1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapsulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75#define pr_fmt(fmt) "UDP: " fmt
76
77#include <linux/bpf-cgroup.h>
78#include <linux/uaccess.h>
79#include <asm/ioctls.h>
80#include <linux/memblock.h>
81#include <linux/highmem.h>
82#include <linux/types.h>
83#include <linux/fcntl.h>
84#include <linux/module.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/igmp.h>
88#include <linux/inetdevice.h>
89#include <linux/in.h>
90#include <linux/errno.h>
91#include <linux/timer.h>
92#include <linux/mm.h>
93#include <linux/inet.h>
94#include <linux/netdevice.h>
95#include <linux/slab.h>
96#include <linux/sock_diag.h>
97#include <net/tcp_states.h>
98#include <linux/skbuff.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <net/net_namespace.h>
102#include <net/icmp.h>
103#include <net/inet_hashtables.h>
104#include <net/ip.h>
105#include <net/ip_tunnels.h>
106#include <net/route.h>
107#include <net/checksum.h>
108#include <net/gso.h>
109#include <net/xfrm.h>
110#include <trace/events/udp.h>
111#include <linux/static_key.h>
112#include <linux/btf_ids.h>
113#include <trace/events/skb.h>
114#include <net/busy_poll.h>
115#include "udp_impl.h"
116#include <net/sock_reuseport.h>
117#include <net/addrconf.h>
118#include <net/udp_tunnel.h>
119#include <net/gro.h>
120#if IS_ENABLED(CONFIG_IPV6)
121#include <net/ipv6_stubs.h>
122#endif
123#include <net/rps.h>
124
125struct udp_table udp_table __read_mostly;
126
127long sysctl_udp_mem[3] __read_mostly;
128EXPORT_IPV6_MOD(sysctl_udp_mem);
129
130DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132
133#define MAX_UDP_PORTS 65536
134#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135
136static struct udp_table *udp_get_table_prot(struct sock *sk)
137{
138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139}
140
141static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 const struct udp_hslot *hslot,
143 unsigned long *bitmap,
144 struct sock *sk, unsigned int log)
145{
146 kuid_t uid = sk_uid(sk);
147 struct sock *sk2;
148
149 sk_for_each(sk2, &hslot->head) {
150 if (net_eq(net1: sock_net(sk: sk2), net2: net) &&
151 sk2 != sk &&
152 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 (!sk2->sk_reuse || !sk->sk_reuse) &&
154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 inet_rcv_saddr_equal(sk, sk2, match_wildcard: true)) {
157 if (sk2->sk_reuseport && sk->sk_reuseport &&
158 !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 uid_eq(left: uid, right: sk_uid(sk: sk2))) {
160 if (!bitmap)
161 return 0;
162 } else {
163 if (!bitmap)
164 return 1;
165 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 bitmap);
167 }
168 }
169 }
170 return 0;
171}
172
173/*
174 * Note: we still hold spinlock of primary hash chain, so no other writer
175 * can insert/delete a socket with local_port == num
176 */
177static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 struct udp_hslot *hslot2,
179 struct sock *sk)
180{
181 kuid_t uid = sk_uid(sk);
182 struct sock *sk2;
183 int res = 0;
184
185 spin_lock(lock: &hslot2->lock);
186 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 if (net_eq(net1: sock_net(sk: sk2), net2: net) &&
188 sk2 != sk &&
189 (udp_sk(sk2)->udp_port_hash == num) &&
190 (!sk2->sk_reuse || !sk->sk_reuse) &&
191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 inet_rcv_saddr_equal(sk, sk2, match_wildcard: true)) {
194 if (sk2->sk_reuseport && sk->sk_reuseport &&
195 !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 uid_eq(left: uid, right: sk_uid(sk: sk2))) {
197 res = 0;
198 } else {
199 res = 1;
200 }
201 break;
202 }
203 }
204 spin_unlock(lock: &hslot2->lock);
205 return res;
206}
207
208static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209{
210 struct net *net = sock_net(sk);
211 kuid_t uid = sk_uid(sk);
212 struct sock *sk2;
213
214 sk_for_each(sk2, &hslot->head) {
215 if (net_eq(net1: sock_net(sk: sk2), net2: net) &&
216 sk2 != sk &&
217 sk2->sk_family == sk->sk_family &&
218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 sk2->sk_reuseport && uid_eq(left: uid, right: sk_uid(sk: sk2)) &&
222 inet_rcv_saddr_equal(sk, sk2, match_wildcard: false)) {
223 return reuseport_add_sock(sk, sk2,
224 bind_inany: inet_rcv_saddr_any(sk));
225 }
226 }
227
228 return reuseport_alloc(sk, bind_inany: inet_rcv_saddr_any(sk));
229}
230
231/**
232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
233 *
234 * @sk: socket struct in question
235 * @snum: port number to look up
236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237 * with NULL address
238 */
239int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 unsigned int hash2_nulladdr)
241{
242 struct udp_table *udptable = udp_get_table_prot(sk);
243 struct udp_hslot *hslot, *hslot2;
244 struct net *net = sock_net(sk);
245 int error = -EADDRINUSE;
246
247 if (!snum) {
248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 unsigned short first, last;
250 int low, high, remaining;
251 unsigned int rand;
252
253 inet_sk_get_local_port_range(sk, low: &low, high: &high);
254 remaining = (high - low) + 1;
255
256 rand = get_random_u32();
257 first = reciprocal_scale(val: rand, ep_ro: remaining) + low;
258 /*
259 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 */
261 rand = (rand | 1) * (udptable->mask + 1);
262 last = first + udptable->mask + 1;
263 do {
264 hslot = udp_hashslot(table: udptable, net, num: first);
265 bitmap_zero(dst: bitmap, PORTS_PER_CHAIN);
266 spin_lock_bh(lock: &hslot->lock);
267 udp_lib_lport_inuse(net, num: snum, hslot, bitmap, sk,
268 log: udptable->log);
269
270 snum = first;
271 /*
272 * Iterate on all possible values of snum for this hash.
273 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 * give us randomization and full range coverage.
275 */
276 do {
277 if (low <= snum && snum <= high &&
278 !test_bit(snum >> udptable->log, bitmap) &&
279 !inet_is_local_reserved_port(net, port: snum))
280 goto found;
281 snum += rand;
282 } while (snum != first);
283 spin_unlock_bh(lock: &hslot->lock);
284 cond_resched();
285 } while (++first != last);
286 goto fail;
287 } else {
288 hslot = udp_hashslot(table: udptable, net, num: snum);
289 spin_lock_bh(lock: &hslot->lock);
290 if (hslot->count > 10) {
291 int exist;
292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293
294 slot2 &= udptable->mask;
295 hash2_nulladdr &= udptable->mask;
296
297 hslot2 = udp_hashslot2(table: udptable, hash: slot2);
298 if (hslot->count < hslot2->count)
299 goto scan_primary_hash;
300
301 exist = udp_lib_lport_inuse2(net, num: snum, hslot2, sk);
302 if (!exist && (hash2_nulladdr != slot2)) {
303 hslot2 = udp_hashslot2(table: udptable, hash: hash2_nulladdr);
304 exist = udp_lib_lport_inuse2(net, num: snum, hslot2,
305 sk);
306 }
307 if (exist)
308 goto fail_unlock;
309 else
310 goto found;
311 }
312scan_primary_hash:
313 if (udp_lib_lport_inuse(net, num: snum, hslot, NULL, sk, log: 0))
314 goto fail_unlock;
315 }
316found:
317 inet_sk(sk)->inet_num = snum;
318 udp_sk(sk)->udp_port_hash = snum;
319 udp_sk(sk)->udp_portaddr_hash ^= snum;
320 if (sk_unhashed(sk)) {
321 if (sk->sk_reuseport &&
322 udp_reuseport_add_sock(sk, hslot)) {
323 inet_sk(sk)->inet_num = 0;
324 udp_sk(sk)->udp_port_hash = 0;
325 udp_sk(sk)->udp_portaddr_hash ^= snum;
326 goto fail_unlock;
327 }
328
329 sock_set_flag(sk, flag: SOCK_RCU_FREE);
330
331 sk_add_node_rcu(sk, list: &hslot->head);
332 hslot->count++;
333 sock_prot_inuse_add(net: sock_net(sk), prot: sk->sk_prot, val: 1);
334
335 hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash);
336 spin_lock(lock: &hslot2->lock);
337 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 sk->sk_family == AF_INET6)
339 hlist_add_tail_rcu(n: &udp_sk(sk)->udp_portaddr_node,
340 h: &hslot2->head);
341 else
342 hlist_add_head_rcu(n: &udp_sk(sk)->udp_portaddr_node,
343 h: &hslot2->head);
344 hslot2->count++;
345 spin_unlock(lock: &hslot2->lock);
346 }
347
348 error = 0;
349fail_unlock:
350 spin_unlock_bh(lock: &hslot->lock);
351fail:
352 return error;
353}
354EXPORT_IPV6_MOD(udp_lib_get_port);
355
356int udp_v4_get_port(struct sock *sk, unsigned short snum)
357{
358 unsigned int hash2_nulladdr =
359 ipv4_portaddr_hash(net: sock_net(sk), htonl(INADDR_ANY), port: snum);
360 unsigned int hash2_partial =
361 ipv4_portaddr_hash(net: sock_net(sk), inet_sk(sk)->inet_rcv_saddr, port: 0);
362
363 /* precompute partial secondary hash */
364 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
365 return udp_lib_get_port(sk, snum, hash2_nulladdr);
366}
367
368static int compute_score(struct sock *sk, const struct net *net,
369 __be32 saddr, __be16 sport,
370 __be32 daddr, unsigned short hnum,
371 int dif, int sdif)
372{
373 int score;
374 struct inet_sock *inet;
375 bool dev_match;
376
377 if (!net_eq(net1: sock_net(sk), net2: net) ||
378 udp_sk(sk)->udp_port_hash != hnum ||
379 ipv6_only_sock(sk))
380 return -1;
381
382 if (sk->sk_rcv_saddr != daddr)
383 return -1;
384
385 score = (sk->sk_family == PF_INET) ? 2 : 1;
386
387 inet = inet_sk(sk);
388 if (inet->inet_daddr) {
389 if (inet->inet_daddr != saddr)
390 return -1;
391 score += 4;
392 }
393
394 if (inet->inet_dport) {
395 if (inet->inet_dport != sport)
396 return -1;
397 score += 4;
398 }
399
400 dev_match = udp_sk_bound_dev_eq(net, bound_dev_if: sk->sk_bound_dev_if,
401 dif, sdif);
402 if (!dev_match)
403 return -1;
404 if (sk->sk_bound_dev_if)
405 score += 4;
406
407 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
408 score++;
409 return score;
410}
411
412u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
413 const __be32 faddr, const __be16 fport)
414{
415 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
416
417 return __inet_ehashfn(laddr, lport, faddr, fport,
418 udp_ehash_secret + net_hash_mix(net));
419}
420EXPORT_IPV6_MOD(udp_ehashfn);
421
422/**
423 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
424 * @net: Network namespace
425 * @saddr: Source address, network order
426 * @sport: Source port, network order
427 * @daddr: Destination address, network order
428 * @hnum: Destination port, host order
429 * @dif: Destination interface index
430 * @sdif: Destination bridge port index, if relevant
431 * @udptable: Set of UDP hash tables
432 *
433 * Simplified lookup to be used as fallback if no sockets are found due to a
434 * potential race between (receive) address change, and lookup happening before
435 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
436 * result sockets, because if we have one, we don't need the fallback at all.
437 *
438 * Called under rcu_read_lock().
439 *
440 * Return: socket with highest matching score if any, NULL if none
441 */
442static struct sock *udp4_lib_lookup1(const struct net *net,
443 __be32 saddr, __be16 sport,
444 __be32 daddr, unsigned int hnum,
445 int dif, int sdif,
446 const struct udp_table *udptable)
447{
448 unsigned int slot = udp_hashfn(net, num: hnum, mask: udptable->mask);
449 struct udp_hslot *hslot = &udptable->hash[slot];
450 struct sock *sk, *result = NULL;
451 int score, badness = 0;
452
453 sk_for_each_rcu(sk, &hslot->head) {
454 score = compute_score(sk, net,
455 saddr, sport, daddr, hnum, dif, sdif);
456 if (score > badness) {
457 result = sk;
458 badness = score;
459 }
460 }
461
462 return result;
463}
464
465/* called with rcu_read_lock() */
466static struct sock *udp4_lib_lookup2(const struct net *net,
467 __be32 saddr, __be16 sport,
468 __be32 daddr, unsigned int hnum,
469 int dif, int sdif,
470 struct udp_hslot *hslot2,
471 struct sk_buff *skb)
472{
473 struct sock *sk, *result;
474 int score, badness;
475 bool need_rescore;
476
477 result = NULL;
478 badness = 0;
479 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
480 need_rescore = false;
481rescore:
482 score = compute_score(sk: need_rescore ? result : sk, net, saddr,
483 sport, daddr, hnum, dif, sdif);
484 if (score > badness) {
485 badness = score;
486
487 if (need_rescore)
488 continue;
489
490 if (sk->sk_state == TCP_ESTABLISHED) {
491 result = sk;
492 continue;
493 }
494
495 result = inet_lookup_reuseport(net, sk, skb, doff: sizeof(struct udphdr),
496 saddr, sport, daddr, hnum, ehashfn: udp_ehashfn);
497 if (!result) {
498 result = sk;
499 continue;
500 }
501
502 /* Fall back to scoring if group has connections */
503 if (!reuseport_has_conns(sk))
504 return result;
505
506 /* Reuseport logic returned an error, keep original score. */
507 if (IS_ERR(ptr: result))
508 continue;
509
510 /* compute_score is too long of a function to be
511 * inlined, and calling it again here yields
512 * measurable overhead for some
513 * workloads. Work around it by jumping
514 * backwards to rescore 'result'.
515 */
516 need_rescore = true;
517 goto rescore;
518 }
519 }
520 return result;
521}
522
523#if IS_ENABLED(CONFIG_BASE_SMALL)
524static struct sock *udp4_lib_lookup4(const struct net *net,
525 __be32 saddr, __be16 sport,
526 __be32 daddr, unsigned int hnum,
527 int dif, int sdif,
528 struct udp_table *udptable)
529{
530 return NULL;
531}
532
533static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
534 u16 newhash4)
535{
536}
537
538static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
539{
540}
541#else /* !CONFIG_BASE_SMALL */
542static struct sock *udp4_lib_lookup4(const struct net *net,
543 __be32 saddr, __be16 sport,
544 __be32 daddr, unsigned int hnum,
545 int dif, int sdif,
546 struct udp_table *udptable)
547{
548 const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
549 const struct hlist_nulls_node *node;
550 struct udp_hslot *hslot4;
551 unsigned int hash4, slot;
552 struct udp_sock *up;
553 struct sock *sk;
554
555 hash4 = udp_ehashfn(net, laddr: daddr, lport: hnum, faddr: saddr, fport: sport);
556 slot = hash4 & udptable->mask;
557 hslot4 = &udptable->hash4[slot];
558 INET_ADDR_COOKIE(acookie, saddr, daddr);
559
560begin:
561 /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
562 udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
563 sk = (struct sock *)up;
564 if (inet_match(net, sk, cookie: acookie, ports, dif, sdif))
565 return sk;
566 }
567
568 /* if the nulls value we got at the end of this lookup is not the
569 * expected one, we must restart lookup. We probably met an item that
570 * was moved to another chain due to rehash.
571 */
572 if (get_nulls_value(ptr: node) != slot)
573 goto begin;
574
575 return NULL;
576}
577
578/* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */
579static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
580 u16 newhash4)
581{
582 struct udp_hslot *hslot4, *nhslot4;
583
584 hslot4 = udp_hashslot4(table: udptable, udp_sk(sk)->udp_lrpa_hash);
585 nhslot4 = udp_hashslot4(table: udptable, hash: newhash4);
586 udp_sk(sk)->udp_lrpa_hash = newhash4;
587
588 if (hslot4 != nhslot4) {
589 spin_lock_bh(lock: &hslot4->lock);
590 hlist_nulls_del_init_rcu(n: &udp_sk(sk)->udp_lrpa_node);
591 hslot4->count--;
592 spin_unlock_bh(lock: &hslot4->lock);
593
594 spin_lock_bh(lock: &nhslot4->lock);
595 hlist_nulls_add_head_rcu(n: &udp_sk(sk)->udp_lrpa_node,
596 h: &nhslot4->nulls_head);
597 nhslot4->count++;
598 spin_unlock_bh(lock: &nhslot4->lock);
599 }
600}
601
602static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
603{
604 struct udp_hslot *hslot2, *hslot4;
605
606 if (udp_hashed4(sk)) {
607 hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash);
608 hslot4 = udp_hashslot4(table: udptable, udp_sk(sk)->udp_lrpa_hash);
609
610 spin_lock(lock: &hslot4->lock);
611 hlist_nulls_del_init_rcu(n: &udp_sk(sk)->udp_lrpa_node);
612 hslot4->count--;
613 spin_unlock(lock: &hslot4->lock);
614
615 spin_lock(lock: &hslot2->lock);
616 udp_hash4_dec(hslot2);
617 spin_unlock(lock: &hslot2->lock);
618 }
619}
620
621void udp_lib_hash4(struct sock *sk, u16 hash)
622{
623 struct udp_hslot *hslot, *hslot2, *hslot4;
624 struct net *net = sock_net(sk);
625 struct udp_table *udptable;
626
627 /* Connected udp socket can re-connect to another remote address, which
628 * will be handled by rehash. Thus no need to redo hash4 here.
629 */
630 if (udp_hashed4(sk))
631 return;
632
633 udptable = net->ipv4.udp_table;
634 hslot = udp_hashslot(table: udptable, net, udp_sk(sk)->udp_port_hash);
635 hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash);
636 hslot4 = udp_hashslot4(table: udptable, hash);
637 udp_sk(sk)->udp_lrpa_hash = hash;
638
639 spin_lock_bh(lock: &hslot->lock);
640 if (rcu_access_pointer(sk->sk_reuseport_cb))
641 reuseport_detach_sock(sk);
642
643 spin_lock(lock: &hslot4->lock);
644 hlist_nulls_add_head_rcu(n: &udp_sk(sk)->udp_lrpa_node,
645 h: &hslot4->nulls_head);
646 hslot4->count++;
647 spin_unlock(lock: &hslot4->lock);
648
649 spin_lock(lock: &hslot2->lock);
650 udp_hash4_inc(hslot2);
651 spin_unlock(lock: &hslot2->lock);
652
653 spin_unlock_bh(lock: &hslot->lock);
654}
655EXPORT_IPV6_MOD(udp_lib_hash4);
656
657/* call with sock lock */
658void udp4_hash4(struct sock *sk)
659{
660 struct net *net = sock_net(sk);
661 unsigned int hash;
662
663 if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
664 return;
665
666 hash = udp_ehashfn(net, laddr: sk->sk_rcv_saddr, lport: sk->sk_num,
667 faddr: sk->sk_daddr, fport: sk->sk_dport);
668
669 udp_lib_hash4(sk, hash);
670}
671EXPORT_IPV6_MOD(udp4_hash4);
672#endif /* CONFIG_BASE_SMALL */
673
674/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
675 * harder than this. -DaveM
676 */
677struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
678 __be16 sport, __be32 daddr, __be16 dport, int dif,
679 int sdif, struct udp_table *udptable, struct sk_buff *skb)
680{
681 unsigned short hnum = ntohs(dport);
682 struct udp_hslot *hslot2;
683 struct sock *result, *sk;
684 unsigned int hash2;
685
686 hash2 = ipv4_portaddr_hash(net, saddr: daddr, port: hnum);
687 hslot2 = udp_hashslot2(table: udptable, hash: hash2);
688
689 if (udp_has_hash4(hslot2)) {
690 result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
691 dif, sdif, udptable);
692 if (result) /* udp4_lib_lookup4 return sk or NULL */
693 return result;
694 }
695
696 /* Lookup connected or non-wildcard socket */
697 result = udp4_lib_lookup2(net, saddr, sport,
698 daddr, hnum, dif, sdif,
699 hslot2, skb);
700 if (!IS_ERR_OR_NULL(ptr: result) && result->sk_state == TCP_ESTABLISHED)
701 goto done;
702
703 /* Lookup redirect from BPF */
704 if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
705 udptable == net->ipv4.udp_table) {
706 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, doff: sizeof(struct udphdr),
707 saddr, sport, daddr, hnum, dif,
708 ehashfn: udp_ehashfn);
709 if (sk) {
710 result = sk;
711 goto done;
712 }
713 }
714
715 /* Got non-wildcard socket or error on first lookup */
716 if (result)
717 goto done;
718
719 /* Lookup wildcard sockets */
720 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), port: hnum);
721 hslot2 = udp_hashslot2(table: udptable, hash: hash2);
722
723 result = udp4_lib_lookup2(net, saddr, sport,
724 htonl(INADDR_ANY), hnum, dif, sdif,
725 hslot2, skb);
726 if (!IS_ERR_OR_NULL(ptr: result))
727 goto done;
728
729 /* Primary hash (destination port) lookup as fallback for this race:
730 * 1. __ip4_datagram_connect() sets sk_rcv_saddr
731 * 2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
732 * 3. rehash operation updating _secondary and four-tuple_ hashes
733 * The primary hash doesn't need an update after 1., so, thanks to this
734 * further step, 1. and 3. don't need to be atomic against the lookup.
735 */
736 result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
737 udptable);
738
739done:
740 if (IS_ERR(ptr: result))
741 return NULL;
742 return result;
743}
744EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
745
746static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
747 __be16 sport, __be16 dport,
748 struct udp_table *udptable)
749{
750 const struct iphdr *iph = ip_hdr(skb);
751
752 return __udp4_lib_lookup(dev_net(dev: skb->dev), iph->saddr, sport,
753 iph->daddr, dport, inet_iif(skb),
754 inet_sdif(skb), udptable, skb);
755}
756
757struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
758 __be16 sport, __be16 dport)
759{
760 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
761 const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
762 struct net *net = dev_net(dev: skb->dev);
763 int iif, sdif;
764
765 inet_get_iif_sdif(skb, iif: &iif, sdif: &sdif);
766
767 return __udp4_lib_lookup(net, iph->saddr, sport,
768 iph->daddr, dport, iif,
769 sdif, net->ipv4.udp_table, NULL);
770}
771
772/* Must be called under rcu_read_lock().
773 * Does increment socket refcount.
774 */
775#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
776struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
777 __be32 daddr, __be16 dport, int dif)
778{
779 struct sock *sk;
780
781 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
782 dif, 0, net->ipv4.udp_table, NULL);
783 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
784 sk = NULL;
785 return sk;
786}
787EXPORT_SYMBOL_GPL(udp4_lib_lookup);
788#endif
789
790static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
791 __be16 loc_port, __be32 loc_addr,
792 __be16 rmt_port, __be32 rmt_addr,
793 int dif, int sdif, unsigned short hnum)
794{
795 const struct inet_sock *inet = inet_sk(sk);
796
797 if (!net_eq(net1: sock_net(sk), net2: net) ||
798 udp_sk(sk)->udp_port_hash != hnum ||
799 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
800 (inet->inet_dport != rmt_port && inet->inet_dport) ||
801 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
802 ipv6_only_sock(sk) ||
803 !udp_sk_bound_dev_eq(net, bound_dev_if: sk->sk_bound_dev_if, dif, sdif))
804 return false;
805 if (!ip_mc_sf_allow(sk, local: loc_addr, rmt: rmt_addr, dif, sdif))
806 return false;
807 return true;
808}
809
810DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
811EXPORT_IPV6_MOD(udp_encap_needed_key);
812
813#if IS_ENABLED(CONFIG_IPV6)
814DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
815EXPORT_IPV6_MOD(udpv6_encap_needed_key);
816#endif
817
818void udp_encap_enable(void)
819{
820 static_branch_inc(&udp_encap_needed_key);
821}
822EXPORT_SYMBOL(udp_encap_enable);
823
824void udp_encap_disable(void)
825{
826 static_branch_dec(&udp_encap_needed_key);
827}
828EXPORT_SYMBOL(udp_encap_disable);
829
830/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
831 * through error handlers in encapsulations looking for a match.
832 */
833static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
834{
835 int i;
836
837 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
838 int (*handler)(struct sk_buff *skb, u32 info);
839 const struct ip_tunnel_encap_ops *encap;
840
841 encap = rcu_dereference(iptun_encaps[i]);
842 if (!encap)
843 continue;
844 handler = encap->err_handler;
845 if (handler && !handler(skb, info))
846 return 0;
847 }
848
849 return -ENOENT;
850}
851
852/* Try to match ICMP errors to UDP tunnels by looking up a socket without
853 * reversing source and destination port: this will match tunnels that force the
854 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
855 * lwtunnels might actually break this assumption by being configured with
856 * different destination ports on endpoints, in this case we won't be able to
857 * trace ICMP messages back to them.
858 *
859 * If this doesn't match any socket, probe tunnels with arbitrary destination
860 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
861 * we've sent packets to won't necessarily match the local destination port.
862 *
863 * Then ask the tunnel implementation to match the error against a valid
864 * association.
865 *
866 * Return an error if we can't find a match, the socket if we need further
867 * processing, zero otherwise.
868 */
869static struct sock *__udp4_lib_err_encap(struct net *net,
870 const struct iphdr *iph,
871 struct udphdr *uh,
872 struct udp_table *udptable,
873 struct sock *sk,
874 struct sk_buff *skb, u32 info)
875{
876 int (*lookup)(struct sock *sk, struct sk_buff *skb);
877 int network_offset, transport_offset;
878 struct udp_sock *up;
879
880 network_offset = skb_network_offset(skb);
881 transport_offset = skb_transport_offset(skb);
882
883 /* Network header needs to point to the outer IPv4 header inside ICMP */
884 skb_reset_network_header(skb);
885
886 /* Transport header needs to point to the UDP header */
887 skb_set_transport_header(skb, offset: iph->ihl << 2);
888
889 if (sk) {
890 up = udp_sk(sk);
891
892 lookup = READ_ONCE(up->encap_err_lookup);
893 if (lookup && lookup(sk, skb))
894 sk = NULL;
895
896 goto out;
897 }
898
899 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
900 iph->saddr, uh->dest, skb->dev->ifindex, 0,
901 udptable, NULL);
902 if (sk) {
903 up = udp_sk(sk);
904
905 lookup = READ_ONCE(up->encap_err_lookup);
906 if (!lookup || lookup(sk, skb))
907 sk = NULL;
908 }
909
910out:
911 if (!sk)
912 sk = ERR_PTR(error: __udp4_lib_err_encap_no_sk(skb, info));
913
914 skb_set_transport_header(skb, offset: transport_offset);
915 skb_set_network_header(skb, offset: network_offset);
916
917 return sk;
918}
919
920/*
921 * This routine is called by the ICMP module when it gets some
922 * sort of error condition. If err < 0 then the socket should
923 * be closed and the error returned to the user. If err > 0
924 * it's just the icmp type << 8 | icmp code.
925 * Header points to the ip header of the error packet. We move
926 * on past this. Then (as it used to claim before adjustment)
927 * header points to the first 8 bytes of the udp header. We need
928 * to find the appropriate port.
929 */
930
931int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
932{
933 struct inet_sock *inet;
934 const struct iphdr *iph = (const struct iphdr *)skb->data;
935 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
936 const int type = icmp_hdr(skb)->type;
937 const int code = icmp_hdr(skb)->code;
938 bool tunnel = false;
939 struct sock *sk;
940 int harderr;
941 int err;
942 struct net *net = dev_net(dev: skb->dev);
943
944 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
945 iph->saddr, uh->source, skb->dev->ifindex,
946 inet_sdif(skb), udptable, NULL);
947
948 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
949 /* No socket for error: try tunnels before discarding */
950 if (static_branch_unlikely(&udp_encap_needed_key)) {
951 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
952 info);
953 if (!sk)
954 return 0;
955 } else
956 sk = ERR_PTR(error: -ENOENT);
957
958 if (IS_ERR(ptr: sk)) {
959 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
960 return PTR_ERR(ptr: sk);
961 }
962
963 tunnel = true;
964 }
965
966 err = 0;
967 harderr = 0;
968 inet = inet_sk(sk);
969
970 switch (type) {
971 default:
972 case ICMP_TIME_EXCEEDED:
973 err = EHOSTUNREACH;
974 break;
975 case ICMP_SOURCE_QUENCH:
976 goto out;
977 case ICMP_PARAMETERPROB:
978 err = EPROTO;
979 harderr = 1;
980 break;
981 case ICMP_DEST_UNREACH:
982 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
983 ipv4_sk_update_pmtu(skb, sk, mtu: info);
984 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
985 err = EMSGSIZE;
986 harderr = 1;
987 break;
988 }
989 goto out;
990 }
991 err = EHOSTUNREACH;
992 if (code <= NR_ICMP_UNREACH) {
993 harderr = icmp_err_convert[code].fatal;
994 err = icmp_err_convert[code].errno;
995 }
996 break;
997 case ICMP_REDIRECT:
998 ipv4_sk_redirect(skb, sk);
999 goto out;
1000 }
1001
1002 /*
1003 * RFC1122: OK. Passes ICMP errors back to application, as per
1004 * 4.1.3.3.
1005 */
1006 if (tunnel) {
1007 /* ...not for tunnels though: we don't have a sending socket */
1008 if (udp_sk(sk)->encap_err_rcv)
1009 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
1010 (u8 *)(uh+1));
1011 goto out;
1012 }
1013 if (!inet_test_bit(RECVERR, sk)) {
1014 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
1015 goto out;
1016 } else
1017 ip_icmp_error(sk, skb, err, port: uh->dest, info, payload: (u8 *)(uh+1));
1018
1019 sk->sk_err = err;
1020 sk_error_report(sk);
1021out:
1022 return 0;
1023}
1024
1025int udp_err(struct sk_buff *skb, u32 info)
1026{
1027 return __udp4_lib_err(skb, info, udptable: dev_net(dev: skb->dev)->ipv4.udp_table);
1028}
1029
1030/*
1031 * Throw away all pending data and cancel the corking. Socket is locked.
1032 */
1033void udp_flush_pending_frames(struct sock *sk)
1034{
1035 struct udp_sock *up = udp_sk(sk);
1036
1037 if (up->pending) {
1038 up->len = 0;
1039 WRITE_ONCE(up->pending, 0);
1040 ip_flush_pending_frames(sk);
1041 }
1042}
1043EXPORT_IPV6_MOD(udp_flush_pending_frames);
1044
1045/**
1046 * udp4_hwcsum - handle outgoing HW checksumming
1047 * @skb: sk_buff containing the filled-in UDP header
1048 * (checksum field must be zeroed out)
1049 * @src: source IP address
1050 * @dst: destination IP address
1051 */
1052void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
1053{
1054 struct udphdr *uh = udp_hdr(skb);
1055 int offset = skb_transport_offset(skb);
1056 int len = skb->len - offset;
1057 int hlen = len;
1058 __wsum csum = 0;
1059
1060 if (!skb_has_frag_list(skb)) {
1061 /*
1062 * Only one fragment on the socket.
1063 */
1064 skb->csum_start = skb_transport_header(skb) - skb->head;
1065 skb->csum_offset = offsetof(struct udphdr, check);
1066 uh->check = ~csum_tcpudp_magic(saddr: src, daddr: dst, len,
1067 IPPROTO_UDP, sum: 0);
1068 } else {
1069 struct sk_buff *frags;
1070
1071 /*
1072 * HW-checksum won't work as there are two or more
1073 * fragments on the socket so that all csums of sk_buffs
1074 * should be together
1075 */
1076 skb_walk_frags(skb, frags) {
1077 csum = csum_add(csum, addend: frags->csum);
1078 hlen -= frags->len;
1079 }
1080
1081 csum = skb_checksum(skb, offset, len: hlen, csum);
1082 skb->ip_summed = CHECKSUM_NONE;
1083
1084 uh->check = csum_tcpudp_magic(saddr: src, daddr: dst, len, IPPROTO_UDP, sum: csum);
1085 if (uh->check == 0)
1086 uh->check = CSUM_MANGLED_0;
1087 }
1088}
1089EXPORT_SYMBOL_GPL(udp4_hwcsum);
1090
1091/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1092 * for the simple case like when setting the checksum for a UDP tunnel.
1093 */
1094void udp_set_csum(bool nocheck, struct sk_buff *skb,
1095 __be32 saddr, __be32 daddr, int len)
1096{
1097 struct udphdr *uh = udp_hdr(skb);
1098
1099 if (nocheck) {
1100 uh->check = 0;
1101 } else if (skb_is_gso(skb)) {
1102 uh->check = ~udp_v4_check(len, saddr, daddr, base: 0);
1103 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1104 uh->check = 0;
1105 uh->check = udp_v4_check(len, saddr, daddr, base: lco_csum(skb));
1106 if (uh->check == 0)
1107 uh->check = CSUM_MANGLED_0;
1108 } else {
1109 skb->ip_summed = CHECKSUM_PARTIAL;
1110 skb->csum_start = skb_transport_header(skb) - skb->head;
1111 skb->csum_offset = offsetof(struct udphdr, check);
1112 uh->check = ~udp_v4_check(len, saddr, daddr, base: 0);
1113 }
1114}
1115EXPORT_SYMBOL(udp_set_csum);
1116
1117static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1118 struct inet_cork *cork)
1119{
1120 struct sock *sk = skb->sk;
1121 struct inet_sock *inet = inet_sk(sk);
1122 struct udphdr *uh;
1123 int err;
1124 int is_udplite = IS_UDPLITE(sk);
1125 int offset = skb_transport_offset(skb);
1126 int len = skb->len - offset;
1127 int datalen = len - sizeof(*uh);
1128 __wsum csum = 0;
1129
1130 /*
1131 * Create a UDP header
1132 */
1133 uh = udp_hdr(skb);
1134 uh->source = inet->inet_sport;
1135 uh->dest = fl4->fl4_dport;
1136 uh->len = htons(len);
1137 uh->check = 0;
1138
1139 if (cork->gso_size) {
1140 const int hlen = skb_network_header_len(skb) +
1141 sizeof(struct udphdr);
1142
1143 if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
1144 kfree_skb(skb);
1145 return -EMSGSIZE;
1146 }
1147 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1148 kfree_skb(skb);
1149 return -EINVAL;
1150 }
1151 if (sk->sk_no_check_tx) {
1152 kfree_skb(skb);
1153 return -EINVAL;
1154 }
1155 if (is_udplite || dst_xfrm(dst: skb_dst(skb))) {
1156 kfree_skb(skb);
1157 return -EIO;
1158 }
1159
1160 if (datalen > cork->gso_size) {
1161 skb_shinfo(skb)->gso_size = cork->gso_size;
1162 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1163 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1164 cork->gso_size);
1165
1166 /* Don't checksum the payload, skb will get segmented */
1167 goto csum_partial;
1168 }
1169 }
1170
1171 if (is_udplite) /* UDP-Lite */
1172 csum = udplite_csum(skb);
1173
1174 else if (sk->sk_no_check_tx) { /* UDP csum off */
1175
1176 skb->ip_summed = CHECKSUM_NONE;
1177 goto send;
1178
1179 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1180csum_partial:
1181
1182 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1183 goto send;
1184
1185 } else
1186 csum = udp_csum(skb);
1187
1188 /* add protocol-dependent pseudo-header */
1189 uh->check = csum_tcpudp_magic(saddr: fl4->saddr, daddr: fl4->daddr, len,
1190 proto: sk->sk_protocol, sum: csum);
1191 if (uh->check == 0)
1192 uh->check = CSUM_MANGLED_0;
1193
1194send:
1195 err = ip_send_skb(net: sock_net(sk), skb);
1196 if (err) {
1197 if (err == -ENOBUFS &&
1198 !inet_test_bit(RECVERR, sk)) {
1199 UDP_INC_STATS(sock_net(sk),
1200 UDP_MIB_SNDBUFERRORS, is_udplite);
1201 err = 0;
1202 }
1203 } else
1204 UDP_INC_STATS(sock_net(sk),
1205 UDP_MIB_OUTDATAGRAMS, is_udplite);
1206 return err;
1207}
1208
1209/*
1210 * Push out all pending data as one UDP datagram. Socket is locked.
1211 */
1212int udp_push_pending_frames(struct sock *sk)
1213{
1214 struct udp_sock *up = udp_sk(sk);
1215 struct inet_sock *inet = inet_sk(sk);
1216 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1217 struct sk_buff *skb;
1218 int err = 0;
1219
1220 skb = ip_finish_skb(sk, fl4);
1221 if (!skb)
1222 goto out;
1223
1224 err = udp_send_skb(skb, fl4, cork: &inet->cork.base);
1225
1226out:
1227 up->len = 0;
1228 WRITE_ONCE(up->pending, 0);
1229 return err;
1230}
1231EXPORT_IPV6_MOD(udp_push_pending_frames);
1232
1233static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1234{
1235 switch (cmsg->cmsg_type) {
1236 case UDP_SEGMENT:
1237 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1238 return -EINVAL;
1239 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1240 return 0;
1241 default:
1242 return -EINVAL;
1243 }
1244}
1245
1246int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1247{
1248 struct cmsghdr *cmsg;
1249 bool need_ip = false;
1250 int err;
1251
1252 for_each_cmsghdr(cmsg, msg) {
1253 if (!CMSG_OK(msg, cmsg))
1254 return -EINVAL;
1255
1256 if (cmsg->cmsg_level != SOL_UDP) {
1257 need_ip = true;
1258 continue;
1259 }
1260
1261 err = __udp_cmsg_send(cmsg, gso_size);
1262 if (err)
1263 return err;
1264 }
1265
1266 return need_ip;
1267}
1268EXPORT_IPV6_MOD_GPL(udp_cmsg_send);
1269
1270int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1271{
1272 struct inet_sock *inet = inet_sk(sk);
1273 struct udp_sock *up = udp_sk(sk);
1274 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1275 struct flowi4 fl4_stack;
1276 struct flowi4 *fl4;
1277 int ulen = len;
1278 struct ipcm_cookie ipc;
1279 struct rtable *rt = NULL;
1280 int free = 0;
1281 int connected = 0;
1282 __be32 daddr, faddr, saddr;
1283 u8 scope;
1284 __be16 dport;
1285 int err, is_udplite = IS_UDPLITE(sk);
1286 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1287 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1288 struct sk_buff *skb;
1289 struct ip_options_data opt_copy;
1290 int uc_index;
1291
1292 if (len > 0xFFFF)
1293 return -EMSGSIZE;
1294
1295 /*
1296 * Check the flags.
1297 */
1298
1299 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1300 return -EOPNOTSUPP;
1301
1302 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1303
1304 fl4 = &inet->cork.fl.u.ip4;
1305 if (READ_ONCE(up->pending)) {
1306 /*
1307 * There are pending frames.
1308 * The socket lock must be held while it's corked.
1309 */
1310 lock_sock(sk);
1311 if (likely(up->pending)) {
1312 if (unlikely(up->pending != AF_INET)) {
1313 release_sock(sk);
1314 return -EINVAL;
1315 }
1316 goto do_append_data;
1317 }
1318 release_sock(sk);
1319 }
1320 ulen += sizeof(struct udphdr);
1321
1322 /*
1323 * Get and verify the address.
1324 */
1325 if (usin) {
1326 if (msg->msg_namelen < sizeof(*usin))
1327 return -EINVAL;
1328 if (usin->sin_family != AF_INET) {
1329 if (usin->sin_family != AF_UNSPEC)
1330 return -EAFNOSUPPORT;
1331 }
1332
1333 daddr = usin->sin_addr.s_addr;
1334 dport = usin->sin_port;
1335 if (dport == 0)
1336 return -EINVAL;
1337 } else {
1338 if (sk->sk_state != TCP_ESTABLISHED)
1339 return -EDESTADDRREQ;
1340 daddr = inet->inet_daddr;
1341 dport = inet->inet_dport;
1342 /* Open fast path for connected socket.
1343 Route will not be used, if at least one option is set.
1344 */
1345 connected = 1;
1346 }
1347
1348 ipcm_init_sk(ipcm: &ipc, inet);
1349 ipc.gso_size = READ_ONCE(up->gso_size);
1350
1351 if (msg->msg_controllen) {
1352 err = udp_cmsg_send(sk, msg, gso_size: &ipc.gso_size);
1353 if (err > 0) {
1354 err = ip_cmsg_send(sk, msg, ipc: &ipc,
1355 allow_ipv6: sk->sk_family == AF_INET6);
1356 connected = 0;
1357 }
1358 if (unlikely(err < 0)) {
1359 kfree(objp: ipc.opt);
1360 return err;
1361 }
1362 if (ipc.opt)
1363 free = 1;
1364 }
1365 if (!ipc.opt) {
1366 struct ip_options_rcu *inet_opt;
1367
1368 rcu_read_lock();
1369 inet_opt = rcu_dereference(inet->inet_opt);
1370 if (inet_opt) {
1371 memcpy(to: &opt_copy, from: inet_opt,
1372 len: sizeof(*inet_opt) + inet_opt->opt.optlen);
1373 ipc.opt = &opt_copy.opt;
1374 }
1375 rcu_read_unlock();
1376 }
1377
1378 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1379 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1380 (struct sockaddr *)usin,
1381 &msg->msg_namelen,
1382 &ipc.addr);
1383 if (err)
1384 goto out_free;
1385 if (usin) {
1386 if (usin->sin_port == 0) {
1387 /* BPF program set invalid port. Reject it. */
1388 err = -EINVAL;
1389 goto out_free;
1390 }
1391 daddr = usin->sin_addr.s_addr;
1392 dport = usin->sin_port;
1393 }
1394 }
1395
1396 saddr = ipc.addr;
1397 ipc.addr = faddr = daddr;
1398
1399 if (ipc.opt && ipc.opt->opt.srr) {
1400 if (!daddr) {
1401 err = -EINVAL;
1402 goto out_free;
1403 }
1404 faddr = ipc.opt->opt.faddr;
1405 connected = 0;
1406 }
1407 scope = ip_sendmsg_scope(inet, ipc: &ipc, msg);
1408 if (scope == RT_SCOPE_LINK)
1409 connected = 0;
1410
1411 uc_index = READ_ONCE(inet->uc_index);
1412 if (ipv4_is_multicast(addr: daddr)) {
1413 if (!ipc.oif || netif_index_is_l3_master(net: sock_net(sk), ifindex: ipc.oif))
1414 ipc.oif = READ_ONCE(inet->mc_index);
1415 if (!saddr)
1416 saddr = READ_ONCE(inet->mc_addr);
1417 connected = 0;
1418 } else if (!ipc.oif) {
1419 ipc.oif = uc_index;
1420 } else if (ipv4_is_lbcast(addr: daddr) && uc_index) {
1421 /* oif is set, packet is to local broadcast and
1422 * uc_index is set. oif is most likely set
1423 * by sk_bound_dev_if. If uc_index != oif check if the
1424 * oif is an L3 master and uc_index is an L3 slave.
1425 * If so, we want to allow the send using the uc_index.
1426 */
1427 if (ipc.oif != uc_index &&
1428 ipc.oif == l3mdev_master_ifindex_by_index(net: sock_net(sk),
1429 ifindex: uc_index)) {
1430 ipc.oif = uc_index;
1431 }
1432 }
1433
1434 if (connected)
1435 rt = dst_rtable(sk_dst_check(sk, 0));
1436
1437 if (!rt) {
1438 struct net *net = sock_net(sk);
1439 __u8 flow_flags = inet_sk_flowi_flags(sk);
1440
1441 fl4 = &fl4_stack;
1442
1443 flowi4_init_output(fl4, oif: ipc.oif, mark: ipc.sockc.mark,
1444 tos: ipc.tos & INET_DSCP_MASK, scope,
1445 proto: sk->sk_protocol, flags: flow_flags, daddr: faddr, saddr,
1446 dport, sport: inet->inet_sport,
1447 uid: sk_uid(sk));
1448
1449 security_sk_classify_flow(sk, flic: flowi4_to_flowi_common(fl4));
1450 rt = ip_route_output_flow(net, flp: fl4, sk);
1451 if (IS_ERR(ptr: rt)) {
1452 err = PTR_ERR(ptr: rt);
1453 rt = NULL;
1454 if (err == -ENETUNREACH)
1455 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1456 goto out;
1457 }
1458
1459 err = -EACCES;
1460 if ((rt->rt_flags & RTCF_BROADCAST) &&
1461 !sock_flag(sk, flag: SOCK_BROADCAST))
1462 goto out;
1463 if (connected)
1464 sk_dst_set(sk, dst: dst_clone(dst: &rt->dst));
1465 }
1466
1467 if (msg->msg_flags&MSG_CONFIRM)
1468 goto do_confirm;
1469back_from_confirm:
1470
1471 saddr = fl4->saddr;
1472 if (!ipc.addr)
1473 daddr = ipc.addr = fl4->daddr;
1474
1475 /* Lockless fast path for the non-corking case. */
1476 if (!corkreq) {
1477 struct inet_cork cork;
1478
1479 skb = ip_make_skb(sk, fl4, getfrag, from: msg, length: ulen,
1480 transhdrlen: sizeof(struct udphdr), ipc: &ipc, rtp: &rt,
1481 cork: &cork, flags: msg->msg_flags);
1482 err = PTR_ERR(ptr: skb);
1483 if (!IS_ERR_OR_NULL(ptr: skb))
1484 err = udp_send_skb(skb, fl4, cork: &cork);
1485 goto out;
1486 }
1487
1488 lock_sock(sk);
1489 if (unlikely(up->pending)) {
1490 /* The socket is already corked while preparing it. */
1491 /* ... which is an evident application bug. --ANK */
1492 release_sock(sk);
1493
1494 net_dbg_ratelimited("socket already corked\n");
1495 err = -EINVAL;
1496 goto out;
1497 }
1498 /*
1499 * Now cork the socket to pend data.
1500 */
1501 fl4 = &inet->cork.fl.u.ip4;
1502 fl4->daddr = daddr;
1503 fl4->saddr = saddr;
1504 fl4->fl4_dport = dport;
1505 fl4->fl4_sport = inet->inet_sport;
1506 WRITE_ONCE(up->pending, AF_INET);
1507
1508do_append_data:
1509 up->len += ulen;
1510 err = ip_append_data(sk, fl4, getfrag, from: msg, len: ulen,
1511 protolen: sizeof(struct udphdr), ipc: &ipc, rt: &rt,
1512 flags: corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1513 if (err)
1514 udp_flush_pending_frames(sk);
1515 else if (!corkreq)
1516 err = udp_push_pending_frames(sk);
1517 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1518 WRITE_ONCE(up->pending, 0);
1519 release_sock(sk);
1520
1521out:
1522 ip_rt_put(rt);
1523out_free:
1524 if (free)
1525 kfree(objp: ipc.opt);
1526 if (!err)
1527 return len;
1528 /*
1529 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1530 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1531 * we don't have a good statistic (IpOutDiscards but it can be too many
1532 * things). We could add another new stat but at least for now that
1533 * seems like overkill.
1534 */
1535 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1536 UDP_INC_STATS(sock_net(sk),
1537 UDP_MIB_SNDBUFERRORS, is_udplite);
1538 }
1539 return err;
1540
1541do_confirm:
1542 if (msg->msg_flags & MSG_PROBE)
1543 dst_confirm_neigh(dst: &rt->dst, daddr: &fl4->daddr);
1544 if (!(msg->msg_flags&MSG_PROBE) || len)
1545 goto back_from_confirm;
1546 err = 0;
1547 goto out;
1548}
1549EXPORT_SYMBOL(udp_sendmsg);
1550
1551void udp_splice_eof(struct socket *sock)
1552{
1553 struct sock *sk = sock->sk;
1554 struct udp_sock *up = udp_sk(sk);
1555
1556 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1557 return;
1558
1559 lock_sock(sk);
1560 if (up->pending && !udp_test_bit(CORK, sk))
1561 udp_push_pending_frames(sk);
1562 release_sock(sk);
1563}
1564EXPORT_IPV6_MOD_GPL(udp_splice_eof);
1565
1566#define UDP_SKB_IS_STATELESS 0x80000000
1567
1568/* all head states (dst, sk, nf conntrack) except skb extensions are
1569 * cleared by udp_rcv().
1570 *
1571 * We need to preserve secpath, if present, to eventually process
1572 * IP_CMSG_PASSSEC at recvmsg() time.
1573 *
1574 * Other extensions can be cleared.
1575 */
1576static bool udp_try_make_stateless(struct sk_buff *skb)
1577{
1578 if (!skb_has_extensions(skb))
1579 return true;
1580
1581 if (!secpath_exists(skb)) {
1582 skb_ext_reset(skb);
1583 return true;
1584 }
1585
1586 return false;
1587}
1588
1589static void udp_set_dev_scratch(struct sk_buff *skb)
1590{
1591 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1592
1593 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1594 scratch->_tsize_state = skb->truesize;
1595#if BITS_PER_LONG == 64
1596 scratch->len = skb->len;
1597 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1598 scratch->is_linear = !skb_is_nonlinear(skb);
1599#endif
1600 if (udp_try_make_stateless(skb))
1601 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1602}
1603
1604static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1605{
1606 /* We come here after udp_lib_checksum_complete() returned 0.
1607 * This means that __skb_checksum_complete() might have
1608 * set skb->csum_valid to 1.
1609 * On 64bit platforms, we can set csum_unnecessary
1610 * to true, but only if the skb is not shared.
1611 */
1612#if BITS_PER_LONG == 64
1613 if (!skb_shared(skb))
1614 udp_skb_scratch(skb)->csum_unnecessary = true;
1615#endif
1616}
1617
1618static int udp_skb_truesize(struct sk_buff *skb)
1619{
1620 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1621}
1622
1623static bool udp_skb_has_head_state(struct sk_buff *skb)
1624{
1625 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1626}
1627
1628/* fully reclaim rmem/fwd memory allocated for skb */
1629static void udp_rmem_release(struct sock *sk, unsigned int size,
1630 int partial, bool rx_queue_lock_held)
1631{
1632 struct udp_sock *up = udp_sk(sk);
1633 struct sk_buff_head *sk_queue;
1634 unsigned int amt;
1635
1636 if (likely(partial)) {
1637 up->forward_deficit += size;
1638 size = up->forward_deficit;
1639 if (size < READ_ONCE(up->forward_threshold) &&
1640 !skb_queue_empty(list: &up->reader_queue))
1641 return;
1642 } else {
1643 size += up->forward_deficit;
1644 }
1645 up->forward_deficit = 0;
1646
1647 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1648 * if the called don't held it already
1649 */
1650 sk_queue = &sk->sk_receive_queue;
1651 if (!rx_queue_lock_held)
1652 spin_lock(lock: &sk_queue->lock);
1653
1654 amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1655 sk_forward_alloc_add(sk, val: size - amt);
1656
1657 if (amt)
1658 __sk_mem_reduce_allocated(sk, amount: amt >> PAGE_SHIFT);
1659
1660 atomic_sub(i: size, v: &sk->sk_rmem_alloc);
1661
1662 /* this can save us from acquiring the rx queue lock on next receive */
1663 skb_queue_splice_tail_init(list: sk_queue, head: &up->reader_queue);
1664
1665 if (!rx_queue_lock_held)
1666 spin_unlock(lock: &sk_queue->lock);
1667}
1668
1669/* Note: called with reader_queue.lock held.
1670 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1671 * This avoids a cache line miss while receive_queue lock is held.
1672 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1673 */
1674void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1675{
1676 prefetch(&skb->data);
1677 udp_rmem_release(sk, size: udp_skb_truesize(skb), partial: 1, rx_queue_lock_held: false);
1678}
1679EXPORT_IPV6_MOD(udp_skb_destructor);
1680
1681/* as above, but the caller held the rx queue lock, too */
1682static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1683{
1684 prefetch(&skb->data);
1685 udp_rmem_release(sk, size: udp_skb_truesize(skb), partial: 1, rx_queue_lock_held: true);
1686}
1687
1688static int udp_rmem_schedule(struct sock *sk, int size)
1689{
1690 int delta;
1691
1692 delta = size - sk->sk_forward_alloc;
1693 if (delta > 0 && !__sk_mem_schedule(sk, size: delta, SK_MEM_RECV))
1694 return -ENOBUFS;
1695
1696 return 0;
1697}
1698
1699int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1700{
1701 struct sk_buff_head *list = &sk->sk_receive_queue;
1702 struct udp_prod_queue *udp_prod_queue;
1703 struct sk_buff *next, *to_drop = NULL;
1704 struct llist_node *ll_list;
1705 unsigned int rmem, rcvbuf;
1706 int size, err = -ENOMEM;
1707 int total_size = 0;
1708 int q_size = 0;
1709 int dropcount;
1710 int nb = 0;
1711
1712 rmem = atomic_read(v: &sk->sk_rmem_alloc);
1713 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1714 size = skb->truesize;
1715
1716 udp_prod_queue = &udp_sk(sk)->udp_prod_queue[numa_node_id()];
1717
1718 rmem += atomic_read(v: &udp_prod_queue->rmem_alloc);
1719
1720 /* Immediately drop when the receive queue is full.
1721 * Cast to unsigned int performs the boundary check for INT_MAX.
1722 */
1723 if (rmem + size > rcvbuf) {
1724 if (rcvbuf > INT_MAX >> 1)
1725 goto drop;
1726
1727 /* Accept the packet if queue is empty. */
1728 if (rmem)
1729 goto drop;
1730 }
1731
1732 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1733 * having linear skbs :
1734 * - Reduce memory overhead and thus increase receive queue capacity
1735 * - Less cache line misses at copyout() time
1736 * - Less work at consume_skb() (less alien page frag freeing)
1737 */
1738 if (rmem > (rcvbuf >> 1)) {
1739 skb_condense(skb);
1740 size = skb->truesize;
1741 }
1742
1743 udp_set_dev_scratch(skb);
1744
1745 atomic_add(i: size, v: &udp_prod_queue->rmem_alloc);
1746
1747 if (!llist_add(new: &skb->ll_node, head: &udp_prod_queue->ll_root))
1748 return 0;
1749
1750 dropcount = sock_flag(sk, flag: SOCK_RXQ_OVFL) ? sk_drops_read(sk) : 0;
1751
1752 spin_lock(lock: &list->lock);
1753
1754 ll_list = llist_del_all(head: &udp_prod_queue->ll_root);
1755
1756 ll_list = llist_reverse_order(head: ll_list);
1757
1758 llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
1759 size = udp_skb_truesize(skb);
1760 total_size += size;
1761 err = udp_rmem_schedule(sk, size);
1762 if (unlikely(err)) {
1763 /* Free the skbs outside of locked section. */
1764 skb->next = to_drop;
1765 to_drop = skb;
1766 continue;
1767 }
1768
1769 q_size += size;
1770 sk_forward_alloc_add(sk, val: -size);
1771
1772 /* no need to setup a destructor, we will explicitly release the
1773 * forward allocated memory on dequeue
1774 */
1775 SOCK_SKB_CB(skb)->dropcount = dropcount;
1776 nb++;
1777 __skb_queue_tail(list, newsk: skb);
1778 }
1779
1780 atomic_add(i: q_size, v: &sk->sk_rmem_alloc);
1781
1782 spin_unlock(lock: &list->lock);
1783
1784 if (!sock_flag(sk, flag: SOCK_DEAD)) {
1785 /* Multiple threads might be blocked in recvmsg(),
1786 * using prepare_to_wait_exclusive().
1787 */
1788 while (nb) {
1789 INDIRECT_CALL_1(sk->sk_data_ready,
1790 sock_def_readable, sk);
1791 nb--;
1792 }
1793 }
1794
1795 if (unlikely(to_drop)) {
1796 for (nb = 0; to_drop != NULL; nb++) {
1797 skb = to_drop;
1798 to_drop = skb->next;
1799 skb_mark_not_on_list(skb);
1800 /* TODO: update SNMP values. */
1801 sk_skb_reason_drop(sk, skb, reason: SKB_DROP_REASON_PROTO_MEM);
1802 }
1803 numa_drop_add(ndc: &udp_sk(sk)->drop_counters, val: nb);
1804 }
1805
1806 atomic_sub(i: total_size, v: &udp_prod_queue->rmem_alloc);
1807
1808 return 0;
1809
1810drop:
1811 udp_drops_inc(sk);
1812 return err;
1813}
1814EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb);
1815
1816void udp_destruct_common(struct sock *sk)
1817{
1818 /* reclaim completely the forward allocated memory */
1819 struct udp_sock *up = udp_sk(sk);
1820 unsigned int total = 0;
1821 struct sk_buff *skb;
1822
1823 skb_queue_splice_tail_init(list: &sk->sk_receive_queue, head: &up->reader_queue);
1824 while ((skb = __skb_dequeue(list: &up->reader_queue)) != NULL) {
1825 total += skb->truesize;
1826 kfree_skb(skb);
1827 }
1828 udp_rmem_release(sk, size: total, partial: 0, rx_queue_lock_held: true);
1829 kfree(objp: up->udp_prod_queue);
1830}
1831EXPORT_IPV6_MOD_GPL(udp_destruct_common);
1832
1833static void udp_destruct_sock(struct sock *sk)
1834{
1835 udp_destruct_common(sk);
1836 inet_sock_destruct(sk);
1837}
1838
1839int udp_init_sock(struct sock *sk)
1840{
1841 int res = udp_lib_init_sock(sk);
1842
1843 sk->sk_destruct = udp_destruct_sock;
1844 set_bit(nr: SOCK_SUPPORT_ZC, addr: &sk->sk_socket->flags);
1845 return res;
1846}
1847
1848void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1849{
1850 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1851 sk_peek_offset_bwd(sk, val: len);
1852
1853 if (!skb_shared(skb)) {
1854 if (unlikely(udp_skb_has_head_state(skb)))
1855 skb_release_head_state(skb);
1856 skb_attempt_defer_free(skb);
1857 return;
1858 }
1859
1860 if (!skb_unref(skb))
1861 return;
1862
1863 /* In the more common cases we cleared the head states previously,
1864 * see __udp_queue_rcv_skb().
1865 */
1866 if (unlikely(udp_skb_has_head_state(skb)))
1867 skb_release_head_state(skb);
1868 __consume_stateless_skb(skb);
1869}
1870EXPORT_IPV6_MOD_GPL(skb_consume_udp);
1871
1872static struct sk_buff *__first_packet_length(struct sock *sk,
1873 struct sk_buff_head *rcvq,
1874 unsigned int *total)
1875{
1876 struct sk_buff *skb;
1877
1878 while ((skb = skb_peek(list_: rcvq)) != NULL) {
1879 if (udp_lib_checksum_complete(skb)) {
1880 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1881 IS_UDPLITE(sk));
1882 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1883 IS_UDPLITE(sk));
1884 udp_drops_inc(sk);
1885 __skb_unlink(skb, list: rcvq);
1886 *total += skb->truesize;
1887 kfree_skb_reason(skb, reason: SKB_DROP_REASON_UDP_CSUM);
1888 } else {
1889 udp_skb_csum_unnecessary_set(skb);
1890 break;
1891 }
1892 }
1893 return skb;
1894}
1895
1896/**
1897 * first_packet_length - return length of first packet in receive queue
1898 * @sk: socket
1899 *
1900 * Drops all bad checksum frames, until a valid one is found.
1901 * Returns the length of found skb, or -1 if none is found.
1902 */
1903static int first_packet_length(struct sock *sk)
1904{
1905 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1906 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1907 unsigned int total = 0;
1908 struct sk_buff *skb;
1909 int res;
1910
1911 spin_lock_bh(lock: &rcvq->lock);
1912 skb = __first_packet_length(sk, rcvq, total: &total);
1913 if (!skb && !skb_queue_empty_lockless(list: sk_queue)) {
1914 spin_lock(lock: &sk_queue->lock);
1915 skb_queue_splice_tail_init(list: sk_queue, head: rcvq);
1916 spin_unlock(lock: &sk_queue->lock);
1917
1918 skb = __first_packet_length(sk, rcvq, total: &total);
1919 }
1920 res = skb ? skb->len : -1;
1921 if (total)
1922 udp_rmem_release(sk, size: total, partial: 1, rx_queue_lock_held: false);
1923 spin_unlock_bh(lock: &rcvq->lock);
1924 return res;
1925}
1926
1927/*
1928 * IOCTL requests applicable to the UDP protocol
1929 */
1930
1931int udp_ioctl(struct sock *sk, int cmd, int *karg)
1932{
1933 switch (cmd) {
1934 case SIOCOUTQ:
1935 {
1936 *karg = sk_wmem_alloc_get(sk);
1937 return 0;
1938 }
1939
1940 case SIOCINQ:
1941 {
1942 *karg = max_t(int, 0, first_packet_length(sk));
1943 return 0;
1944 }
1945
1946 default:
1947 return -ENOIOCTLCMD;
1948 }
1949
1950 return 0;
1951}
1952EXPORT_IPV6_MOD(udp_ioctl);
1953
1954struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1955 int *off, int *err)
1956{
1957 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1958 struct sk_buff_head *queue;
1959 struct sk_buff *last;
1960 long timeo;
1961 int error;
1962
1963 queue = &udp_sk(sk)->reader_queue;
1964 timeo = sock_rcvtimeo(sk, noblock: flags & MSG_DONTWAIT);
1965 do {
1966 struct sk_buff *skb;
1967
1968 error = sock_error(sk);
1969 if (error)
1970 break;
1971
1972 error = -EAGAIN;
1973 do {
1974 spin_lock_bh(lock: &queue->lock);
1975 skb = __skb_try_recv_from_queue(queue, flags, off, err,
1976 last: &last);
1977 if (skb) {
1978 if (!(flags & MSG_PEEK))
1979 udp_skb_destructor(sk, skb);
1980 spin_unlock_bh(lock: &queue->lock);
1981 return skb;
1982 }
1983
1984 if (skb_queue_empty_lockless(list: sk_queue)) {
1985 spin_unlock_bh(lock: &queue->lock);
1986 goto busy_check;
1987 }
1988
1989 /* refill the reader queue and walk it again
1990 * keep both queues locked to avoid re-acquiring
1991 * the sk_receive_queue lock if fwd memory scheduling
1992 * is needed.
1993 */
1994 spin_lock(lock: &sk_queue->lock);
1995 skb_queue_splice_tail_init(list: sk_queue, head: queue);
1996
1997 skb = __skb_try_recv_from_queue(queue, flags, off, err,
1998 last: &last);
1999 if (skb && !(flags & MSG_PEEK))
2000 udp_skb_dtor_locked(sk, skb);
2001 spin_unlock(lock: &sk_queue->lock);
2002 spin_unlock_bh(lock: &queue->lock);
2003 if (skb)
2004 return skb;
2005
2006busy_check:
2007 if (!sk_can_busy_loop(sk))
2008 break;
2009
2010 sk_busy_loop(sk, nonblock: flags & MSG_DONTWAIT);
2011 } while (!skb_queue_empty_lockless(list: sk_queue));
2012
2013 /* sk_queue is empty, reader_queue may contain peeked packets */
2014 } while (timeo &&
2015 !__skb_wait_for_more_packets(sk, queue: &sk->sk_receive_queue,
2016 err: &error, timeo_p: &timeo,
2017 skb: (struct sk_buff *)sk_queue));
2018
2019 *err = error;
2020 return NULL;
2021}
2022EXPORT_SYMBOL(__skb_recv_udp);
2023
2024int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2025{
2026 struct sk_buff *skb;
2027 int err;
2028
2029try_again:
2030 skb = skb_recv_udp(sk, MSG_DONTWAIT, err: &err);
2031 if (!skb)
2032 return err;
2033
2034 if (udp_lib_checksum_complete(skb)) {
2035 int is_udplite = IS_UDPLITE(sk);
2036 struct net *net = sock_net(sk);
2037
2038 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
2039 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
2040 udp_drops_inc(sk);
2041 kfree_skb_reason(skb, reason: SKB_DROP_REASON_UDP_CSUM);
2042 goto try_again;
2043 }
2044
2045 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
2046 return recv_actor(sk, skb);
2047}
2048EXPORT_IPV6_MOD(udp_read_skb);
2049
2050/*
2051 * This should be easy, if there is something there we
2052 * return it, otherwise we block.
2053 */
2054
2055int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2056 int *addr_len)
2057{
2058 struct inet_sock *inet = inet_sk(sk);
2059 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
2060 struct sk_buff *skb;
2061 unsigned int ulen, copied;
2062 int off, err, peeking = flags & MSG_PEEK;
2063 int is_udplite = IS_UDPLITE(sk);
2064 bool checksum_valid = false;
2065
2066 if (flags & MSG_ERRQUEUE)
2067 return ip_recv_error(sk, msg, len, addr_len);
2068
2069try_again:
2070 off = sk_peek_offset(sk, flags);
2071 skb = __skb_recv_udp(sk, flags, &off, &err);
2072 if (!skb)
2073 return err;
2074
2075 ulen = udp_skb_len(skb);
2076 copied = len;
2077 if (copied > ulen - off)
2078 copied = ulen - off;
2079 else if (copied < ulen)
2080 msg->msg_flags |= MSG_TRUNC;
2081
2082 /*
2083 * If checksum is needed at all, try to do it while copying the
2084 * data. If the data is truncated, or if we only want a partial
2085 * coverage checksum (UDP-Lite), do it before the copy.
2086 */
2087
2088 if (copied < ulen || peeking ||
2089 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
2090 checksum_valid = udp_skb_csum_unnecessary(skb) ||
2091 !__udp_lib_checksum_complete(skb);
2092 if (!checksum_valid)
2093 goto csum_copy_err;
2094 }
2095
2096 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2097 if (udp_skb_is_linear(skb))
2098 err = copy_linear_skb(skb, len: copied, off, to: &msg->msg_iter);
2099 else
2100 err = skb_copy_datagram_msg(from: skb, offset: off, msg, size: copied);
2101 } else {
2102 err = skb_copy_and_csum_datagram_msg(skb, hlen: off, msg);
2103
2104 if (err == -EINVAL)
2105 goto csum_copy_err;
2106 }
2107
2108 if (unlikely(err)) {
2109 if (!peeking) {
2110 udp_drops_inc(sk);
2111 UDP_INC_STATS(sock_net(sk),
2112 UDP_MIB_INERRORS, is_udplite);
2113 }
2114 kfree_skb(skb);
2115 return err;
2116 }
2117
2118 if (!peeking)
2119 UDP_INC_STATS(sock_net(sk),
2120 UDP_MIB_INDATAGRAMS, is_udplite);
2121
2122 sock_recv_cmsgs(msg, sk, skb);
2123
2124 /* Copy the address. */
2125 if (sin) {
2126 sin->sin_family = AF_INET;
2127 sin->sin_port = udp_hdr(skb)->source;
2128 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2129 memset(s: sin->sin_zero, c: 0, n: sizeof(sin->sin_zero));
2130 *addr_len = sizeof(*sin);
2131
2132 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2133 (struct sockaddr *)sin,
2134 addr_len);
2135 }
2136
2137 if (udp_test_bit(GRO_ENABLED, sk))
2138 udp_cmsg_recv(msg, sk, skb);
2139
2140 if (inet_cmsg_flags(inet))
2141 ip_cmsg_recv_offset(msg, sk, skb, tlen: sizeof(struct udphdr), offset: off);
2142
2143 err = copied;
2144 if (flags & MSG_TRUNC)
2145 err = ulen;
2146
2147 skb_consume_udp(sk, skb, len: peeking ? -err : err);
2148 return err;
2149
2150csum_copy_err:
2151 if (!__sk_queue_drop_skb(sk, sk_queue: &udp_sk(sk)->reader_queue, skb, flags,
2152 destructor: udp_skb_destructor)) {
2153 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2154 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2155 }
2156 kfree_skb_reason(skb, reason: SKB_DROP_REASON_UDP_CSUM);
2157
2158 /* starting over for a new packet, but check if we need to yield */
2159 cond_resched();
2160 msg->msg_flags &= ~MSG_TRUNC;
2161 goto try_again;
2162}
2163
2164int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2165{
2166 /* This check is replicated from __ip4_datagram_connect() and
2167 * intended to prevent BPF program called below from accessing bytes
2168 * that are out of the bound specified by user in addr_len.
2169 */
2170 if (addr_len < sizeof(struct sockaddr_in))
2171 return -EINVAL;
2172
2173 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2174}
2175EXPORT_IPV6_MOD(udp_pre_connect);
2176
2177static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2178{
2179 int res;
2180
2181 lock_sock(sk);
2182 res = __ip4_datagram_connect(sk, uaddr, addr_len);
2183 if (!res)
2184 udp4_hash4(sk);
2185 release_sock(sk);
2186 return res;
2187}
2188
2189int __udp_disconnect(struct sock *sk, int flags)
2190{
2191 struct inet_sock *inet = inet_sk(sk);
2192 /*
2193 * 1003.1g - break association.
2194 */
2195
2196 sk->sk_state = TCP_CLOSE;
2197 inet->inet_daddr = 0;
2198 inet->inet_dport = 0;
2199 sock_rps_reset_rxhash(sk);
2200 sk->sk_bound_dev_if = 0;
2201 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2202 inet_reset_saddr(sk);
2203 if (sk->sk_prot->rehash &&
2204 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2205 sk->sk_prot->rehash(sk);
2206 }
2207
2208 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2209 sk->sk_prot->unhash(sk);
2210 inet->inet_sport = 0;
2211 }
2212 sk_dst_reset(sk);
2213 return 0;
2214}
2215EXPORT_SYMBOL(__udp_disconnect);
2216
2217int udp_disconnect(struct sock *sk, int flags)
2218{
2219 lock_sock(sk);
2220 __udp_disconnect(sk, flags);
2221 release_sock(sk);
2222 return 0;
2223}
2224EXPORT_IPV6_MOD(udp_disconnect);
2225
2226void udp_lib_unhash(struct sock *sk)
2227{
2228 if (sk_hashed(sk)) {
2229 struct udp_table *udptable = udp_get_table_prot(sk);
2230 struct udp_hslot *hslot, *hslot2;
2231
2232 sock_rps_delete_flow(sk);
2233 hslot = udp_hashslot(table: udptable, net: sock_net(sk),
2234 udp_sk(sk)->udp_port_hash);
2235 hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash);
2236
2237 spin_lock_bh(lock: &hslot->lock);
2238 if (rcu_access_pointer(sk->sk_reuseport_cb))
2239 reuseport_detach_sock(sk);
2240 if (sk_del_node_init_rcu(sk)) {
2241 hslot->count--;
2242 inet_sk(sk)->inet_num = 0;
2243 sock_prot_inuse_add(net: sock_net(sk), prot: sk->sk_prot, val: -1);
2244
2245 spin_lock(lock: &hslot2->lock);
2246 hlist_del_init_rcu(n: &udp_sk(sk)->udp_portaddr_node);
2247 hslot2->count--;
2248 spin_unlock(lock: &hslot2->lock);
2249
2250 udp_unhash4(udptable, sk);
2251 }
2252 spin_unlock_bh(lock: &hslot->lock);
2253 }
2254}
2255EXPORT_IPV6_MOD(udp_lib_unhash);
2256
2257/*
2258 * inet_rcv_saddr was changed, we must rehash secondary hash
2259 */
2260void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2261{
2262 if (sk_hashed(sk)) {
2263 struct udp_table *udptable = udp_get_table_prot(sk);
2264 struct udp_hslot *hslot, *hslot2, *nhslot2;
2265
2266 hslot = udp_hashslot(table: udptable, net: sock_net(sk),
2267 udp_sk(sk)->udp_port_hash);
2268 hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash);
2269 nhslot2 = udp_hashslot2(table: udptable, hash: newhash);
2270 udp_sk(sk)->udp_portaddr_hash = newhash;
2271
2272 if (hslot2 != nhslot2 ||
2273 rcu_access_pointer(sk->sk_reuseport_cb)) {
2274 /* we must lock primary chain too */
2275 spin_lock_bh(lock: &hslot->lock);
2276 if (rcu_access_pointer(sk->sk_reuseport_cb))
2277 reuseport_detach_sock(sk);
2278
2279 if (hslot2 != nhslot2) {
2280 spin_lock(lock: &hslot2->lock);
2281 hlist_del_init_rcu(n: &udp_sk(sk)->udp_portaddr_node);
2282 hslot2->count--;
2283 spin_unlock(lock: &hslot2->lock);
2284
2285 spin_lock(lock: &nhslot2->lock);
2286 hlist_add_head_rcu(n: &udp_sk(sk)->udp_portaddr_node,
2287 h: &nhslot2->head);
2288 nhslot2->count++;
2289 spin_unlock(lock: &nhslot2->lock);
2290 }
2291
2292 spin_unlock_bh(lock: &hslot->lock);
2293 }
2294
2295 /* Now process hash4 if necessary:
2296 * (1) update hslot4;
2297 * (2) update hslot2->hash4_cnt.
2298 * Note that hslot2/hslot4 should be checked separately, as
2299 * either of them may change with the other unchanged.
2300 */
2301 if (udp_hashed4(sk)) {
2302 spin_lock_bh(lock: &hslot->lock);
2303
2304 udp_rehash4(udptable, sk, newhash4);
2305 if (hslot2 != nhslot2) {
2306 spin_lock(lock: &hslot2->lock);
2307 udp_hash4_dec(hslot2);
2308 spin_unlock(lock: &hslot2->lock);
2309
2310 spin_lock(lock: &nhslot2->lock);
2311 udp_hash4_inc(hslot2: nhslot2);
2312 spin_unlock(lock: &nhslot2->lock);
2313 }
2314
2315 spin_unlock_bh(lock: &hslot->lock);
2316 }
2317 }
2318}
2319EXPORT_IPV6_MOD(udp_lib_rehash);
2320
2321void udp_v4_rehash(struct sock *sk)
2322{
2323 u16 new_hash = ipv4_portaddr_hash(net: sock_net(sk),
2324 inet_sk(sk)->inet_rcv_saddr,
2325 inet_sk(sk)->inet_num);
2326 u16 new_hash4 = udp_ehashfn(net: sock_net(sk),
2327 laddr: sk->sk_rcv_saddr, lport: sk->sk_num,
2328 faddr: sk->sk_daddr, fport: sk->sk_dport);
2329
2330 udp_lib_rehash(sk, newhash: new_hash, newhash4: new_hash4);
2331}
2332
2333static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2334{
2335 int rc;
2336
2337 if (inet_sk(sk)->inet_daddr) {
2338 sock_rps_save_rxhash(sk, skb);
2339 sk_mark_napi_id(sk, skb);
2340 sk_incoming_cpu_update(sk);
2341 } else {
2342 sk_mark_napi_id_once(sk, skb);
2343 }
2344
2345 rc = __udp_enqueue_schedule_skb(sk, skb);
2346 if (rc < 0) {
2347 int is_udplite = IS_UDPLITE(sk);
2348 int drop_reason;
2349
2350 /* Note that an ENOMEM error is charged twice */
2351 if (rc == -ENOMEM) {
2352 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2353 is_udplite);
2354 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2355 } else {
2356 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2357 is_udplite);
2358 drop_reason = SKB_DROP_REASON_PROTO_MEM;
2359 }
2360 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2361 trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2362 sk_skb_reason_drop(sk, skb, reason: drop_reason);
2363 return -1;
2364 }
2365
2366 return 0;
2367}
2368
2369/* returns:
2370 * -1: error
2371 * 0: success
2372 * >0: "udp encap" protocol resubmission
2373 *
2374 * Note that in the success and error cases, the skb is assumed to
2375 * have either been requeued or freed.
2376 */
2377static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2378{
2379 enum skb_drop_reason drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2380 struct udp_sock *up = udp_sk(sk);
2381 int is_udplite = IS_UDPLITE(sk);
2382
2383 /*
2384 * Charge it to the socket, dropping if the queue is full.
2385 */
2386 if (!xfrm4_policy_check(sk, dir: XFRM_POLICY_IN, skb)) {
2387 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2388 goto drop;
2389 }
2390 nf_reset_ct(skb);
2391
2392 if (static_branch_unlikely(&udp_encap_needed_key) &&
2393 READ_ONCE(up->encap_type)) {
2394 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2395
2396 /*
2397 * This is an encapsulation socket so pass the skb to
2398 * the socket's udp_encap_rcv() hook. Otherwise, just
2399 * fall through and pass this up the UDP socket.
2400 * up->encap_rcv() returns the following value:
2401 * =0 if skb was successfully passed to the encap
2402 * handler or was discarded by it.
2403 * >0 if skb should be passed on to UDP.
2404 * <0 if skb should be resubmitted as proto -N
2405 */
2406
2407 /* if we're overly short, let UDP handle it */
2408 encap_rcv = READ_ONCE(up->encap_rcv);
2409 if (encap_rcv) {
2410 int ret;
2411
2412 /* Verify checksum before giving to encap */
2413 if (udp_lib_checksum_complete(skb))
2414 goto csum_error;
2415
2416 ret = encap_rcv(sk, skb);
2417 if (ret <= 0) {
2418 __UDP_INC_STATS(sock_net(sk),
2419 UDP_MIB_INDATAGRAMS,
2420 is_udplite);
2421 return -ret;
2422 }
2423 }
2424
2425 /* FALLTHROUGH -- it's a UDP Packet */
2426 }
2427
2428 /*
2429 * UDP-Lite specific tests, ignored on UDP sockets
2430 */
2431 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2432 u16 pcrlen = READ_ONCE(up->pcrlen);
2433
2434 /*
2435 * MIB statistics other than incrementing the error count are
2436 * disabled for the following two types of errors: these depend
2437 * on the application settings, not on the functioning of the
2438 * protocol stack as such.
2439 *
2440 * RFC 3828 here recommends (sec 3.3): "There should also be a
2441 * way ... to ... at least let the receiving application block
2442 * delivery of packets with coverage values less than a value
2443 * provided by the application."
2444 */
2445 if (pcrlen == 0) { /* full coverage was set */
2446 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2447 UDP_SKB_CB(skb)->cscov, skb->len);
2448 goto drop;
2449 }
2450 /* The next case involves violating the min. coverage requested
2451 * by the receiver. This is subtle: if receiver wants x and x is
2452 * greater than the buffersize/MTU then receiver will complain
2453 * that it wants x while sender emits packets of smaller size y.
2454 * Therefore the above ...()->partial_cov statement is essential.
2455 */
2456 if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2457 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2458 UDP_SKB_CB(skb)->cscov, pcrlen);
2459 goto drop;
2460 }
2461 }
2462
2463 prefetch(&sk->sk_rmem_alloc);
2464 if (rcu_access_pointer(sk->sk_filter) &&
2465 udp_lib_checksum_complete(skb))
2466 goto csum_error;
2467
2468 if (sk_filter_trim_cap(sk, skb, cap: sizeof(struct udphdr), reason: &drop_reason))
2469 goto drop;
2470
2471 udp_csum_pull_header(skb);
2472
2473 ipv4_pktinfo_prepare(sk, skb, drop_dst: true);
2474 return __udp_queue_rcv_skb(sk, skb);
2475
2476csum_error:
2477 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2478 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2479drop:
2480 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2481 udp_drops_inc(sk);
2482 sk_skb_reason_drop(sk, skb, reason: drop_reason);
2483 return -1;
2484}
2485
2486static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2487{
2488 struct sk_buff *next, *segs;
2489 int ret;
2490
2491 if (likely(!udp_unexpected_gso(sk, skb)))
2492 return udp_queue_rcv_one_skb(sk, skb);
2493
2494 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2495 __skb_push(skb, len: -skb_mac_offset(skb));
2496 segs = udp_rcv_segment(sk, skb, ipv4: true);
2497 skb_list_walk_safe(segs, skb, next) {
2498 __skb_pull(skb, len: skb_transport_offset(skb));
2499
2500 udp_post_segment_fix_csum(skb);
2501 ret = udp_queue_rcv_one_skb(sk, skb);
2502 if (ret > 0)
2503 ip_protocol_deliver_rcu(net: dev_net(dev: skb->dev), skb, proto: ret);
2504 }
2505 return 0;
2506}
2507
2508/* For TCP sockets, sk_rx_dst is protected by socket lock
2509 * For UDP, we use xchg() to guard against concurrent changes.
2510 */
2511bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2512{
2513 struct dst_entry *old;
2514
2515 if (dst_hold_safe(dst)) {
2516 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2517 dst_release(dst: old);
2518 return old != dst;
2519 }
2520 return false;
2521}
2522EXPORT_IPV6_MOD(udp_sk_rx_dst_set);
2523
2524/*
2525 * Multicasts and broadcasts go to each listener.
2526 *
2527 * Note: called only from the BH handler context.
2528 */
2529static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2530 struct udphdr *uh,
2531 __be32 saddr, __be32 daddr,
2532 struct udp_table *udptable,
2533 int proto)
2534{
2535 struct sock *sk, *first = NULL;
2536 unsigned short hnum = ntohs(uh->dest);
2537 struct udp_hslot *hslot = udp_hashslot(table: udptable, net, num: hnum);
2538 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2539 unsigned int offset = offsetof(typeof(*sk), sk_node);
2540 int dif = skb->dev->ifindex;
2541 int sdif = inet_sdif(skb);
2542 struct hlist_node *node;
2543 struct sk_buff *nskb;
2544
2545 if (use_hash2) {
2546 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), port: hnum) &
2547 udptable->mask;
2548 hash2 = ipv4_portaddr_hash(net, saddr: daddr, port: hnum) & udptable->mask;
2549start_lookup:
2550 hslot = &udptable->hash2[hash2].hslot;
2551 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2552 }
2553
2554 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2555 if (!__udp_is_mcast_sock(net, sk, loc_port: uh->dest, loc_addr: daddr,
2556 rmt_port: uh->source, rmt_addr: saddr, dif, sdif, hnum))
2557 continue;
2558
2559 if (!first) {
2560 first = sk;
2561 continue;
2562 }
2563 nskb = skb_clone(skb, GFP_ATOMIC);
2564
2565 if (unlikely(!nskb)) {
2566 udp_drops_inc(sk);
2567 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2568 IS_UDPLITE(sk));
2569 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2570 IS_UDPLITE(sk));
2571 continue;
2572 }
2573 if (udp_queue_rcv_skb(sk, skb: nskb) > 0)
2574 consume_skb(skb: nskb);
2575 }
2576
2577 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2578 if (use_hash2 && hash2 != hash2_any) {
2579 hash2 = hash2_any;
2580 goto start_lookup;
2581 }
2582
2583 if (first) {
2584 if (udp_queue_rcv_skb(sk: first, skb) > 0)
2585 consume_skb(skb);
2586 } else {
2587 kfree_skb(skb);
2588 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2589 proto == IPPROTO_UDPLITE);
2590 }
2591 return 0;
2592}
2593
2594/* Initialize UDP checksum. If exited with zero value (success),
2595 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2596 * Otherwise, csum completion requires checksumming packet body,
2597 * including udp header and folding it to skb->csum.
2598 */
2599static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2600 int proto)
2601{
2602 int err;
2603
2604 UDP_SKB_CB(skb)->partial_cov = 0;
2605 UDP_SKB_CB(skb)->cscov = skb->len;
2606
2607 if (proto == IPPROTO_UDPLITE) {
2608 err = udplite_checksum_init(skb, uh);
2609 if (err)
2610 return err;
2611
2612 if (UDP_SKB_CB(skb)->partial_cov) {
2613 skb->csum = inet_compute_pseudo(skb, proto);
2614 return 0;
2615 }
2616 }
2617
2618 /* Note, we are only interested in != 0 or == 0, thus the
2619 * force to int.
2620 */
2621 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2622 inet_compute_pseudo);
2623 if (err)
2624 return err;
2625
2626 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2627 /* If SW calculated the value, we know it's bad */
2628 if (skb->csum_complete_sw)
2629 return 1;
2630
2631 /* HW says the value is bad. Let's validate that.
2632 * skb->csum is no longer the full packet checksum,
2633 * so don't treat it as such.
2634 */
2635 skb_checksum_complete_unset(skb);
2636 }
2637
2638 return 0;
2639}
2640
2641/* wrapper for udp_queue_rcv_skb taking care of csum conversion and
2642 * return code conversion for ip layer consumption
2643 */
2644static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2645 struct udphdr *uh)
2646{
2647 int ret;
2648
2649 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2650 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2651
2652 ret = udp_queue_rcv_skb(sk, skb);
2653
2654 /* a return value > 0 means to resubmit the input, but
2655 * it wants the return to be -protocol, or 0
2656 */
2657 if (ret > 0)
2658 return -ret;
2659 return 0;
2660}
2661
2662/*
2663 * All we need to do is get the socket, and then do a checksum.
2664 */
2665
2666int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2667 int proto)
2668{
2669 struct sock *sk = NULL;
2670 struct udphdr *uh;
2671 unsigned short ulen;
2672 struct rtable *rt = skb_rtable(skb);
2673 __be32 saddr, daddr;
2674 struct net *net = dev_net(dev: skb->dev);
2675 bool refcounted;
2676 int drop_reason;
2677
2678 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2679
2680 /*
2681 * Validate the packet.
2682 */
2683 if (!pskb_may_pull(skb, len: sizeof(struct udphdr)))
2684 goto drop; /* No space for header. */
2685
2686 uh = udp_hdr(skb);
2687 ulen = ntohs(uh->len);
2688 saddr = ip_hdr(skb)->saddr;
2689 daddr = ip_hdr(skb)->daddr;
2690
2691 if (ulen > skb->len)
2692 goto short_packet;
2693
2694 if (proto == IPPROTO_UDP) {
2695 /* UDP validates ulen. */
2696 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, len: ulen))
2697 goto short_packet;
2698 uh = udp_hdr(skb);
2699 }
2700
2701 if (udp4_csum_init(skb, uh, proto))
2702 goto csum_error;
2703
2704 sk = inet_steal_sock(net, skb, doff: sizeof(struct udphdr), saddr, sport: uh->source, daddr, dport: uh->dest,
2705 refcounted: &refcounted, ehashfn: udp_ehashfn);
2706 if (IS_ERR(ptr: sk))
2707 goto no_sk;
2708
2709 if (sk) {
2710 struct dst_entry *dst = skb_dst(skb);
2711 int ret;
2712
2713 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2714 udp_sk_rx_dst_set(sk, dst);
2715
2716 ret = udp_unicast_rcv_skb(sk, skb, uh);
2717 if (refcounted)
2718 sock_put(sk);
2719 return ret;
2720 }
2721
2722 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2723 return __udp4_lib_mcast_deliver(net, skb, uh,
2724 saddr, daddr, udptable, proto);
2725
2726 sk = __udp4_lib_lookup_skb(skb, sport: uh->source, dport: uh->dest, udptable);
2727 if (sk)
2728 return udp_unicast_rcv_skb(sk, skb, uh);
2729no_sk:
2730 if (!xfrm4_policy_check(NULL, dir: XFRM_POLICY_IN, skb))
2731 goto drop;
2732 nf_reset_ct(skb);
2733
2734 /* No socket. Drop packet silently, if checksum is wrong */
2735 if (udp_lib_checksum_complete(skb))
2736 goto csum_error;
2737
2738 drop_reason = SKB_DROP_REASON_NO_SOCKET;
2739 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2740 icmp_send(skb_in: skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, info: 0);
2741
2742 /*
2743 * Hmm. We got an UDP packet to a port to which we
2744 * don't wanna listen. Ignore it.
2745 */
2746 sk_skb_reason_drop(sk, skb, reason: drop_reason);
2747 return 0;
2748
2749short_packet:
2750 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2751 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2752 proto == IPPROTO_UDPLITE ? "Lite" : "",
2753 &saddr, ntohs(uh->source),
2754 ulen, skb->len,
2755 &daddr, ntohs(uh->dest));
2756 goto drop;
2757
2758csum_error:
2759 /*
2760 * RFC1122: OK. Discards the bad packet silently (as far as
2761 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2762 */
2763 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2764 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2765 proto == IPPROTO_UDPLITE ? "Lite" : "",
2766 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2767 ulen);
2768 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2769drop:
2770 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2771 sk_skb_reason_drop(sk, skb, reason: drop_reason);
2772 return 0;
2773}
2774
2775/* We can only early demux multicast if there is a single matching socket.
2776 * If more than one socket found returns NULL
2777 */
2778static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2779 __be16 loc_port, __be32 loc_addr,
2780 __be16 rmt_port, __be32 rmt_addr,
2781 int dif, int sdif)
2782{
2783 struct udp_table *udptable = net->ipv4.udp_table;
2784 unsigned short hnum = ntohs(loc_port);
2785 struct sock *sk, *result;
2786 struct udp_hslot *hslot;
2787 unsigned int slot;
2788
2789 slot = udp_hashfn(net, num: hnum, mask: udptable->mask);
2790 hslot = &udptable->hash[slot];
2791
2792 /* Do not bother scanning a too big list */
2793 if (hslot->count > 10)
2794 return NULL;
2795
2796 result = NULL;
2797 sk_for_each_rcu(sk, &hslot->head) {
2798 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2799 rmt_port, rmt_addr, dif, sdif, hnum)) {
2800 if (result)
2801 return NULL;
2802 result = sk;
2803 }
2804 }
2805
2806 return result;
2807}
2808
2809/* For unicast we should only early demux connected sockets or we can
2810 * break forwarding setups. The chains here can be long so only check
2811 * if the first socket is an exact match and if not move on.
2812 */
2813static struct sock *__udp4_lib_demux_lookup(struct net *net,
2814 __be16 loc_port, __be32 loc_addr,
2815 __be16 rmt_port, __be32 rmt_addr,
2816 int dif, int sdif)
2817{
2818 struct udp_table *udptable = net->ipv4.udp_table;
2819 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2820 unsigned short hnum = ntohs(loc_port);
2821 struct udp_hslot *hslot2;
2822 unsigned int hash2;
2823 __portpair ports;
2824 struct sock *sk;
2825
2826 hash2 = ipv4_portaddr_hash(net, saddr: loc_addr, port: hnum);
2827 hslot2 = udp_hashslot2(table: udptable, hash: hash2);
2828 ports = INET_COMBINED_PORTS(rmt_port, hnum);
2829
2830 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2831 if (inet_match(net, sk, cookie: acookie, ports, dif, sdif))
2832 return sk;
2833 /* Only check first socket in chain */
2834 break;
2835 }
2836 return NULL;
2837}
2838
2839enum skb_drop_reason udp_v4_early_demux(struct sk_buff *skb)
2840{
2841 struct net *net = dev_net(dev: skb->dev);
2842 struct in_device *in_dev = NULL;
2843 const struct iphdr *iph;
2844 const struct udphdr *uh;
2845 struct sock *sk = NULL;
2846 struct dst_entry *dst;
2847 int dif = skb->dev->ifindex;
2848 int sdif = inet_sdif(skb);
2849 int ours;
2850
2851 /* validate the packet */
2852 if (!pskb_may_pull(skb, len: skb_transport_offset(skb) + sizeof(struct udphdr)))
2853 return SKB_NOT_DROPPED_YET;
2854
2855 iph = ip_hdr(skb);
2856 uh = udp_hdr(skb);
2857
2858 if (skb->pkt_type == PACKET_MULTICAST) {
2859 in_dev = __in_dev_get_rcu(dev: skb->dev);
2860
2861 if (!in_dev)
2862 return SKB_NOT_DROPPED_YET;
2863
2864 ours = ip_check_mc_rcu(dev: in_dev, mc_addr: iph->daddr, src_addr: iph->saddr,
2865 proto: iph->protocol);
2866 if (!ours)
2867 return SKB_NOT_DROPPED_YET;
2868
2869 sk = __udp4_lib_mcast_demux_lookup(net, loc_port: uh->dest, loc_addr: iph->daddr,
2870 rmt_port: uh->source, rmt_addr: iph->saddr,
2871 dif, sdif);
2872 } else if (skb->pkt_type == PACKET_HOST) {
2873 sk = __udp4_lib_demux_lookup(net, loc_port: uh->dest, loc_addr: iph->daddr,
2874 rmt_port: uh->source, rmt_addr: iph->saddr, dif, sdif);
2875 }
2876
2877 if (!sk)
2878 return SKB_NOT_DROPPED_YET;
2879
2880 skb->sk = sk;
2881 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2882 skb->destructor = sock_pfree;
2883 dst = rcu_dereference(sk->sk_rx_dst);
2884
2885 if (dst)
2886 dst = dst_check(dst, cookie: 0);
2887 if (dst) {
2888 u32 itag = 0;
2889
2890 /* set noref for now.
2891 * any place which wants to hold dst has to call
2892 * dst_hold_safe()
2893 */
2894 skb_dst_set_noref(skb, dst);
2895
2896 /* for unconnected multicast sockets we need to validate
2897 * the source on each packet
2898 */
2899 if (!inet_sk(sk)->inet_daddr && in_dev)
2900 return ip_mc_validate_source(skb, daddr: iph->daddr,
2901 saddr: iph->saddr,
2902 dscp: ip4h_dscp(ip4h: iph),
2903 dev: skb->dev, in_dev, itag: &itag);
2904 }
2905 return SKB_NOT_DROPPED_YET;
2906}
2907
2908int udp_rcv(struct sk_buff *skb)
2909{
2910 return __udp4_lib_rcv(skb, udptable: dev_net(dev: skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2911}
2912
2913void udp_destroy_sock(struct sock *sk)
2914{
2915 struct udp_sock *up = udp_sk(sk);
2916 bool slow = lock_sock_fast(sk);
2917
2918 /* protects from races with udp_abort() */
2919 sock_set_flag(sk, flag: SOCK_DEAD);
2920 udp_flush_pending_frames(sk);
2921 unlock_sock_fast(sk, slow);
2922 if (static_branch_unlikely(&udp_encap_needed_key)) {
2923 if (up->encap_type) {
2924 void (*encap_destroy)(struct sock *sk);
2925 encap_destroy = READ_ONCE(up->encap_destroy);
2926 if (encap_destroy)
2927 encap_destroy(sk);
2928 }
2929 if (udp_test_bit(ENCAP_ENABLED, sk)) {
2930 static_branch_dec(&udp_encap_needed_key);
2931 udp_tunnel_cleanup_gro(sk);
2932 }
2933 }
2934}
2935
2936typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk,
2937 struct list_head *head,
2938 struct sk_buff *skb);
2939
2940static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2941 struct sock *sk)
2942{
2943#ifdef CONFIG_XFRM
2944 udp_gro_receive_t new_gro_receive;
2945
2946 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2947 if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2948 new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv;
2949 else
2950 new_gro_receive = xfrm4_gro_udp_encap_rcv;
2951
2952 if (udp_sk(sk)->gro_receive != new_gro_receive) {
2953 /*
2954 * With IPV6_ADDRFORM the gro callback could change
2955 * after being set, unregister the old one, if valid.
2956 */
2957 if (udp_sk(sk)->gro_receive)
2958 udp_tunnel_update_gro_rcv(sk, add: false);
2959
2960 WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive);
2961 udp_tunnel_update_gro_rcv(sk, add: true);
2962 }
2963 }
2964#endif
2965}
2966
2967/*
2968 * Socket option code for UDP
2969 */
2970int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2971 sockptr_t optval, unsigned int optlen,
2972 int (*push_pending_frames)(struct sock *))
2973{
2974 struct udp_sock *up = udp_sk(sk);
2975 int val, valbool;
2976 int err = 0;
2977 int is_udplite = IS_UDPLITE(sk);
2978
2979 if (level == SOL_SOCKET) {
2980 err = sk_setsockopt(sk, level, optname, optval, optlen);
2981
2982 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2983 sockopt_lock_sock(sk);
2984 /* paired with READ_ONCE in udp_rmem_release() */
2985 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2986 sockopt_release_sock(sk);
2987 }
2988 return err;
2989 }
2990
2991 if (optlen < sizeof(int))
2992 return -EINVAL;
2993
2994 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
2995 return -EFAULT;
2996
2997 valbool = val ? 1 : 0;
2998
2999 switch (optname) {
3000 case UDP_CORK:
3001 if (val != 0) {
3002 udp_set_bit(CORK, sk);
3003 } else {
3004 udp_clear_bit(CORK, sk);
3005 lock_sock(sk);
3006 push_pending_frames(sk);
3007 release_sock(sk);
3008 }
3009 break;
3010
3011 case UDP_ENCAP:
3012 sockopt_lock_sock(sk);
3013 switch (val) {
3014 case 0:
3015#ifdef CONFIG_XFRM
3016 case UDP_ENCAP_ESPINUDP:
3017 set_xfrm_gro_udp_encap_rcv(encap_type: val, family: sk->sk_family, sk);
3018#if IS_ENABLED(CONFIG_IPV6)
3019 if (sk->sk_family == AF_INET6)
3020 WRITE_ONCE(up->encap_rcv,
3021 ipv6_stub->xfrm6_udp_encap_rcv);
3022 else
3023#endif
3024 WRITE_ONCE(up->encap_rcv,
3025 xfrm4_udp_encap_rcv);
3026#endif
3027 fallthrough;
3028 case UDP_ENCAP_L2TPINUDP:
3029 WRITE_ONCE(up->encap_type, val);
3030 udp_tunnel_encap_enable(sk);
3031 break;
3032 default:
3033 err = -ENOPROTOOPT;
3034 break;
3035 }
3036 sockopt_release_sock(sk);
3037 break;
3038
3039 case UDP_NO_CHECK6_TX:
3040 udp_set_no_check6_tx(sk, val: valbool);
3041 break;
3042
3043 case UDP_NO_CHECK6_RX:
3044 udp_set_no_check6_rx(sk, val: valbool);
3045 break;
3046
3047 case UDP_SEGMENT:
3048 if (val < 0 || val > USHRT_MAX)
3049 return -EINVAL;
3050 WRITE_ONCE(up->gso_size, val);
3051 break;
3052
3053 case UDP_GRO:
3054 sockopt_lock_sock(sk);
3055 /* when enabling GRO, accept the related GSO packet type */
3056 if (valbool)
3057 udp_tunnel_encap_enable(sk);
3058 udp_assign_bit(GRO_ENABLED, sk, valbool);
3059 udp_assign_bit(ACCEPT_L4, sk, valbool);
3060 set_xfrm_gro_udp_encap_rcv(encap_type: up->encap_type, family: sk->sk_family, sk);
3061 sockopt_release_sock(sk);
3062 break;
3063
3064 /*
3065 * UDP-Lite's partial checksum coverage (RFC 3828).
3066 */
3067 /* The sender sets actual checksum coverage length via this option.
3068 * The case coverage > packet length is handled by send module. */
3069 case UDPLITE_SEND_CSCOV:
3070 if (!is_udplite) /* Disable the option on UDP sockets */
3071 return -ENOPROTOOPT;
3072 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
3073 val = 8;
3074 else if (val > USHRT_MAX)
3075 val = USHRT_MAX;
3076 WRITE_ONCE(up->pcslen, val);
3077 udp_set_bit(UDPLITE_SEND_CC, sk);
3078 break;
3079
3080 /* The receiver specifies a minimum checksum coverage value. To make
3081 * sense, this should be set to at least 8 (as done below). If zero is
3082 * used, this again means full checksum coverage. */
3083 case UDPLITE_RECV_CSCOV:
3084 if (!is_udplite) /* Disable the option on UDP sockets */
3085 return -ENOPROTOOPT;
3086 if (val != 0 && val < 8) /* Avoid silly minimal values. */
3087 val = 8;
3088 else if (val > USHRT_MAX)
3089 val = USHRT_MAX;
3090 WRITE_ONCE(up->pcrlen, val);
3091 udp_set_bit(UDPLITE_RECV_CC, sk);
3092 break;
3093
3094 default:
3095 err = -ENOPROTOOPT;
3096 break;
3097 }
3098
3099 return err;
3100}
3101EXPORT_IPV6_MOD(udp_lib_setsockopt);
3102
3103int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3104 unsigned int optlen)
3105{
3106 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET)
3107 return udp_lib_setsockopt(sk, level, optname,
3108 optval, optlen,
3109 push_pending_frames: udp_push_pending_frames);
3110 return ip_setsockopt(sk, level, optname, optval, optlen);
3111}
3112
3113int udp_lib_getsockopt(struct sock *sk, int level, int optname,
3114 char __user *optval, int __user *optlen)
3115{
3116 struct udp_sock *up = udp_sk(sk);
3117 int val, len;
3118
3119 if (get_user(len, optlen))
3120 return -EFAULT;
3121
3122 if (len < 0)
3123 return -EINVAL;
3124
3125 len = min_t(unsigned int, len, sizeof(int));
3126
3127 switch (optname) {
3128 case UDP_CORK:
3129 val = udp_test_bit(CORK, sk);
3130 break;
3131
3132 case UDP_ENCAP:
3133 val = READ_ONCE(up->encap_type);
3134 break;
3135
3136 case UDP_NO_CHECK6_TX:
3137 val = udp_get_no_check6_tx(sk);
3138 break;
3139
3140 case UDP_NO_CHECK6_RX:
3141 val = udp_get_no_check6_rx(sk);
3142 break;
3143
3144 case UDP_SEGMENT:
3145 val = READ_ONCE(up->gso_size);
3146 break;
3147
3148 case UDP_GRO:
3149 val = udp_test_bit(GRO_ENABLED, sk);
3150 break;
3151
3152 /* The following two cannot be changed on UDP sockets, the return is
3153 * always 0 (which corresponds to the full checksum coverage of UDP). */
3154 case UDPLITE_SEND_CSCOV:
3155 val = READ_ONCE(up->pcslen);
3156 break;
3157
3158 case UDPLITE_RECV_CSCOV:
3159 val = READ_ONCE(up->pcrlen);
3160 break;
3161
3162 default:
3163 return -ENOPROTOOPT;
3164 }
3165
3166 if (put_user(len, optlen))
3167 return -EFAULT;
3168 if (copy_to_user(to: optval, from: &val, n: len))
3169 return -EFAULT;
3170 return 0;
3171}
3172EXPORT_IPV6_MOD(udp_lib_getsockopt);
3173
3174int udp_getsockopt(struct sock *sk, int level, int optname,
3175 char __user *optval, int __user *optlen)
3176{
3177 if (level == SOL_UDP || level == SOL_UDPLITE)
3178 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3179 return ip_getsockopt(sk, level, optname, optval, optlen);
3180}
3181
3182/**
3183 * udp_poll - wait for a UDP event.
3184 * @file: - file struct
3185 * @sock: - socket
3186 * @wait: - poll table
3187 *
3188 * This is same as datagram poll, except for the special case of
3189 * blocking sockets. If application is using a blocking fd
3190 * and a packet with checksum error is in the queue;
3191 * then it could get return from select indicating data available
3192 * but then block when reading it. Add special case code
3193 * to work around these arguably broken applications.
3194 */
3195__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3196{
3197 __poll_t mask = datagram_poll(file, sock, wait);
3198 struct sock *sk = sock->sk;
3199
3200 if (!skb_queue_empty_lockless(list: &udp_sk(sk)->reader_queue))
3201 mask |= EPOLLIN | EPOLLRDNORM;
3202
3203 /* Check for false positives due to checksum errors */
3204 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3205 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3206 mask &= ~(EPOLLIN | EPOLLRDNORM);
3207
3208 /* psock ingress_msg queue should not contain any bad checksum frames */
3209 if (sk_is_readable(sk))
3210 mask |= EPOLLIN | EPOLLRDNORM;
3211 return mask;
3212
3213}
3214EXPORT_IPV6_MOD(udp_poll);
3215
3216int udp_abort(struct sock *sk, int err)
3217{
3218 if (!has_current_bpf_ctx())
3219 lock_sock(sk);
3220
3221 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3222 * with close()
3223 */
3224 if (sock_flag(sk, flag: SOCK_DEAD))
3225 goto out;
3226
3227 sk->sk_err = err;
3228 sk_error_report(sk);
3229 __udp_disconnect(sk, 0);
3230
3231out:
3232 if (!has_current_bpf_ctx())
3233 release_sock(sk);
3234
3235 return 0;
3236}
3237EXPORT_IPV6_MOD_GPL(udp_abort);
3238
3239struct proto udp_prot = {
3240 .name = "UDP",
3241 .owner = THIS_MODULE,
3242 .close = udp_lib_close,
3243 .pre_connect = udp_pre_connect,
3244 .connect = udp_connect,
3245 .disconnect = udp_disconnect,
3246 .ioctl = udp_ioctl,
3247 .init = udp_init_sock,
3248 .destroy = udp_destroy_sock,
3249 .setsockopt = udp_setsockopt,
3250 .getsockopt = udp_getsockopt,
3251 .sendmsg = udp_sendmsg,
3252 .recvmsg = udp_recvmsg,
3253 .splice_eof = udp_splice_eof,
3254 .release_cb = ip4_datagram_release_cb,
3255 .hash = udp_lib_hash,
3256 .unhash = udp_lib_unhash,
3257 .rehash = udp_v4_rehash,
3258 .get_port = udp_v4_get_port,
3259 .put_port = udp_lib_unhash,
3260#ifdef CONFIG_BPF_SYSCALL
3261 .psock_update_sk_prot = udp_bpf_update_proto,
3262#endif
3263 .memory_allocated = &net_aligned_data.udp_memory_allocated,
3264 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc,
3265
3266 .sysctl_mem = sysctl_udp_mem,
3267 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3268 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3269 .obj_size = sizeof(struct udp_sock),
3270 .h.udp_table = NULL,
3271 .diag_destroy = udp_abort,
3272};
3273EXPORT_SYMBOL(udp_prot);
3274
3275/* ------------------------------------------------------------------------ */
3276#ifdef CONFIG_PROC_FS
3277
3278static unsigned short seq_file_family(const struct seq_file *seq);
3279static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3280{
3281 unsigned short family = seq_file_family(seq);
3282
3283 /* AF_UNSPEC is used as a match all */
3284 return ((family == AF_UNSPEC || family == sk->sk_family) &&
3285 net_eq(net1: sock_net(sk), net2: seq_file_net(seq)));
3286}
3287
3288#ifdef CONFIG_BPF_SYSCALL
3289static const struct seq_operations bpf_iter_udp_seq_ops;
3290#endif
3291static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3292 struct net *net)
3293{
3294 const struct udp_seq_afinfo *afinfo;
3295
3296#ifdef CONFIG_BPF_SYSCALL
3297 if (seq->op == &bpf_iter_udp_seq_ops)
3298 return net->ipv4.udp_table;
3299#endif
3300
3301 afinfo = pde_data(inode: file_inode(f: seq->file));
3302 return afinfo->udp_table ? : net->ipv4.udp_table;
3303}
3304
3305static struct sock *udp_get_first(struct seq_file *seq, int start)
3306{
3307 struct udp_iter_state *state = seq->private;
3308 struct net *net = seq_file_net(seq);
3309 struct udp_table *udptable;
3310 struct sock *sk;
3311
3312 udptable = udp_get_table_seq(seq, net);
3313
3314 for (state->bucket = start; state->bucket <= udptable->mask;
3315 ++state->bucket) {
3316 struct udp_hslot *hslot = &udptable->hash[state->bucket];
3317
3318 if (hlist_empty(h: &hslot->head))
3319 continue;
3320
3321 spin_lock_bh(lock: &hslot->lock);
3322 sk_for_each(sk, &hslot->head) {
3323 if (seq_sk_match(seq, sk))
3324 goto found;
3325 }
3326 spin_unlock_bh(lock: &hslot->lock);
3327 }
3328 sk = NULL;
3329found:
3330 return sk;
3331}
3332
3333static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3334{
3335 struct udp_iter_state *state = seq->private;
3336 struct net *net = seq_file_net(seq);
3337 struct udp_table *udptable;
3338
3339 do {
3340 sk = sk_next(sk);
3341 } while (sk && !seq_sk_match(seq, sk));
3342
3343 if (!sk) {
3344 udptable = udp_get_table_seq(seq, net);
3345
3346 if (state->bucket <= udptable->mask)
3347 spin_unlock_bh(lock: &udptable->hash[state->bucket].lock);
3348
3349 return udp_get_first(seq, start: state->bucket + 1);
3350 }
3351 return sk;
3352}
3353
3354static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3355{
3356 struct sock *sk = udp_get_first(seq, start: 0);
3357
3358 if (sk)
3359 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3360 --pos;
3361 return pos ? NULL : sk;
3362}
3363
3364void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3365{
3366 struct udp_iter_state *state = seq->private;
3367 state->bucket = MAX_UDP_PORTS;
3368
3369 return *pos ? udp_get_idx(seq, pos: *pos-1) : SEQ_START_TOKEN;
3370}
3371EXPORT_IPV6_MOD(udp_seq_start);
3372
3373void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3374{
3375 struct sock *sk;
3376
3377 if (v == SEQ_START_TOKEN)
3378 sk = udp_get_idx(seq, pos: 0);
3379 else
3380 sk = udp_get_next(seq, sk: v);
3381
3382 ++*pos;
3383 return sk;
3384}
3385EXPORT_IPV6_MOD(udp_seq_next);
3386
3387void udp_seq_stop(struct seq_file *seq, void *v)
3388{
3389 struct udp_iter_state *state = seq->private;
3390 struct udp_table *udptable;
3391
3392 udptable = udp_get_table_seq(seq, net: seq_file_net(seq));
3393
3394 if (state->bucket <= udptable->mask)
3395 spin_unlock_bh(lock: &udptable->hash[state->bucket].lock);
3396}
3397EXPORT_IPV6_MOD(udp_seq_stop);
3398
3399/* ------------------------------------------------------------------------ */
3400static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3401 int bucket)
3402{
3403 struct inet_sock *inet = inet_sk(sp);
3404 __be32 dest = inet->inet_daddr;
3405 __be32 src = inet->inet_rcv_saddr;
3406 __u16 destp = ntohs(inet->inet_dport);
3407 __u16 srcp = ntohs(inet->inet_sport);
3408
3409 seq_printf(m: f, fmt: "%5d: %08X:%04X %08X:%04X"
3410 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3411 bucket, src, srcp, dest, destp, sp->sk_state,
3412 sk_wmem_alloc_get(sk: sp),
3413 udp_rqueue_get(sk: sp),
3414 0, 0L, 0,
3415 from_kuid_munged(to: seq_user_ns(seq: f), kuid: sk_uid(sk: sp)),
3416 0, sock_i_ino(sk: sp),
3417 refcount_read(r: &sp->sk_refcnt), sp,
3418 sk_drops_read(sk: sp));
3419}
3420
3421int udp4_seq_show(struct seq_file *seq, void *v)
3422{
3423 seq_setwidth(m: seq, size: 127);
3424 if (v == SEQ_START_TOKEN)
3425 seq_puts(m: seq, s: " sl local_address rem_address st tx_queue "
3426 "rx_queue tr tm->when retrnsmt uid timeout "
3427 "inode ref pointer drops");
3428 else {
3429 struct udp_iter_state *state = seq->private;
3430
3431 udp4_format_sock(sp: v, f: seq, bucket: state->bucket);
3432 }
3433 seq_pad(m: seq, c: '\n');
3434 return 0;
3435}
3436
3437#ifdef CONFIG_BPF_SYSCALL
3438struct bpf_iter__udp {
3439 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3440 __bpf_md_ptr(struct udp_sock *, udp_sk);
3441 uid_t uid __aligned(8);
3442 int bucket __aligned(8);
3443};
3444
3445union bpf_udp_iter_batch_item {
3446 struct sock *sk;
3447 __u64 cookie;
3448};
3449
3450struct bpf_udp_iter_state {
3451 struct udp_iter_state state;
3452 unsigned int cur_sk;
3453 unsigned int end_sk;
3454 unsigned int max_sk;
3455 union bpf_udp_iter_batch_item *batch;
3456};
3457
3458static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3459 unsigned int new_batch_sz, gfp_t flags);
3460static struct sock *bpf_iter_udp_resume(struct sock *first_sk,
3461 union bpf_udp_iter_batch_item *cookies,
3462 int n_cookies)
3463{
3464 struct sock *sk = NULL;
3465 int i;
3466
3467 for (i = 0; i < n_cookies; i++) {
3468 sk = first_sk;
3469 udp_portaddr_for_each_entry_from(sk)
3470 if (cookies[i].cookie == atomic64_read(&sk->sk_cookie))
3471 goto done;
3472 }
3473done:
3474 return sk;
3475}
3476
3477static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3478{
3479 struct bpf_udp_iter_state *iter = seq->private;
3480 struct udp_iter_state *state = &iter->state;
3481 unsigned int find_cookie, end_cookie;
3482 struct net *net = seq_file_net(seq);
3483 struct udp_table *udptable;
3484 unsigned int batch_sks = 0;
3485 int resume_bucket;
3486 int resizes = 0;
3487 struct sock *sk;
3488 int err = 0;
3489
3490 resume_bucket = state->bucket;
3491
3492 /* The current batch is done, so advance the bucket. */
3493 if (iter->cur_sk == iter->end_sk)
3494 state->bucket++;
3495
3496 udptable = udp_get_table_seq(seq, net);
3497
3498again:
3499 /* New batch for the next bucket.
3500 * Iterate over the hash table to find a bucket with sockets matching
3501 * the iterator attributes, and return the first matching socket from
3502 * the bucket. The remaining matched sockets from the bucket are batched
3503 * before releasing the bucket lock. This allows BPF programs that are
3504 * called in seq_show to acquire the bucket lock if needed.
3505 */
3506 find_cookie = iter->cur_sk;
3507 end_cookie = iter->end_sk;
3508 iter->cur_sk = 0;
3509 iter->end_sk = 0;
3510 batch_sks = 0;
3511
3512 for (; state->bucket <= udptable->mask; state->bucket++) {
3513 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3514
3515 if (hlist_empty(&hslot2->head))
3516 goto next_bucket;
3517
3518 spin_lock_bh(&hslot2->lock);
3519 sk = hlist_entry_safe(hslot2->head.first, struct sock,
3520 __sk_common.skc_portaddr_node);
3521 /* Resume from the first (in iteration order) unseen socket from
3522 * the last batch that still exists in resume_bucket. Most of
3523 * the time this will just be where the last iteration left off
3524 * in resume_bucket unless that socket disappeared between
3525 * reads.
3526 */
3527 if (state->bucket == resume_bucket)
3528 sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie],
3529 end_cookie - find_cookie);
3530fill_batch:
3531 udp_portaddr_for_each_entry_from(sk) {
3532 if (seq_sk_match(seq, sk)) {
3533 if (iter->end_sk < iter->max_sk) {
3534 sock_hold(sk);
3535 iter->batch[iter->end_sk++].sk = sk;
3536 }
3537 batch_sks++;
3538 }
3539 }
3540
3541 /* Allocate a larger batch and try again. */
3542 if (unlikely(resizes <= 1 && iter->end_sk &&
3543 iter->end_sk != batch_sks)) {
3544 resizes++;
3545
3546 /* First, try with GFP_USER to maximize the chances of
3547 * grabbing more memory.
3548 */
3549 if (resizes == 1) {
3550 spin_unlock_bh(&hslot2->lock);
3551 err = bpf_iter_udp_realloc_batch(iter,
3552 batch_sks * 3 / 2,
3553 GFP_USER);
3554 if (err)
3555 return ERR_PTR(err);
3556 /* Start over. */
3557 goto again;
3558 }
3559
3560 /* Next, hold onto the lock, so the bucket doesn't
3561 * change while we get the rest of the sockets.
3562 */
3563 err = bpf_iter_udp_realloc_batch(iter, batch_sks,
3564 GFP_NOWAIT);
3565 if (err) {
3566 spin_unlock_bh(&hslot2->lock);
3567 return ERR_PTR(err);
3568 }
3569
3570 /* Pick up where we left off. */
3571 sk = iter->batch[iter->end_sk - 1].sk;
3572 sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next,
3573 struct sock,
3574 __sk_common.skc_portaddr_node);
3575 batch_sks = iter->end_sk;
3576 goto fill_batch;
3577 }
3578
3579 spin_unlock_bh(&hslot2->lock);
3580
3581 if (iter->end_sk)
3582 break;
3583next_bucket:
3584 resizes = 0;
3585 }
3586
3587 WARN_ON_ONCE(iter->end_sk != batch_sks);
3588 return iter->end_sk ? iter->batch[0].sk : NULL;
3589}
3590
3591static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3592{
3593 struct bpf_udp_iter_state *iter = seq->private;
3594 struct sock *sk;
3595
3596 /* Whenever seq_next() is called, the iter->cur_sk is
3597 * done with seq_show(), so unref the iter->cur_sk.
3598 */
3599 if (iter->cur_sk < iter->end_sk)
3600 sock_put(iter->batch[iter->cur_sk++].sk);
3601
3602 /* After updating iter->cur_sk, check if there are more sockets
3603 * available in the current bucket batch.
3604 */
3605 if (iter->cur_sk < iter->end_sk)
3606 sk = iter->batch[iter->cur_sk].sk;
3607 else
3608 /* Prepare a new batch. */
3609 sk = bpf_iter_udp_batch(seq);
3610
3611 ++*pos;
3612 return sk;
3613}
3614
3615static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3616{
3617 /* bpf iter does not support lseek, so it always
3618 * continue from where it was stop()-ped.
3619 */
3620 if (*pos)
3621 return bpf_iter_udp_batch(seq);
3622
3623 return SEQ_START_TOKEN;
3624}
3625
3626static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3627 struct udp_sock *udp_sk, uid_t uid, int bucket)
3628{
3629 struct bpf_iter__udp ctx;
3630
3631 meta->seq_num--; /* skip SEQ_START_TOKEN */
3632 ctx.meta = meta;
3633 ctx.udp_sk = udp_sk;
3634 ctx.uid = uid;
3635 ctx.bucket = bucket;
3636 return bpf_iter_run_prog(prog, &ctx);
3637}
3638
3639static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3640{
3641 struct udp_iter_state *state = seq->private;
3642 struct bpf_iter_meta meta;
3643 struct bpf_prog *prog;
3644 struct sock *sk = v;
3645 uid_t uid;
3646 int ret;
3647
3648 if (v == SEQ_START_TOKEN)
3649 return 0;
3650
3651 lock_sock(sk);
3652
3653 if (unlikely(sk_unhashed(sk))) {
3654 ret = SEQ_SKIP;
3655 goto unlock;
3656 }
3657
3658 uid = from_kuid_munged(seq_user_ns(seq), sk_uid(sk));
3659 meta.seq = seq;
3660 prog = bpf_iter_get_info(&meta, false);
3661 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3662
3663unlock:
3664 release_sock(sk);
3665 return ret;
3666}
3667
3668static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3669{
3670 union bpf_udp_iter_batch_item *item;
3671 unsigned int cur_sk = iter->cur_sk;
3672 __u64 cookie;
3673
3674 /* Remember the cookies of the sockets we haven't seen yet, so we can
3675 * pick up where we left off next time around.
3676 */
3677 while (cur_sk < iter->end_sk) {
3678 item = &iter->batch[cur_sk++];
3679 cookie = sock_gen_cookie(item->sk);
3680 sock_put(item->sk);
3681 item->cookie = cookie;
3682 }
3683}
3684
3685static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3686{
3687 struct bpf_udp_iter_state *iter = seq->private;
3688 struct bpf_iter_meta meta;
3689 struct bpf_prog *prog;
3690
3691 if (!v) {
3692 meta.seq = seq;
3693 prog = bpf_iter_get_info(&meta, true);
3694 if (prog)
3695 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3696 }
3697
3698 if (iter->cur_sk < iter->end_sk)
3699 bpf_iter_udp_put_batch(iter);
3700}
3701
3702static const struct seq_operations bpf_iter_udp_seq_ops = {
3703 .start = bpf_iter_udp_seq_start,
3704 .next = bpf_iter_udp_seq_next,
3705 .stop = bpf_iter_udp_seq_stop,
3706 .show = bpf_iter_udp_seq_show,
3707};
3708#endif
3709
3710static unsigned short seq_file_family(const struct seq_file *seq)
3711{
3712 const struct udp_seq_afinfo *afinfo;
3713
3714#ifdef CONFIG_BPF_SYSCALL
3715 /* BPF iterator: bpf programs to filter sockets. */
3716 if (seq->op == &bpf_iter_udp_seq_ops)
3717 return AF_UNSPEC;
3718#endif
3719
3720 /* Proc fs iterator */
3721 afinfo = pde_data(inode: file_inode(f: seq->file));
3722 return afinfo->family;
3723}
3724
3725const struct seq_operations udp_seq_ops = {
3726 .start = udp_seq_start,
3727 .next = udp_seq_next,
3728 .stop = udp_seq_stop,
3729 .show = udp4_seq_show,
3730};
3731EXPORT_IPV6_MOD(udp_seq_ops);
3732
3733static struct udp_seq_afinfo udp4_seq_afinfo = {
3734 .family = AF_INET,
3735 .udp_table = NULL,
3736};
3737
3738static int __net_init udp4_proc_init_net(struct net *net)
3739{
3740 if (!proc_create_net_data(name: "udp", mode: 0444, parent: net->proc_net, ops: &udp_seq_ops,
3741 state_size: sizeof(struct udp_iter_state), data: &udp4_seq_afinfo))
3742 return -ENOMEM;
3743 return 0;
3744}
3745
3746static void __net_exit udp4_proc_exit_net(struct net *net)
3747{
3748 remove_proc_entry("udp", net->proc_net);
3749}
3750
3751static struct pernet_operations udp4_net_ops = {
3752 .init = udp4_proc_init_net,
3753 .exit = udp4_proc_exit_net,
3754};
3755
3756int __init udp4_proc_init(void)
3757{
3758 return register_pernet_subsys(&udp4_net_ops);
3759}
3760
3761void udp4_proc_exit(void)
3762{
3763 unregister_pernet_subsys(&udp4_net_ops);
3764}
3765#endif /* CONFIG_PROC_FS */
3766
3767static __initdata unsigned long uhash_entries;
3768static int __init set_uhash_entries(char *str)
3769{
3770 ssize_t ret;
3771
3772 if (!str)
3773 return 0;
3774
3775 ret = kstrtoul(s: str, base: 0, res: &uhash_entries);
3776 if (ret)
3777 return 0;
3778
3779 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3780 uhash_entries = UDP_HTABLE_SIZE_MIN;
3781 return 1;
3782}
3783__setup("uhash_entries=", set_uhash_entries);
3784
3785void __init udp_table_init(struct udp_table *table, const char *name)
3786{
3787 unsigned int i, slot_size;
3788
3789 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3790 udp_hash4_slot_size();
3791 table->hash = alloc_large_system_hash(tablename: name,
3792 bucketsize: slot_size,
3793 numentries: uhash_entries,
3794 scale: 21, /* one slot per 2 MB */
3795 flags: 0,
3796 hash_shift: &table->log,
3797 hash_mask: &table->mask,
3798 UDP_HTABLE_SIZE_MIN,
3799 UDP_HTABLE_SIZE_MAX);
3800
3801 table->hash2 = (void *)(table->hash + (table->mask + 1));
3802 for (i = 0; i <= table->mask; i++) {
3803 INIT_HLIST_HEAD(&table->hash[i].head);
3804 table->hash[i].count = 0;
3805 spin_lock_init(&table->hash[i].lock);
3806 }
3807 for (i = 0; i <= table->mask; i++) {
3808 INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3809 table->hash2[i].hslot.count = 0;
3810 spin_lock_init(&table->hash2[i].hslot.lock);
3811 }
3812 udp_table_hash4_init(table);
3813}
3814
3815u32 udp_flow_hashrnd(void)
3816{
3817 static u32 hashrnd __read_mostly;
3818
3819 net_get_random_once(&hashrnd, sizeof(hashrnd));
3820
3821 return hashrnd;
3822}
3823EXPORT_SYMBOL(udp_flow_hashrnd);
3824
3825static void __net_init udp_sysctl_init(struct net *net)
3826{
3827 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3828 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3829
3830#ifdef CONFIG_NET_L3_MASTER_DEV
3831 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3832#endif
3833}
3834
3835static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3836{
3837 struct udp_table *udptable;
3838 unsigned int slot_size;
3839 int i;
3840
3841 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3842 if (!udptable)
3843 goto out;
3844
3845 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3846 udp_hash4_slot_size();
3847 udptable->hash = vmalloc_huge(size: hash_entries * slot_size,
3848 GFP_KERNEL_ACCOUNT);
3849 if (!udptable->hash)
3850 goto free_table;
3851
3852 udptable->hash2 = (void *)(udptable->hash + hash_entries);
3853 udptable->mask = hash_entries - 1;
3854 udptable->log = ilog2(hash_entries);
3855
3856 for (i = 0; i < hash_entries; i++) {
3857 INIT_HLIST_HEAD(&udptable->hash[i].head);
3858 udptable->hash[i].count = 0;
3859 spin_lock_init(&udptable->hash[i].lock);
3860
3861 INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3862 udptable->hash2[i].hslot.count = 0;
3863 spin_lock_init(&udptable->hash2[i].hslot.lock);
3864 }
3865 udp_table_hash4_init(table: udptable);
3866
3867 return udptable;
3868
3869free_table:
3870 kfree(objp: udptable);
3871out:
3872 return NULL;
3873}
3874
3875static void __net_exit udp_pernet_table_free(struct net *net)
3876{
3877 struct udp_table *udptable = net->ipv4.udp_table;
3878
3879 if (udptable == &udp_table)
3880 return;
3881
3882 kvfree(addr: udptable->hash);
3883 kfree(objp: udptable);
3884}
3885
3886static void __net_init udp_set_table(struct net *net)
3887{
3888 struct udp_table *udptable;
3889 unsigned int hash_entries;
3890 struct net *old_net;
3891
3892 if (net_eq(net1: net, net2: &init_net))
3893 goto fallback;
3894
3895 old_net = current->nsproxy->net_ns;
3896 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3897 if (!hash_entries)
3898 goto fallback;
3899
3900 /* Set min to keep the bitmap on stack in udp_lib_get_port() */
3901 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3902 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3903 else
3904 hash_entries = roundup_pow_of_two(hash_entries);
3905
3906 udptable = udp_pernet_table_alloc(hash_entries);
3907 if (udptable) {
3908 net->ipv4.udp_table = udptable;
3909 } else {
3910 pr_warn("Failed to allocate UDP hash table (entries: %u) "
3911 "for a netns, fallback to the global one\n",
3912 hash_entries);
3913fallback:
3914 net->ipv4.udp_table = &udp_table;
3915 }
3916}
3917
3918static int __net_init udp_pernet_init(struct net *net)
3919{
3920#if IS_ENABLED(CONFIG_NET_UDP_TUNNEL)
3921 int i;
3922
3923 /* No tunnel is configured */
3924 for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) {
3925 INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list);
3926 RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL);
3927 }
3928#endif
3929 udp_sysctl_init(net);
3930 udp_set_table(net);
3931
3932 return 0;
3933}
3934
3935static void __net_exit udp_pernet_exit(struct net *net)
3936{
3937 udp_pernet_table_free(net);
3938}
3939
3940static struct pernet_operations __net_initdata udp_sysctl_ops = {
3941 .init = udp_pernet_init,
3942 .exit = udp_pernet_exit,
3943};
3944
3945#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3946DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3947 struct udp_sock *udp_sk, uid_t uid, int bucket)
3948
3949static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3950 unsigned int new_batch_sz, gfp_t flags)
3951{
3952 union bpf_udp_iter_batch_item *new_batch;
3953
3954 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3955 flags | __GFP_NOWARN);
3956 if (!new_batch)
3957 return -ENOMEM;
3958
3959 if (flags != GFP_NOWAIT)
3960 bpf_iter_udp_put_batch(iter);
3961
3962 memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk);
3963 kvfree(iter->batch);
3964 iter->batch = new_batch;
3965 iter->max_sk = new_batch_sz;
3966
3967 return 0;
3968}
3969
3970#define INIT_BATCH_SZ 16
3971
3972static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3973{
3974 struct bpf_udp_iter_state *iter = priv_data;
3975 int ret;
3976
3977 ret = bpf_iter_init_seq_net(priv_data, aux);
3978 if (ret)
3979 return ret;
3980
3981 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER);
3982 if (ret)
3983 bpf_iter_fini_seq_net(priv_data);
3984
3985 iter->state.bucket = -1;
3986
3987 return ret;
3988}
3989
3990static void bpf_iter_fini_udp(void *priv_data)
3991{
3992 struct bpf_udp_iter_state *iter = priv_data;
3993
3994 bpf_iter_fini_seq_net(priv_data);
3995 kvfree(iter->batch);
3996}
3997
3998static const struct bpf_iter_seq_info udp_seq_info = {
3999 .seq_ops = &bpf_iter_udp_seq_ops,
4000 .init_seq_private = bpf_iter_init_udp,
4001 .fini_seq_private = bpf_iter_fini_udp,
4002 .seq_priv_size = sizeof(struct bpf_udp_iter_state),
4003};
4004
4005static struct bpf_iter_reg udp_reg_info = {
4006 .target = "udp",
4007 .ctx_arg_info_size = 1,
4008 .ctx_arg_info = {
4009 { offsetof(struct bpf_iter__udp, udp_sk),
4010 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
4011 },
4012 .seq_info = &udp_seq_info,
4013};
4014
4015static void __init bpf_iter_register(void)
4016{
4017 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
4018 if (bpf_iter_reg_target(&udp_reg_info))
4019 pr_warn("Warning: could not register bpf iterator udp\n");
4020}
4021#endif
4022
4023void __init udp_init(void)
4024{
4025 unsigned long limit;
4026
4027 udp_table_init(table: &udp_table, name: "UDP");
4028 limit = nr_free_buffer_pages() / 8;
4029 limit = max(limit, 128UL);
4030 sysctl_udp_mem[0] = limit / 4 * 3;
4031 sysctl_udp_mem[1] = limit;
4032 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
4033
4034 if (register_pernet_subsys(&udp_sysctl_ops))
4035 panic(fmt: "UDP: failed to init sysctl parameters.\n");
4036
4037#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
4038 bpf_iter_register();
4039#endif
4040}
4041