| 1 | // SPDX-License-Identifier: MIT |
| 2 | /* |
| 3 | * Copyright © 2014 Intel Corporation |
| 4 | */ |
| 5 | |
| 6 | #include <linux/circ_buf.h> |
| 7 | |
| 8 | #include "gem/i915_gem_context.h" |
| 9 | #include "gem/i915_gem_lmem.h" |
| 10 | #include "gt/gen8_engine_cs.h" |
| 11 | #include "gt/intel_breadcrumbs.h" |
| 12 | #include "gt/intel_context.h" |
| 13 | #include "gt/intel_engine_heartbeat.h" |
| 14 | #include "gt/intel_engine_pm.h" |
| 15 | #include "gt/intel_engine_regs.h" |
| 16 | #include "gt/intel_gpu_commands.h" |
| 17 | #include "gt/intel_gt.h" |
| 18 | #include "gt/intel_gt_clock_utils.h" |
| 19 | #include "gt/intel_gt_irq.h" |
| 20 | #include "gt/intel_gt_pm.h" |
| 21 | #include "gt/intel_gt_regs.h" |
| 22 | #include "gt/intel_gt_requests.h" |
| 23 | #include "gt/intel_lrc.h" |
| 24 | #include "gt/intel_lrc_reg.h" |
| 25 | #include "gt/intel_mocs.h" |
| 26 | #include "gt/intel_ring.h" |
| 27 | |
| 28 | #include "i915_drv.h" |
| 29 | #include "i915_irq.h" |
| 30 | #include "i915_reg.h" |
| 31 | #include "i915_trace.h" |
| 32 | #include "i915_wait_util.h" |
| 33 | #include "intel_guc_ads.h" |
| 34 | #include "intel_guc_capture.h" |
| 35 | #include "intel_guc_print.h" |
| 36 | #include "intel_guc_submission.h" |
| 37 | |
| 38 | /** |
| 39 | * DOC: GuC-based command submission |
| 40 | * |
| 41 | * The Scratch registers: |
| 42 | * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes |
| 43 | * a value to the action register (SOFT_SCRATCH_0) along with any data. It then |
| 44 | * triggers an interrupt on the GuC via another register write (0xC4C8). |
| 45 | * Firmware writes a success/fail code back to the action register after |
| 46 | * processes the request. The kernel driver polls waiting for this update and |
| 47 | * then proceeds. |
| 48 | * |
| 49 | * Command Transport buffers (CTBs): |
| 50 | * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host |
| 51 | * - G2H) are a message interface between the i915 and GuC. |
| 52 | * |
| 53 | * Context registration: |
| 54 | * Before a context can be submitted it must be registered with the GuC via a |
| 55 | * H2G. A unique guc_id is associated with each context. The context is either |
| 56 | * registered at request creation time (normal operation) or at submission time |
| 57 | * (abnormal operation, e.g. after a reset). |
| 58 | * |
| 59 | * Context submission: |
| 60 | * The i915 updates the LRC tail value in memory. The i915 must enable the |
| 61 | * scheduling of the context within the GuC for the GuC to actually consider it. |
| 62 | * Therefore, the first time a disabled context is submitted we use a schedule |
| 63 | * enable H2G, while follow up submissions are done via the context submit H2G, |
| 64 | * which informs the GuC that a previously enabled context has new work |
| 65 | * available. |
| 66 | * |
| 67 | * Context unpin: |
| 68 | * To unpin a context a H2G is used to disable scheduling. When the |
| 69 | * corresponding G2H returns indicating the scheduling disable operation has |
| 70 | * completed it is safe to unpin the context. While a disable is in flight it |
| 71 | * isn't safe to resubmit the context so a fence is used to stall all future |
| 72 | * requests of that context until the G2H is returned. Because this interaction |
| 73 | * with the GuC takes a non-zero amount of time we delay the disabling of |
| 74 | * scheduling after the pin count goes to zero by a configurable period of time |
| 75 | * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of |
| 76 | * time to resubmit something on the context before doing this costly operation. |
| 77 | * This delay is only done if the context isn't closed and the guc_id usage is |
| 78 | * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD). |
| 79 | * |
| 80 | * Context deregistration: |
| 81 | * Before a context can be destroyed or if we steal its guc_id we must |
| 82 | * deregister the context with the GuC via H2G. If stealing the guc_id it isn't |
| 83 | * safe to submit anything to this guc_id until the deregister completes so a |
| 84 | * fence is used to stall all requests associated with this guc_id until the |
| 85 | * corresponding G2H returns indicating the guc_id has been deregistered. |
| 86 | * |
| 87 | * submission_state.guc_ids: |
| 88 | * Unique number associated with private GuC context data passed in during |
| 89 | * context registration / submission / deregistration. 64k available. Simple ida |
| 90 | * is used for allocation. |
| 91 | * |
| 92 | * Stealing guc_ids: |
| 93 | * If no guc_ids are available they can be stolen from another context at |
| 94 | * request creation time if that context is unpinned. If a guc_id can't be found |
| 95 | * we punt this problem to the user as we believe this is near impossible to hit |
| 96 | * during normal use cases. |
| 97 | * |
| 98 | * Locking: |
| 99 | * In the GuC submission code we have 3 basic spin locks which protect |
| 100 | * everything. Details about each below. |
| 101 | * |
| 102 | * sched_engine->lock |
| 103 | * This is the submission lock for all contexts that share an i915 schedule |
| 104 | * engine (sched_engine), thus only one of the contexts which share a |
| 105 | * sched_engine can be submitting at a time. Currently only one sched_engine is |
| 106 | * used for all of GuC submission but that could change in the future. |
| 107 | * |
| 108 | * guc->submission_state.lock |
| 109 | * Global lock for GuC submission state. Protects guc_ids and destroyed contexts |
| 110 | * list. |
| 111 | * |
| 112 | * ce->guc_state.lock |
| 113 | * Protects everything under ce->guc_state. Ensures that a context is in the |
| 114 | * correct state before issuing a H2G. e.g. We don't issue a schedule disable |
| 115 | * on a disabled context (bad idea), we don't issue a schedule enable when a |
| 116 | * schedule disable is in flight, etc... Also protects list of inflight requests |
| 117 | * on the context and the priority management state. Lock is individual to each |
| 118 | * context. |
| 119 | * |
| 120 | * Lock ordering rules: |
| 121 | * sched_engine->lock -> ce->guc_state.lock |
| 122 | * guc->submission_state.lock -> ce->guc_state.lock |
| 123 | * |
| 124 | * Reset races: |
| 125 | * When a full GT reset is triggered it is assumed that some G2H responses to |
| 126 | * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be |
| 127 | * fatal as we do certain operations upon receiving a G2H (e.g. destroy |
| 128 | * contexts, release guc_ids, etc...). When this occurs we can scrub the |
| 129 | * context state and cleanup appropriately, however this is quite racey. |
| 130 | * To avoid races, the reset code must disable submission before scrubbing for |
| 131 | * the missing G2H, while the submission code must check for submission being |
| 132 | * disabled and skip sending H2Gs and updating context states when it is. Both |
| 133 | * sides must also make sure to hold the relevant locks. |
| 134 | */ |
| 135 | |
| 136 | /* GuC Virtual Engine */ |
| 137 | struct guc_virtual_engine { |
| 138 | struct intel_engine_cs base; |
| 139 | struct intel_context context; |
| 140 | }; |
| 141 | |
| 142 | static struct intel_context * |
| 143 | guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, |
| 144 | unsigned long flags); |
| 145 | |
| 146 | static struct intel_context * |
| 147 | guc_create_parallel(struct intel_engine_cs **engines, |
| 148 | unsigned int num_siblings, |
| 149 | unsigned int width); |
| 150 | |
| 151 | #define GUC_REQUEST_SIZE 64 /* bytes */ |
| 152 | |
| 153 | /* |
| 154 | * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous |
| 155 | * per the GuC submission interface. A different allocation algorithm is used |
| 156 | * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to |
| 157 | * partition the guc_id space. We believe the number of multi-lrc contexts in |
| 158 | * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for |
| 159 | * multi-lrc. |
| 160 | */ |
| 161 | #define NUMBER_MULTI_LRC_GUC_ID(guc) \ |
| 162 | ((guc)->submission_state.num_guc_ids / 16) |
| 163 | |
| 164 | /* |
| 165 | * Below is a set of functions which control the GuC scheduling state which |
| 166 | * require a lock. |
| 167 | */ |
| 168 | #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) |
| 169 | #define SCHED_STATE_DESTROYED BIT(1) |
| 170 | #define SCHED_STATE_PENDING_DISABLE BIT(2) |
| 171 | #define SCHED_STATE_BANNED BIT(3) |
| 172 | #define SCHED_STATE_ENABLED BIT(4) |
| 173 | #define SCHED_STATE_PENDING_ENABLE BIT(5) |
| 174 | #define SCHED_STATE_REGISTERED BIT(6) |
| 175 | #define SCHED_STATE_POLICY_REQUIRED BIT(7) |
| 176 | #define SCHED_STATE_CLOSED BIT(8) |
| 177 | #define SCHED_STATE_BLOCKED_SHIFT 9 |
| 178 | #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) |
| 179 | #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) |
| 180 | |
| 181 | static inline void init_sched_state(struct intel_context *ce) |
| 182 | { |
| 183 | lockdep_assert_held(&ce->guc_state.lock); |
| 184 | ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; |
| 185 | } |
| 186 | |
| 187 | /* |
| 188 | * Kernel contexts can have SCHED_STATE_REGISTERED after suspend. |
| 189 | * A context close can race with the submission path, so SCHED_STATE_CLOSED |
| 190 | * can be set immediately before we try to register. |
| 191 | */ |
| 192 | #define SCHED_STATE_VALID_INIT \ |
| 193 | (SCHED_STATE_BLOCKED_MASK | \ |
| 194 | SCHED_STATE_CLOSED | \ |
| 195 | SCHED_STATE_REGISTERED) |
| 196 | |
| 197 | __maybe_unused |
| 198 | static bool sched_state_is_init(struct intel_context *ce) |
| 199 | { |
| 200 | return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT); |
| 201 | } |
| 202 | |
| 203 | static inline bool |
| 204 | context_wait_for_deregister_to_register(struct intel_context *ce) |
| 205 | { |
| 206 | return ce->guc_state.sched_state & |
| 207 | SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; |
| 208 | } |
| 209 | |
| 210 | static inline void |
| 211 | set_context_wait_for_deregister_to_register(struct intel_context *ce) |
| 212 | { |
| 213 | lockdep_assert_held(&ce->guc_state.lock); |
| 214 | ce->guc_state.sched_state |= |
| 215 | SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; |
| 216 | } |
| 217 | |
| 218 | static inline void |
| 219 | clr_context_wait_for_deregister_to_register(struct intel_context *ce) |
| 220 | { |
| 221 | lockdep_assert_held(&ce->guc_state.lock); |
| 222 | ce->guc_state.sched_state &= |
| 223 | ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; |
| 224 | } |
| 225 | |
| 226 | static inline bool |
| 227 | context_destroyed(struct intel_context *ce) |
| 228 | { |
| 229 | return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; |
| 230 | } |
| 231 | |
| 232 | static inline void |
| 233 | set_context_destroyed(struct intel_context *ce) |
| 234 | { |
| 235 | lockdep_assert_held(&ce->guc_state.lock); |
| 236 | ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; |
| 237 | } |
| 238 | |
| 239 | static inline void |
| 240 | clr_context_destroyed(struct intel_context *ce) |
| 241 | { |
| 242 | lockdep_assert_held(&ce->guc_state.lock); |
| 243 | ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED; |
| 244 | } |
| 245 | |
| 246 | static inline bool context_pending_disable(struct intel_context *ce) |
| 247 | { |
| 248 | return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; |
| 249 | } |
| 250 | |
| 251 | static inline void set_context_pending_disable(struct intel_context *ce) |
| 252 | { |
| 253 | lockdep_assert_held(&ce->guc_state.lock); |
| 254 | ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; |
| 255 | } |
| 256 | |
| 257 | static inline void clr_context_pending_disable(struct intel_context *ce) |
| 258 | { |
| 259 | lockdep_assert_held(&ce->guc_state.lock); |
| 260 | ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; |
| 261 | } |
| 262 | |
| 263 | static inline bool context_banned(struct intel_context *ce) |
| 264 | { |
| 265 | return ce->guc_state.sched_state & SCHED_STATE_BANNED; |
| 266 | } |
| 267 | |
| 268 | static inline void set_context_banned(struct intel_context *ce) |
| 269 | { |
| 270 | lockdep_assert_held(&ce->guc_state.lock); |
| 271 | ce->guc_state.sched_state |= SCHED_STATE_BANNED; |
| 272 | } |
| 273 | |
| 274 | static inline void clr_context_banned(struct intel_context *ce) |
| 275 | { |
| 276 | lockdep_assert_held(&ce->guc_state.lock); |
| 277 | ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; |
| 278 | } |
| 279 | |
| 280 | static inline bool context_enabled(struct intel_context *ce) |
| 281 | { |
| 282 | return ce->guc_state.sched_state & SCHED_STATE_ENABLED; |
| 283 | } |
| 284 | |
| 285 | static inline void set_context_enabled(struct intel_context *ce) |
| 286 | { |
| 287 | lockdep_assert_held(&ce->guc_state.lock); |
| 288 | ce->guc_state.sched_state |= SCHED_STATE_ENABLED; |
| 289 | } |
| 290 | |
| 291 | static inline void clr_context_enabled(struct intel_context *ce) |
| 292 | { |
| 293 | lockdep_assert_held(&ce->guc_state.lock); |
| 294 | ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; |
| 295 | } |
| 296 | |
| 297 | static inline bool context_pending_enable(struct intel_context *ce) |
| 298 | { |
| 299 | return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; |
| 300 | } |
| 301 | |
| 302 | static inline void set_context_pending_enable(struct intel_context *ce) |
| 303 | { |
| 304 | lockdep_assert_held(&ce->guc_state.lock); |
| 305 | ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; |
| 306 | } |
| 307 | |
| 308 | static inline void clr_context_pending_enable(struct intel_context *ce) |
| 309 | { |
| 310 | lockdep_assert_held(&ce->guc_state.lock); |
| 311 | ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; |
| 312 | } |
| 313 | |
| 314 | static inline bool context_registered(struct intel_context *ce) |
| 315 | { |
| 316 | return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; |
| 317 | } |
| 318 | |
| 319 | static inline void set_context_registered(struct intel_context *ce) |
| 320 | { |
| 321 | lockdep_assert_held(&ce->guc_state.lock); |
| 322 | ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; |
| 323 | } |
| 324 | |
| 325 | static inline void clr_context_registered(struct intel_context *ce) |
| 326 | { |
| 327 | lockdep_assert_held(&ce->guc_state.lock); |
| 328 | ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; |
| 329 | } |
| 330 | |
| 331 | static inline bool context_policy_required(struct intel_context *ce) |
| 332 | { |
| 333 | return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; |
| 334 | } |
| 335 | |
| 336 | static inline void set_context_policy_required(struct intel_context *ce) |
| 337 | { |
| 338 | lockdep_assert_held(&ce->guc_state.lock); |
| 339 | ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; |
| 340 | } |
| 341 | |
| 342 | static inline void clr_context_policy_required(struct intel_context *ce) |
| 343 | { |
| 344 | lockdep_assert_held(&ce->guc_state.lock); |
| 345 | ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; |
| 346 | } |
| 347 | |
| 348 | static inline bool context_close_done(struct intel_context *ce) |
| 349 | { |
| 350 | return ce->guc_state.sched_state & SCHED_STATE_CLOSED; |
| 351 | } |
| 352 | |
| 353 | static inline void set_context_close_done(struct intel_context *ce) |
| 354 | { |
| 355 | lockdep_assert_held(&ce->guc_state.lock); |
| 356 | ce->guc_state.sched_state |= SCHED_STATE_CLOSED; |
| 357 | } |
| 358 | |
| 359 | static inline u32 context_blocked(struct intel_context *ce) |
| 360 | { |
| 361 | return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> |
| 362 | SCHED_STATE_BLOCKED_SHIFT; |
| 363 | } |
| 364 | |
| 365 | static inline void incr_context_blocked(struct intel_context *ce) |
| 366 | { |
| 367 | lockdep_assert_held(&ce->guc_state.lock); |
| 368 | |
| 369 | ce->guc_state.sched_state += SCHED_STATE_BLOCKED; |
| 370 | |
| 371 | GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ |
| 372 | } |
| 373 | |
| 374 | static inline void decr_context_blocked(struct intel_context *ce) |
| 375 | { |
| 376 | lockdep_assert_held(&ce->guc_state.lock); |
| 377 | |
| 378 | GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ |
| 379 | |
| 380 | ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; |
| 381 | } |
| 382 | |
| 383 | static struct intel_context * |
| 384 | request_to_scheduling_context(struct i915_request *rq) |
| 385 | { |
| 386 | return intel_context_to_parent(ce: rq->context); |
| 387 | } |
| 388 | |
| 389 | static inline bool context_guc_id_invalid(struct intel_context *ce) |
| 390 | { |
| 391 | return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; |
| 392 | } |
| 393 | |
| 394 | static inline void set_context_guc_id_invalid(struct intel_context *ce) |
| 395 | { |
| 396 | ce->guc_id.id = GUC_INVALID_CONTEXT_ID; |
| 397 | } |
| 398 | |
| 399 | static inline struct intel_guc *ce_to_guc(struct intel_context *ce) |
| 400 | { |
| 401 | return gt_to_guc(gt: ce->engine->gt); |
| 402 | } |
| 403 | |
| 404 | static inline struct i915_priolist *to_priolist(struct rb_node *rb) |
| 405 | { |
| 406 | return rb_entry(rb, struct i915_priolist, node); |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * When using multi-lrc submission a scratch memory area is reserved in the |
| 411 | * parent's context state for the process descriptor, work queue, and handshake |
| 412 | * between the parent + children contexts to insert safe preemption points |
| 413 | * between each of the BBs. Currently the scratch area is sized to a page. |
| 414 | * |
| 415 | * The layout of this scratch area is below: |
| 416 | * 0 guc_process_desc |
| 417 | * + sizeof(struct guc_process_desc) child go |
| 418 | * + CACHELINE_BYTES child join[0] |
| 419 | * ... |
| 420 | * + CACHELINE_BYTES child join[n - 1] |
| 421 | * ... unused |
| 422 | * PARENT_SCRATCH_SIZE / 2 work queue start |
| 423 | * ... work queue |
| 424 | * PARENT_SCRATCH_SIZE - 1 work queue end |
| 425 | */ |
| 426 | #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) |
| 427 | #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) |
| 428 | |
| 429 | struct sync_semaphore { |
| 430 | u32 semaphore; |
| 431 | u8 unused[CACHELINE_BYTES - sizeof(u32)]; |
| 432 | }; |
| 433 | |
| 434 | struct parent_scratch { |
| 435 | union guc_descs { |
| 436 | struct guc_sched_wq_desc wq_desc; |
| 437 | struct guc_process_desc_v69 pdesc; |
| 438 | } descs; |
| 439 | |
| 440 | struct sync_semaphore go; |
| 441 | struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; |
| 442 | |
| 443 | u8 unused[WQ_OFFSET - sizeof(union guc_descs) - |
| 444 | sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; |
| 445 | |
| 446 | u32 wq[WQ_SIZE / sizeof(u32)]; |
| 447 | }; |
| 448 | |
| 449 | static u32 __get_parent_scratch_offset(struct intel_context *ce) |
| 450 | { |
| 451 | GEM_BUG_ON(!ce->parallel.guc.parent_page); |
| 452 | |
| 453 | return ce->parallel.guc.parent_page * PAGE_SIZE; |
| 454 | } |
| 455 | |
| 456 | static u32 __get_wq_offset(struct intel_context *ce) |
| 457 | { |
| 458 | BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); |
| 459 | |
| 460 | return __get_parent_scratch_offset(ce) + WQ_OFFSET; |
| 461 | } |
| 462 | |
| 463 | static struct parent_scratch * |
| 464 | __get_parent_scratch(struct intel_context *ce) |
| 465 | { |
| 466 | BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); |
| 467 | BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); |
| 468 | |
| 469 | /* |
| 470 | * Need to subtract LRC_STATE_OFFSET here as the |
| 471 | * parallel.guc.parent_page is the offset into ce->state while |
| 472 | * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. |
| 473 | */ |
| 474 | return (struct parent_scratch *) |
| 475 | (ce->lrc_reg_state + |
| 476 | ((__get_parent_scratch_offset(ce) - |
| 477 | LRC_STATE_OFFSET) / sizeof(u32))); |
| 478 | } |
| 479 | |
| 480 | static struct guc_process_desc_v69 * |
| 481 | __get_process_desc_v69(struct intel_context *ce) |
| 482 | { |
| 483 | struct parent_scratch *ps = __get_parent_scratch(ce); |
| 484 | |
| 485 | return &ps->descs.pdesc; |
| 486 | } |
| 487 | |
| 488 | static struct guc_sched_wq_desc * |
| 489 | __get_wq_desc_v70(struct intel_context *ce) |
| 490 | { |
| 491 | struct parent_scratch *ps = __get_parent_scratch(ce); |
| 492 | |
| 493 | return &ps->descs.wq_desc; |
| 494 | } |
| 495 | |
| 496 | static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) |
| 497 | { |
| 498 | /* |
| 499 | * Check for space in work queue. Caching a value of head pointer in |
| 500 | * intel_context structure in order reduce the number accesses to shared |
| 501 | * GPU memory which may be across a PCIe bus. |
| 502 | */ |
| 503 | #define AVAILABLE_SPACE \ |
| 504 | CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) |
| 505 | if (wqi_size > AVAILABLE_SPACE) { |
| 506 | ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); |
| 507 | |
| 508 | if (wqi_size > AVAILABLE_SPACE) |
| 509 | return NULL; |
| 510 | } |
| 511 | #undef AVAILABLE_SPACE |
| 512 | |
| 513 | return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; |
| 514 | } |
| 515 | |
| 516 | static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) |
| 517 | { |
| 518 | struct intel_context *ce = xa_load(&guc->context_lookup, index: id); |
| 519 | |
| 520 | GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); |
| 521 | |
| 522 | return ce; |
| 523 | } |
| 524 | |
| 525 | static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) |
| 526 | { |
| 527 | struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; |
| 528 | |
| 529 | if (!base) |
| 530 | return NULL; |
| 531 | |
| 532 | GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); |
| 533 | |
| 534 | return &base[index]; |
| 535 | } |
| 536 | |
| 537 | static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) |
| 538 | { |
| 539 | u32 size; |
| 540 | int ret; |
| 541 | |
| 542 | size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * |
| 543 | GUC_MAX_CONTEXT_ID); |
| 544 | ret = intel_guc_allocate_and_map_vma(guc, size, out_vma: &guc->lrc_desc_pool_v69, |
| 545 | out_vaddr: (void **)&guc->lrc_desc_pool_vaddr_v69); |
| 546 | if (ret) |
| 547 | return ret; |
| 548 | |
| 549 | return 0; |
| 550 | } |
| 551 | |
| 552 | static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) |
| 553 | { |
| 554 | if (!guc->lrc_desc_pool_vaddr_v69) |
| 555 | return; |
| 556 | |
| 557 | guc->lrc_desc_pool_vaddr_v69 = NULL; |
| 558 | i915_vma_unpin_and_release(p_vma: &guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); |
| 559 | } |
| 560 | |
| 561 | static inline bool guc_submission_initialized(struct intel_guc *guc) |
| 562 | { |
| 563 | return guc->submission_initialized; |
| 564 | } |
| 565 | |
| 566 | static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) |
| 567 | { |
| 568 | struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, index: id); |
| 569 | |
| 570 | if (desc) |
| 571 | memset(s: desc, c: 0, n: sizeof(*desc)); |
| 572 | } |
| 573 | |
| 574 | static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) |
| 575 | { |
| 576 | return __get_context(guc, id); |
| 577 | } |
| 578 | |
| 579 | static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, |
| 580 | struct intel_context *ce) |
| 581 | { |
| 582 | unsigned long flags; |
| 583 | |
| 584 | /* |
| 585 | * xarray API doesn't have xa_save_irqsave wrapper, so calling the |
| 586 | * lower level functions directly. |
| 587 | */ |
| 588 | xa_lock_irqsave(&guc->context_lookup, flags); |
| 589 | __xa_store(&guc->context_lookup, index: id, entry: ce, GFP_ATOMIC); |
| 590 | xa_unlock_irqrestore(&guc->context_lookup, flags); |
| 591 | } |
| 592 | |
| 593 | static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) |
| 594 | { |
| 595 | unsigned long flags; |
| 596 | |
| 597 | if (unlikely(!guc_submission_initialized(guc))) |
| 598 | return; |
| 599 | |
| 600 | _reset_lrc_desc_v69(guc, id); |
| 601 | |
| 602 | /* |
| 603 | * xarray API doesn't have xa_erase_irqsave wrapper, so calling |
| 604 | * the lower level functions directly. |
| 605 | */ |
| 606 | xa_lock_irqsave(&guc->context_lookup, flags); |
| 607 | __xa_erase(&guc->context_lookup, index: id); |
| 608 | xa_unlock_irqrestore(&guc->context_lookup, flags); |
| 609 | } |
| 610 | |
| 611 | static void decr_outstanding_submission_g2h(struct intel_guc *guc) |
| 612 | { |
| 613 | if (atomic_dec_and_test(v: &guc->outstanding_submission_g2h)) |
| 614 | wake_up_all(&guc->ct.wq); |
| 615 | } |
| 616 | |
| 617 | static int guc_submission_send_busy_loop(struct intel_guc *guc, |
| 618 | const u32 *action, |
| 619 | u32 len, |
| 620 | u32 g2h_len_dw, |
| 621 | bool loop) |
| 622 | { |
| 623 | int ret; |
| 624 | |
| 625 | /* |
| 626 | * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), |
| 627 | * so we don't handle the case where we don't get a reply because we |
| 628 | * aborted the send due to the channel being busy. |
| 629 | */ |
| 630 | GEM_BUG_ON(g2h_len_dw && !loop); |
| 631 | |
| 632 | if (g2h_len_dw) |
| 633 | atomic_inc(v: &guc->outstanding_submission_g2h); |
| 634 | |
| 635 | ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); |
| 636 | if (ret && g2h_len_dw) |
| 637 | atomic_dec(v: &guc->outstanding_submission_g2h); |
| 638 | |
| 639 | return ret; |
| 640 | } |
| 641 | |
| 642 | int intel_guc_wait_for_pending_msg(struct intel_guc *guc, |
| 643 | atomic_t *wait_var, |
| 644 | bool interruptible, |
| 645 | long timeout) |
| 646 | { |
| 647 | const int state = interruptible ? |
| 648 | TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; |
| 649 | DEFINE_WAIT(wait); |
| 650 | |
| 651 | might_sleep(); |
| 652 | GEM_BUG_ON(timeout < 0); |
| 653 | |
| 654 | if (!atomic_read(v: wait_var)) |
| 655 | return 0; |
| 656 | |
| 657 | if (!timeout) |
| 658 | return -ETIME; |
| 659 | |
| 660 | for (;;) { |
| 661 | prepare_to_wait(wq_head: &guc->ct.wq, wq_entry: &wait, state); |
| 662 | |
| 663 | if (!atomic_read(v: wait_var)) |
| 664 | break; |
| 665 | |
| 666 | if (signal_pending_state(state, current)) { |
| 667 | timeout = -EINTR; |
| 668 | break; |
| 669 | } |
| 670 | |
| 671 | if (!timeout) { |
| 672 | timeout = -ETIME; |
| 673 | break; |
| 674 | } |
| 675 | |
| 676 | timeout = io_schedule_timeout(timeout); |
| 677 | } |
| 678 | finish_wait(wq_head: &guc->ct.wq, wq_entry: &wait); |
| 679 | |
| 680 | return (timeout < 0) ? timeout : 0; |
| 681 | } |
| 682 | |
| 683 | int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) |
| 684 | { |
| 685 | if (!intel_uc_uses_guc_submission(uc: &guc_to_gt(guc)->uc)) |
| 686 | return 0; |
| 687 | |
| 688 | return intel_guc_wait_for_pending_msg(guc, |
| 689 | wait_var: &guc->outstanding_submission_g2h, |
| 690 | interruptible: true, timeout); |
| 691 | } |
| 692 | |
| 693 | static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); |
| 694 | static int try_context_registration(struct intel_context *ce, bool loop); |
| 695 | |
| 696 | static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) |
| 697 | { |
| 698 | int err = 0; |
| 699 | struct intel_context *ce = request_to_scheduling_context(rq); |
| 700 | u32 action[3]; |
| 701 | int len = 0; |
| 702 | u32 g2h_len_dw = 0; |
| 703 | bool enabled; |
| 704 | |
| 705 | lockdep_assert_held(&rq->engine->sched_engine->lock); |
| 706 | |
| 707 | /* |
| 708 | * Corner case where requests were sitting in the priority list or a |
| 709 | * request resubmitted after the context was banned. |
| 710 | */ |
| 711 | if (unlikely(!intel_context_is_schedulable(ce))) { |
| 712 | i915_request_put(rq: i915_request_mark_eio(rq)); |
| 713 | intel_engine_signal_breadcrumbs(engine: ce->engine); |
| 714 | return 0; |
| 715 | } |
| 716 | |
| 717 | GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); |
| 718 | GEM_BUG_ON(context_guc_id_invalid(ce)); |
| 719 | |
| 720 | if (context_policy_required(ce)) { |
| 721 | err = guc_context_policy_init_v70(ce, loop: false); |
| 722 | if (err) |
| 723 | return err; |
| 724 | } |
| 725 | |
| 726 | spin_lock(lock: &ce->guc_state.lock); |
| 727 | |
| 728 | /* |
| 729 | * The request / context will be run on the hardware when scheduling |
| 730 | * gets enabled in the unblock. For multi-lrc we still submit the |
| 731 | * context to move the LRC tails. |
| 732 | */ |
| 733 | if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) |
| 734 | goto out; |
| 735 | |
| 736 | enabled = context_enabled(ce) || context_blocked(ce); |
| 737 | |
| 738 | if (!enabled) { |
| 739 | action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; |
| 740 | action[len++] = ce->guc_id.id; |
| 741 | action[len++] = GUC_CONTEXT_ENABLE; |
| 742 | set_context_pending_enable(ce); |
| 743 | intel_context_get(ce); |
| 744 | g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; |
| 745 | } else { |
| 746 | action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; |
| 747 | action[len++] = ce->guc_id.id; |
| 748 | } |
| 749 | |
| 750 | err = intel_guc_send_nb(guc, action, len, g2h_len_dw); |
| 751 | if (!enabled && !err) { |
| 752 | trace_intel_context_sched_enable(ce); |
| 753 | atomic_inc(v: &guc->outstanding_submission_g2h); |
| 754 | set_context_enabled(ce); |
| 755 | |
| 756 | /* |
| 757 | * Without multi-lrc KMD does the submission step (moving the |
| 758 | * lrc tail) so enabling scheduling is sufficient to submit the |
| 759 | * context. This isn't the case in multi-lrc submission as the |
| 760 | * GuC needs to move the tails, hence the need for another H2G |
| 761 | * to submit a multi-lrc context after enabling scheduling. |
| 762 | */ |
| 763 | if (intel_context_is_parent(ce)) { |
| 764 | action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; |
| 765 | err = intel_guc_send_nb(guc, action, len: len - 1, g2h_len_dw: 0); |
| 766 | } |
| 767 | } else if (!enabled) { |
| 768 | clr_context_pending_enable(ce); |
| 769 | intel_context_put(ce); |
| 770 | } |
| 771 | if (likely(!err)) |
| 772 | trace_i915_request_guc_submit(rq); |
| 773 | |
| 774 | out: |
| 775 | spin_unlock(lock: &ce->guc_state.lock); |
| 776 | return err; |
| 777 | } |
| 778 | |
| 779 | static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) |
| 780 | { |
| 781 | int ret = __guc_add_request(guc, rq); |
| 782 | |
| 783 | if (unlikely(ret == -EBUSY)) { |
| 784 | guc->stalled_request = rq; |
| 785 | guc->submission_stall_reason = STALL_ADD_REQUEST; |
| 786 | } |
| 787 | |
| 788 | return ret; |
| 789 | } |
| 790 | |
| 791 | static inline void guc_set_lrc_tail(struct i915_request *rq) |
| 792 | { |
| 793 | rq->context->lrc_reg_state[CTX_RING_TAIL] = |
| 794 | intel_ring_set_tail(ring: rq->ring, tail: rq->tail); |
| 795 | } |
| 796 | |
| 797 | static inline int rq_prio(const struct i915_request *rq) |
| 798 | { |
| 799 | return rq->sched.attr.priority; |
| 800 | } |
| 801 | |
| 802 | static bool is_multi_lrc_rq(struct i915_request *rq) |
| 803 | { |
| 804 | return intel_context_is_parallel(ce: rq->context); |
| 805 | } |
| 806 | |
| 807 | static bool can_merge_rq(struct i915_request *rq, |
| 808 | struct i915_request *last) |
| 809 | { |
| 810 | return request_to_scheduling_context(rq) == |
| 811 | request_to_scheduling_context(rq: last); |
| 812 | } |
| 813 | |
| 814 | static u32 wq_space_until_wrap(struct intel_context *ce) |
| 815 | { |
| 816 | return (WQ_SIZE - ce->parallel.guc.wqi_tail); |
| 817 | } |
| 818 | |
| 819 | static void write_wqi(struct intel_context *ce, u32 wqi_size) |
| 820 | { |
| 821 | BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); |
| 822 | |
| 823 | /* |
| 824 | * Ensure WQI are visible before updating tail |
| 825 | */ |
| 826 | intel_guc_write_barrier(guc: ce_to_guc(ce)); |
| 827 | |
| 828 | ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & |
| 829 | (WQ_SIZE - 1); |
| 830 | WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); |
| 831 | } |
| 832 | |
| 833 | static int guc_wq_noop_append(struct intel_context *ce) |
| 834 | { |
| 835 | u32 *wqi = get_wq_pointer(ce, wqi_size: wq_space_until_wrap(ce)); |
| 836 | u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; |
| 837 | |
| 838 | if (!wqi) |
| 839 | return -EBUSY; |
| 840 | |
| 841 | GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); |
| 842 | |
| 843 | *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | |
| 844 | FIELD_PREP(WQ_LEN_MASK, len_dw); |
| 845 | ce->parallel.guc.wqi_tail = 0; |
| 846 | |
| 847 | return 0; |
| 848 | } |
| 849 | |
| 850 | static int __guc_wq_item_append(struct i915_request *rq) |
| 851 | { |
| 852 | struct intel_context *ce = request_to_scheduling_context(rq); |
| 853 | struct intel_context *child; |
| 854 | unsigned int wqi_size = (ce->parallel.number_children + 4) * |
| 855 | sizeof(u32); |
| 856 | u32 *wqi; |
| 857 | u32 len_dw = (wqi_size / sizeof(u32)) - 1; |
| 858 | int ret; |
| 859 | |
| 860 | /* Ensure context is in correct state updating work queue */ |
| 861 | GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); |
| 862 | GEM_BUG_ON(context_guc_id_invalid(ce)); |
| 863 | GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); |
| 864 | GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); |
| 865 | |
| 866 | /* Insert NOOP if this work queue item will wrap the tail pointer. */ |
| 867 | if (wqi_size > wq_space_until_wrap(ce)) { |
| 868 | ret = guc_wq_noop_append(ce); |
| 869 | if (ret) |
| 870 | return ret; |
| 871 | } |
| 872 | |
| 873 | wqi = get_wq_pointer(ce, wqi_size); |
| 874 | if (!wqi) |
| 875 | return -EBUSY; |
| 876 | |
| 877 | GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); |
| 878 | |
| 879 | *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | |
| 880 | FIELD_PREP(WQ_LEN_MASK, len_dw); |
| 881 | *wqi++ = ce->lrc.lrca; |
| 882 | *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | |
| 883 | FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); |
| 884 | *wqi++ = 0; /* fence_id */ |
| 885 | for_each_child(ce, child) |
| 886 | *wqi++ = child->ring->tail / sizeof(u64); |
| 887 | |
| 888 | write_wqi(ce, wqi_size); |
| 889 | |
| 890 | return 0; |
| 891 | } |
| 892 | |
| 893 | static int guc_wq_item_append(struct intel_guc *guc, |
| 894 | struct i915_request *rq) |
| 895 | { |
| 896 | struct intel_context *ce = request_to_scheduling_context(rq); |
| 897 | int ret; |
| 898 | |
| 899 | if (unlikely(!intel_context_is_schedulable(ce))) |
| 900 | return 0; |
| 901 | |
| 902 | ret = __guc_wq_item_append(rq); |
| 903 | if (unlikely(ret == -EBUSY)) { |
| 904 | guc->stalled_request = rq; |
| 905 | guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; |
| 906 | } |
| 907 | |
| 908 | return ret; |
| 909 | } |
| 910 | |
| 911 | static bool multi_lrc_submit(struct i915_request *rq) |
| 912 | { |
| 913 | struct intel_context *ce = request_to_scheduling_context(rq); |
| 914 | |
| 915 | intel_ring_set_tail(ring: rq->ring, tail: rq->tail); |
| 916 | |
| 917 | /* |
| 918 | * We expect the front end (execbuf IOCTL) to set this flag on the last |
| 919 | * request generated from a multi-BB submission. This indicates to the |
| 920 | * backend (GuC interface) that we should submit this context thus |
| 921 | * submitting all the requests generated in parallel. |
| 922 | */ |
| 923 | return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || |
| 924 | !intel_context_is_schedulable(ce); |
| 925 | } |
| 926 | |
| 927 | static int guc_dequeue_one_context(struct intel_guc *guc) |
| 928 | { |
| 929 | struct i915_sched_engine * const sched_engine = guc->sched_engine; |
| 930 | struct i915_request *last = NULL; |
| 931 | bool submit = false; |
| 932 | struct rb_node *rb; |
| 933 | int ret; |
| 934 | |
| 935 | lockdep_assert_held(&sched_engine->lock); |
| 936 | |
| 937 | if (guc->stalled_request) { |
| 938 | submit = true; |
| 939 | last = guc->stalled_request; |
| 940 | |
| 941 | switch (guc->submission_stall_reason) { |
| 942 | case STALL_REGISTER_CONTEXT: |
| 943 | goto register_context; |
| 944 | case STALL_MOVE_LRC_TAIL: |
| 945 | goto move_lrc_tail; |
| 946 | case STALL_ADD_REQUEST: |
| 947 | goto add_request; |
| 948 | default: |
| 949 | MISSING_CASE(guc->submission_stall_reason); |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | while ((rb = rb_first_cached(&sched_engine->queue))) { |
| 954 | struct i915_priolist *p = to_priolist(rb); |
| 955 | struct i915_request *rq, *rn; |
| 956 | |
| 957 | priolist_for_each_request_consume(rq, rn, p) { |
| 958 | if (last && !can_merge_rq(rq, last)) |
| 959 | goto register_context; |
| 960 | |
| 961 | list_del_init(entry: &rq->sched.link); |
| 962 | |
| 963 | __i915_request_submit(request: rq); |
| 964 | |
| 965 | trace_i915_request_in(rq, port: 0); |
| 966 | last = rq; |
| 967 | |
| 968 | if (is_multi_lrc_rq(rq)) { |
| 969 | /* |
| 970 | * We need to coalesce all multi-lrc requests in |
| 971 | * a relationship into a single H2G. We are |
| 972 | * guaranteed that all of these requests will be |
| 973 | * submitted sequentially. |
| 974 | */ |
| 975 | if (multi_lrc_submit(rq)) { |
| 976 | submit = true; |
| 977 | goto register_context; |
| 978 | } |
| 979 | } else { |
| 980 | submit = true; |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | rb_erase_cached(node: &p->node, root: &sched_engine->queue); |
| 985 | i915_priolist_free(p); |
| 986 | } |
| 987 | |
| 988 | register_context: |
| 989 | if (submit) { |
| 990 | struct intel_context *ce = request_to_scheduling_context(rq: last); |
| 991 | |
| 992 | if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && |
| 993 | intel_context_is_schedulable(ce))) { |
| 994 | ret = try_context_registration(ce, loop: false); |
| 995 | if (unlikely(ret == -EPIPE)) { |
| 996 | goto deadlk; |
| 997 | } else if (ret == -EBUSY) { |
| 998 | guc->stalled_request = last; |
| 999 | guc->submission_stall_reason = |
| 1000 | STALL_REGISTER_CONTEXT; |
| 1001 | goto schedule_tasklet; |
| 1002 | } else if (ret != 0) { |
| 1003 | GEM_WARN_ON(ret); /* Unexpected */ |
| 1004 | goto deadlk; |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | move_lrc_tail: |
| 1009 | if (is_multi_lrc_rq(rq: last)) { |
| 1010 | ret = guc_wq_item_append(guc, rq: last); |
| 1011 | if (ret == -EBUSY) { |
| 1012 | goto schedule_tasklet; |
| 1013 | } else if (ret != 0) { |
| 1014 | GEM_WARN_ON(ret); /* Unexpected */ |
| 1015 | goto deadlk; |
| 1016 | } |
| 1017 | } else { |
| 1018 | guc_set_lrc_tail(rq: last); |
| 1019 | } |
| 1020 | |
| 1021 | add_request: |
| 1022 | ret = guc_add_request(guc, rq: last); |
| 1023 | if (unlikely(ret == -EPIPE)) { |
| 1024 | goto deadlk; |
| 1025 | } else if (ret == -EBUSY) { |
| 1026 | goto schedule_tasklet; |
| 1027 | } else if (ret != 0) { |
| 1028 | GEM_WARN_ON(ret); /* Unexpected */ |
| 1029 | goto deadlk; |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | guc->stalled_request = NULL; |
| 1034 | guc->submission_stall_reason = STALL_NONE; |
| 1035 | return submit; |
| 1036 | |
| 1037 | deadlk: |
| 1038 | sched_engine->tasklet.callback = NULL; |
| 1039 | tasklet_disable_nosync(t: &sched_engine->tasklet); |
| 1040 | return false; |
| 1041 | |
| 1042 | schedule_tasklet: |
| 1043 | tasklet_schedule(t: &sched_engine->tasklet); |
| 1044 | return false; |
| 1045 | } |
| 1046 | |
| 1047 | static void guc_submission_tasklet(struct tasklet_struct *t) |
| 1048 | { |
| 1049 | struct i915_sched_engine *sched_engine = |
| 1050 | from_tasklet(sched_engine, t, tasklet); |
| 1051 | unsigned long flags; |
| 1052 | bool loop; |
| 1053 | |
| 1054 | spin_lock_irqsave(&sched_engine->lock, flags); |
| 1055 | |
| 1056 | do { |
| 1057 | loop = guc_dequeue_one_context(guc: sched_engine->private_data); |
| 1058 | } while (loop); |
| 1059 | |
| 1060 | i915_sched_engine_reset_on_empty(sched_engine); |
| 1061 | |
| 1062 | spin_unlock_irqrestore(lock: &sched_engine->lock, flags); |
| 1063 | } |
| 1064 | |
| 1065 | static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) |
| 1066 | { |
| 1067 | if (iir & GT_RENDER_USER_INTERRUPT) |
| 1068 | intel_engine_signal_breadcrumbs(engine); |
| 1069 | } |
| 1070 | |
| 1071 | static void __guc_context_destroy(struct intel_context *ce); |
| 1072 | static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); |
| 1073 | static void guc_signal_context_fence(struct intel_context *ce); |
| 1074 | static void guc_cancel_context_requests(struct intel_context *ce); |
| 1075 | static void guc_blocked_fence_complete(struct intel_context *ce); |
| 1076 | |
| 1077 | static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) |
| 1078 | { |
| 1079 | struct intel_context *ce; |
| 1080 | unsigned long index, flags; |
| 1081 | bool pending_disable, pending_enable, deregister, destroyed, banned; |
| 1082 | |
| 1083 | xa_lock_irqsave(&guc->context_lookup, flags); |
| 1084 | xa_for_each(&guc->context_lookup, index, ce) { |
| 1085 | /* |
| 1086 | * Corner case where the ref count on the object is zero but and |
| 1087 | * deregister G2H was lost. In this case we don't touch the ref |
| 1088 | * count and finish the destroy of the context. |
| 1089 | */ |
| 1090 | bool do_put = kref_get_unless_zero(kref: &ce->ref); |
| 1091 | |
| 1092 | xa_unlock(&guc->context_lookup); |
| 1093 | |
| 1094 | if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && |
| 1095 | (cancel_delayed_work(dwork: &ce->guc_state.sched_disable_delay_work))) { |
| 1096 | /* successful cancel so jump straight to close it */ |
| 1097 | intel_context_sched_disable_unpin(ce); |
| 1098 | } |
| 1099 | |
| 1100 | spin_lock(lock: &ce->guc_state.lock); |
| 1101 | |
| 1102 | /* |
| 1103 | * Once we are at this point submission_disabled() is guaranteed |
| 1104 | * to be visible to all callers who set the below flags (see above |
| 1105 | * flush and flushes in reset_prepare). If submission_disabled() |
| 1106 | * is set, the caller shouldn't set these flags. |
| 1107 | */ |
| 1108 | |
| 1109 | destroyed = context_destroyed(ce); |
| 1110 | pending_enable = context_pending_enable(ce); |
| 1111 | pending_disable = context_pending_disable(ce); |
| 1112 | deregister = context_wait_for_deregister_to_register(ce); |
| 1113 | banned = context_banned(ce); |
| 1114 | init_sched_state(ce); |
| 1115 | |
| 1116 | spin_unlock(lock: &ce->guc_state.lock); |
| 1117 | |
| 1118 | if (pending_enable || destroyed || deregister) { |
| 1119 | decr_outstanding_submission_g2h(guc); |
| 1120 | if (deregister) |
| 1121 | guc_signal_context_fence(ce); |
| 1122 | if (destroyed) { |
| 1123 | intel_gt_pm_put_async_untracked(gt: guc_to_gt(guc)); |
| 1124 | release_guc_id(guc, ce); |
| 1125 | __guc_context_destroy(ce); |
| 1126 | } |
| 1127 | if (pending_enable || deregister) |
| 1128 | intel_context_put(ce); |
| 1129 | } |
| 1130 | |
| 1131 | /* Not mutualy exclusive with above if statement. */ |
| 1132 | if (pending_disable) { |
| 1133 | guc_signal_context_fence(ce); |
| 1134 | if (banned) { |
| 1135 | guc_cancel_context_requests(ce); |
| 1136 | intel_engine_signal_breadcrumbs(engine: ce->engine); |
| 1137 | } |
| 1138 | intel_context_sched_disable_unpin(ce); |
| 1139 | decr_outstanding_submission_g2h(guc); |
| 1140 | |
| 1141 | spin_lock(lock: &ce->guc_state.lock); |
| 1142 | guc_blocked_fence_complete(ce); |
| 1143 | spin_unlock(lock: &ce->guc_state.lock); |
| 1144 | |
| 1145 | intel_context_put(ce); |
| 1146 | } |
| 1147 | |
| 1148 | if (do_put) |
| 1149 | intel_context_put(ce); |
| 1150 | xa_lock(&guc->context_lookup); |
| 1151 | } |
| 1152 | xa_unlock_irqrestore(&guc->context_lookup, flags); |
| 1153 | } |
| 1154 | |
| 1155 | /* |
| 1156 | * GuC stores busyness stats for each engine at context in/out boundaries. A |
| 1157 | * context 'in' logs execution start time, 'out' adds in -> out delta to total. |
| 1158 | * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with |
| 1159 | * GuC. |
| 1160 | * |
| 1161 | * __i915_pmu_event_read samples engine busyness. When sampling, if context id |
| 1162 | * is valid (!= ~0) and start is non-zero, the engine is considered to be |
| 1163 | * active. For an active engine total busyness = total + (now - start), where |
| 1164 | * 'now' is the time at which the busyness is sampled. For inactive engine, |
| 1165 | * total busyness = total. |
| 1166 | * |
| 1167 | * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. |
| 1168 | * |
| 1169 | * The start and total values provided by GuC are 32 bits and wrap around in a |
| 1170 | * few minutes. Since perf pmu provides busyness as 64 bit monotonically |
| 1171 | * increasing ns values, there is a need for this implementation to account for |
| 1172 | * overflows and extend the GuC provided values to 64 bits before returning |
| 1173 | * busyness to the user. In order to do that, a worker runs periodically at |
| 1174 | * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in |
| 1175 | * 27 seconds for a gt clock frequency of 19.2 MHz). |
| 1176 | */ |
| 1177 | |
| 1178 | #define WRAP_TIME_CLKS U32_MAX |
| 1179 | #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) |
| 1180 | |
| 1181 | static void |
| 1182 | __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) |
| 1183 | { |
| 1184 | u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); |
| 1185 | u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); |
| 1186 | |
| 1187 | if (new_start == lower_32_bits(*prev_start)) |
| 1188 | return; |
| 1189 | |
| 1190 | /* |
| 1191 | * When gt is unparked, we update the gt timestamp and start the ping |
| 1192 | * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt |
| 1193 | * is unparked, all switched in contexts will have a start time that is |
| 1194 | * within +/- POLL_TIME_CLKS of the most recent gt_stamp. |
| 1195 | * |
| 1196 | * If neither gt_stamp nor new_start has rolled over, then the |
| 1197 | * gt_stamp_hi does not need to be adjusted, however if one of them has |
| 1198 | * rolled over, we need to adjust gt_stamp_hi accordingly. |
| 1199 | * |
| 1200 | * The below conditions address the cases of new_start rollover and |
| 1201 | * gt_stamp_last rollover respectively. |
| 1202 | */ |
| 1203 | if (new_start < gt_stamp_last && |
| 1204 | (new_start - gt_stamp_last) <= POLL_TIME_CLKS) |
| 1205 | gt_stamp_hi++; |
| 1206 | |
| 1207 | if (new_start > gt_stamp_last && |
| 1208 | (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) |
| 1209 | gt_stamp_hi--; |
| 1210 | |
| 1211 | *prev_start = ((u64)gt_stamp_hi << 32) | new_start; |
| 1212 | } |
| 1213 | |
| 1214 | #define record_read(map_, field_) \ |
| 1215 | iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) |
| 1216 | |
| 1217 | /* |
| 1218 | * GuC updates shared memory and KMD reads it. Since this is not synchronized, |
| 1219 | * we run into a race where the value read is inconsistent. Sometimes the |
| 1220 | * inconsistency is in reading the upper MSB bytes of the last_in value when |
| 1221 | * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper |
| 1222 | * 24 bits are zero. Since these are non-zero values, it is non-trivial to |
| 1223 | * determine validity of these values. Instead we read the values multiple times |
| 1224 | * until they are consistent. In test runs, 3 attempts results in consistent |
| 1225 | * values. The upper bound is set to 6 attempts and may need to be tuned as per |
| 1226 | * any new occurrences. |
| 1227 | */ |
| 1228 | static void __get_engine_usage_record(struct intel_engine_cs *engine, |
| 1229 | u32 *last_in, u32 *id, u32 *total) |
| 1230 | { |
| 1231 | struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); |
| 1232 | int i = 0; |
| 1233 | |
| 1234 | do { |
| 1235 | *last_in = record_read(&rec_map, last_switch_in_stamp); |
| 1236 | *id = record_read(&rec_map, current_context_index); |
| 1237 | *total = record_read(&rec_map, total_runtime); |
| 1238 | |
| 1239 | if (record_read(&rec_map, last_switch_in_stamp) == *last_in && |
| 1240 | record_read(&rec_map, current_context_index) == *id && |
| 1241 | record_read(&rec_map, total_runtime) == *total) |
| 1242 | break; |
| 1243 | } while (++i < 6); |
| 1244 | } |
| 1245 | |
| 1246 | static void __set_engine_usage_record(struct intel_engine_cs *engine, |
| 1247 | u32 last_in, u32 id, u32 total) |
| 1248 | { |
| 1249 | struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); |
| 1250 | |
| 1251 | #define record_write(map_, field_, val_) \ |
| 1252 | iosys_map_wr_field(map_, 0, struct guc_engine_usage_record, field_, val_) |
| 1253 | |
| 1254 | record_write(&rec_map, last_switch_in_stamp, last_in); |
| 1255 | record_write(&rec_map, current_context_index, id); |
| 1256 | record_write(&rec_map, total_runtime, total); |
| 1257 | |
| 1258 | #undef record_write |
| 1259 | } |
| 1260 | |
| 1261 | static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) |
| 1262 | { |
| 1263 | struct intel_engine_guc_stats *stats = &engine->stats.guc; |
| 1264 | struct intel_guc *guc = gt_to_guc(gt: engine->gt); |
| 1265 | u32 last_switch, ctx_id, total; |
| 1266 | |
| 1267 | lockdep_assert_held(&guc->timestamp.lock); |
| 1268 | |
| 1269 | __get_engine_usage_record(engine, last_in: &last_switch, id: &ctx_id, total: &total); |
| 1270 | |
| 1271 | stats->running = ctx_id != ~0U && last_switch; |
| 1272 | if (stats->running) |
| 1273 | __extend_last_switch(guc, prev_start: &stats->start_gt_clk, new_start: last_switch); |
| 1274 | |
| 1275 | /* |
| 1276 | * Instead of adjusting the total for overflow, just add the |
| 1277 | * difference from previous sample stats->total_gt_clks |
| 1278 | */ |
| 1279 | if (total && total != ~0U) { |
| 1280 | stats->total_gt_clks += (u32)(total - stats->prev_total); |
| 1281 | stats->prev_total = total; |
| 1282 | } |
| 1283 | } |
| 1284 | |
| 1285 | static u32 gpm_timestamp_shift(struct intel_gt *gt) |
| 1286 | { |
| 1287 | intel_wakeref_t wakeref; |
| 1288 | u32 reg; |
| 1289 | |
| 1290 | with_intel_runtime_pm(gt->uncore->rpm, wakeref) |
| 1291 | reg = intel_uncore_read(uncore: gt->uncore, RPM_CONFIG0); |
| 1292 | |
| 1293 | return 3 - REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, reg); |
| 1294 | } |
| 1295 | |
| 1296 | static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) |
| 1297 | { |
| 1298 | struct intel_gt *gt = guc_to_gt(guc); |
| 1299 | u32 gt_stamp_lo, gt_stamp_hi; |
| 1300 | u64 gpm_ts; |
| 1301 | |
| 1302 | lockdep_assert_held(&guc->timestamp.lock); |
| 1303 | |
| 1304 | gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); |
| 1305 | gpm_ts = intel_uncore_read64_2x32(uncore: gt->uncore, MISC_STATUS0, |
| 1306 | MISC_STATUS1) >> guc->timestamp.shift; |
| 1307 | gt_stamp_lo = lower_32_bits(gpm_ts); |
| 1308 | *now = ktime_get(); |
| 1309 | |
| 1310 | if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) |
| 1311 | gt_stamp_hi++; |
| 1312 | |
| 1313 | guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; |
| 1314 | } |
| 1315 | |
| 1316 | /* |
| 1317 | * Unlike the execlist mode of submission total and active times are in terms of |
| 1318 | * gt clocks. The *now parameter is retained to return the cpu time at which the |
| 1319 | * busyness was sampled. |
| 1320 | */ |
| 1321 | static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) |
| 1322 | { |
| 1323 | struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; |
| 1324 | struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; |
| 1325 | struct intel_gt *gt = engine->gt; |
| 1326 | struct intel_guc *guc = gt_to_guc(gt); |
| 1327 | u64 total, gt_stamp_saved; |
| 1328 | unsigned long flags; |
| 1329 | u32 reset_count; |
| 1330 | bool in_reset; |
| 1331 | intel_wakeref_t wakeref; |
| 1332 | |
| 1333 | spin_lock_irqsave(&guc->timestamp.lock, flags); |
| 1334 | |
| 1335 | /* |
| 1336 | * If a reset happened, we risk reading partially updated engine |
| 1337 | * busyness from GuC, so we just use the driver stored copy of busyness. |
| 1338 | * Synchronize with gt reset using reset_count and the |
| 1339 | * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count |
| 1340 | * after I915_RESET_BACKOFF flag, so ensure that the reset_count is |
| 1341 | * usable by checking the flag afterwards. |
| 1342 | */ |
| 1343 | reset_count = i915_reset_count(error: gpu_error); |
| 1344 | in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); |
| 1345 | |
| 1346 | *now = ktime_get(); |
| 1347 | |
| 1348 | /* |
| 1349 | * The active busyness depends on start_gt_clk and gt_stamp. |
| 1350 | * gt_stamp is updated by i915 only when gt is awake and the |
| 1351 | * start_gt_clk is derived from GuC state. To get a consistent |
| 1352 | * view of activity, we query the GuC state only if gt is awake. |
| 1353 | */ |
| 1354 | wakeref = in_reset ? NULL : intel_gt_pm_get_if_awake(gt); |
| 1355 | if (wakeref) { |
| 1356 | stats_saved = *stats; |
| 1357 | gt_stamp_saved = guc->timestamp.gt_stamp; |
| 1358 | /* |
| 1359 | * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - |
| 1360 | * start_gt_clk' calculation below for active engines. |
| 1361 | */ |
| 1362 | guc_update_engine_gt_clks(engine); |
| 1363 | guc_update_pm_timestamp(guc, now); |
| 1364 | intel_gt_pm_put_async(gt, handle: wakeref); |
| 1365 | if (i915_reset_count(error: gpu_error) != reset_count) { |
| 1366 | *stats = stats_saved; |
| 1367 | guc->timestamp.gt_stamp = gt_stamp_saved; |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | total = intel_gt_clock_interval_to_ns(gt, count: stats->total_gt_clks); |
| 1372 | if (stats->running) { |
| 1373 | u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; |
| 1374 | |
| 1375 | total += intel_gt_clock_interval_to_ns(gt, count: clk); |
| 1376 | } |
| 1377 | |
| 1378 | if (total > stats->total) |
| 1379 | stats->total = total; |
| 1380 | |
| 1381 | spin_unlock_irqrestore(lock: &guc->timestamp.lock, flags); |
| 1382 | |
| 1383 | return ns_to_ktime(ns: stats->total); |
| 1384 | } |
| 1385 | |
| 1386 | static void guc_enable_busyness_worker(struct intel_guc *guc) |
| 1387 | { |
| 1388 | mod_delayed_work(wq: system_highpri_wq, dwork: &guc->timestamp.work, delay: guc->timestamp.ping_delay); |
| 1389 | } |
| 1390 | |
| 1391 | static void guc_cancel_busyness_worker(struct intel_guc *guc) |
| 1392 | { |
| 1393 | /* |
| 1394 | * There are many different call stacks that can get here. Some of them |
| 1395 | * hold the reset mutex. The busyness worker also attempts to acquire the |
| 1396 | * reset mutex. Synchronously flushing a worker thread requires acquiring |
| 1397 | * the worker mutex. Lockdep sees this as a conflict. It thinks that the |
| 1398 | * flush can deadlock because it holds the worker mutex while waiting for |
| 1399 | * the reset mutex, but another thread is holding the reset mutex and might |
| 1400 | * attempt to use other worker functions. |
| 1401 | * |
| 1402 | * In practice, this scenario does not exist because the busyness worker |
| 1403 | * does not block waiting for the reset mutex. It does a try-lock on it and |
| 1404 | * immediately exits if the lock is already held. Unfortunately, the mutex |
| 1405 | * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep |
| 1406 | * annotation but not to the extent of explaining the 'might lock' is also a |
| 1407 | * 'does not need to lock'. So one option would be to add more complex lockdep |
| 1408 | * annotations to ignore the issue (if at all possible). A simpler option is to |
| 1409 | * just not flush synchronously when a rest in progress. Given that the worker |
| 1410 | * will just early exit and re-schedule itself anyway, there is no advantage |
| 1411 | * to running it immediately. |
| 1412 | * |
| 1413 | * If a reset is not in progress, then the synchronous flush may be required. |
| 1414 | * As noted many call stacks lead here, some during suspend and driver unload |
| 1415 | * which do require a synchronous flush to make sure the worker is stopped |
| 1416 | * before memory is freed. |
| 1417 | * |
| 1418 | * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through |
| 1419 | * every possible call stack is unfeasible. It would be too intrusive to many |
| 1420 | * areas that really don't care about the GuC backend. However, there is the |
| 1421 | * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked. |
| 1422 | * So just use those. Note that testing both is required due to the hideously |
| 1423 | * complex nature of the i915 driver's reset code paths. |
| 1424 | * |
| 1425 | * And note that in the case of a reset occurring during driver unload |
| 1426 | * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the |
| 1427 | * reset flag/mutex are set) is fine because there is another explicit cancel in |
| 1428 | * intel_guc_submission_fini (when the reset flag/mutex are not). |
| 1429 | */ |
| 1430 | if (mutex_is_locked(lock: &guc_to_gt(guc)->reset.mutex) || |
| 1431 | test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags)) |
| 1432 | cancel_delayed_work(dwork: &guc->timestamp.work); |
| 1433 | else |
| 1434 | cancel_delayed_work_sync(dwork: &guc->timestamp.work); |
| 1435 | } |
| 1436 | |
| 1437 | static void __reset_guc_busyness_stats(struct intel_guc *guc) |
| 1438 | { |
| 1439 | struct intel_gt *gt = guc_to_gt(guc); |
| 1440 | struct intel_engine_cs *engine; |
| 1441 | enum intel_engine_id id; |
| 1442 | unsigned long flags; |
| 1443 | ktime_t unused; |
| 1444 | |
| 1445 | spin_lock_irqsave(&guc->timestamp.lock, flags); |
| 1446 | |
| 1447 | guc_update_pm_timestamp(guc, now: &unused); |
| 1448 | for_each_engine(engine, gt, id) { |
| 1449 | struct intel_engine_guc_stats *stats = &engine->stats.guc; |
| 1450 | |
| 1451 | guc_update_engine_gt_clks(engine); |
| 1452 | |
| 1453 | /* |
| 1454 | * If resetting a running context, accumulate the active |
| 1455 | * time as well since there will be no context switch. |
| 1456 | */ |
| 1457 | if (stats->running) { |
| 1458 | u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; |
| 1459 | |
| 1460 | stats->total_gt_clks += clk; |
| 1461 | } |
| 1462 | stats->prev_total = 0; |
| 1463 | stats->running = 0; |
| 1464 | } |
| 1465 | |
| 1466 | spin_unlock_irqrestore(lock: &guc->timestamp.lock, flags); |
| 1467 | } |
| 1468 | |
| 1469 | static void __update_guc_busyness_running_state(struct intel_guc *guc) |
| 1470 | { |
| 1471 | struct intel_gt *gt = guc_to_gt(guc); |
| 1472 | struct intel_engine_cs *engine; |
| 1473 | enum intel_engine_id id; |
| 1474 | unsigned long flags; |
| 1475 | |
| 1476 | spin_lock_irqsave(&guc->timestamp.lock, flags); |
| 1477 | for_each_engine(engine, gt, id) |
| 1478 | engine->stats.guc.running = false; |
| 1479 | spin_unlock_irqrestore(lock: &guc->timestamp.lock, flags); |
| 1480 | } |
| 1481 | |
| 1482 | static void __update_guc_busyness_stats(struct intel_guc *guc) |
| 1483 | { |
| 1484 | struct intel_gt *gt = guc_to_gt(guc); |
| 1485 | struct intel_engine_cs *engine; |
| 1486 | enum intel_engine_id id; |
| 1487 | unsigned long flags; |
| 1488 | ktime_t unused; |
| 1489 | |
| 1490 | guc->timestamp.last_stat_jiffies = jiffies; |
| 1491 | |
| 1492 | spin_lock_irqsave(&guc->timestamp.lock, flags); |
| 1493 | |
| 1494 | guc_update_pm_timestamp(guc, now: &unused); |
| 1495 | for_each_engine(engine, gt, id) |
| 1496 | guc_update_engine_gt_clks(engine); |
| 1497 | |
| 1498 | spin_unlock_irqrestore(lock: &guc->timestamp.lock, flags); |
| 1499 | } |
| 1500 | |
| 1501 | static void __guc_context_update_stats(struct intel_context *ce) |
| 1502 | { |
| 1503 | struct intel_guc *guc = ce_to_guc(ce); |
| 1504 | unsigned long flags; |
| 1505 | |
| 1506 | spin_lock_irqsave(&guc->timestamp.lock, flags); |
| 1507 | lrc_update_runtime(ce); |
| 1508 | spin_unlock_irqrestore(lock: &guc->timestamp.lock, flags); |
| 1509 | } |
| 1510 | |
| 1511 | static void guc_context_update_stats(struct intel_context *ce) |
| 1512 | { |
| 1513 | if (!intel_context_pin_if_active(ce)) |
| 1514 | return; |
| 1515 | |
| 1516 | __guc_context_update_stats(ce); |
| 1517 | intel_context_unpin(ce); |
| 1518 | } |
| 1519 | |
| 1520 | static void guc_timestamp_ping(struct work_struct *wrk) |
| 1521 | { |
| 1522 | struct intel_guc *guc = container_of(wrk, typeof(*guc), |
| 1523 | timestamp.work.work); |
| 1524 | struct intel_uc *uc = container_of(guc, typeof(*uc), guc); |
| 1525 | struct intel_gt *gt = guc_to_gt(guc); |
| 1526 | struct intel_context *ce; |
| 1527 | intel_wakeref_t wakeref; |
| 1528 | unsigned long index; |
| 1529 | int srcu, ret; |
| 1530 | |
| 1531 | /* |
| 1532 | * Ideally the busyness worker should take a gt pm wakeref because the |
| 1533 | * worker only needs to be active while gt is awake. However, the |
| 1534 | * gt_park path cancels the worker synchronously and this complicates |
| 1535 | * the flow if the worker is also running at the same time. The cancel |
| 1536 | * waits for the worker and when the worker releases the wakeref, that |
| 1537 | * would call gt_park and would lead to a deadlock. |
| 1538 | * |
| 1539 | * The resolution is to take the global pm wakeref if runtime pm is |
| 1540 | * already active. If not, we don't need to update the busyness stats as |
| 1541 | * the stats would already be updated when the gt was parked. |
| 1542 | * |
| 1543 | * Note: |
| 1544 | * - We do not requeue the worker if we cannot take a reference to runtime |
| 1545 | * pm since intel_guc_busyness_unpark would requeue the worker in the |
| 1546 | * resume path. |
| 1547 | * |
| 1548 | * - If the gt was parked longer than time taken for GT timestamp to roll |
| 1549 | * over, we ignore those rollovers since we don't care about tracking |
| 1550 | * the exact GT time. We only care about roll overs when the gt is |
| 1551 | * active and running workloads. |
| 1552 | * |
| 1553 | * - There is a window of time between gt_park and runtime suspend, |
| 1554 | * where the worker may run. This is acceptable since the worker will |
| 1555 | * not find any new data to update busyness. |
| 1556 | */ |
| 1557 | wakeref = intel_runtime_pm_get_if_active(rpm: >->i915->runtime_pm); |
| 1558 | if (!wakeref) |
| 1559 | return; |
| 1560 | |
| 1561 | /* |
| 1562 | * Synchronize with gt reset to make sure the worker does not |
| 1563 | * corrupt the engine/guc stats. NB: can't actually block waiting |
| 1564 | * for a reset to complete as the reset requires flushing out |
| 1565 | * this worker thread if started. So waiting would deadlock. |
| 1566 | */ |
| 1567 | ret = intel_gt_reset_trylock(gt, srcu: &srcu); |
| 1568 | if (ret) |
| 1569 | goto err_trylock; |
| 1570 | |
| 1571 | __update_guc_busyness_stats(guc); |
| 1572 | |
| 1573 | /* adjust context stats for overflow */ |
| 1574 | xa_for_each(&guc->context_lookup, index, ce) |
| 1575 | guc_context_update_stats(ce); |
| 1576 | |
| 1577 | intel_gt_reset_unlock(gt, tag: srcu); |
| 1578 | |
| 1579 | guc_enable_busyness_worker(guc); |
| 1580 | |
| 1581 | err_trylock: |
| 1582 | intel_runtime_pm_put(rpm: >->i915->runtime_pm, wref: wakeref); |
| 1583 | } |
| 1584 | |
| 1585 | static int guc_action_enable_usage_stats(struct intel_guc *guc) |
| 1586 | { |
| 1587 | struct intel_gt *gt = guc_to_gt(guc); |
| 1588 | struct intel_engine_cs *engine; |
| 1589 | enum intel_engine_id id; |
| 1590 | u32 offset = intel_guc_engine_usage_offset(guc); |
| 1591 | u32 action[] = { |
| 1592 | INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, |
| 1593 | offset, |
| 1594 | 0, |
| 1595 | }; |
| 1596 | |
| 1597 | for_each_engine(engine, gt, id) |
| 1598 | __set_engine_usage_record(engine, last_in: 0, id: 0xffffffff, total: 0); |
| 1599 | |
| 1600 | return intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| 1601 | } |
| 1602 | |
| 1603 | static int guc_init_engine_stats(struct intel_guc *guc) |
| 1604 | { |
| 1605 | struct intel_gt *gt = guc_to_gt(guc); |
| 1606 | intel_wakeref_t wakeref; |
| 1607 | int ret; |
| 1608 | |
| 1609 | with_intel_runtime_pm(>->i915->runtime_pm, wakeref) |
| 1610 | ret = guc_action_enable_usage_stats(guc); |
| 1611 | |
| 1612 | if (ret) |
| 1613 | guc_err(guc, "Failed to enable usage stats: %pe\n" , ERR_PTR(ret)); |
| 1614 | else |
| 1615 | guc_enable_busyness_worker(guc); |
| 1616 | |
| 1617 | return ret; |
| 1618 | } |
| 1619 | |
| 1620 | static void guc_fini_engine_stats(struct intel_guc *guc) |
| 1621 | { |
| 1622 | guc_cancel_busyness_worker(guc); |
| 1623 | } |
| 1624 | |
| 1625 | void intel_guc_busyness_park(struct intel_gt *gt) |
| 1626 | { |
| 1627 | struct intel_guc *guc = gt_to_guc(gt); |
| 1628 | |
| 1629 | if (!guc_submission_initialized(guc)) |
| 1630 | return; |
| 1631 | |
| 1632 | /* Assume no engines are running and set running state to false */ |
| 1633 | __update_guc_busyness_running_state(guc); |
| 1634 | |
| 1635 | /* |
| 1636 | * There is a race with suspend flow where the worker runs after suspend |
| 1637 | * and causes an unclaimed register access warning. Cancel the worker |
| 1638 | * synchronously here. |
| 1639 | */ |
| 1640 | guc_cancel_busyness_worker(guc); |
| 1641 | |
| 1642 | /* |
| 1643 | * Before parking, we should sample engine busyness stats if we need to. |
| 1644 | * We can skip it if we are less than half a ping from the last time we |
| 1645 | * sampled the busyness stats. |
| 1646 | */ |
| 1647 | if (guc->timestamp.last_stat_jiffies && |
| 1648 | !time_after(jiffies, guc->timestamp.last_stat_jiffies + |
| 1649 | (guc->timestamp.ping_delay / 2))) |
| 1650 | return; |
| 1651 | |
| 1652 | __update_guc_busyness_stats(guc); |
| 1653 | } |
| 1654 | |
| 1655 | void intel_guc_busyness_unpark(struct intel_gt *gt) |
| 1656 | { |
| 1657 | struct intel_guc *guc = gt_to_guc(gt); |
| 1658 | unsigned long flags; |
| 1659 | ktime_t unused; |
| 1660 | |
| 1661 | if (!guc_submission_initialized(guc)) |
| 1662 | return; |
| 1663 | |
| 1664 | spin_lock_irqsave(&guc->timestamp.lock, flags); |
| 1665 | guc_update_pm_timestamp(guc, now: &unused); |
| 1666 | spin_unlock_irqrestore(lock: &guc->timestamp.lock, flags); |
| 1667 | guc_enable_busyness_worker(guc); |
| 1668 | } |
| 1669 | |
| 1670 | static inline bool |
| 1671 | submission_disabled(struct intel_guc *guc) |
| 1672 | { |
| 1673 | struct i915_sched_engine * const sched_engine = guc->sched_engine; |
| 1674 | |
| 1675 | return unlikely(!sched_engine || |
| 1676 | !__tasklet_is_enabled(&sched_engine->tasklet) || |
| 1677 | intel_gt_is_wedged(guc_to_gt(guc))); |
| 1678 | } |
| 1679 | |
| 1680 | static void disable_submission(struct intel_guc *guc) |
| 1681 | { |
| 1682 | struct i915_sched_engine * const sched_engine = guc->sched_engine; |
| 1683 | |
| 1684 | if (__tasklet_is_enabled(t: &sched_engine->tasklet)) { |
| 1685 | GEM_BUG_ON(!guc->ct.enabled); |
| 1686 | __tasklet_disable_sync_once(t: &sched_engine->tasklet); |
| 1687 | sched_engine->tasklet.callback = NULL; |
| 1688 | } |
| 1689 | } |
| 1690 | |
| 1691 | static void enable_submission(struct intel_guc *guc) |
| 1692 | { |
| 1693 | struct i915_sched_engine * const sched_engine = guc->sched_engine; |
| 1694 | unsigned long flags; |
| 1695 | |
| 1696 | spin_lock_irqsave(&guc->sched_engine->lock, flags); |
| 1697 | sched_engine->tasklet.callback = guc_submission_tasklet; |
| 1698 | wmb(); /* Make sure callback visible */ |
| 1699 | if (!__tasklet_is_enabled(t: &sched_engine->tasklet) && |
| 1700 | __tasklet_enable(t: &sched_engine->tasklet)) { |
| 1701 | GEM_BUG_ON(!guc->ct.enabled); |
| 1702 | |
| 1703 | /* And kick in case we missed a new request submission. */ |
| 1704 | tasklet_hi_schedule(t: &sched_engine->tasklet); |
| 1705 | } |
| 1706 | spin_unlock_irqrestore(lock: &guc->sched_engine->lock, flags); |
| 1707 | } |
| 1708 | |
| 1709 | static void guc_flush_submissions(struct intel_guc *guc) |
| 1710 | { |
| 1711 | struct i915_sched_engine * const sched_engine = guc->sched_engine; |
| 1712 | unsigned long flags; |
| 1713 | |
| 1714 | spin_lock_irqsave(&sched_engine->lock, flags); |
| 1715 | spin_unlock_irqrestore(lock: &sched_engine->lock, flags); |
| 1716 | } |
| 1717 | |
| 1718 | void intel_guc_submission_flush_work(struct intel_guc *guc) |
| 1719 | { |
| 1720 | flush_work(work: &guc->submission_state.destroyed_worker); |
| 1721 | } |
| 1722 | |
| 1723 | static void guc_flush_destroyed_contexts(struct intel_guc *guc); |
| 1724 | |
| 1725 | void intel_guc_submission_reset_prepare(struct intel_guc *guc) |
| 1726 | { |
| 1727 | if (unlikely(!guc_submission_initialized(guc))) { |
| 1728 | /* Reset called during driver load? GuC not yet initialised! */ |
| 1729 | return; |
| 1730 | } |
| 1731 | |
| 1732 | intel_gt_park_heartbeats(gt: guc_to_gt(guc)); |
| 1733 | disable_submission(guc); |
| 1734 | guc->interrupts.disable(guc); |
| 1735 | __reset_guc_busyness_stats(guc); |
| 1736 | |
| 1737 | /* Flush IRQ handler */ |
| 1738 | spin_lock_irq(lock: guc_to_gt(guc)->irq_lock); |
| 1739 | spin_unlock_irq(lock: guc_to_gt(guc)->irq_lock); |
| 1740 | |
| 1741 | /* Flush tasklet */ |
| 1742 | tasklet_disable(t: &guc->ct.receive_tasklet); |
| 1743 | tasklet_enable(t: &guc->ct.receive_tasklet); |
| 1744 | |
| 1745 | guc_flush_submissions(guc); |
| 1746 | guc_flush_destroyed_contexts(guc); |
| 1747 | flush_work(work: &guc->ct.requests.worker); |
| 1748 | |
| 1749 | scrub_guc_desc_for_outstanding_g2h(guc); |
| 1750 | } |
| 1751 | |
| 1752 | static struct intel_engine_cs * |
| 1753 | guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) |
| 1754 | { |
| 1755 | struct intel_engine_cs *engine; |
| 1756 | intel_engine_mask_t tmp, mask = ve->mask; |
| 1757 | unsigned int num_siblings = 0; |
| 1758 | |
| 1759 | for_each_engine_masked(engine, ve->gt, mask, tmp) |
| 1760 | if (num_siblings++ == sibling) |
| 1761 | return engine; |
| 1762 | |
| 1763 | return NULL; |
| 1764 | } |
| 1765 | |
| 1766 | static inline struct intel_engine_cs * |
| 1767 | __context_to_physical_engine(struct intel_context *ce) |
| 1768 | { |
| 1769 | struct intel_engine_cs *engine = ce->engine; |
| 1770 | |
| 1771 | if (intel_engine_is_virtual(engine)) |
| 1772 | engine = guc_virtual_get_sibling(ve: engine, sibling: 0); |
| 1773 | |
| 1774 | return engine; |
| 1775 | } |
| 1776 | |
| 1777 | static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) |
| 1778 | { |
| 1779 | struct intel_engine_cs *engine = __context_to_physical_engine(ce); |
| 1780 | |
| 1781 | if (!intel_context_is_schedulable(ce)) |
| 1782 | return; |
| 1783 | |
| 1784 | GEM_BUG_ON(!intel_context_is_pinned(ce)); |
| 1785 | |
| 1786 | /* |
| 1787 | * We want a simple context + ring to execute the breadcrumb update. |
| 1788 | * We cannot rely on the context being intact across the GPU hang, |
| 1789 | * so clear it and rebuild just what we need for the breadcrumb. |
| 1790 | * All pending requests for this context will be zapped, and any |
| 1791 | * future request will be after userspace has had the opportunity |
| 1792 | * to recreate its own state. |
| 1793 | */ |
| 1794 | if (scrub) |
| 1795 | lrc_init_regs(ce, engine, clear: true); |
| 1796 | |
| 1797 | /* Rerun the request; its payload has been neutered (if guilty). */ |
| 1798 | lrc_update_regs(ce, engine, head); |
| 1799 | } |
| 1800 | |
| 1801 | static void guc_engine_reset_prepare(struct intel_engine_cs *engine) |
| 1802 | { |
| 1803 | /* |
| 1804 | * Wa_22011802037: In addition to stopping the cs, we need |
| 1805 | * to wait for any pending mi force wakeups |
| 1806 | */ |
| 1807 | if (intel_engine_reset_needs_wa_22011802037(gt: engine->gt)) { |
| 1808 | intel_engine_stop_cs(engine); |
| 1809 | intel_engine_wait_for_pending_mi_fw(engine); |
| 1810 | } |
| 1811 | } |
| 1812 | |
| 1813 | static void guc_reset_nop(struct intel_engine_cs *engine) |
| 1814 | { |
| 1815 | } |
| 1816 | |
| 1817 | static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) |
| 1818 | { |
| 1819 | } |
| 1820 | |
| 1821 | static void |
| 1822 | __unwind_incomplete_requests(struct intel_context *ce) |
| 1823 | { |
| 1824 | struct i915_request *rq, *rn; |
| 1825 | struct list_head *pl; |
| 1826 | int prio = I915_PRIORITY_INVALID; |
| 1827 | struct i915_sched_engine * const sched_engine = |
| 1828 | ce->engine->sched_engine; |
| 1829 | unsigned long flags; |
| 1830 | |
| 1831 | spin_lock_irqsave(&sched_engine->lock, flags); |
| 1832 | spin_lock(lock: &ce->guc_state.lock); |
| 1833 | list_for_each_entry_safe_reverse(rq, rn, |
| 1834 | &ce->guc_state.requests, |
| 1835 | sched.link) { |
| 1836 | if (i915_request_completed(rq)) |
| 1837 | continue; |
| 1838 | |
| 1839 | list_del_init(entry: &rq->sched.link); |
| 1840 | __i915_request_unsubmit(request: rq); |
| 1841 | |
| 1842 | /* Push the request back into the queue for later resubmission. */ |
| 1843 | GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); |
| 1844 | if (rq_prio(rq) != prio) { |
| 1845 | prio = rq_prio(rq); |
| 1846 | pl = i915_sched_lookup_priolist(sched_engine, prio); |
| 1847 | } |
| 1848 | GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); |
| 1849 | |
| 1850 | list_add(new: &rq->sched.link, head: pl); |
| 1851 | set_bit(nr: I915_FENCE_FLAG_PQUEUE, addr: &rq->fence.flags); |
| 1852 | } |
| 1853 | spin_unlock(lock: &ce->guc_state.lock); |
| 1854 | spin_unlock_irqrestore(lock: &sched_engine->lock, flags); |
| 1855 | } |
| 1856 | |
| 1857 | static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) |
| 1858 | { |
| 1859 | bool guilty; |
| 1860 | struct i915_request *rq; |
| 1861 | unsigned long flags; |
| 1862 | u32 head; |
| 1863 | int i, number_children = ce->parallel.number_children; |
| 1864 | struct intel_context *parent = ce; |
| 1865 | |
| 1866 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 1867 | |
| 1868 | intel_context_get(ce); |
| 1869 | |
| 1870 | /* |
| 1871 | * GuC will implicitly mark the context as non-schedulable when it sends |
| 1872 | * the reset notification. Make sure our state reflects this change. The |
| 1873 | * context will be marked enabled on resubmission. |
| 1874 | */ |
| 1875 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 1876 | clr_context_enabled(ce); |
| 1877 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 1878 | |
| 1879 | /* |
| 1880 | * For each context in the relationship find the hanging request |
| 1881 | * resetting each context / request as needed |
| 1882 | */ |
| 1883 | for (i = 0; i < number_children + 1; ++i) { |
| 1884 | if (!intel_context_is_pinned(ce)) |
| 1885 | goto next_context; |
| 1886 | |
| 1887 | guilty = false; |
| 1888 | rq = intel_context_get_active_request(ce); |
| 1889 | if (!rq) { |
| 1890 | head = ce->ring->tail; |
| 1891 | goto out_replay; |
| 1892 | } |
| 1893 | |
| 1894 | if (i915_request_started(rq)) |
| 1895 | guilty = stalled & ce->engine->mask; |
| 1896 | |
| 1897 | GEM_BUG_ON(i915_active_is_idle(&ce->active)); |
| 1898 | head = intel_ring_wrap(ring: ce->ring, pos: rq->head); |
| 1899 | |
| 1900 | __i915_request_reset(rq, guilty); |
| 1901 | i915_request_put(rq); |
| 1902 | out_replay: |
| 1903 | guc_reset_state(ce, head, scrub: guilty); |
| 1904 | next_context: |
| 1905 | if (i != number_children) |
| 1906 | ce = list_next_entry(ce, parallel.child_link); |
| 1907 | } |
| 1908 | |
| 1909 | __unwind_incomplete_requests(ce: parent); |
| 1910 | intel_context_put(ce: parent); |
| 1911 | } |
| 1912 | |
| 1913 | void wake_up_all_tlb_invalidate(struct intel_guc *guc) |
| 1914 | { |
| 1915 | struct intel_guc_tlb_wait *wait; |
| 1916 | unsigned long i; |
| 1917 | |
| 1918 | if (!intel_guc_tlb_invalidation_is_available(guc)) |
| 1919 | return; |
| 1920 | |
| 1921 | xa_lock_irq(&guc->tlb_lookup); |
| 1922 | xa_for_each(&guc->tlb_lookup, i, wait) |
| 1923 | wake_up(&wait->wq); |
| 1924 | xa_unlock_irq(&guc->tlb_lookup); |
| 1925 | } |
| 1926 | |
| 1927 | void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) |
| 1928 | { |
| 1929 | struct intel_context *ce; |
| 1930 | unsigned long index; |
| 1931 | unsigned long flags; |
| 1932 | |
| 1933 | if (unlikely(!guc_submission_initialized(guc))) { |
| 1934 | /* Reset called during driver load? GuC not yet initialised! */ |
| 1935 | return; |
| 1936 | } |
| 1937 | |
| 1938 | xa_lock_irqsave(&guc->context_lookup, flags); |
| 1939 | xa_for_each(&guc->context_lookup, index, ce) { |
| 1940 | if (!kref_get_unless_zero(kref: &ce->ref)) |
| 1941 | continue; |
| 1942 | |
| 1943 | xa_unlock(&guc->context_lookup); |
| 1944 | |
| 1945 | if (intel_context_is_pinned(ce) && |
| 1946 | !intel_context_is_child(ce)) |
| 1947 | __guc_reset_context(ce, stalled); |
| 1948 | |
| 1949 | intel_context_put(ce); |
| 1950 | |
| 1951 | xa_lock(&guc->context_lookup); |
| 1952 | } |
| 1953 | xa_unlock_irqrestore(&guc->context_lookup, flags); |
| 1954 | |
| 1955 | /* GuC is blown away, drop all references to contexts */ |
| 1956 | xa_destroy(&guc->context_lookup); |
| 1957 | } |
| 1958 | |
| 1959 | static void guc_cancel_context_requests(struct intel_context *ce) |
| 1960 | { |
| 1961 | struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; |
| 1962 | struct i915_request *rq; |
| 1963 | unsigned long flags; |
| 1964 | |
| 1965 | /* Mark all executing requests as skipped. */ |
| 1966 | spin_lock_irqsave(&sched_engine->lock, flags); |
| 1967 | spin_lock(lock: &ce->guc_state.lock); |
| 1968 | list_for_each_entry(rq, &ce->guc_state.requests, sched.link) |
| 1969 | i915_request_put(rq: i915_request_mark_eio(rq)); |
| 1970 | spin_unlock(lock: &ce->guc_state.lock); |
| 1971 | spin_unlock_irqrestore(lock: &sched_engine->lock, flags); |
| 1972 | } |
| 1973 | |
| 1974 | static void |
| 1975 | guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) |
| 1976 | { |
| 1977 | struct i915_request *rq, *rn; |
| 1978 | struct rb_node *rb; |
| 1979 | unsigned long flags; |
| 1980 | |
| 1981 | /* Can be called during boot if GuC fails to load */ |
| 1982 | if (!sched_engine) |
| 1983 | return; |
| 1984 | |
| 1985 | /* |
| 1986 | * Before we call engine->cancel_requests(), we should have exclusive |
| 1987 | * access to the submission state. This is arranged for us by the |
| 1988 | * caller disabling the interrupt generation, the tasklet and other |
| 1989 | * threads that may then access the same state, giving us a free hand |
| 1990 | * to reset state. However, we still need to let lockdep be aware that |
| 1991 | * we know this state may be accessed in hardirq context, so we |
| 1992 | * disable the irq around this manipulation and we want to keep |
| 1993 | * the spinlock focused on its duties and not accidentally conflate |
| 1994 | * coverage to the submission's irq state. (Similarly, although we |
| 1995 | * shouldn't need to disable irq around the manipulation of the |
| 1996 | * submission's irq state, we also wish to remind ourselves that |
| 1997 | * it is irq state.) |
| 1998 | */ |
| 1999 | spin_lock_irqsave(&sched_engine->lock, flags); |
| 2000 | |
| 2001 | /* Flush the queued requests to the timeline list (for retiring). */ |
| 2002 | while ((rb = rb_first_cached(&sched_engine->queue))) { |
| 2003 | struct i915_priolist *p = to_priolist(rb); |
| 2004 | |
| 2005 | priolist_for_each_request_consume(rq, rn, p) { |
| 2006 | list_del_init(entry: &rq->sched.link); |
| 2007 | |
| 2008 | __i915_request_submit(request: rq); |
| 2009 | |
| 2010 | i915_request_put(rq: i915_request_mark_eio(rq)); |
| 2011 | } |
| 2012 | |
| 2013 | rb_erase_cached(node: &p->node, root: &sched_engine->queue); |
| 2014 | i915_priolist_free(p); |
| 2015 | } |
| 2016 | |
| 2017 | /* Remaining _unready_ requests will be nop'ed when submitted */ |
| 2018 | |
| 2019 | sched_engine->queue_priority_hint = INT_MIN; |
| 2020 | sched_engine->queue = RB_ROOT_CACHED; |
| 2021 | |
| 2022 | spin_unlock_irqrestore(lock: &sched_engine->lock, flags); |
| 2023 | } |
| 2024 | |
| 2025 | void intel_guc_submission_cancel_requests(struct intel_guc *guc) |
| 2026 | { |
| 2027 | struct intel_context *ce; |
| 2028 | unsigned long index; |
| 2029 | unsigned long flags; |
| 2030 | |
| 2031 | xa_lock_irqsave(&guc->context_lookup, flags); |
| 2032 | xa_for_each(&guc->context_lookup, index, ce) { |
| 2033 | if (!kref_get_unless_zero(kref: &ce->ref)) |
| 2034 | continue; |
| 2035 | |
| 2036 | xa_unlock(&guc->context_lookup); |
| 2037 | |
| 2038 | if (intel_context_is_pinned(ce) && |
| 2039 | !intel_context_is_child(ce)) |
| 2040 | guc_cancel_context_requests(ce); |
| 2041 | |
| 2042 | intel_context_put(ce); |
| 2043 | |
| 2044 | xa_lock(&guc->context_lookup); |
| 2045 | } |
| 2046 | xa_unlock_irqrestore(&guc->context_lookup, flags); |
| 2047 | |
| 2048 | guc_cancel_sched_engine_requests(sched_engine: guc->sched_engine); |
| 2049 | |
| 2050 | /* GuC is blown away, drop all references to contexts */ |
| 2051 | xa_destroy(&guc->context_lookup); |
| 2052 | |
| 2053 | /* |
| 2054 | * Wedged GT won't respond to any TLB invalidation request. Simply |
| 2055 | * release all the blocked waiters. |
| 2056 | */ |
| 2057 | wake_up_all_tlb_invalidate(guc); |
| 2058 | } |
| 2059 | |
| 2060 | void intel_guc_submission_reset_finish(struct intel_guc *guc) |
| 2061 | { |
| 2062 | int outstanding; |
| 2063 | |
| 2064 | /* Reset called during driver load or during wedge? */ |
| 2065 | if (unlikely(!guc_submission_initialized(guc) || |
| 2066 | !intel_guc_is_fw_running(guc) || |
| 2067 | intel_gt_is_wedged(guc_to_gt(guc)))) { |
| 2068 | return; |
| 2069 | } |
| 2070 | |
| 2071 | /* |
| 2072 | * Technically possible for either of these values to be non-zero here, |
| 2073 | * but very unlikely + harmless. Regardless let's add an error so we can |
| 2074 | * see in CI if this happens frequently / a precursor to taking down the |
| 2075 | * machine. |
| 2076 | */ |
| 2077 | outstanding = atomic_read(v: &guc->outstanding_submission_g2h); |
| 2078 | if (outstanding) |
| 2079 | guc_err(guc, "Unexpected outstanding GuC to Host response(s) in reset finish: %d\n" , |
| 2080 | outstanding); |
| 2081 | atomic_set(v: &guc->outstanding_submission_g2h, i: 0); |
| 2082 | |
| 2083 | intel_guc_global_policies_update(guc); |
| 2084 | enable_submission(guc); |
| 2085 | intel_gt_unpark_heartbeats(gt: guc_to_gt(guc)); |
| 2086 | |
| 2087 | /* |
| 2088 | * The full GT reset will have cleared the TLB caches and flushed the |
| 2089 | * G2H message queue; we can release all the blocked waiters. |
| 2090 | */ |
| 2091 | wake_up_all_tlb_invalidate(guc); |
| 2092 | } |
| 2093 | |
| 2094 | static void destroyed_worker_func(struct work_struct *w); |
| 2095 | static void reset_fail_worker_func(struct work_struct *w); |
| 2096 | |
| 2097 | bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc) |
| 2098 | { |
| 2099 | return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) && |
| 2100 | intel_guc_is_ready(guc); |
| 2101 | } |
| 2102 | |
| 2103 | static int init_tlb_lookup(struct intel_guc *guc) |
| 2104 | { |
| 2105 | struct intel_guc_tlb_wait *wait; |
| 2106 | int err; |
| 2107 | |
| 2108 | if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915)) |
| 2109 | return 0; |
| 2110 | |
| 2111 | xa_init_flags(xa: &guc->tlb_lookup, XA_FLAGS_ALLOC); |
| 2112 | |
| 2113 | wait = kzalloc(sizeof(*wait), GFP_KERNEL); |
| 2114 | if (!wait) |
| 2115 | return -ENOMEM; |
| 2116 | |
| 2117 | init_waitqueue_head(&wait->wq); |
| 2118 | |
| 2119 | /* Preallocate a shared id for use under memory pressure. */ |
| 2120 | err = xa_alloc_cyclic_irq(xa: &guc->tlb_lookup, id: &guc->serial_slot, entry: wait, |
| 2121 | xa_limit_32b, next: &guc->next_seqno, GFP_KERNEL); |
| 2122 | if (err < 0) { |
| 2123 | kfree(objp: wait); |
| 2124 | return err; |
| 2125 | } |
| 2126 | |
| 2127 | return 0; |
| 2128 | } |
| 2129 | |
| 2130 | static void fini_tlb_lookup(struct intel_guc *guc) |
| 2131 | { |
| 2132 | struct intel_guc_tlb_wait *wait; |
| 2133 | |
| 2134 | if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915)) |
| 2135 | return; |
| 2136 | |
| 2137 | wait = xa_load(&guc->tlb_lookup, index: guc->serial_slot); |
| 2138 | if (wait && wait->busy) |
| 2139 | guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n" ); |
| 2140 | kfree(objp: wait); |
| 2141 | |
| 2142 | xa_destroy(&guc->tlb_lookup); |
| 2143 | } |
| 2144 | |
| 2145 | /* |
| 2146 | * Set up the memory resources to be shared with the GuC (via the GGTT) |
| 2147 | * at firmware loading time. |
| 2148 | */ |
| 2149 | int intel_guc_submission_init(struct intel_guc *guc) |
| 2150 | { |
| 2151 | struct intel_gt *gt = guc_to_gt(guc); |
| 2152 | int ret; |
| 2153 | |
| 2154 | if (guc->submission_initialized) |
| 2155 | return 0; |
| 2156 | |
| 2157 | if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) { |
| 2158 | ret = guc_lrc_desc_pool_create_v69(guc); |
| 2159 | if (ret) |
| 2160 | return ret; |
| 2161 | } |
| 2162 | |
| 2163 | ret = init_tlb_lookup(guc); |
| 2164 | if (ret) |
| 2165 | goto destroy_pool; |
| 2166 | |
| 2167 | guc->submission_state.guc_ids_bitmap = |
| 2168 | bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); |
| 2169 | if (!guc->submission_state.guc_ids_bitmap) { |
| 2170 | ret = -ENOMEM; |
| 2171 | goto destroy_tlb; |
| 2172 | } |
| 2173 | |
| 2174 | guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; |
| 2175 | guc->timestamp.shift = gpm_timestamp_shift(gt); |
| 2176 | guc->submission_initialized = true; |
| 2177 | |
| 2178 | return 0; |
| 2179 | |
| 2180 | destroy_tlb: |
| 2181 | fini_tlb_lookup(guc); |
| 2182 | destroy_pool: |
| 2183 | guc_lrc_desc_pool_destroy_v69(guc); |
| 2184 | return ret; |
| 2185 | } |
| 2186 | |
| 2187 | void intel_guc_submission_fini(struct intel_guc *guc) |
| 2188 | { |
| 2189 | if (!guc->submission_initialized) |
| 2190 | return; |
| 2191 | |
| 2192 | guc_fini_engine_stats(guc); |
| 2193 | guc_flush_destroyed_contexts(guc); |
| 2194 | guc_lrc_desc_pool_destroy_v69(guc); |
| 2195 | i915_sched_engine_put(sched_engine: guc->sched_engine); |
| 2196 | bitmap_free(bitmap: guc->submission_state.guc_ids_bitmap); |
| 2197 | fini_tlb_lookup(guc); |
| 2198 | guc->submission_initialized = false; |
| 2199 | } |
| 2200 | |
| 2201 | static inline void queue_request(struct i915_sched_engine *sched_engine, |
| 2202 | struct i915_request *rq, |
| 2203 | int prio) |
| 2204 | { |
| 2205 | GEM_BUG_ON(!list_empty(&rq->sched.link)); |
| 2206 | list_add_tail(new: &rq->sched.link, |
| 2207 | head: i915_sched_lookup_priolist(sched_engine, prio)); |
| 2208 | set_bit(nr: I915_FENCE_FLAG_PQUEUE, addr: &rq->fence.flags); |
| 2209 | tasklet_hi_schedule(t: &sched_engine->tasklet); |
| 2210 | } |
| 2211 | |
| 2212 | static int guc_bypass_tasklet_submit(struct intel_guc *guc, |
| 2213 | struct i915_request *rq) |
| 2214 | { |
| 2215 | int ret = 0; |
| 2216 | |
| 2217 | __i915_request_submit(request: rq); |
| 2218 | |
| 2219 | trace_i915_request_in(rq, port: 0); |
| 2220 | |
| 2221 | if (is_multi_lrc_rq(rq)) { |
| 2222 | if (multi_lrc_submit(rq)) { |
| 2223 | ret = guc_wq_item_append(guc, rq); |
| 2224 | if (!ret) |
| 2225 | ret = guc_add_request(guc, rq); |
| 2226 | } |
| 2227 | } else { |
| 2228 | guc_set_lrc_tail(rq); |
| 2229 | ret = guc_add_request(guc, rq); |
| 2230 | } |
| 2231 | |
| 2232 | if (unlikely(ret == -EPIPE)) |
| 2233 | disable_submission(guc); |
| 2234 | |
| 2235 | return ret; |
| 2236 | } |
| 2237 | |
| 2238 | static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) |
| 2239 | { |
| 2240 | struct i915_sched_engine *sched_engine = rq->engine->sched_engine; |
| 2241 | struct intel_context *ce = request_to_scheduling_context(rq); |
| 2242 | |
| 2243 | return submission_disabled(guc) || guc->stalled_request || |
| 2244 | !i915_sched_engine_is_empty(sched_engine) || |
| 2245 | !ctx_id_mapped(guc, id: ce->guc_id.id); |
| 2246 | } |
| 2247 | |
| 2248 | static void guc_submit_request(struct i915_request *rq) |
| 2249 | { |
| 2250 | struct i915_sched_engine *sched_engine = rq->engine->sched_engine; |
| 2251 | struct intel_guc *guc = gt_to_guc(gt: rq->engine->gt); |
| 2252 | unsigned long flags; |
| 2253 | |
| 2254 | /* Will be called from irq-context when using foreign fences. */ |
| 2255 | spin_lock_irqsave(&sched_engine->lock, flags); |
| 2256 | |
| 2257 | if (need_tasklet(guc, rq)) |
| 2258 | queue_request(sched_engine, rq, prio: rq_prio(rq)); |
| 2259 | else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) |
| 2260 | tasklet_hi_schedule(t: &sched_engine->tasklet); |
| 2261 | |
| 2262 | spin_unlock_irqrestore(lock: &sched_engine->lock, flags); |
| 2263 | } |
| 2264 | |
| 2265 | static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| 2266 | { |
| 2267 | int ret; |
| 2268 | |
| 2269 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 2270 | |
| 2271 | if (intel_context_is_parent(ce)) |
| 2272 | ret = bitmap_find_free_region(bitmap: guc->submission_state.guc_ids_bitmap, |
| 2273 | NUMBER_MULTI_LRC_GUC_ID(guc), |
| 2274 | order_base_2(ce->parallel.number_children |
| 2275 | + 1)); |
| 2276 | else |
| 2277 | ret = ida_alloc_range(&guc->submission_state.guc_ids, |
| 2278 | NUMBER_MULTI_LRC_GUC_ID(guc), |
| 2279 | max: guc->submission_state.num_guc_ids - 1, |
| 2280 | GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); |
| 2281 | if (unlikely(ret < 0)) |
| 2282 | return ret; |
| 2283 | |
| 2284 | if (!intel_context_is_parent(ce)) |
| 2285 | ++guc->submission_state.guc_ids_in_use; |
| 2286 | |
| 2287 | ce->guc_id.id = ret; |
| 2288 | return 0; |
| 2289 | } |
| 2290 | |
| 2291 | static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| 2292 | { |
| 2293 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 2294 | |
| 2295 | if (!context_guc_id_invalid(ce)) { |
| 2296 | if (intel_context_is_parent(ce)) { |
| 2297 | bitmap_release_region(bitmap: guc->submission_state.guc_ids_bitmap, |
| 2298 | pos: ce->guc_id.id, |
| 2299 | order_base_2(ce->parallel.number_children |
| 2300 | + 1)); |
| 2301 | } else { |
| 2302 | --guc->submission_state.guc_ids_in_use; |
| 2303 | ida_free(&guc->submission_state.guc_ids, |
| 2304 | id: ce->guc_id.id); |
| 2305 | } |
| 2306 | clr_ctx_id_mapping(guc, id: ce->guc_id.id); |
| 2307 | set_context_guc_id_invalid(ce); |
| 2308 | } |
| 2309 | if (!list_empty(head: &ce->guc_id.link)) |
| 2310 | list_del_init(entry: &ce->guc_id.link); |
| 2311 | } |
| 2312 | |
| 2313 | static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| 2314 | { |
| 2315 | unsigned long flags; |
| 2316 | |
| 2317 | spin_lock_irqsave(&guc->submission_state.lock, flags); |
| 2318 | __release_guc_id(guc, ce); |
| 2319 | spin_unlock_irqrestore(lock: &guc->submission_state.lock, flags); |
| 2320 | } |
| 2321 | |
| 2322 | static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| 2323 | { |
| 2324 | struct intel_context *cn; |
| 2325 | |
| 2326 | lockdep_assert_held(&guc->submission_state.lock); |
| 2327 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 2328 | GEM_BUG_ON(intel_context_is_parent(ce)); |
| 2329 | |
| 2330 | if (!list_empty(head: &guc->submission_state.guc_id_list)) { |
| 2331 | cn = list_first_entry(&guc->submission_state.guc_id_list, |
| 2332 | struct intel_context, |
| 2333 | guc_id.link); |
| 2334 | |
| 2335 | GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); |
| 2336 | GEM_BUG_ON(context_guc_id_invalid(cn)); |
| 2337 | GEM_BUG_ON(intel_context_is_child(cn)); |
| 2338 | GEM_BUG_ON(intel_context_is_parent(cn)); |
| 2339 | |
| 2340 | list_del_init(entry: &cn->guc_id.link); |
| 2341 | ce->guc_id.id = cn->guc_id.id; |
| 2342 | |
| 2343 | spin_lock(lock: &cn->guc_state.lock); |
| 2344 | clr_context_registered(ce: cn); |
| 2345 | spin_unlock(lock: &cn->guc_state.lock); |
| 2346 | |
| 2347 | set_context_guc_id_invalid(cn); |
| 2348 | |
| 2349 | #ifdef CONFIG_DRM_I915_SELFTEST |
| 2350 | guc->number_guc_id_stolen++; |
| 2351 | #endif |
| 2352 | |
| 2353 | return 0; |
| 2354 | } else { |
| 2355 | return -EAGAIN; |
| 2356 | } |
| 2357 | } |
| 2358 | |
| 2359 | static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| 2360 | { |
| 2361 | int ret; |
| 2362 | |
| 2363 | lockdep_assert_held(&guc->submission_state.lock); |
| 2364 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 2365 | |
| 2366 | ret = new_guc_id(guc, ce); |
| 2367 | if (unlikely(ret < 0)) { |
| 2368 | if (intel_context_is_parent(ce)) |
| 2369 | return -ENOSPC; |
| 2370 | |
| 2371 | ret = steal_guc_id(guc, ce); |
| 2372 | if (ret < 0) |
| 2373 | return ret; |
| 2374 | } |
| 2375 | |
| 2376 | if (intel_context_is_parent(ce)) { |
| 2377 | struct intel_context *child; |
| 2378 | int i = 1; |
| 2379 | |
| 2380 | for_each_child(ce, child) |
| 2381 | child->guc_id.id = ce->guc_id.id + i++; |
| 2382 | } |
| 2383 | |
| 2384 | return 0; |
| 2385 | } |
| 2386 | |
| 2387 | #define PIN_GUC_ID_TRIES 4 |
| 2388 | static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| 2389 | { |
| 2390 | int ret = 0; |
| 2391 | unsigned long flags, tries = PIN_GUC_ID_TRIES; |
| 2392 | |
| 2393 | GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); |
| 2394 | |
| 2395 | try_again: |
| 2396 | spin_lock_irqsave(&guc->submission_state.lock, flags); |
| 2397 | |
| 2398 | might_lock(&ce->guc_state.lock); |
| 2399 | |
| 2400 | if (context_guc_id_invalid(ce)) { |
| 2401 | ret = assign_guc_id(guc, ce); |
| 2402 | if (ret) |
| 2403 | goto out_unlock; |
| 2404 | ret = 1; /* Indidcates newly assigned guc_id */ |
| 2405 | } |
| 2406 | if (!list_empty(head: &ce->guc_id.link)) |
| 2407 | list_del_init(entry: &ce->guc_id.link); |
| 2408 | atomic_inc(v: &ce->guc_id.ref); |
| 2409 | |
| 2410 | out_unlock: |
| 2411 | spin_unlock_irqrestore(lock: &guc->submission_state.lock, flags); |
| 2412 | |
| 2413 | /* |
| 2414 | * -EAGAIN indicates no guc_id are available, let's retire any |
| 2415 | * outstanding requests to see if that frees up a guc_id. If the first |
| 2416 | * retire didn't help, insert a sleep with the timeslice duration before |
| 2417 | * attempting to retire more requests. Double the sleep period each |
| 2418 | * subsequent pass before finally giving up. The sleep period has max of |
| 2419 | * 100ms and minimum of 1ms. |
| 2420 | */ |
| 2421 | if (ret == -EAGAIN && --tries) { |
| 2422 | if (PIN_GUC_ID_TRIES - tries > 1) { |
| 2423 | unsigned int timeslice_shifted = |
| 2424 | ce->engine->props.timeslice_duration_ms << |
| 2425 | (PIN_GUC_ID_TRIES - tries - 2); |
| 2426 | unsigned int max = min_t(unsigned int, 100, |
| 2427 | timeslice_shifted); |
| 2428 | |
| 2429 | msleep(max_t(unsigned int, max, 1)); |
| 2430 | } |
| 2431 | intel_gt_retire_requests(gt: guc_to_gt(guc)); |
| 2432 | goto try_again; |
| 2433 | } |
| 2434 | |
| 2435 | return ret; |
| 2436 | } |
| 2437 | |
| 2438 | static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| 2439 | { |
| 2440 | unsigned long flags; |
| 2441 | |
| 2442 | GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); |
| 2443 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 2444 | |
| 2445 | if (unlikely(context_guc_id_invalid(ce) || |
| 2446 | intel_context_is_parent(ce))) |
| 2447 | return; |
| 2448 | |
| 2449 | spin_lock_irqsave(&guc->submission_state.lock, flags); |
| 2450 | if (!context_guc_id_invalid(ce) && list_empty(head: &ce->guc_id.link) && |
| 2451 | !atomic_read(v: &ce->guc_id.ref)) |
| 2452 | list_add_tail(new: &ce->guc_id.link, |
| 2453 | head: &guc->submission_state.guc_id_list); |
| 2454 | spin_unlock_irqrestore(lock: &guc->submission_state.lock, flags); |
| 2455 | } |
| 2456 | |
| 2457 | static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, |
| 2458 | struct intel_context *ce, |
| 2459 | u32 guc_id, |
| 2460 | u32 offset, |
| 2461 | bool loop) |
| 2462 | { |
| 2463 | struct intel_context *child; |
| 2464 | u32 action[4 + MAX_ENGINE_INSTANCE]; |
| 2465 | int len = 0; |
| 2466 | |
| 2467 | GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); |
| 2468 | |
| 2469 | action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; |
| 2470 | action[len++] = guc_id; |
| 2471 | action[len++] = ce->parallel.number_children + 1; |
| 2472 | action[len++] = offset; |
| 2473 | for_each_child(ce, child) { |
| 2474 | offset += sizeof(struct guc_lrc_desc_v69); |
| 2475 | action[len++] = offset; |
| 2476 | } |
| 2477 | |
| 2478 | return guc_submission_send_busy_loop(guc, action, len, g2h_len_dw: 0, loop); |
| 2479 | } |
| 2480 | |
| 2481 | static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, |
| 2482 | struct intel_context *ce, |
| 2483 | struct guc_ctxt_registration_info *info, |
| 2484 | bool loop) |
| 2485 | { |
| 2486 | struct intel_context *child; |
| 2487 | u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; |
| 2488 | int len = 0; |
| 2489 | u32 next_id; |
| 2490 | |
| 2491 | GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); |
| 2492 | |
| 2493 | action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; |
| 2494 | action[len++] = info->flags; |
| 2495 | action[len++] = info->context_idx; |
| 2496 | action[len++] = info->engine_class; |
| 2497 | action[len++] = info->engine_submit_mask; |
| 2498 | action[len++] = info->wq_desc_lo; |
| 2499 | action[len++] = info->wq_desc_hi; |
| 2500 | action[len++] = info->wq_base_lo; |
| 2501 | action[len++] = info->wq_base_hi; |
| 2502 | action[len++] = info->wq_size; |
| 2503 | action[len++] = ce->parallel.number_children + 1; |
| 2504 | action[len++] = info->hwlrca_lo; |
| 2505 | action[len++] = info->hwlrca_hi; |
| 2506 | |
| 2507 | next_id = info->context_idx + 1; |
| 2508 | for_each_child(ce, child) { |
| 2509 | GEM_BUG_ON(next_id++ != child->guc_id.id); |
| 2510 | |
| 2511 | /* |
| 2512 | * NB: GuC interface supports 64 bit LRCA even though i915/HW |
| 2513 | * only supports 32 bit currently. |
| 2514 | */ |
| 2515 | action[len++] = lower_32_bits(child->lrc.lrca); |
| 2516 | action[len++] = upper_32_bits(child->lrc.lrca); |
| 2517 | } |
| 2518 | |
| 2519 | GEM_BUG_ON(len > ARRAY_SIZE(action)); |
| 2520 | |
| 2521 | return guc_submission_send_busy_loop(guc, action, len, g2h_len_dw: 0, loop); |
| 2522 | } |
| 2523 | |
| 2524 | static int __guc_action_register_context_v69(struct intel_guc *guc, |
| 2525 | u32 guc_id, |
| 2526 | u32 offset, |
| 2527 | bool loop) |
| 2528 | { |
| 2529 | u32 action[] = { |
| 2530 | INTEL_GUC_ACTION_REGISTER_CONTEXT, |
| 2531 | guc_id, |
| 2532 | offset, |
| 2533 | }; |
| 2534 | |
| 2535 | return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), |
| 2536 | g2h_len_dw: 0, loop); |
| 2537 | } |
| 2538 | |
| 2539 | static int __guc_action_register_context_v70(struct intel_guc *guc, |
| 2540 | struct guc_ctxt_registration_info *info, |
| 2541 | bool loop) |
| 2542 | { |
| 2543 | u32 action[] = { |
| 2544 | INTEL_GUC_ACTION_REGISTER_CONTEXT, |
| 2545 | info->flags, |
| 2546 | info->context_idx, |
| 2547 | info->engine_class, |
| 2548 | info->engine_submit_mask, |
| 2549 | info->wq_desc_lo, |
| 2550 | info->wq_desc_hi, |
| 2551 | info->wq_base_lo, |
| 2552 | info->wq_base_hi, |
| 2553 | info->wq_size, |
| 2554 | info->hwlrca_lo, |
| 2555 | info->hwlrca_hi, |
| 2556 | }; |
| 2557 | |
| 2558 | return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), |
| 2559 | g2h_len_dw: 0, loop); |
| 2560 | } |
| 2561 | |
| 2562 | static void prepare_context_registration_info_v69(struct intel_context *ce); |
| 2563 | static void prepare_context_registration_info_v70(struct intel_context *ce, |
| 2564 | struct guc_ctxt_registration_info *info); |
| 2565 | |
| 2566 | static int |
| 2567 | register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) |
| 2568 | { |
| 2569 | u32 offset = intel_guc_ggtt_offset(guc, vma: guc->lrc_desc_pool_v69) + |
| 2570 | ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); |
| 2571 | |
| 2572 | prepare_context_registration_info_v69(ce); |
| 2573 | |
| 2574 | if (intel_context_is_parent(ce)) |
| 2575 | return __guc_action_register_multi_lrc_v69(guc, ce, guc_id: ce->guc_id.id, |
| 2576 | offset, loop); |
| 2577 | else |
| 2578 | return __guc_action_register_context_v69(guc, guc_id: ce->guc_id.id, |
| 2579 | offset, loop); |
| 2580 | } |
| 2581 | |
| 2582 | static int |
| 2583 | register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) |
| 2584 | { |
| 2585 | struct guc_ctxt_registration_info info; |
| 2586 | |
| 2587 | prepare_context_registration_info_v70(ce, info: &info); |
| 2588 | |
| 2589 | if (intel_context_is_parent(ce)) |
| 2590 | return __guc_action_register_multi_lrc_v70(guc, ce, info: &info, loop); |
| 2591 | else |
| 2592 | return __guc_action_register_context_v70(guc, info: &info, loop); |
| 2593 | } |
| 2594 | |
| 2595 | static int register_context(struct intel_context *ce, bool loop) |
| 2596 | { |
| 2597 | struct intel_guc *guc = ce_to_guc(ce); |
| 2598 | int ret; |
| 2599 | |
| 2600 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 2601 | trace_intel_context_register(ce); |
| 2602 | |
| 2603 | if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) |
| 2604 | ret = register_context_v70(guc, ce, loop); |
| 2605 | else |
| 2606 | ret = register_context_v69(guc, ce, loop); |
| 2607 | |
| 2608 | if (likely(!ret)) { |
| 2609 | unsigned long flags; |
| 2610 | |
| 2611 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 2612 | set_context_registered(ce); |
| 2613 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 2614 | |
| 2615 | if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) |
| 2616 | guc_context_policy_init_v70(ce, loop); |
| 2617 | } |
| 2618 | |
| 2619 | return ret; |
| 2620 | } |
| 2621 | |
| 2622 | static int __guc_action_deregister_context(struct intel_guc *guc, |
| 2623 | u32 guc_id) |
| 2624 | { |
| 2625 | u32 action[] = { |
| 2626 | INTEL_GUC_ACTION_DEREGISTER_CONTEXT, |
| 2627 | guc_id, |
| 2628 | }; |
| 2629 | |
| 2630 | return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), |
| 2631 | G2H_LEN_DW_DEREGISTER_CONTEXT, |
| 2632 | loop: true); |
| 2633 | } |
| 2634 | |
| 2635 | static int deregister_context(struct intel_context *ce, u32 guc_id) |
| 2636 | { |
| 2637 | struct intel_guc *guc = ce_to_guc(ce); |
| 2638 | |
| 2639 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 2640 | trace_intel_context_deregister(ce); |
| 2641 | |
| 2642 | return __guc_action_deregister_context(guc, guc_id); |
| 2643 | } |
| 2644 | |
| 2645 | static inline void clear_children_join_go_memory(struct intel_context *ce) |
| 2646 | { |
| 2647 | struct parent_scratch *ps = __get_parent_scratch(ce); |
| 2648 | int i; |
| 2649 | |
| 2650 | ps->go.semaphore = 0; |
| 2651 | for (i = 0; i < ce->parallel.number_children + 1; ++i) |
| 2652 | ps->join[i].semaphore = 0; |
| 2653 | } |
| 2654 | |
| 2655 | static inline u32 get_children_go_value(struct intel_context *ce) |
| 2656 | { |
| 2657 | return __get_parent_scratch(ce)->go.semaphore; |
| 2658 | } |
| 2659 | |
| 2660 | static inline u32 get_children_join_value(struct intel_context *ce, |
| 2661 | u8 child_index) |
| 2662 | { |
| 2663 | return __get_parent_scratch(ce)->join[child_index].semaphore; |
| 2664 | } |
| 2665 | |
| 2666 | struct context_policy { |
| 2667 | u32 count; |
| 2668 | struct guc_update_context_policy h2g; |
| 2669 | }; |
| 2670 | |
| 2671 | static u32 __guc_context_policy_action_size(struct context_policy *policy) |
| 2672 | { |
| 2673 | size_t bytes = sizeof(policy->h2g.header) + |
| 2674 | (sizeof(policy->h2g.klv[0]) * policy->count); |
| 2675 | |
| 2676 | return bytes / sizeof(u32); |
| 2677 | } |
| 2678 | |
| 2679 | static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) |
| 2680 | { |
| 2681 | policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; |
| 2682 | policy->h2g.header.ctx_id = guc_id; |
| 2683 | policy->count = 0; |
| 2684 | } |
| 2685 | |
| 2686 | #define MAKE_CONTEXT_POLICY_ADD(func, id) \ |
| 2687 | static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ |
| 2688 | { \ |
| 2689 | GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ |
| 2690 | policy->h2g.klv[policy->count].kl = \ |
| 2691 | FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ |
| 2692 | FIELD_PREP(GUC_KLV_0_LEN, 1); \ |
| 2693 | policy->h2g.klv[policy->count].value = data; \ |
| 2694 | policy->count++; \ |
| 2695 | } |
| 2696 | |
| 2697 | MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) |
| 2698 | MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) |
| 2699 | MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) |
| 2700 | MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) |
| 2701 | MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY) |
| 2702 | |
| 2703 | #undef MAKE_CONTEXT_POLICY_ADD |
| 2704 | |
| 2705 | static int __guc_context_set_context_policies(struct intel_guc *guc, |
| 2706 | struct context_policy *policy, |
| 2707 | bool loop) |
| 2708 | { |
| 2709 | return guc_submission_send_busy_loop(guc, action: (u32 *)&policy->h2g, |
| 2710 | len: __guc_context_policy_action_size(policy), |
| 2711 | g2h_len_dw: 0, loop); |
| 2712 | } |
| 2713 | |
| 2714 | static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) |
| 2715 | { |
| 2716 | struct intel_engine_cs *engine = ce->engine; |
| 2717 | struct intel_guc *guc = gt_to_guc(gt: engine->gt); |
| 2718 | struct context_policy policy; |
| 2719 | u32 execution_quantum; |
| 2720 | u32 preemption_timeout; |
| 2721 | u32 slpc_ctx_freq_req = 0; |
| 2722 | unsigned long flags; |
| 2723 | int ret; |
| 2724 | |
| 2725 | /* NB: For both of these, zero means disabled. */ |
| 2726 | GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, |
| 2727 | execution_quantum)); |
| 2728 | GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, |
| 2729 | preemption_timeout)); |
| 2730 | execution_quantum = engine->props.timeslice_duration_ms * 1000; |
| 2731 | preemption_timeout = engine->props.preempt_timeout_ms * 1000; |
| 2732 | |
| 2733 | if (ce->flags & BIT(CONTEXT_LOW_LATENCY)) |
| 2734 | slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE; |
| 2735 | |
| 2736 | __guc_context_policy_start_klv(policy: &policy, guc_id: ce->guc_id.id); |
| 2737 | |
| 2738 | __guc_context_policy_add_priority(policy: &policy, data: ce->guc_state.prio); |
| 2739 | __guc_context_policy_add_execution_quantum(policy: &policy, data: execution_quantum); |
| 2740 | __guc_context_policy_add_preemption_timeout(policy: &policy, data: preemption_timeout); |
| 2741 | __guc_context_policy_add_slpc_ctx_freq_req(policy: &policy, data: slpc_ctx_freq_req); |
| 2742 | |
| 2743 | if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) |
| 2744 | __guc_context_policy_add_preempt_to_idle(policy: &policy, data: 1); |
| 2745 | |
| 2746 | ret = __guc_context_set_context_policies(guc, policy: &policy, loop); |
| 2747 | |
| 2748 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 2749 | if (ret != 0) |
| 2750 | set_context_policy_required(ce); |
| 2751 | else |
| 2752 | clr_context_policy_required(ce); |
| 2753 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 2754 | |
| 2755 | return ret; |
| 2756 | } |
| 2757 | |
| 2758 | static void guc_context_policy_init_v69(struct intel_engine_cs *engine, |
| 2759 | struct guc_lrc_desc_v69 *desc) |
| 2760 | { |
| 2761 | desc->policy_flags = 0; |
| 2762 | |
| 2763 | if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) |
| 2764 | desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; |
| 2765 | |
| 2766 | /* NB: For both of these, zero means disabled. */ |
| 2767 | GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, |
| 2768 | desc->execution_quantum)); |
| 2769 | GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, |
| 2770 | desc->preemption_timeout)); |
| 2771 | desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; |
| 2772 | desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; |
| 2773 | } |
| 2774 | |
| 2775 | static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) |
| 2776 | { |
| 2777 | /* |
| 2778 | * this matches the mapping we do in map_i915_prio_to_guc_prio() |
| 2779 | * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) |
| 2780 | */ |
| 2781 | switch (prio) { |
| 2782 | default: |
| 2783 | MISSING_CASE(prio); |
| 2784 | fallthrough; |
| 2785 | case GUC_CLIENT_PRIORITY_KMD_NORMAL: |
| 2786 | return GEN12_CTX_PRIORITY_NORMAL; |
| 2787 | case GUC_CLIENT_PRIORITY_NORMAL: |
| 2788 | return GEN12_CTX_PRIORITY_LOW; |
| 2789 | case GUC_CLIENT_PRIORITY_HIGH: |
| 2790 | case GUC_CLIENT_PRIORITY_KMD_HIGH: |
| 2791 | return GEN12_CTX_PRIORITY_HIGH; |
| 2792 | } |
| 2793 | } |
| 2794 | |
| 2795 | static void prepare_context_registration_info_v69(struct intel_context *ce) |
| 2796 | { |
| 2797 | struct intel_engine_cs *engine = ce->engine; |
| 2798 | struct intel_guc *guc = gt_to_guc(gt: engine->gt); |
| 2799 | u32 ctx_id = ce->guc_id.id; |
| 2800 | struct guc_lrc_desc_v69 *desc; |
| 2801 | struct intel_context *child; |
| 2802 | |
| 2803 | GEM_BUG_ON(!engine->mask); |
| 2804 | |
| 2805 | /* |
| 2806 | * Ensure LRC + CT vmas are is same region as write barrier is done |
| 2807 | * based on CT vma region. |
| 2808 | */ |
| 2809 | GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != |
| 2810 | i915_gem_object_is_lmem(ce->ring->vma->obj)); |
| 2811 | |
| 2812 | desc = __get_lrc_desc_v69(guc, index: ctx_id); |
| 2813 | GEM_BUG_ON(!desc); |
| 2814 | desc->engine_class = engine_class_to_guc_class(class: engine->class); |
| 2815 | desc->engine_submit_mask = engine->logical_mask; |
| 2816 | desc->hw_context_desc = ce->lrc.lrca; |
| 2817 | desc->priority = ce->guc_state.prio; |
| 2818 | desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; |
| 2819 | guc_context_policy_init_v69(engine, desc); |
| 2820 | |
| 2821 | /* |
| 2822 | * If context is a parent, we need to register a process descriptor |
| 2823 | * describing a work queue and register all child contexts. |
| 2824 | */ |
| 2825 | if (intel_context_is_parent(ce)) { |
| 2826 | struct guc_process_desc_v69 *pdesc; |
| 2827 | |
| 2828 | ce->parallel.guc.wqi_tail = 0; |
| 2829 | ce->parallel.guc.wqi_head = 0; |
| 2830 | |
| 2831 | desc->process_desc = i915_ggtt_offset(vma: ce->state) + |
| 2832 | __get_parent_scratch_offset(ce); |
| 2833 | desc->wq_addr = i915_ggtt_offset(vma: ce->state) + |
| 2834 | __get_wq_offset(ce); |
| 2835 | desc->wq_size = WQ_SIZE; |
| 2836 | |
| 2837 | pdesc = __get_process_desc_v69(ce); |
| 2838 | memset(s: pdesc, c: 0, n: sizeof(*(pdesc))); |
| 2839 | pdesc->stage_id = ce->guc_id.id; |
| 2840 | pdesc->wq_base_addr = desc->wq_addr; |
| 2841 | pdesc->wq_size_bytes = desc->wq_size; |
| 2842 | pdesc->wq_status = WQ_STATUS_ACTIVE; |
| 2843 | |
| 2844 | ce->parallel.guc.wq_head = &pdesc->head; |
| 2845 | ce->parallel.guc.wq_tail = &pdesc->tail; |
| 2846 | ce->parallel.guc.wq_status = &pdesc->wq_status; |
| 2847 | |
| 2848 | for_each_child(ce, child) { |
| 2849 | desc = __get_lrc_desc_v69(guc, index: child->guc_id.id); |
| 2850 | |
| 2851 | desc->engine_class = |
| 2852 | engine_class_to_guc_class(class: engine->class); |
| 2853 | desc->hw_context_desc = child->lrc.lrca; |
| 2854 | desc->priority = ce->guc_state.prio; |
| 2855 | desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; |
| 2856 | guc_context_policy_init_v69(engine, desc); |
| 2857 | } |
| 2858 | |
| 2859 | clear_children_join_go_memory(ce); |
| 2860 | } |
| 2861 | } |
| 2862 | |
| 2863 | static void prepare_context_registration_info_v70(struct intel_context *ce, |
| 2864 | struct guc_ctxt_registration_info *info) |
| 2865 | { |
| 2866 | struct intel_engine_cs *engine = ce->engine; |
| 2867 | struct intel_guc *guc = gt_to_guc(gt: engine->gt); |
| 2868 | u32 ctx_id = ce->guc_id.id; |
| 2869 | |
| 2870 | GEM_BUG_ON(!engine->mask); |
| 2871 | |
| 2872 | /* |
| 2873 | * Ensure LRC + CT vmas are is same region as write barrier is done |
| 2874 | * based on CT vma region. |
| 2875 | */ |
| 2876 | GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != |
| 2877 | i915_gem_object_is_lmem(ce->ring->vma->obj)); |
| 2878 | |
| 2879 | memset(s: info, c: 0, n: sizeof(*info)); |
| 2880 | info->context_idx = ctx_id; |
| 2881 | info->engine_class = engine_class_to_guc_class(class: engine->class); |
| 2882 | info->engine_submit_mask = engine->logical_mask; |
| 2883 | /* |
| 2884 | * NB: GuC interface supports 64 bit LRCA even though i915/HW |
| 2885 | * only supports 32 bit currently. |
| 2886 | */ |
| 2887 | info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); |
| 2888 | info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); |
| 2889 | if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) |
| 2890 | info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(prio: ce->guc_state.prio); |
| 2891 | info->flags = CONTEXT_REGISTRATION_FLAG_KMD; |
| 2892 | |
| 2893 | /* |
| 2894 | * If context is a parent, we need to register a process descriptor |
| 2895 | * describing a work queue and register all child contexts. |
| 2896 | */ |
| 2897 | if (intel_context_is_parent(ce)) { |
| 2898 | struct guc_sched_wq_desc *wq_desc; |
| 2899 | u64 wq_desc_offset, wq_base_offset; |
| 2900 | |
| 2901 | ce->parallel.guc.wqi_tail = 0; |
| 2902 | ce->parallel.guc.wqi_head = 0; |
| 2903 | |
| 2904 | wq_desc_offset = (u64)i915_ggtt_offset(vma: ce->state) + |
| 2905 | __get_parent_scratch_offset(ce); |
| 2906 | wq_base_offset = (u64)i915_ggtt_offset(vma: ce->state) + |
| 2907 | __get_wq_offset(ce); |
| 2908 | info->wq_desc_lo = lower_32_bits(wq_desc_offset); |
| 2909 | info->wq_desc_hi = upper_32_bits(wq_desc_offset); |
| 2910 | info->wq_base_lo = lower_32_bits(wq_base_offset); |
| 2911 | info->wq_base_hi = upper_32_bits(wq_base_offset); |
| 2912 | info->wq_size = WQ_SIZE; |
| 2913 | |
| 2914 | wq_desc = __get_wq_desc_v70(ce); |
| 2915 | memset(s: wq_desc, c: 0, n: sizeof(*wq_desc)); |
| 2916 | wq_desc->wq_status = WQ_STATUS_ACTIVE; |
| 2917 | |
| 2918 | ce->parallel.guc.wq_head = &wq_desc->head; |
| 2919 | ce->parallel.guc.wq_tail = &wq_desc->tail; |
| 2920 | ce->parallel.guc.wq_status = &wq_desc->wq_status; |
| 2921 | |
| 2922 | clear_children_join_go_memory(ce); |
| 2923 | } |
| 2924 | } |
| 2925 | |
| 2926 | static int try_context_registration(struct intel_context *ce, bool loop) |
| 2927 | { |
| 2928 | struct intel_engine_cs *engine = ce->engine; |
| 2929 | struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; |
| 2930 | struct intel_guc *guc = gt_to_guc(gt: engine->gt); |
| 2931 | intel_wakeref_t wakeref; |
| 2932 | u32 ctx_id = ce->guc_id.id; |
| 2933 | bool context_registered; |
| 2934 | int ret = 0; |
| 2935 | |
| 2936 | GEM_BUG_ON(!sched_state_is_init(ce)); |
| 2937 | |
| 2938 | context_registered = ctx_id_mapped(guc, id: ctx_id); |
| 2939 | |
| 2940 | clr_ctx_id_mapping(guc, id: ctx_id); |
| 2941 | set_ctx_id_mapping(guc, id: ctx_id, ce); |
| 2942 | |
| 2943 | /* |
| 2944 | * The context_lookup xarray is used to determine if the hardware |
| 2945 | * context is currently registered. There are two cases in which it |
| 2946 | * could be registered either the guc_id has been stolen from another |
| 2947 | * context or the lrc descriptor address of this context has changed. In |
| 2948 | * either case the context needs to be deregistered with the GuC before |
| 2949 | * registering this context. |
| 2950 | */ |
| 2951 | if (context_registered) { |
| 2952 | bool disabled; |
| 2953 | unsigned long flags; |
| 2954 | |
| 2955 | trace_intel_context_steal_guc_id(ce); |
| 2956 | GEM_BUG_ON(!loop); |
| 2957 | |
| 2958 | /* Seal race with Reset */ |
| 2959 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 2960 | disabled = submission_disabled(guc); |
| 2961 | if (likely(!disabled)) { |
| 2962 | set_context_wait_for_deregister_to_register(ce); |
| 2963 | intel_context_get(ce); |
| 2964 | } |
| 2965 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 2966 | if (unlikely(disabled)) { |
| 2967 | clr_ctx_id_mapping(guc, id: ctx_id); |
| 2968 | return 0; /* Will get registered later */ |
| 2969 | } |
| 2970 | |
| 2971 | /* |
| 2972 | * If stealing the guc_id, this ce has the same guc_id as the |
| 2973 | * context whose guc_id was stolen. |
| 2974 | */ |
| 2975 | with_intel_runtime_pm(runtime_pm, wakeref) |
| 2976 | ret = deregister_context(ce, guc_id: ce->guc_id.id); |
| 2977 | if (unlikely(ret == -ENODEV)) |
| 2978 | ret = 0; /* Will get registered later */ |
| 2979 | } else { |
| 2980 | with_intel_runtime_pm(runtime_pm, wakeref) |
| 2981 | ret = register_context(ce, loop); |
| 2982 | if (unlikely(ret == -EBUSY)) { |
| 2983 | clr_ctx_id_mapping(guc, id: ctx_id); |
| 2984 | } else if (unlikely(ret == -ENODEV)) { |
| 2985 | clr_ctx_id_mapping(guc, id: ctx_id); |
| 2986 | ret = 0; /* Will get registered later */ |
| 2987 | } |
| 2988 | } |
| 2989 | |
| 2990 | return ret; |
| 2991 | } |
| 2992 | |
| 2993 | static int __guc_context_pre_pin(struct intel_context *ce, |
| 2994 | struct intel_engine_cs *engine, |
| 2995 | struct i915_gem_ww_ctx *ww, |
| 2996 | void **vaddr) |
| 2997 | { |
| 2998 | return lrc_pre_pin(ce, engine, ww, vaddr); |
| 2999 | } |
| 3000 | |
| 3001 | static int __guc_context_pin(struct intel_context *ce, |
| 3002 | struct intel_engine_cs *engine, |
| 3003 | void *vaddr) |
| 3004 | { |
| 3005 | if (i915_ggtt_offset(vma: ce->state) != |
| 3006 | (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) |
| 3007 | set_bit(CONTEXT_LRCA_DIRTY, addr: &ce->flags); |
| 3008 | |
| 3009 | /* |
| 3010 | * GuC context gets pinned in guc_request_alloc. See that function for |
| 3011 | * explanation of why. |
| 3012 | */ |
| 3013 | |
| 3014 | return lrc_pin(ce, engine, vaddr); |
| 3015 | } |
| 3016 | |
| 3017 | static int guc_context_pre_pin(struct intel_context *ce, |
| 3018 | struct i915_gem_ww_ctx *ww, |
| 3019 | void **vaddr) |
| 3020 | { |
| 3021 | return __guc_context_pre_pin(ce, engine: ce->engine, ww, vaddr); |
| 3022 | } |
| 3023 | |
| 3024 | static int guc_context_pin(struct intel_context *ce, void *vaddr) |
| 3025 | { |
| 3026 | int ret = __guc_context_pin(ce, engine: ce->engine, vaddr); |
| 3027 | |
| 3028 | if (likely(!ret && !intel_context_is_barrier(ce))) |
| 3029 | intel_engine_pm_get(engine: ce->engine); |
| 3030 | |
| 3031 | return ret; |
| 3032 | } |
| 3033 | |
| 3034 | static void guc_context_unpin(struct intel_context *ce) |
| 3035 | { |
| 3036 | struct intel_guc *guc = ce_to_guc(ce); |
| 3037 | |
| 3038 | __guc_context_update_stats(ce); |
| 3039 | unpin_guc_id(guc, ce); |
| 3040 | lrc_unpin(ce); |
| 3041 | |
| 3042 | if (likely(!intel_context_is_barrier(ce))) |
| 3043 | intel_engine_pm_put_async(engine: ce->engine); |
| 3044 | } |
| 3045 | |
| 3046 | static void guc_context_post_unpin(struct intel_context *ce) |
| 3047 | { |
| 3048 | lrc_post_unpin(ce); |
| 3049 | } |
| 3050 | |
| 3051 | static void __guc_context_sched_enable(struct intel_guc *guc, |
| 3052 | struct intel_context *ce) |
| 3053 | { |
| 3054 | u32 action[] = { |
| 3055 | INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, |
| 3056 | ce->guc_id.id, |
| 3057 | GUC_CONTEXT_ENABLE |
| 3058 | }; |
| 3059 | |
| 3060 | trace_intel_context_sched_enable(ce); |
| 3061 | |
| 3062 | guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), |
| 3063 | G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, loop: true); |
| 3064 | } |
| 3065 | |
| 3066 | static void __guc_context_sched_disable(struct intel_guc *guc, |
| 3067 | struct intel_context *ce, |
| 3068 | u16 guc_id) |
| 3069 | { |
| 3070 | u32 action[] = { |
| 3071 | INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, |
| 3072 | guc_id, /* ce->guc_id.id not stable */ |
| 3073 | GUC_CONTEXT_DISABLE |
| 3074 | }; |
| 3075 | |
| 3076 | GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); |
| 3077 | |
| 3078 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 3079 | trace_intel_context_sched_disable(ce); |
| 3080 | |
| 3081 | guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), |
| 3082 | G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, loop: true); |
| 3083 | } |
| 3084 | |
| 3085 | static void guc_blocked_fence_complete(struct intel_context *ce) |
| 3086 | { |
| 3087 | lockdep_assert_held(&ce->guc_state.lock); |
| 3088 | |
| 3089 | if (!i915_sw_fence_done(fence: &ce->guc_state.blocked)) |
| 3090 | i915_sw_fence_complete(fence: &ce->guc_state.blocked); |
| 3091 | } |
| 3092 | |
| 3093 | static void guc_blocked_fence_reinit(struct intel_context *ce) |
| 3094 | { |
| 3095 | lockdep_assert_held(&ce->guc_state.lock); |
| 3096 | GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); |
| 3097 | |
| 3098 | /* |
| 3099 | * This fence is always complete unless a pending schedule disable is |
| 3100 | * outstanding. We arm the fence here and complete it when we receive |
| 3101 | * the pending schedule disable complete message. |
| 3102 | */ |
| 3103 | i915_sw_fence_fini(fence: &ce->guc_state.blocked); |
| 3104 | i915_sw_fence_reinit(fence: &ce->guc_state.blocked); |
| 3105 | i915_sw_fence_await(fence: &ce->guc_state.blocked); |
| 3106 | i915_sw_fence_commit(fence: &ce->guc_state.blocked); |
| 3107 | } |
| 3108 | |
| 3109 | static u16 prep_context_pending_disable(struct intel_context *ce) |
| 3110 | { |
| 3111 | lockdep_assert_held(&ce->guc_state.lock); |
| 3112 | |
| 3113 | set_context_pending_disable(ce); |
| 3114 | clr_context_enabled(ce); |
| 3115 | guc_blocked_fence_reinit(ce); |
| 3116 | intel_context_get(ce); |
| 3117 | |
| 3118 | return ce->guc_id.id; |
| 3119 | } |
| 3120 | |
| 3121 | static struct i915_sw_fence *guc_context_block(struct intel_context *ce) |
| 3122 | { |
| 3123 | struct intel_guc *guc = ce_to_guc(ce); |
| 3124 | unsigned long flags; |
| 3125 | struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; |
| 3126 | intel_wakeref_t wakeref; |
| 3127 | u16 guc_id; |
| 3128 | bool enabled; |
| 3129 | |
| 3130 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 3131 | |
| 3132 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 3133 | |
| 3134 | incr_context_blocked(ce); |
| 3135 | |
| 3136 | enabled = context_enabled(ce); |
| 3137 | if (unlikely(!enabled || submission_disabled(guc))) { |
| 3138 | if (enabled) |
| 3139 | clr_context_enabled(ce); |
| 3140 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3141 | return &ce->guc_state.blocked; |
| 3142 | } |
| 3143 | |
| 3144 | /* |
| 3145 | * We add +2 here as the schedule disable complete CTB handler calls |
| 3146 | * intel_context_sched_disable_unpin (-2 to pin_count). |
| 3147 | */ |
| 3148 | atomic_add(i: 2, v: &ce->pin_count); |
| 3149 | |
| 3150 | guc_id = prep_context_pending_disable(ce); |
| 3151 | |
| 3152 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3153 | |
| 3154 | with_intel_runtime_pm(runtime_pm, wakeref) |
| 3155 | __guc_context_sched_disable(guc, ce, guc_id); |
| 3156 | |
| 3157 | return &ce->guc_state.blocked; |
| 3158 | } |
| 3159 | |
| 3160 | #define SCHED_STATE_MULTI_BLOCKED_MASK \ |
| 3161 | (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) |
| 3162 | #define SCHED_STATE_NO_UNBLOCK \ |
| 3163 | (SCHED_STATE_MULTI_BLOCKED_MASK | \ |
| 3164 | SCHED_STATE_PENDING_DISABLE | \ |
| 3165 | SCHED_STATE_BANNED) |
| 3166 | |
| 3167 | static bool context_cant_unblock(struct intel_context *ce) |
| 3168 | { |
| 3169 | lockdep_assert_held(&ce->guc_state.lock); |
| 3170 | |
| 3171 | return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || |
| 3172 | context_guc_id_invalid(ce) || |
| 3173 | !ctx_id_mapped(guc: ce_to_guc(ce), id: ce->guc_id.id) || |
| 3174 | !intel_context_is_pinned(ce); |
| 3175 | } |
| 3176 | |
| 3177 | static void guc_context_unblock(struct intel_context *ce) |
| 3178 | { |
| 3179 | struct intel_guc *guc = ce_to_guc(ce); |
| 3180 | unsigned long flags; |
| 3181 | struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; |
| 3182 | intel_wakeref_t wakeref; |
| 3183 | bool enable; |
| 3184 | |
| 3185 | GEM_BUG_ON(context_enabled(ce)); |
| 3186 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 3187 | |
| 3188 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 3189 | |
| 3190 | if (unlikely(submission_disabled(guc) || |
| 3191 | context_cant_unblock(ce))) { |
| 3192 | enable = false; |
| 3193 | } else { |
| 3194 | enable = true; |
| 3195 | set_context_pending_enable(ce); |
| 3196 | set_context_enabled(ce); |
| 3197 | intel_context_get(ce); |
| 3198 | } |
| 3199 | |
| 3200 | decr_context_blocked(ce); |
| 3201 | |
| 3202 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3203 | |
| 3204 | if (enable) { |
| 3205 | with_intel_runtime_pm(runtime_pm, wakeref) |
| 3206 | __guc_context_sched_enable(guc, ce); |
| 3207 | } |
| 3208 | } |
| 3209 | |
| 3210 | static void guc_context_cancel_request(struct intel_context *ce, |
| 3211 | struct i915_request *rq) |
| 3212 | { |
| 3213 | struct intel_context *block_context = |
| 3214 | request_to_scheduling_context(rq); |
| 3215 | |
| 3216 | if (i915_sw_fence_signaled(fence: &rq->submit)) { |
| 3217 | struct i915_sw_fence *fence; |
| 3218 | |
| 3219 | intel_context_get(ce); |
| 3220 | fence = guc_context_block(ce: block_context); |
| 3221 | i915_sw_fence_wait(fence); |
| 3222 | if (!i915_request_completed(rq)) { |
| 3223 | __i915_request_skip(rq); |
| 3224 | guc_reset_state(ce, head: intel_ring_wrap(ring: ce->ring, pos: rq->head), |
| 3225 | scrub: true); |
| 3226 | } |
| 3227 | |
| 3228 | guc_context_unblock(ce: block_context); |
| 3229 | intel_context_put(ce); |
| 3230 | } |
| 3231 | } |
| 3232 | |
| 3233 | static void __guc_context_set_preemption_timeout(struct intel_guc *guc, |
| 3234 | u16 guc_id, |
| 3235 | u32 preemption_timeout) |
| 3236 | { |
| 3237 | if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { |
| 3238 | struct context_policy policy; |
| 3239 | |
| 3240 | __guc_context_policy_start_klv(policy: &policy, guc_id); |
| 3241 | __guc_context_policy_add_preemption_timeout(policy: &policy, data: preemption_timeout); |
| 3242 | __guc_context_set_context_policies(guc, policy: &policy, loop: true); |
| 3243 | } else { |
| 3244 | u32 action[] = { |
| 3245 | INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, |
| 3246 | guc_id, |
| 3247 | preemption_timeout |
| 3248 | }; |
| 3249 | |
| 3250 | intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), g2h_len_dw: 0, loop: true); |
| 3251 | } |
| 3252 | } |
| 3253 | |
| 3254 | static void |
| 3255 | guc_context_revoke(struct intel_context *ce, struct i915_request *rq, |
| 3256 | unsigned int preempt_timeout_ms) |
| 3257 | { |
| 3258 | struct intel_guc *guc = ce_to_guc(ce); |
| 3259 | struct intel_runtime_pm *runtime_pm = |
| 3260 | &ce->engine->gt->i915->runtime_pm; |
| 3261 | intel_wakeref_t wakeref; |
| 3262 | unsigned long flags; |
| 3263 | |
| 3264 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 3265 | |
| 3266 | guc_flush_submissions(guc); |
| 3267 | |
| 3268 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 3269 | set_context_banned(ce); |
| 3270 | |
| 3271 | if (submission_disabled(guc) || |
| 3272 | (!context_enabled(ce) && !context_pending_disable(ce))) { |
| 3273 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3274 | |
| 3275 | guc_cancel_context_requests(ce); |
| 3276 | intel_engine_signal_breadcrumbs(engine: ce->engine); |
| 3277 | } else if (!context_pending_disable(ce)) { |
| 3278 | u16 guc_id; |
| 3279 | |
| 3280 | /* |
| 3281 | * We add +2 here as the schedule disable complete CTB handler |
| 3282 | * calls intel_context_sched_disable_unpin (-2 to pin_count). |
| 3283 | */ |
| 3284 | atomic_add(i: 2, v: &ce->pin_count); |
| 3285 | |
| 3286 | guc_id = prep_context_pending_disable(ce); |
| 3287 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3288 | |
| 3289 | /* |
| 3290 | * In addition to disabling scheduling, set the preemption |
| 3291 | * timeout to the minimum value (1 us) so the banned context |
| 3292 | * gets kicked off the HW ASAP. |
| 3293 | */ |
| 3294 | with_intel_runtime_pm(runtime_pm, wakeref) { |
| 3295 | __guc_context_set_preemption_timeout(guc, guc_id, |
| 3296 | preemption_timeout: preempt_timeout_ms); |
| 3297 | __guc_context_sched_disable(guc, ce, guc_id); |
| 3298 | } |
| 3299 | } else { |
| 3300 | if (!context_guc_id_invalid(ce)) |
| 3301 | with_intel_runtime_pm(runtime_pm, wakeref) |
| 3302 | __guc_context_set_preemption_timeout(guc, |
| 3303 | guc_id: ce->guc_id.id, |
| 3304 | preemption_timeout: preempt_timeout_ms); |
| 3305 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3306 | } |
| 3307 | } |
| 3308 | |
| 3309 | static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce, |
| 3310 | unsigned long flags) |
| 3311 | __releases(ce->guc_state.lock) |
| 3312 | { |
| 3313 | struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; |
| 3314 | intel_wakeref_t wakeref; |
| 3315 | u16 guc_id; |
| 3316 | |
| 3317 | lockdep_assert_held(&ce->guc_state.lock); |
| 3318 | guc_id = prep_context_pending_disable(ce); |
| 3319 | |
| 3320 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3321 | |
| 3322 | with_intel_runtime_pm(runtime_pm, wakeref) |
| 3323 | __guc_context_sched_disable(guc, ce, guc_id); |
| 3324 | } |
| 3325 | |
| 3326 | static bool bypass_sched_disable(struct intel_guc *guc, |
| 3327 | struct intel_context *ce) |
| 3328 | { |
| 3329 | lockdep_assert_held(&ce->guc_state.lock); |
| 3330 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 3331 | |
| 3332 | if (submission_disabled(guc) || context_guc_id_invalid(ce) || |
| 3333 | !ctx_id_mapped(guc, id: ce->guc_id.id)) { |
| 3334 | clr_context_enabled(ce); |
| 3335 | return true; |
| 3336 | } |
| 3337 | |
| 3338 | return !context_enabled(ce); |
| 3339 | } |
| 3340 | |
| 3341 | static void __delay_sched_disable(struct work_struct *wrk) |
| 3342 | { |
| 3343 | struct intel_context *ce = |
| 3344 | container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work); |
| 3345 | struct intel_guc *guc = ce_to_guc(ce); |
| 3346 | unsigned long flags; |
| 3347 | |
| 3348 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 3349 | |
| 3350 | if (bypass_sched_disable(guc, ce)) { |
| 3351 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3352 | intel_context_sched_disable_unpin(ce); |
| 3353 | } else { |
| 3354 | do_sched_disable(guc, ce, flags); |
| 3355 | } |
| 3356 | } |
| 3357 | |
| 3358 | static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce) |
| 3359 | { |
| 3360 | /* |
| 3361 | * parent contexts are perma-pinned, if we are unpinning do schedule |
| 3362 | * disable immediately. |
| 3363 | */ |
| 3364 | if (intel_context_is_parent(ce)) |
| 3365 | return true; |
| 3366 | |
| 3367 | /* |
| 3368 | * If we are beyond the threshold for avail guc_ids, do schedule disable immediately. |
| 3369 | */ |
| 3370 | return guc->submission_state.guc_ids_in_use > |
| 3371 | guc->submission_state.sched_disable_gucid_threshold; |
| 3372 | } |
| 3373 | |
| 3374 | static void guc_context_sched_disable(struct intel_context *ce) |
| 3375 | { |
| 3376 | struct intel_guc *guc = ce_to_guc(ce); |
| 3377 | u64 delay = guc->submission_state.sched_disable_delay_ms; |
| 3378 | unsigned long flags; |
| 3379 | |
| 3380 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 3381 | |
| 3382 | if (bypass_sched_disable(guc, ce)) { |
| 3383 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3384 | intel_context_sched_disable_unpin(ce); |
| 3385 | } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) && |
| 3386 | delay) { |
| 3387 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3388 | mod_delayed_work(wq: system_unbound_wq, |
| 3389 | dwork: &ce->guc_state.sched_disable_delay_work, |
| 3390 | delay: msecs_to_jiffies(m: delay)); |
| 3391 | } else { |
| 3392 | do_sched_disable(guc, ce, flags); |
| 3393 | } |
| 3394 | } |
| 3395 | |
| 3396 | static void guc_context_close(struct intel_context *ce) |
| 3397 | { |
| 3398 | unsigned long flags; |
| 3399 | |
| 3400 | if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && |
| 3401 | cancel_delayed_work(dwork: &ce->guc_state.sched_disable_delay_work)) |
| 3402 | __delay_sched_disable(wrk: &ce->guc_state.sched_disable_delay_work.work); |
| 3403 | |
| 3404 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 3405 | set_context_close_done(ce); |
| 3406 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3407 | } |
| 3408 | |
| 3409 | static inline int guc_lrc_desc_unpin(struct intel_context *ce) |
| 3410 | { |
| 3411 | struct intel_guc *guc = ce_to_guc(ce); |
| 3412 | struct intel_gt *gt = guc_to_gt(guc); |
| 3413 | unsigned long flags; |
| 3414 | bool disabled; |
| 3415 | int ret; |
| 3416 | |
| 3417 | GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); |
| 3418 | GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); |
| 3419 | GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); |
| 3420 | GEM_BUG_ON(context_enabled(ce)); |
| 3421 | |
| 3422 | /* Seal race with Reset */ |
| 3423 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 3424 | disabled = submission_disabled(guc); |
| 3425 | if (likely(!disabled)) { |
| 3426 | /* |
| 3427 | * Take a gt-pm ref and change context state to be destroyed. |
| 3428 | * NOTE: a G2H IRQ that comes after will put this gt-pm ref back |
| 3429 | */ |
| 3430 | __intel_gt_pm_get(gt); |
| 3431 | set_context_destroyed(ce); |
| 3432 | clr_context_registered(ce); |
| 3433 | } |
| 3434 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3435 | |
| 3436 | if (unlikely(disabled)) { |
| 3437 | release_guc_id(guc, ce); |
| 3438 | __guc_context_destroy(ce); |
| 3439 | return 0; |
| 3440 | } |
| 3441 | |
| 3442 | /* |
| 3443 | * GuC is active, lets destroy this context, but at this point we can still be racing |
| 3444 | * with suspend, so we undo everything if the H2G fails in deregister_context so |
| 3445 | * that GuC reset will find this context during clean up. |
| 3446 | * |
| 3447 | * There is a race condition where the reset code could have altered |
| 3448 | * this context's state and done a wakeref put before we try to |
| 3449 | * deregister it here. So check if the context is still set to be |
| 3450 | * destroyed before undoing earlier changes, to avoid two wakeref puts |
| 3451 | * on the same context. |
| 3452 | */ |
| 3453 | ret = deregister_context(ce, guc_id: ce->guc_id.id); |
| 3454 | if (ret) { |
| 3455 | bool pending_destroyed; |
| 3456 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 3457 | pending_destroyed = context_destroyed(ce); |
| 3458 | if (pending_destroyed) { |
| 3459 | set_context_registered(ce); |
| 3460 | clr_context_destroyed(ce); |
| 3461 | } |
| 3462 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3463 | /* |
| 3464 | * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements |
| 3465 | * the wakeref immediately but per function spec usage call this after unlock. |
| 3466 | */ |
| 3467 | if (pending_destroyed) |
| 3468 | intel_wakeref_put_async(wf: >->wakeref); |
| 3469 | } |
| 3470 | |
| 3471 | return ret; |
| 3472 | } |
| 3473 | |
| 3474 | static void __guc_context_destroy(struct intel_context *ce) |
| 3475 | { |
| 3476 | GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || |
| 3477 | ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || |
| 3478 | ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || |
| 3479 | ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); |
| 3480 | |
| 3481 | lrc_fini(ce); |
| 3482 | intel_context_fini(ce); |
| 3483 | |
| 3484 | if (intel_engine_is_virtual(engine: ce->engine)) { |
| 3485 | struct guc_virtual_engine *ve = |
| 3486 | container_of(ce, typeof(*ve), context); |
| 3487 | |
| 3488 | if (ve->base.breadcrumbs) |
| 3489 | intel_breadcrumbs_put(b: ve->base.breadcrumbs); |
| 3490 | |
| 3491 | kfree(objp: ve); |
| 3492 | } else { |
| 3493 | intel_context_free(ce); |
| 3494 | } |
| 3495 | } |
| 3496 | |
| 3497 | static void guc_flush_destroyed_contexts(struct intel_guc *guc) |
| 3498 | { |
| 3499 | struct intel_context *ce; |
| 3500 | unsigned long flags; |
| 3501 | |
| 3502 | GEM_BUG_ON(!submission_disabled(guc) && |
| 3503 | guc_submission_initialized(guc)); |
| 3504 | |
| 3505 | while (!list_empty(head: &guc->submission_state.destroyed_contexts)) { |
| 3506 | spin_lock_irqsave(&guc->submission_state.lock, flags); |
| 3507 | ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, |
| 3508 | struct intel_context, |
| 3509 | destroyed_link); |
| 3510 | if (ce) |
| 3511 | list_del_init(entry: &ce->destroyed_link); |
| 3512 | spin_unlock_irqrestore(lock: &guc->submission_state.lock, flags); |
| 3513 | |
| 3514 | if (!ce) |
| 3515 | break; |
| 3516 | |
| 3517 | release_guc_id(guc, ce); |
| 3518 | __guc_context_destroy(ce); |
| 3519 | } |
| 3520 | } |
| 3521 | |
| 3522 | static void deregister_destroyed_contexts(struct intel_guc *guc) |
| 3523 | { |
| 3524 | struct intel_context *ce; |
| 3525 | unsigned long flags; |
| 3526 | |
| 3527 | while (!list_empty(head: &guc->submission_state.destroyed_contexts)) { |
| 3528 | spin_lock_irqsave(&guc->submission_state.lock, flags); |
| 3529 | ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, |
| 3530 | struct intel_context, |
| 3531 | destroyed_link); |
| 3532 | if (ce) |
| 3533 | list_del_init(entry: &ce->destroyed_link); |
| 3534 | spin_unlock_irqrestore(lock: &guc->submission_state.lock, flags); |
| 3535 | |
| 3536 | if (!ce) |
| 3537 | break; |
| 3538 | |
| 3539 | if (guc_lrc_desc_unpin(ce)) { |
| 3540 | /* |
| 3541 | * This means GuC's CT link severed mid-way which could happen |
| 3542 | * in suspend-resume corner cases. In this case, put the |
| 3543 | * context back into the destroyed_contexts list which will |
| 3544 | * get picked up on the next context deregistration event or |
| 3545 | * purged in a GuC sanitization event (reset/unload/wedged/...). |
| 3546 | */ |
| 3547 | spin_lock_irqsave(&guc->submission_state.lock, flags); |
| 3548 | list_add_tail(new: &ce->destroyed_link, |
| 3549 | head: &guc->submission_state.destroyed_contexts); |
| 3550 | spin_unlock_irqrestore(lock: &guc->submission_state.lock, flags); |
| 3551 | /* Bail now since the list might never be emptied if h2gs fail */ |
| 3552 | break; |
| 3553 | } |
| 3554 | |
| 3555 | } |
| 3556 | } |
| 3557 | |
| 3558 | static void destroyed_worker_func(struct work_struct *w) |
| 3559 | { |
| 3560 | struct intel_guc *guc = container_of(w, struct intel_guc, |
| 3561 | submission_state.destroyed_worker); |
| 3562 | struct intel_gt *gt = guc_to_gt(guc); |
| 3563 | intel_wakeref_t wakeref; |
| 3564 | |
| 3565 | /* |
| 3566 | * In rare cases we can get here via async context-free fence-signals that |
| 3567 | * come very late in suspend flow or very early in resume flows. In these |
| 3568 | * cases, GuC won't be ready but just skipping it here is fine as these |
| 3569 | * pending-destroy-contexts get destroyed totally at GuC reset time at the |
| 3570 | * end of suspend.. OR.. this worker can be picked up later on the next |
| 3571 | * context destruction trigger after resume-completes |
| 3572 | */ |
| 3573 | if (!intel_guc_is_ready(guc)) |
| 3574 | return; |
| 3575 | |
| 3576 | with_intel_gt_pm(gt, wakeref) |
| 3577 | deregister_destroyed_contexts(guc); |
| 3578 | } |
| 3579 | |
| 3580 | static void guc_context_destroy(struct kref *kref) |
| 3581 | { |
| 3582 | struct intel_context *ce = container_of(kref, typeof(*ce), ref); |
| 3583 | struct intel_guc *guc = ce_to_guc(ce); |
| 3584 | unsigned long flags; |
| 3585 | bool destroy; |
| 3586 | |
| 3587 | /* |
| 3588 | * If the guc_id is invalid this context has been stolen and we can free |
| 3589 | * it immediately. Also can be freed immediately if the context is not |
| 3590 | * registered with the GuC or the GuC is in the middle of a reset. |
| 3591 | */ |
| 3592 | spin_lock_irqsave(&guc->submission_state.lock, flags); |
| 3593 | destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || |
| 3594 | !ctx_id_mapped(guc, id: ce->guc_id.id); |
| 3595 | if (likely(!destroy)) { |
| 3596 | if (!list_empty(head: &ce->guc_id.link)) |
| 3597 | list_del_init(entry: &ce->guc_id.link); |
| 3598 | list_add_tail(new: &ce->destroyed_link, |
| 3599 | head: &guc->submission_state.destroyed_contexts); |
| 3600 | } else { |
| 3601 | __release_guc_id(guc, ce); |
| 3602 | } |
| 3603 | spin_unlock_irqrestore(lock: &guc->submission_state.lock, flags); |
| 3604 | if (unlikely(destroy)) { |
| 3605 | __guc_context_destroy(ce); |
| 3606 | return; |
| 3607 | } |
| 3608 | |
| 3609 | /* |
| 3610 | * We use a worker to issue the H2G to deregister the context as we can |
| 3611 | * take the GT PM for the first time which isn't allowed from an atomic |
| 3612 | * context. |
| 3613 | */ |
| 3614 | queue_work(wq: system_unbound_wq, work: &guc->submission_state.destroyed_worker); |
| 3615 | } |
| 3616 | |
| 3617 | static int guc_context_alloc(struct intel_context *ce) |
| 3618 | { |
| 3619 | return lrc_alloc(ce, engine: ce->engine); |
| 3620 | } |
| 3621 | |
| 3622 | static void __guc_context_set_prio(struct intel_guc *guc, |
| 3623 | struct intel_context *ce) |
| 3624 | { |
| 3625 | if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { |
| 3626 | struct context_policy policy; |
| 3627 | |
| 3628 | __guc_context_policy_start_klv(policy: &policy, guc_id: ce->guc_id.id); |
| 3629 | __guc_context_policy_add_priority(policy: &policy, data: ce->guc_state.prio); |
| 3630 | __guc_context_set_context_policies(guc, policy: &policy, loop: true); |
| 3631 | } else { |
| 3632 | u32 action[] = { |
| 3633 | INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, |
| 3634 | ce->guc_id.id, |
| 3635 | ce->guc_state.prio, |
| 3636 | }; |
| 3637 | |
| 3638 | guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), g2h_len_dw: 0, loop: true); |
| 3639 | } |
| 3640 | } |
| 3641 | |
| 3642 | static void guc_context_set_prio(struct intel_guc *guc, |
| 3643 | struct intel_context *ce, |
| 3644 | u8 prio) |
| 3645 | { |
| 3646 | GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || |
| 3647 | prio > GUC_CLIENT_PRIORITY_NORMAL); |
| 3648 | lockdep_assert_held(&ce->guc_state.lock); |
| 3649 | |
| 3650 | if (ce->guc_state.prio == prio || submission_disabled(guc) || |
| 3651 | !context_registered(ce)) { |
| 3652 | ce->guc_state.prio = prio; |
| 3653 | return; |
| 3654 | } |
| 3655 | |
| 3656 | ce->guc_state.prio = prio; |
| 3657 | __guc_context_set_prio(guc, ce); |
| 3658 | |
| 3659 | trace_intel_context_set_prio(ce); |
| 3660 | } |
| 3661 | |
| 3662 | static inline u8 map_i915_prio_to_guc_prio(int prio) |
| 3663 | { |
| 3664 | if (prio == I915_PRIORITY_NORMAL) |
| 3665 | return GUC_CLIENT_PRIORITY_KMD_NORMAL; |
| 3666 | else if (prio < I915_PRIORITY_NORMAL) |
| 3667 | return GUC_CLIENT_PRIORITY_NORMAL; |
| 3668 | else if (prio < I915_PRIORITY_DISPLAY) |
| 3669 | return GUC_CLIENT_PRIORITY_HIGH; |
| 3670 | else |
| 3671 | return GUC_CLIENT_PRIORITY_KMD_HIGH; |
| 3672 | } |
| 3673 | |
| 3674 | static inline void add_context_inflight_prio(struct intel_context *ce, |
| 3675 | u8 guc_prio) |
| 3676 | { |
| 3677 | lockdep_assert_held(&ce->guc_state.lock); |
| 3678 | GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); |
| 3679 | |
| 3680 | ++ce->guc_state.prio_count[guc_prio]; |
| 3681 | |
| 3682 | /* Overflow protection */ |
| 3683 | GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); |
| 3684 | } |
| 3685 | |
| 3686 | static inline void sub_context_inflight_prio(struct intel_context *ce, |
| 3687 | u8 guc_prio) |
| 3688 | { |
| 3689 | lockdep_assert_held(&ce->guc_state.lock); |
| 3690 | GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); |
| 3691 | |
| 3692 | /* Underflow protection */ |
| 3693 | GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); |
| 3694 | |
| 3695 | --ce->guc_state.prio_count[guc_prio]; |
| 3696 | } |
| 3697 | |
| 3698 | static inline void update_context_prio(struct intel_context *ce) |
| 3699 | { |
| 3700 | struct intel_guc *guc = &ce->engine->gt->uc.guc; |
| 3701 | int i; |
| 3702 | |
| 3703 | BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); |
| 3704 | BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); |
| 3705 | |
| 3706 | lockdep_assert_held(&ce->guc_state.lock); |
| 3707 | |
| 3708 | for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { |
| 3709 | if (ce->guc_state.prio_count[i]) { |
| 3710 | guc_context_set_prio(guc, ce, prio: i); |
| 3711 | break; |
| 3712 | } |
| 3713 | } |
| 3714 | } |
| 3715 | |
| 3716 | static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) |
| 3717 | { |
| 3718 | /* Lower value is higher priority */ |
| 3719 | return new_guc_prio < old_guc_prio; |
| 3720 | } |
| 3721 | |
| 3722 | static void add_to_context(struct i915_request *rq) |
| 3723 | { |
| 3724 | struct intel_context *ce = request_to_scheduling_context(rq); |
| 3725 | u8 new_guc_prio = map_i915_prio_to_guc_prio(prio: rq_prio(rq)); |
| 3726 | |
| 3727 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 3728 | GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); |
| 3729 | |
| 3730 | spin_lock(lock: &ce->guc_state.lock); |
| 3731 | list_move_tail(list: &rq->sched.link, head: &ce->guc_state.requests); |
| 3732 | |
| 3733 | if (rq->guc_prio == GUC_PRIO_INIT) { |
| 3734 | rq->guc_prio = new_guc_prio; |
| 3735 | add_context_inflight_prio(ce, guc_prio: rq->guc_prio); |
| 3736 | } else if (new_guc_prio_higher(old_guc_prio: rq->guc_prio, new_guc_prio)) { |
| 3737 | sub_context_inflight_prio(ce, guc_prio: rq->guc_prio); |
| 3738 | rq->guc_prio = new_guc_prio; |
| 3739 | add_context_inflight_prio(ce, guc_prio: rq->guc_prio); |
| 3740 | } |
| 3741 | update_context_prio(ce); |
| 3742 | |
| 3743 | spin_unlock(lock: &ce->guc_state.lock); |
| 3744 | } |
| 3745 | |
| 3746 | static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) |
| 3747 | { |
| 3748 | lockdep_assert_held(&ce->guc_state.lock); |
| 3749 | |
| 3750 | if (rq->guc_prio != GUC_PRIO_INIT && |
| 3751 | rq->guc_prio != GUC_PRIO_FINI) { |
| 3752 | sub_context_inflight_prio(ce, guc_prio: rq->guc_prio); |
| 3753 | update_context_prio(ce); |
| 3754 | } |
| 3755 | rq->guc_prio = GUC_PRIO_FINI; |
| 3756 | } |
| 3757 | |
| 3758 | static void remove_from_context(struct i915_request *rq) |
| 3759 | { |
| 3760 | struct intel_context *ce = request_to_scheduling_context(rq); |
| 3761 | |
| 3762 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 3763 | |
| 3764 | spin_lock_irq(lock: &ce->guc_state.lock); |
| 3765 | |
| 3766 | list_del_init(entry: &rq->sched.link); |
| 3767 | clear_bit(nr: I915_FENCE_FLAG_PQUEUE, addr: &rq->fence.flags); |
| 3768 | |
| 3769 | /* Prevent further __await_execution() registering a cb, then flush */ |
| 3770 | set_bit(nr: I915_FENCE_FLAG_ACTIVE, addr: &rq->fence.flags); |
| 3771 | |
| 3772 | guc_prio_fini(rq, ce); |
| 3773 | |
| 3774 | spin_unlock_irq(lock: &ce->guc_state.lock); |
| 3775 | |
| 3776 | atomic_dec(v: &ce->guc_id.ref); |
| 3777 | i915_request_notify_execute_cb_imm(rq); |
| 3778 | } |
| 3779 | |
| 3780 | static const struct intel_context_ops guc_context_ops = { |
| 3781 | .flags = COPS_RUNTIME_CYCLES, |
| 3782 | .alloc = guc_context_alloc, |
| 3783 | |
| 3784 | .close = guc_context_close, |
| 3785 | |
| 3786 | .pre_pin = guc_context_pre_pin, |
| 3787 | .pin = guc_context_pin, |
| 3788 | .unpin = guc_context_unpin, |
| 3789 | .post_unpin = guc_context_post_unpin, |
| 3790 | |
| 3791 | .revoke = guc_context_revoke, |
| 3792 | |
| 3793 | .cancel_request = guc_context_cancel_request, |
| 3794 | |
| 3795 | .enter = intel_context_enter_engine, |
| 3796 | .exit = intel_context_exit_engine, |
| 3797 | |
| 3798 | .sched_disable = guc_context_sched_disable, |
| 3799 | |
| 3800 | .update_stats = guc_context_update_stats, |
| 3801 | |
| 3802 | .reset = lrc_reset, |
| 3803 | .destroy = guc_context_destroy, |
| 3804 | |
| 3805 | .create_virtual = guc_create_virtual, |
| 3806 | .create_parallel = guc_create_parallel, |
| 3807 | }; |
| 3808 | |
| 3809 | static void submit_work_cb(struct irq_work *wrk) |
| 3810 | { |
| 3811 | struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); |
| 3812 | |
| 3813 | might_lock(&rq->engine->sched_engine->lock); |
| 3814 | i915_sw_fence_complete(fence: &rq->submit); |
| 3815 | } |
| 3816 | |
| 3817 | static void __guc_signal_context_fence(struct intel_context *ce) |
| 3818 | { |
| 3819 | struct i915_request *rq, *rn; |
| 3820 | |
| 3821 | lockdep_assert_held(&ce->guc_state.lock); |
| 3822 | |
| 3823 | if (!list_empty(head: &ce->guc_state.fences)) |
| 3824 | trace_intel_context_fence_release(ce); |
| 3825 | |
| 3826 | /* |
| 3827 | * Use an IRQ to ensure locking order of sched_engine->lock -> |
| 3828 | * ce->guc_state.lock is preserved. |
| 3829 | */ |
| 3830 | list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, |
| 3831 | guc_fence_link) { |
| 3832 | list_del(entry: &rq->guc_fence_link); |
| 3833 | irq_work_queue(work: &rq->submit_work); |
| 3834 | } |
| 3835 | |
| 3836 | INIT_LIST_HEAD(list: &ce->guc_state.fences); |
| 3837 | } |
| 3838 | |
| 3839 | static void guc_signal_context_fence(struct intel_context *ce) |
| 3840 | { |
| 3841 | unsigned long flags; |
| 3842 | |
| 3843 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 3844 | |
| 3845 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 3846 | clr_context_wait_for_deregister_to_register(ce); |
| 3847 | __guc_signal_context_fence(ce); |
| 3848 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3849 | } |
| 3850 | |
| 3851 | static bool context_needs_register(struct intel_context *ce, bool new_guc_id) |
| 3852 | { |
| 3853 | return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || |
| 3854 | !ctx_id_mapped(guc: ce_to_guc(ce), id: ce->guc_id.id)) && |
| 3855 | !submission_disabled(guc: ce_to_guc(ce)); |
| 3856 | } |
| 3857 | |
| 3858 | static void guc_context_init(struct intel_context *ce) |
| 3859 | { |
| 3860 | const struct i915_gem_context *ctx; |
| 3861 | int prio = I915_CONTEXT_DEFAULT_PRIORITY; |
| 3862 | |
| 3863 | rcu_read_lock(); |
| 3864 | ctx = rcu_dereference(ce->gem_context); |
| 3865 | if (ctx) |
| 3866 | prio = ctx->sched.priority; |
| 3867 | rcu_read_unlock(); |
| 3868 | |
| 3869 | ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); |
| 3870 | |
| 3871 | INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work, |
| 3872 | __delay_sched_disable); |
| 3873 | |
| 3874 | set_bit(CONTEXT_GUC_INIT, addr: &ce->flags); |
| 3875 | } |
| 3876 | |
| 3877 | static int guc_request_alloc(struct i915_request *rq) |
| 3878 | { |
| 3879 | struct intel_context *ce = request_to_scheduling_context(rq); |
| 3880 | struct intel_guc *guc = ce_to_guc(ce); |
| 3881 | unsigned long flags; |
| 3882 | int ret; |
| 3883 | |
| 3884 | GEM_BUG_ON(!intel_context_is_pinned(rq->context)); |
| 3885 | |
| 3886 | /* |
| 3887 | * Flush enough space to reduce the likelihood of waiting after |
| 3888 | * we start building the request - in which case we will just |
| 3889 | * have to repeat work. |
| 3890 | */ |
| 3891 | rq->reserved_space += GUC_REQUEST_SIZE; |
| 3892 | |
| 3893 | /* |
| 3894 | * Note that after this point, we have committed to using |
| 3895 | * this request as it is being used to both track the |
| 3896 | * state of engine initialisation and liveness of the |
| 3897 | * golden renderstate above. Think twice before you try |
| 3898 | * to cancel/unwind this request now. |
| 3899 | */ |
| 3900 | |
| 3901 | /* Unconditionally invalidate GPU caches and TLBs. */ |
| 3902 | ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); |
| 3903 | if (ret) |
| 3904 | return ret; |
| 3905 | |
| 3906 | rq->reserved_space -= GUC_REQUEST_SIZE; |
| 3907 | |
| 3908 | if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) |
| 3909 | guc_context_init(ce); |
| 3910 | |
| 3911 | /* |
| 3912 | * If the context gets closed while the execbuf is ongoing, the context |
| 3913 | * close code will race with the below code to cancel the delayed work. |
| 3914 | * If the context close wins the race and cancels the work, it will |
| 3915 | * immediately call the sched disable (see guc_context_close), so there |
| 3916 | * is a chance we can get past this check while the sched_disable code |
| 3917 | * is being executed. To make sure that code completes before we check |
| 3918 | * the status further down, we wait for the close process to complete. |
| 3919 | * Else, this code path could send a request down thinking that the |
| 3920 | * context is still in a schedule-enable mode while the GuC ends up |
| 3921 | * dropping the request completely because the disable did go from the |
| 3922 | * context_close path right to GuC just prior. In the event the CT is |
| 3923 | * full, we could potentially need to wait up to 1.5 seconds. |
| 3924 | */ |
| 3925 | if (cancel_delayed_work_sync(dwork: &ce->guc_state.sched_disable_delay_work)) |
| 3926 | intel_context_sched_disable_unpin(ce); |
| 3927 | else if (intel_context_is_closed(ce)) |
| 3928 | if (wait_for(context_close_done(ce), 1500)) |
| 3929 | guc_warn(guc, "timed out waiting on context sched close before realloc\n" ); |
| 3930 | /* |
| 3931 | * Call pin_guc_id here rather than in the pinning step as with |
| 3932 | * dma_resv, contexts can be repeatedly pinned / unpinned trashing the |
| 3933 | * guc_id and creating horrible race conditions. This is especially bad |
| 3934 | * when guc_id are being stolen due to over subscription. By the time |
| 3935 | * this function is reached, it is guaranteed that the guc_id will be |
| 3936 | * persistent until the generated request is retired. Thus, sealing these |
| 3937 | * race conditions. It is still safe to fail here if guc_id are |
| 3938 | * exhausted and return -EAGAIN to the user indicating that they can try |
| 3939 | * again in the future. |
| 3940 | * |
| 3941 | * There is no need for a lock here as the timeline mutex ensures at |
| 3942 | * most one context can be executing this code path at once. The |
| 3943 | * guc_id_ref is incremented once for every request in flight and |
| 3944 | * decremented on each retire. When it is zero, a lock around the |
| 3945 | * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. |
| 3946 | */ |
| 3947 | if (atomic_add_unless(v: &ce->guc_id.ref, a: 1, u: 0)) |
| 3948 | goto out; |
| 3949 | |
| 3950 | ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ |
| 3951 | if (unlikely(ret < 0)) |
| 3952 | return ret; |
| 3953 | if (context_needs_register(ce, new_guc_id: !!ret)) { |
| 3954 | ret = try_context_registration(ce, loop: true); |
| 3955 | if (unlikely(ret)) { /* unwind */ |
| 3956 | if (ret == -EPIPE) { |
| 3957 | disable_submission(guc); |
| 3958 | goto out; /* GPU will be reset */ |
| 3959 | } |
| 3960 | atomic_dec(v: &ce->guc_id.ref); |
| 3961 | unpin_guc_id(guc, ce); |
| 3962 | return ret; |
| 3963 | } |
| 3964 | } |
| 3965 | |
| 3966 | clear_bit(CONTEXT_LRCA_DIRTY, addr: &ce->flags); |
| 3967 | |
| 3968 | out: |
| 3969 | /* |
| 3970 | * We block all requests on this context if a G2H is pending for a |
| 3971 | * schedule disable or context deregistration as the GuC will fail a |
| 3972 | * schedule enable or context registration if either G2H is pending |
| 3973 | * respectfully. Once a G2H returns, the fence is released that is |
| 3974 | * blocking these requests (see guc_signal_context_fence). |
| 3975 | */ |
| 3976 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 3977 | if (context_wait_for_deregister_to_register(ce) || |
| 3978 | context_pending_disable(ce)) { |
| 3979 | init_irq_work(work: &rq->submit_work, func: submit_work_cb); |
| 3980 | i915_sw_fence_await(fence: &rq->submit); |
| 3981 | |
| 3982 | list_add_tail(new: &rq->guc_fence_link, head: &ce->guc_state.fences); |
| 3983 | } |
| 3984 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 3985 | |
| 3986 | return 0; |
| 3987 | } |
| 3988 | |
| 3989 | static int guc_virtual_context_pre_pin(struct intel_context *ce, |
| 3990 | struct i915_gem_ww_ctx *ww, |
| 3991 | void **vaddr) |
| 3992 | { |
| 3993 | struct intel_engine_cs *engine = guc_virtual_get_sibling(ve: ce->engine, sibling: 0); |
| 3994 | |
| 3995 | return __guc_context_pre_pin(ce, engine, ww, vaddr); |
| 3996 | } |
| 3997 | |
| 3998 | static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) |
| 3999 | { |
| 4000 | struct intel_engine_cs *engine = guc_virtual_get_sibling(ve: ce->engine, sibling: 0); |
| 4001 | int ret = __guc_context_pin(ce, engine, vaddr); |
| 4002 | intel_engine_mask_t tmp, mask = ce->engine->mask; |
| 4003 | |
| 4004 | if (likely(!ret)) |
| 4005 | for_each_engine_masked(engine, ce->engine->gt, mask, tmp) |
| 4006 | intel_engine_pm_get(engine); |
| 4007 | |
| 4008 | return ret; |
| 4009 | } |
| 4010 | |
| 4011 | static void guc_virtual_context_unpin(struct intel_context *ce) |
| 4012 | { |
| 4013 | intel_engine_mask_t tmp, mask = ce->engine->mask; |
| 4014 | struct intel_engine_cs *engine; |
| 4015 | struct intel_guc *guc = ce_to_guc(ce); |
| 4016 | |
| 4017 | GEM_BUG_ON(context_enabled(ce)); |
| 4018 | GEM_BUG_ON(intel_context_is_barrier(ce)); |
| 4019 | |
| 4020 | unpin_guc_id(guc, ce); |
| 4021 | lrc_unpin(ce); |
| 4022 | |
| 4023 | for_each_engine_masked(engine, ce->engine->gt, mask, tmp) |
| 4024 | intel_engine_pm_put_async(engine); |
| 4025 | } |
| 4026 | |
| 4027 | static void guc_virtual_context_enter(struct intel_context *ce) |
| 4028 | { |
| 4029 | intel_engine_mask_t tmp, mask = ce->engine->mask; |
| 4030 | struct intel_engine_cs *engine; |
| 4031 | |
| 4032 | for_each_engine_masked(engine, ce->engine->gt, mask, tmp) |
| 4033 | intel_engine_pm_get(engine); |
| 4034 | |
| 4035 | intel_timeline_enter(tl: ce->timeline); |
| 4036 | } |
| 4037 | |
| 4038 | static void guc_virtual_context_exit(struct intel_context *ce) |
| 4039 | { |
| 4040 | intel_engine_mask_t tmp, mask = ce->engine->mask; |
| 4041 | struct intel_engine_cs *engine; |
| 4042 | |
| 4043 | for_each_engine_masked(engine, ce->engine->gt, mask, tmp) |
| 4044 | intel_engine_pm_put(engine); |
| 4045 | |
| 4046 | intel_timeline_exit(tl: ce->timeline); |
| 4047 | } |
| 4048 | |
| 4049 | static int guc_virtual_context_alloc(struct intel_context *ce) |
| 4050 | { |
| 4051 | struct intel_engine_cs *engine = guc_virtual_get_sibling(ve: ce->engine, sibling: 0); |
| 4052 | |
| 4053 | return lrc_alloc(ce, engine); |
| 4054 | } |
| 4055 | |
| 4056 | static const struct intel_context_ops virtual_guc_context_ops = { |
| 4057 | .flags = COPS_RUNTIME_CYCLES, |
| 4058 | .alloc = guc_virtual_context_alloc, |
| 4059 | |
| 4060 | .close = guc_context_close, |
| 4061 | |
| 4062 | .pre_pin = guc_virtual_context_pre_pin, |
| 4063 | .pin = guc_virtual_context_pin, |
| 4064 | .unpin = guc_virtual_context_unpin, |
| 4065 | .post_unpin = guc_context_post_unpin, |
| 4066 | |
| 4067 | .revoke = guc_context_revoke, |
| 4068 | |
| 4069 | .cancel_request = guc_context_cancel_request, |
| 4070 | |
| 4071 | .enter = guc_virtual_context_enter, |
| 4072 | .exit = guc_virtual_context_exit, |
| 4073 | |
| 4074 | .sched_disable = guc_context_sched_disable, |
| 4075 | .update_stats = guc_context_update_stats, |
| 4076 | |
| 4077 | .destroy = guc_context_destroy, |
| 4078 | |
| 4079 | .get_sibling = guc_virtual_get_sibling, |
| 4080 | }; |
| 4081 | |
| 4082 | static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) |
| 4083 | { |
| 4084 | struct intel_engine_cs *engine = guc_virtual_get_sibling(ve: ce->engine, sibling: 0); |
| 4085 | struct intel_guc *guc = ce_to_guc(ce); |
| 4086 | int ret; |
| 4087 | |
| 4088 | GEM_BUG_ON(!intel_context_is_parent(ce)); |
| 4089 | GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); |
| 4090 | |
| 4091 | ret = pin_guc_id(guc, ce); |
| 4092 | if (unlikely(ret < 0)) |
| 4093 | return ret; |
| 4094 | |
| 4095 | return __guc_context_pin(ce, engine, vaddr); |
| 4096 | } |
| 4097 | |
| 4098 | static int guc_child_context_pin(struct intel_context *ce, void *vaddr) |
| 4099 | { |
| 4100 | struct intel_engine_cs *engine = guc_virtual_get_sibling(ve: ce->engine, sibling: 0); |
| 4101 | |
| 4102 | GEM_BUG_ON(!intel_context_is_child(ce)); |
| 4103 | GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); |
| 4104 | |
| 4105 | __intel_context_pin(ce: ce->parallel.parent); |
| 4106 | return __guc_context_pin(ce, engine, vaddr); |
| 4107 | } |
| 4108 | |
| 4109 | static void guc_parent_context_unpin(struct intel_context *ce) |
| 4110 | { |
| 4111 | struct intel_guc *guc = ce_to_guc(ce); |
| 4112 | |
| 4113 | GEM_BUG_ON(context_enabled(ce)); |
| 4114 | GEM_BUG_ON(intel_context_is_barrier(ce)); |
| 4115 | GEM_BUG_ON(!intel_context_is_parent(ce)); |
| 4116 | GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); |
| 4117 | |
| 4118 | unpin_guc_id(guc, ce); |
| 4119 | lrc_unpin(ce); |
| 4120 | } |
| 4121 | |
| 4122 | static void guc_child_context_unpin(struct intel_context *ce) |
| 4123 | { |
| 4124 | GEM_BUG_ON(context_enabled(ce)); |
| 4125 | GEM_BUG_ON(intel_context_is_barrier(ce)); |
| 4126 | GEM_BUG_ON(!intel_context_is_child(ce)); |
| 4127 | GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); |
| 4128 | |
| 4129 | lrc_unpin(ce); |
| 4130 | } |
| 4131 | |
| 4132 | static void guc_child_context_post_unpin(struct intel_context *ce) |
| 4133 | { |
| 4134 | GEM_BUG_ON(!intel_context_is_child(ce)); |
| 4135 | GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); |
| 4136 | GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); |
| 4137 | |
| 4138 | lrc_post_unpin(ce); |
| 4139 | intel_context_unpin(ce: ce->parallel.parent); |
| 4140 | } |
| 4141 | |
| 4142 | static void guc_child_context_destroy(struct kref *kref) |
| 4143 | { |
| 4144 | struct intel_context *ce = container_of(kref, typeof(*ce), ref); |
| 4145 | |
| 4146 | __guc_context_destroy(ce); |
| 4147 | } |
| 4148 | |
| 4149 | static const struct intel_context_ops virtual_parent_context_ops = { |
| 4150 | .alloc = guc_virtual_context_alloc, |
| 4151 | |
| 4152 | .close = guc_context_close, |
| 4153 | |
| 4154 | .pre_pin = guc_context_pre_pin, |
| 4155 | .pin = guc_parent_context_pin, |
| 4156 | .unpin = guc_parent_context_unpin, |
| 4157 | .post_unpin = guc_context_post_unpin, |
| 4158 | |
| 4159 | .revoke = guc_context_revoke, |
| 4160 | |
| 4161 | .cancel_request = guc_context_cancel_request, |
| 4162 | |
| 4163 | .enter = guc_virtual_context_enter, |
| 4164 | .exit = guc_virtual_context_exit, |
| 4165 | |
| 4166 | .sched_disable = guc_context_sched_disable, |
| 4167 | |
| 4168 | .destroy = guc_context_destroy, |
| 4169 | |
| 4170 | .get_sibling = guc_virtual_get_sibling, |
| 4171 | }; |
| 4172 | |
| 4173 | static const struct intel_context_ops virtual_child_context_ops = { |
| 4174 | .alloc = guc_virtual_context_alloc, |
| 4175 | |
| 4176 | .pre_pin = guc_context_pre_pin, |
| 4177 | .pin = guc_child_context_pin, |
| 4178 | .unpin = guc_child_context_unpin, |
| 4179 | .post_unpin = guc_child_context_post_unpin, |
| 4180 | |
| 4181 | .cancel_request = guc_context_cancel_request, |
| 4182 | |
| 4183 | .enter = guc_virtual_context_enter, |
| 4184 | .exit = guc_virtual_context_exit, |
| 4185 | |
| 4186 | .destroy = guc_child_context_destroy, |
| 4187 | |
| 4188 | .get_sibling = guc_virtual_get_sibling, |
| 4189 | }; |
| 4190 | |
| 4191 | /* |
| 4192 | * The below override of the breadcrumbs is enabled when the user configures a |
| 4193 | * context for parallel submission (multi-lrc, parent-child). |
| 4194 | * |
| 4195 | * The overridden breadcrumbs implements an algorithm which allows the GuC to |
| 4196 | * safely preempt all the hw contexts configured for parallel submission |
| 4197 | * between each BB. The contract between the i915 and GuC is if the parent |
| 4198 | * context can be preempted, all the children can be preempted, and the GuC will |
| 4199 | * always try to preempt the parent before the children. A handshake between the |
| 4200 | * parent / children breadcrumbs ensures the i915 holds up its end of the deal |
| 4201 | * creating a window to preempt between each set of BBs. |
| 4202 | */ |
| 4203 | static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, |
| 4204 | u64 offset, u32 len, |
| 4205 | const unsigned int flags); |
| 4206 | static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, |
| 4207 | u64 offset, u32 len, |
| 4208 | const unsigned int flags); |
| 4209 | static u32 * |
| 4210 | emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, |
| 4211 | u32 *cs); |
| 4212 | static u32 * |
| 4213 | emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, |
| 4214 | u32 *cs); |
| 4215 | |
| 4216 | static struct intel_context * |
| 4217 | guc_create_parallel(struct intel_engine_cs **engines, |
| 4218 | unsigned int num_siblings, |
| 4219 | unsigned int width) |
| 4220 | { |
| 4221 | struct intel_engine_cs **siblings = NULL; |
| 4222 | struct intel_context *parent = NULL, *ce, *err; |
| 4223 | int i, j; |
| 4224 | |
| 4225 | siblings = kmalloc_array(num_siblings, |
| 4226 | sizeof(*siblings), |
| 4227 | GFP_KERNEL); |
| 4228 | if (!siblings) |
| 4229 | return ERR_PTR(error: -ENOMEM); |
| 4230 | |
| 4231 | for (i = 0; i < width; ++i) { |
| 4232 | for (j = 0; j < num_siblings; ++j) |
| 4233 | siblings[j] = engines[i * num_siblings + j]; |
| 4234 | |
| 4235 | ce = intel_engine_create_virtual(siblings, count: num_siblings, |
| 4236 | FORCE_VIRTUAL); |
| 4237 | if (IS_ERR(ptr: ce)) { |
| 4238 | err = ERR_CAST(ptr: ce); |
| 4239 | goto unwind; |
| 4240 | } |
| 4241 | |
| 4242 | if (i == 0) { |
| 4243 | parent = ce; |
| 4244 | parent->ops = &virtual_parent_context_ops; |
| 4245 | } else { |
| 4246 | ce->ops = &virtual_child_context_ops; |
| 4247 | intel_context_bind_parent_child(parent, child: ce); |
| 4248 | } |
| 4249 | } |
| 4250 | |
| 4251 | parent->parallel.fence_context = dma_fence_context_alloc(num: 1); |
| 4252 | |
| 4253 | parent->engine->emit_bb_start = |
| 4254 | emit_bb_start_parent_no_preempt_mid_batch; |
| 4255 | parent->engine->emit_fini_breadcrumb = |
| 4256 | emit_fini_breadcrumb_parent_no_preempt_mid_batch; |
| 4257 | parent->engine->emit_fini_breadcrumb_dw = |
| 4258 | 12 + 4 * parent->parallel.number_children; |
| 4259 | for_each_child(parent, ce) { |
| 4260 | ce->engine->emit_bb_start = |
| 4261 | emit_bb_start_child_no_preempt_mid_batch; |
| 4262 | ce->engine->emit_fini_breadcrumb = |
| 4263 | emit_fini_breadcrumb_child_no_preempt_mid_batch; |
| 4264 | ce->engine->emit_fini_breadcrumb_dw = 16; |
| 4265 | } |
| 4266 | |
| 4267 | kfree(objp: siblings); |
| 4268 | return parent; |
| 4269 | |
| 4270 | unwind: |
| 4271 | if (parent) |
| 4272 | intel_context_put(ce: parent); |
| 4273 | kfree(objp: siblings); |
| 4274 | return err; |
| 4275 | } |
| 4276 | |
| 4277 | static bool |
| 4278 | guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) |
| 4279 | { |
| 4280 | struct intel_engine_cs *sibling; |
| 4281 | intel_engine_mask_t tmp, mask = b->engine_mask; |
| 4282 | bool result = false; |
| 4283 | |
| 4284 | for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) |
| 4285 | result |= intel_engine_irq_enable(engine: sibling); |
| 4286 | |
| 4287 | return result; |
| 4288 | } |
| 4289 | |
| 4290 | static void |
| 4291 | guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) |
| 4292 | { |
| 4293 | struct intel_engine_cs *sibling; |
| 4294 | intel_engine_mask_t tmp, mask = b->engine_mask; |
| 4295 | |
| 4296 | for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) |
| 4297 | intel_engine_irq_disable(engine: sibling); |
| 4298 | } |
| 4299 | |
| 4300 | static void guc_init_breadcrumbs(struct intel_engine_cs *engine) |
| 4301 | { |
| 4302 | int i; |
| 4303 | |
| 4304 | /* |
| 4305 | * In GuC submission mode we do not know which physical engine a request |
| 4306 | * will be scheduled on, this creates a problem because the breadcrumb |
| 4307 | * interrupt is per physical engine. To work around this we attach |
| 4308 | * requests and direct all breadcrumb interrupts to the first instance |
| 4309 | * of an engine per class. In addition all breadcrumb interrupts are |
| 4310 | * enabled / disabled across an engine class in unison. |
| 4311 | */ |
| 4312 | for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { |
| 4313 | struct intel_engine_cs *sibling = |
| 4314 | engine->gt->engine_class[engine->class][i]; |
| 4315 | |
| 4316 | if (sibling) { |
| 4317 | if (engine->breadcrumbs != sibling->breadcrumbs) { |
| 4318 | intel_breadcrumbs_put(b: engine->breadcrumbs); |
| 4319 | engine->breadcrumbs = |
| 4320 | intel_breadcrumbs_get(b: sibling->breadcrumbs); |
| 4321 | } |
| 4322 | break; |
| 4323 | } |
| 4324 | } |
| 4325 | |
| 4326 | if (engine->breadcrumbs) { |
| 4327 | engine->breadcrumbs->engine_mask |= engine->mask; |
| 4328 | engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; |
| 4329 | engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; |
| 4330 | } |
| 4331 | } |
| 4332 | |
| 4333 | static void guc_bump_inflight_request_prio(struct i915_request *rq, |
| 4334 | int prio) |
| 4335 | { |
| 4336 | struct intel_context *ce = request_to_scheduling_context(rq); |
| 4337 | u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); |
| 4338 | |
| 4339 | /* Short circuit function */ |
| 4340 | if (prio < I915_PRIORITY_NORMAL) |
| 4341 | return; |
| 4342 | |
| 4343 | spin_lock(lock: &ce->guc_state.lock); |
| 4344 | |
| 4345 | if (rq->guc_prio == GUC_PRIO_FINI) |
| 4346 | goto exit; |
| 4347 | |
| 4348 | if (!new_guc_prio_higher(old_guc_prio: rq->guc_prio, new_guc_prio)) |
| 4349 | goto exit; |
| 4350 | |
| 4351 | if (rq->guc_prio != GUC_PRIO_INIT) |
| 4352 | sub_context_inflight_prio(ce, guc_prio: rq->guc_prio); |
| 4353 | |
| 4354 | rq->guc_prio = new_guc_prio; |
| 4355 | add_context_inflight_prio(ce, guc_prio: rq->guc_prio); |
| 4356 | update_context_prio(ce); |
| 4357 | |
| 4358 | exit: |
| 4359 | spin_unlock(lock: &ce->guc_state.lock); |
| 4360 | } |
| 4361 | |
| 4362 | static void guc_retire_inflight_request_prio(struct i915_request *rq) |
| 4363 | { |
| 4364 | struct intel_context *ce = request_to_scheduling_context(rq); |
| 4365 | |
| 4366 | spin_lock(lock: &ce->guc_state.lock); |
| 4367 | guc_prio_fini(rq, ce); |
| 4368 | spin_unlock(lock: &ce->guc_state.lock); |
| 4369 | } |
| 4370 | |
| 4371 | static void sanitize_hwsp(struct intel_engine_cs *engine) |
| 4372 | { |
| 4373 | struct intel_timeline *tl; |
| 4374 | |
| 4375 | list_for_each_entry(tl, &engine->status_page.timelines, engine_link) |
| 4376 | intel_timeline_reset_seqno(tl); |
| 4377 | } |
| 4378 | |
| 4379 | static void guc_sanitize(struct intel_engine_cs *engine) |
| 4380 | { |
| 4381 | /* |
| 4382 | * Poison residual state on resume, in case the suspend didn't! |
| 4383 | * |
| 4384 | * We have to assume that across suspend/resume (or other loss |
| 4385 | * of control) that the contents of our pinned buffers has been |
| 4386 | * lost, replaced by garbage. Since this doesn't always happen, |
| 4387 | * let's poison such state so that we more quickly spot when |
| 4388 | * we falsely assume it has been preserved. |
| 4389 | */ |
| 4390 | if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| 4391 | memset(s: engine->status_page.addr, POISON_INUSE, PAGE_SIZE); |
| 4392 | |
| 4393 | /* |
| 4394 | * The kernel_context HWSP is stored in the status_page. As above, |
| 4395 | * that may be lost on resume/initialisation, and so we need to |
| 4396 | * reset the value in the HWSP. |
| 4397 | */ |
| 4398 | sanitize_hwsp(engine); |
| 4399 | |
| 4400 | /* And scrub the dirty cachelines for the HWSP */ |
| 4401 | drm_clflush_virt_range(addr: engine->status_page.addr, PAGE_SIZE); |
| 4402 | |
| 4403 | intel_engine_reset_pinned_contexts(engine); |
| 4404 | } |
| 4405 | |
| 4406 | static void setup_hwsp(struct intel_engine_cs *engine) |
| 4407 | { |
| 4408 | intel_engine_set_hwsp_writemask(engine, mask: ~0u); /* HWSTAM */ |
| 4409 | |
| 4410 | ENGINE_WRITE_FW(engine, |
| 4411 | RING_HWS_PGA, |
| 4412 | i915_ggtt_offset(engine->status_page.vma)); |
| 4413 | } |
| 4414 | |
| 4415 | static void start_engine(struct intel_engine_cs *engine) |
| 4416 | { |
| 4417 | ENGINE_WRITE_FW(engine, |
| 4418 | RING_MODE_GEN7, |
| 4419 | _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); |
| 4420 | |
| 4421 | ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); |
| 4422 | ENGINE_POSTING_READ(engine, RING_MI_MODE); |
| 4423 | } |
| 4424 | |
| 4425 | static int guc_resume(struct intel_engine_cs *engine) |
| 4426 | { |
| 4427 | assert_forcewakes_active(uncore: engine->uncore, fw_domains: FORCEWAKE_ALL); |
| 4428 | |
| 4429 | intel_mocs_init_engine(engine); |
| 4430 | |
| 4431 | intel_breadcrumbs_reset(b: engine->breadcrumbs); |
| 4432 | |
| 4433 | setup_hwsp(engine); |
| 4434 | start_engine(engine); |
| 4435 | |
| 4436 | if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) |
| 4437 | xehp_enable_ccs_engines(engine); |
| 4438 | |
| 4439 | return 0; |
| 4440 | } |
| 4441 | |
| 4442 | static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) |
| 4443 | { |
| 4444 | return !sched_engine->tasklet.callback; |
| 4445 | } |
| 4446 | |
| 4447 | static void guc_set_default_submission(struct intel_engine_cs *engine) |
| 4448 | { |
| 4449 | engine->submit_request = guc_submit_request; |
| 4450 | } |
| 4451 | |
| 4452 | static inline int guc_kernel_context_pin(struct intel_guc *guc, |
| 4453 | struct intel_context *ce) |
| 4454 | { |
| 4455 | int ret; |
| 4456 | |
| 4457 | /* |
| 4458 | * Note: we purposefully do not check the returns below because |
| 4459 | * the registration can only fail if a reset is just starting. |
| 4460 | * This is called at the end of reset so presumably another reset |
| 4461 | * isn't happening and even it did this code would be run again. |
| 4462 | */ |
| 4463 | |
| 4464 | if (context_guc_id_invalid(ce)) { |
| 4465 | ret = pin_guc_id(guc, ce); |
| 4466 | |
| 4467 | if (ret < 0) |
| 4468 | return ret; |
| 4469 | } |
| 4470 | |
| 4471 | if (!test_bit(CONTEXT_GUC_INIT, &ce->flags)) |
| 4472 | guc_context_init(ce); |
| 4473 | |
| 4474 | ret = try_context_registration(ce, loop: true); |
| 4475 | if (ret) |
| 4476 | unpin_guc_id(guc, ce); |
| 4477 | |
| 4478 | return ret; |
| 4479 | } |
| 4480 | |
| 4481 | static inline int guc_init_submission(struct intel_guc *guc) |
| 4482 | { |
| 4483 | struct intel_gt *gt = guc_to_gt(guc); |
| 4484 | struct intel_engine_cs *engine; |
| 4485 | enum intel_engine_id id; |
| 4486 | |
| 4487 | /* make sure all descriptors are clean... */ |
| 4488 | xa_destroy(&guc->context_lookup); |
| 4489 | |
| 4490 | /* |
| 4491 | * A reset might have occurred while we had a pending stalled request, |
| 4492 | * so make sure we clean that up. |
| 4493 | */ |
| 4494 | guc->stalled_request = NULL; |
| 4495 | guc->submission_stall_reason = STALL_NONE; |
| 4496 | |
| 4497 | /* |
| 4498 | * Some contexts might have been pinned before we enabled GuC |
| 4499 | * submission, so we need to add them to the GuC bookeeping. |
| 4500 | * Also, after a reset the of the GuC we want to make sure that the |
| 4501 | * information shared with GuC is properly reset. The kernel LRCs are |
| 4502 | * not attached to the gem_context, so they need to be added separately. |
| 4503 | */ |
| 4504 | for_each_engine(engine, gt, id) { |
| 4505 | struct intel_context *ce; |
| 4506 | |
| 4507 | list_for_each_entry(ce, &engine->pinned_contexts_list, |
| 4508 | pinned_contexts_link) { |
| 4509 | int ret = guc_kernel_context_pin(guc, ce); |
| 4510 | |
| 4511 | if (ret) { |
| 4512 | /* No point in trying to clean up as i915 will wedge on failure */ |
| 4513 | return ret; |
| 4514 | } |
| 4515 | } |
| 4516 | } |
| 4517 | |
| 4518 | return 0; |
| 4519 | } |
| 4520 | |
| 4521 | static void guc_release(struct intel_engine_cs *engine) |
| 4522 | { |
| 4523 | engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ |
| 4524 | |
| 4525 | intel_engine_cleanup_common(engine); |
| 4526 | lrc_fini_wa_ctx(engine); |
| 4527 | } |
| 4528 | |
| 4529 | static void virtual_guc_bump_serial(struct intel_engine_cs *engine) |
| 4530 | { |
| 4531 | struct intel_engine_cs *e; |
| 4532 | intel_engine_mask_t tmp, mask = engine->mask; |
| 4533 | |
| 4534 | for_each_engine_masked(e, engine->gt, mask, tmp) |
| 4535 | e->serial++; |
| 4536 | } |
| 4537 | |
| 4538 | static void guc_default_vfuncs(struct intel_engine_cs *engine) |
| 4539 | { |
| 4540 | /* Default vfuncs which can be overridden by each engine. */ |
| 4541 | |
| 4542 | engine->resume = guc_resume; |
| 4543 | |
| 4544 | engine->cops = &guc_context_ops; |
| 4545 | engine->request_alloc = guc_request_alloc; |
| 4546 | engine->add_active_request = add_to_context; |
| 4547 | engine->remove_active_request = remove_from_context; |
| 4548 | |
| 4549 | engine->sched_engine->schedule = i915_schedule; |
| 4550 | |
| 4551 | engine->reset.prepare = guc_engine_reset_prepare; |
| 4552 | engine->reset.rewind = guc_rewind_nop; |
| 4553 | engine->reset.cancel = guc_reset_nop; |
| 4554 | engine->reset.finish = guc_reset_nop; |
| 4555 | |
| 4556 | engine->emit_flush = gen8_emit_flush_xcs; |
| 4557 | engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; |
| 4558 | engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; |
| 4559 | if (GRAPHICS_VER(engine->i915) >= 12) { |
| 4560 | engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; |
| 4561 | engine->emit_flush = gen12_emit_flush_xcs; |
| 4562 | } |
| 4563 | engine->set_default_submission = guc_set_default_submission; |
| 4564 | engine->busyness = guc_engine_busyness; |
| 4565 | |
| 4566 | engine->flags |= I915_ENGINE_SUPPORTS_STATS; |
| 4567 | engine->flags |= I915_ENGINE_HAS_PREEMPTION; |
| 4568 | engine->flags |= I915_ENGINE_HAS_TIMESLICES; |
| 4569 | |
| 4570 | /* Wa_14014475959:dg2 */ |
| 4571 | if (engine->class == COMPUTE_CLASS) |
| 4572 | if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) || |
| 4573 | IS_DG2(engine->i915)) |
| 4574 | engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT; |
| 4575 | |
| 4576 | /* Wa_16019325821 */ |
| 4577 | /* Wa_14019159160 */ |
| 4578 | if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) && |
| 4579 | IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) |
| 4580 | engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT; |
| 4581 | |
| 4582 | /* |
| 4583 | * TODO: GuC supports timeslicing and semaphores as well, but they're |
| 4584 | * handled by the firmware so some minor tweaks are required before |
| 4585 | * enabling. |
| 4586 | * |
| 4587 | * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; |
| 4588 | */ |
| 4589 | |
| 4590 | engine->emit_bb_start = gen8_emit_bb_start; |
| 4591 | if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) |
| 4592 | engine->emit_bb_start = xehp_emit_bb_start; |
| 4593 | } |
| 4594 | |
| 4595 | static void rcs_submission_override(struct intel_engine_cs *engine) |
| 4596 | { |
| 4597 | switch (GRAPHICS_VER(engine->i915)) { |
| 4598 | case 12: |
| 4599 | engine->emit_flush = gen12_emit_flush_rcs; |
| 4600 | engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; |
| 4601 | break; |
| 4602 | case 11: |
| 4603 | engine->emit_flush = gen11_emit_flush_rcs; |
| 4604 | engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; |
| 4605 | break; |
| 4606 | default: |
| 4607 | engine->emit_flush = gen8_emit_flush_rcs; |
| 4608 | engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; |
| 4609 | break; |
| 4610 | } |
| 4611 | } |
| 4612 | |
| 4613 | static inline void guc_default_irqs(struct intel_engine_cs *engine) |
| 4614 | { |
| 4615 | engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; |
| 4616 | intel_engine_set_irq_handler(engine, fn: cs_irq_handler); |
| 4617 | } |
| 4618 | |
| 4619 | static void guc_sched_engine_destroy(struct kref *kref) |
| 4620 | { |
| 4621 | struct i915_sched_engine *sched_engine = |
| 4622 | container_of(kref, typeof(*sched_engine), ref); |
| 4623 | struct intel_guc *guc = sched_engine->private_data; |
| 4624 | |
| 4625 | guc->sched_engine = NULL; |
| 4626 | tasklet_kill(t: &sched_engine->tasklet); /* flush the callback */ |
| 4627 | kfree(objp: sched_engine); |
| 4628 | } |
| 4629 | |
| 4630 | int intel_guc_submission_setup(struct intel_engine_cs *engine) |
| 4631 | { |
| 4632 | struct drm_i915_private *i915 = engine->i915; |
| 4633 | struct intel_guc *guc = gt_to_guc(gt: engine->gt); |
| 4634 | |
| 4635 | /* |
| 4636 | * The setup relies on several assumptions (e.g. irqs always enabled) |
| 4637 | * that are only valid on gen11+ |
| 4638 | */ |
| 4639 | GEM_BUG_ON(GRAPHICS_VER(i915) < 11); |
| 4640 | |
| 4641 | if (!guc->sched_engine) { |
| 4642 | guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); |
| 4643 | if (!guc->sched_engine) |
| 4644 | return -ENOMEM; |
| 4645 | |
| 4646 | guc->sched_engine->schedule = i915_schedule; |
| 4647 | guc->sched_engine->disabled = guc_sched_engine_disabled; |
| 4648 | guc->sched_engine->private_data = guc; |
| 4649 | guc->sched_engine->destroy = guc_sched_engine_destroy; |
| 4650 | guc->sched_engine->bump_inflight_request_prio = |
| 4651 | guc_bump_inflight_request_prio; |
| 4652 | guc->sched_engine->retire_inflight_request_prio = |
| 4653 | guc_retire_inflight_request_prio; |
| 4654 | tasklet_setup(t: &guc->sched_engine->tasklet, |
| 4655 | callback: guc_submission_tasklet); |
| 4656 | } |
| 4657 | i915_sched_engine_put(sched_engine: engine->sched_engine); |
| 4658 | engine->sched_engine = i915_sched_engine_get(sched_engine: guc->sched_engine); |
| 4659 | |
| 4660 | guc_default_vfuncs(engine); |
| 4661 | guc_default_irqs(engine); |
| 4662 | guc_init_breadcrumbs(engine); |
| 4663 | |
| 4664 | if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) |
| 4665 | rcs_submission_override(engine); |
| 4666 | |
| 4667 | lrc_init_wa_ctx(engine); |
| 4668 | |
| 4669 | /* Finally, take ownership and responsibility for cleanup! */ |
| 4670 | engine->sanitize = guc_sanitize; |
| 4671 | engine->release = guc_release; |
| 4672 | |
| 4673 | return 0; |
| 4674 | } |
| 4675 | |
| 4676 | struct scheduling_policy { |
| 4677 | /* internal data */ |
| 4678 | u32 max_words, num_words; |
| 4679 | u32 count; |
| 4680 | /* API data */ |
| 4681 | struct guc_update_scheduling_policy h2g; |
| 4682 | }; |
| 4683 | |
| 4684 | static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy) |
| 4685 | { |
| 4686 | u32 *start = (void *)&policy->h2g; |
| 4687 | u32 *end = policy->h2g.data + policy->num_words; |
| 4688 | size_t delta = end - start; |
| 4689 | |
| 4690 | return delta; |
| 4691 | } |
| 4692 | |
| 4693 | static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy) |
| 4694 | { |
| 4695 | policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV; |
| 4696 | policy->max_words = ARRAY_SIZE(policy->h2g.data); |
| 4697 | policy->num_words = 0; |
| 4698 | policy->count = 0; |
| 4699 | |
| 4700 | return policy; |
| 4701 | } |
| 4702 | |
| 4703 | static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy, |
| 4704 | u32 action, u32 *data, u32 len) |
| 4705 | { |
| 4706 | u32 *klv_ptr = policy->h2g.data + policy->num_words; |
| 4707 | |
| 4708 | GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words); |
| 4709 | *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) | |
| 4710 | FIELD_PREP(GUC_KLV_0_LEN, len); |
| 4711 | memcpy(to: klv_ptr, from: data, len: sizeof(u32) * len); |
| 4712 | policy->num_words += 1 + len; |
| 4713 | policy->count++; |
| 4714 | } |
| 4715 | |
| 4716 | static int __guc_action_set_scheduling_policies(struct intel_guc *guc, |
| 4717 | struct scheduling_policy *policy) |
| 4718 | { |
| 4719 | int ret; |
| 4720 | |
| 4721 | ret = intel_guc_send(guc, action: (u32 *)&policy->h2g, |
| 4722 | len: __guc_scheduling_policy_action_size(policy)); |
| 4723 | if (ret < 0) { |
| 4724 | guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n" , |
| 4725 | ERR_PTR(ret)); |
| 4726 | return ret; |
| 4727 | } |
| 4728 | |
| 4729 | if (ret != policy->count) { |
| 4730 | guc_warn(guc, "global scheduler policy processed %d of %d KLVs!" , |
| 4731 | ret, policy->count); |
| 4732 | if (ret > policy->count) |
| 4733 | return -EPROTO; |
| 4734 | } |
| 4735 | |
| 4736 | return 0; |
| 4737 | } |
| 4738 | |
| 4739 | static int guc_init_global_schedule_policy(struct intel_guc *guc) |
| 4740 | { |
| 4741 | struct scheduling_policy policy; |
| 4742 | struct intel_gt *gt = guc_to_gt(guc); |
| 4743 | intel_wakeref_t wakeref; |
| 4744 | int ret; |
| 4745 | |
| 4746 | if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0)) |
| 4747 | return 0; |
| 4748 | |
| 4749 | __guc_scheduling_policy_start_klv(policy: &policy); |
| 4750 | |
| 4751 | with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { |
| 4752 | u32 yield[] = { |
| 4753 | GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION, |
| 4754 | GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO, |
| 4755 | }; |
| 4756 | |
| 4757 | __guc_scheduling_policy_add_klv(policy: &policy, |
| 4758 | action: GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD, |
| 4759 | data: yield, ARRAY_SIZE(yield)); |
| 4760 | |
| 4761 | ret = __guc_action_set_scheduling_policies(guc, policy: &policy); |
| 4762 | } |
| 4763 | |
| 4764 | return ret; |
| 4765 | } |
| 4766 | |
| 4767 | static void guc_route_semaphores(struct intel_guc *guc, bool to_guc) |
| 4768 | { |
| 4769 | struct intel_gt *gt = guc_to_gt(guc); |
| 4770 | u32 val; |
| 4771 | |
| 4772 | if (GRAPHICS_VER(gt->i915) < 12) |
| 4773 | return; |
| 4774 | |
| 4775 | if (to_guc) |
| 4776 | val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL; |
| 4777 | else |
| 4778 | val = 0; |
| 4779 | |
| 4780 | intel_uncore_write(uncore: gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val); |
| 4781 | } |
| 4782 | |
| 4783 | int intel_guc_submission_enable(struct intel_guc *guc) |
| 4784 | { |
| 4785 | int ret; |
| 4786 | |
| 4787 | /* Semaphore interrupt enable and route to GuC */ |
| 4788 | guc_route_semaphores(guc, to_guc: true); |
| 4789 | |
| 4790 | ret = guc_init_submission(guc); |
| 4791 | if (ret) |
| 4792 | goto fail_sem; |
| 4793 | |
| 4794 | ret = guc_init_engine_stats(guc); |
| 4795 | if (ret) |
| 4796 | goto fail_sem; |
| 4797 | |
| 4798 | ret = guc_init_global_schedule_policy(guc); |
| 4799 | if (ret) |
| 4800 | goto fail_stats; |
| 4801 | |
| 4802 | return 0; |
| 4803 | |
| 4804 | fail_stats: |
| 4805 | guc_fini_engine_stats(guc); |
| 4806 | fail_sem: |
| 4807 | guc_route_semaphores(guc, to_guc: false); |
| 4808 | return ret; |
| 4809 | } |
| 4810 | |
| 4811 | /* Note: By the time we're here, GuC may have already been reset */ |
| 4812 | void intel_guc_submission_disable(struct intel_guc *guc) |
| 4813 | { |
| 4814 | guc_cancel_busyness_worker(guc); |
| 4815 | |
| 4816 | /* Semaphore interrupt disable and route to host */ |
| 4817 | guc_route_semaphores(guc, to_guc: false); |
| 4818 | } |
| 4819 | |
| 4820 | static bool __guc_submission_supported(struct intel_guc *guc) |
| 4821 | { |
| 4822 | /* GuC submission is unavailable for pre-Gen11 */ |
| 4823 | return intel_guc_is_supported(guc) && |
| 4824 | GRAPHICS_VER(guc_to_i915(guc)) >= 11; |
| 4825 | } |
| 4826 | |
| 4827 | static bool __guc_submission_selected(struct intel_guc *guc) |
| 4828 | { |
| 4829 | struct drm_i915_private *i915 = guc_to_i915(guc); |
| 4830 | |
| 4831 | if (!intel_guc_submission_is_supported(guc)) |
| 4832 | return false; |
| 4833 | |
| 4834 | return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; |
| 4835 | } |
| 4836 | |
| 4837 | int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc) |
| 4838 | { |
| 4839 | return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc); |
| 4840 | } |
| 4841 | |
| 4842 | /* |
| 4843 | * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher |
| 4844 | * workloads are able to enjoy the latency reduction when delaying the schedule-disable |
| 4845 | * operation. This matches the 30fps game-render + encode (real world) workload this |
| 4846 | * knob was tested against. |
| 4847 | */ |
| 4848 | #define SCHED_DISABLE_DELAY_MS 34 |
| 4849 | |
| 4850 | /* |
| 4851 | * A threshold of 75% is a reasonable starting point considering that real world apps |
| 4852 | * generally don't get anywhere near this. |
| 4853 | */ |
| 4854 | #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \ |
| 4855 | (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4) |
| 4856 | |
| 4857 | void intel_guc_submission_init_early(struct intel_guc *guc) |
| 4858 | { |
| 4859 | xa_init_flags(xa: &guc->context_lookup, XA_FLAGS_LOCK_IRQ); |
| 4860 | |
| 4861 | spin_lock_init(&guc->submission_state.lock); |
| 4862 | INIT_LIST_HEAD(list: &guc->submission_state.guc_id_list); |
| 4863 | ida_init(ida: &guc->submission_state.guc_ids); |
| 4864 | INIT_LIST_HEAD(list: &guc->submission_state.destroyed_contexts); |
| 4865 | INIT_WORK(&guc->submission_state.destroyed_worker, |
| 4866 | destroyed_worker_func); |
| 4867 | INIT_WORK(&guc->submission_state.reset_fail_worker, |
| 4868 | reset_fail_worker_func); |
| 4869 | |
| 4870 | spin_lock_init(&guc->timestamp.lock); |
| 4871 | INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); |
| 4872 | |
| 4873 | guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS; |
| 4874 | guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; |
| 4875 | guc->submission_state.sched_disable_gucid_threshold = |
| 4876 | NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc); |
| 4877 | guc->submission_supported = __guc_submission_supported(guc); |
| 4878 | guc->submission_selected = __guc_submission_selected(guc); |
| 4879 | } |
| 4880 | |
| 4881 | static inline struct intel_context * |
| 4882 | g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) |
| 4883 | { |
| 4884 | struct intel_context *ce; |
| 4885 | |
| 4886 | if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { |
| 4887 | guc_err(guc, "Invalid ctx_id %u\n" , ctx_id); |
| 4888 | return NULL; |
| 4889 | } |
| 4890 | |
| 4891 | ce = __get_context(guc, id: ctx_id); |
| 4892 | if (unlikely(!ce)) { |
| 4893 | guc_err(guc, "Context is NULL, ctx_id %u\n" , ctx_id); |
| 4894 | return NULL; |
| 4895 | } |
| 4896 | |
| 4897 | if (unlikely(intel_context_is_child(ce))) { |
| 4898 | guc_err(guc, "Context is child, ctx_id %u\n" , ctx_id); |
| 4899 | return NULL; |
| 4900 | } |
| 4901 | |
| 4902 | return ce; |
| 4903 | } |
| 4904 | |
| 4905 | static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno) |
| 4906 | { |
| 4907 | struct intel_guc_tlb_wait *wait; |
| 4908 | unsigned long flags; |
| 4909 | |
| 4910 | xa_lock_irqsave(&guc->tlb_lookup, flags); |
| 4911 | wait = xa_load(&guc->tlb_lookup, index: seqno); |
| 4912 | |
| 4913 | if (wait) |
| 4914 | wake_up(&wait->wq); |
| 4915 | else |
| 4916 | guc_dbg(guc, |
| 4917 | "Stale TLB invalidation response with seqno %d\n" , seqno); |
| 4918 | |
| 4919 | xa_unlock_irqrestore(&guc->tlb_lookup, flags); |
| 4920 | } |
| 4921 | |
| 4922 | int intel_guc_tlb_invalidation_done(struct intel_guc *guc, |
| 4923 | const u32 *payload, u32 len) |
| 4924 | { |
| 4925 | if (len < 1) |
| 4926 | return -EPROTO; |
| 4927 | |
| 4928 | wait_wake_outstanding_tlb_g2h(guc, seqno: payload[0]); |
| 4929 | return 0; |
| 4930 | } |
| 4931 | |
| 4932 | static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout) |
| 4933 | { |
| 4934 | /* |
| 4935 | * This is equivalent to wait_woken() with the exception that |
| 4936 | * we do not wake up early if the kthread task has been completed. |
| 4937 | * As we are called from page reclaim in any task context, |
| 4938 | * we may be invoked from stopped kthreads, but we *must* |
| 4939 | * complete the wait from the HW. |
| 4940 | */ |
| 4941 | do { |
| 4942 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 4943 | if (wq_entry->flags & WQ_FLAG_WOKEN) |
| 4944 | break; |
| 4945 | |
| 4946 | timeout = schedule_timeout(timeout); |
| 4947 | } while (timeout); |
| 4948 | |
| 4949 | /* See wait_woken() and woken_wake_function() */ |
| 4950 | __set_current_state(TASK_RUNNING); |
| 4951 | smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); |
| 4952 | |
| 4953 | return timeout; |
| 4954 | } |
| 4955 | |
| 4956 | static bool intel_gt_is_enabled(const struct intel_gt *gt) |
| 4957 | { |
| 4958 | /* Check if GT is wedged or suspended */ |
| 4959 | if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(dev_priv: gt->i915)) |
| 4960 | return false; |
| 4961 | return true; |
| 4962 | } |
| 4963 | |
| 4964 | static int guc_send_invalidate_tlb(struct intel_guc *guc, |
| 4965 | enum intel_guc_tlb_invalidation_type type) |
| 4966 | { |
| 4967 | struct intel_guc_tlb_wait _wq, *wq = &_wq; |
| 4968 | struct intel_gt *gt = guc_to_gt(guc); |
| 4969 | DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| 4970 | int err; |
| 4971 | u32 seqno; |
| 4972 | u32 action[] = { |
| 4973 | INTEL_GUC_ACTION_TLB_INVALIDATION, |
| 4974 | 0, |
| 4975 | REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) | |
| 4976 | REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK, |
| 4977 | INTEL_GUC_TLB_INVAL_MODE_HEAVY) | |
| 4978 | INTEL_GUC_TLB_INVAL_FLUSH_CACHE, |
| 4979 | }; |
| 4980 | u32 size = ARRAY_SIZE(action); |
| 4981 | |
| 4982 | /* |
| 4983 | * Early guard against GT enablement. TLB invalidation should not be |
| 4984 | * attempted if the GT is disabled due to suspend/wedge. |
| 4985 | */ |
| 4986 | if (!intel_gt_is_enabled(gt)) |
| 4987 | return -EINVAL; |
| 4988 | |
| 4989 | init_waitqueue_head(&_wq.wq); |
| 4990 | |
| 4991 | if (xa_alloc_cyclic_irq(xa: &guc->tlb_lookup, id: &seqno, entry: wq, |
| 4992 | xa_limit_32b, next: &guc->next_seqno, |
| 4993 | GFP_ATOMIC | __GFP_NOWARN) < 0) { |
| 4994 | /* Under severe memory pressure? Serialise TLB allocations */ |
| 4995 | xa_lock_irq(&guc->tlb_lookup); |
| 4996 | wq = xa_load(&guc->tlb_lookup, index: guc->serial_slot); |
| 4997 | wait_event_lock_irq(wq->wq, |
| 4998 | !READ_ONCE(wq->busy), |
| 4999 | guc->tlb_lookup.xa_lock); |
| 5000 | /* |
| 5001 | * Update wq->busy under lock to ensure only one waiter can |
| 5002 | * issue the TLB invalidation command using the serial slot at a |
| 5003 | * time. The condition is set to true before releasing the lock |
| 5004 | * so that other caller continue to wait until woken up again. |
| 5005 | */ |
| 5006 | wq->busy = true; |
| 5007 | xa_unlock_irq(&guc->tlb_lookup); |
| 5008 | |
| 5009 | seqno = guc->serial_slot; |
| 5010 | } |
| 5011 | |
| 5012 | action[1] = seqno; |
| 5013 | |
| 5014 | add_wait_queue(wq_head: &wq->wq, wq_entry: &wait); |
| 5015 | |
| 5016 | /* This is a critical reclaim path and thus we must loop here. */ |
| 5017 | err = intel_guc_send_busy_loop(guc, action, len: size, G2H_LEN_DW_INVALIDATE_TLB, loop: true); |
| 5018 | if (err) |
| 5019 | goto out; |
| 5020 | |
| 5021 | /* |
| 5022 | * Late guard against GT enablement. It is not an error for the TLB |
| 5023 | * invalidation to time out if the GT is disabled during the process |
| 5024 | * due to suspend/wedge. In fact, the TLB invalidation is cancelled |
| 5025 | * in this case. |
| 5026 | */ |
| 5027 | if (!must_wait_woken(wq_entry: &wait, timeout: intel_guc_ct_max_queue_time_jiffies()) && |
| 5028 | intel_gt_is_enabled(gt)) { |
| 5029 | guc_err(guc, |
| 5030 | "TLB invalidation response timed out for seqno %u\n" , seqno); |
| 5031 | err = -ETIME; |
| 5032 | } |
| 5033 | out: |
| 5034 | remove_wait_queue(wq_head: &wq->wq, wq_entry: &wait); |
| 5035 | if (seqno != guc->serial_slot) |
| 5036 | xa_erase_irq(xa: &guc->tlb_lookup, index: seqno); |
| 5037 | |
| 5038 | return err; |
| 5039 | } |
| 5040 | |
| 5041 | /* Send a H2G command to invalidate the TLBs at engine level and beyond. */ |
| 5042 | int intel_guc_invalidate_tlb_engines(struct intel_guc *guc) |
| 5043 | { |
| 5044 | return guc_send_invalidate_tlb(guc, type: INTEL_GUC_TLB_INVAL_ENGINES); |
| 5045 | } |
| 5046 | |
| 5047 | /* Send a H2G command to invalidate the GuC's internal TLB. */ |
| 5048 | int intel_guc_invalidate_tlb_guc(struct intel_guc *guc) |
| 5049 | { |
| 5050 | return guc_send_invalidate_tlb(guc, type: INTEL_GUC_TLB_INVAL_GUC); |
| 5051 | } |
| 5052 | |
| 5053 | int intel_guc_deregister_done_process_msg(struct intel_guc *guc, |
| 5054 | const u32 *msg, |
| 5055 | u32 len) |
| 5056 | { |
| 5057 | struct intel_context *ce; |
| 5058 | u32 ctx_id; |
| 5059 | |
| 5060 | if (unlikely(len < 1)) { |
| 5061 | guc_err(guc, "Invalid length %u\n" , len); |
| 5062 | return -EPROTO; |
| 5063 | } |
| 5064 | ctx_id = msg[0]; |
| 5065 | |
| 5066 | ce = g2h_context_lookup(guc, ctx_id); |
| 5067 | if (unlikely(!ce)) |
| 5068 | return -EPROTO; |
| 5069 | |
| 5070 | trace_intel_context_deregister_done(ce); |
| 5071 | |
| 5072 | #ifdef CONFIG_DRM_I915_SELFTEST |
| 5073 | if (unlikely(ce->drop_deregister)) { |
| 5074 | ce->drop_deregister = false; |
| 5075 | return 0; |
| 5076 | } |
| 5077 | #endif |
| 5078 | |
| 5079 | if (context_wait_for_deregister_to_register(ce)) { |
| 5080 | struct intel_runtime_pm *runtime_pm = |
| 5081 | &ce->engine->gt->i915->runtime_pm; |
| 5082 | intel_wakeref_t wakeref; |
| 5083 | |
| 5084 | /* |
| 5085 | * Previous owner of this guc_id has been deregistered, now safe |
| 5086 | * register this context. |
| 5087 | */ |
| 5088 | with_intel_runtime_pm(runtime_pm, wakeref) |
| 5089 | register_context(ce, loop: true); |
| 5090 | guc_signal_context_fence(ce); |
| 5091 | intel_context_put(ce); |
| 5092 | } else if (context_destroyed(ce)) { |
| 5093 | /* Context has been destroyed */ |
| 5094 | intel_gt_pm_put_async_untracked(gt: guc_to_gt(guc)); |
| 5095 | release_guc_id(guc, ce); |
| 5096 | __guc_context_destroy(ce); |
| 5097 | } |
| 5098 | |
| 5099 | decr_outstanding_submission_g2h(guc); |
| 5100 | |
| 5101 | return 0; |
| 5102 | } |
| 5103 | |
| 5104 | int intel_guc_sched_done_process_msg(struct intel_guc *guc, |
| 5105 | const u32 *msg, |
| 5106 | u32 len) |
| 5107 | { |
| 5108 | struct intel_context *ce; |
| 5109 | unsigned long flags; |
| 5110 | u32 ctx_id; |
| 5111 | |
| 5112 | if (unlikely(len < 2)) { |
| 5113 | guc_err(guc, "Invalid length %u\n" , len); |
| 5114 | return -EPROTO; |
| 5115 | } |
| 5116 | ctx_id = msg[0]; |
| 5117 | |
| 5118 | ce = g2h_context_lookup(guc, ctx_id); |
| 5119 | if (unlikely(!ce)) |
| 5120 | return -EPROTO; |
| 5121 | |
| 5122 | if (unlikely(context_destroyed(ce) || |
| 5123 | (!context_pending_enable(ce) && |
| 5124 | !context_pending_disable(ce)))) { |
| 5125 | guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n" , |
| 5126 | ce->guc_state.sched_state, ctx_id); |
| 5127 | return -EPROTO; |
| 5128 | } |
| 5129 | |
| 5130 | trace_intel_context_sched_done(ce); |
| 5131 | |
| 5132 | if (context_pending_enable(ce)) { |
| 5133 | #ifdef CONFIG_DRM_I915_SELFTEST |
| 5134 | if (unlikely(ce->drop_schedule_enable)) { |
| 5135 | ce->drop_schedule_enable = false; |
| 5136 | return 0; |
| 5137 | } |
| 5138 | #endif |
| 5139 | |
| 5140 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 5141 | clr_context_pending_enable(ce); |
| 5142 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 5143 | } else if (context_pending_disable(ce)) { |
| 5144 | bool banned; |
| 5145 | |
| 5146 | #ifdef CONFIG_DRM_I915_SELFTEST |
| 5147 | if (unlikely(ce->drop_schedule_disable)) { |
| 5148 | ce->drop_schedule_disable = false; |
| 5149 | return 0; |
| 5150 | } |
| 5151 | #endif |
| 5152 | |
| 5153 | /* |
| 5154 | * Unpin must be done before __guc_signal_context_fence, |
| 5155 | * otherwise a race exists between the requests getting |
| 5156 | * submitted + retired before this unpin completes resulting in |
| 5157 | * the pin_count going to zero and the context still being |
| 5158 | * enabled. |
| 5159 | */ |
| 5160 | intel_context_sched_disable_unpin(ce); |
| 5161 | |
| 5162 | spin_lock_irqsave(&ce->guc_state.lock, flags); |
| 5163 | banned = context_banned(ce); |
| 5164 | clr_context_banned(ce); |
| 5165 | clr_context_pending_disable(ce); |
| 5166 | __guc_signal_context_fence(ce); |
| 5167 | guc_blocked_fence_complete(ce); |
| 5168 | spin_unlock_irqrestore(lock: &ce->guc_state.lock, flags); |
| 5169 | |
| 5170 | if (banned) { |
| 5171 | guc_cancel_context_requests(ce); |
| 5172 | intel_engine_signal_breadcrumbs(engine: ce->engine); |
| 5173 | } |
| 5174 | } |
| 5175 | |
| 5176 | decr_outstanding_submission_g2h(guc); |
| 5177 | intel_context_put(ce); |
| 5178 | |
| 5179 | return 0; |
| 5180 | } |
| 5181 | |
| 5182 | static void capture_error_state(struct intel_guc *guc, |
| 5183 | struct intel_context *ce) |
| 5184 | { |
| 5185 | struct intel_gt *gt = guc_to_gt(guc); |
| 5186 | struct drm_i915_private *i915 = gt->i915; |
| 5187 | intel_wakeref_t wakeref; |
| 5188 | intel_engine_mask_t engine_mask; |
| 5189 | |
| 5190 | if (intel_engine_is_virtual(engine: ce->engine)) { |
| 5191 | struct intel_engine_cs *e; |
| 5192 | intel_engine_mask_t tmp, virtual_mask = ce->engine->mask; |
| 5193 | |
| 5194 | engine_mask = 0; |
| 5195 | for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) { |
| 5196 | bool match = intel_guc_capture_is_matching_engine(gt, ce, engine: e); |
| 5197 | |
| 5198 | if (match) { |
| 5199 | intel_engine_set_hung_context(engine: e, ce); |
| 5200 | engine_mask |= e->mask; |
| 5201 | i915_increase_reset_engine_count(error: &i915->gpu_error, |
| 5202 | engine: e); |
| 5203 | } |
| 5204 | } |
| 5205 | |
| 5206 | if (!engine_mask) { |
| 5207 | guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s" , |
| 5208 | ce->guc_id.id, ce->engine->name); |
| 5209 | engine_mask = ~0U; |
| 5210 | } |
| 5211 | } else { |
| 5212 | intel_engine_set_hung_context(engine: ce->engine, ce); |
| 5213 | engine_mask = ce->engine->mask; |
| 5214 | i915_increase_reset_engine_count(error: &i915->gpu_error, engine: ce->engine); |
| 5215 | } |
| 5216 | |
| 5217 | with_intel_runtime_pm(&i915->runtime_pm, wakeref) |
| 5218 | i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); |
| 5219 | } |
| 5220 | |
| 5221 | static void guc_context_replay(struct intel_context *ce) |
| 5222 | { |
| 5223 | struct i915_sched_engine *sched_engine = ce->engine->sched_engine; |
| 5224 | |
| 5225 | __guc_reset_context(ce, stalled: ce->engine->mask); |
| 5226 | tasklet_hi_schedule(t: &sched_engine->tasklet); |
| 5227 | } |
| 5228 | |
| 5229 | static void guc_handle_context_reset(struct intel_guc *guc, |
| 5230 | struct intel_context *ce) |
| 5231 | { |
| 5232 | bool capture = intel_context_is_schedulable(ce); |
| 5233 | |
| 5234 | trace_intel_context_reset(ce); |
| 5235 | |
| 5236 | guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n" , |
| 5237 | capture ? "Got" : "Ignoring" , |
| 5238 | ce->guc_id.id, ce->engine->name, |
| 5239 | str_yes_no(intel_context_is_exiting(ce)), |
| 5240 | str_yes_no(intel_context_is_banned(ce))); |
| 5241 | |
| 5242 | if (capture) { |
| 5243 | capture_error_state(guc, ce); |
| 5244 | guc_context_replay(ce); |
| 5245 | } |
| 5246 | } |
| 5247 | |
| 5248 | int intel_guc_context_reset_process_msg(struct intel_guc *guc, |
| 5249 | const u32 *msg, u32 len) |
| 5250 | { |
| 5251 | struct intel_context *ce; |
| 5252 | unsigned long flags; |
| 5253 | int ctx_id; |
| 5254 | |
| 5255 | if (unlikely(len != 1)) { |
| 5256 | guc_err(guc, "Invalid length %u" , len); |
| 5257 | return -EPROTO; |
| 5258 | } |
| 5259 | |
| 5260 | ctx_id = msg[0]; |
| 5261 | |
| 5262 | /* |
| 5263 | * The context lookup uses the xarray but lookups only require an RCU lock |
| 5264 | * not the full spinlock. So take the lock explicitly and keep it until the |
| 5265 | * context has been reference count locked to ensure it can't be destroyed |
| 5266 | * asynchronously until the reset is done. |
| 5267 | */ |
| 5268 | xa_lock_irqsave(&guc->context_lookup, flags); |
| 5269 | ce = g2h_context_lookup(guc, ctx_id); |
| 5270 | if (ce) |
| 5271 | intel_context_get(ce); |
| 5272 | xa_unlock_irqrestore(&guc->context_lookup, flags); |
| 5273 | |
| 5274 | if (unlikely(!ce)) |
| 5275 | return -EPROTO; |
| 5276 | |
| 5277 | guc_handle_context_reset(guc, ce); |
| 5278 | intel_context_put(ce); |
| 5279 | |
| 5280 | return 0; |
| 5281 | } |
| 5282 | |
| 5283 | int intel_guc_error_capture_process_msg(struct intel_guc *guc, |
| 5284 | const u32 *msg, u32 len) |
| 5285 | { |
| 5286 | u32 status; |
| 5287 | |
| 5288 | if (unlikely(len != 1)) { |
| 5289 | guc_dbg(guc, "Invalid length %u" , len); |
| 5290 | return -EPROTO; |
| 5291 | } |
| 5292 | |
| 5293 | status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; |
| 5294 | if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) |
| 5295 | guc_warn(guc, "No space for error capture" ); |
| 5296 | |
| 5297 | intel_guc_capture_process(guc); |
| 5298 | |
| 5299 | return 0; |
| 5300 | } |
| 5301 | |
| 5302 | struct intel_engine_cs * |
| 5303 | intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) |
| 5304 | { |
| 5305 | struct intel_gt *gt = guc_to_gt(guc); |
| 5306 | u8 engine_class = guc_class_to_engine_class(guc_class); |
| 5307 | |
| 5308 | /* Class index is checked in class converter */ |
| 5309 | GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); |
| 5310 | |
| 5311 | return gt->engine_class[engine_class][instance]; |
| 5312 | } |
| 5313 | |
| 5314 | static void reset_fail_worker_func(struct work_struct *w) |
| 5315 | { |
| 5316 | struct intel_guc *guc = container_of(w, struct intel_guc, |
| 5317 | submission_state.reset_fail_worker); |
| 5318 | struct intel_gt *gt = guc_to_gt(guc); |
| 5319 | intel_engine_mask_t reset_fail_mask; |
| 5320 | unsigned long flags; |
| 5321 | |
| 5322 | spin_lock_irqsave(&guc->submission_state.lock, flags); |
| 5323 | reset_fail_mask = guc->submission_state.reset_fail_mask; |
| 5324 | guc->submission_state.reset_fail_mask = 0; |
| 5325 | spin_unlock_irqrestore(lock: &guc->submission_state.lock, flags); |
| 5326 | |
| 5327 | if (likely(reset_fail_mask)) { |
| 5328 | struct intel_engine_cs *engine; |
| 5329 | enum intel_engine_id id; |
| 5330 | |
| 5331 | /* |
| 5332 | * GuC is toast at this point - it dead loops after sending the failed |
| 5333 | * reset notification. So need to manually determine the guilty context. |
| 5334 | * Note that it should be reliable to do this here because the GuC is |
| 5335 | * toast and will not be scheduling behind the KMD's back. |
| 5336 | */ |
| 5337 | for_each_engine_masked(engine, gt, reset_fail_mask, id) |
| 5338 | intel_guc_find_hung_context(engine); |
| 5339 | |
| 5340 | intel_gt_handle_error(gt, engine_mask: reset_fail_mask, |
| 5341 | I915_ERROR_CAPTURE, |
| 5342 | fmt: "GuC failed to reset engine mask=0x%x" , |
| 5343 | reset_fail_mask); |
| 5344 | } |
| 5345 | } |
| 5346 | |
| 5347 | int intel_guc_engine_failure_process_msg(struct intel_guc *guc, |
| 5348 | const u32 *msg, u32 len) |
| 5349 | { |
| 5350 | struct intel_engine_cs *engine; |
| 5351 | u8 guc_class, instance; |
| 5352 | u32 reason; |
| 5353 | unsigned long flags; |
| 5354 | |
| 5355 | if (unlikely(len != 3)) { |
| 5356 | guc_err(guc, "Invalid length %u" , len); |
| 5357 | return -EPROTO; |
| 5358 | } |
| 5359 | |
| 5360 | guc_class = msg[0]; |
| 5361 | instance = msg[1]; |
| 5362 | reason = msg[2]; |
| 5363 | |
| 5364 | engine = intel_guc_lookup_engine(guc, guc_class, instance); |
| 5365 | if (unlikely(!engine)) { |
| 5366 | guc_err(guc, "Invalid engine %d:%d" , guc_class, instance); |
| 5367 | return -EPROTO; |
| 5368 | } |
| 5369 | |
| 5370 | /* |
| 5371 | * This is an unexpected failure of a hardware feature. So, log a real |
| 5372 | * error message not just the informational that comes with the reset. |
| 5373 | */ |
| 5374 | guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X" , |
| 5375 | guc_class, instance, engine->name, reason); |
| 5376 | |
| 5377 | spin_lock_irqsave(&guc->submission_state.lock, flags); |
| 5378 | guc->submission_state.reset_fail_mask |= engine->mask; |
| 5379 | spin_unlock_irqrestore(lock: &guc->submission_state.lock, flags); |
| 5380 | |
| 5381 | /* |
| 5382 | * A GT reset flushes this worker queue (G2H handler) so we must use |
| 5383 | * another worker to trigger a GT reset. |
| 5384 | */ |
| 5385 | queue_work(wq: system_unbound_wq, work: &guc->submission_state.reset_fail_worker); |
| 5386 | |
| 5387 | return 0; |
| 5388 | } |
| 5389 | |
| 5390 | void intel_guc_find_hung_context(struct intel_engine_cs *engine) |
| 5391 | { |
| 5392 | struct intel_guc *guc = gt_to_guc(gt: engine->gt); |
| 5393 | struct intel_context *ce; |
| 5394 | struct i915_request *rq; |
| 5395 | unsigned long index; |
| 5396 | unsigned long flags; |
| 5397 | |
| 5398 | /* Reset called during driver load? GuC not yet initialised! */ |
| 5399 | if (unlikely(!guc_submission_initialized(guc))) |
| 5400 | return; |
| 5401 | |
| 5402 | xa_lock_irqsave(&guc->context_lookup, flags); |
| 5403 | xa_for_each(&guc->context_lookup, index, ce) { |
| 5404 | bool found; |
| 5405 | |
| 5406 | if (!kref_get_unless_zero(kref: &ce->ref)) |
| 5407 | continue; |
| 5408 | |
| 5409 | xa_unlock(&guc->context_lookup); |
| 5410 | |
| 5411 | if (!intel_context_is_pinned(ce)) |
| 5412 | goto next; |
| 5413 | |
| 5414 | if (intel_engine_is_virtual(engine: ce->engine)) { |
| 5415 | if (!(ce->engine->mask & engine->mask)) |
| 5416 | goto next; |
| 5417 | } else { |
| 5418 | if (ce->engine != engine) |
| 5419 | goto next; |
| 5420 | } |
| 5421 | |
| 5422 | found = false; |
| 5423 | spin_lock(lock: &ce->guc_state.lock); |
| 5424 | list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { |
| 5425 | if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) |
| 5426 | continue; |
| 5427 | |
| 5428 | found = true; |
| 5429 | break; |
| 5430 | } |
| 5431 | spin_unlock(lock: &ce->guc_state.lock); |
| 5432 | |
| 5433 | if (found) { |
| 5434 | intel_engine_set_hung_context(engine, ce); |
| 5435 | |
| 5436 | /* Can only cope with one hang at a time... */ |
| 5437 | intel_context_put(ce); |
| 5438 | xa_lock(&guc->context_lookup); |
| 5439 | goto done; |
| 5440 | } |
| 5441 | |
| 5442 | next: |
| 5443 | intel_context_put(ce); |
| 5444 | xa_lock(&guc->context_lookup); |
| 5445 | } |
| 5446 | done: |
| 5447 | xa_unlock_irqrestore(&guc->context_lookup, flags); |
| 5448 | } |
| 5449 | |
| 5450 | void intel_guc_dump_active_requests(struct intel_engine_cs *engine, |
| 5451 | struct i915_request *hung_rq, |
| 5452 | struct drm_printer *m) |
| 5453 | { |
| 5454 | struct intel_guc *guc = gt_to_guc(gt: engine->gt); |
| 5455 | struct intel_context *ce; |
| 5456 | unsigned long index; |
| 5457 | unsigned long flags; |
| 5458 | |
| 5459 | /* Reset called during driver load? GuC not yet initialised! */ |
| 5460 | if (unlikely(!guc_submission_initialized(guc))) |
| 5461 | return; |
| 5462 | |
| 5463 | xa_lock_irqsave(&guc->context_lookup, flags); |
| 5464 | xa_for_each(&guc->context_lookup, index, ce) { |
| 5465 | if (!kref_get_unless_zero(kref: &ce->ref)) |
| 5466 | continue; |
| 5467 | |
| 5468 | xa_unlock(&guc->context_lookup); |
| 5469 | |
| 5470 | if (!intel_context_is_pinned(ce)) |
| 5471 | goto next; |
| 5472 | |
| 5473 | if (intel_engine_is_virtual(engine: ce->engine)) { |
| 5474 | if (!(ce->engine->mask & engine->mask)) |
| 5475 | goto next; |
| 5476 | } else { |
| 5477 | if (ce->engine != engine) |
| 5478 | goto next; |
| 5479 | } |
| 5480 | |
| 5481 | spin_lock(lock: &ce->guc_state.lock); |
| 5482 | intel_engine_dump_active_requests(requests: &ce->guc_state.requests, |
| 5483 | hung_rq, m); |
| 5484 | spin_unlock(lock: &ce->guc_state.lock); |
| 5485 | |
| 5486 | next: |
| 5487 | intel_context_put(ce); |
| 5488 | xa_lock(&guc->context_lookup); |
| 5489 | } |
| 5490 | xa_unlock_irqrestore(&guc->context_lookup, flags); |
| 5491 | } |
| 5492 | |
| 5493 | void intel_guc_submission_print_info(struct intel_guc *guc, |
| 5494 | struct drm_printer *p) |
| 5495 | { |
| 5496 | struct i915_sched_engine *sched_engine = guc->sched_engine; |
| 5497 | struct rb_node *rb; |
| 5498 | unsigned long flags; |
| 5499 | |
| 5500 | if (!sched_engine) |
| 5501 | return; |
| 5502 | |
| 5503 | drm_printf(p, f: "GuC Submission API Version: %d.%d.%d\n" , |
| 5504 | guc->submission_version.major, guc->submission_version.minor, |
| 5505 | guc->submission_version.patch); |
| 5506 | drm_printf(p, f: "GuC Number Outstanding Submission G2H: %u\n" , |
| 5507 | atomic_read(v: &guc->outstanding_submission_g2h)); |
| 5508 | drm_printf(p, f: "GuC tasklet count: %u\n" , |
| 5509 | atomic_read(v: &sched_engine->tasklet.count)); |
| 5510 | |
| 5511 | spin_lock_irqsave(&sched_engine->lock, flags); |
| 5512 | drm_printf(p, f: "Requests in GuC submit tasklet:\n" ); |
| 5513 | for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { |
| 5514 | struct i915_priolist *pl = to_priolist(rb); |
| 5515 | struct i915_request *rq; |
| 5516 | |
| 5517 | priolist_for_each_request(rq, pl) |
| 5518 | drm_printf(p, f: "guc_id=%u, seqno=%llu\n" , |
| 5519 | rq->context->guc_id.id, |
| 5520 | rq->fence.seqno); |
| 5521 | } |
| 5522 | spin_unlock_irqrestore(lock: &sched_engine->lock, flags); |
| 5523 | drm_printf(p, f: "\n" ); |
| 5524 | } |
| 5525 | |
| 5526 | static inline void guc_log_context_priority(struct drm_printer *p, |
| 5527 | struct intel_context *ce) |
| 5528 | { |
| 5529 | int i; |
| 5530 | |
| 5531 | drm_printf(p, f: "\t\tPriority: %d\n" , ce->guc_state.prio); |
| 5532 | drm_printf(p, f: "\t\tNumber Requests (lower index == higher priority)\n" ); |
| 5533 | for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; |
| 5534 | i < GUC_CLIENT_PRIORITY_NUM; ++i) { |
| 5535 | drm_printf(p, f: "\t\tNumber requests in priority band[%d]: %d\n" , |
| 5536 | i, ce->guc_state.prio_count[i]); |
| 5537 | } |
| 5538 | drm_printf(p, f: "\n" ); |
| 5539 | } |
| 5540 | |
| 5541 | static inline void guc_log_context(struct drm_printer *p, |
| 5542 | struct intel_context *ce) |
| 5543 | { |
| 5544 | drm_printf(p, f: "GuC lrc descriptor %u:\n" , ce->guc_id.id); |
| 5545 | drm_printf(p, f: "\tHW Context Desc: 0x%08x\n" , ce->lrc.lrca); |
| 5546 | if (intel_context_pin_if_active(ce)) { |
| 5547 | drm_printf(p, f: "\t\tLRC Head: Internal %u, Memory %u\n" , |
| 5548 | ce->ring->head, |
| 5549 | ce->lrc_reg_state[CTX_RING_HEAD]); |
| 5550 | drm_printf(p, f: "\t\tLRC Tail: Internal %u, Memory %u\n" , |
| 5551 | ce->ring->tail, |
| 5552 | ce->lrc_reg_state[CTX_RING_TAIL]); |
| 5553 | intel_context_unpin(ce); |
| 5554 | } else { |
| 5555 | drm_printf(p, f: "\t\tLRC Head: Internal %u, Memory not pinned\n" , |
| 5556 | ce->ring->head); |
| 5557 | drm_printf(p, f: "\t\tLRC Tail: Internal %u, Memory not pinned\n" , |
| 5558 | ce->ring->tail); |
| 5559 | } |
| 5560 | drm_printf(p, f: "\t\tContext Pin Count: %u\n" , |
| 5561 | atomic_read(v: &ce->pin_count)); |
| 5562 | drm_printf(p, f: "\t\tGuC ID Ref Count: %u\n" , |
| 5563 | atomic_read(v: &ce->guc_id.ref)); |
| 5564 | drm_printf(p, f: "\t\tSchedule State: 0x%x\n" , |
| 5565 | ce->guc_state.sched_state); |
| 5566 | } |
| 5567 | |
| 5568 | void intel_guc_submission_print_context_info(struct intel_guc *guc, |
| 5569 | struct drm_printer *p) |
| 5570 | { |
| 5571 | struct intel_context *ce; |
| 5572 | unsigned long index; |
| 5573 | unsigned long flags; |
| 5574 | |
| 5575 | xa_lock_irqsave(&guc->context_lookup, flags); |
| 5576 | xa_for_each(&guc->context_lookup, index, ce) { |
| 5577 | GEM_BUG_ON(intel_context_is_child(ce)); |
| 5578 | |
| 5579 | guc_log_context(p, ce); |
| 5580 | guc_log_context_priority(p, ce); |
| 5581 | |
| 5582 | if (intel_context_is_parent(ce)) { |
| 5583 | struct intel_context *child; |
| 5584 | |
| 5585 | drm_printf(p, f: "\t\tNumber children: %u\n" , |
| 5586 | ce->parallel.number_children); |
| 5587 | |
| 5588 | if (ce->parallel.guc.wq_status) { |
| 5589 | drm_printf(p, f: "\t\tWQI Head: %u\n" , |
| 5590 | READ_ONCE(*ce->parallel.guc.wq_head)); |
| 5591 | drm_printf(p, f: "\t\tWQI Tail: %u\n" , |
| 5592 | READ_ONCE(*ce->parallel.guc.wq_tail)); |
| 5593 | drm_printf(p, f: "\t\tWQI Status: %u\n" , |
| 5594 | READ_ONCE(*ce->parallel.guc.wq_status)); |
| 5595 | } |
| 5596 | |
| 5597 | if (ce->engine->emit_bb_start == |
| 5598 | emit_bb_start_parent_no_preempt_mid_batch) { |
| 5599 | u8 i; |
| 5600 | |
| 5601 | drm_printf(p, f: "\t\tChildren Go: %u\n" , |
| 5602 | get_children_go_value(ce)); |
| 5603 | for (i = 0; i < ce->parallel.number_children; ++i) |
| 5604 | drm_printf(p, f: "\t\tChildren Join: %u\n" , |
| 5605 | get_children_join_value(ce, child_index: i)); |
| 5606 | } |
| 5607 | |
| 5608 | for_each_child(ce, child) |
| 5609 | guc_log_context(p, ce: child); |
| 5610 | } |
| 5611 | } |
| 5612 | xa_unlock_irqrestore(&guc->context_lookup, flags); |
| 5613 | } |
| 5614 | |
| 5615 | static inline u32 get_children_go_addr(struct intel_context *ce) |
| 5616 | { |
| 5617 | GEM_BUG_ON(!intel_context_is_parent(ce)); |
| 5618 | |
| 5619 | return i915_ggtt_offset(vma: ce->state) + |
| 5620 | __get_parent_scratch_offset(ce) + |
| 5621 | offsetof(struct parent_scratch, go.semaphore); |
| 5622 | } |
| 5623 | |
| 5624 | static inline u32 get_children_join_addr(struct intel_context *ce, |
| 5625 | u8 child_index) |
| 5626 | { |
| 5627 | GEM_BUG_ON(!intel_context_is_parent(ce)); |
| 5628 | |
| 5629 | return i915_ggtt_offset(vma: ce->state) + |
| 5630 | __get_parent_scratch_offset(ce) + |
| 5631 | offsetof(struct parent_scratch, join[child_index].semaphore); |
| 5632 | } |
| 5633 | |
| 5634 | #define PARENT_GO_BB 1 |
| 5635 | #define PARENT_GO_FINI_BREADCRUMB 0 |
| 5636 | #define CHILD_GO_BB 1 |
| 5637 | #define CHILD_GO_FINI_BREADCRUMB 0 |
| 5638 | static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, |
| 5639 | u64 offset, u32 len, |
| 5640 | const unsigned int flags) |
| 5641 | { |
| 5642 | struct intel_context *ce = rq->context; |
| 5643 | u32 *cs; |
| 5644 | u8 i; |
| 5645 | |
| 5646 | GEM_BUG_ON(!intel_context_is_parent(ce)); |
| 5647 | |
| 5648 | cs = intel_ring_begin(rq, num_dwords: 10 + 4 * ce->parallel.number_children); |
| 5649 | if (IS_ERR(ptr: cs)) |
| 5650 | return PTR_ERR(ptr: cs); |
| 5651 | |
| 5652 | /* Wait on children */ |
| 5653 | for (i = 0; i < ce->parallel.number_children; ++i) { |
| 5654 | *cs++ = (MI_SEMAPHORE_WAIT | |
| 5655 | MI_SEMAPHORE_GLOBAL_GTT | |
| 5656 | MI_SEMAPHORE_POLL | |
| 5657 | MI_SEMAPHORE_SAD_EQ_SDD); |
| 5658 | *cs++ = PARENT_GO_BB; |
| 5659 | *cs++ = get_children_join_addr(ce, child_index: i); |
| 5660 | *cs++ = 0; |
| 5661 | } |
| 5662 | |
| 5663 | /* Turn off preemption */ |
| 5664 | *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; |
| 5665 | *cs++ = MI_NOOP; |
| 5666 | |
| 5667 | /* Tell children go */ |
| 5668 | cs = gen8_emit_ggtt_write(cs, |
| 5669 | CHILD_GO_BB, |
| 5670 | gtt_offset: get_children_go_addr(ce), |
| 5671 | flags: 0); |
| 5672 | |
| 5673 | /* Jump to batch */ |
| 5674 | *cs++ = MI_BATCH_BUFFER_START_GEN8 | |
| 5675 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); |
| 5676 | *cs++ = lower_32_bits(offset); |
| 5677 | *cs++ = upper_32_bits(offset); |
| 5678 | *cs++ = MI_NOOP; |
| 5679 | |
| 5680 | intel_ring_advance(rq, cs); |
| 5681 | |
| 5682 | return 0; |
| 5683 | } |
| 5684 | |
| 5685 | static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, |
| 5686 | u64 offset, u32 len, |
| 5687 | const unsigned int flags) |
| 5688 | { |
| 5689 | struct intel_context *ce = rq->context; |
| 5690 | struct intel_context *parent = intel_context_to_parent(ce); |
| 5691 | u32 *cs; |
| 5692 | |
| 5693 | GEM_BUG_ON(!intel_context_is_child(ce)); |
| 5694 | |
| 5695 | cs = intel_ring_begin(rq, num_dwords: 12); |
| 5696 | if (IS_ERR(ptr: cs)) |
| 5697 | return PTR_ERR(ptr: cs); |
| 5698 | |
| 5699 | /* Signal parent */ |
| 5700 | cs = gen8_emit_ggtt_write(cs, |
| 5701 | PARENT_GO_BB, |
| 5702 | gtt_offset: get_children_join_addr(ce: parent, |
| 5703 | child_index: ce->parallel.child_index), |
| 5704 | flags: 0); |
| 5705 | |
| 5706 | /* Wait on parent for go */ |
| 5707 | *cs++ = (MI_SEMAPHORE_WAIT | |
| 5708 | MI_SEMAPHORE_GLOBAL_GTT | |
| 5709 | MI_SEMAPHORE_POLL | |
| 5710 | MI_SEMAPHORE_SAD_EQ_SDD); |
| 5711 | *cs++ = CHILD_GO_BB; |
| 5712 | *cs++ = get_children_go_addr(ce: parent); |
| 5713 | *cs++ = 0; |
| 5714 | |
| 5715 | /* Turn off preemption */ |
| 5716 | *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; |
| 5717 | |
| 5718 | /* Jump to batch */ |
| 5719 | *cs++ = MI_BATCH_BUFFER_START_GEN8 | |
| 5720 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); |
| 5721 | *cs++ = lower_32_bits(offset); |
| 5722 | *cs++ = upper_32_bits(offset); |
| 5723 | |
| 5724 | intel_ring_advance(rq, cs); |
| 5725 | |
| 5726 | return 0; |
| 5727 | } |
| 5728 | |
| 5729 | static u32 * |
| 5730 | __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, |
| 5731 | u32 *cs) |
| 5732 | { |
| 5733 | struct intel_context *ce = rq->context; |
| 5734 | u8 i; |
| 5735 | |
| 5736 | GEM_BUG_ON(!intel_context_is_parent(ce)); |
| 5737 | |
| 5738 | /* Wait on children */ |
| 5739 | for (i = 0; i < ce->parallel.number_children; ++i) { |
| 5740 | *cs++ = (MI_SEMAPHORE_WAIT | |
| 5741 | MI_SEMAPHORE_GLOBAL_GTT | |
| 5742 | MI_SEMAPHORE_POLL | |
| 5743 | MI_SEMAPHORE_SAD_EQ_SDD); |
| 5744 | *cs++ = PARENT_GO_FINI_BREADCRUMB; |
| 5745 | *cs++ = get_children_join_addr(ce, child_index: i); |
| 5746 | *cs++ = 0; |
| 5747 | } |
| 5748 | |
| 5749 | /* Turn on preemption */ |
| 5750 | *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; |
| 5751 | *cs++ = MI_NOOP; |
| 5752 | |
| 5753 | /* Tell children go */ |
| 5754 | cs = gen8_emit_ggtt_write(cs, |
| 5755 | CHILD_GO_FINI_BREADCRUMB, |
| 5756 | gtt_offset: get_children_go_addr(ce), |
| 5757 | flags: 0); |
| 5758 | |
| 5759 | return cs; |
| 5760 | } |
| 5761 | |
| 5762 | /* |
| 5763 | * If this true, a submission of multi-lrc requests had an error and the |
| 5764 | * requests need to be skipped. The front end (execuf IOCTL) should've called |
| 5765 | * i915_request_skip which squashes the BB but we still need to emit the fini |
| 5766 | * breadrcrumbs seqno write. At this point we don't know how many of the |
| 5767 | * requests in the multi-lrc submission were generated so we can't do the |
| 5768 | * handshake between the parent and children (e.g. if 4 requests should be |
| 5769 | * generated but 2nd hit an error only 1 would be seen by the GuC backend). |
| 5770 | * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error |
| 5771 | * has occurred on any of the requests in submission / relationship. |
| 5772 | */ |
| 5773 | static inline bool skip_handshake(struct i915_request *rq) |
| 5774 | { |
| 5775 | return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); |
| 5776 | } |
| 5777 | |
| 5778 | #define NON_SKIP_LEN 6 |
| 5779 | static u32 * |
| 5780 | emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, |
| 5781 | u32 *cs) |
| 5782 | { |
| 5783 | struct intel_context *ce = rq->context; |
| 5784 | __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; |
| 5785 | __maybe_unused u32 *start_fini_breadcrumb_cs = cs; |
| 5786 | |
| 5787 | GEM_BUG_ON(!intel_context_is_parent(ce)); |
| 5788 | |
| 5789 | if (unlikely(skip_handshake(rq))) { |
| 5790 | /* |
| 5791 | * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, |
| 5792 | * the NON_SKIP_LEN comes from the length of the emits below. |
| 5793 | */ |
| 5794 | memset(s: cs, c: 0, n: sizeof(u32) * |
| 5795 | (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); |
| 5796 | cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; |
| 5797 | } else { |
| 5798 | cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); |
| 5799 | } |
| 5800 | |
| 5801 | /* Emit fini breadcrumb */ |
| 5802 | before_fini_breadcrumb_user_interrupt_cs = cs; |
| 5803 | cs = gen8_emit_ggtt_write(cs, |
| 5804 | value: rq->fence.seqno, |
| 5805 | gtt_offset: i915_request_active_timeline(rq)->hwsp_offset, |
| 5806 | flags: 0); |
| 5807 | |
| 5808 | /* User interrupt */ |
| 5809 | *cs++ = MI_USER_INTERRUPT; |
| 5810 | *cs++ = MI_NOOP; |
| 5811 | |
| 5812 | /* Ensure our math for skip + emit is correct */ |
| 5813 | GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != |
| 5814 | cs); |
| 5815 | GEM_BUG_ON(start_fini_breadcrumb_cs + |
| 5816 | ce->engine->emit_fini_breadcrumb_dw != cs); |
| 5817 | |
| 5818 | rq->tail = intel_ring_offset(rq, addr: cs); |
| 5819 | |
| 5820 | return cs; |
| 5821 | } |
| 5822 | |
| 5823 | static u32 * |
| 5824 | __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, |
| 5825 | u32 *cs) |
| 5826 | { |
| 5827 | struct intel_context *ce = rq->context; |
| 5828 | struct intel_context *parent = intel_context_to_parent(ce); |
| 5829 | |
| 5830 | GEM_BUG_ON(!intel_context_is_child(ce)); |
| 5831 | |
| 5832 | /* Turn on preemption */ |
| 5833 | *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; |
| 5834 | *cs++ = MI_NOOP; |
| 5835 | |
| 5836 | /* Signal parent */ |
| 5837 | cs = gen8_emit_ggtt_write(cs, |
| 5838 | PARENT_GO_FINI_BREADCRUMB, |
| 5839 | gtt_offset: get_children_join_addr(ce: parent, |
| 5840 | child_index: ce->parallel.child_index), |
| 5841 | flags: 0); |
| 5842 | |
| 5843 | /* Wait parent on for go */ |
| 5844 | *cs++ = (MI_SEMAPHORE_WAIT | |
| 5845 | MI_SEMAPHORE_GLOBAL_GTT | |
| 5846 | MI_SEMAPHORE_POLL | |
| 5847 | MI_SEMAPHORE_SAD_EQ_SDD); |
| 5848 | *cs++ = CHILD_GO_FINI_BREADCRUMB; |
| 5849 | *cs++ = get_children_go_addr(ce: parent); |
| 5850 | *cs++ = 0; |
| 5851 | |
| 5852 | return cs; |
| 5853 | } |
| 5854 | |
| 5855 | static u32 * |
| 5856 | emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, |
| 5857 | u32 *cs) |
| 5858 | { |
| 5859 | struct intel_context *ce = rq->context; |
| 5860 | __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; |
| 5861 | __maybe_unused u32 *start_fini_breadcrumb_cs = cs; |
| 5862 | |
| 5863 | GEM_BUG_ON(!intel_context_is_child(ce)); |
| 5864 | |
| 5865 | if (unlikely(skip_handshake(rq))) { |
| 5866 | /* |
| 5867 | * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, |
| 5868 | * the NON_SKIP_LEN comes from the length of the emits below. |
| 5869 | */ |
| 5870 | memset(s: cs, c: 0, n: sizeof(u32) * |
| 5871 | (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); |
| 5872 | cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; |
| 5873 | } else { |
| 5874 | cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); |
| 5875 | } |
| 5876 | |
| 5877 | /* Emit fini breadcrumb */ |
| 5878 | before_fini_breadcrumb_user_interrupt_cs = cs; |
| 5879 | cs = gen8_emit_ggtt_write(cs, |
| 5880 | value: rq->fence.seqno, |
| 5881 | gtt_offset: i915_request_active_timeline(rq)->hwsp_offset, |
| 5882 | flags: 0); |
| 5883 | |
| 5884 | /* User interrupt */ |
| 5885 | *cs++ = MI_USER_INTERRUPT; |
| 5886 | *cs++ = MI_NOOP; |
| 5887 | |
| 5888 | /* Ensure our math for skip + emit is correct */ |
| 5889 | GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != |
| 5890 | cs); |
| 5891 | GEM_BUG_ON(start_fini_breadcrumb_cs + |
| 5892 | ce->engine->emit_fini_breadcrumb_dw != cs); |
| 5893 | |
| 5894 | rq->tail = intel_ring_offset(rq, addr: cs); |
| 5895 | |
| 5896 | return cs; |
| 5897 | } |
| 5898 | |
| 5899 | #undef NON_SKIP_LEN |
| 5900 | |
| 5901 | static struct intel_context * |
| 5902 | guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, |
| 5903 | unsigned long flags) |
| 5904 | { |
| 5905 | struct guc_virtual_engine *ve; |
| 5906 | struct intel_guc *guc; |
| 5907 | unsigned int n; |
| 5908 | int err; |
| 5909 | |
| 5910 | ve = kzalloc(sizeof(*ve), GFP_KERNEL); |
| 5911 | if (!ve) |
| 5912 | return ERR_PTR(error: -ENOMEM); |
| 5913 | |
| 5914 | guc = gt_to_guc(gt: siblings[0]->gt); |
| 5915 | |
| 5916 | ve->base.i915 = siblings[0]->i915; |
| 5917 | ve->base.gt = siblings[0]->gt; |
| 5918 | ve->base.uncore = siblings[0]->uncore; |
| 5919 | ve->base.id = -1; |
| 5920 | |
| 5921 | ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; |
| 5922 | ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; |
| 5923 | ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; |
| 5924 | ve->base.saturated = ALL_ENGINES; |
| 5925 | |
| 5926 | snprintf(buf: ve->base.name, size: sizeof(ve->base.name), fmt: "virtual" ); |
| 5927 | |
| 5928 | ve->base.sched_engine = i915_sched_engine_get(sched_engine: guc->sched_engine); |
| 5929 | |
| 5930 | ve->base.cops = &virtual_guc_context_ops; |
| 5931 | ve->base.request_alloc = guc_request_alloc; |
| 5932 | ve->base.bump_serial = virtual_guc_bump_serial; |
| 5933 | |
| 5934 | ve->base.submit_request = guc_submit_request; |
| 5935 | |
| 5936 | ve->base.flags = I915_ENGINE_IS_VIRTUAL; |
| 5937 | |
| 5938 | BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES); |
| 5939 | ve->base.mask = VIRTUAL_ENGINES; |
| 5940 | |
| 5941 | intel_context_init(ce: &ve->context, engine: &ve->base); |
| 5942 | |
| 5943 | for (n = 0; n < count; n++) { |
| 5944 | struct intel_engine_cs *sibling = siblings[n]; |
| 5945 | |
| 5946 | GEM_BUG_ON(!is_power_of_2(sibling->mask)); |
| 5947 | if (sibling->mask & ve->base.mask) { |
| 5948 | guc_dbg(guc, "duplicate %s entry in load balancer\n" , |
| 5949 | sibling->name); |
| 5950 | err = -EINVAL; |
| 5951 | goto err_put; |
| 5952 | } |
| 5953 | |
| 5954 | ve->base.mask |= sibling->mask; |
| 5955 | ve->base.logical_mask |= sibling->logical_mask; |
| 5956 | |
| 5957 | if (n != 0 && ve->base.class != sibling->class) { |
| 5958 | guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n" , |
| 5959 | sibling->class, ve->base.class); |
| 5960 | err = -EINVAL; |
| 5961 | goto err_put; |
| 5962 | } else if (n == 0) { |
| 5963 | ve->base.class = sibling->class; |
| 5964 | ve->base.uabi_class = sibling->uabi_class; |
| 5965 | snprintf(buf: ve->base.name, size: sizeof(ve->base.name), |
| 5966 | fmt: "v%dx%d" , ve->base.class, count); |
| 5967 | ve->base.context_size = sibling->context_size; |
| 5968 | |
| 5969 | ve->base.add_active_request = |
| 5970 | sibling->add_active_request; |
| 5971 | ve->base.remove_active_request = |
| 5972 | sibling->remove_active_request; |
| 5973 | ve->base.emit_bb_start = sibling->emit_bb_start; |
| 5974 | ve->base.emit_flush = sibling->emit_flush; |
| 5975 | ve->base.emit_init_breadcrumb = |
| 5976 | sibling->emit_init_breadcrumb; |
| 5977 | ve->base.emit_fini_breadcrumb = |
| 5978 | sibling->emit_fini_breadcrumb; |
| 5979 | ve->base.emit_fini_breadcrumb_dw = |
| 5980 | sibling->emit_fini_breadcrumb_dw; |
| 5981 | ve->base.breadcrumbs = |
| 5982 | intel_breadcrumbs_get(b: sibling->breadcrumbs); |
| 5983 | |
| 5984 | ve->base.flags |= sibling->flags; |
| 5985 | |
| 5986 | ve->base.props.timeslice_duration_ms = |
| 5987 | sibling->props.timeslice_duration_ms; |
| 5988 | ve->base.props.preempt_timeout_ms = |
| 5989 | sibling->props.preempt_timeout_ms; |
| 5990 | } |
| 5991 | } |
| 5992 | |
| 5993 | return &ve->context; |
| 5994 | |
| 5995 | err_put: |
| 5996 | intel_context_put(ce: &ve->context); |
| 5997 | return ERR_PTR(error: err); |
| 5998 | } |
| 5999 | |
| 6000 | bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) |
| 6001 | { |
| 6002 | struct intel_engine_cs *engine; |
| 6003 | intel_engine_mask_t tmp, mask = ve->mask; |
| 6004 | |
| 6005 | for_each_engine_masked(engine, ve->gt, mask, tmp) |
| 6006 | if (READ_ONCE(engine->props.heartbeat_interval_ms)) |
| 6007 | return true; |
| 6008 | |
| 6009 | return false; |
| 6010 | } |
| 6011 | |
| 6012 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| 6013 | #include "selftest_guc.c" |
| 6014 | #include "selftest_guc_multi_lrc.c" |
| 6015 | #include "selftest_guc_hangcheck.c" |
| 6016 | #endif |
| 6017 | |