | 
|---|
| 1940 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed device context pool"); | 
|---|
| 1941 |  | 
|---|
| 1942 | dma_pool_destroy(pool: xhci->small_streams_pool); | 
|---|
| 1943 | xhci->small_streams_pool = NULL; | 
|---|
| 1944 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 1945 | fmt: "Freed small stream array pool"); | 
|---|
| 1946 |  | 
|---|
| 1947 | dma_pool_destroy(pool: xhci->port_bw_pool); | 
|---|
| 1948 | xhci->port_bw_pool = NULL; | 
|---|
| 1949 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 1950 | fmt: "Freed xhci port bw array pool"); | 
|---|
| 1951 |  | 
|---|
| 1952 | dma_pool_destroy(pool: xhci->medium_streams_pool); | 
|---|
| 1953 | xhci->medium_streams_pool = NULL; | 
|---|
| 1954 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 1955 | fmt: "Freed medium stream array pool"); | 
|---|
| 1956 |  | 
|---|
| 1957 | if (xhci->dcbaa) | 
|---|
| 1958 | dma_free_coherent(dev, size: sizeof(*xhci->dcbaa), | 
|---|
| 1959 | cpu_addr: xhci->dcbaa, dma_handle: xhci->dcbaa->dma); | 
|---|
| 1960 | xhci->dcbaa = NULL; | 
|---|
| 1961 |  | 
|---|
| 1962 | scratchpad_free(xhci); | 
|---|
| 1963 |  | 
|---|
| 1964 | if (!xhci->rh_bw) | 
|---|
| 1965 | goto no_bw; | 
|---|
| 1966 |  | 
|---|
| 1967 | for (i = 0; i < num_ports; i++) { | 
|---|
| 1968 | struct xhci_tt_bw_info *tt, *n; | 
|---|
| 1969 | list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { | 
|---|
| 1970 | list_del(entry: &tt->tt_list); | 
|---|
| 1971 | kfree(objp: tt); | 
|---|
| 1972 | } | 
|---|
| 1973 | } | 
|---|
| 1974 |  | 
|---|
| 1975 | no_bw: | 
|---|
| 1976 | xhci->cmd_ring_reserved_trbs = 0; | 
|---|
| 1977 | xhci->usb2_rhub.num_ports = 0; | 
|---|
| 1978 | xhci->usb3_rhub.num_ports = 0; | 
|---|
| 1979 | xhci->num_active_eps = 0; | 
|---|
| 1980 | kfree(objp: xhci->usb2_rhub.ports); | 
|---|
| 1981 | kfree(objp: xhci->usb3_rhub.ports); | 
|---|
| 1982 | kfree(objp: xhci->hw_ports); | 
|---|
| 1983 | kfree(objp: xhci->rh_bw); | 
|---|
| 1984 | for (i = 0; i < xhci->num_port_caps; i++) | 
|---|
| 1985 | kfree(objp: xhci->port_caps[i].psi); | 
|---|
| 1986 | kfree(objp: xhci->port_caps); | 
|---|
| 1987 | kfree(objp: xhci->interrupters); | 
|---|
| 1988 | xhci->num_port_caps = 0; | 
|---|
| 1989 |  | 
|---|
| 1990 | xhci->usb2_rhub.ports = NULL; | 
|---|
| 1991 | xhci->usb3_rhub.ports = NULL; | 
|---|
| 1992 | xhci->hw_ports = NULL; | 
|---|
| 1993 | xhci->rh_bw = NULL; | 
|---|
| 1994 | xhci->port_caps = NULL; | 
|---|
| 1995 | xhci->interrupters = NULL; | 
|---|
| 1996 |  | 
|---|
| 1997 | xhci->page_size = 0; | 
|---|
| 1998 | xhci->usb2_rhub.bus_state.bus_suspended = 0; | 
|---|
| 1999 | xhci->usb3_rhub.bus_state.bus_suspended = 0; | 
|---|
| 2000 | } | 
|---|
| 2001 |  | 
|---|
| 2002 | static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir) | 
|---|
| 2003 | { | 
|---|
| 2004 | dma_addr_t deq; | 
|---|
| 2005 |  | 
|---|
| 2006 | deq = xhci_trb_virt_to_dma(seg: ir->event_ring->deq_seg, | 
|---|
| 2007 | trb: ir->event_ring->dequeue); | 
|---|
| 2008 | if (!deq) | 
|---|
| 2009 | xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n"); | 
|---|
| 2010 | /* Update HC event ring dequeue pointer */ | 
|---|
| 2011 | /* Don't clear the EHB bit (which is RW1C) because | 
|---|
| 2012 | * there might be more events to service. | 
|---|
| 2013 | */ | 
|---|
| 2014 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 2015 | fmt: "// Write event ring dequeue pointer, preserving EHB bit"); | 
|---|
| 2016 | xhci_write_64(xhci, val: deq & ERST_PTR_MASK, regs: &ir->ir_set->erst_dequeue); | 
|---|
| 2017 | } | 
|---|
| 2018 |  | 
|---|
| 2019 | static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, | 
|---|
| 2020 | __le32 __iomem *addr, int max_caps) | 
|---|
| 2021 | { | 
|---|
| 2022 | u32 temp, port_offset, port_count; | 
|---|
| 2023 | int i; | 
|---|
| 2024 | u8 major_revision, minor_revision, tmp_minor_revision; | 
|---|
| 2025 | struct xhci_hub *rhub; | 
|---|
| 2026 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 2027 | struct xhci_port_cap *port_cap; | 
|---|
| 2028 |  | 
|---|
| 2029 | temp = readl(addr); | 
|---|
| 2030 | major_revision = XHCI_EXT_PORT_MAJOR(temp); | 
|---|
| 2031 | minor_revision = XHCI_EXT_PORT_MINOR(temp); | 
|---|
| 2032 |  | 
|---|
| 2033 | if (major_revision == 0x03) { | 
|---|
| 2034 | rhub = &xhci->usb3_rhub; | 
|---|
| 2035 | /* | 
|---|
| 2036 | * Some hosts incorrectly use sub-minor version for minor | 
|---|
| 2037 | * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 | 
|---|
| 2038 | * for bcdUSB 0x310). Since there is no USB release with sub | 
|---|
| 2039 | * minor version 0x301 to 0x309, we can assume that they are | 
|---|
| 2040 | * incorrect and fix it here. | 
|---|
| 2041 | */ | 
|---|
| 2042 | if (minor_revision > 0x00 && minor_revision < 0x10) | 
|---|
| 2043 | minor_revision <<= 4; | 
|---|
| 2044 | /* | 
|---|
| 2045 | * Some zhaoxin's xHCI controller that follow usb3.1 spec | 
|---|
| 2046 | * but only support Gen1. | 
|---|
| 2047 | */ | 
|---|
| 2048 | if (xhci->quirks & XHCI_ZHAOXIN_HOST) { | 
|---|
| 2049 | tmp_minor_revision = minor_revision; | 
|---|
| 2050 | minor_revision = 0; | 
|---|
| 2051 | } | 
|---|
| 2052 |  | 
|---|
| 2053 | } else if (major_revision <= 0x02) { | 
|---|
| 2054 | rhub = &xhci->usb2_rhub; | 
|---|
| 2055 | } else { | 
|---|
| 2056 | xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n", | 
|---|
| 2057 | addr, major_revision); | 
|---|
| 2058 | /* Ignoring port protocol we can't understand. FIXME */ | 
|---|
| 2059 | return; | 
|---|
| 2060 | } | 
|---|
| 2061 |  | 
|---|
| 2062 | /* Port offset and count in the third dword, see section 7.2 */ | 
|---|
| 2063 | temp = readl(addr: addr + 2); | 
|---|
| 2064 | port_offset = XHCI_EXT_PORT_OFF(temp); | 
|---|
| 2065 | port_count = XHCI_EXT_PORT_COUNT(temp); | 
|---|
| 2066 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 2067 | fmt: "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x", | 
|---|
| 2068 | addr, port_offset, port_count, major_revision); | 
|---|
| 2069 | /* Port count includes the current port offset */ | 
|---|
| 2070 | if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) | 
|---|
| 2071 | /* WTF? "Valid values are ‘1’ to MaxPorts" */ | 
|---|
| 2072 | return; | 
|---|
| 2073 |  | 
|---|
| 2074 | port_cap = &xhci->port_caps[xhci->num_port_caps++]; | 
|---|
| 2075 | if (xhci->num_port_caps > max_caps) | 
|---|
| 2076 | return; | 
|---|
| 2077 |  | 
|---|
| 2078 | port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); | 
|---|
| 2079 |  | 
|---|
| 2080 | if (port_cap->psi_count) { | 
|---|
| 2081 | port_cap->psi = kcalloc_node(port_cap->psi_count, | 
|---|
| 2082 | sizeof(*port_cap->psi), | 
|---|
| 2083 | GFP_KERNEL, dev_to_node(dev)); | 
|---|
| 2084 | if (!port_cap->psi) | 
|---|
| 2085 | port_cap->psi_count = 0; | 
|---|
| 2086 |  | 
|---|
| 2087 | port_cap->psi_uid_count++; | 
|---|
| 2088 | for (i = 0; i < port_cap->psi_count; i++) { | 
|---|
| 2089 | port_cap->psi[i] = readl(addr: addr + 4 + i); | 
|---|
| 2090 |  | 
|---|
| 2091 | /* count unique ID values, two consecutive entries can | 
|---|
| 2092 | * have the same ID if link is assymetric | 
|---|
| 2093 | */ | 
|---|
| 2094 | if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != | 
|---|
| 2095 | XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) | 
|---|
| 2096 | port_cap->psi_uid_count++; | 
|---|
| 2097 |  | 
|---|
| 2098 | if (xhci->quirks & XHCI_ZHAOXIN_HOST && | 
|---|
| 2099 | major_revision == 0x03 && | 
|---|
| 2100 | XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5) | 
|---|
| 2101 | minor_revision = tmp_minor_revision; | 
|---|
| 2102 |  | 
|---|
| 2103 | xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", | 
|---|
| 2104 | XHCI_EXT_PORT_PSIV(port_cap->psi[i]), | 
|---|
| 2105 | XHCI_EXT_PORT_PSIE(port_cap->psi[i]), | 
|---|
| 2106 | XHCI_EXT_PORT_PLT(port_cap->psi[i]), | 
|---|
| 2107 | XHCI_EXT_PORT_PFD(port_cap->psi[i]), | 
|---|
| 2108 | XHCI_EXT_PORT_LP(port_cap->psi[i]), | 
|---|
| 2109 | XHCI_EXT_PORT_PSIM(port_cap->psi[i])); | 
|---|
| 2110 | } | 
|---|
| 2111 | } | 
|---|
| 2112 |  | 
|---|
| 2113 | rhub->maj_rev = major_revision; | 
|---|
| 2114 |  | 
|---|
| 2115 | if (rhub->min_rev < minor_revision) | 
|---|
| 2116 | rhub->min_rev = minor_revision; | 
|---|
| 2117 |  | 
|---|
| 2118 | port_cap->maj_rev = major_revision; | 
|---|
| 2119 | port_cap->min_rev = minor_revision; | 
|---|
| 2120 | port_cap->protocol_caps = temp; | 
|---|
| 2121 |  | 
|---|
| 2122 | if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && | 
|---|
| 2123 | (temp & XHCI_HLC)) { | 
|---|
| 2124 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 2125 | fmt: "xHCI 1.0: support USB2 hardware lpm"); | 
|---|
| 2126 | xhci->hw_lpm_support = 1; | 
|---|
| 2127 | } | 
|---|
| 2128 |  | 
|---|
| 2129 | port_offset--; | 
|---|
| 2130 | for (i = port_offset; i < (port_offset + port_count); i++) { | 
|---|
| 2131 | struct xhci_port *hw_port = &xhci->hw_ports[i]; | 
|---|
| 2132 | /* Duplicate entry.  Ignore the port if the revisions differ. */ | 
|---|
| 2133 | if (hw_port->rhub) { | 
|---|
| 2134 | xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i); | 
|---|
| 2135 | xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n", | 
|---|
| 2136 | hw_port->rhub->maj_rev, major_revision); | 
|---|
| 2137 | /* Only adjust the roothub port counts if we haven't | 
|---|
| 2138 | * found a similar duplicate. | 
|---|
| 2139 | */ | 
|---|
| 2140 | if (hw_port->rhub != rhub && | 
|---|
| 2141 | hw_port->hcd_portnum != DUPLICATE_ENTRY) { | 
|---|
| 2142 | hw_port->rhub->num_ports--; | 
|---|
| 2143 | hw_port->hcd_portnum = DUPLICATE_ENTRY; | 
|---|
| 2144 | } | 
|---|
| 2145 | continue; | 
|---|
| 2146 | } | 
|---|
| 2147 | hw_port->rhub = rhub; | 
|---|
| 2148 | hw_port->port_cap = port_cap; | 
|---|
| 2149 | rhub->num_ports++; | 
|---|
| 2150 | } | 
|---|
| 2151 | /* FIXME: Should we disable ports not in the Extended Capabilities? */ | 
|---|
| 2152 | } | 
|---|
| 2153 |  | 
|---|
| 2154 | static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, | 
|---|
| 2155 | struct xhci_hub *rhub, gfp_t flags) | 
|---|
| 2156 | { | 
|---|
| 2157 | int port_index = 0; | 
|---|
| 2158 | int i; | 
|---|
| 2159 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 2160 |  | 
|---|
| 2161 | if (!rhub->num_ports) | 
|---|
| 2162 | return; | 
|---|
| 2163 | rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), | 
|---|
| 2164 | flags, dev_to_node(dev)); | 
|---|
| 2165 | if (!rhub->ports) | 
|---|
| 2166 | return; | 
|---|
| 2167 |  | 
|---|
| 2168 | for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { | 
|---|
| 2169 | if (xhci->hw_ports[i].rhub != rhub || | 
|---|
| 2170 | xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) | 
|---|
| 2171 | continue; | 
|---|
| 2172 | xhci->hw_ports[i].hcd_portnum = port_index; | 
|---|
| 2173 | rhub->ports[port_index] = &xhci->hw_ports[i]; | 
|---|
| 2174 | port_index++; | 
|---|
| 2175 | if (port_index == rhub->num_ports) | 
|---|
| 2176 | break; | 
|---|
| 2177 | } | 
|---|
| 2178 | } | 
|---|
| 2179 |  | 
|---|
| 2180 | /* | 
|---|
| 2181 | * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that | 
|---|
| 2182 | * specify what speeds each port is supposed to be.  We can't count on the port | 
|---|
| 2183 | * speed bits in the PORTSC register being correct until a device is connected, | 
|---|
| 2184 | * but we need to set up the two fake roothubs with the correct number of USB | 
|---|
| 2185 | * 3.0 and USB 2.0 ports at host controller initialization time. | 
|---|
| 2186 | */ | 
|---|
| 2187 | static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) | 
|---|
| 2188 | { | 
|---|
| 2189 | void __iomem *base; | 
|---|
| 2190 | u32 offset; | 
|---|
| 2191 | unsigned int num_ports; | 
|---|
| 2192 | int i, j; | 
|---|
| 2193 | int cap_count = 0; | 
|---|
| 2194 | u32 cap_start; | 
|---|
| 2195 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 2196 |  | 
|---|
| 2197 | num_ports = HCS_MAX_PORTS(xhci->hcs_params1); | 
|---|
| 2198 | xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), | 
|---|
| 2199 | flags, dev_to_node(dev)); | 
|---|
| 2200 | if (!xhci->hw_ports) | 
|---|
| 2201 | return -ENOMEM; | 
|---|
| 2202 |  | 
|---|
| 2203 | for (i = 0; i < num_ports; i++) { | 
|---|
| 2204 | xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + | 
|---|
| 2205 | NUM_PORT_REGS * i; | 
|---|
| 2206 | xhci->hw_ports[i].hw_portnum = i; | 
|---|
| 2207 |  | 
|---|
| 2208 | init_completion(x: &xhci->hw_ports[i].rexit_done); | 
|---|
| 2209 | init_completion(x: &xhci->hw_ports[i].u3exit_done); | 
|---|
| 2210 | } | 
|---|
| 2211 |  | 
|---|
| 2212 | xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, | 
|---|
| 2213 | dev_to_node(dev)); | 
|---|
| 2214 | if (!xhci->rh_bw) | 
|---|
| 2215 | return -ENOMEM; | 
|---|
| 2216 | for (i = 0; i < num_ports; i++) { | 
|---|
| 2217 | struct xhci_interval_bw_table *bw_table; | 
|---|
| 2218 |  | 
|---|
| 2219 | INIT_LIST_HEAD(list: &xhci->rh_bw[i].tts); | 
|---|
| 2220 | bw_table = &xhci->rh_bw[i].bw_table; | 
|---|
| 2221 | for (j = 0; j < XHCI_MAX_INTERVAL; j++) | 
|---|
| 2222 | INIT_LIST_HEAD(list: &bw_table->interval_bw[j].endpoints); | 
|---|
| 2223 | } | 
|---|
| 2224 | base = &xhci->cap_regs->hc_capbase; | 
|---|
| 2225 |  | 
|---|
| 2226 | cap_start = xhci_find_next_ext_cap(base, start: 0, XHCI_EXT_CAPS_PROTOCOL); | 
|---|
| 2227 | if (!cap_start) { | 
|---|
| 2228 | xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); | 
|---|
| 2229 | return -ENODEV; | 
|---|
| 2230 | } | 
|---|
| 2231 |  | 
|---|
| 2232 | offset = cap_start; | 
|---|
| 2233 | /* count extended protocol capability entries for later caching */ | 
|---|
| 2234 | while (offset) { | 
|---|
| 2235 | cap_count++; | 
|---|
| 2236 | offset = xhci_find_next_ext_cap(base, start: offset, | 
|---|
| 2237 | XHCI_EXT_CAPS_PROTOCOL); | 
|---|
| 2238 | } | 
|---|
| 2239 |  | 
|---|
| 2240 | xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), | 
|---|
| 2241 | flags, dev_to_node(dev)); | 
|---|
| 2242 | if (!xhci->port_caps) | 
|---|
| 2243 | return -ENOMEM; | 
|---|
| 2244 |  | 
|---|
| 2245 | offset = cap_start; | 
|---|
| 2246 |  | 
|---|
| 2247 | while (offset) { | 
|---|
| 2248 | xhci_add_in_port(xhci, num_ports, addr: base + offset, max_caps: cap_count); | 
|---|
| 2249 | if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == | 
|---|
| 2250 | num_ports) | 
|---|
| 2251 | break; | 
|---|
| 2252 | offset = xhci_find_next_ext_cap(base, start: offset, | 
|---|
| 2253 | XHCI_EXT_CAPS_PROTOCOL); | 
|---|
| 2254 | } | 
|---|
| 2255 | if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { | 
|---|
| 2256 | xhci_warn(xhci, "No ports on the roothubs?\n"); | 
|---|
| 2257 | return -ENODEV; | 
|---|
| 2258 | } | 
|---|
| 2259 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 2260 | fmt: "Found %u USB 2.0 ports and %u USB 3.0 ports.", | 
|---|
| 2261 | xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); | 
|---|
| 2262 |  | 
|---|
| 2263 | /* Place limits on the number of roothub ports so that the hub | 
|---|
| 2264 | * descriptors aren't longer than the USB core will allocate. | 
|---|
| 2265 | */ | 
|---|
| 2266 | if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { | 
|---|
| 2267 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 2268 | fmt: "Limiting USB 3.0 roothub ports to %u.", | 
|---|
| 2269 | USB_SS_MAXPORTS); | 
|---|
| 2270 | xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; | 
|---|
| 2271 | } | 
|---|
| 2272 | if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { | 
|---|
| 2273 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 2274 | fmt: "Limiting USB 2.0 roothub ports to %u.", | 
|---|
| 2275 | USB_MAXCHILDREN); | 
|---|
| 2276 | xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; | 
|---|
| 2277 | } | 
|---|
| 2278 |  | 
|---|
| 2279 | if (!xhci->usb2_rhub.num_ports) | 
|---|
| 2280 | xhci_info(xhci, "USB2 root hub has no ports\n"); | 
|---|
| 2281 |  | 
|---|
| 2282 | if (!xhci->usb3_rhub.num_ports) | 
|---|
| 2283 | xhci_info(xhci, "USB3 root hub has no ports\n"); | 
|---|
| 2284 |  | 
|---|
| 2285 | xhci_create_rhub_port_array(xhci, rhub: &xhci->usb2_rhub, flags); | 
|---|
| 2286 | xhci_create_rhub_port_array(xhci, rhub: &xhci->usb3_rhub, flags); | 
|---|
| 2287 |  | 
|---|
| 2288 | return 0; | 
|---|
| 2289 | } | 
|---|
| 2290 |  | 
|---|
| 2291 | static struct xhci_interrupter * | 
|---|
| 2292 | xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags) | 
|---|
| 2293 | { | 
|---|
| 2294 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 2295 | struct xhci_interrupter *ir; | 
|---|
| 2296 | unsigned int max_segs; | 
|---|
| 2297 | int ret; | 
|---|
| 2298 |  | 
|---|
| 2299 | if (!segs) | 
|---|
| 2300 | segs = ERST_DEFAULT_SEGS; | 
|---|
| 2301 |  | 
|---|
| 2302 | max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2)); | 
|---|
| 2303 | segs = min(segs, max_segs); | 
|---|
| 2304 |  | 
|---|
| 2305 | ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev)); | 
|---|
| 2306 | if (!ir) | 
|---|
| 2307 | return NULL; | 
|---|
| 2308 |  | 
|---|
| 2309 | ir->event_ring = xhci_ring_alloc(xhci, num_segs: segs, type: TYPE_EVENT, max_packet: 0, flags); | 
|---|
| 2310 | if (!ir->event_ring) { | 
|---|
| 2311 | xhci_warn(xhci, "Failed to allocate interrupter event ring\n"); | 
|---|
| 2312 | kfree(objp: ir); | 
|---|
| 2313 | return NULL; | 
|---|
| 2314 | } | 
|---|
| 2315 |  | 
|---|
| 2316 | ret = xhci_alloc_erst(xhci, evt_ring: ir->event_ring, erst: &ir->erst, flags); | 
|---|
| 2317 | if (ret) { | 
|---|
| 2318 | xhci_warn(xhci, "Failed to allocate interrupter erst\n"); | 
|---|
| 2319 | xhci_ring_free(xhci, ring: ir->event_ring); | 
|---|
| 2320 | kfree(objp: ir); | 
|---|
| 2321 | return NULL; | 
|---|
| 2322 | } | 
|---|
| 2323 |  | 
|---|
| 2324 | return ir; | 
|---|
| 2325 | } | 
|---|
| 2326 |  | 
|---|
| 2327 | void xhci_add_interrupter(struct xhci_hcd *xhci, unsigned int intr_num) | 
|---|
| 2328 | { | 
|---|
| 2329 | struct xhci_interrupter *ir; | 
|---|
| 2330 | u64 erst_base; | 
|---|
| 2331 | u32 erst_size; | 
|---|
| 2332 |  | 
|---|
| 2333 | ir = xhci->interrupters[intr_num]; | 
|---|
| 2334 | ir->intr_num = intr_num; | 
|---|
| 2335 | ir->ir_set = &xhci->run_regs->ir_set[intr_num]; | 
|---|
| 2336 |  | 
|---|
| 2337 | /* set ERST count with the number of entries in the segment table */ | 
|---|
| 2338 | erst_size = readl(addr: &ir->ir_set->erst_size); | 
|---|
| 2339 | erst_size &= ~ERST_SIZE_MASK; | 
|---|
| 2340 | erst_size |= ir->event_ring->num_segs; | 
|---|
| 2341 | writel(val: erst_size, addr: &ir->ir_set->erst_size); | 
|---|
| 2342 |  | 
|---|
| 2343 | erst_base = xhci_read_64(xhci, regs: &ir->ir_set->erst_base); | 
|---|
| 2344 | erst_base &= ~ERST_BASE_ADDRESS_MASK; | 
|---|
| 2345 | erst_base |= ir->erst.erst_dma_addr & ERST_BASE_ADDRESS_MASK; | 
|---|
| 2346 | if (xhci->quirks & XHCI_WRITE_64_HI_LO) | 
|---|
| 2347 | hi_lo_writeq(val: erst_base, addr: &ir->ir_set->erst_base); | 
|---|
| 2348 | else | 
|---|
| 2349 | xhci_write_64(xhci, val: erst_base, regs: &ir->ir_set->erst_base); | 
|---|
| 2350 |  | 
|---|
| 2351 | /* Set the event ring dequeue address of this interrupter */ | 
|---|
| 2352 | xhci_set_hc_event_deq(xhci, ir); | 
|---|
| 2353 | } | 
|---|
| 2354 |  | 
|---|
| 2355 | struct xhci_interrupter * | 
|---|
| 2356 | xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs, | 
|---|
| 2357 | u32 imod_interval, unsigned int intr_num) | 
|---|
| 2358 | { | 
|---|
| 2359 | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|---|
| 2360 | struct xhci_interrupter *ir; | 
|---|
| 2361 | unsigned int i; | 
|---|
| 2362 | int err = -ENOSPC; | 
|---|
| 2363 |  | 
|---|
| 2364 | if (!xhci->interrupters || xhci->max_interrupters <= 1 || | 
|---|
| 2365 | intr_num >= xhci->max_interrupters) | 
|---|
| 2366 | return NULL; | 
|---|
| 2367 |  | 
|---|
| 2368 | ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL); | 
|---|
| 2369 | if (!ir) | 
|---|
| 2370 | return NULL; | 
|---|
| 2371 |  | 
|---|
| 2372 | spin_lock_irq(lock: &xhci->lock); | 
|---|
| 2373 | if (!intr_num) { | 
|---|
| 2374 | /* Find available secondary interrupter, interrupter 0 is reserved for primary */ | 
|---|
| 2375 | for (i = 1; i < xhci->max_interrupters; i++) { | 
|---|
| 2376 | if (!xhci->interrupters[i]) { | 
|---|
| 2377 | xhci->interrupters[i] = ir; | 
|---|
| 2378 | xhci_add_interrupter(xhci, intr_num: i); | 
|---|
| 2379 | err = 0; | 
|---|
| 2380 | break; | 
|---|
| 2381 | } | 
|---|
| 2382 | } | 
|---|
| 2383 | } else { | 
|---|
| 2384 | if (!xhci->interrupters[intr_num]) { | 
|---|
| 2385 | xhci->interrupters[intr_num] = ir; | 
|---|
| 2386 | xhci_add_interrupter(xhci, intr_num); | 
|---|
| 2387 | err = 0; | 
|---|
| 2388 | } | 
|---|
| 2389 | } | 
|---|
| 2390 | spin_unlock_irq(lock: &xhci->lock); | 
|---|
| 2391 |  | 
|---|
| 2392 | if (err) { | 
|---|
| 2393 | xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n", | 
|---|
| 2394 | xhci->max_interrupters); | 
|---|
| 2395 | xhci_free_interrupter(xhci, ir); | 
|---|
| 2396 | return NULL; | 
|---|
| 2397 | } | 
|---|
| 2398 |  | 
|---|
| 2399 | xhci_set_interrupter_moderation(ir, imod_interval); | 
|---|
| 2400 |  | 
|---|
| 2401 | xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n", | 
|---|
| 2402 | ir->intr_num, xhci->max_interrupters); | 
|---|
| 2403 |  | 
|---|
| 2404 | return ir; | 
|---|
| 2405 | } | 
|---|
| 2406 | EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter); | 
|---|
| 2407 |  | 
|---|
| 2408 | int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) | 
|---|
| 2409 | { | 
|---|
| 2410 | struct device	*dev = xhci_to_hcd(xhci)->self.sysdev; | 
|---|
| 2411 | dma_addr_t	dma; | 
|---|
| 2412 |  | 
|---|
| 2413 | /* | 
|---|
| 2414 | * xHCI section 5.4.6 - Device Context array must be | 
|---|
| 2415 | * "physically contiguous and 64-byte (cache line) aligned". | 
|---|
| 2416 | */ | 
|---|
| 2417 | xhci->dcbaa = dma_alloc_coherent(dev, size: sizeof(*xhci->dcbaa), dma_handle: &dma, gfp: flags); | 
|---|
| 2418 | if (!xhci->dcbaa) | 
|---|
| 2419 | goto fail; | 
|---|
| 2420 |  | 
|---|
| 2421 | xhci->dcbaa->dma = dma; | 
|---|
| 2422 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, | 
|---|
| 2423 | fmt: "Device context base array address = 0x%pad (DMA), %p (virt)", | 
|---|
| 2424 | &xhci->dcbaa->dma, xhci->dcbaa); | 
|---|
| 2425 |  | 
|---|
| 2426 | /* | 
|---|
| 2427 | * Initialize the ring segment pool.  The ring must be a contiguous | 
|---|
| 2428 | * structure comprised of TRBs.  The TRBs must be 16 byte aligned, | 
|---|
| 2429 | * however, the command ring segment needs 64-byte aligned segments | 
|---|
| 2430 | * and our use of dma addresses in the trb_address_map radix tree needs | 
|---|
| 2431 | * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. | 
|---|
| 2432 | */ | 
|---|
| 2433 | if (xhci->quirks & XHCI_TRB_OVERFETCH) | 
|---|
| 2434 | /* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */ | 
|---|
| 2435 | xhci->segment_pool = dma_pool_create(name: "xHCI ring segments", dev, | 
|---|
| 2436 | TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, boundary: xhci->page_size * 2); | 
|---|
| 2437 | else | 
|---|
| 2438 | xhci->segment_pool = dma_pool_create(name: "xHCI ring segments", dev, | 
|---|
| 2439 | TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, boundary: xhci->page_size); | 
|---|
| 2440 | if (!xhci->segment_pool) | 
|---|
| 2441 | goto fail; | 
|---|
| 2442 |  | 
|---|
| 2443 | /* See Table 46 and Note on Figure 55 */ | 
|---|
| 2444 | xhci->device_pool = dma_pool_create(name: "xHCI input/output contexts", dev, size: 2112, align: 64, | 
|---|
| 2445 | boundary: xhci->page_size); | 
|---|
| 2446 | if (!xhci->device_pool) | 
|---|
| 2447 | goto fail; | 
|---|
| 2448 |  | 
|---|
| 2449 | /* | 
|---|
| 2450 | * Linear stream context arrays don't have any boundary restrictions, | 
|---|
| 2451 | * and only need to be 16-byte aligned. | 
|---|
| 2452 | */ | 
|---|
| 2453 | xhci->small_streams_pool = dma_pool_create(name: "xHCI 256 byte stream ctx arrays", | 
|---|
| 2454 | dev, SMALL_STREAM_ARRAY_SIZE, align: 16, boundary: 0); | 
|---|
| 2455 | if (!xhci->small_streams_pool) | 
|---|
| 2456 | goto fail; | 
|---|
| 2457 |  | 
|---|
| 2458 | /* | 
|---|
| 2459 | * Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE will be | 
|---|
| 2460 | * allocated with dma_alloc_coherent(). | 
|---|
| 2461 | */ | 
|---|
| 2462 |  | 
|---|
| 2463 | xhci->medium_streams_pool = dma_pool_create(name: "xHCI 1KB stream ctx arrays", | 
|---|
| 2464 | dev, MEDIUM_STREAM_ARRAY_SIZE, align: 16, boundary: 0); | 
|---|
| 2465 | if (!xhci->medium_streams_pool) | 
|---|
| 2466 | goto fail; | 
|---|
| 2467 |  | 
|---|
| 2468 | /* | 
|---|
| 2469 | * refer to xhci rev1_2 protocol 5.3.3 max ports is 255. | 
|---|
| 2470 | * refer to xhci rev1_2 protocol 6.4.3.14 port bandwidth buffer need | 
|---|
| 2471 | * to be 16-byte aligned. | 
|---|
| 2472 | */ | 
|---|
| 2473 | xhci->port_bw_pool = dma_pool_create(name: "xHCI 256 port bw ctx arrays", | 
|---|
| 2474 | dev, GET_PORT_BW_ARRAY_SIZE, align: 16, boundary: 0); | 
|---|
| 2475 | if (!xhci->port_bw_pool) | 
|---|
| 2476 | goto fail; | 
|---|
| 2477 |  | 
|---|
| 2478 | /* Set up the command ring to have one segments for now. */ | 
|---|
| 2479 | xhci->cmd_ring = xhci_ring_alloc(xhci, num_segs: 1, type: TYPE_COMMAND, max_packet: 0, flags); | 
|---|
| 2480 | if (!xhci->cmd_ring) | 
|---|
| 2481 | goto fail; | 
|---|
| 2482 |  | 
|---|
| 2483 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Allocated command ring at %p", xhci->cmd_ring); | 
|---|
| 2484 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "First segment DMA is 0x%pad", | 
|---|
| 2485 | &xhci->cmd_ring->first_seg->dma); | 
|---|
| 2486 |  | 
|---|
| 2487 | /* | 
|---|
| 2488 | * Reserve one command ring TRB for disabling LPM. | 
|---|
| 2489 | * Since the USB core grabs the shared usb_bus bandwidth mutex before | 
|---|
| 2490 | * disabling LPM, we only need to reserve one TRB for all devices. | 
|---|
| 2491 | */ | 
|---|
| 2492 | xhci->cmd_ring_reserved_trbs++; | 
|---|
| 2493 |  | 
|---|
| 2494 | /* Allocate and set up primary interrupter 0 with an event ring. */ | 
|---|
| 2495 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Allocating primary event ring"); | 
|---|
| 2496 | xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters), | 
|---|
| 2497 | flags, dev_to_node(dev)); | 
|---|
| 2498 | if (!xhci->interrupters) | 
|---|
| 2499 | goto fail; | 
|---|
| 2500 |  | 
|---|
| 2501 | xhci->interrupters[0] = xhci_alloc_interrupter(xhci, segs: 0, flags); | 
|---|
| 2502 | if (!xhci->interrupters[0]) | 
|---|
| 2503 | goto fail; | 
|---|
| 2504 |  | 
|---|
| 2505 | if (scratchpad_alloc(xhci, flags)) | 
|---|
| 2506 | goto fail; | 
|---|
| 2507 |  | 
|---|
| 2508 | if (xhci_setup_port_arrays(xhci, flags)) | 
|---|
| 2509 | goto fail; | 
|---|
| 2510 |  | 
|---|
| 2511 | return 0; | 
|---|
| 2512 |  | 
|---|
| 2513 | fail: | 
|---|
| 2514 | xhci_halt(xhci); | 
|---|
| 2515 | xhci_reset(xhci, XHCI_RESET_SHORT_USEC); | 
|---|
| 2516 | xhci_mem_cleanup(xhci); | 
|---|
| 2517 | return -ENOMEM; | 
|---|
| 2518 | } | 
|---|
| 2519 |  | 
|---|