| 1 | // SPDX-License-Identifier: GPL-2.0-only | 
|---|
| 2 | /* | 
|---|
| 3 | *  kernel/sched/core.c | 
|---|
| 4 | * | 
|---|
| 5 | *  Core kernel CPU scheduler code | 
|---|
| 6 | * | 
|---|
| 7 | *  Copyright (C) 1991-2002  Linus Torvalds | 
|---|
| 8 | *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat | 
|---|
| 9 | */ | 
|---|
| 10 | #define INSTANTIATE_EXPORTED_MIGRATE_DISABLE | 
|---|
| 11 | #include <linux/sched.h> | 
|---|
| 12 | #include <linux/highmem.h> | 
|---|
| 13 | #include <linux/hrtimer_api.h> | 
|---|
| 14 | #include <linux/ktime_api.h> | 
|---|
| 15 | #include <linux/sched/signal.h> | 
|---|
| 16 | #include <linux/syscalls_api.h> | 
|---|
| 17 | #include <linux/debug_locks.h> | 
|---|
| 18 | #include <linux/prefetch.h> | 
|---|
| 19 | #include <linux/capability.h> | 
|---|
| 20 | #include <linux/pgtable_api.h> | 
|---|
| 21 | #include <linux/wait_bit.h> | 
|---|
| 22 | #include <linux/jiffies.h> | 
|---|
| 23 | #include <linux/spinlock_api.h> | 
|---|
| 24 | #include <linux/cpumask_api.h> | 
|---|
| 25 | #include <linux/lockdep_api.h> | 
|---|
| 26 | #include <linux/hardirq.h> | 
|---|
| 27 | #include <linux/softirq.h> | 
|---|
| 28 | #include <linux/refcount_api.h> | 
|---|
| 29 | #include <linux/topology.h> | 
|---|
| 30 | #include <linux/sched/clock.h> | 
|---|
| 31 | #include <linux/sched/cond_resched.h> | 
|---|
| 32 | #include <linux/sched/cputime.h> | 
|---|
| 33 | #include <linux/sched/debug.h> | 
|---|
| 34 | #include <linux/sched/hotplug.h> | 
|---|
| 35 | #include <linux/sched/init.h> | 
|---|
| 36 | #include <linux/sched/isolation.h> | 
|---|
| 37 | #include <linux/sched/loadavg.h> | 
|---|
| 38 | #include <linux/sched/mm.h> | 
|---|
| 39 | #include <linux/sched/nohz.h> | 
|---|
| 40 | #include <linux/sched/rseq_api.h> | 
|---|
| 41 | #include <linux/sched/rt.h> | 
|---|
| 42 |  | 
|---|
| 43 | #include <linux/blkdev.h> | 
|---|
| 44 | #include <linux/context_tracking.h> | 
|---|
| 45 | #include <linux/cpuset.h> | 
|---|
| 46 | #include <linux/delayacct.h> | 
|---|
| 47 | #include <linux/init_task.h> | 
|---|
| 48 | #include <linux/interrupt.h> | 
|---|
| 49 | #include <linux/ioprio.h> | 
|---|
| 50 | #include <linux/kallsyms.h> | 
|---|
| 51 | #include <linux/kcov.h> | 
|---|
| 52 | #include <linux/kprobes.h> | 
|---|
| 53 | #include <linux/llist_api.h> | 
|---|
| 54 | #include <linux/mmu_context.h> | 
|---|
| 55 | #include <linux/mmzone.h> | 
|---|
| 56 | #include <linux/mutex_api.h> | 
|---|
| 57 | #include <linux/nmi.h> | 
|---|
| 58 | #include <linux/nospec.h> | 
|---|
| 59 | #include <linux/perf_event_api.h> | 
|---|
| 60 | #include <linux/profile.h> | 
|---|
| 61 | #include <linux/psi.h> | 
|---|
| 62 | #include <linux/rcuwait_api.h> | 
|---|
| 63 | #include <linux/rseq.h> | 
|---|
| 64 | #include <linux/sched/wake_q.h> | 
|---|
| 65 | #include <linux/scs.h> | 
|---|
| 66 | #include <linux/slab.h> | 
|---|
| 67 | #include <linux/syscalls.h> | 
|---|
| 68 | #include <linux/vtime.h> | 
|---|
| 69 | #include <linux/wait_api.h> | 
|---|
| 70 | #include <linux/workqueue_api.h> | 
|---|
| 71 | #include <linux/livepatch_sched.h> | 
|---|
| 72 |  | 
|---|
| 73 | #ifdef CONFIG_PREEMPT_DYNAMIC | 
|---|
| 74 | # ifdef CONFIG_GENERIC_IRQ_ENTRY | 
|---|
| 75 | #  include <linux/irq-entry-common.h> | 
|---|
| 76 | # endif | 
|---|
| 77 | #endif | 
|---|
| 78 |  | 
|---|
| 79 | #include <uapi/linux/sched/types.h> | 
|---|
| 80 |  | 
|---|
| 81 | #include <asm/irq_regs.h> | 
|---|
| 82 | #include <asm/switch_to.h> | 
|---|
| 83 | #include <asm/tlb.h> | 
|---|
| 84 |  | 
|---|
| 85 | #define CREATE_TRACE_POINTS | 
|---|
| 86 | #include <linux/sched/rseq_api.h> | 
|---|
| 87 | #include <trace/events/sched.h> | 
|---|
| 88 | #include <trace/events/ipi.h> | 
|---|
| 89 | #undef CREATE_TRACE_POINTS | 
|---|
| 90 |  | 
|---|
| 91 | #include "sched.h" | 
|---|
| 92 | #include "stats.h" | 
|---|
| 93 |  | 
|---|
| 94 | #include "autogroup.h" | 
|---|
| 95 | #include "pelt.h" | 
|---|
| 96 | #include "smp.h" | 
|---|
| 97 |  | 
|---|
| 98 | #include "../workqueue_internal.h" | 
|---|
| 99 | #include "../../io_uring/io-wq.h" | 
|---|
| 100 | #include "../smpboot.h" | 
|---|
| 101 | #include "../locking/mutex.h" | 
|---|
| 102 |  | 
|---|
| 103 | EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); | 
|---|
| 104 | EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); | 
|---|
| 105 |  | 
|---|
| 106 | /* | 
|---|
| 107 | * Export tracepoints that act as a bare tracehook (ie: have no trace event | 
|---|
| 108 | * associated with them) to allow external modules to probe them. | 
|---|
| 109 | */ | 
|---|
| 110 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); | 
|---|
| 111 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); | 
|---|
| 112 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); | 
|---|
| 113 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); | 
|---|
| 114 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); | 
|---|
| 115 | EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); | 
|---|
| 116 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); | 
|---|
| 117 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); | 
|---|
| 118 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); | 
|---|
| 119 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); | 
|---|
| 120 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); | 
|---|
| 121 | EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); | 
|---|
| 122 |  | 
|---|
| 123 | DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 
|---|
| 124 |  | 
|---|
| 125 | #ifdef CONFIG_SCHED_PROXY_EXEC | 
|---|
| 126 | DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec); | 
|---|
| 127 | static int __init setup_proxy_exec(char *str) | 
|---|
| 128 | { | 
|---|
| 129 | bool proxy_enable = true; | 
|---|
| 130 |  | 
|---|
| 131 | if (*str && kstrtobool(str + 1, &proxy_enable)) { | 
|---|
| 132 | pr_warn( "Unable to parse sched_proxy_exec=\n"); | 
|---|
| 133 | return 0; | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | if (proxy_enable) { | 
|---|
| 137 | pr_info( "sched_proxy_exec enabled via boot arg\n"); | 
|---|
| 138 | static_branch_enable(&__sched_proxy_exec); | 
|---|
| 139 | } else { | 
|---|
| 140 | pr_info( "sched_proxy_exec disabled via boot arg\n"); | 
|---|
| 141 | static_branch_disable(&__sched_proxy_exec); | 
|---|
| 142 | } | 
|---|
| 143 | return 1; | 
|---|
| 144 | } | 
|---|
| 145 | #else | 
|---|
| 146 | static int __init setup_proxy_exec(char *str) | 
|---|
| 147 | { | 
|---|
| 148 | pr_warn( "CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n"); | 
|---|
| 149 | return 0; | 
|---|
| 150 | } | 
|---|
| 151 | #endif | 
|---|
| 152 | __setup( "sched_proxy_exec", setup_proxy_exec); | 
|---|
| 153 |  | 
|---|
| 154 | /* | 
|---|
| 155 | * Debugging: various feature bits | 
|---|
| 156 | * | 
|---|
| 157 | * If SCHED_DEBUG is disabled, each compilation unit has its own copy of | 
|---|
| 158 | * sysctl_sched_features, defined in sched.h, to allow constants propagation | 
|---|
| 159 | * at compile time and compiler optimization based on features default. | 
|---|
| 160 | */ | 
|---|
| 161 | #define SCHED_FEAT(name, enabled)	\ | 
|---|
| 162 | (1UL << __SCHED_FEAT_##name) * enabled | | 
|---|
| 163 | __read_mostly unsigned int sysctl_sched_features = | 
|---|
| 164 | #include "features.h" | 
|---|
| 165 | 0; | 
|---|
| 166 | #undef SCHED_FEAT | 
|---|
| 167 |  | 
|---|
| 168 | /* | 
|---|
| 169 | * Print a warning if need_resched is set for the given duration (if | 
|---|
| 170 | * LATENCY_WARN is enabled). | 
|---|
| 171 | * | 
|---|
| 172 | * If sysctl_resched_latency_warn_once is set, only one warning will be shown | 
|---|
| 173 | * per boot. | 
|---|
| 174 | */ | 
|---|
| 175 | __read_mostly int sysctl_resched_latency_warn_ms = 100; | 
|---|
| 176 | __read_mostly int sysctl_resched_latency_warn_once = 1; | 
|---|
| 177 |  | 
|---|
| 178 | /* | 
|---|
| 179 | * Number of tasks to iterate in a single balance run. | 
|---|
| 180 | * Limited because this is done with IRQs disabled. | 
|---|
| 181 | */ | 
|---|
| 182 | __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; | 
|---|
| 183 |  | 
|---|
| 184 | __read_mostly int scheduler_running; | 
|---|
| 185 |  | 
|---|
| 186 | #ifdef CONFIG_SCHED_CORE | 
|---|
| 187 |  | 
|---|
| 188 | DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); | 
|---|
| 189 |  | 
|---|
| 190 | /* kernel prio, less is more */ | 
|---|
| 191 | static inline int __task_prio(const struct task_struct *p) | 
|---|
| 192 | { | 
|---|
| 193 | if (p->sched_class == &stop_sched_class) /* trumps deadline */ | 
|---|
| 194 | return -2; | 
|---|
| 195 |  | 
|---|
| 196 | if (p->dl_server) | 
|---|
| 197 | return -1; /* deadline */ | 
|---|
| 198 |  | 
|---|
| 199 | if (rt_or_dl_prio(p->prio)) | 
|---|
| 200 | return p->prio; /* [-1, 99] */ | 
|---|
| 201 |  | 
|---|
| 202 | if (p->sched_class == &idle_sched_class) | 
|---|
| 203 | return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ | 
|---|
| 204 |  | 
|---|
| 205 | if (task_on_scx(p)) | 
|---|
| 206 | return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ | 
|---|
| 207 |  | 
|---|
| 208 | return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ | 
|---|
| 209 | } | 
|---|
| 210 |  | 
|---|
| 211 | /* | 
|---|
| 212 | * l(a,b) | 
|---|
| 213 | * le(a,b) := !l(b,a) | 
|---|
| 214 | * g(a,b)  := l(b,a) | 
|---|
| 215 | * ge(a,b) := !l(a,b) | 
|---|
| 216 | */ | 
|---|
| 217 |  | 
|---|
| 218 | /* real prio, less is less */ | 
|---|
| 219 | static inline bool prio_less(const struct task_struct *a, | 
|---|
| 220 | const struct task_struct *b, bool in_fi) | 
|---|
| 221 | { | 
|---|
| 222 |  | 
|---|
| 223 | int pa = __task_prio(a), pb = __task_prio(b); | 
|---|
| 224 |  | 
|---|
| 225 | if (-pa < -pb) | 
|---|
| 226 | return true; | 
|---|
| 227 |  | 
|---|
| 228 | if (-pb < -pa) | 
|---|
| 229 | return false; | 
|---|
| 230 |  | 
|---|
| 231 | if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ | 
|---|
| 232 | const struct sched_dl_entity *a_dl, *b_dl; | 
|---|
| 233 |  | 
|---|
| 234 | a_dl = &a->dl; | 
|---|
| 235 | /* | 
|---|
| 236 | * Since,'a' and 'b' can be CFS tasks served by DL server, | 
|---|
| 237 | * __task_prio() can return -1 (for DL) even for those. In that | 
|---|
| 238 | * case, get to the dl_server's DL entity. | 
|---|
| 239 | */ | 
|---|
| 240 | if (a->dl_server) | 
|---|
| 241 | a_dl = a->dl_server; | 
|---|
| 242 |  | 
|---|
| 243 | b_dl = &b->dl; | 
|---|
| 244 | if (b->dl_server) | 
|---|
| 245 | b_dl = b->dl_server; | 
|---|
| 246 |  | 
|---|
| 247 | return !dl_time_before(a_dl->deadline, b_dl->deadline); | 
|---|
| 248 | } | 
|---|
| 249 |  | 
|---|
| 250 | if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */ | 
|---|
| 251 | return cfs_prio_less(a, b, in_fi); | 
|---|
| 252 |  | 
|---|
| 253 | #ifdef CONFIG_SCHED_CLASS_EXT | 
|---|
| 254 | if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */ | 
|---|
| 255 | return scx_prio_less(a, b, in_fi); | 
|---|
| 256 | #endif | 
|---|
| 257 |  | 
|---|
| 258 | return false; | 
|---|
| 259 | } | 
|---|
| 260 |  | 
|---|
| 261 | static inline bool __sched_core_less(const struct task_struct *a, | 
|---|
| 262 | const struct task_struct *b) | 
|---|
| 263 | { | 
|---|
| 264 | if (a->core_cookie < b->core_cookie) | 
|---|
| 265 | return true; | 
|---|
| 266 |  | 
|---|
| 267 | if (a->core_cookie > b->core_cookie) | 
|---|
| 268 | return false; | 
|---|
| 269 |  | 
|---|
| 270 | /* flip prio, so high prio is leftmost */ | 
|---|
| 271 | if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) | 
|---|
| 272 | return true; | 
|---|
| 273 |  | 
|---|
| 274 | return false; | 
|---|
| 275 | } | 
|---|
| 276 |  | 
|---|
| 277 | #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) | 
|---|
| 278 |  | 
|---|
| 279 | static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) | 
|---|
| 280 | { | 
|---|
| 281 | return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 | static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) | 
|---|
| 285 | { | 
|---|
| 286 | const struct task_struct *p = __node_2_sc(node); | 
|---|
| 287 | unsigned long cookie = (unsigned long)key; | 
|---|
| 288 |  | 
|---|
| 289 | if (cookie < p->core_cookie) | 
|---|
| 290 | return -1; | 
|---|
| 291 |  | 
|---|
| 292 | if (cookie > p->core_cookie) | 
|---|
| 293 | return 1; | 
|---|
| 294 |  | 
|---|
| 295 | return 0; | 
|---|
| 296 | } | 
|---|
| 297 |  | 
|---|
| 298 | void sched_core_enqueue(struct rq *rq, struct task_struct *p) | 
|---|
| 299 | { | 
|---|
| 300 | if (p->se.sched_delayed) | 
|---|
| 301 | return; | 
|---|
| 302 |  | 
|---|
| 303 | rq->core->core_task_seq++; | 
|---|
| 304 |  | 
|---|
| 305 | if (!p->core_cookie) | 
|---|
| 306 | return; | 
|---|
| 307 |  | 
|---|
| 308 | rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); | 
|---|
| 309 | } | 
|---|
| 310 |  | 
|---|
| 311 | void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 312 | { | 
|---|
| 313 | if (p->se.sched_delayed) | 
|---|
| 314 | return; | 
|---|
| 315 |  | 
|---|
| 316 | rq->core->core_task_seq++; | 
|---|
| 317 |  | 
|---|
| 318 | if (sched_core_enqueued(p)) { | 
|---|
| 319 | rb_erase(&p->core_node, &rq->core_tree); | 
|---|
| 320 | RB_CLEAR_NODE(&p->core_node); | 
|---|
| 321 | } | 
|---|
| 322 |  | 
|---|
| 323 | /* | 
|---|
| 324 | * Migrating the last task off the cpu, with the cpu in forced idle | 
|---|
| 325 | * state. Reschedule to create an accounting edge for forced idle, | 
|---|
| 326 | * and re-examine whether the core is still in forced idle state. | 
|---|
| 327 | */ | 
|---|
| 328 | if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && | 
|---|
| 329 | rq->core->core_forceidle_count && rq->curr == rq->idle) | 
|---|
| 330 | resched_curr(rq); | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | static int sched_task_is_throttled(struct task_struct *p, int cpu) | 
|---|
| 334 | { | 
|---|
| 335 | if (p->sched_class->task_is_throttled) | 
|---|
| 336 | return p->sched_class->task_is_throttled(p, cpu); | 
|---|
| 337 |  | 
|---|
| 338 | return 0; | 
|---|
| 339 | } | 
|---|
| 340 |  | 
|---|
| 341 | static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) | 
|---|
| 342 | { | 
|---|
| 343 | struct rb_node *node = &p->core_node; | 
|---|
| 344 | int cpu = task_cpu(p); | 
|---|
| 345 |  | 
|---|
| 346 | do { | 
|---|
| 347 | node = rb_next(node); | 
|---|
| 348 | if (!node) | 
|---|
| 349 | return NULL; | 
|---|
| 350 |  | 
|---|
| 351 | p = __node_2_sc(node); | 
|---|
| 352 | if (p->core_cookie != cookie) | 
|---|
| 353 | return NULL; | 
|---|
| 354 |  | 
|---|
| 355 | } while (sched_task_is_throttled(p, cpu)); | 
|---|
| 356 |  | 
|---|
| 357 | return p; | 
|---|
| 358 | } | 
|---|
| 359 |  | 
|---|
| 360 | /* | 
|---|
| 361 | * Find left-most (aka, highest priority) and unthrottled task matching @cookie. | 
|---|
| 362 | * If no suitable task is found, NULL will be returned. | 
|---|
| 363 | */ | 
|---|
| 364 | static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) | 
|---|
| 365 | { | 
|---|
| 366 | struct task_struct *p; | 
|---|
| 367 | struct rb_node *node; | 
|---|
| 368 |  | 
|---|
| 369 | node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); | 
|---|
| 370 | if (!node) | 
|---|
| 371 | return NULL; | 
|---|
| 372 |  | 
|---|
| 373 | p = __node_2_sc(node); | 
|---|
| 374 | if (!sched_task_is_throttled(p, rq->cpu)) | 
|---|
| 375 | return p; | 
|---|
| 376 |  | 
|---|
| 377 | return sched_core_next(p, cookie); | 
|---|
| 378 | } | 
|---|
| 379 |  | 
|---|
| 380 | /* | 
|---|
| 381 | * Magic required such that: | 
|---|
| 382 | * | 
|---|
| 383 | *	raw_spin_rq_lock(rq); | 
|---|
| 384 | *	... | 
|---|
| 385 | *	raw_spin_rq_unlock(rq); | 
|---|
| 386 | * | 
|---|
| 387 | * ends up locking and unlocking the _same_ lock, and all CPUs | 
|---|
| 388 | * always agree on what rq has what lock. | 
|---|
| 389 | * | 
|---|
| 390 | * XXX entirely possible to selectively enable cores, don't bother for now. | 
|---|
| 391 | */ | 
|---|
| 392 |  | 
|---|
| 393 | static DEFINE_MUTEX(sched_core_mutex); | 
|---|
| 394 | static atomic_t sched_core_count; | 
|---|
| 395 | static struct cpumask sched_core_mask; | 
|---|
| 396 |  | 
|---|
| 397 | static void sched_core_lock(int cpu, unsigned long *flags) | 
|---|
| 398 | { | 
|---|
| 399 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); | 
|---|
| 400 | int t, i = 0; | 
|---|
| 401 |  | 
|---|
| 402 | local_irq_save(*flags); | 
|---|
| 403 | for_each_cpu(t, smt_mask) | 
|---|
| 404 | raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); | 
|---|
| 405 | } | 
|---|
| 406 |  | 
|---|
| 407 | static void sched_core_unlock(int cpu, unsigned long *flags) | 
|---|
| 408 | { | 
|---|
| 409 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); | 
|---|
| 410 | int t; | 
|---|
| 411 |  | 
|---|
| 412 | for_each_cpu(t, smt_mask) | 
|---|
| 413 | raw_spin_unlock(&cpu_rq(t)->__lock); | 
|---|
| 414 | local_irq_restore(*flags); | 
|---|
| 415 | } | 
|---|
| 416 |  | 
|---|
| 417 | static void __sched_core_flip(bool enabled) | 
|---|
| 418 | { | 
|---|
| 419 | unsigned long flags; | 
|---|
| 420 | int cpu, t; | 
|---|
| 421 |  | 
|---|
| 422 | cpus_read_lock(); | 
|---|
| 423 |  | 
|---|
| 424 | /* | 
|---|
| 425 | * Toggle the online cores, one by one. | 
|---|
| 426 | */ | 
|---|
| 427 | cpumask_copy(&sched_core_mask, cpu_online_mask); | 
|---|
| 428 | for_each_cpu(cpu, &sched_core_mask) { | 
|---|
| 429 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); | 
|---|
| 430 |  | 
|---|
| 431 | sched_core_lock(cpu, &flags); | 
|---|
| 432 |  | 
|---|
| 433 | for_each_cpu(t, smt_mask) | 
|---|
| 434 | cpu_rq(t)->core_enabled = enabled; | 
|---|
| 435 |  | 
|---|
| 436 | cpu_rq(cpu)->core->core_forceidle_start = 0; | 
|---|
| 437 |  | 
|---|
| 438 | sched_core_unlock(cpu, &flags); | 
|---|
| 439 |  | 
|---|
| 440 | cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); | 
|---|
| 441 | } | 
|---|
| 442 |  | 
|---|
| 443 | /* | 
|---|
| 444 | * Toggle the offline CPUs. | 
|---|
| 445 | */ | 
|---|
| 446 | for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) | 
|---|
| 447 | cpu_rq(cpu)->core_enabled = enabled; | 
|---|
| 448 |  | 
|---|
| 449 | cpus_read_unlock(); | 
|---|
| 450 | } | 
|---|
| 451 |  | 
|---|
| 452 | static void sched_core_assert_empty(void) | 
|---|
| 453 | { | 
|---|
| 454 | int cpu; | 
|---|
| 455 |  | 
|---|
| 456 | for_each_possible_cpu(cpu) | 
|---|
| 457 | WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | static void __sched_core_enable(void) | 
|---|
| 461 | { | 
|---|
| 462 | static_branch_enable(&__sched_core_enabled); | 
|---|
| 463 | /* | 
|---|
| 464 | * Ensure all previous instances of raw_spin_rq_*lock() have finished | 
|---|
| 465 | * and future ones will observe !sched_core_disabled(). | 
|---|
| 466 | */ | 
|---|
| 467 | synchronize_rcu(); | 
|---|
| 468 | __sched_core_flip(true); | 
|---|
| 469 | sched_core_assert_empty(); | 
|---|
| 470 | } | 
|---|
| 471 |  | 
|---|
| 472 | static void __sched_core_disable(void) | 
|---|
| 473 | { | 
|---|
| 474 | sched_core_assert_empty(); | 
|---|
| 475 | __sched_core_flip(false); | 
|---|
| 476 | static_branch_disable(&__sched_core_enabled); | 
|---|
| 477 | } | 
|---|
| 478 |  | 
|---|
| 479 | void sched_core_get(void) | 
|---|
| 480 | { | 
|---|
| 481 | if (atomic_inc_not_zero(&sched_core_count)) | 
|---|
| 482 | return; | 
|---|
| 483 |  | 
|---|
| 484 | mutex_lock(&sched_core_mutex); | 
|---|
| 485 | if (!atomic_read(&sched_core_count)) | 
|---|
| 486 | __sched_core_enable(); | 
|---|
| 487 |  | 
|---|
| 488 | smp_mb__before_atomic(); | 
|---|
| 489 | atomic_inc(&sched_core_count); | 
|---|
| 490 | mutex_unlock(&sched_core_mutex); | 
|---|
| 491 | } | 
|---|
| 492 |  | 
|---|
| 493 | static void __sched_core_put(struct work_struct *work) | 
|---|
| 494 | { | 
|---|
| 495 | if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { | 
|---|
| 496 | __sched_core_disable(); | 
|---|
| 497 | mutex_unlock(&sched_core_mutex); | 
|---|
| 498 | } | 
|---|
| 499 | } | 
|---|
| 500 |  | 
|---|
| 501 | void sched_core_put(void) | 
|---|
| 502 | { | 
|---|
| 503 | static DECLARE_WORK(_work, __sched_core_put); | 
|---|
| 504 |  | 
|---|
| 505 | /* | 
|---|
| 506 | * "There can be only one" | 
|---|
| 507 | * | 
|---|
| 508 | * Either this is the last one, or we don't actually need to do any | 
|---|
| 509 | * 'work'. If it is the last *again*, we rely on | 
|---|
| 510 | * WORK_STRUCT_PENDING_BIT. | 
|---|
| 511 | */ | 
|---|
| 512 | if (!atomic_add_unless(&sched_core_count, -1, 1)) | 
|---|
| 513 | schedule_work(&_work); | 
|---|
| 514 | } | 
|---|
| 515 |  | 
|---|
| 516 | #else /* !CONFIG_SCHED_CORE: */ | 
|---|
| 517 |  | 
|---|
| 518 | static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } | 
|---|
| 519 | static inline void | 
|---|
| 520 | sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } | 
|---|
| 521 |  | 
|---|
| 522 | #endif /* !CONFIG_SCHED_CORE */ | 
|---|
| 523 |  | 
|---|
| 524 | /* need a wrapper since we may need to trace from modules */ | 
|---|
| 525 | EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); | 
|---|
| 526 |  | 
|---|
| 527 | /* Call via the helper macro trace_set_current_state. */ | 
|---|
| 528 | void __trace_set_current_state(int state_value) | 
|---|
| 529 | { | 
|---|
| 530 | trace_sched_set_state_tp(current, state: state_value); | 
|---|
| 531 | } | 
|---|
| 532 | EXPORT_SYMBOL(__trace_set_current_state); | 
|---|
| 533 |  | 
|---|
| 534 | /* | 
|---|
| 535 | * Serialization rules: | 
|---|
| 536 | * | 
|---|
| 537 | * Lock order: | 
|---|
| 538 | * | 
|---|
| 539 | *   p->pi_lock | 
|---|
| 540 | *     rq->lock | 
|---|
| 541 | *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) | 
|---|
| 542 | * | 
|---|
| 543 | *  rq1->lock | 
|---|
| 544 | *    rq2->lock  where: rq1 < rq2 | 
|---|
| 545 | * | 
|---|
| 546 | * Regular state: | 
|---|
| 547 | * | 
|---|
| 548 | * Normal scheduling state is serialized by rq->lock. __schedule() takes the | 
|---|
| 549 | * local CPU's rq->lock, it optionally removes the task from the runqueue and | 
|---|
| 550 | * always looks at the local rq data structures to find the most eligible task | 
|---|
| 551 | * to run next. | 
|---|
| 552 | * | 
|---|
| 553 | * Task enqueue is also under rq->lock, possibly taken from another CPU. | 
|---|
| 554 | * Wakeups from another LLC domain might use an IPI to transfer the enqueue to | 
|---|
| 555 | * the local CPU to avoid bouncing the runqueue state around [ see | 
|---|
| 556 | * ttwu_queue_wakelist() ] | 
|---|
| 557 | * | 
|---|
| 558 | * Task wakeup, specifically wakeups that involve migration, are horribly | 
|---|
| 559 | * complicated to avoid having to take two rq->locks. | 
|---|
| 560 | * | 
|---|
| 561 | * Special state: | 
|---|
| 562 | * | 
|---|
| 563 | * System-calls and anything external will use task_rq_lock() which acquires | 
|---|
| 564 | * both p->pi_lock and rq->lock. As a consequence the state they change is | 
|---|
| 565 | * stable while holding either lock: | 
|---|
| 566 | * | 
|---|
| 567 | *  - sched_setaffinity()/ | 
|---|
| 568 | *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed | 
|---|
| 569 | *  - set_user_nice():		p->se.load, p->*prio | 
|---|
| 570 | *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio, | 
|---|
| 571 | *				p->se.load, p->rt_priority, | 
|---|
| 572 | *				p->dl.dl_{runtime, deadline, period, flags, bw, density} | 
|---|
| 573 | *  - sched_setnuma():		p->numa_preferred_nid | 
|---|
| 574 | *  - sched_move_task():	p->sched_task_group | 
|---|
| 575 | *  - uclamp_update_active()	p->uclamp* | 
|---|
| 576 | * | 
|---|
| 577 | * p->state <- TASK_*: | 
|---|
| 578 | * | 
|---|
| 579 | *   is changed locklessly using set_current_state(), __set_current_state() or | 
|---|
| 580 | *   set_special_state(), see their respective comments, or by | 
|---|
| 581 | *   try_to_wake_up(). This latter uses p->pi_lock to serialize against | 
|---|
| 582 | *   concurrent self. | 
|---|
| 583 | * | 
|---|
| 584 | * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: | 
|---|
| 585 | * | 
|---|
| 586 | *   is set by activate_task() and cleared by deactivate_task(), under | 
|---|
| 587 | *   rq->lock. Non-zero indicates the task is runnable, the special | 
|---|
| 588 | *   ON_RQ_MIGRATING state is used for migration without holding both | 
|---|
| 589 | *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). | 
|---|
| 590 | * | 
|---|
| 591 | *   Additionally it is possible to be ->on_rq but still be considered not | 
|---|
| 592 | *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue | 
|---|
| 593 | *   but will be dequeued as soon as they get picked again. See the | 
|---|
| 594 | *   task_is_runnable() helper. | 
|---|
| 595 | * | 
|---|
| 596 | * p->on_cpu <- { 0, 1 }: | 
|---|
| 597 | * | 
|---|
| 598 | *   is set by prepare_task() and cleared by finish_task() such that it will be | 
|---|
| 599 | *   set before p is scheduled-in and cleared after p is scheduled-out, both | 
|---|
| 600 | *   under rq->lock. Non-zero indicates the task is running on its CPU. | 
|---|
| 601 | * | 
|---|
| 602 | *   [ The astute reader will observe that it is possible for two tasks on one | 
|---|
| 603 | *     CPU to have ->on_cpu = 1 at the same time. ] | 
|---|
| 604 | * | 
|---|
| 605 | * task_cpu(p): is changed by set_task_cpu(), the rules are: | 
|---|
| 606 | * | 
|---|
| 607 | *  - Don't call set_task_cpu() on a blocked task: | 
|---|
| 608 | * | 
|---|
| 609 | *    We don't care what CPU we're not running on, this simplifies hotplug, | 
|---|
| 610 | *    the CPU assignment of blocked tasks isn't required to be valid. | 
|---|
| 611 | * | 
|---|
| 612 | *  - for try_to_wake_up(), called under p->pi_lock: | 
|---|
| 613 | * | 
|---|
| 614 | *    This allows try_to_wake_up() to only take one rq->lock, see its comment. | 
|---|
| 615 | * | 
|---|
| 616 | *  - for migration called under rq->lock: | 
|---|
| 617 | *    [ see task_on_rq_migrating() in task_rq_lock() ] | 
|---|
| 618 | * | 
|---|
| 619 | *    o move_queued_task() | 
|---|
| 620 | *    o detach_task() | 
|---|
| 621 | * | 
|---|
| 622 | *  - for migration called under double_rq_lock(): | 
|---|
| 623 | * | 
|---|
| 624 | *    o __migrate_swap_task() | 
|---|
| 625 | *    o push_rt_task() / pull_rt_task() | 
|---|
| 626 | *    o push_dl_task() / pull_dl_task() | 
|---|
| 627 | *    o dl_task_offline_migration() | 
|---|
| 628 | * | 
|---|
| 629 | */ | 
|---|
| 630 |  | 
|---|
| 631 | void raw_spin_rq_lock_nested(struct rq *rq, int subclass) | 
|---|
| 632 | { | 
|---|
| 633 | raw_spinlock_t *lock; | 
|---|
| 634 |  | 
|---|
| 635 | /* Matches synchronize_rcu() in __sched_core_enable() */ | 
|---|
| 636 | preempt_disable(); | 
|---|
| 637 | if (sched_core_disabled()) { | 
|---|
| 638 | raw_spin_lock_nested(&rq->__lock, subclass); | 
|---|
| 639 | /* preempt_count *MUST* be > 1 */ | 
|---|
| 640 | preempt_enable_no_resched(); | 
|---|
| 641 | return; | 
|---|
| 642 | } | 
|---|
| 643 |  | 
|---|
| 644 | for (;;) { | 
|---|
| 645 | lock = __rq_lockp(rq); | 
|---|
| 646 | raw_spin_lock_nested(lock, subclass); | 
|---|
| 647 | if (likely(lock == __rq_lockp(rq))) { | 
|---|
| 648 | /* preempt_count *MUST* be > 1 */ | 
|---|
| 649 | preempt_enable_no_resched(); | 
|---|
| 650 | return; | 
|---|
| 651 | } | 
|---|
| 652 | raw_spin_unlock(lock); | 
|---|
| 653 | } | 
|---|
| 654 | } | 
|---|
| 655 |  | 
|---|
| 656 | bool raw_spin_rq_trylock(struct rq *rq) | 
|---|
| 657 | { | 
|---|
| 658 | raw_spinlock_t *lock; | 
|---|
| 659 | bool ret; | 
|---|
| 660 |  | 
|---|
| 661 | /* Matches synchronize_rcu() in __sched_core_enable() */ | 
|---|
| 662 | preempt_disable(); | 
|---|
| 663 | if (sched_core_disabled()) { | 
|---|
| 664 | ret = raw_spin_trylock(&rq->__lock); | 
|---|
| 665 | preempt_enable(); | 
|---|
| 666 | return ret; | 
|---|
| 667 | } | 
|---|
| 668 |  | 
|---|
| 669 | for (;;) { | 
|---|
| 670 | lock = __rq_lockp(rq); | 
|---|
| 671 | ret = raw_spin_trylock(lock); | 
|---|
| 672 | if (!ret || (likely(lock == __rq_lockp(rq)))) { | 
|---|
| 673 | preempt_enable(); | 
|---|
| 674 | return ret; | 
|---|
| 675 | } | 
|---|
| 676 | raw_spin_unlock(lock); | 
|---|
| 677 | } | 
|---|
| 678 | } | 
|---|
| 679 |  | 
|---|
| 680 | void raw_spin_rq_unlock(struct rq *rq) | 
|---|
| 681 | { | 
|---|
| 682 | raw_spin_unlock(rq_lockp(rq)); | 
|---|
| 683 | } | 
|---|
| 684 |  | 
|---|
| 685 | /* | 
|---|
| 686 | * double_rq_lock - safely lock two runqueues | 
|---|
| 687 | */ | 
|---|
| 688 | void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
|---|
| 689 | { | 
|---|
| 690 | lockdep_assert_irqs_disabled(); | 
|---|
| 691 |  | 
|---|
| 692 | if (rq_order_less(rq1: rq2, rq2: rq1)) | 
|---|
| 693 | swap(rq1, rq2); | 
|---|
| 694 |  | 
|---|
| 695 | raw_spin_rq_lock(rq: rq1); | 
|---|
| 696 | if (__rq_lockp(rq: rq1) != __rq_lockp(rq: rq2)) | 
|---|
| 697 | raw_spin_rq_lock_nested(rq: rq2, SINGLE_DEPTH_NESTING); | 
|---|
| 698 |  | 
|---|
| 699 | double_rq_clock_clear_update(rq1, rq2); | 
|---|
| 700 | } | 
|---|
| 701 |  | 
|---|
| 702 | /* | 
|---|
| 703 | * __task_rq_lock - lock the rq @p resides on. | 
|---|
| 704 | */ | 
|---|
| 705 | struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) | 
|---|
| 706 | __acquires(rq->lock) | 
|---|
| 707 | { | 
|---|
| 708 | struct rq *rq; | 
|---|
| 709 |  | 
|---|
| 710 | lockdep_assert_held(&p->pi_lock); | 
|---|
| 711 |  | 
|---|
| 712 | for (;;) { | 
|---|
| 713 | rq = task_rq(p); | 
|---|
| 714 | raw_spin_rq_lock(rq); | 
|---|
| 715 | if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { | 
|---|
| 716 | rq_pin_lock(rq, rf); | 
|---|
| 717 | return rq; | 
|---|
| 718 | } | 
|---|
| 719 | raw_spin_rq_unlock(rq); | 
|---|
| 720 |  | 
|---|
| 721 | while (unlikely(task_on_rq_migrating(p))) | 
|---|
| 722 | cpu_relax(); | 
|---|
| 723 | } | 
|---|
| 724 | } | 
|---|
| 725 |  | 
|---|
| 726 | /* | 
|---|
| 727 | * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. | 
|---|
| 728 | */ | 
|---|
| 729 | struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) | 
|---|
| 730 | __acquires(p->pi_lock) | 
|---|
| 731 | __acquires(rq->lock) | 
|---|
| 732 | { | 
|---|
| 733 | struct rq *rq; | 
|---|
| 734 |  | 
|---|
| 735 | for (;;) { | 
|---|
| 736 | raw_spin_lock_irqsave(&p->pi_lock, rf->flags); | 
|---|
| 737 | rq = task_rq(p); | 
|---|
| 738 | raw_spin_rq_lock(rq); | 
|---|
| 739 | /* | 
|---|
| 740 | *	move_queued_task()		task_rq_lock() | 
|---|
| 741 | * | 
|---|
| 742 | *	ACQUIRE (rq->lock) | 
|---|
| 743 | *	[S] ->on_rq = MIGRATING		[L] rq = task_rq() | 
|---|
| 744 | *	WMB (__set_task_cpu())		ACQUIRE (rq->lock); | 
|---|
| 745 | *	[S] ->cpu = new_cpu		[L] task_rq() | 
|---|
| 746 | *					[L] ->on_rq | 
|---|
| 747 | *	RELEASE (rq->lock) | 
|---|
| 748 | * | 
|---|
| 749 | * If we observe the old CPU in task_rq_lock(), the acquire of | 
|---|
| 750 | * the old rq->lock will fully serialize against the stores. | 
|---|
| 751 | * | 
|---|
| 752 | * If we observe the new CPU in task_rq_lock(), the address | 
|---|
| 753 | * dependency headed by '[L] rq = task_rq()' and the acquire | 
|---|
| 754 | * will pair with the WMB to ensure we then also see migrating. | 
|---|
| 755 | */ | 
|---|
| 756 | if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { | 
|---|
| 757 | rq_pin_lock(rq, rf); | 
|---|
| 758 | return rq; | 
|---|
| 759 | } | 
|---|
| 760 | raw_spin_rq_unlock(rq); | 
|---|
| 761 | raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); | 
|---|
| 762 |  | 
|---|
| 763 | while (unlikely(task_on_rq_migrating(p))) | 
|---|
| 764 | cpu_relax(); | 
|---|
| 765 | } | 
|---|
| 766 | } | 
|---|
| 767 |  | 
|---|
| 768 | /* | 
|---|
| 769 | * RQ-clock updating methods: | 
|---|
| 770 | */ | 
|---|
| 771 |  | 
|---|
| 772 | static void update_rq_clock_task(struct rq *rq, s64 delta) | 
|---|
| 773 | { | 
|---|
| 774 | /* | 
|---|
| 775 | * In theory, the compile should just see 0 here, and optimize out the call | 
|---|
| 776 | * to sched_rt_avg_update. But I don't trust it... | 
|---|
| 777 | */ | 
|---|
| 778 | s64 __maybe_unused steal = 0, irq_delta = 0; | 
|---|
| 779 |  | 
|---|
| 780 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
|---|
| 781 | if (irqtime_enabled()) { | 
|---|
| 782 | irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; | 
|---|
| 783 |  | 
|---|
| 784 | /* | 
|---|
| 785 | * Since irq_time is only updated on {soft,}irq_exit, we might run into | 
|---|
| 786 | * this case when a previous update_rq_clock() happened inside a | 
|---|
| 787 | * {soft,}IRQ region. | 
|---|
| 788 | * | 
|---|
| 789 | * When this happens, we stop ->clock_task and only update the | 
|---|
| 790 | * prev_irq_time stamp to account for the part that fit, so that a next | 
|---|
| 791 | * update will consume the rest. This ensures ->clock_task is | 
|---|
| 792 | * monotonic. | 
|---|
| 793 | * | 
|---|
| 794 | * It does however cause some slight miss-attribution of {soft,}IRQ | 
|---|
| 795 | * time, a more accurate solution would be to update the irq_time using | 
|---|
| 796 | * the current rq->clock timestamp, except that would require using | 
|---|
| 797 | * atomic ops. | 
|---|
| 798 | */ | 
|---|
| 799 | if (irq_delta > delta) | 
|---|
| 800 | irq_delta = delta; | 
|---|
| 801 |  | 
|---|
| 802 | rq->prev_irq_time += irq_delta; | 
|---|
| 803 | delta -= irq_delta; | 
|---|
| 804 | delayacct_irq(rq->curr, irq_delta); | 
|---|
| 805 | } | 
|---|
| 806 | #endif | 
|---|
| 807 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | 
|---|
| 808 | if (static_key_false((¶virt_steal_rq_enabled))) { | 
|---|
| 809 | u64 prev_steal; | 
|---|
| 810 |  | 
|---|
| 811 | steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); | 
|---|
| 812 | steal -= rq->prev_steal_time_rq; | 
|---|
| 813 |  | 
|---|
| 814 | if (unlikely(steal > delta)) | 
|---|
| 815 | steal = delta; | 
|---|
| 816 |  | 
|---|
| 817 | rq->prev_steal_time_rq = prev_steal; | 
|---|
| 818 | delta -= steal; | 
|---|
| 819 | } | 
|---|
| 820 | #endif | 
|---|
| 821 |  | 
|---|
| 822 | rq->clock_task += delta; | 
|---|
| 823 |  | 
|---|
| 824 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ | 
|---|
| 825 | if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) | 
|---|
| 826 | update_irq_load_avg(rq, irq_delta + steal); | 
|---|
| 827 | #endif | 
|---|
| 828 | update_rq_clock_pelt(rq, delta); | 
|---|
| 829 | } | 
|---|
| 830 |  | 
|---|
| 831 | void update_rq_clock(struct rq *rq) | 
|---|
| 832 | { | 
|---|
| 833 | s64 delta; | 
|---|
| 834 | u64 clock; | 
|---|
| 835 |  | 
|---|
| 836 | lockdep_assert_rq_held(rq); | 
|---|
| 837 |  | 
|---|
| 838 | if (rq->clock_update_flags & RQCF_ACT_SKIP) | 
|---|
| 839 | return; | 
|---|
| 840 |  | 
|---|
| 841 | if (sched_feat(WARN_DOUBLE_CLOCK)) | 
|---|
| 842 | WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); | 
|---|
| 843 | rq->clock_update_flags |= RQCF_UPDATED; | 
|---|
| 844 |  | 
|---|
| 845 | clock = sched_clock_cpu(cpu: cpu_of(rq)); | 
|---|
| 846 | scx_rq_clock_update(rq, clock); | 
|---|
| 847 |  | 
|---|
| 848 | delta = clock - rq->clock; | 
|---|
| 849 | if (delta < 0) | 
|---|
| 850 | return; | 
|---|
| 851 | rq->clock += delta; | 
|---|
| 852 |  | 
|---|
| 853 | update_rq_clock_task(rq, delta); | 
|---|
| 854 | } | 
|---|
| 855 |  | 
|---|
| 856 | #ifdef CONFIG_SCHED_HRTICK | 
|---|
| 857 | /* | 
|---|
| 858 | * Use HR-timers to deliver accurate preemption points. | 
|---|
| 859 | */ | 
|---|
| 860 |  | 
|---|
| 861 | static void hrtick_clear(struct rq *rq) | 
|---|
| 862 | { | 
|---|
| 863 | if (hrtimer_active(timer: &rq->hrtick_timer)) | 
|---|
| 864 | hrtimer_cancel(timer: &rq->hrtick_timer); | 
|---|
| 865 | } | 
|---|
| 866 |  | 
|---|
| 867 | /* | 
|---|
| 868 | * High-resolution timer tick. | 
|---|
| 869 | * Runs from hardirq context with interrupts disabled. | 
|---|
| 870 | */ | 
|---|
| 871 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | 
|---|
| 872 | { | 
|---|
| 873 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | 
|---|
| 874 | struct rq_flags rf; | 
|---|
| 875 |  | 
|---|
| 876 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | 
|---|
| 877 |  | 
|---|
| 878 | rq_lock(rq, rf: &rf); | 
|---|
| 879 | update_rq_clock(rq); | 
|---|
| 880 | rq->donor->sched_class->task_tick(rq, rq->curr, 1); | 
|---|
| 881 | rq_unlock(rq, rf: &rf); | 
|---|
| 882 |  | 
|---|
| 883 | return HRTIMER_NORESTART; | 
|---|
| 884 | } | 
|---|
| 885 |  | 
|---|
| 886 | static void __hrtick_restart(struct rq *rq) | 
|---|
| 887 | { | 
|---|
| 888 | struct hrtimer *timer = &rq->hrtick_timer; | 
|---|
| 889 | ktime_t time = rq->hrtick_time; | 
|---|
| 890 |  | 
|---|
| 891 | hrtimer_start(timer, tim: time, mode: HRTIMER_MODE_ABS_PINNED_HARD); | 
|---|
| 892 | } | 
|---|
| 893 |  | 
|---|
| 894 | /* | 
|---|
| 895 | * called from hardirq (IPI) context | 
|---|
| 896 | */ | 
|---|
| 897 | static void __hrtick_start(void *arg) | 
|---|
| 898 | { | 
|---|
| 899 | struct rq *rq = arg; | 
|---|
| 900 | struct rq_flags rf; | 
|---|
| 901 |  | 
|---|
| 902 | rq_lock(rq, rf: &rf); | 
|---|
| 903 | __hrtick_restart(rq); | 
|---|
| 904 | rq_unlock(rq, rf: &rf); | 
|---|
| 905 | } | 
|---|
| 906 |  | 
|---|
| 907 | /* | 
|---|
| 908 | * Called to set the hrtick timer state. | 
|---|
| 909 | * | 
|---|
| 910 | * called with rq->lock held and IRQs disabled | 
|---|
| 911 | */ | 
|---|
| 912 | void hrtick_start(struct rq *rq, u64 delay) | 
|---|
| 913 | { | 
|---|
| 914 | struct hrtimer *timer = &rq->hrtick_timer; | 
|---|
| 915 | s64 delta; | 
|---|
| 916 |  | 
|---|
| 917 | /* | 
|---|
| 918 | * Don't schedule slices shorter than 10000ns, that just | 
|---|
| 919 | * doesn't make sense and can cause timer DoS. | 
|---|
| 920 | */ | 
|---|
| 921 | delta = max_t(s64, delay, 10000LL); | 
|---|
| 922 | rq->hrtick_time = ktime_add_ns(hrtimer_cb_get_time(timer), delta); | 
|---|
| 923 |  | 
|---|
| 924 | if (rq == this_rq()) | 
|---|
| 925 | __hrtick_restart(rq); | 
|---|
| 926 | else | 
|---|
| 927 | smp_call_function_single_async(cpu: cpu_of(rq), csd: &rq->hrtick_csd); | 
|---|
| 928 | } | 
|---|
| 929 |  | 
|---|
| 930 | static void hrtick_rq_init(struct rq *rq) | 
|---|
| 931 | { | 
|---|
| 932 | INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); | 
|---|
| 933 | hrtimer_setup(timer: &rq->hrtick_timer, function: hrtick, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_HARD); | 
|---|
| 934 | } | 
|---|
| 935 | #else /* !CONFIG_SCHED_HRTICK: */ | 
|---|
| 936 | static inline void hrtick_clear(struct rq *rq) | 
|---|
| 937 | { | 
|---|
| 938 | } | 
|---|
| 939 |  | 
|---|
| 940 | static inline void hrtick_rq_init(struct rq *rq) | 
|---|
| 941 | { | 
|---|
| 942 | } | 
|---|
| 943 | #endif /* !CONFIG_SCHED_HRTICK */ | 
|---|
| 944 |  | 
|---|
| 945 | /* | 
|---|
| 946 | * try_cmpxchg based fetch_or() macro so it works for different integer types: | 
|---|
| 947 | */ | 
|---|
| 948 | #define fetch_or(ptr, mask)						\ | 
|---|
| 949 | ({								\ | 
|---|
| 950 | typeof(ptr) _ptr = (ptr);				\ | 
|---|
| 951 | typeof(mask) _mask = (mask);				\ | 
|---|
| 952 | typeof(*_ptr) _val = *_ptr;				\ | 
|---|
| 953 | \ | 
|---|
| 954 | do {							\ | 
|---|
| 955 | } while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\ | 
|---|
| 956 | _val;								\ | 
|---|
| 957 | }) | 
|---|
| 958 |  | 
|---|
| 959 | #ifdef TIF_POLLING_NRFLAG | 
|---|
| 960 | /* | 
|---|
| 961 | * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, | 
|---|
| 962 | * this avoids any races wrt polling state changes and thereby avoids | 
|---|
| 963 | * spurious IPIs. | 
|---|
| 964 | */ | 
|---|
| 965 | static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) | 
|---|
| 966 | { | 
|---|
| 967 | return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); | 
|---|
| 968 | } | 
|---|
| 969 |  | 
|---|
| 970 | /* | 
|---|
| 971 | * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. | 
|---|
| 972 | * | 
|---|
| 973 | * If this returns true, then the idle task promises to call | 
|---|
| 974 | * sched_ttwu_pending() and reschedule soon. | 
|---|
| 975 | */ | 
|---|
| 976 | static bool set_nr_if_polling(struct task_struct *p) | 
|---|
| 977 | { | 
|---|
| 978 | struct thread_info *ti = task_thread_info(p); | 
|---|
| 979 | typeof(ti->flags) val = READ_ONCE(ti->flags); | 
|---|
| 980 |  | 
|---|
| 981 | do { | 
|---|
| 982 | if (!(val & _TIF_POLLING_NRFLAG)) | 
|---|
| 983 | return false; | 
|---|
| 984 | if (val & _TIF_NEED_RESCHED) | 
|---|
| 985 | return true; | 
|---|
| 986 | } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); | 
|---|
| 987 |  | 
|---|
| 988 | return true; | 
|---|
| 989 | } | 
|---|
| 990 |  | 
|---|
| 991 | #else | 
|---|
| 992 | static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) | 
|---|
| 993 | { | 
|---|
| 994 | set_ti_thread_flag(ti, tif); | 
|---|
| 995 | return true; | 
|---|
| 996 | } | 
|---|
| 997 |  | 
|---|
| 998 | static inline bool set_nr_if_polling(struct task_struct *p) | 
|---|
| 999 | { | 
|---|
| 1000 | return false; | 
|---|
| 1001 | } | 
|---|
| 1002 | #endif | 
|---|
| 1003 |  | 
|---|
| 1004 | static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) | 
|---|
| 1005 | { | 
|---|
| 1006 | struct wake_q_node *node = &task->wake_q; | 
|---|
| 1007 |  | 
|---|
| 1008 | /* | 
|---|
| 1009 | * Atomically grab the task, if ->wake_q is !nil already it means | 
|---|
| 1010 | * it's already queued (either by us or someone else) and will get the | 
|---|
| 1011 | * wakeup due to that. | 
|---|
| 1012 | * | 
|---|
| 1013 | * In order to ensure that a pending wakeup will observe our pending | 
|---|
| 1014 | * state, even in the failed case, an explicit smp_mb() must be used. | 
|---|
| 1015 | */ | 
|---|
| 1016 | smp_mb__before_atomic(); | 
|---|
| 1017 | if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) | 
|---|
| 1018 | return false; | 
|---|
| 1019 |  | 
|---|
| 1020 | /* | 
|---|
| 1021 | * The head is context local, there can be no concurrency. | 
|---|
| 1022 | */ | 
|---|
| 1023 | *head->lastp = node; | 
|---|
| 1024 | head->lastp = &node->next; | 
|---|
| 1025 | return true; | 
|---|
| 1026 | } | 
|---|
| 1027 |  | 
|---|
| 1028 | /** | 
|---|
| 1029 | * wake_q_add() - queue a wakeup for 'later' waking. | 
|---|
| 1030 | * @head: the wake_q_head to add @task to | 
|---|
| 1031 | * @task: the task to queue for 'later' wakeup | 
|---|
| 1032 | * | 
|---|
| 1033 | * Queue a task for later wakeup, most likely by the wake_up_q() call in the | 
|---|
| 1034 | * same context, _HOWEVER_ this is not guaranteed, the wakeup can come | 
|---|
| 1035 | * instantly. | 
|---|
| 1036 | * | 
|---|
| 1037 | * This function must be used as-if it were wake_up_process(); IOW the task | 
|---|
| 1038 | * must be ready to be woken at this location. | 
|---|
| 1039 | */ | 
|---|
| 1040 | void wake_q_add(struct wake_q_head *head, struct task_struct *task) | 
|---|
| 1041 | { | 
|---|
| 1042 | if (__wake_q_add(head, task)) | 
|---|
| 1043 | get_task_struct(t: task); | 
|---|
| 1044 | } | 
|---|
| 1045 |  | 
|---|
| 1046 | /** | 
|---|
| 1047 | * wake_q_add_safe() - safely queue a wakeup for 'later' waking. | 
|---|
| 1048 | * @head: the wake_q_head to add @task to | 
|---|
| 1049 | * @task: the task to queue for 'later' wakeup | 
|---|
| 1050 | * | 
|---|
| 1051 | * Queue a task for later wakeup, most likely by the wake_up_q() call in the | 
|---|
| 1052 | * same context, _HOWEVER_ this is not guaranteed, the wakeup can come | 
|---|
| 1053 | * instantly. | 
|---|
| 1054 | * | 
|---|
| 1055 | * This function must be used as-if it were wake_up_process(); IOW the task | 
|---|
| 1056 | * must be ready to be woken at this location. | 
|---|
| 1057 | * | 
|---|
| 1058 | * This function is essentially a task-safe equivalent to wake_q_add(). Callers | 
|---|
| 1059 | * that already hold reference to @task can call the 'safe' version and trust | 
|---|
| 1060 | * wake_q to do the right thing depending whether or not the @task is already | 
|---|
| 1061 | * queued for wakeup. | 
|---|
| 1062 | */ | 
|---|
| 1063 | void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) | 
|---|
| 1064 | { | 
|---|
| 1065 | if (!__wake_q_add(head, task)) | 
|---|
| 1066 | put_task_struct(t: task); | 
|---|
| 1067 | } | 
|---|
| 1068 |  | 
|---|
| 1069 | void wake_up_q(struct wake_q_head *head) | 
|---|
| 1070 | { | 
|---|
| 1071 | struct wake_q_node *node = head->first; | 
|---|
| 1072 |  | 
|---|
| 1073 | while (node != WAKE_Q_TAIL) { | 
|---|
| 1074 | struct task_struct *task; | 
|---|
| 1075 |  | 
|---|
| 1076 | task = container_of(node, struct task_struct, wake_q); | 
|---|
| 1077 | node = node->next; | 
|---|
| 1078 | /* pairs with cmpxchg_relaxed() in __wake_q_add() */ | 
|---|
| 1079 | WRITE_ONCE(task->wake_q.next, NULL); | 
|---|
| 1080 | /* Task can safely be re-inserted now. */ | 
|---|
| 1081 |  | 
|---|
| 1082 | /* | 
|---|
| 1083 | * wake_up_process() executes a full barrier, which pairs with | 
|---|
| 1084 | * the queueing in wake_q_add() so as not to miss wakeups. | 
|---|
| 1085 | */ | 
|---|
| 1086 | wake_up_process(tsk: task); | 
|---|
| 1087 | put_task_struct(t: task); | 
|---|
| 1088 | } | 
|---|
| 1089 | } | 
|---|
| 1090 |  | 
|---|
| 1091 | /* | 
|---|
| 1092 | * resched_curr - mark rq's current task 'to be rescheduled now'. | 
|---|
| 1093 | * | 
|---|
| 1094 | * On UP this means the setting of the need_resched flag, on SMP it | 
|---|
| 1095 | * might also involve a cross-CPU call to trigger the scheduler on | 
|---|
| 1096 | * the target CPU. | 
|---|
| 1097 | */ | 
|---|
| 1098 | static void __resched_curr(struct rq *rq, int tif) | 
|---|
| 1099 | { | 
|---|
| 1100 | struct task_struct *curr = rq->curr; | 
|---|
| 1101 | struct thread_info *cti = task_thread_info(curr); | 
|---|
| 1102 | int cpu; | 
|---|
| 1103 |  | 
|---|
| 1104 | lockdep_assert_rq_held(rq); | 
|---|
| 1105 |  | 
|---|
| 1106 | /* | 
|---|
| 1107 | * Always immediately preempt the idle task; no point in delaying doing | 
|---|
| 1108 | * actual work. | 
|---|
| 1109 | */ | 
|---|
| 1110 | if (is_idle_task(p: curr) && tif == TIF_NEED_RESCHED_LAZY) | 
|---|
| 1111 | tif = TIF_NEED_RESCHED; | 
|---|
| 1112 |  | 
|---|
| 1113 | if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) | 
|---|
| 1114 | return; | 
|---|
| 1115 |  | 
|---|
| 1116 | cpu = cpu_of(rq); | 
|---|
| 1117 |  | 
|---|
| 1118 | trace_sched_set_need_resched_tp(tsk: curr, cpu, tif); | 
|---|
| 1119 | if (cpu == smp_processor_id()) { | 
|---|
| 1120 | set_ti_thread_flag(ti: cti, flag: tif); | 
|---|
| 1121 | if (tif == TIF_NEED_RESCHED) | 
|---|
| 1122 | set_preempt_need_resched(); | 
|---|
| 1123 | return; | 
|---|
| 1124 | } | 
|---|
| 1125 |  | 
|---|
| 1126 | if (set_nr_and_not_polling(ti: cti, tif)) { | 
|---|
| 1127 | if (tif == TIF_NEED_RESCHED) | 
|---|
| 1128 | smp_send_reschedule(cpu); | 
|---|
| 1129 | } else { | 
|---|
| 1130 | trace_sched_wake_idle_without_ipi(cpu); | 
|---|
| 1131 | } | 
|---|
| 1132 | } | 
|---|
| 1133 |  | 
|---|
| 1134 | void __trace_set_need_resched(struct task_struct *curr, int tif) | 
|---|
| 1135 | { | 
|---|
| 1136 | trace_sched_set_need_resched_tp(tsk: curr, smp_processor_id(), tif); | 
|---|
| 1137 | } | 
|---|
| 1138 |  | 
|---|
| 1139 | void resched_curr(struct rq *rq) | 
|---|
| 1140 | { | 
|---|
| 1141 | __resched_curr(rq, TIF_NEED_RESCHED); | 
|---|
| 1142 | } | 
|---|
| 1143 |  | 
|---|
| 1144 | #ifdef CONFIG_PREEMPT_DYNAMIC | 
|---|
| 1145 | static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); | 
|---|
| 1146 | static __always_inline bool dynamic_preempt_lazy(void) | 
|---|
| 1147 | { | 
|---|
| 1148 | return static_branch_unlikely(&sk_dynamic_preempt_lazy); | 
|---|
| 1149 | } | 
|---|
| 1150 | #else | 
|---|
| 1151 | static __always_inline bool dynamic_preempt_lazy(void) | 
|---|
| 1152 | { | 
|---|
| 1153 | return IS_ENABLED(CONFIG_PREEMPT_LAZY); | 
|---|
| 1154 | } | 
|---|
| 1155 | #endif | 
|---|
| 1156 |  | 
|---|
| 1157 | static __always_inline int get_lazy_tif_bit(void) | 
|---|
| 1158 | { | 
|---|
| 1159 | if (dynamic_preempt_lazy()) | 
|---|
| 1160 | return TIF_NEED_RESCHED_LAZY; | 
|---|
| 1161 |  | 
|---|
| 1162 | return TIF_NEED_RESCHED; | 
|---|
| 1163 | } | 
|---|
| 1164 |  | 
|---|
| 1165 | void resched_curr_lazy(struct rq *rq) | 
|---|
| 1166 | { | 
|---|
| 1167 | __resched_curr(rq, tif: get_lazy_tif_bit()); | 
|---|
| 1168 | } | 
|---|
| 1169 |  | 
|---|
| 1170 | void resched_cpu(int cpu) | 
|---|
| 1171 | { | 
|---|
| 1172 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 1173 | unsigned long flags; | 
|---|
| 1174 |  | 
|---|
| 1175 | raw_spin_rq_lock_irqsave(rq, flags); | 
|---|
| 1176 | if (cpu_online(cpu) || cpu == smp_processor_id()) | 
|---|
| 1177 | resched_curr(rq); | 
|---|
| 1178 | raw_spin_rq_unlock_irqrestore(rq, flags); | 
|---|
| 1179 | } | 
|---|
| 1180 |  | 
|---|
| 1181 | #ifdef CONFIG_NO_HZ_COMMON | 
|---|
| 1182 | /* | 
|---|
| 1183 | * In the semi idle case, use the nearest busy CPU for migrating timers | 
|---|
| 1184 | * from an idle CPU.  This is good for power-savings. | 
|---|
| 1185 | * | 
|---|
| 1186 | * We don't do similar optimization for completely idle system, as | 
|---|
| 1187 | * selecting an idle CPU will add more delays to the timers than intended | 
|---|
| 1188 | * (as that CPU's timer base may not be up to date wrt jiffies etc). | 
|---|
| 1189 | */ | 
|---|
| 1190 | int get_nohz_timer_target(void) | 
|---|
| 1191 | { | 
|---|
| 1192 | int i, cpu = smp_processor_id(), default_cpu = -1; | 
|---|
| 1193 | struct sched_domain *sd; | 
|---|
| 1194 | const struct cpumask *hk_mask; | 
|---|
| 1195 |  | 
|---|
| 1196 | if (housekeeping_cpu(cpu, type: HK_TYPE_KERNEL_NOISE)) { | 
|---|
| 1197 | if (!idle_cpu(cpu)) | 
|---|
| 1198 | return cpu; | 
|---|
| 1199 | default_cpu = cpu; | 
|---|
| 1200 | } | 
|---|
| 1201 |  | 
|---|
| 1202 | hk_mask = housekeeping_cpumask(type: HK_TYPE_KERNEL_NOISE); | 
|---|
| 1203 |  | 
|---|
| 1204 | guard(rcu)(); | 
|---|
| 1205 |  | 
|---|
| 1206 | for_each_domain(cpu, sd) { | 
|---|
| 1207 | for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { | 
|---|
| 1208 | if (cpu == i) | 
|---|
| 1209 | continue; | 
|---|
| 1210 |  | 
|---|
| 1211 | if (!idle_cpu(cpu: i)) | 
|---|
| 1212 | return i; | 
|---|
| 1213 | } | 
|---|
| 1214 | } | 
|---|
| 1215 |  | 
|---|
| 1216 | if (default_cpu == -1) | 
|---|
| 1217 | default_cpu = housekeeping_any_cpu(type: HK_TYPE_KERNEL_NOISE); | 
|---|
| 1218 |  | 
|---|
| 1219 | return default_cpu; | 
|---|
| 1220 | } | 
|---|
| 1221 |  | 
|---|
| 1222 | /* | 
|---|
| 1223 | * When add_timer_on() enqueues a timer into the timer wheel of an | 
|---|
| 1224 | * idle CPU then this timer might expire before the next timer event | 
|---|
| 1225 | * which is scheduled to wake up that CPU. In case of a completely | 
|---|
| 1226 | * idle system the next event might even be infinite time into the | 
|---|
| 1227 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | 
|---|
| 1228 | * leaves the inner idle loop so the newly added timer is taken into | 
|---|
| 1229 | * account when the CPU goes back to idle and evaluates the timer | 
|---|
| 1230 | * wheel for the next timer event. | 
|---|
| 1231 | */ | 
|---|
| 1232 | static void wake_up_idle_cpu(int cpu) | 
|---|
| 1233 | { | 
|---|
| 1234 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 1235 |  | 
|---|
| 1236 | if (cpu == smp_processor_id()) | 
|---|
| 1237 | return; | 
|---|
| 1238 |  | 
|---|
| 1239 | /* | 
|---|
| 1240 | * Set TIF_NEED_RESCHED and send an IPI if in the non-polling | 
|---|
| 1241 | * part of the idle loop. This forces an exit from the idle loop | 
|---|
| 1242 | * and a round trip to schedule(). Now this could be optimized | 
|---|
| 1243 | * because a simple new idle loop iteration is enough to | 
|---|
| 1244 | * re-evaluate the next tick. Provided some re-ordering of tick | 
|---|
| 1245 | * nohz functions that would need to follow TIF_NR_POLLING | 
|---|
| 1246 | * clearing: | 
|---|
| 1247 | * | 
|---|
| 1248 | * - On most architectures, a simple fetch_or on ti::flags with a | 
|---|
| 1249 | *   "0" value would be enough to know if an IPI needs to be sent. | 
|---|
| 1250 | * | 
|---|
| 1251 | * - x86 needs to perform a last need_resched() check between | 
|---|
| 1252 | *   monitor and mwait which doesn't take timers into account. | 
|---|
| 1253 | *   There a dedicated TIF_TIMER flag would be required to | 
|---|
| 1254 | *   fetch_or here and be checked along with TIF_NEED_RESCHED | 
|---|
| 1255 | *   before mwait(). | 
|---|
| 1256 | * | 
|---|
| 1257 | * However, remote timer enqueue is not such a frequent event | 
|---|
| 1258 | * and testing of the above solutions didn't appear to report | 
|---|
| 1259 | * much benefits. | 
|---|
| 1260 | */ | 
|---|
| 1261 | if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) | 
|---|
| 1262 | smp_send_reschedule(cpu); | 
|---|
| 1263 | else | 
|---|
| 1264 | trace_sched_wake_idle_without_ipi(cpu); | 
|---|
| 1265 | } | 
|---|
| 1266 |  | 
|---|
| 1267 | static bool wake_up_full_nohz_cpu(int cpu) | 
|---|
| 1268 | { | 
|---|
| 1269 | /* | 
|---|
| 1270 | * We just need the target to call irq_exit() and re-evaluate | 
|---|
| 1271 | * the next tick. The nohz full kick at least implies that. | 
|---|
| 1272 | * If needed we can still optimize that later with an | 
|---|
| 1273 | * empty IRQ. | 
|---|
| 1274 | */ | 
|---|
| 1275 | if (cpu_is_offline(cpu)) | 
|---|
| 1276 | return true;  /* Don't try to wake offline CPUs. */ | 
|---|
| 1277 | if (tick_nohz_full_cpu(cpu)) { | 
|---|
| 1278 | if (cpu != smp_processor_id() || | 
|---|
| 1279 | tick_nohz_tick_stopped()) | 
|---|
| 1280 | tick_nohz_full_kick_cpu(cpu); | 
|---|
| 1281 | return true; | 
|---|
| 1282 | } | 
|---|
| 1283 |  | 
|---|
| 1284 | return false; | 
|---|
| 1285 | } | 
|---|
| 1286 |  | 
|---|
| 1287 | /* | 
|---|
| 1288 | * Wake up the specified CPU.  If the CPU is going offline, it is the | 
|---|
| 1289 | * caller's responsibility to deal with the lost wakeup, for example, | 
|---|
| 1290 | * by hooking into the CPU_DEAD notifier like timers and hrtimers do. | 
|---|
| 1291 | */ | 
|---|
| 1292 | void wake_up_nohz_cpu(int cpu) | 
|---|
| 1293 | { | 
|---|
| 1294 | if (!wake_up_full_nohz_cpu(cpu)) | 
|---|
| 1295 | wake_up_idle_cpu(cpu); | 
|---|
| 1296 | } | 
|---|
| 1297 |  | 
|---|
| 1298 | static void nohz_csd_func(void *info) | 
|---|
| 1299 | { | 
|---|
| 1300 | struct rq *rq = info; | 
|---|
| 1301 | int cpu = cpu_of(rq); | 
|---|
| 1302 | unsigned int flags; | 
|---|
| 1303 |  | 
|---|
| 1304 | /* | 
|---|
| 1305 | * Release the rq::nohz_csd. | 
|---|
| 1306 | */ | 
|---|
| 1307 | flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); | 
|---|
| 1308 | WARN_ON(!(flags & NOHZ_KICK_MASK)); | 
|---|
| 1309 |  | 
|---|
| 1310 | rq->idle_balance = idle_cpu(cpu); | 
|---|
| 1311 | if (rq->idle_balance) { | 
|---|
| 1312 | rq->nohz_idle_balance = flags; | 
|---|
| 1313 | __raise_softirq_irqoff(nr: SCHED_SOFTIRQ); | 
|---|
| 1314 | } | 
|---|
| 1315 | } | 
|---|
| 1316 |  | 
|---|
| 1317 | #endif /* CONFIG_NO_HZ_COMMON */ | 
|---|
| 1318 |  | 
|---|
| 1319 | #ifdef CONFIG_NO_HZ_FULL | 
|---|
| 1320 | static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) | 
|---|
| 1321 | { | 
|---|
| 1322 | if (rq->nr_running != 1) | 
|---|
| 1323 | return false; | 
|---|
| 1324 |  | 
|---|
| 1325 | if (p->sched_class != &fair_sched_class) | 
|---|
| 1326 | return false; | 
|---|
| 1327 |  | 
|---|
| 1328 | if (!task_on_rq_queued(p)) | 
|---|
| 1329 | return false; | 
|---|
| 1330 |  | 
|---|
| 1331 | return true; | 
|---|
| 1332 | } | 
|---|
| 1333 |  | 
|---|
| 1334 | bool sched_can_stop_tick(struct rq *rq) | 
|---|
| 1335 | { | 
|---|
| 1336 | int fifo_nr_running; | 
|---|
| 1337 |  | 
|---|
| 1338 | /* Deadline tasks, even if single, need the tick */ | 
|---|
| 1339 | if (rq->dl.dl_nr_running) | 
|---|
| 1340 | return false; | 
|---|
| 1341 |  | 
|---|
| 1342 | /* | 
|---|
| 1343 | * If there are more than one RR tasks, we need the tick to affect the | 
|---|
| 1344 | * actual RR behaviour. | 
|---|
| 1345 | */ | 
|---|
| 1346 | if (rq->rt.rr_nr_running) { | 
|---|
| 1347 | if (rq->rt.rr_nr_running == 1) | 
|---|
| 1348 | return true; | 
|---|
| 1349 | else | 
|---|
| 1350 | return false; | 
|---|
| 1351 | } | 
|---|
| 1352 |  | 
|---|
| 1353 | /* | 
|---|
| 1354 | * If there's no RR tasks, but FIFO tasks, we can skip the tick, no | 
|---|
| 1355 | * forced preemption between FIFO tasks. | 
|---|
| 1356 | */ | 
|---|
| 1357 | fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; | 
|---|
| 1358 | if (fifo_nr_running) | 
|---|
| 1359 | return true; | 
|---|
| 1360 |  | 
|---|
| 1361 | /* | 
|---|
| 1362 | * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks | 
|---|
| 1363 | * left. For CFS, if there's more than one we need the tick for | 
|---|
| 1364 | * involuntary preemption. For SCX, ask. | 
|---|
| 1365 | */ | 
|---|
| 1366 | if (scx_enabled() && !scx_can_stop_tick(rq)) | 
|---|
| 1367 | return false; | 
|---|
| 1368 |  | 
|---|
| 1369 | if (rq->cfs.h_nr_queued > 1) | 
|---|
| 1370 | return false; | 
|---|
| 1371 |  | 
|---|
| 1372 | /* | 
|---|
| 1373 | * If there is one task and it has CFS runtime bandwidth constraints | 
|---|
| 1374 | * and it's on the cpu now we don't want to stop the tick. | 
|---|
| 1375 | * This check prevents clearing the bit if a newly enqueued task here is | 
|---|
| 1376 | * dequeued by migrating while the constrained task continues to run. | 
|---|
| 1377 | * E.g. going from 2->1 without going through pick_next_task(). | 
|---|
| 1378 | */ | 
|---|
| 1379 | if (__need_bw_check(rq, rq->curr)) { | 
|---|
| 1380 | if (cfs_task_bw_constrained(rq->curr)) | 
|---|
| 1381 | return false; | 
|---|
| 1382 | } | 
|---|
| 1383 |  | 
|---|
| 1384 | return true; | 
|---|
| 1385 | } | 
|---|
| 1386 | #endif /* CONFIG_NO_HZ_FULL */ | 
|---|
| 1387 |  | 
|---|
| 1388 | #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED) | 
|---|
| 1389 | /* | 
|---|
| 1390 | * Iterate task_group tree rooted at *from, calling @down when first entering a | 
|---|
| 1391 | * node and @up when leaving it for the final time. | 
|---|
| 1392 | * | 
|---|
| 1393 | * Caller must hold rcu_lock or sufficient equivalent. | 
|---|
| 1394 | */ | 
|---|
| 1395 | int walk_tg_tree_from(struct task_group *from, | 
|---|
| 1396 | tg_visitor down, tg_visitor up, void *data) | 
|---|
| 1397 | { | 
|---|
| 1398 | struct task_group *parent, *child; | 
|---|
| 1399 | int ret; | 
|---|
| 1400 |  | 
|---|
| 1401 | parent = from; | 
|---|
| 1402 |  | 
|---|
| 1403 | down: | 
|---|
| 1404 | ret = (*down)(parent, data); | 
|---|
| 1405 | if (ret) | 
|---|
| 1406 | goto out; | 
|---|
| 1407 | list_for_each_entry_rcu(child, &parent->children, siblings) { | 
|---|
| 1408 | parent = child; | 
|---|
| 1409 | goto down; | 
|---|
| 1410 |  | 
|---|
| 1411 | up: | 
|---|
| 1412 | continue; | 
|---|
| 1413 | } | 
|---|
| 1414 | ret = (*up)(parent, data); | 
|---|
| 1415 | if (ret || parent == from) | 
|---|
| 1416 | goto out; | 
|---|
| 1417 |  | 
|---|
| 1418 | child = parent; | 
|---|
| 1419 | parent = parent->parent; | 
|---|
| 1420 | if (parent) | 
|---|
| 1421 | goto up; | 
|---|
| 1422 | out: | 
|---|
| 1423 | return ret; | 
|---|
| 1424 | } | 
|---|
| 1425 |  | 
|---|
| 1426 | int tg_nop(struct task_group *tg, void *data) | 
|---|
| 1427 | { | 
|---|
| 1428 | return 0; | 
|---|
| 1429 | } | 
|---|
| 1430 | #endif | 
|---|
| 1431 |  | 
|---|
| 1432 | void set_load_weight(struct task_struct *p, bool update_load) | 
|---|
| 1433 | { | 
|---|
| 1434 | int prio = p->static_prio - MAX_RT_PRIO; | 
|---|
| 1435 | struct load_weight lw; | 
|---|
| 1436 |  | 
|---|
| 1437 | if (task_has_idle_policy(p)) { | 
|---|
| 1438 | lw.weight = scale_load(WEIGHT_IDLEPRIO); | 
|---|
| 1439 | lw.inv_weight = WMULT_IDLEPRIO; | 
|---|
| 1440 | } else { | 
|---|
| 1441 | lw.weight = scale_load(sched_prio_to_weight[prio]); | 
|---|
| 1442 | lw.inv_weight = sched_prio_to_wmult[prio]; | 
|---|
| 1443 | } | 
|---|
| 1444 |  | 
|---|
| 1445 | /* | 
|---|
| 1446 | * SCHED_OTHER tasks have to update their load when changing their | 
|---|
| 1447 | * weight | 
|---|
| 1448 | */ | 
|---|
| 1449 | if (update_load && p->sched_class->reweight_task) | 
|---|
| 1450 | p->sched_class->reweight_task(task_rq(p), p, &lw); | 
|---|
| 1451 | else | 
|---|
| 1452 | p->se.load = lw; | 
|---|
| 1453 | } | 
|---|
| 1454 |  | 
|---|
| 1455 | #ifdef CONFIG_UCLAMP_TASK | 
|---|
| 1456 | /* | 
|---|
| 1457 | * Serializes updates of utilization clamp values | 
|---|
| 1458 | * | 
|---|
| 1459 | * The (slow-path) user-space triggers utilization clamp value updates which | 
|---|
| 1460 | * can require updates on (fast-path) scheduler's data structures used to | 
|---|
| 1461 | * support enqueue/dequeue operations. | 
|---|
| 1462 | * While the per-CPU rq lock protects fast-path update operations, user-space | 
|---|
| 1463 | * requests are serialized using a mutex to reduce the risk of conflicting | 
|---|
| 1464 | * updates or API abuses. | 
|---|
| 1465 | */ | 
|---|
| 1466 | static __maybe_unused DEFINE_MUTEX(uclamp_mutex); | 
|---|
| 1467 |  | 
|---|
| 1468 | /* Max allowed minimum utilization */ | 
|---|
| 1469 | static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; | 
|---|
| 1470 |  | 
|---|
| 1471 | /* Max allowed maximum utilization */ | 
|---|
| 1472 | static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; | 
|---|
| 1473 |  | 
|---|
| 1474 | /* | 
|---|
| 1475 | * By default RT tasks run at the maximum performance point/capacity of the | 
|---|
| 1476 | * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to | 
|---|
| 1477 | * SCHED_CAPACITY_SCALE. | 
|---|
| 1478 | * | 
|---|
| 1479 | * This knob allows admins to change the default behavior when uclamp is being | 
|---|
| 1480 | * used. In battery powered devices, particularly, running at the maximum | 
|---|
| 1481 | * capacity and frequency will increase energy consumption and shorten the | 
|---|
| 1482 | * battery life. | 
|---|
| 1483 | * | 
|---|
| 1484 | * This knob only affects RT tasks that their uclamp_se->user_defined == false. | 
|---|
| 1485 | * | 
|---|
| 1486 | * This knob will not override the system default sched_util_clamp_min defined | 
|---|
| 1487 | * above. | 
|---|
| 1488 | */ | 
|---|
| 1489 | unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; | 
|---|
| 1490 |  | 
|---|
| 1491 | /* All clamps are required to be less or equal than these values */ | 
|---|
| 1492 | static struct uclamp_se uclamp_default[UCLAMP_CNT]; | 
|---|
| 1493 |  | 
|---|
| 1494 | /* | 
|---|
| 1495 | * This static key is used to reduce the uclamp overhead in the fast path. It | 
|---|
| 1496 | * primarily disables the call to uclamp_rq_{inc, dec}() in | 
|---|
| 1497 | * enqueue/dequeue_task(). | 
|---|
| 1498 | * | 
|---|
| 1499 | * This allows users to continue to enable uclamp in their kernel config with | 
|---|
| 1500 | * minimum uclamp overhead in the fast path. | 
|---|
| 1501 | * | 
|---|
| 1502 | * As soon as userspace modifies any of the uclamp knobs, the static key is | 
|---|
| 1503 | * enabled, since we have an actual users that make use of uclamp | 
|---|
| 1504 | * functionality. | 
|---|
| 1505 | * | 
|---|
| 1506 | * The knobs that would enable this static key are: | 
|---|
| 1507 | * | 
|---|
| 1508 | *   * A task modifying its uclamp value with sched_setattr(). | 
|---|
| 1509 | *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. | 
|---|
| 1510 | *   * An admin modifying the cgroup cpu.uclamp.{min, max} | 
|---|
| 1511 | */ | 
|---|
| 1512 | DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); | 
|---|
| 1513 |  | 
|---|
| 1514 | static inline unsigned int | 
|---|
| 1515 | uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, | 
|---|
| 1516 | unsigned int clamp_value) | 
|---|
| 1517 | { | 
|---|
| 1518 | /* | 
|---|
| 1519 | * Avoid blocked utilization pushing up the frequency when we go | 
|---|
| 1520 | * idle (which drops the max-clamp) by retaining the last known | 
|---|
| 1521 | * max-clamp. | 
|---|
| 1522 | */ | 
|---|
| 1523 | if (clamp_id == UCLAMP_MAX) { | 
|---|
| 1524 | rq->uclamp_flags |= UCLAMP_FLAG_IDLE; | 
|---|
| 1525 | return clamp_value; | 
|---|
| 1526 | } | 
|---|
| 1527 |  | 
|---|
| 1528 | return uclamp_none(UCLAMP_MIN); | 
|---|
| 1529 | } | 
|---|
| 1530 |  | 
|---|
| 1531 | static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, | 
|---|
| 1532 | unsigned int clamp_value) | 
|---|
| 1533 | { | 
|---|
| 1534 | /* Reset max-clamp retention only on idle exit */ | 
|---|
| 1535 | if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) | 
|---|
| 1536 | return; | 
|---|
| 1537 |  | 
|---|
| 1538 | uclamp_rq_set(rq, clamp_id, clamp_value); | 
|---|
| 1539 | } | 
|---|
| 1540 |  | 
|---|
| 1541 | static inline | 
|---|
| 1542 | unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, | 
|---|
| 1543 | unsigned int clamp_value) | 
|---|
| 1544 | { | 
|---|
| 1545 | struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; | 
|---|
| 1546 | int bucket_id = UCLAMP_BUCKETS - 1; | 
|---|
| 1547 |  | 
|---|
| 1548 | /* | 
|---|
| 1549 | * Since both min and max clamps are max aggregated, find the | 
|---|
| 1550 | * top most bucket with tasks in. | 
|---|
| 1551 | */ | 
|---|
| 1552 | for ( ; bucket_id >= 0; bucket_id--) { | 
|---|
| 1553 | if (!bucket[bucket_id].tasks) | 
|---|
| 1554 | continue; | 
|---|
| 1555 | return bucket[bucket_id].value; | 
|---|
| 1556 | } | 
|---|
| 1557 |  | 
|---|
| 1558 | /* No tasks -- default clamp values */ | 
|---|
| 1559 | return uclamp_idle_value(rq, clamp_id, clamp_value); | 
|---|
| 1560 | } | 
|---|
| 1561 |  | 
|---|
| 1562 | static void __uclamp_update_util_min_rt_default(struct task_struct *p) | 
|---|
| 1563 | { | 
|---|
| 1564 | unsigned int default_util_min; | 
|---|
| 1565 | struct uclamp_se *uc_se; | 
|---|
| 1566 |  | 
|---|
| 1567 | lockdep_assert_held(&p->pi_lock); | 
|---|
| 1568 |  | 
|---|
| 1569 | uc_se = &p->uclamp_req[UCLAMP_MIN]; | 
|---|
| 1570 |  | 
|---|
| 1571 | /* Only sync if user didn't override the default */ | 
|---|
| 1572 | if (uc_se->user_defined) | 
|---|
| 1573 | return; | 
|---|
| 1574 |  | 
|---|
| 1575 | default_util_min = sysctl_sched_uclamp_util_min_rt_default; | 
|---|
| 1576 | uclamp_se_set(uc_se, default_util_min, false); | 
|---|
| 1577 | } | 
|---|
| 1578 |  | 
|---|
| 1579 | static void uclamp_update_util_min_rt_default(struct task_struct *p) | 
|---|
| 1580 | { | 
|---|
| 1581 | if (!rt_task(p)) | 
|---|
| 1582 | return; | 
|---|
| 1583 |  | 
|---|
| 1584 | /* Protect updates to p->uclamp_* */ | 
|---|
| 1585 | guard(task_rq_lock)(p); | 
|---|
| 1586 | __uclamp_update_util_min_rt_default(p); | 
|---|
| 1587 | } | 
|---|
| 1588 |  | 
|---|
| 1589 | static inline struct uclamp_se | 
|---|
| 1590 | uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) | 
|---|
| 1591 | { | 
|---|
| 1592 | /* Copy by value as we could modify it */ | 
|---|
| 1593 | struct uclamp_se uc_req = p->uclamp_req[clamp_id]; | 
|---|
| 1594 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|---|
| 1595 | unsigned int tg_min, tg_max, value; | 
|---|
| 1596 |  | 
|---|
| 1597 | /* | 
|---|
| 1598 | * Tasks in autogroups or root task group will be | 
|---|
| 1599 | * restricted by system defaults. | 
|---|
| 1600 | */ | 
|---|
| 1601 | if (task_group_is_autogroup(task_group(p))) | 
|---|
| 1602 | return uc_req; | 
|---|
| 1603 | if (task_group(p) == &root_task_group) | 
|---|
| 1604 | return uc_req; | 
|---|
| 1605 |  | 
|---|
| 1606 | tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; | 
|---|
| 1607 | tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; | 
|---|
| 1608 | value = uc_req.value; | 
|---|
| 1609 | value = clamp(value, tg_min, tg_max); | 
|---|
| 1610 | uclamp_se_set(&uc_req, value, false); | 
|---|
| 1611 | #endif | 
|---|
| 1612 |  | 
|---|
| 1613 | return uc_req; | 
|---|
| 1614 | } | 
|---|
| 1615 |  | 
|---|
| 1616 | /* | 
|---|
| 1617 | * The effective clamp bucket index of a task depends on, by increasing | 
|---|
| 1618 | * priority: | 
|---|
| 1619 | * - the task specific clamp value, when explicitly requested from userspace | 
|---|
| 1620 | * - the task group effective clamp value, for tasks not either in the root | 
|---|
| 1621 | *   group or in an autogroup | 
|---|
| 1622 | * - the system default clamp value, defined by the sysadmin | 
|---|
| 1623 | */ | 
|---|
| 1624 | static inline struct uclamp_se | 
|---|
| 1625 | uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) | 
|---|
| 1626 | { | 
|---|
| 1627 | struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); | 
|---|
| 1628 | struct uclamp_se uc_max = uclamp_default[clamp_id]; | 
|---|
| 1629 |  | 
|---|
| 1630 | /* System default restrictions always apply */ | 
|---|
| 1631 | if (unlikely(uc_req.value > uc_max.value)) | 
|---|
| 1632 | return uc_max; | 
|---|
| 1633 |  | 
|---|
| 1634 | return uc_req; | 
|---|
| 1635 | } | 
|---|
| 1636 |  | 
|---|
| 1637 | unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) | 
|---|
| 1638 | { | 
|---|
| 1639 | struct uclamp_se uc_eff; | 
|---|
| 1640 |  | 
|---|
| 1641 | /* Task currently refcounted: use back-annotated (effective) value */ | 
|---|
| 1642 | if (p->uclamp[clamp_id].active) | 
|---|
| 1643 | return (unsigned long)p->uclamp[clamp_id].value; | 
|---|
| 1644 |  | 
|---|
| 1645 | uc_eff = uclamp_eff_get(p, clamp_id); | 
|---|
| 1646 |  | 
|---|
| 1647 | return (unsigned long)uc_eff.value; | 
|---|
| 1648 | } | 
|---|
| 1649 |  | 
|---|
| 1650 | /* | 
|---|
| 1651 | * When a task is enqueued on a rq, the clamp bucket currently defined by the | 
|---|
| 1652 | * task's uclamp::bucket_id is refcounted on that rq. This also immediately | 
|---|
| 1653 | * updates the rq's clamp value if required. | 
|---|
| 1654 | * | 
|---|
| 1655 | * Tasks can have a task-specific value requested from user-space, track | 
|---|
| 1656 | * within each bucket the maximum value for tasks refcounted in it. | 
|---|
| 1657 | * This "local max aggregation" allows to track the exact "requested" value | 
|---|
| 1658 | * for each bucket when all its RUNNABLE tasks require the same clamp. | 
|---|
| 1659 | */ | 
|---|
| 1660 | static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, | 
|---|
| 1661 | enum uclamp_id clamp_id) | 
|---|
| 1662 | { | 
|---|
| 1663 | struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; | 
|---|
| 1664 | struct uclamp_se *uc_se = &p->uclamp[clamp_id]; | 
|---|
| 1665 | struct uclamp_bucket *bucket; | 
|---|
| 1666 |  | 
|---|
| 1667 | lockdep_assert_rq_held(rq); | 
|---|
| 1668 |  | 
|---|
| 1669 | /* Update task effective clamp */ | 
|---|
| 1670 | p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); | 
|---|
| 1671 |  | 
|---|
| 1672 | bucket = &uc_rq->bucket[uc_se->bucket_id]; | 
|---|
| 1673 | bucket->tasks++; | 
|---|
| 1674 | uc_se->active = true; | 
|---|
| 1675 |  | 
|---|
| 1676 | uclamp_idle_reset(rq, clamp_id, uc_se->value); | 
|---|
| 1677 |  | 
|---|
| 1678 | /* | 
|---|
| 1679 | * Local max aggregation: rq buckets always track the max | 
|---|
| 1680 | * "requested" clamp value of its RUNNABLE tasks. | 
|---|
| 1681 | */ | 
|---|
| 1682 | if (bucket->tasks == 1 || uc_se->value > bucket->value) | 
|---|
| 1683 | bucket->value = uc_se->value; | 
|---|
| 1684 |  | 
|---|
| 1685 | if (uc_se->value > uclamp_rq_get(rq, clamp_id)) | 
|---|
| 1686 | uclamp_rq_set(rq, clamp_id, uc_se->value); | 
|---|
| 1687 | } | 
|---|
| 1688 |  | 
|---|
| 1689 | /* | 
|---|
| 1690 | * When a task is dequeued from a rq, the clamp bucket refcounted by the task | 
|---|
| 1691 | * is released. If this is the last task reference counting the rq's max | 
|---|
| 1692 | * active clamp value, then the rq's clamp value is updated. | 
|---|
| 1693 | * | 
|---|
| 1694 | * Both refcounted tasks and rq's cached clamp values are expected to be | 
|---|
| 1695 | * always valid. If it's detected they are not, as defensive programming, | 
|---|
| 1696 | * enforce the expected state and warn. | 
|---|
| 1697 | */ | 
|---|
| 1698 | static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, | 
|---|
| 1699 | enum uclamp_id clamp_id) | 
|---|
| 1700 | { | 
|---|
| 1701 | struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; | 
|---|
| 1702 | struct uclamp_se *uc_se = &p->uclamp[clamp_id]; | 
|---|
| 1703 | struct uclamp_bucket *bucket; | 
|---|
| 1704 | unsigned int bkt_clamp; | 
|---|
| 1705 | unsigned int rq_clamp; | 
|---|
| 1706 |  | 
|---|
| 1707 | lockdep_assert_rq_held(rq); | 
|---|
| 1708 |  | 
|---|
| 1709 | /* | 
|---|
| 1710 | * If sched_uclamp_used was enabled after task @p was enqueued, | 
|---|
| 1711 | * we could end up with unbalanced call to uclamp_rq_dec_id(). | 
|---|
| 1712 | * | 
|---|
| 1713 | * In this case the uc_se->active flag should be false since no uclamp | 
|---|
| 1714 | * accounting was performed at enqueue time and we can just return | 
|---|
| 1715 | * here. | 
|---|
| 1716 | * | 
|---|
| 1717 | * Need to be careful of the following enqueue/dequeue ordering | 
|---|
| 1718 | * problem too | 
|---|
| 1719 | * | 
|---|
| 1720 | *	enqueue(taskA) | 
|---|
| 1721 | *	// sched_uclamp_used gets enabled | 
|---|
| 1722 | *	enqueue(taskB) | 
|---|
| 1723 | *	dequeue(taskA) | 
|---|
| 1724 | *	// Must not decrement bucket->tasks here | 
|---|
| 1725 | *	dequeue(taskB) | 
|---|
| 1726 | * | 
|---|
| 1727 | * where we could end up with stale data in uc_se and | 
|---|
| 1728 | * bucket[uc_se->bucket_id]. | 
|---|
| 1729 | * | 
|---|
| 1730 | * The following check here eliminates the possibility of such race. | 
|---|
| 1731 | */ | 
|---|
| 1732 | if (unlikely(!uc_se->active)) | 
|---|
| 1733 | return; | 
|---|
| 1734 |  | 
|---|
| 1735 | bucket = &uc_rq->bucket[uc_se->bucket_id]; | 
|---|
| 1736 |  | 
|---|
| 1737 | WARN_ON_ONCE(!bucket->tasks); | 
|---|
| 1738 | if (likely(bucket->tasks)) | 
|---|
| 1739 | bucket->tasks--; | 
|---|
| 1740 |  | 
|---|
| 1741 | uc_se->active = false; | 
|---|
| 1742 |  | 
|---|
| 1743 | /* | 
|---|
| 1744 | * Keep "local max aggregation" simple and accept to (possibly) | 
|---|
| 1745 | * overboost some RUNNABLE tasks in the same bucket. | 
|---|
| 1746 | * The rq clamp bucket value is reset to its base value whenever | 
|---|
| 1747 | * there are no more RUNNABLE tasks refcounting it. | 
|---|
| 1748 | */ | 
|---|
| 1749 | if (likely(bucket->tasks)) | 
|---|
| 1750 | return; | 
|---|
| 1751 |  | 
|---|
| 1752 | rq_clamp = uclamp_rq_get(rq, clamp_id); | 
|---|
| 1753 | /* | 
|---|
| 1754 | * Defensive programming: this should never happen. If it happens, | 
|---|
| 1755 | * e.g. due to future modification, warn and fix up the expected value. | 
|---|
| 1756 | */ | 
|---|
| 1757 | WARN_ON_ONCE(bucket->value > rq_clamp); | 
|---|
| 1758 | if (bucket->value >= rq_clamp) { | 
|---|
| 1759 | bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); | 
|---|
| 1760 | uclamp_rq_set(rq, clamp_id, bkt_clamp); | 
|---|
| 1761 | } | 
|---|
| 1762 | } | 
|---|
| 1763 |  | 
|---|
| 1764 | static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 1765 | { | 
|---|
| 1766 | enum uclamp_id clamp_id; | 
|---|
| 1767 |  | 
|---|
| 1768 | /* | 
|---|
| 1769 | * Avoid any overhead until uclamp is actually used by the userspace. | 
|---|
| 1770 | * | 
|---|
| 1771 | * The condition is constructed such that a NOP is generated when | 
|---|
| 1772 | * sched_uclamp_used is disabled. | 
|---|
| 1773 | */ | 
|---|
| 1774 | if (!uclamp_is_used()) | 
|---|
| 1775 | return; | 
|---|
| 1776 |  | 
|---|
| 1777 | if (unlikely(!p->sched_class->uclamp_enabled)) | 
|---|
| 1778 | return; | 
|---|
| 1779 |  | 
|---|
| 1780 | /* Only inc the delayed task which being woken up. */ | 
|---|
| 1781 | if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) | 
|---|
| 1782 | return; | 
|---|
| 1783 |  | 
|---|
| 1784 | for_each_clamp_id(clamp_id) | 
|---|
| 1785 | uclamp_rq_inc_id(rq, p, clamp_id); | 
|---|
| 1786 |  | 
|---|
| 1787 | /* Reset clamp idle holding when there is one RUNNABLE task */ | 
|---|
| 1788 | if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) | 
|---|
| 1789 | rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; | 
|---|
| 1790 | } | 
|---|
| 1791 |  | 
|---|
| 1792 | static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) | 
|---|
| 1793 | { | 
|---|
| 1794 | enum uclamp_id clamp_id; | 
|---|
| 1795 |  | 
|---|
| 1796 | /* | 
|---|
| 1797 | * Avoid any overhead until uclamp is actually used by the userspace. | 
|---|
| 1798 | * | 
|---|
| 1799 | * The condition is constructed such that a NOP is generated when | 
|---|
| 1800 | * sched_uclamp_used is disabled. | 
|---|
| 1801 | */ | 
|---|
| 1802 | if (!uclamp_is_used()) | 
|---|
| 1803 | return; | 
|---|
| 1804 |  | 
|---|
| 1805 | if (unlikely(!p->sched_class->uclamp_enabled)) | 
|---|
| 1806 | return; | 
|---|
| 1807 |  | 
|---|
| 1808 | if (p->se.sched_delayed) | 
|---|
| 1809 | return; | 
|---|
| 1810 |  | 
|---|
| 1811 | for_each_clamp_id(clamp_id) | 
|---|
| 1812 | uclamp_rq_dec_id(rq, p, clamp_id); | 
|---|
| 1813 | } | 
|---|
| 1814 |  | 
|---|
| 1815 | static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, | 
|---|
| 1816 | enum uclamp_id clamp_id) | 
|---|
| 1817 | { | 
|---|
| 1818 | if (!p->uclamp[clamp_id].active) | 
|---|
| 1819 | return; | 
|---|
| 1820 |  | 
|---|
| 1821 | uclamp_rq_dec_id(rq, p, clamp_id); | 
|---|
| 1822 | uclamp_rq_inc_id(rq, p, clamp_id); | 
|---|
| 1823 |  | 
|---|
| 1824 | /* | 
|---|
| 1825 | * Make sure to clear the idle flag if we've transiently reached 0 | 
|---|
| 1826 | * active tasks on rq. | 
|---|
| 1827 | */ | 
|---|
| 1828 | if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) | 
|---|
| 1829 | rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; | 
|---|
| 1830 | } | 
|---|
| 1831 |  | 
|---|
| 1832 | static inline void | 
|---|
| 1833 | uclamp_update_active(struct task_struct *p) | 
|---|
| 1834 | { | 
|---|
| 1835 | enum uclamp_id clamp_id; | 
|---|
| 1836 | struct rq_flags rf; | 
|---|
| 1837 | struct rq *rq; | 
|---|
| 1838 |  | 
|---|
| 1839 | /* | 
|---|
| 1840 | * Lock the task and the rq where the task is (or was) queued. | 
|---|
| 1841 | * | 
|---|
| 1842 | * We might lock the (previous) rq of a !RUNNABLE task, but that's the | 
|---|
| 1843 | * price to pay to safely serialize util_{min,max} updates with | 
|---|
| 1844 | * enqueues, dequeues and migration operations. | 
|---|
| 1845 | * This is the same locking schema used by __set_cpus_allowed_ptr(). | 
|---|
| 1846 | */ | 
|---|
| 1847 | rq = task_rq_lock(p, &rf); | 
|---|
| 1848 |  | 
|---|
| 1849 | /* | 
|---|
| 1850 | * Setting the clamp bucket is serialized by task_rq_lock(). | 
|---|
| 1851 | * If the task is not yet RUNNABLE and its task_struct is not | 
|---|
| 1852 | * affecting a valid clamp bucket, the next time it's enqueued, | 
|---|
| 1853 | * it will already see the updated clamp bucket value. | 
|---|
| 1854 | */ | 
|---|
| 1855 | for_each_clamp_id(clamp_id) | 
|---|
| 1856 | uclamp_rq_reinc_id(rq, p, clamp_id); | 
|---|
| 1857 |  | 
|---|
| 1858 | task_rq_unlock(rq, p, &rf); | 
|---|
| 1859 | } | 
|---|
| 1860 |  | 
|---|
| 1861 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|---|
| 1862 | static inline void | 
|---|
| 1863 | uclamp_update_active_tasks(struct cgroup_subsys_state *css) | 
|---|
| 1864 | { | 
|---|
| 1865 | struct css_task_iter it; | 
|---|
| 1866 | struct task_struct *p; | 
|---|
| 1867 |  | 
|---|
| 1868 | css_task_iter_start(css, 0, &it); | 
|---|
| 1869 | while ((p = css_task_iter_next(&it))) | 
|---|
| 1870 | uclamp_update_active(p); | 
|---|
| 1871 | css_task_iter_end(&it); | 
|---|
| 1872 | } | 
|---|
| 1873 |  | 
|---|
| 1874 | static void cpu_util_update_eff(struct cgroup_subsys_state *css); | 
|---|
| 1875 | #endif | 
|---|
| 1876 |  | 
|---|
| 1877 | #ifdef CONFIG_SYSCTL | 
|---|
| 1878 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|---|
| 1879 | static void uclamp_update_root_tg(void) | 
|---|
| 1880 | { | 
|---|
| 1881 | struct task_group *tg = &root_task_group; | 
|---|
| 1882 |  | 
|---|
| 1883 | uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], | 
|---|
| 1884 | sysctl_sched_uclamp_util_min, false); | 
|---|
| 1885 | uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], | 
|---|
| 1886 | sysctl_sched_uclamp_util_max, false); | 
|---|
| 1887 |  | 
|---|
| 1888 | guard(rcu)(); | 
|---|
| 1889 | cpu_util_update_eff(&root_task_group.css); | 
|---|
| 1890 | } | 
|---|
| 1891 | #else | 
|---|
| 1892 | static void uclamp_update_root_tg(void) { } | 
|---|
| 1893 | #endif | 
|---|
| 1894 |  | 
|---|
| 1895 | static void uclamp_sync_util_min_rt_default(void) | 
|---|
| 1896 | { | 
|---|
| 1897 | struct task_struct *g, *p; | 
|---|
| 1898 |  | 
|---|
| 1899 | /* | 
|---|
| 1900 | * copy_process()			sysctl_uclamp | 
|---|
| 1901 | *					  uclamp_min_rt = X; | 
|---|
| 1902 | *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock) | 
|---|
| 1903 | *   // link thread			  smp_mb__after_spinlock() | 
|---|
| 1904 | *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock); | 
|---|
| 1905 | *   sched_post_fork()			  for_each_process_thread() | 
|---|
| 1906 | *     __uclamp_sync_rt()		    __uclamp_sync_rt() | 
|---|
| 1907 | * | 
|---|
| 1908 | * Ensures that either sched_post_fork() will observe the new | 
|---|
| 1909 | * uclamp_min_rt or for_each_process_thread() will observe the new | 
|---|
| 1910 | * task. | 
|---|
| 1911 | */ | 
|---|
| 1912 | read_lock(&tasklist_lock); | 
|---|
| 1913 | smp_mb__after_spinlock(); | 
|---|
| 1914 | read_unlock(&tasklist_lock); | 
|---|
| 1915 |  | 
|---|
| 1916 | guard(rcu)(); | 
|---|
| 1917 | for_each_process_thread(g, p) | 
|---|
| 1918 | uclamp_update_util_min_rt_default(p); | 
|---|
| 1919 | } | 
|---|
| 1920 |  | 
|---|
| 1921 | static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, | 
|---|
| 1922 | void *buffer, size_t *lenp, loff_t *ppos) | 
|---|
| 1923 | { | 
|---|
| 1924 | bool update_root_tg = false; | 
|---|
| 1925 | int old_min, old_max, old_min_rt; | 
|---|
| 1926 | int result; | 
|---|
| 1927 |  | 
|---|
| 1928 | guard(mutex)(&uclamp_mutex); | 
|---|
| 1929 |  | 
|---|
| 1930 | old_min = sysctl_sched_uclamp_util_min; | 
|---|
| 1931 | old_max = sysctl_sched_uclamp_util_max; | 
|---|
| 1932 | old_min_rt = sysctl_sched_uclamp_util_min_rt_default; | 
|---|
| 1933 |  | 
|---|
| 1934 | result = proc_dointvec(table, write, buffer, lenp, ppos); | 
|---|
| 1935 | if (result) | 
|---|
| 1936 | goto undo; | 
|---|
| 1937 | if (!write) | 
|---|
| 1938 | return 0; | 
|---|
| 1939 |  | 
|---|
| 1940 | if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || | 
|---|
| 1941 | sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	|| | 
|---|
| 1942 | sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { | 
|---|
| 1943 |  | 
|---|
| 1944 | result = -EINVAL; | 
|---|
| 1945 | goto undo; | 
|---|
| 1946 | } | 
|---|
| 1947 |  | 
|---|
| 1948 | if (old_min != sysctl_sched_uclamp_util_min) { | 
|---|
| 1949 | uclamp_se_set(&uclamp_default[UCLAMP_MIN], | 
|---|
| 1950 | sysctl_sched_uclamp_util_min, false); | 
|---|
| 1951 | update_root_tg = true; | 
|---|
| 1952 | } | 
|---|
| 1953 | if (old_max != sysctl_sched_uclamp_util_max) { | 
|---|
| 1954 | uclamp_se_set(&uclamp_default[UCLAMP_MAX], | 
|---|
| 1955 | sysctl_sched_uclamp_util_max, false); | 
|---|
| 1956 | update_root_tg = true; | 
|---|
| 1957 | } | 
|---|
| 1958 |  | 
|---|
| 1959 | if (update_root_tg) { | 
|---|
| 1960 | sched_uclamp_enable(); | 
|---|
| 1961 | uclamp_update_root_tg(); | 
|---|
| 1962 | } | 
|---|
| 1963 |  | 
|---|
| 1964 | if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { | 
|---|
| 1965 | sched_uclamp_enable(); | 
|---|
| 1966 | uclamp_sync_util_min_rt_default(); | 
|---|
| 1967 | } | 
|---|
| 1968 |  | 
|---|
| 1969 | /* | 
|---|
| 1970 | * We update all RUNNABLE tasks only when task groups are in use. | 
|---|
| 1971 | * Otherwise, keep it simple and do just a lazy update at each next | 
|---|
| 1972 | * task enqueue time. | 
|---|
| 1973 | */ | 
|---|
| 1974 | return 0; | 
|---|
| 1975 |  | 
|---|
| 1976 | undo: | 
|---|
| 1977 | sysctl_sched_uclamp_util_min = old_min; | 
|---|
| 1978 | sysctl_sched_uclamp_util_max = old_max; | 
|---|
| 1979 | sysctl_sched_uclamp_util_min_rt_default = old_min_rt; | 
|---|
| 1980 | return result; | 
|---|
| 1981 | } | 
|---|
| 1982 | #endif /* CONFIG_SYSCTL */ | 
|---|
| 1983 |  | 
|---|
| 1984 | static void uclamp_fork(struct task_struct *p) | 
|---|
| 1985 | { | 
|---|
| 1986 | enum uclamp_id clamp_id; | 
|---|
| 1987 |  | 
|---|
| 1988 | /* | 
|---|
| 1989 | * We don't need to hold task_rq_lock() when updating p->uclamp_* here | 
|---|
| 1990 | * as the task is still at its early fork stages. | 
|---|
| 1991 | */ | 
|---|
| 1992 | for_each_clamp_id(clamp_id) | 
|---|
| 1993 | p->uclamp[clamp_id].active = false; | 
|---|
| 1994 |  | 
|---|
| 1995 | if (likely(!p->sched_reset_on_fork)) | 
|---|
| 1996 | return; | 
|---|
| 1997 |  | 
|---|
| 1998 | for_each_clamp_id(clamp_id) { | 
|---|
| 1999 | uclamp_se_set(&p->uclamp_req[clamp_id], | 
|---|
| 2000 | uclamp_none(clamp_id), false); | 
|---|
| 2001 | } | 
|---|
| 2002 | } | 
|---|
| 2003 |  | 
|---|
| 2004 | static void uclamp_post_fork(struct task_struct *p) | 
|---|
| 2005 | { | 
|---|
| 2006 | uclamp_update_util_min_rt_default(p); | 
|---|
| 2007 | } | 
|---|
| 2008 |  | 
|---|
| 2009 | static void __init init_uclamp_rq(struct rq *rq) | 
|---|
| 2010 | { | 
|---|
| 2011 | enum uclamp_id clamp_id; | 
|---|
| 2012 | struct uclamp_rq *uc_rq = rq->uclamp; | 
|---|
| 2013 |  | 
|---|
| 2014 | for_each_clamp_id(clamp_id) { | 
|---|
| 2015 | uc_rq[clamp_id] = (struct uclamp_rq) { | 
|---|
| 2016 | .value = uclamp_none(clamp_id) | 
|---|
| 2017 | }; | 
|---|
| 2018 | } | 
|---|
| 2019 |  | 
|---|
| 2020 | rq->uclamp_flags = UCLAMP_FLAG_IDLE; | 
|---|
| 2021 | } | 
|---|
| 2022 |  | 
|---|
| 2023 | static void __init init_uclamp(void) | 
|---|
| 2024 | { | 
|---|
| 2025 | struct uclamp_se uc_max = {}; | 
|---|
| 2026 | enum uclamp_id clamp_id; | 
|---|
| 2027 | int cpu; | 
|---|
| 2028 |  | 
|---|
| 2029 | for_each_possible_cpu(cpu) | 
|---|
| 2030 | init_uclamp_rq(cpu_rq(cpu)); | 
|---|
| 2031 |  | 
|---|
| 2032 | for_each_clamp_id(clamp_id) { | 
|---|
| 2033 | uclamp_se_set(&init_task.uclamp_req[clamp_id], | 
|---|
| 2034 | uclamp_none(clamp_id), false); | 
|---|
| 2035 | } | 
|---|
| 2036 |  | 
|---|
| 2037 | /* System defaults allow max clamp values for both indexes */ | 
|---|
| 2038 | uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); | 
|---|
| 2039 | for_each_clamp_id(clamp_id) { | 
|---|
| 2040 | uclamp_default[clamp_id] = uc_max; | 
|---|
| 2041 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|---|
| 2042 | root_task_group.uclamp_req[clamp_id] = uc_max; | 
|---|
| 2043 | root_task_group.uclamp[clamp_id] = uc_max; | 
|---|
| 2044 | #endif | 
|---|
| 2045 | } | 
|---|
| 2046 | } | 
|---|
| 2047 |  | 
|---|
| 2048 | #else /* !CONFIG_UCLAMP_TASK: */ | 
|---|
| 2049 | static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } | 
|---|
| 2050 | static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } | 
|---|
| 2051 | static inline void uclamp_fork(struct task_struct *p) { } | 
|---|
| 2052 | static inline void uclamp_post_fork(struct task_struct *p) { } | 
|---|
| 2053 | static inline void init_uclamp(void) { } | 
|---|
| 2054 | #endif /* !CONFIG_UCLAMP_TASK */ | 
|---|
| 2055 |  | 
|---|
| 2056 | bool sched_task_on_rq(struct task_struct *p) | 
|---|
| 2057 | { | 
|---|
| 2058 | return task_on_rq_queued(p); | 
|---|
| 2059 | } | 
|---|
| 2060 |  | 
|---|
| 2061 | unsigned long get_wchan(struct task_struct *p) | 
|---|
| 2062 | { | 
|---|
| 2063 | unsigned long ip = 0; | 
|---|
| 2064 | unsigned int state; | 
|---|
| 2065 |  | 
|---|
| 2066 | if (!p || p == current) | 
|---|
| 2067 | return 0; | 
|---|
| 2068 |  | 
|---|
| 2069 | /* Only get wchan if task is blocked and we can keep it that way. */ | 
|---|
| 2070 | raw_spin_lock_irq(&p->pi_lock); | 
|---|
| 2071 | state = READ_ONCE(p->__state); | 
|---|
| 2072 | smp_rmb(); /* see try_to_wake_up() */ | 
|---|
| 2073 | if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) | 
|---|
| 2074 | ip = __get_wchan(p); | 
|---|
| 2075 | raw_spin_unlock_irq(&p->pi_lock); | 
|---|
| 2076 |  | 
|---|
| 2077 | return ip; | 
|---|
| 2078 | } | 
|---|
| 2079 |  | 
|---|
| 2080 | void enqueue_task(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 2081 | { | 
|---|
| 2082 | if (!(flags & ENQUEUE_NOCLOCK)) | 
|---|
| 2083 | update_rq_clock(rq); | 
|---|
| 2084 |  | 
|---|
| 2085 | /* | 
|---|
| 2086 | * Can be before ->enqueue_task() because uclamp considers the | 
|---|
| 2087 | * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared | 
|---|
| 2088 | * in ->enqueue_task(). | 
|---|
| 2089 | */ | 
|---|
| 2090 | uclamp_rq_inc(rq, p, flags); | 
|---|
| 2091 |  | 
|---|
| 2092 | p->sched_class->enqueue_task(rq, p, flags); | 
|---|
| 2093 |  | 
|---|
| 2094 | psi_enqueue(p, migrate: flags); | 
|---|
| 2095 |  | 
|---|
| 2096 | if (!(flags & ENQUEUE_RESTORE)) | 
|---|
| 2097 | sched_info_enqueue(rq, t: p); | 
|---|
| 2098 |  | 
|---|
| 2099 | if (sched_core_enabled(rq)) | 
|---|
| 2100 | sched_core_enqueue(rq, p); | 
|---|
| 2101 | } | 
|---|
| 2102 |  | 
|---|
| 2103 | /* | 
|---|
| 2104 | * Must only return false when DEQUEUE_SLEEP. | 
|---|
| 2105 | */ | 
|---|
| 2106 | inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 2107 | { | 
|---|
| 2108 | if (sched_core_enabled(rq)) | 
|---|
| 2109 | sched_core_dequeue(rq, p, flags); | 
|---|
| 2110 |  | 
|---|
| 2111 | if (!(flags & DEQUEUE_NOCLOCK)) | 
|---|
| 2112 | update_rq_clock(rq); | 
|---|
| 2113 |  | 
|---|
| 2114 | if (!(flags & DEQUEUE_SAVE)) | 
|---|
| 2115 | sched_info_dequeue(rq, t: p); | 
|---|
| 2116 |  | 
|---|
| 2117 | psi_dequeue(p, migrate: flags); | 
|---|
| 2118 |  | 
|---|
| 2119 | /* | 
|---|
| 2120 | * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' | 
|---|
| 2121 | * and mark the task ->sched_delayed. | 
|---|
| 2122 | */ | 
|---|
| 2123 | uclamp_rq_dec(rq, p); | 
|---|
| 2124 | return p->sched_class->dequeue_task(rq, p, flags); | 
|---|
| 2125 | } | 
|---|
| 2126 |  | 
|---|
| 2127 | void activate_task(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 2128 | { | 
|---|
| 2129 | if (task_on_rq_migrating(p)) | 
|---|
| 2130 | flags |= ENQUEUE_MIGRATED; | 
|---|
| 2131 | if (flags & ENQUEUE_MIGRATED) | 
|---|
| 2132 | sched_mm_cid_migrate_to(dst_rq: rq, t: p); | 
|---|
| 2133 |  | 
|---|
| 2134 | enqueue_task(rq, p, flags); | 
|---|
| 2135 |  | 
|---|
| 2136 | WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); | 
|---|
| 2137 | ASSERT_EXCLUSIVE_WRITER(p->on_rq); | 
|---|
| 2138 | } | 
|---|
| 2139 |  | 
|---|
| 2140 | void deactivate_task(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 2141 | { | 
|---|
| 2142 | WARN_ON_ONCE(flags & DEQUEUE_SLEEP); | 
|---|
| 2143 |  | 
|---|
| 2144 | WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); | 
|---|
| 2145 | ASSERT_EXCLUSIVE_WRITER(p->on_rq); | 
|---|
| 2146 |  | 
|---|
| 2147 | /* | 
|---|
| 2148 | * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* | 
|---|
| 2149 | * dequeue_task() and cleared *after* enqueue_task(). | 
|---|
| 2150 | */ | 
|---|
| 2151 |  | 
|---|
| 2152 | dequeue_task(rq, p, flags); | 
|---|
| 2153 | } | 
|---|
| 2154 |  | 
|---|
| 2155 | static void block_task(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 2156 | { | 
|---|
| 2157 | if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) | 
|---|
| 2158 | __block_task(rq, p); | 
|---|
| 2159 | } | 
|---|
| 2160 |  | 
|---|
| 2161 | /** | 
|---|
| 2162 | * task_curr - is this task currently executing on a CPU? | 
|---|
| 2163 | * @p: the task in question. | 
|---|
| 2164 | * | 
|---|
| 2165 | * Return: 1 if the task is currently executing. 0 otherwise. | 
|---|
| 2166 | */ | 
|---|
| 2167 | inline int task_curr(const struct task_struct *p) | 
|---|
| 2168 | { | 
|---|
| 2169 | return cpu_curr(task_cpu(p)) == p; | 
|---|
| 2170 | } | 
|---|
| 2171 |  | 
|---|
| 2172 | /* | 
|---|
| 2173 | * ->switching_to() is called with the pi_lock and rq_lock held and must not | 
|---|
| 2174 | * mess with locking. | 
|---|
| 2175 | */ | 
|---|
| 2176 | void check_class_changing(struct rq *rq, struct task_struct *p, | 
|---|
| 2177 | const struct sched_class *prev_class) | 
|---|
| 2178 | { | 
|---|
| 2179 | if (prev_class != p->sched_class && p->sched_class->switching_to) | 
|---|
| 2180 | p->sched_class->switching_to(rq, p); | 
|---|
| 2181 | } | 
|---|
| 2182 |  | 
|---|
| 2183 | /* | 
|---|
| 2184 | * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, | 
|---|
| 2185 | * use the balance_callback list if you want balancing. | 
|---|
| 2186 | * | 
|---|
| 2187 | * this means any call to check_class_changed() must be followed by a call to | 
|---|
| 2188 | * balance_callback(). | 
|---|
| 2189 | */ | 
|---|
| 2190 | void check_class_changed(struct rq *rq, struct task_struct *p, | 
|---|
| 2191 | const struct sched_class *prev_class, | 
|---|
| 2192 | int oldprio) | 
|---|
| 2193 | { | 
|---|
| 2194 | if (prev_class != p->sched_class) { | 
|---|
| 2195 | if (prev_class->switched_from) | 
|---|
| 2196 | prev_class->switched_from(rq, p); | 
|---|
| 2197 |  | 
|---|
| 2198 | p->sched_class->switched_to(rq, p); | 
|---|
| 2199 | } else if (oldprio != p->prio || dl_task(p)) | 
|---|
| 2200 | p->sched_class->prio_changed(rq, p, oldprio); | 
|---|
| 2201 | } | 
|---|
| 2202 |  | 
|---|
| 2203 | void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 2204 | { | 
|---|
| 2205 | struct task_struct *donor = rq->donor; | 
|---|
| 2206 |  | 
|---|
| 2207 | if (p->sched_class == donor->sched_class) | 
|---|
| 2208 | donor->sched_class->wakeup_preempt(rq, p, flags); | 
|---|
| 2209 | else if (sched_class_above(p->sched_class, donor->sched_class)) | 
|---|
| 2210 | resched_curr(rq); | 
|---|
| 2211 |  | 
|---|
| 2212 | /* | 
|---|
| 2213 | * A queue event has occurred, and we're going to schedule.  In | 
|---|
| 2214 | * this case, we can save a useless back to back clock update. | 
|---|
| 2215 | */ | 
|---|
| 2216 | if (task_on_rq_queued(p: donor) && test_tsk_need_resched(tsk: rq->curr)) | 
|---|
| 2217 | rq_clock_skip_update(rq); | 
|---|
| 2218 | } | 
|---|
| 2219 |  | 
|---|
| 2220 | static __always_inline | 
|---|
| 2221 | int __task_state_match(struct task_struct *p, unsigned int state) | 
|---|
| 2222 | { | 
|---|
| 2223 | if (READ_ONCE(p->__state) & state) | 
|---|
| 2224 | return 1; | 
|---|
| 2225 |  | 
|---|
| 2226 | if (READ_ONCE(p->saved_state) & state) | 
|---|
| 2227 | return -1; | 
|---|
| 2228 |  | 
|---|
| 2229 | return 0; | 
|---|
| 2230 | } | 
|---|
| 2231 |  | 
|---|
| 2232 | static __always_inline | 
|---|
| 2233 | int task_state_match(struct task_struct *p, unsigned int state) | 
|---|
| 2234 | { | 
|---|
| 2235 | /* | 
|---|
| 2236 | * Serialize against current_save_and_set_rtlock_wait_state(), | 
|---|
| 2237 | * current_restore_rtlock_saved_state(), and __refrigerator(). | 
|---|
| 2238 | */ | 
|---|
| 2239 | guard(raw_spinlock_irq)(l: &p->pi_lock); | 
|---|
| 2240 | return __task_state_match(p, state); | 
|---|
| 2241 | } | 
|---|
| 2242 |  | 
|---|
| 2243 | /* | 
|---|
| 2244 | * wait_task_inactive - wait for a thread to unschedule. | 
|---|
| 2245 | * | 
|---|
| 2246 | * Wait for the thread to block in any of the states set in @match_state. | 
|---|
| 2247 | * If it changes, i.e. @p might have woken up, then return zero.  When we | 
|---|
| 2248 | * succeed in waiting for @p to be off its CPU, we return a positive number | 
|---|
| 2249 | * (its total switch count).  If a second call a short while later returns the | 
|---|
| 2250 | * same number, the caller can be sure that @p has remained unscheduled the | 
|---|
| 2251 | * whole time. | 
|---|
| 2252 | * | 
|---|
| 2253 | * The caller must ensure that the task *will* unschedule sometime soon, | 
|---|
| 2254 | * else this function might spin for a *long* time. This function can't | 
|---|
| 2255 | * be called with interrupts off, or it may introduce deadlock with | 
|---|
| 2256 | * smp_call_function() if an IPI is sent by the same process we are | 
|---|
| 2257 | * waiting to become inactive. | 
|---|
| 2258 | */ | 
|---|
| 2259 | unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) | 
|---|
| 2260 | { | 
|---|
| 2261 | int running, queued, match; | 
|---|
| 2262 | struct rq_flags rf; | 
|---|
| 2263 | unsigned long ncsw; | 
|---|
| 2264 | struct rq *rq; | 
|---|
| 2265 |  | 
|---|
| 2266 | for (;;) { | 
|---|
| 2267 | /* | 
|---|
| 2268 | * We do the initial early heuristics without holding | 
|---|
| 2269 | * any task-queue locks at all. We'll only try to get | 
|---|
| 2270 | * the runqueue lock when things look like they will | 
|---|
| 2271 | * work out! | 
|---|
| 2272 | */ | 
|---|
| 2273 | rq = task_rq(p); | 
|---|
| 2274 |  | 
|---|
| 2275 | /* | 
|---|
| 2276 | * If the task is actively running on another CPU | 
|---|
| 2277 | * still, just relax and busy-wait without holding | 
|---|
| 2278 | * any locks. | 
|---|
| 2279 | * | 
|---|
| 2280 | * NOTE! Since we don't hold any locks, it's not | 
|---|
| 2281 | * even sure that "rq" stays as the right runqueue! | 
|---|
| 2282 | * But we don't care, since "task_on_cpu()" will | 
|---|
| 2283 | * return false if the runqueue has changed and p | 
|---|
| 2284 | * is actually now running somewhere else! | 
|---|
| 2285 | */ | 
|---|
| 2286 | while (task_on_cpu(rq, p)) { | 
|---|
| 2287 | if (!task_state_match(p, state: match_state)) | 
|---|
| 2288 | return 0; | 
|---|
| 2289 | cpu_relax(); | 
|---|
| 2290 | } | 
|---|
| 2291 |  | 
|---|
| 2292 | /* | 
|---|
| 2293 | * Ok, time to look more closely! We need the rq | 
|---|
| 2294 | * lock now, to be *sure*. If we're wrong, we'll | 
|---|
| 2295 | * just go back and repeat. | 
|---|
| 2296 | */ | 
|---|
| 2297 | rq = task_rq_lock(p, rf: &rf); | 
|---|
| 2298 | /* | 
|---|
| 2299 | * If task is sched_delayed, force dequeue it, to avoid always | 
|---|
| 2300 | * hitting the tick timeout in the queued case | 
|---|
| 2301 | */ | 
|---|
| 2302 | if (p->se.sched_delayed) | 
|---|
| 2303 | dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); | 
|---|
| 2304 | trace_sched_wait_task(p); | 
|---|
| 2305 | running = task_on_cpu(rq, p); | 
|---|
| 2306 | queued = task_on_rq_queued(p); | 
|---|
| 2307 | ncsw = 0; | 
|---|
| 2308 | if ((match = __task_state_match(p, state: match_state))) { | 
|---|
| 2309 | /* | 
|---|
| 2310 | * When matching on p->saved_state, consider this task | 
|---|
| 2311 | * still queued so it will wait. | 
|---|
| 2312 | */ | 
|---|
| 2313 | if (match < 0) | 
|---|
| 2314 | queued = 1; | 
|---|
| 2315 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ | 
|---|
| 2316 | } | 
|---|
| 2317 | task_rq_unlock(rq, p, rf: &rf); | 
|---|
| 2318 |  | 
|---|
| 2319 | /* | 
|---|
| 2320 | * If it changed from the expected state, bail out now. | 
|---|
| 2321 | */ | 
|---|
| 2322 | if (unlikely(!ncsw)) | 
|---|
| 2323 | break; | 
|---|
| 2324 |  | 
|---|
| 2325 | /* | 
|---|
| 2326 | * Was it really running after all now that we | 
|---|
| 2327 | * checked with the proper locks actually held? | 
|---|
| 2328 | * | 
|---|
| 2329 | * Oops. Go back and try again.. | 
|---|
| 2330 | */ | 
|---|
| 2331 | if (unlikely(running)) { | 
|---|
| 2332 | cpu_relax(); | 
|---|
| 2333 | continue; | 
|---|
| 2334 | } | 
|---|
| 2335 |  | 
|---|
| 2336 | /* | 
|---|
| 2337 | * It's not enough that it's not actively running, | 
|---|
| 2338 | * it must be off the runqueue _entirely_, and not | 
|---|
| 2339 | * preempted! | 
|---|
| 2340 | * | 
|---|
| 2341 | * So if it was still runnable (but just not actively | 
|---|
| 2342 | * running right now), it's preempted, and we should | 
|---|
| 2343 | * yield - it could be a while. | 
|---|
| 2344 | */ | 
|---|
| 2345 | if (unlikely(queued)) { | 
|---|
| 2346 | ktime_t to = NSEC_PER_SEC / HZ; | 
|---|
| 2347 |  | 
|---|
| 2348 | set_current_state(TASK_UNINTERRUPTIBLE); | 
|---|
| 2349 | schedule_hrtimeout(expires: &to, mode: HRTIMER_MODE_REL_HARD); | 
|---|
| 2350 | continue; | 
|---|
| 2351 | } | 
|---|
| 2352 |  | 
|---|
| 2353 | /* | 
|---|
| 2354 | * Ahh, all good. It wasn't running, and it wasn't | 
|---|
| 2355 | * runnable, which means that it will never become | 
|---|
| 2356 | * running in the future either. We're all done! | 
|---|
| 2357 | */ | 
|---|
| 2358 | break; | 
|---|
| 2359 | } | 
|---|
| 2360 |  | 
|---|
| 2361 | return ncsw; | 
|---|
| 2362 | } | 
|---|
| 2363 |  | 
|---|
| 2364 | static void | 
|---|
| 2365 | __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); | 
|---|
| 2366 |  | 
|---|
| 2367 | static void migrate_disable_switch(struct rq *rq, struct task_struct *p) | 
|---|
| 2368 | { | 
|---|
| 2369 | struct affinity_context ac = { | 
|---|
| 2370 | .new_mask  = cpumask_of(rq->cpu), | 
|---|
| 2371 | .flags     = SCA_MIGRATE_DISABLE, | 
|---|
| 2372 | }; | 
|---|
| 2373 |  | 
|---|
| 2374 | if (likely(!p->migration_disabled)) | 
|---|
| 2375 | return; | 
|---|
| 2376 |  | 
|---|
| 2377 | if (p->cpus_ptr != &p->cpus_mask) | 
|---|
| 2378 | return; | 
|---|
| 2379 |  | 
|---|
| 2380 | /* | 
|---|
| 2381 | * Violates locking rules! See comment in __do_set_cpus_allowed(). | 
|---|
| 2382 | */ | 
|---|
| 2383 | __do_set_cpus_allowed(p, ctx: &ac); | 
|---|
| 2384 | } | 
|---|
| 2385 |  | 
|---|
| 2386 | void ___migrate_enable(void) | 
|---|
| 2387 | { | 
|---|
| 2388 | struct task_struct *p = current; | 
|---|
| 2389 | struct affinity_context ac = { | 
|---|
| 2390 | .new_mask  = &p->cpus_mask, | 
|---|
| 2391 | .flags     = SCA_MIGRATE_ENABLE, | 
|---|
| 2392 | }; | 
|---|
| 2393 |  | 
|---|
| 2394 | __set_cpus_allowed_ptr(p, ctx: &ac); | 
|---|
| 2395 | } | 
|---|
| 2396 | EXPORT_SYMBOL_GPL(___migrate_enable); | 
|---|
| 2397 |  | 
|---|
| 2398 | void migrate_disable(void) | 
|---|
| 2399 | { | 
|---|
| 2400 | __migrate_disable(); | 
|---|
| 2401 | } | 
|---|
| 2402 | EXPORT_SYMBOL_GPL(migrate_disable); | 
|---|
| 2403 |  | 
|---|
| 2404 | void migrate_enable(void) | 
|---|
| 2405 | { | 
|---|
| 2406 | __migrate_enable(); | 
|---|
| 2407 | } | 
|---|
| 2408 | EXPORT_SYMBOL_GPL(migrate_enable); | 
|---|
| 2409 |  | 
|---|
| 2410 | static inline bool rq_has_pinned_tasks(struct rq *rq) | 
|---|
| 2411 | { | 
|---|
| 2412 | return rq->nr_pinned; | 
|---|
| 2413 | } | 
|---|
| 2414 |  | 
|---|
| 2415 | /* | 
|---|
| 2416 | * Per-CPU kthreads are allowed to run on !active && online CPUs, see | 
|---|
| 2417 | * __set_cpus_allowed_ptr() and select_fallback_rq(). | 
|---|
| 2418 | */ | 
|---|
| 2419 | static inline bool is_cpu_allowed(struct task_struct *p, int cpu) | 
|---|
| 2420 | { | 
|---|
| 2421 | /* When not in the task's cpumask, no point in looking further. */ | 
|---|
| 2422 | if (!task_allowed_on_cpu(p, cpu)) | 
|---|
| 2423 | return false; | 
|---|
| 2424 |  | 
|---|
| 2425 | /* migrate_disabled() must be allowed to finish. */ | 
|---|
| 2426 | if (is_migration_disabled(p)) | 
|---|
| 2427 | return cpu_online(cpu); | 
|---|
| 2428 |  | 
|---|
| 2429 | /* Non kernel threads are not allowed during either online or offline. */ | 
|---|
| 2430 | if (!(p->flags & PF_KTHREAD)) | 
|---|
| 2431 | return cpu_active(cpu); | 
|---|
| 2432 |  | 
|---|
| 2433 | /* KTHREAD_IS_PER_CPU is always allowed. */ | 
|---|
| 2434 | if (kthread_is_per_cpu(k: p)) | 
|---|
| 2435 | return cpu_online(cpu); | 
|---|
| 2436 |  | 
|---|
| 2437 | /* Regular kernel threads don't get to stay during offline. */ | 
|---|
| 2438 | if (cpu_dying(cpu)) | 
|---|
| 2439 | return false; | 
|---|
| 2440 |  | 
|---|
| 2441 | /* But are allowed during online. */ | 
|---|
| 2442 | return cpu_online(cpu); | 
|---|
| 2443 | } | 
|---|
| 2444 |  | 
|---|
| 2445 | /* | 
|---|
| 2446 | * This is how migration works: | 
|---|
| 2447 | * | 
|---|
| 2448 | * 1) we invoke migration_cpu_stop() on the target CPU using | 
|---|
| 2449 | *    stop_one_cpu(). | 
|---|
| 2450 | * 2) stopper starts to run (implicitly forcing the migrated thread | 
|---|
| 2451 | *    off the CPU) | 
|---|
| 2452 | * 3) it checks whether the migrated task is still in the wrong runqueue. | 
|---|
| 2453 | * 4) if it's in the wrong runqueue then the migration thread removes | 
|---|
| 2454 | *    it and puts it into the right queue. | 
|---|
| 2455 | * 5) stopper completes and stop_one_cpu() returns and the migration | 
|---|
| 2456 | *    is done. | 
|---|
| 2457 | */ | 
|---|
| 2458 |  | 
|---|
| 2459 | /* | 
|---|
| 2460 | * move_queued_task - move a queued task to new rq. | 
|---|
| 2461 | * | 
|---|
| 2462 | * Returns (locked) new rq. Old rq's lock is released. | 
|---|
| 2463 | */ | 
|---|
| 2464 | static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, | 
|---|
| 2465 | struct task_struct *p, int new_cpu) | 
|---|
| 2466 | { | 
|---|
| 2467 | lockdep_assert_rq_held(rq); | 
|---|
| 2468 |  | 
|---|
| 2469 | deactivate_task(rq, p, DEQUEUE_NOCLOCK); | 
|---|
| 2470 | set_task_cpu(p, cpu: new_cpu); | 
|---|
| 2471 | rq_unlock(rq, rf); | 
|---|
| 2472 |  | 
|---|
| 2473 | rq = cpu_rq(new_cpu); | 
|---|
| 2474 |  | 
|---|
| 2475 | rq_lock(rq, rf); | 
|---|
| 2476 | WARN_ON_ONCE(task_cpu(p) != new_cpu); | 
|---|
| 2477 | activate_task(rq, p, flags: 0); | 
|---|
| 2478 | wakeup_preempt(rq, p, flags: 0); | 
|---|
| 2479 |  | 
|---|
| 2480 | return rq; | 
|---|
| 2481 | } | 
|---|
| 2482 |  | 
|---|
| 2483 | struct migration_arg { | 
|---|
| 2484 | struct task_struct		*task; | 
|---|
| 2485 | int				dest_cpu; | 
|---|
| 2486 | struct set_affinity_pending	*pending; | 
|---|
| 2487 | }; | 
|---|
| 2488 |  | 
|---|
| 2489 | /* | 
|---|
| 2490 | * @refs: number of wait_for_completion() | 
|---|
| 2491 | * @stop_pending: is @stop_work in use | 
|---|
| 2492 | */ | 
|---|
| 2493 | struct set_affinity_pending { | 
|---|
| 2494 | refcount_t		refs; | 
|---|
| 2495 | unsigned int		stop_pending; | 
|---|
| 2496 | struct completion	done; | 
|---|
| 2497 | struct cpu_stop_work	stop_work; | 
|---|
| 2498 | struct migration_arg	arg; | 
|---|
| 2499 | }; | 
|---|
| 2500 |  | 
|---|
| 2501 | /* | 
|---|
| 2502 | * Move (not current) task off this CPU, onto the destination CPU. We're doing | 
|---|
| 2503 | * this because either it can't run here any more (set_cpus_allowed() | 
|---|
| 2504 | * away from this CPU, or CPU going down), or because we're | 
|---|
| 2505 | * attempting to rebalance this task on exec (sched_exec). | 
|---|
| 2506 | * | 
|---|
| 2507 | * So we race with normal scheduler movements, but that's OK, as long | 
|---|
| 2508 | * as the task is no longer on this CPU. | 
|---|
| 2509 | */ | 
|---|
| 2510 | static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, | 
|---|
| 2511 | struct task_struct *p, int dest_cpu) | 
|---|
| 2512 | { | 
|---|
| 2513 | /* Affinity changed (again). */ | 
|---|
| 2514 | if (!is_cpu_allowed(p, cpu: dest_cpu)) | 
|---|
| 2515 | return rq; | 
|---|
| 2516 |  | 
|---|
| 2517 | rq = move_queued_task(rq, rf, p, new_cpu: dest_cpu); | 
|---|
| 2518 |  | 
|---|
| 2519 | return rq; | 
|---|
| 2520 | } | 
|---|
| 2521 |  | 
|---|
| 2522 | /* | 
|---|
| 2523 | * migration_cpu_stop - this will be executed by a high-prio stopper thread | 
|---|
| 2524 | * and performs thread migration by bumping thread off CPU then | 
|---|
| 2525 | * 'pushing' onto another runqueue. | 
|---|
| 2526 | */ | 
|---|
| 2527 | static int migration_cpu_stop(void *data) | 
|---|
| 2528 | { | 
|---|
| 2529 | struct migration_arg *arg = data; | 
|---|
| 2530 | struct set_affinity_pending *pending = arg->pending; | 
|---|
| 2531 | struct task_struct *p = arg->task; | 
|---|
| 2532 | struct rq *rq = this_rq(); | 
|---|
| 2533 | bool complete = false; | 
|---|
| 2534 | struct rq_flags rf; | 
|---|
| 2535 |  | 
|---|
| 2536 | /* | 
|---|
| 2537 | * The original target CPU might have gone down and we might | 
|---|
| 2538 | * be on another CPU but it doesn't matter. | 
|---|
| 2539 | */ | 
|---|
| 2540 | local_irq_save(rf.flags); | 
|---|
| 2541 | /* | 
|---|
| 2542 | * We need to explicitly wake pending tasks before running | 
|---|
| 2543 | * __migrate_task() such that we will not miss enforcing cpus_ptr | 
|---|
| 2544 | * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. | 
|---|
| 2545 | */ | 
|---|
| 2546 | flush_smp_call_function_queue(); | 
|---|
| 2547 |  | 
|---|
| 2548 | raw_spin_lock(&p->pi_lock); | 
|---|
| 2549 | rq_lock(rq, rf: &rf); | 
|---|
| 2550 |  | 
|---|
| 2551 | /* | 
|---|
| 2552 | * If we were passed a pending, then ->stop_pending was set, thus | 
|---|
| 2553 | * p->migration_pending must have remained stable. | 
|---|
| 2554 | */ | 
|---|
| 2555 | WARN_ON_ONCE(pending && pending != p->migration_pending); | 
|---|
| 2556 |  | 
|---|
| 2557 | /* | 
|---|
| 2558 | * If task_rq(p) != rq, it cannot be migrated here, because we're | 
|---|
| 2559 | * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because | 
|---|
| 2560 | * we're holding p->pi_lock. | 
|---|
| 2561 | */ | 
|---|
| 2562 | if (task_rq(p) == rq) { | 
|---|
| 2563 | if (is_migration_disabled(p)) | 
|---|
| 2564 | goto out; | 
|---|
| 2565 |  | 
|---|
| 2566 | if (pending) { | 
|---|
| 2567 | p->migration_pending = NULL; | 
|---|
| 2568 | complete = true; | 
|---|
| 2569 |  | 
|---|
| 2570 | if (cpumask_test_cpu(cpu: task_cpu(p), cpumask: &p->cpus_mask)) | 
|---|
| 2571 | goto out; | 
|---|
| 2572 | } | 
|---|
| 2573 |  | 
|---|
| 2574 | if (task_on_rq_queued(p)) { | 
|---|
| 2575 | update_rq_clock(rq); | 
|---|
| 2576 | rq = __migrate_task(rq, rf: &rf, p, dest_cpu: arg->dest_cpu); | 
|---|
| 2577 | } else { | 
|---|
| 2578 | p->wake_cpu = arg->dest_cpu; | 
|---|
| 2579 | } | 
|---|
| 2580 |  | 
|---|
| 2581 | /* | 
|---|
| 2582 | * XXX __migrate_task() can fail, at which point we might end | 
|---|
| 2583 | * up running on a dodgy CPU, AFAICT this can only happen | 
|---|
| 2584 | * during CPU hotplug, at which point we'll get pushed out | 
|---|
| 2585 | * anyway, so it's probably not a big deal. | 
|---|
| 2586 | */ | 
|---|
| 2587 |  | 
|---|
| 2588 | } else if (pending) { | 
|---|
| 2589 | /* | 
|---|
| 2590 | * This happens when we get migrated between migrate_enable()'s | 
|---|
| 2591 | * preempt_enable() and scheduling the stopper task. At that | 
|---|
| 2592 | * point we're a regular task again and not current anymore. | 
|---|
| 2593 | * | 
|---|
| 2594 | * A !PREEMPT kernel has a giant hole here, which makes it far | 
|---|
| 2595 | * more likely. | 
|---|
| 2596 | */ | 
|---|
| 2597 |  | 
|---|
| 2598 | /* | 
|---|
| 2599 | * The task moved before the stopper got to run. We're holding | 
|---|
| 2600 | * ->pi_lock, so the allowed mask is stable - if it got | 
|---|
| 2601 | * somewhere allowed, we're done. | 
|---|
| 2602 | */ | 
|---|
| 2603 | if (cpumask_test_cpu(cpu: task_cpu(p), cpumask: p->cpus_ptr)) { | 
|---|
| 2604 | p->migration_pending = NULL; | 
|---|
| 2605 | complete = true; | 
|---|
| 2606 | goto out; | 
|---|
| 2607 | } | 
|---|
| 2608 |  | 
|---|
| 2609 | /* | 
|---|
| 2610 | * When migrate_enable() hits a rq mis-match we can't reliably | 
|---|
| 2611 | * determine is_migration_disabled() and so have to chase after | 
|---|
| 2612 | * it. | 
|---|
| 2613 | */ | 
|---|
| 2614 | WARN_ON_ONCE(!pending->stop_pending); | 
|---|
| 2615 | preempt_disable(); | 
|---|
| 2616 | task_rq_unlock(rq, p, rf: &rf); | 
|---|
| 2617 | stop_one_cpu_nowait(cpu: task_cpu(p), fn: migration_cpu_stop, | 
|---|
| 2618 | arg: &pending->arg, work_buf: &pending->stop_work); | 
|---|
| 2619 | preempt_enable(); | 
|---|
| 2620 | return 0; | 
|---|
| 2621 | } | 
|---|
| 2622 | out: | 
|---|
| 2623 | if (pending) | 
|---|
| 2624 | pending->stop_pending = false; | 
|---|
| 2625 | task_rq_unlock(rq, p, rf: &rf); | 
|---|
| 2626 |  | 
|---|
| 2627 | if (complete) | 
|---|
| 2628 | complete_all(&pending->done); | 
|---|
| 2629 |  | 
|---|
| 2630 | return 0; | 
|---|
| 2631 | } | 
|---|
| 2632 |  | 
|---|
| 2633 | int push_cpu_stop(void *arg) | 
|---|
| 2634 | { | 
|---|
| 2635 | struct rq *lowest_rq = NULL, *rq = this_rq(); | 
|---|
| 2636 | struct task_struct *p = arg; | 
|---|
| 2637 |  | 
|---|
| 2638 | raw_spin_lock_irq(&p->pi_lock); | 
|---|
| 2639 | raw_spin_rq_lock(rq); | 
|---|
| 2640 |  | 
|---|
| 2641 | if (task_rq(p) != rq) | 
|---|
| 2642 | goto out_unlock; | 
|---|
| 2643 |  | 
|---|
| 2644 | if (is_migration_disabled(p)) { | 
|---|
| 2645 | p->migration_flags |= MDF_PUSH; | 
|---|
| 2646 | goto out_unlock; | 
|---|
| 2647 | } | 
|---|
| 2648 |  | 
|---|
| 2649 | p->migration_flags &= ~MDF_PUSH; | 
|---|
| 2650 |  | 
|---|
| 2651 | if (p->sched_class->find_lock_rq) | 
|---|
| 2652 | lowest_rq = p->sched_class->find_lock_rq(p, rq); | 
|---|
| 2653 |  | 
|---|
| 2654 | if (!lowest_rq) | 
|---|
| 2655 | goto out_unlock; | 
|---|
| 2656 |  | 
|---|
| 2657 | // XXX validate p is still the highest prio task | 
|---|
| 2658 | if (task_rq(p) == rq) { | 
|---|
| 2659 | move_queued_task_locked(src_rq: rq, dst_rq: lowest_rq, task: p); | 
|---|
| 2660 | resched_curr(rq: lowest_rq); | 
|---|
| 2661 | } | 
|---|
| 2662 |  | 
|---|
| 2663 | double_unlock_balance(this_rq: rq, busiest: lowest_rq); | 
|---|
| 2664 |  | 
|---|
| 2665 | out_unlock: | 
|---|
| 2666 | rq->push_busy = false; | 
|---|
| 2667 | raw_spin_rq_unlock(rq); | 
|---|
| 2668 | raw_spin_unlock_irq(&p->pi_lock); | 
|---|
| 2669 |  | 
|---|
| 2670 | put_task_struct(t: p); | 
|---|
| 2671 | return 0; | 
|---|
| 2672 | } | 
|---|
| 2673 |  | 
|---|
| 2674 | /* | 
|---|
| 2675 | * sched_class::set_cpus_allowed must do the below, but is not required to | 
|---|
| 2676 | * actually call this function. | 
|---|
| 2677 | */ | 
|---|
| 2678 | void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) | 
|---|
| 2679 | { | 
|---|
| 2680 | if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { | 
|---|
| 2681 | p->cpus_ptr = ctx->new_mask; | 
|---|
| 2682 | return; | 
|---|
| 2683 | } | 
|---|
| 2684 |  | 
|---|
| 2685 | cpumask_copy(dstp: &p->cpus_mask, srcp: ctx->new_mask); | 
|---|
| 2686 | p->nr_cpus_allowed = cpumask_weight(srcp: ctx->new_mask); | 
|---|
| 2687 |  | 
|---|
| 2688 | /* | 
|---|
| 2689 | * Swap in a new user_cpus_ptr if SCA_USER flag set | 
|---|
| 2690 | */ | 
|---|
| 2691 | if (ctx->flags & SCA_USER) | 
|---|
| 2692 | swap(p->user_cpus_ptr, ctx->user_mask); | 
|---|
| 2693 | } | 
|---|
| 2694 |  | 
|---|
| 2695 | static void | 
|---|
| 2696 | __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) | 
|---|
| 2697 | { | 
|---|
| 2698 | struct rq *rq = task_rq(p); | 
|---|
| 2699 | bool queued, running; | 
|---|
| 2700 |  | 
|---|
| 2701 | /* | 
|---|
| 2702 | * This here violates the locking rules for affinity, since we're only | 
|---|
| 2703 | * supposed to change these variables while holding both rq->lock and | 
|---|
| 2704 | * p->pi_lock. | 
|---|
| 2705 | * | 
|---|
| 2706 | * HOWEVER, it magically works, because ttwu() is the only code that | 
|---|
| 2707 | * accesses these variables under p->pi_lock and only does so after | 
|---|
| 2708 | * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() | 
|---|
| 2709 | * before finish_task(). | 
|---|
| 2710 | * | 
|---|
| 2711 | * XXX do further audits, this smells like something putrid. | 
|---|
| 2712 | */ | 
|---|
| 2713 | if (ctx->flags & SCA_MIGRATE_DISABLE) | 
|---|
| 2714 | WARN_ON_ONCE(!p->on_cpu); | 
|---|
| 2715 | else | 
|---|
| 2716 | lockdep_assert_held(&p->pi_lock); | 
|---|
| 2717 |  | 
|---|
| 2718 | queued = task_on_rq_queued(p); | 
|---|
| 2719 | running = task_current_donor(rq, p); | 
|---|
| 2720 |  | 
|---|
| 2721 | if (queued) { | 
|---|
| 2722 | /* | 
|---|
| 2723 | * Because __kthread_bind() calls this on blocked tasks without | 
|---|
| 2724 | * holding rq->lock. | 
|---|
| 2725 | */ | 
|---|
| 2726 | lockdep_assert_rq_held(rq); | 
|---|
| 2727 | dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); | 
|---|
| 2728 | } | 
|---|
| 2729 | if (running) | 
|---|
| 2730 | put_prev_task(rq, prev: p); | 
|---|
| 2731 |  | 
|---|
| 2732 | p->sched_class->set_cpus_allowed(p, ctx); | 
|---|
| 2733 | mm_set_cpus_allowed(mm: p->mm, cpumask: ctx->new_mask); | 
|---|
| 2734 |  | 
|---|
| 2735 | if (queued) | 
|---|
| 2736 | enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); | 
|---|
| 2737 | if (running) | 
|---|
| 2738 | set_next_task(rq, next: p); | 
|---|
| 2739 | } | 
|---|
| 2740 |  | 
|---|
| 2741 | /* | 
|---|
| 2742 | * Used for kthread_bind() and select_fallback_rq(), in both cases the user | 
|---|
| 2743 | * affinity (if any) should be destroyed too. | 
|---|
| 2744 | */ | 
|---|
| 2745 | void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) | 
|---|
| 2746 | { | 
|---|
| 2747 | struct affinity_context ac = { | 
|---|
| 2748 | .new_mask  = new_mask, | 
|---|
| 2749 | .user_mask = NULL, | 
|---|
| 2750 | .flags     = SCA_USER,	/* clear the user requested mask */ | 
|---|
| 2751 | }; | 
|---|
| 2752 | union cpumask_rcuhead { | 
|---|
| 2753 | cpumask_t cpumask; | 
|---|
| 2754 | struct rcu_head rcu; | 
|---|
| 2755 | }; | 
|---|
| 2756 |  | 
|---|
| 2757 | __do_set_cpus_allowed(p, ctx: &ac); | 
|---|
| 2758 |  | 
|---|
| 2759 | /* | 
|---|
| 2760 | * Because this is called with p->pi_lock held, it is not possible | 
|---|
| 2761 | * to use kfree() here (when PREEMPT_RT=y), therefore punt to using | 
|---|
| 2762 | * kfree_rcu(). | 
|---|
| 2763 | */ | 
|---|
| 2764 | kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); | 
|---|
| 2765 | } | 
|---|
| 2766 |  | 
|---|
| 2767 | int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, | 
|---|
| 2768 | int node) | 
|---|
| 2769 | { | 
|---|
| 2770 | cpumask_t *user_mask; | 
|---|
| 2771 | unsigned long flags; | 
|---|
| 2772 |  | 
|---|
| 2773 | /* | 
|---|
| 2774 | * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's | 
|---|
| 2775 | * may differ by now due to racing. | 
|---|
| 2776 | */ | 
|---|
| 2777 | dst->user_cpus_ptr = NULL; | 
|---|
| 2778 |  | 
|---|
| 2779 | /* | 
|---|
| 2780 | * This check is racy and losing the race is a valid situation. | 
|---|
| 2781 | * It is not worth the extra overhead of taking the pi_lock on | 
|---|
| 2782 | * every fork/clone. | 
|---|
| 2783 | */ | 
|---|
| 2784 | if (data_race(!src->user_cpus_ptr)) | 
|---|
| 2785 | return 0; | 
|---|
| 2786 |  | 
|---|
| 2787 | user_mask = alloc_user_cpus_ptr(node); | 
|---|
| 2788 | if (!user_mask) | 
|---|
| 2789 | return -ENOMEM; | 
|---|
| 2790 |  | 
|---|
| 2791 | /* | 
|---|
| 2792 | * Use pi_lock to protect content of user_cpus_ptr | 
|---|
| 2793 | * | 
|---|
| 2794 | * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent | 
|---|
| 2795 | * do_set_cpus_allowed(). | 
|---|
| 2796 | */ | 
|---|
| 2797 | raw_spin_lock_irqsave(&src->pi_lock, flags); | 
|---|
| 2798 | if (src->user_cpus_ptr) { | 
|---|
| 2799 | swap(dst->user_cpus_ptr, user_mask); | 
|---|
| 2800 | cpumask_copy(dstp: dst->user_cpus_ptr, srcp: src->user_cpus_ptr); | 
|---|
| 2801 | } | 
|---|
| 2802 | raw_spin_unlock_irqrestore(&src->pi_lock, flags); | 
|---|
| 2803 |  | 
|---|
| 2804 | if (unlikely(user_mask)) | 
|---|
| 2805 | kfree(objp: user_mask); | 
|---|
| 2806 |  | 
|---|
| 2807 | return 0; | 
|---|
| 2808 | } | 
|---|
| 2809 |  | 
|---|
| 2810 | static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) | 
|---|
| 2811 | { | 
|---|
| 2812 | struct cpumask *user_mask = NULL; | 
|---|
| 2813 |  | 
|---|
| 2814 | swap(p->user_cpus_ptr, user_mask); | 
|---|
| 2815 |  | 
|---|
| 2816 | return user_mask; | 
|---|
| 2817 | } | 
|---|
| 2818 |  | 
|---|
| 2819 | void release_user_cpus_ptr(struct task_struct *p) | 
|---|
| 2820 | { | 
|---|
| 2821 | kfree(objp: clear_user_cpus_ptr(p)); | 
|---|
| 2822 | } | 
|---|
| 2823 |  | 
|---|
| 2824 | /* | 
|---|
| 2825 | * This function is wildly self concurrent; here be dragons. | 
|---|
| 2826 | * | 
|---|
| 2827 | * | 
|---|
| 2828 | * When given a valid mask, __set_cpus_allowed_ptr() must block until the | 
|---|
| 2829 | * designated task is enqueued on an allowed CPU. If that task is currently | 
|---|
| 2830 | * running, we have to kick it out using the CPU stopper. | 
|---|
| 2831 | * | 
|---|
| 2832 | * Migrate-Disable comes along and tramples all over our nice sandcastle. | 
|---|
| 2833 | * Consider: | 
|---|
| 2834 | * | 
|---|
| 2835 | *     Initial conditions: P0->cpus_mask = [0, 1] | 
|---|
| 2836 | * | 
|---|
| 2837 | *     P0@CPU0                  P1 | 
|---|
| 2838 | * | 
|---|
| 2839 | *     migrate_disable(); | 
|---|
| 2840 | *     <preempted> | 
|---|
| 2841 | *                              set_cpus_allowed_ptr(P0, [1]); | 
|---|
| 2842 | * | 
|---|
| 2843 | * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes | 
|---|
| 2844 | * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). | 
|---|
| 2845 | * This means we need the following scheme: | 
|---|
| 2846 | * | 
|---|
| 2847 | *     P0@CPU0                  P1 | 
|---|
| 2848 | * | 
|---|
| 2849 | *     migrate_disable(); | 
|---|
| 2850 | *     <preempted> | 
|---|
| 2851 | *                              set_cpus_allowed_ptr(P0, [1]); | 
|---|
| 2852 | *                                <blocks> | 
|---|
| 2853 | *     <resumes> | 
|---|
| 2854 | *     migrate_enable(); | 
|---|
| 2855 | *       __set_cpus_allowed_ptr(); | 
|---|
| 2856 | *       <wakes local stopper> | 
|---|
| 2857 | *                         `--> <woken on migration completion> | 
|---|
| 2858 | * | 
|---|
| 2859 | * Now the fun stuff: there may be several P1-like tasks, i.e. multiple | 
|---|
| 2860 | * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any | 
|---|
| 2861 | * task p are serialized by p->pi_lock, which we can leverage: the one that | 
|---|
| 2862 | * should come into effect at the end of the Migrate-Disable region is the last | 
|---|
| 2863 | * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), | 
|---|
| 2864 | * but we still need to properly signal those waiting tasks at the appropriate | 
|---|
| 2865 | * moment. | 
|---|
| 2866 | * | 
|---|
| 2867 | * This is implemented using struct set_affinity_pending. The first | 
|---|
| 2868 | * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will | 
|---|
| 2869 | * setup an instance of that struct and install it on the targeted task_struct. | 
|---|
| 2870 | * Any and all further callers will reuse that instance. Those then wait for | 
|---|
| 2871 | * a completion signaled at the tail of the CPU stopper callback (1), triggered | 
|---|
| 2872 | * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). | 
|---|
| 2873 | * | 
|---|
| 2874 | * | 
|---|
| 2875 | * (1) In the cases covered above. There is one more where the completion is | 
|---|
| 2876 | * signaled within affine_move_task() itself: when a subsequent affinity request | 
|---|
| 2877 | * occurs after the stopper bailed out due to the targeted task still being | 
|---|
| 2878 | * Migrate-Disable. Consider: | 
|---|
| 2879 | * | 
|---|
| 2880 | *     Initial conditions: P0->cpus_mask = [0, 1] | 
|---|
| 2881 | * | 
|---|
| 2882 | *     CPU0		  P1				P2 | 
|---|
| 2883 | *     <P0> | 
|---|
| 2884 | *       migrate_disable(); | 
|---|
| 2885 | *       <preempted> | 
|---|
| 2886 | *                        set_cpus_allowed_ptr(P0, [1]); | 
|---|
| 2887 | *                          <blocks> | 
|---|
| 2888 | *     <migration/0> | 
|---|
| 2889 | *       migration_cpu_stop() | 
|---|
| 2890 | *         is_migration_disabled() | 
|---|
| 2891 | *           <bails> | 
|---|
| 2892 | *                                                       set_cpus_allowed_ptr(P0, [0, 1]); | 
|---|
| 2893 | *                                                         <signal completion> | 
|---|
| 2894 | *                          <awakes> | 
|---|
| 2895 | * | 
|---|
| 2896 | * Note that the above is safe vs a concurrent migrate_enable(), as any | 
|---|
| 2897 | * pending affinity completion is preceded by an uninstallation of | 
|---|
| 2898 | * p->migration_pending done with p->pi_lock held. | 
|---|
| 2899 | */ | 
|---|
| 2900 | static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, | 
|---|
| 2901 | int dest_cpu, unsigned int flags) | 
|---|
| 2902 | __releases(rq->lock) | 
|---|
| 2903 | __releases(p->pi_lock) | 
|---|
| 2904 | { | 
|---|
| 2905 | struct set_affinity_pending my_pending = { }, *pending = NULL; | 
|---|
| 2906 | bool stop_pending, complete = false; | 
|---|
| 2907 |  | 
|---|
| 2908 | /* | 
|---|
| 2909 | * Can the task run on the task's current CPU? If so, we're done | 
|---|
| 2910 | * | 
|---|
| 2911 | * We are also done if the task is the current donor, boosting a lock- | 
|---|
| 2912 | * holding proxy, (and potentially has been migrated outside its | 
|---|
| 2913 | * current or previous affinity mask) | 
|---|
| 2914 | */ | 
|---|
| 2915 | if (cpumask_test_cpu(cpu: task_cpu(p), cpumask: &p->cpus_mask) || | 
|---|
| 2916 | (task_current_donor(rq, p) && !task_current(rq, p))) { | 
|---|
| 2917 | struct task_struct *push_task = NULL; | 
|---|
| 2918 |  | 
|---|
| 2919 | if ((flags & SCA_MIGRATE_ENABLE) && | 
|---|
| 2920 | (p->migration_flags & MDF_PUSH) && !rq->push_busy) { | 
|---|
| 2921 | rq->push_busy = true; | 
|---|
| 2922 | push_task = get_task_struct(t: p); | 
|---|
| 2923 | } | 
|---|
| 2924 |  | 
|---|
| 2925 | /* | 
|---|
| 2926 | * If there are pending waiters, but no pending stop_work, | 
|---|
| 2927 | * then complete now. | 
|---|
| 2928 | */ | 
|---|
| 2929 | pending = p->migration_pending; | 
|---|
| 2930 | if (pending && !pending->stop_pending) { | 
|---|
| 2931 | p->migration_pending = NULL; | 
|---|
| 2932 | complete = true; | 
|---|
| 2933 | } | 
|---|
| 2934 |  | 
|---|
| 2935 | preempt_disable(); | 
|---|
| 2936 | task_rq_unlock(rq, p, rf); | 
|---|
| 2937 | if (push_task) { | 
|---|
| 2938 | stop_one_cpu_nowait(cpu: rq->cpu, fn: push_cpu_stop, | 
|---|
| 2939 | arg: p, work_buf: &rq->push_work); | 
|---|
| 2940 | } | 
|---|
| 2941 | preempt_enable(); | 
|---|
| 2942 |  | 
|---|
| 2943 | if (complete) | 
|---|
| 2944 | complete_all(&pending->done); | 
|---|
| 2945 |  | 
|---|
| 2946 | return 0; | 
|---|
| 2947 | } | 
|---|
| 2948 |  | 
|---|
| 2949 | if (!(flags & SCA_MIGRATE_ENABLE)) { | 
|---|
| 2950 | /* serialized by p->pi_lock */ | 
|---|
| 2951 | if (!p->migration_pending) { | 
|---|
| 2952 | /* Install the request */ | 
|---|
| 2953 | refcount_set(r: &my_pending.refs, n: 1); | 
|---|
| 2954 | init_completion(x: &my_pending.done); | 
|---|
| 2955 | my_pending.arg = (struct migration_arg) { | 
|---|
| 2956 | .task = p, | 
|---|
| 2957 | .dest_cpu = dest_cpu, | 
|---|
| 2958 | .pending = &my_pending, | 
|---|
| 2959 | }; | 
|---|
| 2960 |  | 
|---|
| 2961 | p->migration_pending = &my_pending; | 
|---|
| 2962 | } else { | 
|---|
| 2963 | pending = p->migration_pending; | 
|---|
| 2964 | refcount_inc(r: &pending->refs); | 
|---|
| 2965 | /* | 
|---|
| 2966 | * Affinity has changed, but we've already installed a | 
|---|
| 2967 | * pending. migration_cpu_stop() *must* see this, else | 
|---|
| 2968 | * we risk a completion of the pending despite having a | 
|---|
| 2969 | * task on a disallowed CPU. | 
|---|
| 2970 | * | 
|---|
| 2971 | * Serialized by p->pi_lock, so this is safe. | 
|---|
| 2972 | */ | 
|---|
| 2973 | pending->arg.dest_cpu = dest_cpu; | 
|---|
| 2974 | } | 
|---|
| 2975 | } | 
|---|
| 2976 | pending = p->migration_pending; | 
|---|
| 2977 | /* | 
|---|
| 2978 | * - !MIGRATE_ENABLE: | 
|---|
| 2979 | *   we'll have installed a pending if there wasn't one already. | 
|---|
| 2980 | * | 
|---|
| 2981 | * - MIGRATE_ENABLE: | 
|---|
| 2982 | *   we're here because the current CPU isn't matching anymore, | 
|---|
| 2983 | *   the only way that can happen is because of a concurrent | 
|---|
| 2984 | *   set_cpus_allowed_ptr() call, which should then still be | 
|---|
| 2985 | *   pending completion. | 
|---|
| 2986 | * | 
|---|
| 2987 | * Either way, we really should have a @pending here. | 
|---|
| 2988 | */ | 
|---|
| 2989 | if (WARN_ON_ONCE(!pending)) { | 
|---|
| 2990 | task_rq_unlock(rq, p, rf); | 
|---|
| 2991 | return -EINVAL; | 
|---|
| 2992 | } | 
|---|
| 2993 |  | 
|---|
| 2994 | if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { | 
|---|
| 2995 | /* | 
|---|
| 2996 | * MIGRATE_ENABLE gets here because 'p == current', but for | 
|---|
| 2997 | * anything else we cannot do is_migration_disabled(), punt | 
|---|
| 2998 | * and have the stopper function handle it all race-free. | 
|---|
| 2999 | */ | 
|---|
| 3000 | stop_pending = pending->stop_pending; | 
|---|
| 3001 | if (!stop_pending) | 
|---|
| 3002 | pending->stop_pending = true; | 
|---|
| 3003 |  | 
|---|
| 3004 | if (flags & SCA_MIGRATE_ENABLE) | 
|---|
| 3005 | p->migration_flags &= ~MDF_PUSH; | 
|---|
| 3006 |  | 
|---|
| 3007 | preempt_disable(); | 
|---|
| 3008 | task_rq_unlock(rq, p, rf); | 
|---|
| 3009 | if (!stop_pending) { | 
|---|
| 3010 | stop_one_cpu_nowait(cpu: cpu_of(rq), fn: migration_cpu_stop, | 
|---|
| 3011 | arg: &pending->arg, work_buf: &pending->stop_work); | 
|---|
| 3012 | } | 
|---|
| 3013 | preempt_enable(); | 
|---|
| 3014 |  | 
|---|
| 3015 | if (flags & SCA_MIGRATE_ENABLE) | 
|---|
| 3016 | return 0; | 
|---|
| 3017 | } else { | 
|---|
| 3018 |  | 
|---|
| 3019 | if (!is_migration_disabled(p)) { | 
|---|
| 3020 | if (task_on_rq_queued(p)) | 
|---|
| 3021 | rq = move_queued_task(rq, rf, p, new_cpu: dest_cpu); | 
|---|
| 3022 |  | 
|---|
| 3023 | if (!pending->stop_pending) { | 
|---|
| 3024 | p->migration_pending = NULL; | 
|---|
| 3025 | complete = true; | 
|---|
| 3026 | } | 
|---|
| 3027 | } | 
|---|
| 3028 | task_rq_unlock(rq, p, rf); | 
|---|
| 3029 |  | 
|---|
| 3030 | if (complete) | 
|---|
| 3031 | complete_all(&pending->done); | 
|---|
| 3032 | } | 
|---|
| 3033 |  | 
|---|
| 3034 | wait_for_completion(&pending->done); | 
|---|
| 3035 |  | 
|---|
| 3036 | if (refcount_dec_and_test(r: &pending->refs)) | 
|---|
| 3037 | wake_up_var(var: &pending->refs); /* No UaF, just an address */ | 
|---|
| 3038 |  | 
|---|
| 3039 | /* | 
|---|
| 3040 | * Block the original owner of &pending until all subsequent callers | 
|---|
| 3041 | * have seen the completion and decremented the refcount | 
|---|
| 3042 | */ | 
|---|
| 3043 | wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); | 
|---|
| 3044 |  | 
|---|
| 3045 | /* ARGH */ | 
|---|
| 3046 | WARN_ON_ONCE(my_pending.stop_pending); | 
|---|
| 3047 |  | 
|---|
| 3048 | return 0; | 
|---|
| 3049 | } | 
|---|
| 3050 |  | 
|---|
| 3051 | /* | 
|---|
| 3052 | * Called with both p->pi_lock and rq->lock held; drops both before returning. | 
|---|
| 3053 | */ | 
|---|
| 3054 | static int __set_cpus_allowed_ptr_locked(struct task_struct *p, | 
|---|
| 3055 | struct affinity_context *ctx, | 
|---|
| 3056 | struct rq *rq, | 
|---|
| 3057 | struct rq_flags *rf) | 
|---|
| 3058 | __releases(rq->lock) | 
|---|
| 3059 | __releases(p->pi_lock) | 
|---|
| 3060 | { | 
|---|
| 3061 | const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); | 
|---|
| 3062 | const struct cpumask *cpu_valid_mask = cpu_active_mask; | 
|---|
| 3063 | bool kthread = p->flags & PF_KTHREAD; | 
|---|
| 3064 | unsigned int dest_cpu; | 
|---|
| 3065 | int ret = 0; | 
|---|
| 3066 |  | 
|---|
| 3067 | update_rq_clock(rq); | 
|---|
| 3068 |  | 
|---|
| 3069 | if (kthread || is_migration_disabled(p)) { | 
|---|
| 3070 | /* | 
|---|
| 3071 | * Kernel threads are allowed on online && !active CPUs, | 
|---|
| 3072 | * however, during cpu-hot-unplug, even these might get pushed | 
|---|
| 3073 | * away if not KTHREAD_IS_PER_CPU. | 
|---|
| 3074 | * | 
|---|
| 3075 | * Specifically, migration_disabled() tasks must not fail the | 
|---|
| 3076 | * cpumask_any_and_distribute() pick below, esp. so on | 
|---|
| 3077 | * SCA_MIGRATE_ENABLE, otherwise we'll not call | 
|---|
| 3078 | * set_cpus_allowed_common() and actually reset p->cpus_ptr. | 
|---|
| 3079 | */ | 
|---|
| 3080 | cpu_valid_mask = cpu_online_mask; | 
|---|
| 3081 | } | 
|---|
| 3082 |  | 
|---|
| 3083 | if (!kthread && !cpumask_subset(src1p: ctx->new_mask, src2p: cpu_allowed_mask)) { | 
|---|
| 3084 | ret = -EINVAL; | 
|---|
| 3085 | goto out; | 
|---|
| 3086 | } | 
|---|
| 3087 |  | 
|---|
| 3088 | /* | 
|---|
| 3089 | * Must re-check here, to close a race against __kthread_bind(), | 
|---|
| 3090 | * sched_setaffinity() is not guaranteed to observe the flag. | 
|---|
| 3091 | */ | 
|---|
| 3092 | if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { | 
|---|
| 3093 | ret = -EINVAL; | 
|---|
| 3094 | goto out; | 
|---|
| 3095 | } | 
|---|
| 3096 |  | 
|---|
| 3097 | if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { | 
|---|
| 3098 | if (cpumask_equal(src1p: &p->cpus_mask, src2p: ctx->new_mask)) { | 
|---|
| 3099 | if (ctx->flags & SCA_USER) | 
|---|
| 3100 | swap(p->user_cpus_ptr, ctx->user_mask); | 
|---|
| 3101 | goto out; | 
|---|
| 3102 | } | 
|---|
| 3103 |  | 
|---|
| 3104 | if (WARN_ON_ONCE(p == current && | 
|---|
| 3105 | is_migration_disabled(p) && | 
|---|
| 3106 | !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { | 
|---|
| 3107 | ret = -EBUSY; | 
|---|
| 3108 | goto out; | 
|---|
| 3109 | } | 
|---|
| 3110 | } | 
|---|
| 3111 |  | 
|---|
| 3112 | /* | 
|---|
| 3113 | * Picking a ~random cpu helps in cases where we are changing affinity | 
|---|
| 3114 | * for groups of tasks (ie. cpuset), so that load balancing is not | 
|---|
| 3115 | * immediately required to distribute the tasks within their new mask. | 
|---|
| 3116 | */ | 
|---|
| 3117 | dest_cpu = cpumask_any_and_distribute(src1p: cpu_valid_mask, src2p: ctx->new_mask); | 
|---|
| 3118 | if (dest_cpu >= nr_cpu_ids) { | 
|---|
| 3119 | ret = -EINVAL; | 
|---|
| 3120 | goto out; | 
|---|
| 3121 | } | 
|---|
| 3122 |  | 
|---|
| 3123 | __do_set_cpus_allowed(p, ctx); | 
|---|
| 3124 |  | 
|---|
| 3125 | return affine_move_task(rq, p, rf, dest_cpu, flags: ctx->flags); | 
|---|
| 3126 |  | 
|---|
| 3127 | out: | 
|---|
| 3128 | task_rq_unlock(rq, p, rf); | 
|---|
| 3129 |  | 
|---|
| 3130 | return ret; | 
|---|
| 3131 | } | 
|---|
| 3132 |  | 
|---|
| 3133 | /* | 
|---|
| 3134 | * Change a given task's CPU affinity. Migrate the thread to a | 
|---|
| 3135 | * proper CPU and schedule it away if the CPU it's executing on | 
|---|
| 3136 | * is removed from the allowed bitmask. | 
|---|
| 3137 | * | 
|---|
| 3138 | * NOTE: the caller must have a valid reference to the task, the | 
|---|
| 3139 | * task must not exit() & deallocate itself prematurely. The | 
|---|
| 3140 | * call is not atomic; no spinlocks may be held. | 
|---|
| 3141 | */ | 
|---|
| 3142 | int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) | 
|---|
| 3143 | { | 
|---|
| 3144 | struct rq_flags rf; | 
|---|
| 3145 | struct rq *rq; | 
|---|
| 3146 |  | 
|---|
| 3147 | rq = task_rq_lock(p, rf: &rf); | 
|---|
| 3148 | /* | 
|---|
| 3149 | * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* | 
|---|
| 3150 | * flags are set. | 
|---|
| 3151 | */ | 
|---|
| 3152 | if (p->user_cpus_ptr && | 
|---|
| 3153 | !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && | 
|---|
| 3154 | cpumask_and(dstp: rq->scratch_mask, src1p: ctx->new_mask, src2p: p->user_cpus_ptr)) | 
|---|
| 3155 | ctx->new_mask = rq->scratch_mask; | 
|---|
| 3156 |  | 
|---|
| 3157 | return __set_cpus_allowed_ptr_locked(p, ctx, rq, rf: &rf); | 
|---|
| 3158 | } | 
|---|
| 3159 |  | 
|---|
| 3160 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | 
|---|
| 3161 | { | 
|---|
| 3162 | struct affinity_context ac = { | 
|---|
| 3163 | .new_mask  = new_mask, | 
|---|
| 3164 | .flags     = 0, | 
|---|
| 3165 | }; | 
|---|
| 3166 |  | 
|---|
| 3167 | return __set_cpus_allowed_ptr(p, ctx: &ac); | 
|---|
| 3168 | } | 
|---|
| 3169 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | 
|---|
| 3170 |  | 
|---|
| 3171 | /* | 
|---|
| 3172 | * Change a given task's CPU affinity to the intersection of its current | 
|---|
| 3173 | * affinity mask and @subset_mask, writing the resulting mask to @new_mask. | 
|---|
| 3174 | * If user_cpus_ptr is defined, use it as the basis for restricting CPU | 
|---|
| 3175 | * affinity or use cpu_online_mask instead. | 
|---|
| 3176 | * | 
|---|
| 3177 | * If the resulting mask is empty, leave the affinity unchanged and return | 
|---|
| 3178 | * -EINVAL. | 
|---|
| 3179 | */ | 
|---|
| 3180 | static int restrict_cpus_allowed_ptr(struct task_struct *p, | 
|---|
| 3181 | struct cpumask *new_mask, | 
|---|
| 3182 | const struct cpumask *subset_mask) | 
|---|
| 3183 | { | 
|---|
| 3184 | struct affinity_context ac = { | 
|---|
| 3185 | .new_mask  = new_mask, | 
|---|
| 3186 | .flags     = 0, | 
|---|
| 3187 | }; | 
|---|
| 3188 | struct rq_flags rf; | 
|---|
| 3189 | struct rq *rq; | 
|---|
| 3190 | int err; | 
|---|
| 3191 |  | 
|---|
| 3192 | rq = task_rq_lock(p, rf: &rf); | 
|---|
| 3193 |  | 
|---|
| 3194 | /* | 
|---|
| 3195 | * Forcefully restricting the affinity of a deadline task is | 
|---|
| 3196 | * likely to cause problems, so fail and noisily override the | 
|---|
| 3197 | * mask entirely. | 
|---|
| 3198 | */ | 
|---|
| 3199 | if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { | 
|---|
| 3200 | err = -EPERM; | 
|---|
| 3201 | goto err_unlock; | 
|---|
| 3202 | } | 
|---|
| 3203 |  | 
|---|
| 3204 | if (!cpumask_and(dstp: new_mask, src1p: task_user_cpus(p), src2p: subset_mask)) { | 
|---|
| 3205 | err = -EINVAL; | 
|---|
| 3206 | goto err_unlock; | 
|---|
| 3207 | } | 
|---|
| 3208 |  | 
|---|
| 3209 | return __set_cpus_allowed_ptr_locked(p, ctx: &ac, rq, rf: &rf); | 
|---|
| 3210 |  | 
|---|
| 3211 | err_unlock: | 
|---|
| 3212 | task_rq_unlock(rq, p, rf: &rf); | 
|---|
| 3213 | return err; | 
|---|
| 3214 | } | 
|---|
| 3215 |  | 
|---|
| 3216 | /* | 
|---|
| 3217 | * Restrict the CPU affinity of task @p so that it is a subset of | 
|---|
| 3218 | * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the | 
|---|
| 3219 | * old affinity mask. If the resulting mask is empty, we warn and walk | 
|---|
| 3220 | * up the cpuset hierarchy until we find a suitable mask. | 
|---|
| 3221 | */ | 
|---|
| 3222 | void force_compatible_cpus_allowed_ptr(struct task_struct *p) | 
|---|
| 3223 | { | 
|---|
| 3224 | cpumask_var_t new_mask; | 
|---|
| 3225 | const struct cpumask *override_mask = task_cpu_possible_mask(p); | 
|---|
| 3226 |  | 
|---|
| 3227 | alloc_cpumask_var(mask: &new_mask, GFP_KERNEL); | 
|---|
| 3228 |  | 
|---|
| 3229 | /* | 
|---|
| 3230 | * __migrate_task() can fail silently in the face of concurrent | 
|---|
| 3231 | * offlining of the chosen destination CPU, so take the hotplug | 
|---|
| 3232 | * lock to ensure that the migration succeeds. | 
|---|
| 3233 | */ | 
|---|
| 3234 | cpus_read_lock(); | 
|---|
| 3235 | if (!cpumask_available(mask: new_mask)) | 
|---|
| 3236 | goto out_set_mask; | 
|---|
| 3237 |  | 
|---|
| 3238 | if (!restrict_cpus_allowed_ptr(p, new_mask, subset_mask: override_mask)) | 
|---|
| 3239 | goto out_free_mask; | 
|---|
| 3240 |  | 
|---|
| 3241 | /* | 
|---|
| 3242 | * We failed to find a valid subset of the affinity mask for the | 
|---|
| 3243 | * task, so override it based on its cpuset hierarchy. | 
|---|
| 3244 | */ | 
|---|
| 3245 | cpuset_cpus_allowed(p, mask: new_mask); | 
|---|
| 3246 | override_mask = new_mask; | 
|---|
| 3247 |  | 
|---|
| 3248 | out_set_mask: | 
|---|
| 3249 | if (printk_ratelimit()) { | 
|---|
| 3250 | printk_deferred( "Overriding affinity for process %d (%s) to CPUs %*pbl\n", | 
|---|
| 3251 | task_pid_nr(p), p->comm, | 
|---|
| 3252 | cpumask_pr_args(override_mask)); | 
|---|
| 3253 | } | 
|---|
| 3254 |  | 
|---|
| 3255 | WARN_ON(set_cpus_allowed_ptr(p, override_mask)); | 
|---|
| 3256 | out_free_mask: | 
|---|
| 3257 | cpus_read_unlock(); | 
|---|
| 3258 | free_cpumask_var(mask: new_mask); | 
|---|
| 3259 | } | 
|---|
| 3260 |  | 
|---|
| 3261 | /* | 
|---|
| 3262 | * Restore the affinity of a task @p which was previously restricted by a | 
|---|
| 3263 | * call to force_compatible_cpus_allowed_ptr(). | 
|---|
| 3264 | * | 
|---|
| 3265 | * It is the caller's responsibility to serialise this with any calls to | 
|---|
| 3266 | * force_compatible_cpus_allowed_ptr(@p). | 
|---|
| 3267 | */ | 
|---|
| 3268 | void relax_compatible_cpus_allowed_ptr(struct task_struct *p) | 
|---|
| 3269 | { | 
|---|
| 3270 | struct affinity_context ac = { | 
|---|
| 3271 | .new_mask  = task_user_cpus(p), | 
|---|
| 3272 | .flags     = 0, | 
|---|
| 3273 | }; | 
|---|
| 3274 | int ret; | 
|---|
| 3275 |  | 
|---|
| 3276 | /* | 
|---|
| 3277 | * Try to restore the old affinity mask with __sched_setaffinity(). | 
|---|
| 3278 | * Cpuset masking will be done there too. | 
|---|
| 3279 | */ | 
|---|
| 3280 | ret = __sched_setaffinity(p, ctx: &ac); | 
|---|
| 3281 | WARN_ON_ONCE(ret); | 
|---|
| 3282 | } | 
|---|
| 3283 |  | 
|---|
| 3284 | #ifdef CONFIG_SMP | 
|---|
| 3285 |  | 
|---|
| 3286 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 
|---|
| 3287 | { | 
|---|
| 3288 | unsigned int state = READ_ONCE(p->__state); | 
|---|
| 3289 |  | 
|---|
| 3290 | /* | 
|---|
| 3291 | * We should never call set_task_cpu() on a blocked task, | 
|---|
| 3292 | * ttwu() will sort out the placement. | 
|---|
| 3293 | */ | 
|---|
| 3294 | WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); | 
|---|
| 3295 |  | 
|---|
| 3296 | /* | 
|---|
| 3297 | * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, | 
|---|
| 3298 | * because schedstat_wait_{start,end} rebase migrating task's wait_start | 
|---|
| 3299 | * time relying on p->on_rq. | 
|---|
| 3300 | */ | 
|---|
| 3301 | WARN_ON_ONCE(state == TASK_RUNNING && | 
|---|
| 3302 | p->sched_class == &fair_sched_class && | 
|---|
| 3303 | (p->on_rq && !task_on_rq_migrating(p))); | 
|---|
| 3304 |  | 
|---|
| 3305 | #ifdef CONFIG_LOCKDEP | 
|---|
| 3306 | /* | 
|---|
| 3307 | * The caller should hold either p->pi_lock or rq->lock, when changing | 
|---|
| 3308 | * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. | 
|---|
| 3309 | * | 
|---|
| 3310 | * sched_move_task() holds both and thus holding either pins the cgroup, | 
|---|
| 3311 | * see task_group(). | 
|---|
| 3312 | * | 
|---|
| 3313 | * Furthermore, all task_rq users should acquire both locks, see | 
|---|
| 3314 | * task_rq_lock(). | 
|---|
| 3315 | */ | 
|---|
| 3316 | WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || | 
|---|
| 3317 | lockdep_is_held(__rq_lockp(task_rq(p))))); | 
|---|
| 3318 | #endif | 
|---|
| 3319 | /* | 
|---|
| 3320 | * Clearly, migrating tasks to offline CPUs is a fairly daft thing. | 
|---|
| 3321 | */ | 
|---|
| 3322 | WARN_ON_ONCE(!cpu_online(new_cpu)); | 
|---|
| 3323 |  | 
|---|
| 3324 | WARN_ON_ONCE(is_migration_disabled(p)); | 
|---|
| 3325 |  | 
|---|
| 3326 | trace_sched_migrate_task(p, dest_cpu: new_cpu); | 
|---|
| 3327 |  | 
|---|
| 3328 | if (task_cpu(p) != new_cpu) { | 
|---|
| 3329 | if (p->sched_class->migrate_task_rq) | 
|---|
| 3330 | p->sched_class->migrate_task_rq(p, new_cpu); | 
|---|
| 3331 | p->se.nr_migrations++; | 
|---|
| 3332 | rseq_migrate(t: p); | 
|---|
| 3333 | sched_mm_cid_migrate_from(t: p); | 
|---|
| 3334 | perf_event_task_migrate(task: p); | 
|---|
| 3335 | } | 
|---|
| 3336 |  | 
|---|
| 3337 | __set_task_cpu(p, cpu: new_cpu); | 
|---|
| 3338 | } | 
|---|
| 3339 | #endif /* CONFIG_SMP */ | 
|---|
| 3340 |  | 
|---|
| 3341 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 3342 | static void __migrate_swap_task(struct task_struct *p, int cpu) | 
|---|
| 3343 | { | 
|---|
| 3344 | if (task_on_rq_queued(p)) { | 
|---|
| 3345 | struct rq *src_rq, *dst_rq; | 
|---|
| 3346 | struct rq_flags srf, drf; | 
|---|
| 3347 |  | 
|---|
| 3348 | src_rq = task_rq(p); | 
|---|
| 3349 | dst_rq = cpu_rq(cpu); | 
|---|
| 3350 |  | 
|---|
| 3351 | rq_pin_lock(src_rq, &srf); | 
|---|
| 3352 | rq_pin_lock(dst_rq, &drf); | 
|---|
| 3353 |  | 
|---|
| 3354 | move_queued_task_locked(src_rq, dst_rq, p); | 
|---|
| 3355 | wakeup_preempt(dst_rq, p, 0); | 
|---|
| 3356 |  | 
|---|
| 3357 | rq_unpin_lock(dst_rq, &drf); | 
|---|
| 3358 | rq_unpin_lock(src_rq, &srf); | 
|---|
| 3359 |  | 
|---|
| 3360 | } else { | 
|---|
| 3361 | /* | 
|---|
| 3362 | * Task isn't running anymore; make it appear like we migrated | 
|---|
| 3363 | * it before it went to sleep. This means on wakeup we make the | 
|---|
| 3364 | * previous CPU our target instead of where it really is. | 
|---|
| 3365 | */ | 
|---|
| 3366 | p->wake_cpu = cpu; | 
|---|
| 3367 | } | 
|---|
| 3368 | } | 
|---|
| 3369 |  | 
|---|
| 3370 | struct migration_swap_arg { | 
|---|
| 3371 | struct task_struct *src_task, *dst_task; | 
|---|
| 3372 | int src_cpu, dst_cpu; | 
|---|
| 3373 | }; | 
|---|
| 3374 |  | 
|---|
| 3375 | static int migrate_swap_stop(void *data) | 
|---|
| 3376 | { | 
|---|
| 3377 | struct migration_swap_arg *arg = data; | 
|---|
| 3378 | struct rq *src_rq, *dst_rq; | 
|---|
| 3379 |  | 
|---|
| 3380 | if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) | 
|---|
| 3381 | return -EAGAIN; | 
|---|
| 3382 |  | 
|---|
| 3383 | src_rq = cpu_rq(arg->src_cpu); | 
|---|
| 3384 | dst_rq = cpu_rq(arg->dst_cpu); | 
|---|
| 3385 |  | 
|---|
| 3386 | guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); | 
|---|
| 3387 | guard(double_rq_lock)(src_rq, dst_rq); | 
|---|
| 3388 |  | 
|---|
| 3389 | if (task_cpu(arg->dst_task) != arg->dst_cpu) | 
|---|
| 3390 | return -EAGAIN; | 
|---|
| 3391 |  | 
|---|
| 3392 | if (task_cpu(arg->src_task) != arg->src_cpu) | 
|---|
| 3393 | return -EAGAIN; | 
|---|
| 3394 |  | 
|---|
| 3395 | if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) | 
|---|
| 3396 | return -EAGAIN; | 
|---|
| 3397 |  | 
|---|
| 3398 | if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) | 
|---|
| 3399 | return -EAGAIN; | 
|---|
| 3400 |  | 
|---|
| 3401 | __migrate_swap_task(arg->src_task, arg->dst_cpu); | 
|---|
| 3402 | __migrate_swap_task(arg->dst_task, arg->src_cpu); | 
|---|
| 3403 |  | 
|---|
| 3404 | return 0; | 
|---|
| 3405 | } | 
|---|
| 3406 |  | 
|---|
| 3407 | /* | 
|---|
| 3408 | * Cross migrate two tasks | 
|---|
| 3409 | */ | 
|---|
| 3410 | int migrate_swap(struct task_struct *cur, struct task_struct *p, | 
|---|
| 3411 | int target_cpu, int curr_cpu) | 
|---|
| 3412 | { | 
|---|
| 3413 | struct migration_swap_arg arg; | 
|---|
| 3414 | int ret = -EINVAL; | 
|---|
| 3415 |  | 
|---|
| 3416 | arg = (struct migration_swap_arg){ | 
|---|
| 3417 | .src_task = cur, | 
|---|
| 3418 | .src_cpu = curr_cpu, | 
|---|
| 3419 | .dst_task = p, | 
|---|
| 3420 | .dst_cpu = target_cpu, | 
|---|
| 3421 | }; | 
|---|
| 3422 |  | 
|---|
| 3423 | if (arg.src_cpu == arg.dst_cpu) | 
|---|
| 3424 | goto out; | 
|---|
| 3425 |  | 
|---|
| 3426 | /* | 
|---|
| 3427 | * These three tests are all lockless; this is OK since all of them | 
|---|
| 3428 | * will be re-checked with proper locks held further down the line. | 
|---|
| 3429 | */ | 
|---|
| 3430 | if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) | 
|---|
| 3431 | goto out; | 
|---|
| 3432 |  | 
|---|
| 3433 | if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) | 
|---|
| 3434 | goto out; | 
|---|
| 3435 |  | 
|---|
| 3436 | if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) | 
|---|
| 3437 | goto out; | 
|---|
| 3438 |  | 
|---|
| 3439 | trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); | 
|---|
| 3440 | ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); | 
|---|
| 3441 |  | 
|---|
| 3442 | out: | 
|---|
| 3443 | return ret; | 
|---|
| 3444 | } | 
|---|
| 3445 | #endif /* CONFIG_NUMA_BALANCING */ | 
|---|
| 3446 |  | 
|---|
| 3447 | /*** | 
|---|
| 3448 | * kick_process - kick a running thread to enter/exit the kernel | 
|---|
| 3449 | * @p: the to-be-kicked thread | 
|---|
| 3450 | * | 
|---|
| 3451 | * Cause a process which is running on another CPU to enter | 
|---|
| 3452 | * kernel-mode, without any delay. (to get signals handled.) | 
|---|
| 3453 | * | 
|---|
| 3454 | * NOTE: this function doesn't have to take the runqueue lock, | 
|---|
| 3455 | * because all it wants to ensure is that the remote task enters | 
|---|
| 3456 | * the kernel. If the IPI races and the task has been migrated | 
|---|
| 3457 | * to another CPU then no harm is done and the purpose has been | 
|---|
| 3458 | * achieved as well. | 
|---|
| 3459 | */ | 
|---|
| 3460 | void kick_process(struct task_struct *p) | 
|---|
| 3461 | { | 
|---|
| 3462 | guard(preempt)(); | 
|---|
| 3463 | int cpu = task_cpu(p); | 
|---|
| 3464 |  | 
|---|
| 3465 | if ((cpu != smp_processor_id()) && task_curr(p)) | 
|---|
| 3466 | smp_send_reschedule(cpu); | 
|---|
| 3467 | } | 
|---|
| 3468 | EXPORT_SYMBOL_GPL(kick_process); | 
|---|
| 3469 |  | 
|---|
| 3470 | /* | 
|---|
| 3471 | * ->cpus_ptr is protected by both rq->lock and p->pi_lock | 
|---|
| 3472 | * | 
|---|
| 3473 | * A few notes on cpu_active vs cpu_online: | 
|---|
| 3474 | * | 
|---|
| 3475 | *  - cpu_active must be a subset of cpu_online | 
|---|
| 3476 | * | 
|---|
| 3477 | *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU, | 
|---|
| 3478 | *    see __set_cpus_allowed_ptr(). At this point the newly online | 
|---|
| 3479 | *    CPU isn't yet part of the sched domains, and balancing will not | 
|---|
| 3480 | *    see it. | 
|---|
| 3481 | * | 
|---|
| 3482 | *  - on CPU-down we clear cpu_active() to mask the sched domains and | 
|---|
| 3483 | *    avoid the load balancer to place new tasks on the to be removed | 
|---|
| 3484 | *    CPU. Existing tasks will remain running there and will be taken | 
|---|
| 3485 | *    off. | 
|---|
| 3486 | * | 
|---|
| 3487 | * This means that fallback selection must not select !active CPUs. | 
|---|
| 3488 | * And can assume that any active CPU must be online. Conversely | 
|---|
| 3489 | * select_task_rq() below may allow selection of !active CPUs in order | 
|---|
| 3490 | * to satisfy the above rules. | 
|---|
| 3491 | */ | 
|---|
| 3492 | static int select_fallback_rq(int cpu, struct task_struct *p) | 
|---|
| 3493 | { | 
|---|
| 3494 | int nid = cpu_to_node(cpu); | 
|---|
| 3495 | const struct cpumask *nodemask = NULL; | 
|---|
| 3496 | enum { cpuset, possible, fail } state = cpuset; | 
|---|
| 3497 | int dest_cpu; | 
|---|
| 3498 |  | 
|---|
| 3499 | /* | 
|---|
| 3500 | * If the node that the CPU is on has been offlined, cpu_to_node() | 
|---|
| 3501 | * will return -1. There is no CPU on the node, and we should | 
|---|
| 3502 | * select the CPU on the other node. | 
|---|
| 3503 | */ | 
|---|
| 3504 | if (nid != -1) { | 
|---|
| 3505 | nodemask = cpumask_of_node(node: nid); | 
|---|
| 3506 |  | 
|---|
| 3507 | /* Look for allowed, online CPU in same node. */ | 
|---|
| 3508 | for_each_cpu(dest_cpu, nodemask) { | 
|---|
| 3509 | if (is_cpu_allowed(p, cpu: dest_cpu)) | 
|---|
| 3510 | return dest_cpu; | 
|---|
| 3511 | } | 
|---|
| 3512 | } | 
|---|
| 3513 |  | 
|---|
| 3514 | for (;;) { | 
|---|
| 3515 | /* Any allowed, online CPU? */ | 
|---|
| 3516 | for_each_cpu(dest_cpu, p->cpus_ptr) { | 
|---|
| 3517 | if (!is_cpu_allowed(p, cpu: dest_cpu)) | 
|---|
| 3518 | continue; | 
|---|
| 3519 |  | 
|---|
| 3520 | goto out; | 
|---|
| 3521 | } | 
|---|
| 3522 |  | 
|---|
| 3523 | /* No more Mr. Nice Guy. */ | 
|---|
| 3524 | switch (state) { | 
|---|
| 3525 | case cpuset: | 
|---|
| 3526 | if (cpuset_cpus_allowed_fallback(p)) { | 
|---|
| 3527 | state = possible; | 
|---|
| 3528 | break; | 
|---|
| 3529 | } | 
|---|
| 3530 | fallthrough; | 
|---|
| 3531 | case possible: | 
|---|
| 3532 | /* | 
|---|
| 3533 | * XXX When called from select_task_rq() we only | 
|---|
| 3534 | * hold p->pi_lock and again violate locking order. | 
|---|
| 3535 | * | 
|---|
| 3536 | * More yuck to audit. | 
|---|
| 3537 | */ | 
|---|
| 3538 | do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); | 
|---|
| 3539 | state = fail; | 
|---|
| 3540 | break; | 
|---|
| 3541 | case fail: | 
|---|
| 3542 | BUG(); | 
|---|
| 3543 | break; | 
|---|
| 3544 | } | 
|---|
| 3545 | } | 
|---|
| 3546 |  | 
|---|
| 3547 | out: | 
|---|
| 3548 | if (state != cpuset) { | 
|---|
| 3549 | /* | 
|---|
| 3550 | * Don't tell them about moving exiting tasks or | 
|---|
| 3551 | * kernel threads (both mm NULL), since they never | 
|---|
| 3552 | * leave kernel. | 
|---|
| 3553 | */ | 
|---|
| 3554 | if (p->mm && printk_ratelimit()) { | 
|---|
| 3555 | printk_deferred( "process %d (%s) no longer affine to cpu%d\n", | 
|---|
| 3556 | task_pid_nr(p), p->comm, cpu); | 
|---|
| 3557 | } | 
|---|
| 3558 | } | 
|---|
| 3559 |  | 
|---|
| 3560 | return dest_cpu; | 
|---|
| 3561 | } | 
|---|
| 3562 |  | 
|---|
| 3563 | /* | 
|---|
| 3564 | * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. | 
|---|
| 3565 | */ | 
|---|
| 3566 | static inline | 
|---|
| 3567 | int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) | 
|---|
| 3568 | { | 
|---|
| 3569 | lockdep_assert_held(&p->pi_lock); | 
|---|
| 3570 |  | 
|---|
| 3571 | if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { | 
|---|
| 3572 | cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); | 
|---|
| 3573 | *wake_flags |= WF_RQ_SELECTED; | 
|---|
| 3574 | } else { | 
|---|
| 3575 | cpu = cpumask_any(p->cpus_ptr); | 
|---|
| 3576 | } | 
|---|
| 3577 |  | 
|---|
| 3578 | /* | 
|---|
| 3579 | * In order not to call set_task_cpu() on a blocking task we need | 
|---|
| 3580 | * to rely on ttwu() to place the task on a valid ->cpus_ptr | 
|---|
| 3581 | * CPU. | 
|---|
| 3582 | * | 
|---|
| 3583 | * Since this is common to all placement strategies, this lives here. | 
|---|
| 3584 | * | 
|---|
| 3585 | * [ this allows ->select_task() to simply return task_cpu(p) and | 
|---|
| 3586 | *   not worry about this generic constraint ] | 
|---|
| 3587 | */ | 
|---|
| 3588 | if (unlikely(!is_cpu_allowed(p, cpu))) | 
|---|
| 3589 | cpu = select_fallback_rq(cpu: task_cpu(p), p); | 
|---|
| 3590 |  | 
|---|
| 3591 | return cpu; | 
|---|
| 3592 | } | 
|---|
| 3593 |  | 
|---|
| 3594 | void sched_set_stop_task(int cpu, struct task_struct *stop) | 
|---|
| 3595 | { | 
|---|
| 3596 | static struct lock_class_key stop_pi_lock; | 
|---|
| 3597 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | 
|---|
| 3598 | struct task_struct *old_stop = cpu_rq(cpu)->stop; | 
|---|
| 3599 |  | 
|---|
| 3600 | if (stop) { | 
|---|
| 3601 | /* | 
|---|
| 3602 | * Make it appear like a SCHED_FIFO task, its something | 
|---|
| 3603 | * userspace knows about and won't get confused about. | 
|---|
| 3604 | * | 
|---|
| 3605 | * Also, it will make PI more or less work without too | 
|---|
| 3606 | * much confusion -- but then, stop work should not | 
|---|
| 3607 | * rely on PI working anyway. | 
|---|
| 3608 | */ | 
|---|
| 3609 | sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); | 
|---|
| 3610 |  | 
|---|
| 3611 | stop->sched_class = &stop_sched_class; | 
|---|
| 3612 |  | 
|---|
| 3613 | /* | 
|---|
| 3614 | * The PI code calls rt_mutex_setprio() with ->pi_lock held to | 
|---|
| 3615 | * adjust the effective priority of a task. As a result, | 
|---|
| 3616 | * rt_mutex_setprio() can trigger (RT) balancing operations, | 
|---|
| 3617 | * which can then trigger wakeups of the stop thread to push | 
|---|
| 3618 | * around the current task. | 
|---|
| 3619 | * | 
|---|
| 3620 | * The stop task itself will never be part of the PI-chain, it | 
|---|
| 3621 | * never blocks, therefore that ->pi_lock recursion is safe. | 
|---|
| 3622 | * Tell lockdep about this by placing the stop->pi_lock in its | 
|---|
| 3623 | * own class. | 
|---|
| 3624 | */ | 
|---|
| 3625 | lockdep_set_class(&stop->pi_lock, &stop_pi_lock); | 
|---|
| 3626 | } | 
|---|
| 3627 |  | 
|---|
| 3628 | cpu_rq(cpu)->stop = stop; | 
|---|
| 3629 |  | 
|---|
| 3630 | if (old_stop) { | 
|---|
| 3631 | /* | 
|---|
| 3632 | * Reset it back to a normal scheduling class so that | 
|---|
| 3633 | * it can die in pieces. | 
|---|
| 3634 | */ | 
|---|
| 3635 | old_stop->sched_class = &rt_sched_class; | 
|---|
| 3636 | } | 
|---|
| 3637 | } | 
|---|
| 3638 |  | 
|---|
| 3639 | static void | 
|---|
| 3640 | ttwu_stat(struct task_struct *p, int cpu, int wake_flags) | 
|---|
| 3641 | { | 
|---|
| 3642 | struct rq *rq; | 
|---|
| 3643 |  | 
|---|
| 3644 | if (!schedstat_enabled()) | 
|---|
| 3645 | return; | 
|---|
| 3646 |  | 
|---|
| 3647 | rq = this_rq(); | 
|---|
| 3648 |  | 
|---|
| 3649 | if (cpu == rq->cpu) { | 
|---|
| 3650 | __schedstat_inc(rq->ttwu_local); | 
|---|
| 3651 | __schedstat_inc(p->stats.nr_wakeups_local); | 
|---|
| 3652 | } else { | 
|---|
| 3653 | struct sched_domain *sd; | 
|---|
| 3654 |  | 
|---|
| 3655 | __schedstat_inc(p->stats.nr_wakeups_remote); | 
|---|
| 3656 |  | 
|---|
| 3657 | guard(rcu)(); | 
|---|
| 3658 | for_each_domain(rq->cpu, sd) { | 
|---|
| 3659 | if (cpumask_test_cpu(cpu, cpumask: sched_domain_span(sd))) { | 
|---|
| 3660 | __schedstat_inc(sd->ttwu_wake_remote); | 
|---|
| 3661 | break; | 
|---|
| 3662 | } | 
|---|
| 3663 | } | 
|---|
| 3664 | } | 
|---|
| 3665 |  | 
|---|
| 3666 | if (wake_flags & WF_MIGRATED) | 
|---|
| 3667 | __schedstat_inc(p->stats.nr_wakeups_migrate); | 
|---|
| 3668 |  | 
|---|
| 3669 | __schedstat_inc(rq->ttwu_count); | 
|---|
| 3670 | __schedstat_inc(p->stats.nr_wakeups); | 
|---|
| 3671 |  | 
|---|
| 3672 | if (wake_flags & WF_SYNC) | 
|---|
| 3673 | __schedstat_inc(p->stats.nr_wakeups_sync); | 
|---|
| 3674 | } | 
|---|
| 3675 |  | 
|---|
| 3676 | /* | 
|---|
| 3677 | * Mark the task runnable. | 
|---|
| 3678 | */ | 
|---|
| 3679 | static inline void ttwu_do_wakeup(struct task_struct *p) | 
|---|
| 3680 | { | 
|---|
| 3681 | WRITE_ONCE(p->__state, TASK_RUNNING); | 
|---|
| 3682 | trace_sched_wakeup(p); | 
|---|
| 3683 | } | 
|---|
| 3684 |  | 
|---|
| 3685 | static void | 
|---|
| 3686 | ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, | 
|---|
| 3687 | struct rq_flags *rf) | 
|---|
| 3688 | { | 
|---|
| 3689 | int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; | 
|---|
| 3690 |  | 
|---|
| 3691 | lockdep_assert_rq_held(rq); | 
|---|
| 3692 |  | 
|---|
| 3693 | if (p->sched_contributes_to_load) | 
|---|
| 3694 | rq->nr_uninterruptible--; | 
|---|
| 3695 |  | 
|---|
| 3696 | if (wake_flags & WF_RQ_SELECTED) | 
|---|
| 3697 | en_flags |= ENQUEUE_RQ_SELECTED; | 
|---|
| 3698 | if (wake_flags & WF_MIGRATED) | 
|---|
| 3699 | en_flags |= ENQUEUE_MIGRATED; | 
|---|
| 3700 | else | 
|---|
| 3701 | if (p->in_iowait) { | 
|---|
| 3702 | delayacct_blkio_end(p); | 
|---|
| 3703 | atomic_dec(v: &task_rq(p)->nr_iowait); | 
|---|
| 3704 | } | 
|---|
| 3705 |  | 
|---|
| 3706 | activate_task(rq, p, flags: en_flags); | 
|---|
| 3707 | wakeup_preempt(rq, p, flags: wake_flags); | 
|---|
| 3708 |  | 
|---|
| 3709 | ttwu_do_wakeup(p); | 
|---|
| 3710 |  | 
|---|
| 3711 | if (p->sched_class->task_woken) { | 
|---|
| 3712 | /* | 
|---|
| 3713 | * Our task @p is fully woken up and running; so it's safe to | 
|---|
| 3714 | * drop the rq->lock, hereafter rq is only used for statistics. | 
|---|
| 3715 | */ | 
|---|
| 3716 | rq_unpin_lock(rq, rf); | 
|---|
| 3717 | p->sched_class->task_woken(rq, p); | 
|---|
| 3718 | rq_repin_lock(rq, rf); | 
|---|
| 3719 | } | 
|---|
| 3720 |  | 
|---|
| 3721 | if (rq->idle_stamp) { | 
|---|
| 3722 | u64 delta = rq_clock(rq) - rq->idle_stamp; | 
|---|
| 3723 | u64 max = 2*rq->max_idle_balance_cost; | 
|---|
| 3724 |  | 
|---|
| 3725 | update_avg(avg: &rq->avg_idle, sample: delta); | 
|---|
| 3726 |  | 
|---|
| 3727 | if (rq->avg_idle > max) | 
|---|
| 3728 | rq->avg_idle = max; | 
|---|
| 3729 |  | 
|---|
| 3730 | rq->idle_stamp = 0; | 
|---|
| 3731 | } | 
|---|
| 3732 | } | 
|---|
| 3733 |  | 
|---|
| 3734 | /* | 
|---|
| 3735 | * Consider @p being inside a wait loop: | 
|---|
| 3736 | * | 
|---|
| 3737 | *   for (;;) { | 
|---|
| 3738 | *      set_current_state(TASK_UNINTERRUPTIBLE); | 
|---|
| 3739 | * | 
|---|
| 3740 | *      if (CONDITION) | 
|---|
| 3741 | *         break; | 
|---|
| 3742 | * | 
|---|
| 3743 | *      schedule(); | 
|---|
| 3744 | *   } | 
|---|
| 3745 | *   __set_current_state(TASK_RUNNING); | 
|---|
| 3746 | * | 
|---|
| 3747 | * between set_current_state() and schedule(). In this case @p is still | 
|---|
| 3748 | * runnable, so all that needs doing is change p->state back to TASK_RUNNING in | 
|---|
| 3749 | * an atomic manner. | 
|---|
| 3750 | * | 
|---|
| 3751 | * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq | 
|---|
| 3752 | * then schedule() must still happen and p->state can be changed to | 
|---|
| 3753 | * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we | 
|---|
| 3754 | * need to do a full wakeup with enqueue. | 
|---|
| 3755 | * | 
|---|
| 3756 | * Returns: %true when the wakeup is done, | 
|---|
| 3757 | *          %false otherwise. | 
|---|
| 3758 | */ | 
|---|
| 3759 | static int ttwu_runnable(struct task_struct *p, int wake_flags) | 
|---|
| 3760 | { | 
|---|
| 3761 | struct rq_flags rf; | 
|---|
| 3762 | struct rq *rq; | 
|---|
| 3763 | int ret = 0; | 
|---|
| 3764 |  | 
|---|
| 3765 | rq = __task_rq_lock(p, rf: &rf); | 
|---|
| 3766 | if (task_on_rq_queued(p)) { | 
|---|
| 3767 | update_rq_clock(rq); | 
|---|
| 3768 | if (p->se.sched_delayed) | 
|---|
| 3769 | enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); | 
|---|
| 3770 | if (!task_on_cpu(rq, p)) { | 
|---|
| 3771 | /* | 
|---|
| 3772 | * When on_rq && !on_cpu the task is preempted, see if | 
|---|
| 3773 | * it should preempt the task that is current now. | 
|---|
| 3774 | */ | 
|---|
| 3775 | wakeup_preempt(rq, p, flags: wake_flags); | 
|---|
| 3776 | } | 
|---|
| 3777 | ttwu_do_wakeup(p); | 
|---|
| 3778 | ret = 1; | 
|---|
| 3779 | } | 
|---|
| 3780 | __task_rq_unlock(rq, rf: &rf); | 
|---|
| 3781 |  | 
|---|
| 3782 | return ret; | 
|---|
| 3783 | } | 
|---|
| 3784 |  | 
|---|
| 3785 | void sched_ttwu_pending(void *arg) | 
|---|
| 3786 | { | 
|---|
| 3787 | struct llist_node *llist = arg; | 
|---|
| 3788 | struct rq *rq = this_rq(); | 
|---|
| 3789 | struct task_struct *p, *t; | 
|---|
| 3790 | struct rq_flags rf; | 
|---|
| 3791 |  | 
|---|
| 3792 | if (!llist) | 
|---|
| 3793 | return; | 
|---|
| 3794 |  | 
|---|
| 3795 | rq_lock_irqsave(rq, rf: &rf); | 
|---|
| 3796 | update_rq_clock(rq); | 
|---|
| 3797 |  | 
|---|
| 3798 | llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { | 
|---|
| 3799 | if (WARN_ON_ONCE(p->on_cpu)) | 
|---|
| 3800 | smp_cond_load_acquire(&p->on_cpu, !VAL); | 
|---|
| 3801 |  | 
|---|
| 3802 | if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) | 
|---|
| 3803 | set_task_cpu(p, new_cpu: cpu_of(rq)); | 
|---|
| 3804 |  | 
|---|
| 3805 | ttwu_do_activate(rq, p, wake_flags: p->sched_remote_wakeup ? WF_MIGRATED : 0, rf: &rf); | 
|---|
| 3806 | } | 
|---|
| 3807 |  | 
|---|
| 3808 | /* | 
|---|
| 3809 | * Must be after enqueueing at least once task such that | 
|---|
| 3810 | * idle_cpu() does not observe a false-negative -- if it does, | 
|---|
| 3811 | * it is possible for select_idle_siblings() to stack a number | 
|---|
| 3812 | * of tasks on this CPU during that window. | 
|---|
| 3813 | * | 
|---|
| 3814 | * It is OK to clear ttwu_pending when another task pending. | 
|---|
| 3815 | * We will receive IPI after local IRQ enabled and then enqueue it. | 
|---|
| 3816 | * Since now nr_running > 0, idle_cpu() will always get correct result. | 
|---|
| 3817 | */ | 
|---|
| 3818 | WRITE_ONCE(rq->ttwu_pending, 0); | 
|---|
| 3819 | rq_unlock_irqrestore(rq, rf: &rf); | 
|---|
| 3820 | } | 
|---|
| 3821 |  | 
|---|
| 3822 | /* | 
|---|
| 3823 | * Prepare the scene for sending an IPI for a remote smp_call | 
|---|
| 3824 | * | 
|---|
| 3825 | * Returns true if the caller can proceed with sending the IPI. | 
|---|
| 3826 | * Returns false otherwise. | 
|---|
| 3827 | */ | 
|---|
| 3828 | bool call_function_single_prep_ipi(int cpu) | 
|---|
| 3829 | { | 
|---|
| 3830 | if (set_nr_if_polling(cpu_rq(cpu)->idle)) { | 
|---|
| 3831 | trace_sched_wake_idle_without_ipi(cpu); | 
|---|
| 3832 | return false; | 
|---|
| 3833 | } | 
|---|
| 3834 |  | 
|---|
| 3835 | return true; | 
|---|
| 3836 | } | 
|---|
| 3837 |  | 
|---|
| 3838 | /* | 
|---|
| 3839 | * Queue a task on the target CPUs wake_list and wake the CPU via IPI if | 
|---|
| 3840 | * necessary. The wakee CPU on receipt of the IPI will queue the task | 
|---|
| 3841 | * via sched_ttwu_wakeup() for activation so the wakee incurs the cost | 
|---|
| 3842 | * of the wakeup instead of the waker. | 
|---|
| 3843 | */ | 
|---|
| 3844 | static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) | 
|---|
| 3845 | { | 
|---|
| 3846 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 3847 |  | 
|---|
| 3848 | p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); | 
|---|
| 3849 |  | 
|---|
| 3850 | WRITE_ONCE(rq->ttwu_pending, 1); | 
|---|
| 3851 | #ifdef CONFIG_SMP | 
|---|
| 3852 | __smp_call_single_queue(cpu, node: &p->wake_entry.llist); | 
|---|
| 3853 | #endif | 
|---|
| 3854 | } | 
|---|
| 3855 |  | 
|---|
| 3856 | void wake_up_if_idle(int cpu) | 
|---|
| 3857 | { | 
|---|
| 3858 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 3859 |  | 
|---|
| 3860 | guard(rcu)(); | 
|---|
| 3861 | if (is_idle_task(rcu_dereference(rq->curr))) { | 
|---|
| 3862 | guard(rq_lock_irqsave)(l: rq); | 
|---|
| 3863 | if (is_idle_task(p: rq->curr)) | 
|---|
| 3864 | resched_curr(rq); | 
|---|
| 3865 | } | 
|---|
| 3866 | } | 
|---|
| 3867 |  | 
|---|
| 3868 | bool cpus_equal_capacity(int this_cpu, int that_cpu) | 
|---|
| 3869 | { | 
|---|
| 3870 | if (!sched_asym_cpucap_active()) | 
|---|
| 3871 | return true; | 
|---|
| 3872 |  | 
|---|
| 3873 | if (this_cpu == that_cpu) | 
|---|
| 3874 | return true; | 
|---|
| 3875 |  | 
|---|
| 3876 | return arch_scale_cpu_capacity(cpu: this_cpu) == arch_scale_cpu_capacity(cpu: that_cpu); | 
|---|
| 3877 | } | 
|---|
| 3878 |  | 
|---|
| 3879 | bool cpus_share_cache(int this_cpu, int that_cpu) | 
|---|
| 3880 | { | 
|---|
| 3881 | if (this_cpu == that_cpu) | 
|---|
| 3882 | return true; | 
|---|
| 3883 |  | 
|---|
| 3884 | return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); | 
|---|
| 3885 | } | 
|---|
| 3886 |  | 
|---|
| 3887 | /* | 
|---|
| 3888 | * Whether CPUs are share cache resources, which means LLC on non-cluster | 
|---|
| 3889 | * machines and LLC tag or L2 on machines with clusters. | 
|---|
| 3890 | */ | 
|---|
| 3891 | bool cpus_share_resources(int this_cpu, int that_cpu) | 
|---|
| 3892 | { | 
|---|
| 3893 | if (this_cpu == that_cpu) | 
|---|
| 3894 | return true; | 
|---|
| 3895 |  | 
|---|
| 3896 | return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); | 
|---|
| 3897 | } | 
|---|
| 3898 |  | 
|---|
| 3899 | static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) | 
|---|
| 3900 | { | 
|---|
| 3901 | /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ | 
|---|
| 3902 | if (!scx_allow_ttwu_queue(p)) | 
|---|
| 3903 | return false; | 
|---|
| 3904 |  | 
|---|
| 3905 | #ifdef CONFIG_SMP | 
|---|
| 3906 | if (p->sched_class == &stop_sched_class) | 
|---|
| 3907 | return false; | 
|---|
| 3908 | #endif | 
|---|
| 3909 |  | 
|---|
| 3910 | /* | 
|---|
| 3911 | * Do not complicate things with the async wake_list while the CPU is | 
|---|
| 3912 | * in hotplug state. | 
|---|
| 3913 | */ | 
|---|
| 3914 | if (!cpu_active(cpu)) | 
|---|
| 3915 | return false; | 
|---|
| 3916 |  | 
|---|
| 3917 | /* Ensure the task will still be allowed to run on the CPU. */ | 
|---|
| 3918 | if (!cpumask_test_cpu(cpu, cpumask: p->cpus_ptr)) | 
|---|
| 3919 | return false; | 
|---|
| 3920 |  | 
|---|
| 3921 | /* | 
|---|
| 3922 | * If the CPU does not share cache, then queue the task on the | 
|---|
| 3923 | * remote rqs wakelist to avoid accessing remote data. | 
|---|
| 3924 | */ | 
|---|
| 3925 | if (!cpus_share_cache(smp_processor_id(), that_cpu: cpu)) | 
|---|
| 3926 | return true; | 
|---|
| 3927 |  | 
|---|
| 3928 | if (cpu == smp_processor_id()) | 
|---|
| 3929 | return false; | 
|---|
| 3930 |  | 
|---|
| 3931 | /* | 
|---|
| 3932 | * If the wakee cpu is idle, or the task is descheduling and the | 
|---|
| 3933 | * only running task on the CPU, then use the wakelist to offload | 
|---|
| 3934 | * the task activation to the idle (or soon-to-be-idle) CPU as | 
|---|
| 3935 | * the current CPU is likely busy. nr_running is checked to | 
|---|
| 3936 | * avoid unnecessary task stacking. | 
|---|
| 3937 | * | 
|---|
| 3938 | * Note that we can only get here with (wakee) p->on_rq=0, | 
|---|
| 3939 | * p->on_cpu can be whatever, we've done the dequeue, so | 
|---|
| 3940 | * the wakee has been accounted out of ->nr_running. | 
|---|
| 3941 | */ | 
|---|
| 3942 | if (!cpu_rq(cpu)->nr_running) | 
|---|
| 3943 | return true; | 
|---|
| 3944 |  | 
|---|
| 3945 | return false; | 
|---|
| 3946 | } | 
|---|
| 3947 |  | 
|---|
| 3948 | static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) | 
|---|
| 3949 | { | 
|---|
| 3950 | if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { | 
|---|
| 3951 | sched_clock_cpu(cpu); /* Sync clocks across CPUs */ | 
|---|
| 3952 | __ttwu_queue_wakelist(p, cpu, wake_flags); | 
|---|
| 3953 | return true; | 
|---|
| 3954 | } | 
|---|
| 3955 |  | 
|---|
| 3956 | return false; | 
|---|
| 3957 | } | 
|---|
| 3958 |  | 
|---|
| 3959 | static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) | 
|---|
| 3960 | { | 
|---|
| 3961 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 3962 | struct rq_flags rf; | 
|---|
| 3963 |  | 
|---|
| 3964 | if (ttwu_queue_wakelist(p, cpu, wake_flags)) | 
|---|
| 3965 | return; | 
|---|
| 3966 |  | 
|---|
| 3967 | rq_lock(rq, rf: &rf); | 
|---|
| 3968 | update_rq_clock(rq); | 
|---|
| 3969 | ttwu_do_activate(rq, p, wake_flags, rf: &rf); | 
|---|
| 3970 | rq_unlock(rq, rf: &rf); | 
|---|
| 3971 | } | 
|---|
| 3972 |  | 
|---|
| 3973 | /* | 
|---|
| 3974 | * Invoked from try_to_wake_up() to check whether the task can be woken up. | 
|---|
| 3975 | * | 
|---|
| 3976 | * The caller holds p::pi_lock if p != current or has preemption | 
|---|
| 3977 | * disabled when p == current. | 
|---|
| 3978 | * | 
|---|
| 3979 | * The rules of saved_state: | 
|---|
| 3980 | * | 
|---|
| 3981 | *   The related locking code always holds p::pi_lock when updating | 
|---|
| 3982 | *   p::saved_state, which means the code is fully serialized in both cases. | 
|---|
| 3983 | * | 
|---|
| 3984 | *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. | 
|---|
| 3985 | *   No other bits set. This allows to distinguish all wakeup scenarios. | 
|---|
| 3986 | * | 
|---|
| 3987 | *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This | 
|---|
| 3988 | *   allows us to prevent early wakeup of tasks before they can be run on | 
|---|
| 3989 | *   asymmetric ISA architectures (eg ARMv9). | 
|---|
| 3990 | */ | 
|---|
| 3991 | static __always_inline | 
|---|
| 3992 | bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) | 
|---|
| 3993 | { | 
|---|
| 3994 | int match; | 
|---|
| 3995 |  | 
|---|
| 3996 | if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { | 
|---|
| 3997 | WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && | 
|---|
| 3998 | state != TASK_RTLOCK_WAIT); | 
|---|
| 3999 | } | 
|---|
| 4000 |  | 
|---|
| 4001 | *success = !!(match = __task_state_match(p, state)); | 
|---|
| 4002 |  | 
|---|
| 4003 | /* | 
|---|
| 4004 | * Saved state preserves the task state across blocking on | 
|---|
| 4005 | * an RT lock or TASK_FREEZABLE tasks.  If the state matches, | 
|---|
| 4006 | * set p::saved_state to TASK_RUNNING, but do not wake the task | 
|---|
| 4007 | * because it waits for a lock wakeup or __thaw_task(). Also | 
|---|
| 4008 | * indicate success because from the regular waker's point of | 
|---|
| 4009 | * view this has succeeded. | 
|---|
| 4010 | * | 
|---|
| 4011 | * After acquiring the lock the task will restore p::__state | 
|---|
| 4012 | * from p::saved_state which ensures that the regular | 
|---|
| 4013 | * wakeup is not lost. The restore will also set | 
|---|
| 4014 | * p::saved_state to TASK_RUNNING so any further tests will | 
|---|
| 4015 | * not result in false positives vs. @success | 
|---|
| 4016 | */ | 
|---|
| 4017 | if (match < 0) | 
|---|
| 4018 | p->saved_state = TASK_RUNNING; | 
|---|
| 4019 |  | 
|---|
| 4020 | return match > 0; | 
|---|
| 4021 | } | 
|---|
| 4022 |  | 
|---|
| 4023 | /* | 
|---|
| 4024 | * Notes on Program-Order guarantees on SMP systems. | 
|---|
| 4025 | * | 
|---|
| 4026 | *  MIGRATION | 
|---|
| 4027 | * | 
|---|
| 4028 | * The basic program-order guarantee on SMP systems is that when a task [t] | 
|---|
| 4029 | * migrates, all its activity on its old CPU [c0] happens-before any subsequent | 
|---|
| 4030 | * execution on its new CPU [c1]. | 
|---|
| 4031 | * | 
|---|
| 4032 | * For migration (of runnable tasks) this is provided by the following means: | 
|---|
| 4033 | * | 
|---|
| 4034 | *  A) UNLOCK of the rq(c0)->lock scheduling out task t | 
|---|
| 4035 | *  B) migration for t is required to synchronize *both* rq(c0)->lock and | 
|---|
| 4036 | *     rq(c1)->lock (if not at the same time, then in that order). | 
|---|
| 4037 | *  C) LOCK of the rq(c1)->lock scheduling in task | 
|---|
| 4038 | * | 
|---|
| 4039 | * Release/acquire chaining guarantees that B happens after A and C after B. | 
|---|
| 4040 | * Note: the CPU doing B need not be c0 or c1 | 
|---|
| 4041 | * | 
|---|
| 4042 | * Example: | 
|---|
| 4043 | * | 
|---|
| 4044 | *   CPU0            CPU1            CPU2 | 
|---|
| 4045 | * | 
|---|
| 4046 | *   LOCK rq(0)->lock | 
|---|
| 4047 | *   sched-out X | 
|---|
| 4048 | *   sched-in Y | 
|---|
| 4049 | *   UNLOCK rq(0)->lock | 
|---|
| 4050 | * | 
|---|
| 4051 | *                                   LOCK rq(0)->lock // orders against CPU0 | 
|---|
| 4052 | *                                   dequeue X | 
|---|
| 4053 | *                                   UNLOCK rq(0)->lock | 
|---|
| 4054 | * | 
|---|
| 4055 | *                                   LOCK rq(1)->lock | 
|---|
| 4056 | *                                   enqueue X | 
|---|
| 4057 | *                                   UNLOCK rq(1)->lock | 
|---|
| 4058 | * | 
|---|
| 4059 | *                   LOCK rq(1)->lock // orders against CPU2 | 
|---|
| 4060 | *                   sched-out Z | 
|---|
| 4061 | *                   sched-in X | 
|---|
| 4062 | *                   UNLOCK rq(1)->lock | 
|---|
| 4063 | * | 
|---|
| 4064 | * | 
|---|
| 4065 | *  BLOCKING -- aka. SLEEP + WAKEUP | 
|---|
| 4066 | * | 
|---|
| 4067 | * For blocking we (obviously) need to provide the same guarantee as for | 
|---|
| 4068 | * migration. However the means are completely different as there is no lock | 
|---|
| 4069 | * chain to provide order. Instead we do: | 
|---|
| 4070 | * | 
|---|
| 4071 | *   1) smp_store_release(X->on_cpu, 0)   -- finish_task() | 
|---|
| 4072 | *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() | 
|---|
| 4073 | * | 
|---|
| 4074 | * Example: | 
|---|
| 4075 | * | 
|---|
| 4076 | *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule) | 
|---|
| 4077 | * | 
|---|
| 4078 | *   LOCK rq(0)->lock LOCK X->pi_lock | 
|---|
| 4079 | *   dequeue X | 
|---|
| 4080 | *   sched-out X | 
|---|
| 4081 | *   smp_store_release(X->on_cpu, 0); | 
|---|
| 4082 | * | 
|---|
| 4083 | *                    smp_cond_load_acquire(&X->on_cpu, !VAL); | 
|---|
| 4084 | *                    X->state = WAKING | 
|---|
| 4085 | *                    set_task_cpu(X,2) | 
|---|
| 4086 | * | 
|---|
| 4087 | *                    LOCK rq(2)->lock | 
|---|
| 4088 | *                    enqueue X | 
|---|
| 4089 | *                    X->state = RUNNING | 
|---|
| 4090 | *                    UNLOCK rq(2)->lock | 
|---|
| 4091 | * | 
|---|
| 4092 | *                                          LOCK rq(2)->lock // orders against CPU1 | 
|---|
| 4093 | *                                          sched-out Z | 
|---|
| 4094 | *                                          sched-in X | 
|---|
| 4095 | *                                          UNLOCK rq(2)->lock | 
|---|
| 4096 | * | 
|---|
| 4097 | *                    UNLOCK X->pi_lock | 
|---|
| 4098 | *   UNLOCK rq(0)->lock | 
|---|
| 4099 | * | 
|---|
| 4100 | * | 
|---|
| 4101 | * However, for wakeups there is a second guarantee we must provide, namely we | 
|---|
| 4102 | * must ensure that CONDITION=1 done by the caller can not be reordered with | 
|---|
| 4103 | * accesses to the task state; see try_to_wake_up() and set_current_state(). | 
|---|
| 4104 | */ | 
|---|
| 4105 |  | 
|---|
| 4106 | /** | 
|---|
| 4107 | * try_to_wake_up - wake up a thread | 
|---|
| 4108 | * @p: the thread to be awakened | 
|---|
| 4109 | * @state: the mask of task states that can be woken | 
|---|
| 4110 | * @wake_flags: wake modifier flags (WF_*) | 
|---|
| 4111 | * | 
|---|
| 4112 | * Conceptually does: | 
|---|
| 4113 | * | 
|---|
| 4114 | *   If (@state & @p->state) @p->state = TASK_RUNNING. | 
|---|
| 4115 | * | 
|---|
| 4116 | * If the task was not queued/runnable, also place it back on a runqueue. | 
|---|
| 4117 | * | 
|---|
| 4118 | * This function is atomic against schedule() which would dequeue the task. | 
|---|
| 4119 | * | 
|---|
| 4120 | * It issues a full memory barrier before accessing @p->state, see the comment | 
|---|
| 4121 | * with set_current_state(). | 
|---|
| 4122 | * | 
|---|
| 4123 | * Uses p->pi_lock to serialize against concurrent wake-ups. | 
|---|
| 4124 | * | 
|---|
| 4125 | * Relies on p->pi_lock stabilizing: | 
|---|
| 4126 | *  - p->sched_class | 
|---|
| 4127 | *  - p->cpus_ptr | 
|---|
| 4128 | *  - p->sched_task_group | 
|---|
| 4129 | * in order to do migration, see its use of select_task_rq()/set_task_cpu(). | 
|---|
| 4130 | * | 
|---|
| 4131 | * Tries really hard to only take one task_rq(p)->lock for performance. | 
|---|
| 4132 | * Takes rq->lock in: | 
|---|
| 4133 | *  - ttwu_runnable()    -- old rq, unavoidable, see comment there; | 
|---|
| 4134 | *  - ttwu_queue()       -- new rq, for enqueue of the task; | 
|---|
| 4135 | *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. | 
|---|
| 4136 | * | 
|---|
| 4137 | * As a consequence we race really badly with just about everything. See the | 
|---|
| 4138 | * many memory barriers and their comments for details. | 
|---|
| 4139 | * | 
|---|
| 4140 | * Return: %true if @p->state changes (an actual wakeup was done), | 
|---|
| 4141 | *	   %false otherwise. | 
|---|
| 4142 | */ | 
|---|
| 4143 | int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) | 
|---|
| 4144 | { | 
|---|
| 4145 | guard(preempt)(); | 
|---|
| 4146 | int cpu, success = 0; | 
|---|
| 4147 |  | 
|---|
| 4148 | wake_flags |= WF_TTWU; | 
|---|
| 4149 |  | 
|---|
| 4150 | if (p == current) { | 
|---|
| 4151 | /* | 
|---|
| 4152 | * We're waking current, this means 'p->on_rq' and 'task_cpu(p) | 
|---|
| 4153 | * == smp_processor_id()'. Together this means we can special | 
|---|
| 4154 | * case the whole 'p->on_rq && ttwu_runnable()' case below | 
|---|
| 4155 | * without taking any locks. | 
|---|
| 4156 | * | 
|---|
| 4157 | * Specifically, given current runs ttwu() we must be before | 
|---|
| 4158 | * schedule()'s block_task(), as such this must not observe | 
|---|
| 4159 | * sched_delayed. | 
|---|
| 4160 | * | 
|---|
| 4161 | * In particular: | 
|---|
| 4162 | *  - we rely on Program-Order guarantees for all the ordering, | 
|---|
| 4163 | *  - we're serialized against set_special_state() by virtue of | 
|---|
| 4164 | *    it disabling IRQs (this allows not taking ->pi_lock). | 
|---|
| 4165 | */ | 
|---|
| 4166 | WARN_ON_ONCE(p->se.sched_delayed); | 
|---|
| 4167 | if (!ttwu_state_match(p, state, success: &success)) | 
|---|
| 4168 | goto out; | 
|---|
| 4169 |  | 
|---|
| 4170 | trace_sched_waking(p); | 
|---|
| 4171 | ttwu_do_wakeup(p); | 
|---|
| 4172 | goto out; | 
|---|
| 4173 | } | 
|---|
| 4174 |  | 
|---|
| 4175 | /* | 
|---|
| 4176 | * If we are going to wake up a thread waiting for CONDITION we | 
|---|
| 4177 | * need to ensure that CONDITION=1 done by the caller can not be | 
|---|
| 4178 | * reordered with p->state check below. This pairs with smp_store_mb() | 
|---|
| 4179 | * in set_current_state() that the waiting thread does. | 
|---|
| 4180 | */ | 
|---|
| 4181 | scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { | 
|---|
| 4182 | smp_mb__after_spinlock(); | 
|---|
| 4183 | if (!ttwu_state_match(p, state, success: &success)) | 
|---|
| 4184 | break; | 
|---|
| 4185 |  | 
|---|
| 4186 | trace_sched_waking(p); | 
|---|
| 4187 |  | 
|---|
| 4188 | /* | 
|---|
| 4189 | * Ensure we load p->on_rq _after_ p->state, otherwise it would | 
|---|
| 4190 | * be possible to, falsely, observe p->on_rq == 0 and get stuck | 
|---|
| 4191 | * in smp_cond_load_acquire() below. | 
|---|
| 4192 | * | 
|---|
| 4193 | * sched_ttwu_pending()			try_to_wake_up() | 
|---|
| 4194 | *   STORE p->on_rq = 1			  LOAD p->state | 
|---|
| 4195 | *   UNLOCK rq->lock | 
|---|
| 4196 | * | 
|---|
| 4197 | * __schedule() (switch to task 'p') | 
|---|
| 4198 | *   LOCK rq->lock			  smp_rmb(); | 
|---|
| 4199 | *   smp_mb__after_spinlock(); | 
|---|
| 4200 | *   UNLOCK rq->lock | 
|---|
| 4201 | * | 
|---|
| 4202 | * [task p] | 
|---|
| 4203 | *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq | 
|---|
| 4204 | * | 
|---|
| 4205 | * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in | 
|---|
| 4206 | * __schedule().  See the comment for smp_mb__after_spinlock(). | 
|---|
| 4207 | * | 
|---|
| 4208 | * A similar smp_rmb() lives in __task_needs_rq_lock(). | 
|---|
| 4209 | */ | 
|---|
| 4210 | smp_rmb(); | 
|---|
| 4211 | if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) | 
|---|
| 4212 | break; | 
|---|
| 4213 |  | 
|---|
| 4214 | /* | 
|---|
| 4215 | * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be | 
|---|
| 4216 | * possible to, falsely, observe p->on_cpu == 0. | 
|---|
| 4217 | * | 
|---|
| 4218 | * One must be running (->on_cpu == 1) in order to remove oneself | 
|---|
| 4219 | * from the runqueue. | 
|---|
| 4220 | * | 
|---|
| 4221 | * __schedule() (switch to task 'p')	try_to_wake_up() | 
|---|
| 4222 | *   STORE p->on_cpu = 1		  LOAD p->on_rq | 
|---|
| 4223 | *   UNLOCK rq->lock | 
|---|
| 4224 | * | 
|---|
| 4225 | * __schedule() (put 'p' to sleep) | 
|---|
| 4226 | *   LOCK rq->lock			  smp_rmb(); | 
|---|
| 4227 | *   smp_mb__after_spinlock(); | 
|---|
| 4228 | *   STORE p->on_rq = 0			  LOAD p->on_cpu | 
|---|
| 4229 | * | 
|---|
| 4230 | * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in | 
|---|
| 4231 | * __schedule().  See the comment for smp_mb__after_spinlock(). | 
|---|
| 4232 | * | 
|---|
| 4233 | * Form a control-dep-acquire with p->on_rq == 0 above, to ensure | 
|---|
| 4234 | * schedule()'s deactivate_task() has 'happened' and p will no longer | 
|---|
| 4235 | * care about it's own p->state. See the comment in __schedule(). | 
|---|
| 4236 | */ | 
|---|
| 4237 | smp_acquire__after_ctrl_dep(); | 
|---|
| 4238 |  | 
|---|
| 4239 | /* | 
|---|
| 4240 | * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq | 
|---|
| 4241 | * == 0), which means we need to do an enqueue, change p->state to | 
|---|
| 4242 | * TASK_WAKING such that we can unlock p->pi_lock before doing the | 
|---|
| 4243 | * enqueue, such as ttwu_queue_wakelist(). | 
|---|
| 4244 | */ | 
|---|
| 4245 | WRITE_ONCE(p->__state, TASK_WAKING); | 
|---|
| 4246 |  | 
|---|
| 4247 | /* | 
|---|
| 4248 | * If the owning (remote) CPU is still in the middle of schedule() with | 
|---|
| 4249 | * this task as prev, considering queueing p on the remote CPUs wake_list | 
|---|
| 4250 | * which potentially sends an IPI instead of spinning on p->on_cpu to | 
|---|
| 4251 | * let the waker make forward progress. This is safe because IRQs are | 
|---|
| 4252 | * disabled and the IPI will deliver after on_cpu is cleared. | 
|---|
| 4253 | * | 
|---|
| 4254 | * Ensure we load task_cpu(p) after p->on_cpu: | 
|---|
| 4255 | * | 
|---|
| 4256 | * set_task_cpu(p, cpu); | 
|---|
| 4257 | *   STORE p->cpu = @cpu | 
|---|
| 4258 | * __schedule() (switch to task 'p') | 
|---|
| 4259 | *   LOCK rq->lock | 
|---|
| 4260 | *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu) | 
|---|
| 4261 | *   STORE p->on_cpu = 1		LOAD p->cpu | 
|---|
| 4262 | * | 
|---|
| 4263 | * to ensure we observe the correct CPU on which the task is currently | 
|---|
| 4264 | * scheduling. | 
|---|
| 4265 | */ | 
|---|
| 4266 | if (smp_load_acquire(&p->on_cpu) && | 
|---|
| 4267 | ttwu_queue_wakelist(p, cpu: task_cpu(p), wake_flags)) | 
|---|
| 4268 | break; | 
|---|
| 4269 |  | 
|---|
| 4270 | /* | 
|---|
| 4271 | * If the owning (remote) CPU is still in the middle of schedule() with | 
|---|
| 4272 | * this task as prev, wait until it's done referencing the task. | 
|---|
| 4273 | * | 
|---|
| 4274 | * Pairs with the smp_store_release() in finish_task(). | 
|---|
| 4275 | * | 
|---|
| 4276 | * This ensures that tasks getting woken will be fully ordered against | 
|---|
| 4277 | * their previous state and preserve Program Order. | 
|---|
| 4278 | */ | 
|---|
| 4279 | smp_cond_load_acquire(&p->on_cpu, !VAL); | 
|---|
| 4280 |  | 
|---|
| 4281 | cpu = select_task_rq(p, cpu: p->wake_cpu, wake_flags: &wake_flags); | 
|---|
| 4282 | if (task_cpu(p) != cpu) { | 
|---|
| 4283 | if (p->in_iowait) { | 
|---|
| 4284 | delayacct_blkio_end(p); | 
|---|
| 4285 | atomic_dec(v: &task_rq(p)->nr_iowait); | 
|---|
| 4286 | } | 
|---|
| 4287 |  | 
|---|
| 4288 | wake_flags |= WF_MIGRATED; | 
|---|
| 4289 | psi_ttwu_dequeue(p); | 
|---|
| 4290 | set_task_cpu(p, new_cpu: cpu); | 
|---|
| 4291 | } | 
|---|
| 4292 |  | 
|---|
| 4293 | ttwu_queue(p, cpu, wake_flags); | 
|---|
| 4294 | } | 
|---|
| 4295 | out: | 
|---|
| 4296 | if (success) | 
|---|
| 4297 | ttwu_stat(p, cpu: task_cpu(p), wake_flags); | 
|---|
| 4298 |  | 
|---|
| 4299 | return success; | 
|---|
| 4300 | } | 
|---|
| 4301 |  | 
|---|
| 4302 | static bool __task_needs_rq_lock(struct task_struct *p) | 
|---|
| 4303 | { | 
|---|
| 4304 | unsigned int state = READ_ONCE(p->__state); | 
|---|
| 4305 |  | 
|---|
| 4306 | /* | 
|---|
| 4307 | * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when | 
|---|
| 4308 | * the task is blocked. Make sure to check @state since ttwu() can drop | 
|---|
| 4309 | * locks at the end, see ttwu_queue_wakelist(). | 
|---|
| 4310 | */ | 
|---|
| 4311 | if (state == TASK_RUNNING || state == TASK_WAKING) | 
|---|
| 4312 | return true; | 
|---|
| 4313 |  | 
|---|
| 4314 | /* | 
|---|
| 4315 | * Ensure we load p->on_rq after p->__state, otherwise it would be | 
|---|
| 4316 | * possible to, falsely, observe p->on_rq == 0. | 
|---|
| 4317 | * | 
|---|
| 4318 | * See try_to_wake_up() for a longer comment. | 
|---|
| 4319 | */ | 
|---|
| 4320 | smp_rmb(); | 
|---|
| 4321 | if (p->on_rq) | 
|---|
| 4322 | return true; | 
|---|
| 4323 |  | 
|---|
| 4324 | /* | 
|---|
| 4325 | * Ensure the task has finished __schedule() and will not be referenced | 
|---|
| 4326 | * anymore. Again, see try_to_wake_up() for a longer comment. | 
|---|
| 4327 | */ | 
|---|
| 4328 | smp_rmb(); | 
|---|
| 4329 | smp_cond_load_acquire(&p->on_cpu, !VAL); | 
|---|
| 4330 |  | 
|---|
| 4331 | return false; | 
|---|
| 4332 | } | 
|---|
| 4333 |  | 
|---|
| 4334 | /** | 
|---|
| 4335 | * task_call_func - Invoke a function on task in fixed state | 
|---|
| 4336 | * @p: Process for which the function is to be invoked, can be @current. | 
|---|
| 4337 | * @func: Function to invoke. | 
|---|
| 4338 | * @arg: Argument to function. | 
|---|
| 4339 | * | 
|---|
| 4340 | * Fix the task in it's current state by avoiding wakeups and or rq operations | 
|---|
| 4341 | * and call @func(@arg) on it.  This function can use task_is_runnable() and | 
|---|
| 4342 | * task_curr() to work out what the state is, if required.  Given that @func | 
|---|
| 4343 | * can be invoked with a runqueue lock held, it had better be quite | 
|---|
| 4344 | * lightweight. | 
|---|
| 4345 | * | 
|---|
| 4346 | * Returns: | 
|---|
| 4347 | *   Whatever @func returns | 
|---|
| 4348 | */ | 
|---|
| 4349 | int task_call_func(struct task_struct *p, task_call_f func, void *arg) | 
|---|
| 4350 | { | 
|---|
| 4351 | struct rq *rq = NULL; | 
|---|
| 4352 | struct rq_flags rf; | 
|---|
| 4353 | int ret; | 
|---|
| 4354 |  | 
|---|
| 4355 | raw_spin_lock_irqsave(&p->pi_lock, rf.flags); | 
|---|
| 4356 |  | 
|---|
| 4357 | if (__task_needs_rq_lock(p)) | 
|---|
| 4358 | rq = __task_rq_lock(p, rf: &rf); | 
|---|
| 4359 |  | 
|---|
| 4360 | /* | 
|---|
| 4361 | * At this point the task is pinned; either: | 
|---|
| 4362 | *  - blocked and we're holding off wakeups	 (pi->lock) | 
|---|
| 4363 | *  - woken, and we're holding off enqueue	 (rq->lock) | 
|---|
| 4364 | *  - queued, and we're holding off schedule	 (rq->lock) | 
|---|
| 4365 | *  - running, and we're holding off de-schedule (rq->lock) | 
|---|
| 4366 | * | 
|---|
| 4367 | * The called function (@func) can use: task_curr(), p->on_rq and | 
|---|
| 4368 | * p->__state to differentiate between these states. | 
|---|
| 4369 | */ | 
|---|
| 4370 | ret = func(p, arg); | 
|---|
| 4371 |  | 
|---|
| 4372 | if (rq) | 
|---|
| 4373 | rq_unlock(rq, rf: &rf); | 
|---|
| 4374 |  | 
|---|
| 4375 | raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); | 
|---|
| 4376 | return ret; | 
|---|
| 4377 | } | 
|---|
| 4378 |  | 
|---|
| 4379 | /** | 
|---|
| 4380 | * cpu_curr_snapshot - Return a snapshot of the currently running task | 
|---|
| 4381 | * @cpu: The CPU on which to snapshot the task. | 
|---|
| 4382 | * | 
|---|
| 4383 | * Returns the task_struct pointer of the task "currently" running on | 
|---|
| 4384 | * the specified CPU. | 
|---|
| 4385 | * | 
|---|
| 4386 | * If the specified CPU was offline, the return value is whatever it | 
|---|
| 4387 | * is, perhaps a pointer to the task_struct structure of that CPU's idle | 
|---|
| 4388 | * task, but there is no guarantee.  Callers wishing a useful return | 
|---|
| 4389 | * value must take some action to ensure that the specified CPU remains | 
|---|
| 4390 | * online throughout. | 
|---|
| 4391 | * | 
|---|
| 4392 | * This function executes full memory barriers before and after fetching | 
|---|
| 4393 | * the pointer, which permits the caller to confine this function's fetch | 
|---|
| 4394 | * with respect to the caller's accesses to other shared variables. | 
|---|
| 4395 | */ | 
|---|
| 4396 | struct task_struct *cpu_curr_snapshot(int cpu) | 
|---|
| 4397 | { | 
|---|
| 4398 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 4399 | struct task_struct *t; | 
|---|
| 4400 | struct rq_flags rf; | 
|---|
| 4401 |  | 
|---|
| 4402 | rq_lock_irqsave(rq, rf: &rf); | 
|---|
| 4403 | smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ | 
|---|
| 4404 | t = rcu_dereference(cpu_curr(cpu)); | 
|---|
| 4405 | rq_unlock_irqrestore(rq, rf: &rf); | 
|---|
| 4406 | smp_mb(); /* Pairing determined by caller's synchronization design. */ | 
|---|
| 4407 |  | 
|---|
| 4408 | return t; | 
|---|
| 4409 | } | 
|---|
| 4410 |  | 
|---|
| 4411 | /** | 
|---|
| 4412 | * wake_up_process - Wake up a specific process | 
|---|
| 4413 | * @p: The process to be woken up. | 
|---|
| 4414 | * | 
|---|
| 4415 | * Attempt to wake up the nominated process and move it to the set of runnable | 
|---|
| 4416 | * processes. | 
|---|
| 4417 | * | 
|---|
| 4418 | * Return: 1 if the process was woken up, 0 if it was already running. | 
|---|
| 4419 | * | 
|---|
| 4420 | * This function executes a full memory barrier before accessing the task state. | 
|---|
| 4421 | */ | 
|---|
| 4422 | int wake_up_process(struct task_struct *p) | 
|---|
| 4423 | { | 
|---|
| 4424 | return try_to_wake_up(p, TASK_NORMAL, wake_flags: 0); | 
|---|
| 4425 | } | 
|---|
| 4426 | EXPORT_SYMBOL(wake_up_process); | 
|---|
| 4427 |  | 
|---|
| 4428 | int wake_up_state(struct task_struct *p, unsigned int state) | 
|---|
| 4429 | { | 
|---|
| 4430 | return try_to_wake_up(p, state, wake_flags: 0); | 
|---|
| 4431 | } | 
|---|
| 4432 |  | 
|---|
| 4433 | /* | 
|---|
| 4434 | * Perform scheduler related setup for a newly forked process p. | 
|---|
| 4435 | * p is forked by current. | 
|---|
| 4436 | * | 
|---|
| 4437 | * __sched_fork() is basic setup which is also used by sched_init() to | 
|---|
| 4438 | * initialize the boot CPU's idle task. | 
|---|
| 4439 | */ | 
|---|
| 4440 | static void __sched_fork(u64 clone_flags, struct task_struct *p) | 
|---|
| 4441 | { | 
|---|
| 4442 | p->on_rq			= 0; | 
|---|
| 4443 |  | 
|---|
| 4444 | p->se.on_rq			= 0; | 
|---|
| 4445 | p->se.exec_start		= 0; | 
|---|
| 4446 | p->se.sum_exec_runtime		= 0; | 
|---|
| 4447 | p->se.prev_sum_exec_runtime	= 0; | 
|---|
| 4448 | p->se.nr_migrations		= 0; | 
|---|
| 4449 | p->se.vruntime			= 0; | 
|---|
| 4450 | p->se.vlag			= 0; | 
|---|
| 4451 | INIT_LIST_HEAD(list: &p->se.group_node); | 
|---|
| 4452 |  | 
|---|
| 4453 | /* A delayed task cannot be in clone(). */ | 
|---|
| 4454 | WARN_ON_ONCE(p->se.sched_delayed); | 
|---|
| 4455 |  | 
|---|
| 4456 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 4457 | p->se.cfs_rq			= NULL; | 
|---|
| 4458 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 4459 | init_cfs_throttle_work(p); | 
|---|
| 4460 | #endif | 
|---|
| 4461 | #endif | 
|---|
| 4462 |  | 
|---|
| 4463 | #ifdef CONFIG_SCHEDSTATS | 
|---|
| 4464 | /* Even if schedstat is disabled, there should not be garbage */ | 
|---|
| 4465 | memset(s: &p->stats, c: 0, n: sizeof(p->stats)); | 
|---|
| 4466 | #endif | 
|---|
| 4467 |  | 
|---|
| 4468 | init_dl_entity(dl_se: &p->dl); | 
|---|
| 4469 |  | 
|---|
| 4470 | INIT_LIST_HEAD(list: &p->rt.run_list); | 
|---|
| 4471 | p->rt.timeout		= 0; | 
|---|
| 4472 | p->rt.time_slice	= sched_rr_timeslice; | 
|---|
| 4473 | p->rt.on_rq		= 0; | 
|---|
| 4474 | p->rt.on_list		= 0; | 
|---|
| 4475 |  | 
|---|
| 4476 | #ifdef CONFIG_SCHED_CLASS_EXT | 
|---|
| 4477 | init_scx_entity(&p->scx); | 
|---|
| 4478 | #endif | 
|---|
| 4479 |  | 
|---|
| 4480 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
|---|
| 4481 | INIT_HLIST_HEAD(&p->preempt_notifiers); | 
|---|
| 4482 | #endif | 
|---|
| 4483 |  | 
|---|
| 4484 | #ifdef CONFIG_COMPACTION | 
|---|
| 4485 | p->capture_control = NULL; | 
|---|
| 4486 | #endif | 
|---|
| 4487 | init_numa_balancing(clone_flags, p); | 
|---|
| 4488 | p->wake_entry.u_flags = CSD_TYPE_TTWU; | 
|---|
| 4489 | p->migration_pending = NULL; | 
|---|
| 4490 | init_sched_mm_cid(t: p); | 
|---|
| 4491 | } | 
|---|
| 4492 |  | 
|---|
| 4493 | DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); | 
|---|
| 4494 |  | 
|---|
| 4495 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 4496 |  | 
|---|
| 4497 | int sysctl_numa_balancing_mode; | 
|---|
| 4498 |  | 
|---|
| 4499 | static void __set_numabalancing_state(bool enabled) | 
|---|
| 4500 | { | 
|---|
| 4501 | if (enabled) | 
|---|
| 4502 | static_branch_enable(&sched_numa_balancing); | 
|---|
| 4503 | else | 
|---|
| 4504 | static_branch_disable(&sched_numa_balancing); | 
|---|
| 4505 | } | 
|---|
| 4506 |  | 
|---|
| 4507 | void set_numabalancing_state(bool enabled) | 
|---|
| 4508 | { | 
|---|
| 4509 | if (enabled) | 
|---|
| 4510 | sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; | 
|---|
| 4511 | else | 
|---|
| 4512 | sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; | 
|---|
| 4513 | __set_numabalancing_state(enabled); | 
|---|
| 4514 | } | 
|---|
| 4515 |  | 
|---|
| 4516 | #ifdef CONFIG_PROC_SYSCTL | 
|---|
| 4517 | static void reset_memory_tiering(void) | 
|---|
| 4518 | { | 
|---|
| 4519 | struct pglist_data *pgdat; | 
|---|
| 4520 |  | 
|---|
| 4521 | for_each_online_pgdat(pgdat) { | 
|---|
| 4522 | pgdat->nbp_threshold = 0; | 
|---|
| 4523 | pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); | 
|---|
| 4524 | pgdat->nbp_th_start = jiffies_to_msecs(jiffies); | 
|---|
| 4525 | } | 
|---|
| 4526 | } | 
|---|
| 4527 |  | 
|---|
| 4528 | static int sysctl_numa_balancing(const struct ctl_table *table, int write, | 
|---|
| 4529 | void *buffer, size_t *lenp, loff_t *ppos) | 
|---|
| 4530 | { | 
|---|
| 4531 | struct ctl_table t; | 
|---|
| 4532 | int err; | 
|---|
| 4533 | int state = sysctl_numa_balancing_mode; | 
|---|
| 4534 |  | 
|---|
| 4535 | if (write && !capable(CAP_SYS_ADMIN)) | 
|---|
| 4536 | return -EPERM; | 
|---|
| 4537 |  | 
|---|
| 4538 | t = *table; | 
|---|
| 4539 | t.data = &state; | 
|---|
| 4540 | err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | 
|---|
| 4541 | if (err < 0) | 
|---|
| 4542 | return err; | 
|---|
| 4543 | if (write) { | 
|---|
| 4544 | if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && | 
|---|
| 4545 | (state & NUMA_BALANCING_MEMORY_TIERING)) | 
|---|
| 4546 | reset_memory_tiering(); | 
|---|
| 4547 | sysctl_numa_balancing_mode = state; | 
|---|
| 4548 | __set_numabalancing_state(state); | 
|---|
| 4549 | } | 
|---|
| 4550 | return err; | 
|---|
| 4551 | } | 
|---|
| 4552 | #endif /* CONFIG_PROC_SYSCTL */ | 
|---|
| 4553 | #endif /* CONFIG_NUMA_BALANCING */ | 
|---|
| 4554 |  | 
|---|
| 4555 | #ifdef CONFIG_SCHEDSTATS | 
|---|
| 4556 |  | 
|---|
| 4557 | DEFINE_STATIC_KEY_FALSE(sched_schedstats); | 
|---|
| 4558 |  | 
|---|
| 4559 | static void set_schedstats(bool enabled) | 
|---|
| 4560 | { | 
|---|
| 4561 | if (enabled) | 
|---|
| 4562 | static_branch_enable(&sched_schedstats); | 
|---|
| 4563 | else | 
|---|
| 4564 | static_branch_disable(&sched_schedstats); | 
|---|
| 4565 | } | 
|---|
| 4566 |  | 
|---|
| 4567 | void force_schedstat_enabled(void) | 
|---|
| 4568 | { | 
|---|
| 4569 | if (!schedstat_enabled()) { | 
|---|
| 4570 | pr_info( "kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); | 
|---|
| 4571 | static_branch_enable(&sched_schedstats); | 
|---|
| 4572 | } | 
|---|
| 4573 | } | 
|---|
| 4574 |  | 
|---|
| 4575 | static int __init setup_schedstats(char *str) | 
|---|
| 4576 | { | 
|---|
| 4577 | int ret = 0; | 
|---|
| 4578 | if (!str) | 
|---|
| 4579 | goto out; | 
|---|
| 4580 |  | 
|---|
| 4581 | if (!strcmp(str, "enable")) { | 
|---|
| 4582 | set_schedstats(true); | 
|---|
| 4583 | ret = 1; | 
|---|
| 4584 | } else if (!strcmp(str, "disable")) { | 
|---|
| 4585 | set_schedstats(false); | 
|---|
| 4586 | ret = 1; | 
|---|
| 4587 | } | 
|---|
| 4588 | out: | 
|---|
| 4589 | if (!ret) | 
|---|
| 4590 | pr_warn( "Unable to parse schedstats=\n"); | 
|---|
| 4591 |  | 
|---|
| 4592 | return ret; | 
|---|
| 4593 | } | 
|---|
| 4594 | __setup( "schedstats=", setup_schedstats); | 
|---|
| 4595 |  | 
|---|
| 4596 | #ifdef CONFIG_PROC_SYSCTL | 
|---|
| 4597 | static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, | 
|---|
| 4598 | size_t *lenp, loff_t *ppos) | 
|---|
| 4599 | { | 
|---|
| 4600 | struct ctl_table t; | 
|---|
| 4601 | int err; | 
|---|
| 4602 | int state = static_branch_likely(&sched_schedstats); | 
|---|
| 4603 |  | 
|---|
| 4604 | if (write && !capable(CAP_SYS_ADMIN)) | 
|---|
| 4605 | return -EPERM; | 
|---|
| 4606 |  | 
|---|
| 4607 | t = *table; | 
|---|
| 4608 | t.data = &state; | 
|---|
| 4609 | err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | 
|---|
| 4610 | if (err < 0) | 
|---|
| 4611 | return err; | 
|---|
| 4612 | if (write) | 
|---|
| 4613 | set_schedstats(state); | 
|---|
| 4614 | return err; | 
|---|
| 4615 | } | 
|---|
| 4616 | #endif /* CONFIG_PROC_SYSCTL */ | 
|---|
| 4617 | #endif /* CONFIG_SCHEDSTATS */ | 
|---|
| 4618 |  | 
|---|
| 4619 | #ifdef CONFIG_SYSCTL | 
|---|
| 4620 | static const struct ctl_table sched_core_sysctls[] = { | 
|---|
| 4621 | #ifdef CONFIG_SCHEDSTATS | 
|---|
| 4622 | { | 
|---|
| 4623 | .procname       = "sched_schedstats", | 
|---|
| 4624 | .data           = NULL, | 
|---|
| 4625 | .maxlen         = sizeof(unsigned int), | 
|---|
| 4626 | .mode           = 0644, | 
|---|
| 4627 | .proc_handler   = sysctl_schedstats, | 
|---|
| 4628 | .extra1         = SYSCTL_ZERO, | 
|---|
| 4629 | .extra2         = SYSCTL_ONE, | 
|---|
| 4630 | }, | 
|---|
| 4631 | #endif /* CONFIG_SCHEDSTATS */ | 
|---|
| 4632 | #ifdef CONFIG_UCLAMP_TASK | 
|---|
| 4633 | { | 
|---|
| 4634 | .procname       = "sched_util_clamp_min", | 
|---|
| 4635 | .data           = &sysctl_sched_uclamp_util_min, | 
|---|
| 4636 | .maxlen         = sizeof(unsigned int), | 
|---|
| 4637 | .mode           = 0644, | 
|---|
| 4638 | .proc_handler   = sysctl_sched_uclamp_handler, | 
|---|
| 4639 | }, | 
|---|
| 4640 | { | 
|---|
| 4641 | .procname       = "sched_util_clamp_max", | 
|---|
| 4642 | .data           = &sysctl_sched_uclamp_util_max, | 
|---|
| 4643 | .maxlen         = sizeof(unsigned int), | 
|---|
| 4644 | .mode           = 0644, | 
|---|
| 4645 | .proc_handler   = sysctl_sched_uclamp_handler, | 
|---|
| 4646 | }, | 
|---|
| 4647 | { | 
|---|
| 4648 | .procname       = "sched_util_clamp_min_rt_default", | 
|---|
| 4649 | .data           = &sysctl_sched_uclamp_util_min_rt_default, | 
|---|
| 4650 | .maxlen         = sizeof(unsigned int), | 
|---|
| 4651 | .mode           = 0644, | 
|---|
| 4652 | .proc_handler   = sysctl_sched_uclamp_handler, | 
|---|
| 4653 | }, | 
|---|
| 4654 | #endif /* CONFIG_UCLAMP_TASK */ | 
|---|
| 4655 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 4656 | { | 
|---|
| 4657 | .procname	= "numa_balancing", | 
|---|
| 4658 | .data		= NULL, /* filled in by handler */ | 
|---|
| 4659 | .maxlen		= sizeof(unsigned int), | 
|---|
| 4660 | .mode		= 0644, | 
|---|
| 4661 | .proc_handler	= sysctl_numa_balancing, | 
|---|
| 4662 | .extra1		= SYSCTL_ZERO, | 
|---|
| 4663 | .extra2		= SYSCTL_FOUR, | 
|---|
| 4664 | }, | 
|---|
| 4665 | #endif /* CONFIG_NUMA_BALANCING */ | 
|---|
| 4666 | }; | 
|---|
| 4667 | static int __init sched_core_sysctl_init(void) | 
|---|
| 4668 | { | 
|---|
| 4669 | register_sysctl_init( "kernel", sched_core_sysctls); | 
|---|
| 4670 | return 0; | 
|---|
| 4671 | } | 
|---|
| 4672 | late_initcall(sched_core_sysctl_init); | 
|---|
| 4673 | #endif /* CONFIG_SYSCTL */ | 
|---|
| 4674 |  | 
|---|
| 4675 | /* | 
|---|
| 4676 | * fork()/clone()-time setup: | 
|---|
| 4677 | */ | 
|---|
| 4678 | int sched_fork(u64 clone_flags, struct task_struct *p) | 
|---|
| 4679 | { | 
|---|
| 4680 | __sched_fork(clone_flags, p); | 
|---|
| 4681 | /* | 
|---|
| 4682 | * We mark the process as NEW here. This guarantees that | 
|---|
| 4683 | * nobody will actually run it, and a signal or other external | 
|---|
| 4684 | * event cannot wake it up and insert it on the runqueue either. | 
|---|
| 4685 | */ | 
|---|
| 4686 | p->__state = TASK_NEW; | 
|---|
| 4687 |  | 
|---|
| 4688 | /* | 
|---|
| 4689 | * Make sure we do not leak PI boosting priority to the child. | 
|---|
| 4690 | */ | 
|---|
| 4691 | p->prio = current->normal_prio; | 
|---|
| 4692 |  | 
|---|
| 4693 | uclamp_fork(p); | 
|---|
| 4694 |  | 
|---|
| 4695 | /* | 
|---|
| 4696 | * Revert to default priority/policy on fork if requested. | 
|---|
| 4697 | */ | 
|---|
| 4698 | if (unlikely(p->sched_reset_on_fork)) { | 
|---|
| 4699 | if (task_has_dl_policy(p) || task_has_rt_policy(p)) { | 
|---|
| 4700 | p->policy = SCHED_NORMAL; | 
|---|
| 4701 | p->static_prio = NICE_TO_PRIO(0); | 
|---|
| 4702 | p->rt_priority = 0; | 
|---|
| 4703 | } else if (PRIO_TO_NICE(p->static_prio) < 0) | 
|---|
| 4704 | p->static_prio = NICE_TO_PRIO(0); | 
|---|
| 4705 |  | 
|---|
| 4706 | p->prio = p->normal_prio = p->static_prio; | 
|---|
| 4707 | set_load_weight(p, update_load: false); | 
|---|
| 4708 | p->se.custom_slice = 0; | 
|---|
| 4709 | p->se.slice = sysctl_sched_base_slice; | 
|---|
| 4710 |  | 
|---|
| 4711 | /* | 
|---|
| 4712 | * We don't need the reset flag anymore after the fork. It has | 
|---|
| 4713 | * fulfilled its duty: | 
|---|
| 4714 | */ | 
|---|
| 4715 | p->sched_reset_on_fork = 0; | 
|---|
| 4716 | } | 
|---|
| 4717 |  | 
|---|
| 4718 | if (dl_prio(prio: p->prio)) | 
|---|
| 4719 | return -EAGAIN; | 
|---|
| 4720 |  | 
|---|
| 4721 | scx_pre_fork(p); | 
|---|
| 4722 |  | 
|---|
| 4723 | if (rt_prio(prio: p->prio)) { | 
|---|
| 4724 | p->sched_class = &rt_sched_class; | 
|---|
| 4725 | #ifdef CONFIG_SCHED_CLASS_EXT | 
|---|
| 4726 | } else if (task_should_scx(p->policy)) { | 
|---|
| 4727 | p->sched_class = &ext_sched_class; | 
|---|
| 4728 | #endif | 
|---|
| 4729 | } else { | 
|---|
| 4730 | p->sched_class = &fair_sched_class; | 
|---|
| 4731 | } | 
|---|
| 4732 |  | 
|---|
| 4733 | init_entity_runnable_average(se: &p->se); | 
|---|
| 4734 |  | 
|---|
| 4735 |  | 
|---|
| 4736 | #ifdef CONFIG_SCHED_INFO | 
|---|
| 4737 | if (likely(sched_info_on())) | 
|---|
| 4738 | memset(s: &p->sched_info, c: 0, n: sizeof(p->sched_info)); | 
|---|
| 4739 | #endif | 
|---|
| 4740 | p->on_cpu = 0; | 
|---|
| 4741 | init_task_preempt_count(p); | 
|---|
| 4742 | plist_node_init(node: &p->pushable_tasks, MAX_PRIO); | 
|---|
| 4743 | RB_CLEAR_NODE(&p->pushable_dl_tasks); | 
|---|
| 4744 |  | 
|---|
| 4745 | return 0; | 
|---|
| 4746 | } | 
|---|
| 4747 |  | 
|---|
| 4748 | int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) | 
|---|
| 4749 | { | 
|---|
| 4750 | unsigned long flags; | 
|---|
| 4751 |  | 
|---|
| 4752 | /* | 
|---|
| 4753 | * Because we're not yet on the pid-hash, p->pi_lock isn't strictly | 
|---|
| 4754 | * required yet, but lockdep gets upset if rules are violated. | 
|---|
| 4755 | */ | 
|---|
| 4756 | raw_spin_lock_irqsave(&p->pi_lock, flags); | 
|---|
| 4757 | #ifdef CONFIG_CGROUP_SCHED | 
|---|
| 4758 | if (1) { | 
|---|
| 4759 | struct task_group *tg; | 
|---|
| 4760 | tg = container_of(kargs->cset->subsys[cpu_cgrp_id], | 
|---|
| 4761 | struct task_group, css); | 
|---|
| 4762 | tg = autogroup_task_group(p, tg); | 
|---|
| 4763 | p->sched_task_group = tg; | 
|---|
| 4764 | } | 
|---|
| 4765 | #endif | 
|---|
| 4766 | rseq_migrate(t: p); | 
|---|
| 4767 | /* | 
|---|
| 4768 | * We're setting the CPU for the first time, we don't migrate, | 
|---|
| 4769 | * so use __set_task_cpu(). | 
|---|
| 4770 | */ | 
|---|
| 4771 | __set_task_cpu(p, smp_processor_id()); | 
|---|
| 4772 | if (p->sched_class->task_fork) | 
|---|
| 4773 | p->sched_class->task_fork(p); | 
|---|
| 4774 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
|---|
| 4775 |  | 
|---|
| 4776 | return scx_fork(p); | 
|---|
| 4777 | } | 
|---|
| 4778 |  | 
|---|
| 4779 | void sched_cancel_fork(struct task_struct *p) | 
|---|
| 4780 | { | 
|---|
| 4781 | scx_cancel_fork(p); | 
|---|
| 4782 | } | 
|---|
| 4783 |  | 
|---|
| 4784 | void sched_post_fork(struct task_struct *p) | 
|---|
| 4785 | { | 
|---|
| 4786 | uclamp_post_fork(p); | 
|---|
| 4787 | scx_post_fork(p); | 
|---|
| 4788 | } | 
|---|
| 4789 |  | 
|---|
| 4790 | unsigned long to_ratio(u64 period, u64 runtime) | 
|---|
| 4791 | { | 
|---|
| 4792 | if (runtime == RUNTIME_INF) | 
|---|
| 4793 | return BW_UNIT; | 
|---|
| 4794 |  | 
|---|
| 4795 | /* | 
|---|
| 4796 | * Doing this here saves a lot of checks in all | 
|---|
| 4797 | * the calling paths, and returning zero seems | 
|---|
| 4798 | * safe for them anyway. | 
|---|
| 4799 | */ | 
|---|
| 4800 | if (period == 0) | 
|---|
| 4801 | return 0; | 
|---|
| 4802 |  | 
|---|
| 4803 | return div64_u64(dividend: runtime << BW_SHIFT, divisor: period); | 
|---|
| 4804 | } | 
|---|
| 4805 |  | 
|---|
| 4806 | /* | 
|---|
| 4807 | * wake_up_new_task - wake up a newly created task for the first time. | 
|---|
| 4808 | * | 
|---|
| 4809 | * This function will do some initial scheduler statistics housekeeping | 
|---|
| 4810 | * that must be done for every newly created context, then puts the task | 
|---|
| 4811 | * on the runqueue and wakes it. | 
|---|
| 4812 | */ | 
|---|
| 4813 | void wake_up_new_task(struct task_struct *p) | 
|---|
| 4814 | { | 
|---|
| 4815 | struct rq_flags rf; | 
|---|
| 4816 | struct rq *rq; | 
|---|
| 4817 | int wake_flags = WF_FORK; | 
|---|
| 4818 |  | 
|---|
| 4819 | raw_spin_lock_irqsave(&p->pi_lock, rf.flags); | 
|---|
| 4820 | WRITE_ONCE(p->__state, TASK_RUNNING); | 
|---|
| 4821 | /* | 
|---|
| 4822 | * Fork balancing, do it here and not earlier because: | 
|---|
| 4823 | *  - cpus_ptr can change in the fork path | 
|---|
| 4824 | *  - any previously selected CPU might disappear through hotplug | 
|---|
| 4825 | * | 
|---|
| 4826 | * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, | 
|---|
| 4827 | * as we're not fully set-up yet. | 
|---|
| 4828 | */ | 
|---|
| 4829 | p->recent_used_cpu = task_cpu(p); | 
|---|
| 4830 | rseq_migrate(t: p); | 
|---|
| 4831 | __set_task_cpu(p, cpu: select_task_rq(p, cpu: task_cpu(p), wake_flags: &wake_flags)); | 
|---|
| 4832 | rq = __task_rq_lock(p, rf: &rf); | 
|---|
| 4833 | update_rq_clock(rq); | 
|---|
| 4834 | post_init_entity_util_avg(p); | 
|---|
| 4835 |  | 
|---|
| 4836 | activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); | 
|---|
| 4837 | trace_sched_wakeup_new(p); | 
|---|
| 4838 | wakeup_preempt(rq, p, flags: wake_flags); | 
|---|
| 4839 | if (p->sched_class->task_woken) { | 
|---|
| 4840 | /* | 
|---|
| 4841 | * Nothing relies on rq->lock after this, so it's fine to | 
|---|
| 4842 | * drop it. | 
|---|
| 4843 | */ | 
|---|
| 4844 | rq_unpin_lock(rq, rf: &rf); | 
|---|
| 4845 | p->sched_class->task_woken(rq, p); | 
|---|
| 4846 | rq_repin_lock(rq, rf: &rf); | 
|---|
| 4847 | } | 
|---|
| 4848 | task_rq_unlock(rq, p, rf: &rf); | 
|---|
| 4849 | } | 
|---|
| 4850 |  | 
|---|
| 4851 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
|---|
| 4852 |  | 
|---|
| 4853 | static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); | 
|---|
| 4854 |  | 
|---|
| 4855 | void preempt_notifier_inc(void) | 
|---|
| 4856 | { | 
|---|
| 4857 | static_branch_inc(&preempt_notifier_key); | 
|---|
| 4858 | } | 
|---|
| 4859 | EXPORT_SYMBOL_GPL(preempt_notifier_inc); | 
|---|
| 4860 |  | 
|---|
| 4861 | void preempt_notifier_dec(void) | 
|---|
| 4862 | { | 
|---|
| 4863 | static_branch_dec(&preempt_notifier_key); | 
|---|
| 4864 | } | 
|---|
| 4865 | EXPORT_SYMBOL_GPL(preempt_notifier_dec); | 
|---|
| 4866 |  | 
|---|
| 4867 | /** | 
|---|
| 4868 | * preempt_notifier_register - tell me when current is being preempted & rescheduled | 
|---|
| 4869 | * @notifier: notifier struct to register | 
|---|
| 4870 | */ | 
|---|
| 4871 | void preempt_notifier_register(struct preempt_notifier *notifier) | 
|---|
| 4872 | { | 
|---|
| 4873 | if (!static_branch_unlikely(&preempt_notifier_key)) | 
|---|
| 4874 | WARN(1, "registering preempt_notifier while notifiers disabled\n"); | 
|---|
| 4875 |  | 
|---|
| 4876 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | 
|---|
| 4877 | } | 
|---|
| 4878 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | 
|---|
| 4879 |  | 
|---|
| 4880 | /** | 
|---|
| 4881 | * preempt_notifier_unregister - no longer interested in preemption notifications | 
|---|
| 4882 | * @notifier: notifier struct to unregister | 
|---|
| 4883 | * | 
|---|
| 4884 | * This is *not* safe to call from within a preemption notifier. | 
|---|
| 4885 | */ | 
|---|
| 4886 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | 
|---|
| 4887 | { | 
|---|
| 4888 | hlist_del(¬ifier->link); | 
|---|
| 4889 | } | 
|---|
| 4890 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | 
|---|
| 4891 |  | 
|---|
| 4892 | static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
|---|
| 4893 | { | 
|---|
| 4894 | struct preempt_notifier *notifier; | 
|---|
| 4895 |  | 
|---|
| 4896 | hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) | 
|---|
| 4897 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | 
|---|
| 4898 | } | 
|---|
| 4899 |  | 
|---|
| 4900 | static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
|---|
| 4901 | { | 
|---|
| 4902 | if (static_branch_unlikely(&preempt_notifier_key)) | 
|---|
| 4903 | __fire_sched_in_preempt_notifiers(curr); | 
|---|
| 4904 | } | 
|---|
| 4905 |  | 
|---|
| 4906 | static void | 
|---|
| 4907 | __fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
|---|
| 4908 | struct task_struct *next) | 
|---|
| 4909 | { | 
|---|
| 4910 | struct preempt_notifier *notifier; | 
|---|
| 4911 |  | 
|---|
| 4912 | hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) | 
|---|
| 4913 | notifier->ops->sched_out(notifier, next); | 
|---|
| 4914 | } | 
|---|
| 4915 |  | 
|---|
| 4916 | static __always_inline void | 
|---|
| 4917 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
|---|
| 4918 | struct task_struct *next) | 
|---|
| 4919 | { | 
|---|
| 4920 | if (static_branch_unlikely(&preempt_notifier_key)) | 
|---|
| 4921 | __fire_sched_out_preempt_notifiers(curr, next); | 
|---|
| 4922 | } | 
|---|
| 4923 |  | 
|---|
| 4924 | #else /* !CONFIG_PREEMPT_NOTIFIERS: */ | 
|---|
| 4925 |  | 
|---|
| 4926 | static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
|---|
| 4927 | { | 
|---|
| 4928 | } | 
|---|
| 4929 |  | 
|---|
| 4930 | static inline void | 
|---|
| 4931 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
|---|
| 4932 | struct task_struct *next) | 
|---|
| 4933 | { | 
|---|
| 4934 | } | 
|---|
| 4935 |  | 
|---|
| 4936 | #endif /* !CONFIG_PREEMPT_NOTIFIERS */ | 
|---|
| 4937 |  | 
|---|
| 4938 | static inline void prepare_task(struct task_struct *next) | 
|---|
| 4939 | { | 
|---|
| 4940 | /* | 
|---|
| 4941 | * Claim the task as running, we do this before switching to it | 
|---|
| 4942 | * such that any running task will have this set. | 
|---|
| 4943 | * | 
|---|
| 4944 | * See the smp_load_acquire(&p->on_cpu) case in ttwu() and | 
|---|
| 4945 | * its ordering comment. | 
|---|
| 4946 | */ | 
|---|
| 4947 | WRITE_ONCE(next->on_cpu, 1); | 
|---|
| 4948 | } | 
|---|
| 4949 |  | 
|---|
| 4950 | static inline void finish_task(struct task_struct *prev) | 
|---|
| 4951 | { | 
|---|
| 4952 | /* | 
|---|
| 4953 | * This must be the very last reference to @prev from this CPU. After | 
|---|
| 4954 | * p->on_cpu is cleared, the task can be moved to a different CPU. We | 
|---|
| 4955 | * must ensure this doesn't happen until the switch is completely | 
|---|
| 4956 | * finished. | 
|---|
| 4957 | * | 
|---|
| 4958 | * In particular, the load of prev->state in finish_task_switch() must | 
|---|
| 4959 | * happen before this. | 
|---|
| 4960 | * | 
|---|
| 4961 | * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). | 
|---|
| 4962 | */ | 
|---|
| 4963 | smp_store_release(&prev->on_cpu, 0); | 
|---|
| 4964 | } | 
|---|
| 4965 |  | 
|---|
| 4966 | static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) | 
|---|
| 4967 | { | 
|---|
| 4968 | void (*func)(struct rq *rq); | 
|---|
| 4969 | struct balance_callback *next; | 
|---|
| 4970 |  | 
|---|
| 4971 | lockdep_assert_rq_held(rq); | 
|---|
| 4972 |  | 
|---|
| 4973 | while (head) { | 
|---|
| 4974 | func = (void (*)(struct rq *))head->func; | 
|---|
| 4975 | next = head->next; | 
|---|
| 4976 | head->next = NULL; | 
|---|
| 4977 | head = next; | 
|---|
| 4978 |  | 
|---|
| 4979 | func(rq); | 
|---|
| 4980 | } | 
|---|
| 4981 | } | 
|---|
| 4982 |  | 
|---|
| 4983 | static void balance_push(struct rq *rq); | 
|---|
| 4984 |  | 
|---|
| 4985 | /* | 
|---|
| 4986 | * balance_push_callback is a right abuse of the callback interface and plays | 
|---|
| 4987 | * by significantly different rules. | 
|---|
| 4988 | * | 
|---|
| 4989 | * Where the normal balance_callback's purpose is to be ran in the same context | 
|---|
| 4990 | * that queued it (only later, when it's safe to drop rq->lock again), | 
|---|
| 4991 | * balance_push_callback is specifically targeted at __schedule(). | 
|---|
| 4992 | * | 
|---|
| 4993 | * This abuse is tolerated because it places all the unlikely/odd cases behind | 
|---|
| 4994 | * a single test, namely: rq->balance_callback == NULL. | 
|---|
| 4995 | */ | 
|---|
| 4996 | struct balance_callback balance_push_callback = { | 
|---|
| 4997 | .next = NULL, | 
|---|
| 4998 | .func = balance_push, | 
|---|
| 4999 | }; | 
|---|
| 5000 |  | 
|---|
| 5001 | static inline struct balance_callback * | 
|---|
| 5002 | __splice_balance_callbacks(struct rq *rq, bool split) | 
|---|
| 5003 | { | 
|---|
| 5004 | struct balance_callback *head = rq->balance_callback; | 
|---|
| 5005 |  | 
|---|
| 5006 | if (likely(!head)) | 
|---|
| 5007 | return NULL; | 
|---|
| 5008 |  | 
|---|
| 5009 | lockdep_assert_rq_held(rq); | 
|---|
| 5010 | /* | 
|---|
| 5011 | * Must not take balance_push_callback off the list when | 
|---|
| 5012 | * splice_balance_callbacks() and balance_callbacks() are not | 
|---|
| 5013 | * in the same rq->lock section. | 
|---|
| 5014 | * | 
|---|
| 5015 | * In that case it would be possible for __schedule() to interleave | 
|---|
| 5016 | * and observe the list empty. | 
|---|
| 5017 | */ | 
|---|
| 5018 | if (split && head == &balance_push_callback) | 
|---|
| 5019 | head = NULL; | 
|---|
| 5020 | else | 
|---|
| 5021 | rq->balance_callback = NULL; | 
|---|
| 5022 |  | 
|---|
| 5023 | return head; | 
|---|
| 5024 | } | 
|---|
| 5025 |  | 
|---|
| 5026 | struct balance_callback *splice_balance_callbacks(struct rq *rq) | 
|---|
| 5027 | { | 
|---|
| 5028 | return __splice_balance_callbacks(rq, split: true); | 
|---|
| 5029 | } | 
|---|
| 5030 |  | 
|---|
| 5031 | static void __balance_callbacks(struct rq *rq) | 
|---|
| 5032 | { | 
|---|
| 5033 | do_balance_callbacks(rq, head: __splice_balance_callbacks(rq, split: false)); | 
|---|
| 5034 | } | 
|---|
| 5035 |  | 
|---|
| 5036 | void balance_callbacks(struct rq *rq, struct balance_callback *head) | 
|---|
| 5037 | { | 
|---|
| 5038 | unsigned long flags; | 
|---|
| 5039 |  | 
|---|
| 5040 | if (unlikely(head)) { | 
|---|
| 5041 | raw_spin_rq_lock_irqsave(rq, flags); | 
|---|
| 5042 | do_balance_callbacks(rq, head); | 
|---|
| 5043 | raw_spin_rq_unlock_irqrestore(rq, flags); | 
|---|
| 5044 | } | 
|---|
| 5045 | } | 
|---|
| 5046 |  | 
|---|
| 5047 | static inline void | 
|---|
| 5048 | prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) | 
|---|
| 5049 | { | 
|---|
| 5050 | /* | 
|---|
| 5051 | * Since the runqueue lock will be released by the next | 
|---|
| 5052 | * task (which is an invalid locking op but in the case | 
|---|
| 5053 | * of the scheduler it's an obvious special-case), so we | 
|---|
| 5054 | * do an early lockdep release here: | 
|---|
| 5055 | */ | 
|---|
| 5056 | rq_unpin_lock(rq, rf); | 
|---|
| 5057 | spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); | 
|---|
| 5058 | #ifdef CONFIG_DEBUG_SPINLOCK | 
|---|
| 5059 | /* this is a valid case when another task releases the spinlock */ | 
|---|
| 5060 | rq_lockp(rq)->owner = next; | 
|---|
| 5061 | #endif | 
|---|
| 5062 | } | 
|---|
| 5063 |  | 
|---|
| 5064 | static inline void finish_lock_switch(struct rq *rq) | 
|---|
| 5065 | { | 
|---|
| 5066 | /* | 
|---|
| 5067 | * If we are tracking spinlock dependencies then we have to | 
|---|
| 5068 | * fix up the runqueue lock - which gets 'carried over' from | 
|---|
| 5069 | * prev into current: | 
|---|
| 5070 | */ | 
|---|
| 5071 | spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); | 
|---|
| 5072 | __balance_callbacks(rq); | 
|---|
| 5073 | raw_spin_rq_unlock_irq(rq); | 
|---|
| 5074 | } | 
|---|
| 5075 |  | 
|---|
| 5076 | /* | 
|---|
| 5077 | * NOP if the arch has not defined these: | 
|---|
| 5078 | */ | 
|---|
| 5079 |  | 
|---|
| 5080 | #ifndef prepare_arch_switch | 
|---|
| 5081 | # define prepare_arch_switch(next)	do { } while (0) | 
|---|
| 5082 | #endif | 
|---|
| 5083 |  | 
|---|
| 5084 | #ifndef finish_arch_post_lock_switch | 
|---|
| 5085 | # define finish_arch_post_lock_switch()	do { } while (0) | 
|---|
| 5086 | #endif | 
|---|
| 5087 |  | 
|---|
| 5088 | static inline void kmap_local_sched_out(void) | 
|---|
| 5089 | { | 
|---|
| 5090 | #ifdef CONFIG_KMAP_LOCAL | 
|---|
| 5091 | if (unlikely(current->kmap_ctrl.idx)) | 
|---|
| 5092 | __kmap_local_sched_out(); | 
|---|
| 5093 | #endif | 
|---|
| 5094 | } | 
|---|
| 5095 |  | 
|---|
| 5096 | static inline void kmap_local_sched_in(void) | 
|---|
| 5097 | { | 
|---|
| 5098 | #ifdef CONFIG_KMAP_LOCAL | 
|---|
| 5099 | if (unlikely(current->kmap_ctrl.idx)) | 
|---|
| 5100 | __kmap_local_sched_in(); | 
|---|
| 5101 | #endif | 
|---|
| 5102 | } | 
|---|
| 5103 |  | 
|---|
| 5104 | /** | 
|---|
| 5105 | * prepare_task_switch - prepare to switch tasks | 
|---|
| 5106 | * @rq: the runqueue preparing to switch | 
|---|
| 5107 | * @prev: the current task that is being switched out | 
|---|
| 5108 | * @next: the task we are going to switch to. | 
|---|
| 5109 | * | 
|---|
| 5110 | * This is called with the rq lock held and interrupts off. It must | 
|---|
| 5111 | * be paired with a subsequent finish_task_switch after the context | 
|---|
| 5112 | * switch. | 
|---|
| 5113 | * | 
|---|
| 5114 | * prepare_task_switch sets up locking and calls architecture specific | 
|---|
| 5115 | * hooks. | 
|---|
| 5116 | */ | 
|---|
| 5117 | static inline void | 
|---|
| 5118 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | 
|---|
| 5119 | struct task_struct *next) | 
|---|
| 5120 | { | 
|---|
| 5121 | kcov_prepare_switch(t: prev); | 
|---|
| 5122 | sched_info_switch(rq, prev, next); | 
|---|
| 5123 | perf_event_task_sched_out(prev, next); | 
|---|
| 5124 | rseq_preempt(t: prev); | 
|---|
| 5125 | fire_sched_out_preempt_notifiers(curr: prev, next); | 
|---|
| 5126 | kmap_local_sched_out(); | 
|---|
| 5127 | prepare_task(next); | 
|---|
| 5128 | prepare_arch_switch(next); | 
|---|
| 5129 | } | 
|---|
| 5130 |  | 
|---|
| 5131 | /** | 
|---|
| 5132 | * finish_task_switch - clean up after a task-switch | 
|---|
| 5133 | * @prev: the thread we just switched away from. | 
|---|
| 5134 | * | 
|---|
| 5135 | * finish_task_switch must be called after the context switch, paired | 
|---|
| 5136 | * with a prepare_task_switch call before the context switch. | 
|---|
| 5137 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | 
|---|
| 5138 | * and do any other architecture-specific cleanup actions. | 
|---|
| 5139 | * | 
|---|
| 5140 | * Note that we may have delayed dropping an mm in context_switch(). If | 
|---|
| 5141 | * so, we finish that here outside of the runqueue lock. (Doing it | 
|---|
| 5142 | * with the lock held can cause deadlocks; see schedule() for | 
|---|
| 5143 | * details.) | 
|---|
| 5144 | * | 
|---|
| 5145 | * The context switch have flipped the stack from under us and restored the | 
|---|
| 5146 | * local variables which were saved when this task called schedule() in the | 
|---|
| 5147 | * past. 'prev == current' is still correct but we need to recalculate this_rq | 
|---|
| 5148 | * because prev may have moved to another CPU. | 
|---|
| 5149 | */ | 
|---|
| 5150 | static struct rq *finish_task_switch(struct task_struct *prev) | 
|---|
| 5151 | __releases(rq->lock) | 
|---|
| 5152 | { | 
|---|
| 5153 | struct rq *rq = this_rq(); | 
|---|
| 5154 | struct mm_struct *mm = rq->prev_mm; | 
|---|
| 5155 | unsigned int prev_state; | 
|---|
| 5156 |  | 
|---|
| 5157 | /* | 
|---|
| 5158 | * The previous task will have left us with a preempt_count of 2 | 
|---|
| 5159 | * because it left us after: | 
|---|
| 5160 | * | 
|---|
| 5161 | *	schedule() | 
|---|
| 5162 | *	  preempt_disable();			// 1 | 
|---|
| 5163 | *	  __schedule() | 
|---|
| 5164 | *	    raw_spin_lock_irq(&rq->lock)	// 2 | 
|---|
| 5165 | * | 
|---|
| 5166 | * Also, see FORK_PREEMPT_COUNT. | 
|---|
| 5167 | */ | 
|---|
| 5168 | if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, | 
|---|
| 5169 | "corrupted preempt_count: %s/%d/0x%x\n", | 
|---|
| 5170 | current->comm, current->pid, preempt_count())) | 
|---|
| 5171 | preempt_count_set(FORK_PREEMPT_COUNT); | 
|---|
| 5172 |  | 
|---|
| 5173 | rq->prev_mm = NULL; | 
|---|
| 5174 |  | 
|---|
| 5175 | /* | 
|---|
| 5176 | * A task struct has one reference for the use as "current". | 
|---|
| 5177 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls | 
|---|
| 5178 | * schedule one last time. The schedule call will never return, and | 
|---|
| 5179 | * the scheduled task must drop that reference. | 
|---|
| 5180 | * | 
|---|
| 5181 | * We must observe prev->state before clearing prev->on_cpu (in | 
|---|
| 5182 | * finish_task), otherwise a concurrent wakeup can get prev | 
|---|
| 5183 | * running on another CPU and we could rave with its RUNNING -> DEAD | 
|---|
| 5184 | * transition, resulting in a double drop. | 
|---|
| 5185 | */ | 
|---|
| 5186 | prev_state = READ_ONCE(prev->__state); | 
|---|
| 5187 | vtime_task_switch(prev); | 
|---|
| 5188 | perf_event_task_sched_in(prev, current); | 
|---|
| 5189 | finish_task(prev); | 
|---|
| 5190 | tick_nohz_task_switch(); | 
|---|
| 5191 | finish_lock_switch(rq); | 
|---|
| 5192 | finish_arch_post_lock_switch(); | 
|---|
| 5193 | kcov_finish_switch(current); | 
|---|
| 5194 | /* | 
|---|
| 5195 | * kmap_local_sched_out() is invoked with rq::lock held and | 
|---|
| 5196 | * interrupts disabled. There is no requirement for that, but the | 
|---|
| 5197 | * sched out code does not have an interrupt enabled section. | 
|---|
| 5198 | * Restoring the maps on sched in does not require interrupts being | 
|---|
| 5199 | * disabled either. | 
|---|
| 5200 | */ | 
|---|
| 5201 | kmap_local_sched_in(); | 
|---|
| 5202 |  | 
|---|
| 5203 | fire_sched_in_preempt_notifiers(current); | 
|---|
| 5204 | /* | 
|---|
| 5205 | * When switching through a kernel thread, the loop in | 
|---|
| 5206 | * membarrier_{private,global}_expedited() may have observed that | 
|---|
| 5207 | * kernel thread and not issued an IPI. It is therefore possible to | 
|---|
| 5208 | * schedule between user->kernel->user threads without passing though | 
|---|
| 5209 | * switch_mm(). Membarrier requires a barrier after storing to | 
|---|
| 5210 | * rq->curr, before returning to userspace, so provide them here: | 
|---|
| 5211 | * | 
|---|
| 5212 | * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly | 
|---|
| 5213 | *   provided by mmdrop_lazy_tlb(), | 
|---|
| 5214 | * - a sync_core for SYNC_CORE. | 
|---|
| 5215 | */ | 
|---|
| 5216 | if (mm) { | 
|---|
| 5217 | membarrier_mm_sync_core_before_usermode(mm); | 
|---|
| 5218 | mmdrop_lazy_tlb_sched(mm); | 
|---|
| 5219 | } | 
|---|
| 5220 |  | 
|---|
| 5221 | if (unlikely(prev_state == TASK_DEAD)) { | 
|---|
| 5222 | if (prev->sched_class->task_dead) | 
|---|
| 5223 | prev->sched_class->task_dead(prev); | 
|---|
| 5224 |  | 
|---|
| 5225 | /* Task is done with its stack. */ | 
|---|
| 5226 | put_task_stack(tsk: prev); | 
|---|
| 5227 |  | 
|---|
| 5228 | put_task_struct_rcu_user(task: prev); | 
|---|
| 5229 | } | 
|---|
| 5230 |  | 
|---|
| 5231 | return rq; | 
|---|
| 5232 | } | 
|---|
| 5233 |  | 
|---|
| 5234 | /** | 
|---|
| 5235 | * schedule_tail - first thing a freshly forked thread must call. | 
|---|
| 5236 | * @prev: the thread we just switched away from. | 
|---|
| 5237 | */ | 
|---|
| 5238 | asmlinkage __visible void schedule_tail(struct task_struct *prev) | 
|---|
| 5239 | __releases(rq->lock) | 
|---|
| 5240 | { | 
|---|
| 5241 | /* | 
|---|
| 5242 | * New tasks start with FORK_PREEMPT_COUNT, see there and | 
|---|
| 5243 | * finish_task_switch() for details. | 
|---|
| 5244 | * | 
|---|
| 5245 | * finish_task_switch() will drop rq->lock() and lower preempt_count | 
|---|
| 5246 | * and the preempt_enable() will end up enabling preemption (on | 
|---|
| 5247 | * PREEMPT_COUNT kernels). | 
|---|
| 5248 | */ | 
|---|
| 5249 |  | 
|---|
| 5250 | finish_task_switch(prev); | 
|---|
| 5251 | /* | 
|---|
| 5252 | * This is a special case: the newly created task has just | 
|---|
| 5253 | * switched the context for the first time. It is returning from | 
|---|
| 5254 | * schedule for the first time in this path. | 
|---|
| 5255 | */ | 
|---|
| 5256 | trace_sched_exit_tp(is_switch: true); | 
|---|
| 5257 | preempt_enable(); | 
|---|
| 5258 |  | 
|---|
| 5259 | if (current->set_child_tid) | 
|---|
| 5260 | put_user(task_pid_vnr(current), current->set_child_tid); | 
|---|
| 5261 |  | 
|---|
| 5262 | calculate_sigpending(); | 
|---|
| 5263 | } | 
|---|
| 5264 |  | 
|---|
| 5265 | /* | 
|---|
| 5266 | * context_switch - switch to the new MM and the new thread's register state. | 
|---|
| 5267 | */ | 
|---|
| 5268 | static __always_inline struct rq * | 
|---|
| 5269 | context_switch(struct rq *rq, struct task_struct *prev, | 
|---|
| 5270 | struct task_struct *next, struct rq_flags *rf) | 
|---|
| 5271 | { | 
|---|
| 5272 | prepare_task_switch(rq, prev, next); | 
|---|
| 5273 |  | 
|---|
| 5274 | /* | 
|---|
| 5275 | * For paravirt, this is coupled with an exit in switch_to to | 
|---|
| 5276 | * combine the page table reload and the switch backend into | 
|---|
| 5277 | * one hypercall. | 
|---|
| 5278 | */ | 
|---|
| 5279 | arch_start_context_switch(prev); | 
|---|
| 5280 |  | 
|---|
| 5281 | /* | 
|---|
| 5282 | * kernel -> kernel   lazy + transfer active | 
|---|
| 5283 | *   user -> kernel   lazy + mmgrab_lazy_tlb() active | 
|---|
| 5284 | * | 
|---|
| 5285 | * kernel ->   user   switch + mmdrop_lazy_tlb() active | 
|---|
| 5286 | *   user ->   user   switch | 
|---|
| 5287 | * | 
|---|
| 5288 | * switch_mm_cid() needs to be updated if the barriers provided | 
|---|
| 5289 | * by context_switch() are modified. | 
|---|
| 5290 | */ | 
|---|
| 5291 | if (!next->mm) {                                // to kernel | 
|---|
| 5292 | enter_lazy_tlb(mm: prev->active_mm, tsk: next); | 
|---|
| 5293 |  | 
|---|
| 5294 | next->active_mm = prev->active_mm; | 
|---|
| 5295 | if (prev->mm)                           // from user | 
|---|
| 5296 | mmgrab_lazy_tlb(mm: prev->active_mm); | 
|---|
| 5297 | else | 
|---|
| 5298 | prev->active_mm = NULL; | 
|---|
| 5299 | } else {                                        // to user | 
|---|
| 5300 | membarrier_switch_mm(rq, prev_mm: prev->active_mm, next_mm: next->mm); | 
|---|
| 5301 | /* | 
|---|
| 5302 | * sys_membarrier() requires an smp_mb() between setting | 
|---|
| 5303 | * rq->curr / membarrier_switch_mm() and returning to userspace. | 
|---|
| 5304 | * | 
|---|
| 5305 | * The below provides this either through switch_mm(), or in | 
|---|
| 5306 | * case 'prev->active_mm == next->mm' through | 
|---|
| 5307 | * finish_task_switch()'s mmdrop(). | 
|---|
| 5308 | */ | 
|---|
| 5309 | switch_mm_irqs_off(prev: prev->active_mm, next: next->mm, tsk: next); | 
|---|
| 5310 | lru_gen_use_mm(mm: next->mm); | 
|---|
| 5311 |  | 
|---|
| 5312 | if (!prev->mm) {                        // from kernel | 
|---|
| 5313 | /* will mmdrop_lazy_tlb() in finish_task_switch(). */ | 
|---|
| 5314 | rq->prev_mm = prev->active_mm; | 
|---|
| 5315 | prev->active_mm = NULL; | 
|---|
| 5316 | } | 
|---|
| 5317 | } | 
|---|
| 5318 |  | 
|---|
| 5319 | /* switch_mm_cid() requires the memory barriers above. */ | 
|---|
| 5320 | switch_mm_cid(rq, prev, next); | 
|---|
| 5321 |  | 
|---|
| 5322 | prepare_lock_switch(rq, next, rf); | 
|---|
| 5323 |  | 
|---|
| 5324 | /* Here we just switch the register state and the stack. */ | 
|---|
| 5325 | switch_to(prev, next, prev); | 
|---|
| 5326 | barrier(); | 
|---|
| 5327 |  | 
|---|
| 5328 | return finish_task_switch(prev); | 
|---|
| 5329 | } | 
|---|
| 5330 |  | 
|---|
| 5331 | /* | 
|---|
| 5332 | * nr_running and nr_context_switches: | 
|---|
| 5333 | * | 
|---|
| 5334 | * externally visible scheduler statistics: current number of runnable | 
|---|
| 5335 | * threads, total number of context switches performed since bootup. | 
|---|
| 5336 | */ | 
|---|
| 5337 | unsigned int nr_running(void) | 
|---|
| 5338 | { | 
|---|
| 5339 | unsigned int i, sum = 0; | 
|---|
| 5340 |  | 
|---|
| 5341 | for_each_online_cpu(i) | 
|---|
| 5342 | sum += cpu_rq(i)->nr_running; | 
|---|
| 5343 |  | 
|---|
| 5344 | return sum; | 
|---|
| 5345 | } | 
|---|
| 5346 |  | 
|---|
| 5347 | /* | 
|---|
| 5348 | * Check if only the current task is running on the CPU. | 
|---|
| 5349 | * | 
|---|
| 5350 | * Caution: this function does not check that the caller has disabled | 
|---|
| 5351 | * preemption, thus the result might have a time-of-check-to-time-of-use | 
|---|
| 5352 | * race.  The caller is responsible to use it correctly, for example: | 
|---|
| 5353 | * | 
|---|
| 5354 | * - from a non-preemptible section (of course) | 
|---|
| 5355 | * | 
|---|
| 5356 | * - from a thread that is bound to a single CPU | 
|---|
| 5357 | * | 
|---|
| 5358 | * - in a loop with very short iterations (e.g. a polling loop) | 
|---|
| 5359 | */ | 
|---|
| 5360 | bool single_task_running(void) | 
|---|
| 5361 | { | 
|---|
| 5362 | return raw_rq()->nr_running == 1; | 
|---|
| 5363 | } | 
|---|
| 5364 | EXPORT_SYMBOL(single_task_running); | 
|---|
| 5365 |  | 
|---|
| 5366 | unsigned long long nr_context_switches_cpu(int cpu) | 
|---|
| 5367 | { | 
|---|
| 5368 | return cpu_rq(cpu)->nr_switches; | 
|---|
| 5369 | } | 
|---|
| 5370 |  | 
|---|
| 5371 | unsigned long long nr_context_switches(void) | 
|---|
| 5372 | { | 
|---|
| 5373 | int i; | 
|---|
| 5374 | unsigned long long sum = 0; | 
|---|
| 5375 |  | 
|---|
| 5376 | for_each_possible_cpu(i) | 
|---|
| 5377 | sum += cpu_rq(i)->nr_switches; | 
|---|
| 5378 |  | 
|---|
| 5379 | return sum; | 
|---|
| 5380 | } | 
|---|
| 5381 |  | 
|---|
| 5382 | /* | 
|---|
| 5383 | * Consumers of these two interfaces, like for example the cpuidle menu | 
|---|
| 5384 | * governor, are using nonsensical data. Preferring shallow idle state selection | 
|---|
| 5385 | * for a CPU that has IO-wait which might not even end up running the task when | 
|---|
| 5386 | * it does become runnable. | 
|---|
| 5387 | */ | 
|---|
| 5388 |  | 
|---|
| 5389 | unsigned int nr_iowait_cpu(int cpu) | 
|---|
| 5390 | { | 
|---|
| 5391 | return atomic_read(v: &cpu_rq(cpu)->nr_iowait); | 
|---|
| 5392 | } | 
|---|
| 5393 |  | 
|---|
| 5394 | /* | 
|---|
| 5395 | * IO-wait accounting, and how it's mostly bollocks (on SMP). | 
|---|
| 5396 | * | 
|---|
| 5397 | * The idea behind IO-wait account is to account the idle time that we could | 
|---|
| 5398 | * have spend running if it were not for IO. That is, if we were to improve the | 
|---|
| 5399 | * storage performance, we'd have a proportional reduction in IO-wait time. | 
|---|
| 5400 | * | 
|---|
| 5401 | * This all works nicely on UP, where, when a task blocks on IO, we account | 
|---|
| 5402 | * idle time as IO-wait, because if the storage were faster, it could've been | 
|---|
| 5403 | * running and we'd not be idle. | 
|---|
| 5404 | * | 
|---|
| 5405 | * This has been extended to SMP, by doing the same for each CPU. This however | 
|---|
| 5406 | * is broken. | 
|---|
| 5407 | * | 
|---|
| 5408 | * Imagine for instance the case where two tasks block on one CPU, only the one | 
|---|
| 5409 | * CPU will have IO-wait accounted, while the other has regular idle. Even | 
|---|
| 5410 | * though, if the storage were faster, both could've ran at the same time, | 
|---|
| 5411 | * utilising both CPUs. | 
|---|
| 5412 | * | 
|---|
| 5413 | * This means, that when looking globally, the current IO-wait accounting on | 
|---|
| 5414 | * SMP is a lower bound, by reason of under accounting. | 
|---|
| 5415 | * | 
|---|
| 5416 | * Worse, since the numbers are provided per CPU, they are sometimes | 
|---|
| 5417 | * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly | 
|---|
| 5418 | * associated with any one particular CPU, it can wake to another CPU than it | 
|---|
| 5419 | * blocked on. This means the per CPU IO-wait number is meaningless. | 
|---|
| 5420 | * | 
|---|
| 5421 | * Task CPU affinities can make all that even more 'interesting'. | 
|---|
| 5422 | */ | 
|---|
| 5423 |  | 
|---|
| 5424 | unsigned int nr_iowait(void) | 
|---|
| 5425 | { | 
|---|
| 5426 | unsigned int i, sum = 0; | 
|---|
| 5427 |  | 
|---|
| 5428 | for_each_possible_cpu(i) | 
|---|
| 5429 | sum += nr_iowait_cpu(cpu: i); | 
|---|
| 5430 |  | 
|---|
| 5431 | return sum; | 
|---|
| 5432 | } | 
|---|
| 5433 |  | 
|---|
| 5434 | /* | 
|---|
| 5435 | * sched_exec - execve() is a valuable balancing opportunity, because at | 
|---|
| 5436 | * this point the task has the smallest effective memory and cache footprint. | 
|---|
| 5437 | */ | 
|---|
| 5438 | void sched_exec(void) | 
|---|
| 5439 | { | 
|---|
| 5440 | struct task_struct *p = current; | 
|---|
| 5441 | struct migration_arg arg; | 
|---|
| 5442 | int dest_cpu; | 
|---|
| 5443 |  | 
|---|
| 5444 | scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { | 
|---|
| 5445 | dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); | 
|---|
| 5446 | if (dest_cpu == smp_processor_id()) | 
|---|
| 5447 | return; | 
|---|
| 5448 |  | 
|---|
| 5449 | if (unlikely(!cpu_active(dest_cpu))) | 
|---|
| 5450 | return; | 
|---|
| 5451 |  | 
|---|
| 5452 | arg = (struct migration_arg){ p, dest_cpu }; | 
|---|
| 5453 | } | 
|---|
| 5454 | stop_one_cpu(cpu: task_cpu(p), fn: migration_cpu_stop, arg: &arg); | 
|---|
| 5455 | } | 
|---|
| 5456 |  | 
|---|
| 5457 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
|---|
| 5458 | DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); | 
|---|
| 5459 |  | 
|---|
| 5460 | EXPORT_PER_CPU_SYMBOL(kstat); | 
|---|
| 5461 | EXPORT_PER_CPU_SYMBOL(kernel_cpustat); | 
|---|
| 5462 |  | 
|---|
| 5463 | /* | 
|---|
| 5464 | * The function fair_sched_class.update_curr accesses the struct curr | 
|---|
| 5465 | * and its field curr->exec_start; when called from task_sched_runtime(), | 
|---|
| 5466 | * we observe a high rate of cache misses in practice. | 
|---|
| 5467 | * Prefetching this data results in improved performance. | 
|---|
| 5468 | */ | 
|---|
| 5469 | static inline void prefetch_curr_exec_start(struct task_struct *p) | 
|---|
| 5470 | { | 
|---|
| 5471 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 5472 | struct sched_entity *curr = p->se.cfs_rq->curr; | 
|---|
| 5473 | #else | 
|---|
| 5474 | struct sched_entity *curr = task_rq(p)->cfs.curr; | 
|---|
| 5475 | #endif | 
|---|
| 5476 | prefetch(curr); | 
|---|
| 5477 | prefetch(&curr->exec_start); | 
|---|
| 5478 | } | 
|---|
| 5479 |  | 
|---|
| 5480 | /* | 
|---|
| 5481 | * Return accounted runtime for the task. | 
|---|
| 5482 | * In case the task is currently running, return the runtime plus current's | 
|---|
| 5483 | * pending runtime that have not been accounted yet. | 
|---|
| 5484 | */ | 
|---|
| 5485 | unsigned long long task_sched_runtime(struct task_struct *p) | 
|---|
| 5486 | { | 
|---|
| 5487 | struct rq_flags rf; | 
|---|
| 5488 | struct rq *rq; | 
|---|
| 5489 | u64 ns; | 
|---|
| 5490 |  | 
|---|
| 5491 | #ifdef CONFIG_64BIT | 
|---|
| 5492 | /* | 
|---|
| 5493 | * 64-bit doesn't need locks to atomically read a 64-bit value. | 
|---|
| 5494 | * So we have a optimization chance when the task's delta_exec is 0. | 
|---|
| 5495 | * Reading ->on_cpu is racy, but this is OK. | 
|---|
| 5496 | * | 
|---|
| 5497 | * If we race with it leaving CPU, we'll take a lock. So we're correct. | 
|---|
| 5498 | * If we race with it entering CPU, unaccounted time is 0. This is | 
|---|
| 5499 | * indistinguishable from the read occurring a few cycles earlier. | 
|---|
| 5500 | * If we see ->on_cpu without ->on_rq, the task is leaving, and has | 
|---|
| 5501 | * been accounted, so we're correct here as well. | 
|---|
| 5502 | */ | 
|---|
| 5503 | if (!p->on_cpu || !task_on_rq_queued(p)) | 
|---|
| 5504 | return p->se.sum_exec_runtime; | 
|---|
| 5505 | #endif | 
|---|
| 5506 |  | 
|---|
| 5507 | rq = task_rq_lock(p, rf: &rf); | 
|---|
| 5508 | /* | 
|---|
| 5509 | * Must be ->curr _and_ ->on_rq.  If dequeued, we would | 
|---|
| 5510 | * project cycles that may never be accounted to this | 
|---|
| 5511 | * thread, breaking clock_gettime(). | 
|---|
| 5512 | */ | 
|---|
| 5513 | if (task_current_donor(rq, p) && task_on_rq_queued(p)) { | 
|---|
| 5514 | prefetch_curr_exec_start(p); | 
|---|
| 5515 | update_rq_clock(rq); | 
|---|
| 5516 | p->sched_class->update_curr(rq); | 
|---|
| 5517 | } | 
|---|
| 5518 | ns = p->se.sum_exec_runtime; | 
|---|
| 5519 | task_rq_unlock(rq, p, rf: &rf); | 
|---|
| 5520 |  | 
|---|
| 5521 | return ns; | 
|---|
| 5522 | } | 
|---|
| 5523 |  | 
|---|
| 5524 | static u64 cpu_resched_latency(struct rq *rq) | 
|---|
| 5525 | { | 
|---|
| 5526 | int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); | 
|---|
| 5527 | u64 resched_latency, now = rq_clock(rq); | 
|---|
| 5528 | static bool warned_once; | 
|---|
| 5529 |  | 
|---|
| 5530 | if (sysctl_resched_latency_warn_once && warned_once) | 
|---|
| 5531 | return 0; | 
|---|
| 5532 |  | 
|---|
| 5533 | if (!need_resched() || !latency_warn_ms) | 
|---|
| 5534 | return 0; | 
|---|
| 5535 |  | 
|---|
| 5536 | if (system_state == SYSTEM_BOOTING) | 
|---|
| 5537 | return 0; | 
|---|
| 5538 |  | 
|---|
| 5539 | if (!rq->last_seen_need_resched_ns) { | 
|---|
| 5540 | rq->last_seen_need_resched_ns = now; | 
|---|
| 5541 | rq->ticks_without_resched = 0; | 
|---|
| 5542 | return 0; | 
|---|
| 5543 | } | 
|---|
| 5544 |  | 
|---|
| 5545 | rq->ticks_without_resched++; | 
|---|
| 5546 | resched_latency = now - rq->last_seen_need_resched_ns; | 
|---|
| 5547 | if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) | 
|---|
| 5548 | return 0; | 
|---|
| 5549 |  | 
|---|
| 5550 | warned_once = true; | 
|---|
| 5551 |  | 
|---|
| 5552 | return resched_latency; | 
|---|
| 5553 | } | 
|---|
| 5554 |  | 
|---|
| 5555 | static int __init setup_resched_latency_warn_ms(char *str) | 
|---|
| 5556 | { | 
|---|
| 5557 | long val; | 
|---|
| 5558 |  | 
|---|
| 5559 | if ((kstrtol(s: str, base: 0, res: &val))) { | 
|---|
| 5560 | pr_warn( "Unable to set resched_latency_warn_ms\n"); | 
|---|
| 5561 | return 1; | 
|---|
| 5562 | } | 
|---|
| 5563 |  | 
|---|
| 5564 | sysctl_resched_latency_warn_ms = val; | 
|---|
| 5565 | return 1; | 
|---|
| 5566 | } | 
|---|
| 5567 | __setup( "resched_latency_warn_ms=", setup_resched_latency_warn_ms); | 
|---|
| 5568 |  | 
|---|
| 5569 | /* | 
|---|
| 5570 | * This function gets called by the timer code, with HZ frequency. | 
|---|
| 5571 | * We call it with interrupts disabled. | 
|---|
| 5572 | */ | 
|---|
| 5573 | void sched_tick(void) | 
|---|
| 5574 | { | 
|---|
| 5575 | int cpu = smp_processor_id(); | 
|---|
| 5576 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 5577 | /* accounting goes to the donor task */ | 
|---|
| 5578 | struct task_struct *donor; | 
|---|
| 5579 | struct rq_flags rf; | 
|---|
| 5580 | unsigned long hw_pressure; | 
|---|
| 5581 | u64 resched_latency; | 
|---|
| 5582 |  | 
|---|
| 5583 | if (housekeeping_cpu(cpu, type: HK_TYPE_KERNEL_NOISE)) | 
|---|
| 5584 | arch_scale_freq_tick(); | 
|---|
| 5585 |  | 
|---|
| 5586 | sched_clock_tick(); | 
|---|
| 5587 |  | 
|---|
| 5588 | rq_lock(rq, rf: &rf); | 
|---|
| 5589 | donor = rq->donor; | 
|---|
| 5590 |  | 
|---|
| 5591 | psi_account_irqtime(rq, curr: donor, NULL); | 
|---|
| 5592 |  | 
|---|
| 5593 | update_rq_clock(rq); | 
|---|
| 5594 | hw_pressure = arch_scale_hw_pressure(cpu: cpu_of(rq)); | 
|---|
| 5595 | update_hw_load_avg(now: rq_clock_task(rq), rq, capacity: hw_pressure); | 
|---|
| 5596 |  | 
|---|
| 5597 | if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) | 
|---|
| 5598 | resched_curr(rq); | 
|---|
| 5599 |  | 
|---|
| 5600 | donor->sched_class->task_tick(rq, donor, 0); | 
|---|
| 5601 | if (sched_feat(LATENCY_WARN)) | 
|---|
| 5602 | resched_latency = cpu_resched_latency(rq); | 
|---|
| 5603 | calc_global_load_tick(this_rq: rq); | 
|---|
| 5604 | sched_core_tick(rq); | 
|---|
| 5605 | task_tick_mm_cid(rq, curr: donor); | 
|---|
| 5606 | scx_tick(rq); | 
|---|
| 5607 |  | 
|---|
| 5608 | rq_unlock(rq, rf: &rf); | 
|---|
| 5609 |  | 
|---|
| 5610 | if (sched_feat(LATENCY_WARN) && resched_latency) | 
|---|
| 5611 | resched_latency_warn(cpu, latency: resched_latency); | 
|---|
| 5612 |  | 
|---|
| 5613 | perf_event_task_tick(); | 
|---|
| 5614 |  | 
|---|
| 5615 | if (donor->flags & PF_WQ_WORKER) | 
|---|
| 5616 | wq_worker_tick(task: donor); | 
|---|
| 5617 |  | 
|---|
| 5618 | if (!scx_switched_all()) { | 
|---|
| 5619 | rq->idle_balance = idle_cpu(cpu); | 
|---|
| 5620 | sched_balance_trigger(rq); | 
|---|
| 5621 | } | 
|---|
| 5622 | } | 
|---|
| 5623 |  | 
|---|
| 5624 | #ifdef CONFIG_NO_HZ_FULL | 
|---|
| 5625 |  | 
|---|
| 5626 | struct tick_work { | 
|---|
| 5627 | int			cpu; | 
|---|
| 5628 | atomic_t		state; | 
|---|
| 5629 | struct delayed_work	work; | 
|---|
| 5630 | }; | 
|---|
| 5631 | /* Values for ->state, see diagram below. */ | 
|---|
| 5632 | #define TICK_SCHED_REMOTE_OFFLINE	0 | 
|---|
| 5633 | #define TICK_SCHED_REMOTE_OFFLINING	1 | 
|---|
| 5634 | #define TICK_SCHED_REMOTE_RUNNING	2 | 
|---|
| 5635 |  | 
|---|
| 5636 | /* | 
|---|
| 5637 | * State diagram for ->state: | 
|---|
| 5638 | * | 
|---|
| 5639 | * | 
|---|
| 5640 | *          TICK_SCHED_REMOTE_OFFLINE | 
|---|
| 5641 | *                    |   ^ | 
|---|
| 5642 | *                    |   | | 
|---|
| 5643 | *                    |   | sched_tick_remote() | 
|---|
| 5644 | *                    |   | | 
|---|
| 5645 | *                    |   | | 
|---|
| 5646 | *                    +--TICK_SCHED_REMOTE_OFFLINING | 
|---|
| 5647 | *                    |   ^ | 
|---|
| 5648 | *                    |   | | 
|---|
| 5649 | * sched_tick_start() |   | sched_tick_stop() | 
|---|
| 5650 | *                    |   | | 
|---|
| 5651 | *                    V   | | 
|---|
| 5652 | *          TICK_SCHED_REMOTE_RUNNING | 
|---|
| 5653 | * | 
|---|
| 5654 | * | 
|---|
| 5655 | * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() | 
|---|
| 5656 | * and sched_tick_start() are happy to leave the state in RUNNING. | 
|---|
| 5657 | */ | 
|---|
| 5658 |  | 
|---|
| 5659 | static struct tick_work __percpu *tick_work_cpu; | 
|---|
| 5660 |  | 
|---|
| 5661 | static void sched_tick_remote(struct work_struct *work) | 
|---|
| 5662 | { | 
|---|
| 5663 | struct delayed_work *dwork = to_delayed_work(work); | 
|---|
| 5664 | struct tick_work *twork = container_of(dwork, struct tick_work, work); | 
|---|
| 5665 | int cpu = twork->cpu; | 
|---|
| 5666 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 5667 | int os; | 
|---|
| 5668 |  | 
|---|
| 5669 | /* | 
|---|
| 5670 | * Handle the tick only if it appears the remote CPU is running in full | 
|---|
| 5671 | * dynticks mode. The check is racy by nature, but missing a tick or | 
|---|
| 5672 | * having one too much is no big deal because the scheduler tick updates | 
|---|
| 5673 | * statistics and checks timeslices in a time-independent way, regardless | 
|---|
| 5674 | * of when exactly it is running. | 
|---|
| 5675 | */ | 
|---|
| 5676 | if (tick_nohz_tick_stopped_cpu(cpu)) { | 
|---|
| 5677 | guard(rq_lock_irq)(rq); | 
|---|
| 5678 | struct task_struct *curr = rq->curr; | 
|---|
| 5679 |  | 
|---|
| 5680 | if (cpu_online(cpu)) { | 
|---|
| 5681 | /* | 
|---|
| 5682 | * Since this is a remote tick for full dynticks mode, | 
|---|
| 5683 | * we are always sure that there is no proxy (only a | 
|---|
| 5684 | * single task is running). | 
|---|
| 5685 | */ | 
|---|
| 5686 | WARN_ON_ONCE(rq->curr != rq->donor); | 
|---|
| 5687 | update_rq_clock(rq); | 
|---|
| 5688 |  | 
|---|
| 5689 | if (!is_idle_task(curr)) { | 
|---|
| 5690 | /* | 
|---|
| 5691 | * Make sure the next tick runs within a | 
|---|
| 5692 | * reasonable amount of time. | 
|---|
| 5693 | */ | 
|---|
| 5694 | u64 delta = rq_clock_task(rq) - curr->se.exec_start; | 
|---|
| 5695 | WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); | 
|---|
| 5696 | } | 
|---|
| 5697 | curr->sched_class->task_tick(rq, curr, 0); | 
|---|
| 5698 |  | 
|---|
| 5699 | calc_load_nohz_remote(rq); | 
|---|
| 5700 | } | 
|---|
| 5701 | } | 
|---|
| 5702 |  | 
|---|
| 5703 | /* | 
|---|
| 5704 | * Run the remote tick once per second (1Hz). This arbitrary | 
|---|
| 5705 | * frequency is large enough to avoid overload but short enough | 
|---|
| 5706 | * to keep scheduler internal stats reasonably up to date.  But | 
|---|
| 5707 | * first update state to reflect hotplug activity if required. | 
|---|
| 5708 | */ | 
|---|
| 5709 | os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); | 
|---|
| 5710 | WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); | 
|---|
| 5711 | if (os == TICK_SCHED_REMOTE_RUNNING) | 
|---|
| 5712 | queue_delayed_work(system_unbound_wq, dwork, HZ); | 
|---|
| 5713 | } | 
|---|
| 5714 |  | 
|---|
| 5715 | static void sched_tick_start(int cpu) | 
|---|
| 5716 | { | 
|---|
| 5717 | int os; | 
|---|
| 5718 | struct tick_work *twork; | 
|---|
| 5719 |  | 
|---|
| 5720 | if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) | 
|---|
| 5721 | return; | 
|---|
| 5722 |  | 
|---|
| 5723 | WARN_ON_ONCE(!tick_work_cpu); | 
|---|
| 5724 |  | 
|---|
| 5725 | twork = per_cpu_ptr(tick_work_cpu, cpu); | 
|---|
| 5726 | os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); | 
|---|
| 5727 | WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); | 
|---|
| 5728 | if (os == TICK_SCHED_REMOTE_OFFLINE) { | 
|---|
| 5729 | twork->cpu = cpu; | 
|---|
| 5730 | INIT_DELAYED_WORK(&twork->work, sched_tick_remote); | 
|---|
| 5731 | queue_delayed_work(system_unbound_wq, &twork->work, HZ); | 
|---|
| 5732 | } | 
|---|
| 5733 | } | 
|---|
| 5734 |  | 
|---|
| 5735 | #ifdef CONFIG_HOTPLUG_CPU | 
|---|
| 5736 | static void sched_tick_stop(int cpu) | 
|---|
| 5737 | { | 
|---|
| 5738 | struct tick_work *twork; | 
|---|
| 5739 | int os; | 
|---|
| 5740 |  | 
|---|
| 5741 | if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) | 
|---|
| 5742 | return; | 
|---|
| 5743 |  | 
|---|
| 5744 | WARN_ON_ONCE(!tick_work_cpu); | 
|---|
| 5745 |  | 
|---|
| 5746 | twork = per_cpu_ptr(tick_work_cpu, cpu); | 
|---|
| 5747 | /* There cannot be competing actions, but don't rely on stop-machine. */ | 
|---|
| 5748 | os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); | 
|---|
| 5749 | WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); | 
|---|
| 5750 | /* Don't cancel, as this would mess up the state machine. */ | 
|---|
| 5751 | } | 
|---|
| 5752 | #endif /* CONFIG_HOTPLUG_CPU */ | 
|---|
| 5753 |  | 
|---|
| 5754 | int __init sched_tick_offload_init(void) | 
|---|
| 5755 | { | 
|---|
| 5756 | tick_work_cpu = alloc_percpu(struct tick_work); | 
|---|
| 5757 | BUG_ON(!tick_work_cpu); | 
|---|
| 5758 | return 0; | 
|---|
| 5759 | } | 
|---|
| 5760 |  | 
|---|
| 5761 | #else /* !CONFIG_NO_HZ_FULL: */ | 
|---|
| 5762 | static inline void sched_tick_start(int cpu) { } | 
|---|
| 5763 | static inline void sched_tick_stop(int cpu) { } | 
|---|
| 5764 | #endif /* !CONFIG_NO_HZ_FULL */ | 
|---|
| 5765 |  | 
|---|
| 5766 | #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ | 
|---|
| 5767 | defined(CONFIG_TRACE_PREEMPT_TOGGLE)) | 
|---|
| 5768 | /* | 
|---|
| 5769 | * If the value passed in is equal to the current preempt count | 
|---|
| 5770 | * then we just disabled preemption. Start timing the latency. | 
|---|
| 5771 | */ | 
|---|
| 5772 | static inline void preempt_latency_start(int val) | 
|---|
| 5773 | { | 
|---|
| 5774 | if (preempt_count() == val) { | 
|---|
| 5775 | unsigned long ip = get_lock_parent_ip(); | 
|---|
| 5776 | #ifdef CONFIG_DEBUG_PREEMPT | 
|---|
| 5777 | current->preempt_disable_ip = ip; | 
|---|
| 5778 | #endif | 
|---|
| 5779 | trace_preempt_off(CALLER_ADDR0, ip); | 
|---|
| 5780 | } | 
|---|
| 5781 | } | 
|---|
| 5782 |  | 
|---|
| 5783 | void preempt_count_add(int val) | 
|---|
| 5784 | { | 
|---|
| 5785 | #ifdef CONFIG_DEBUG_PREEMPT | 
|---|
| 5786 | /* | 
|---|
| 5787 | * Underflow? | 
|---|
| 5788 | */ | 
|---|
| 5789 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | 
|---|
| 5790 | return; | 
|---|
| 5791 | #endif | 
|---|
| 5792 | __preempt_count_add(val); | 
|---|
| 5793 | #ifdef CONFIG_DEBUG_PREEMPT | 
|---|
| 5794 | /* | 
|---|
| 5795 | * Spinlock count overflowing soon? | 
|---|
| 5796 | */ | 
|---|
| 5797 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= | 
|---|
| 5798 | PREEMPT_MASK - 10); | 
|---|
| 5799 | #endif | 
|---|
| 5800 | preempt_latency_start(val); | 
|---|
| 5801 | } | 
|---|
| 5802 | EXPORT_SYMBOL(preempt_count_add); | 
|---|
| 5803 | NOKPROBE_SYMBOL(preempt_count_add); | 
|---|
| 5804 |  | 
|---|
| 5805 | /* | 
|---|
| 5806 | * If the value passed in equals to the current preempt count | 
|---|
| 5807 | * then we just enabled preemption. Stop timing the latency. | 
|---|
| 5808 | */ | 
|---|
| 5809 | static inline void preempt_latency_stop(int val) | 
|---|
| 5810 | { | 
|---|
| 5811 | if (preempt_count() == val) | 
|---|
| 5812 | trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); | 
|---|
| 5813 | } | 
|---|
| 5814 |  | 
|---|
| 5815 | void preempt_count_sub(int val) | 
|---|
| 5816 | { | 
|---|
| 5817 | #ifdef CONFIG_DEBUG_PREEMPT | 
|---|
| 5818 | /* | 
|---|
| 5819 | * Underflow? | 
|---|
| 5820 | */ | 
|---|
| 5821 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | 
|---|
| 5822 | return; | 
|---|
| 5823 | /* | 
|---|
| 5824 | * Is the spinlock portion underflowing? | 
|---|
| 5825 | */ | 
|---|
| 5826 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | 
|---|
| 5827 | !(preempt_count() & PREEMPT_MASK))) | 
|---|
| 5828 | return; | 
|---|
| 5829 | #endif | 
|---|
| 5830 |  | 
|---|
| 5831 | preempt_latency_stop(val); | 
|---|
| 5832 | __preempt_count_sub(val); | 
|---|
| 5833 | } | 
|---|
| 5834 | EXPORT_SYMBOL(preempt_count_sub); | 
|---|
| 5835 | NOKPROBE_SYMBOL(preempt_count_sub); | 
|---|
| 5836 |  | 
|---|
| 5837 | #else | 
|---|
| 5838 | static inline void preempt_latency_start(int val) { } | 
|---|
| 5839 | static inline void preempt_latency_stop(int val) { } | 
|---|
| 5840 | #endif | 
|---|
| 5841 |  | 
|---|
| 5842 | static inline unsigned long get_preempt_disable_ip(struct task_struct *p) | 
|---|
| 5843 | { | 
|---|
| 5844 | #ifdef CONFIG_DEBUG_PREEMPT | 
|---|
| 5845 | return p->preempt_disable_ip; | 
|---|
| 5846 | #else | 
|---|
| 5847 | return 0; | 
|---|
| 5848 | #endif | 
|---|
| 5849 | } | 
|---|
| 5850 |  | 
|---|
| 5851 | /* | 
|---|
| 5852 | * Print scheduling while atomic bug: | 
|---|
| 5853 | */ | 
|---|
| 5854 | static noinline void __schedule_bug(struct task_struct *prev) | 
|---|
| 5855 | { | 
|---|
| 5856 | /* Save this before calling printk(), since that will clobber it */ | 
|---|
| 5857 | unsigned long preempt_disable_ip = get_preempt_disable_ip(current); | 
|---|
| 5858 |  | 
|---|
| 5859 | if (oops_in_progress) | 
|---|
| 5860 | return; | 
|---|
| 5861 |  | 
|---|
| 5862 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | 
|---|
| 5863 | prev->comm, prev->pid, preempt_count()); | 
|---|
| 5864 |  | 
|---|
| 5865 | debug_show_held_locks(task: prev); | 
|---|
| 5866 | print_modules(); | 
|---|
| 5867 | if (irqs_disabled()) | 
|---|
| 5868 | print_irqtrace_events(curr: prev); | 
|---|
| 5869 | if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { | 
|---|
| 5870 | pr_err( "Preemption disabled at:"); | 
|---|
| 5871 | print_ip_sym(KERN_ERR, ip: preempt_disable_ip); | 
|---|
| 5872 | } | 
|---|
| 5873 | check_panic_on_warn(origin: "scheduling while atomic"); | 
|---|
| 5874 |  | 
|---|
| 5875 | dump_stack(); | 
|---|
| 5876 | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); | 
|---|
| 5877 | } | 
|---|
| 5878 |  | 
|---|
| 5879 | /* | 
|---|
| 5880 | * Various schedule()-time debugging checks and statistics: | 
|---|
| 5881 | */ | 
|---|
| 5882 | static inline void schedule_debug(struct task_struct *prev, bool preempt) | 
|---|
| 5883 | { | 
|---|
| 5884 | #ifdef CONFIG_SCHED_STACK_END_CHECK | 
|---|
| 5885 | if (task_stack_end_corrupted(prev)) | 
|---|
| 5886 | panic( "corrupted stack end detected inside scheduler\n"); | 
|---|
| 5887 |  | 
|---|
| 5888 | if (task_scs_end_corrupted(prev)) | 
|---|
| 5889 | panic( "corrupted shadow stack detected inside scheduler\n"); | 
|---|
| 5890 | #endif | 
|---|
| 5891 |  | 
|---|
| 5892 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 
|---|
| 5893 | if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { | 
|---|
| 5894 | printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", | 
|---|
| 5895 | prev->comm, prev->pid, prev->non_block_count); | 
|---|
| 5896 | dump_stack(); | 
|---|
| 5897 | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); | 
|---|
| 5898 | } | 
|---|
| 5899 | #endif | 
|---|
| 5900 |  | 
|---|
| 5901 | if (unlikely(in_atomic_preempt_off())) { | 
|---|
| 5902 | __schedule_bug(prev); | 
|---|
| 5903 | preempt_count_set(PREEMPT_DISABLED); | 
|---|
| 5904 | } | 
|---|
| 5905 | rcu_sleep_check(); | 
|---|
| 5906 | WARN_ON_ONCE(ct_state() == CT_STATE_USER); | 
|---|
| 5907 |  | 
|---|
| 5908 | profile_hit(SCHED_PROFILING, ip: __builtin_return_address(0)); | 
|---|
| 5909 |  | 
|---|
| 5910 | schedstat_inc(this_rq()->sched_count); | 
|---|
| 5911 | } | 
|---|
| 5912 |  | 
|---|
| 5913 | static void prev_balance(struct rq *rq, struct task_struct *prev, | 
|---|
| 5914 | struct rq_flags *rf) | 
|---|
| 5915 | { | 
|---|
| 5916 | const struct sched_class *start_class = prev->sched_class; | 
|---|
| 5917 | const struct sched_class *class; | 
|---|
| 5918 |  | 
|---|
| 5919 | #ifdef CONFIG_SCHED_CLASS_EXT | 
|---|
| 5920 | /* | 
|---|
| 5921 | * SCX requires a balance() call before every pick_task() including when | 
|---|
| 5922 | * waking up from SCHED_IDLE. If @start_class is below SCX, start from | 
|---|
| 5923 | * SCX instead. Also, set a flag to detect missing balance() call. | 
|---|
| 5924 | */ | 
|---|
| 5925 | if (scx_enabled()) { | 
|---|
| 5926 | rq->scx.flags |= SCX_RQ_BAL_PENDING; | 
|---|
| 5927 | if (sched_class_above(&ext_sched_class, start_class)) | 
|---|
| 5928 | start_class = &ext_sched_class; | 
|---|
| 5929 | } | 
|---|
| 5930 | #endif | 
|---|
| 5931 |  | 
|---|
| 5932 | /* | 
|---|
| 5933 | * We must do the balancing pass before put_prev_task(), such | 
|---|
| 5934 | * that when we release the rq->lock the task is in the same | 
|---|
| 5935 | * state as before we took rq->lock. | 
|---|
| 5936 | * | 
|---|
| 5937 | * We can terminate the balance pass as soon as we know there is | 
|---|
| 5938 | * a runnable task of @class priority or higher. | 
|---|
| 5939 | */ | 
|---|
| 5940 | for_active_class_range(class, start_class, &idle_sched_class) { | 
|---|
| 5941 | if (class->balance && class->balance(rq, prev, rf)) | 
|---|
| 5942 | break; | 
|---|
| 5943 | } | 
|---|
| 5944 | } | 
|---|
| 5945 |  | 
|---|
| 5946 | /* | 
|---|
| 5947 | * Pick up the highest-prio task: | 
|---|
| 5948 | */ | 
|---|
| 5949 | static inline struct task_struct * | 
|---|
| 5950 | __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | 
|---|
| 5951 | { | 
|---|
| 5952 | const struct sched_class *class; | 
|---|
| 5953 | struct task_struct *p; | 
|---|
| 5954 |  | 
|---|
| 5955 | rq->dl_server = NULL; | 
|---|
| 5956 |  | 
|---|
| 5957 | if (scx_enabled()) | 
|---|
| 5958 | goto restart; | 
|---|
| 5959 |  | 
|---|
| 5960 | /* | 
|---|
| 5961 | * Optimization: we know that if all tasks are in the fair class we can | 
|---|
| 5962 | * call that function directly, but only if the @prev task wasn't of a | 
|---|
| 5963 | * higher scheduling class, because otherwise those lose the | 
|---|
| 5964 | * opportunity to pull in more work from other CPUs. | 
|---|
| 5965 | */ | 
|---|
| 5966 | if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && | 
|---|
| 5967 | rq->nr_running == rq->cfs.h_nr_queued)) { | 
|---|
| 5968 |  | 
|---|
| 5969 | p = pick_next_task_fair(rq, prev, rf); | 
|---|
| 5970 | if (unlikely(p == RETRY_TASK)) | 
|---|
| 5971 | goto restart; | 
|---|
| 5972 |  | 
|---|
| 5973 | /* Assume the next prioritized class is idle_sched_class */ | 
|---|
| 5974 | if (!p) { | 
|---|
| 5975 | p = pick_task_idle(rq); | 
|---|
| 5976 | put_prev_set_next_task(rq, prev, next: p); | 
|---|
| 5977 | } | 
|---|
| 5978 |  | 
|---|
| 5979 | return p; | 
|---|
| 5980 | } | 
|---|
| 5981 |  | 
|---|
| 5982 | restart: | 
|---|
| 5983 | prev_balance(rq, prev, rf); | 
|---|
| 5984 |  | 
|---|
| 5985 | for_each_active_class(class) { | 
|---|
| 5986 | if (class->pick_next_task) { | 
|---|
| 5987 | p = class->pick_next_task(rq, prev); | 
|---|
| 5988 | if (p) | 
|---|
| 5989 | return p; | 
|---|
| 5990 | } else { | 
|---|
| 5991 | p = class->pick_task(rq); | 
|---|
| 5992 | if (p) { | 
|---|
| 5993 | put_prev_set_next_task(rq, prev, next: p); | 
|---|
| 5994 | return p; | 
|---|
| 5995 | } | 
|---|
| 5996 | } | 
|---|
| 5997 | } | 
|---|
| 5998 |  | 
|---|
| 5999 | BUG(); /* The idle class should always have a runnable task. */ | 
|---|
| 6000 | } | 
|---|
| 6001 |  | 
|---|
| 6002 | #ifdef CONFIG_SCHED_CORE | 
|---|
| 6003 | static inline bool is_task_rq_idle(struct task_struct *t) | 
|---|
| 6004 | { | 
|---|
| 6005 | return (task_rq(t)->idle == t); | 
|---|
| 6006 | } | 
|---|
| 6007 |  | 
|---|
| 6008 | static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) | 
|---|
| 6009 | { | 
|---|
| 6010 | return is_task_rq_idle(a) || (a->core_cookie == cookie); | 
|---|
| 6011 | } | 
|---|
| 6012 |  | 
|---|
| 6013 | static inline bool cookie_match(struct task_struct *a, struct task_struct *b) | 
|---|
| 6014 | { | 
|---|
| 6015 | if (is_task_rq_idle(a) || is_task_rq_idle(b)) | 
|---|
| 6016 | return true; | 
|---|
| 6017 |  | 
|---|
| 6018 | return a->core_cookie == b->core_cookie; | 
|---|
| 6019 | } | 
|---|
| 6020 |  | 
|---|
| 6021 | static inline struct task_struct *pick_task(struct rq *rq) | 
|---|
| 6022 | { | 
|---|
| 6023 | const struct sched_class *class; | 
|---|
| 6024 | struct task_struct *p; | 
|---|
| 6025 |  | 
|---|
| 6026 | rq->dl_server = NULL; | 
|---|
| 6027 |  | 
|---|
| 6028 | for_each_active_class(class) { | 
|---|
| 6029 | p = class->pick_task(rq); | 
|---|
| 6030 | if (p) | 
|---|
| 6031 | return p; | 
|---|
| 6032 | } | 
|---|
| 6033 |  | 
|---|
| 6034 | BUG(); /* The idle class should always have a runnable task. */ | 
|---|
| 6035 | } | 
|---|
| 6036 |  | 
|---|
| 6037 | extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); | 
|---|
| 6038 |  | 
|---|
| 6039 | static void queue_core_balance(struct rq *rq); | 
|---|
| 6040 |  | 
|---|
| 6041 | static struct task_struct * | 
|---|
| 6042 | pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | 
|---|
| 6043 | { | 
|---|
| 6044 | struct task_struct *next, *p, *max = NULL; | 
|---|
| 6045 | const struct cpumask *smt_mask; | 
|---|
| 6046 | bool fi_before = false; | 
|---|
| 6047 | bool core_clock_updated = (rq == rq->core); | 
|---|
| 6048 | unsigned long cookie; | 
|---|
| 6049 | int i, cpu, occ = 0; | 
|---|
| 6050 | struct rq *rq_i; | 
|---|
| 6051 | bool need_sync; | 
|---|
| 6052 |  | 
|---|
| 6053 | if (!sched_core_enabled(rq)) | 
|---|
| 6054 | return __pick_next_task(rq, prev, rf); | 
|---|
| 6055 |  | 
|---|
| 6056 | cpu = cpu_of(rq); | 
|---|
| 6057 |  | 
|---|
| 6058 | /* Stopper task is switching into idle, no need core-wide selection. */ | 
|---|
| 6059 | if (cpu_is_offline(cpu)) { | 
|---|
| 6060 | /* | 
|---|
| 6061 | * Reset core_pick so that we don't enter the fastpath when | 
|---|
| 6062 | * coming online. core_pick would already be migrated to | 
|---|
| 6063 | * another cpu during offline. | 
|---|
| 6064 | */ | 
|---|
| 6065 | rq->core_pick = NULL; | 
|---|
| 6066 | rq->core_dl_server = NULL; | 
|---|
| 6067 | return __pick_next_task(rq, prev, rf); | 
|---|
| 6068 | } | 
|---|
| 6069 |  | 
|---|
| 6070 | /* | 
|---|
| 6071 | * If there were no {en,de}queues since we picked (IOW, the task | 
|---|
| 6072 | * pointers are all still valid), and we haven't scheduled the last | 
|---|
| 6073 | * pick yet, do so now. | 
|---|
| 6074 | * | 
|---|
| 6075 | * rq->core_pick can be NULL if no selection was made for a CPU because | 
|---|
| 6076 | * it was either offline or went offline during a sibling's core-wide | 
|---|
| 6077 | * selection. In this case, do a core-wide selection. | 
|---|
| 6078 | */ | 
|---|
| 6079 | if (rq->core->core_pick_seq == rq->core->core_task_seq && | 
|---|
| 6080 | rq->core->core_pick_seq != rq->core_sched_seq && | 
|---|
| 6081 | rq->core_pick) { | 
|---|
| 6082 | WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); | 
|---|
| 6083 |  | 
|---|
| 6084 | next = rq->core_pick; | 
|---|
| 6085 | rq->dl_server = rq->core_dl_server; | 
|---|
| 6086 | rq->core_pick = NULL; | 
|---|
| 6087 | rq->core_dl_server = NULL; | 
|---|
| 6088 | goto out_set_next; | 
|---|
| 6089 | } | 
|---|
| 6090 |  | 
|---|
| 6091 | prev_balance(rq, prev, rf); | 
|---|
| 6092 |  | 
|---|
| 6093 | smt_mask = cpu_smt_mask(cpu); | 
|---|
| 6094 | need_sync = !!rq->core->core_cookie; | 
|---|
| 6095 |  | 
|---|
| 6096 | /* reset state */ | 
|---|
| 6097 | rq->core->core_cookie = 0UL; | 
|---|
| 6098 | if (rq->core->core_forceidle_count) { | 
|---|
| 6099 | if (!core_clock_updated) { | 
|---|
| 6100 | update_rq_clock(rq->core); | 
|---|
| 6101 | core_clock_updated = true; | 
|---|
| 6102 | } | 
|---|
| 6103 | sched_core_account_forceidle(rq); | 
|---|
| 6104 | /* reset after accounting force idle */ | 
|---|
| 6105 | rq->core->core_forceidle_start = 0; | 
|---|
| 6106 | rq->core->core_forceidle_count = 0; | 
|---|
| 6107 | rq->core->core_forceidle_occupation = 0; | 
|---|
| 6108 | need_sync = true; | 
|---|
| 6109 | fi_before = true; | 
|---|
| 6110 | } | 
|---|
| 6111 |  | 
|---|
| 6112 | /* | 
|---|
| 6113 | * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq | 
|---|
| 6114 | * | 
|---|
| 6115 | * @task_seq guards the task state ({en,de}queues) | 
|---|
| 6116 | * @pick_seq is the @task_seq we did a selection on | 
|---|
| 6117 | * @sched_seq is the @pick_seq we scheduled | 
|---|
| 6118 | * | 
|---|
| 6119 | * However, preemptions can cause multiple picks on the same task set. | 
|---|
| 6120 | * 'Fix' this by also increasing @task_seq for every pick. | 
|---|
| 6121 | */ | 
|---|
| 6122 | rq->core->core_task_seq++; | 
|---|
| 6123 |  | 
|---|
| 6124 | /* | 
|---|
| 6125 | * Optimize for common case where this CPU has no cookies | 
|---|
| 6126 | * and there are no cookied tasks running on siblings. | 
|---|
| 6127 | */ | 
|---|
| 6128 | if (!need_sync) { | 
|---|
| 6129 | next = pick_task(rq); | 
|---|
| 6130 | if (!next->core_cookie) { | 
|---|
| 6131 | rq->core_pick = NULL; | 
|---|
| 6132 | rq->core_dl_server = NULL; | 
|---|
| 6133 | /* | 
|---|
| 6134 | * For robustness, update the min_vruntime_fi for | 
|---|
| 6135 | * unconstrained picks as well. | 
|---|
| 6136 | */ | 
|---|
| 6137 | WARN_ON_ONCE(fi_before); | 
|---|
| 6138 | task_vruntime_update(rq, next, false); | 
|---|
| 6139 | goto out_set_next; | 
|---|
| 6140 | } | 
|---|
| 6141 | } | 
|---|
| 6142 |  | 
|---|
| 6143 | /* | 
|---|
| 6144 | * For each thread: do the regular task pick and find the max prio task | 
|---|
| 6145 | * amongst them. | 
|---|
| 6146 | * | 
|---|
| 6147 | * Tie-break prio towards the current CPU | 
|---|
| 6148 | */ | 
|---|
| 6149 | for_each_cpu_wrap(i, smt_mask, cpu) { | 
|---|
| 6150 | rq_i = cpu_rq(i); | 
|---|
| 6151 |  | 
|---|
| 6152 | /* | 
|---|
| 6153 | * Current cpu always has its clock updated on entrance to | 
|---|
| 6154 | * pick_next_task(). If the current cpu is not the core, | 
|---|
| 6155 | * the core may also have been updated above. | 
|---|
| 6156 | */ | 
|---|
| 6157 | if (i != cpu && (rq_i != rq->core || !core_clock_updated)) | 
|---|
| 6158 | update_rq_clock(rq_i); | 
|---|
| 6159 |  | 
|---|
| 6160 | rq_i->core_pick = p = pick_task(rq_i); | 
|---|
| 6161 | rq_i->core_dl_server = rq_i->dl_server; | 
|---|
| 6162 |  | 
|---|
| 6163 | if (!max || prio_less(max, p, fi_before)) | 
|---|
| 6164 | max = p; | 
|---|
| 6165 | } | 
|---|
| 6166 |  | 
|---|
| 6167 | cookie = rq->core->core_cookie = max->core_cookie; | 
|---|
| 6168 |  | 
|---|
| 6169 | /* | 
|---|
| 6170 | * For each thread: try and find a runnable task that matches @max or | 
|---|
| 6171 | * force idle. | 
|---|
| 6172 | */ | 
|---|
| 6173 | for_each_cpu(i, smt_mask) { | 
|---|
| 6174 | rq_i = cpu_rq(i); | 
|---|
| 6175 | p = rq_i->core_pick; | 
|---|
| 6176 |  | 
|---|
| 6177 | if (!cookie_equals(p, cookie)) { | 
|---|
| 6178 | p = NULL; | 
|---|
| 6179 | if (cookie) | 
|---|
| 6180 | p = sched_core_find(rq_i, cookie); | 
|---|
| 6181 | if (!p) | 
|---|
| 6182 | p = idle_sched_class.pick_task(rq_i); | 
|---|
| 6183 | } | 
|---|
| 6184 |  | 
|---|
| 6185 | rq_i->core_pick = p; | 
|---|
| 6186 | rq_i->core_dl_server = NULL; | 
|---|
| 6187 |  | 
|---|
| 6188 | if (p == rq_i->idle) { | 
|---|
| 6189 | if (rq_i->nr_running) { | 
|---|
| 6190 | rq->core->core_forceidle_count++; | 
|---|
| 6191 | if (!fi_before) | 
|---|
| 6192 | rq->core->core_forceidle_seq++; | 
|---|
| 6193 | } | 
|---|
| 6194 | } else { | 
|---|
| 6195 | occ++; | 
|---|
| 6196 | } | 
|---|
| 6197 | } | 
|---|
| 6198 |  | 
|---|
| 6199 | if (schedstat_enabled() && rq->core->core_forceidle_count) { | 
|---|
| 6200 | rq->core->core_forceidle_start = rq_clock(rq->core); | 
|---|
| 6201 | rq->core->core_forceidle_occupation = occ; | 
|---|
| 6202 | } | 
|---|
| 6203 |  | 
|---|
| 6204 | rq->core->core_pick_seq = rq->core->core_task_seq; | 
|---|
| 6205 | next = rq->core_pick; | 
|---|
| 6206 | rq->core_sched_seq = rq->core->core_pick_seq; | 
|---|
| 6207 |  | 
|---|
| 6208 | /* Something should have been selected for current CPU */ | 
|---|
| 6209 | WARN_ON_ONCE(!next); | 
|---|
| 6210 |  | 
|---|
| 6211 | /* | 
|---|
| 6212 | * Reschedule siblings | 
|---|
| 6213 | * | 
|---|
| 6214 | * NOTE: L1TF -- at this point we're no longer running the old task and | 
|---|
| 6215 | * sending an IPI (below) ensures the sibling will no longer be running | 
|---|
| 6216 | * their task. This ensures there is no inter-sibling overlap between | 
|---|
| 6217 | * non-matching user state. | 
|---|
| 6218 | */ | 
|---|
| 6219 | for_each_cpu(i, smt_mask) { | 
|---|
| 6220 | rq_i = cpu_rq(i); | 
|---|
| 6221 |  | 
|---|
| 6222 | /* | 
|---|
| 6223 | * An online sibling might have gone offline before a task | 
|---|
| 6224 | * could be picked for it, or it might be offline but later | 
|---|
| 6225 | * happen to come online, but its too late and nothing was | 
|---|
| 6226 | * picked for it.  That's Ok - it will pick tasks for itself, | 
|---|
| 6227 | * so ignore it. | 
|---|
| 6228 | */ | 
|---|
| 6229 | if (!rq_i->core_pick) | 
|---|
| 6230 | continue; | 
|---|
| 6231 |  | 
|---|
| 6232 | /* | 
|---|
| 6233 | * Update for new !FI->FI transitions, or if continuing to be in !FI: | 
|---|
| 6234 | * fi_before     fi      update? | 
|---|
| 6235 | *  0            0       1 | 
|---|
| 6236 | *  0            1       1 | 
|---|
| 6237 | *  1            0       1 | 
|---|
| 6238 | *  1            1       0 | 
|---|
| 6239 | */ | 
|---|
| 6240 | if (!(fi_before && rq->core->core_forceidle_count)) | 
|---|
| 6241 | task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); | 
|---|
| 6242 |  | 
|---|
| 6243 | rq_i->core_pick->core_occupation = occ; | 
|---|
| 6244 |  | 
|---|
| 6245 | if (i == cpu) { | 
|---|
| 6246 | rq_i->core_pick = NULL; | 
|---|
| 6247 | rq_i->core_dl_server = NULL; | 
|---|
| 6248 | continue; | 
|---|
| 6249 | } | 
|---|
| 6250 |  | 
|---|
| 6251 | /* Did we break L1TF mitigation requirements? */ | 
|---|
| 6252 | WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); | 
|---|
| 6253 |  | 
|---|
| 6254 | if (rq_i->curr == rq_i->core_pick) { | 
|---|
| 6255 | rq_i->core_pick = NULL; | 
|---|
| 6256 | rq_i->core_dl_server = NULL; | 
|---|
| 6257 | continue; | 
|---|
| 6258 | } | 
|---|
| 6259 |  | 
|---|
| 6260 | resched_curr(rq_i); | 
|---|
| 6261 | } | 
|---|
| 6262 |  | 
|---|
| 6263 | out_set_next: | 
|---|
| 6264 | put_prev_set_next_task(rq, prev, next); | 
|---|
| 6265 | if (rq->core->core_forceidle_count && next == rq->idle) | 
|---|
| 6266 | queue_core_balance(rq); | 
|---|
| 6267 |  | 
|---|
| 6268 | return next; | 
|---|
| 6269 | } | 
|---|
| 6270 |  | 
|---|
| 6271 | static bool try_steal_cookie(int this, int that) | 
|---|
| 6272 | { | 
|---|
| 6273 | struct rq *dst = cpu_rq(this), *src = cpu_rq(that); | 
|---|
| 6274 | struct task_struct *p; | 
|---|
| 6275 | unsigned long cookie; | 
|---|
| 6276 | bool success = false; | 
|---|
| 6277 |  | 
|---|
| 6278 | guard(irq)(); | 
|---|
| 6279 | guard(double_rq_lock)(dst, src); | 
|---|
| 6280 |  | 
|---|
| 6281 | cookie = dst->core->core_cookie; | 
|---|
| 6282 | if (!cookie) | 
|---|
| 6283 | return false; | 
|---|
| 6284 |  | 
|---|
| 6285 | if (dst->curr != dst->idle) | 
|---|
| 6286 | return false; | 
|---|
| 6287 |  | 
|---|
| 6288 | p = sched_core_find(src, cookie); | 
|---|
| 6289 | if (!p) | 
|---|
| 6290 | return false; | 
|---|
| 6291 |  | 
|---|
| 6292 | do { | 
|---|
| 6293 | if (p == src->core_pick || p == src->curr) | 
|---|
| 6294 | goto next; | 
|---|
| 6295 |  | 
|---|
| 6296 | if (!is_cpu_allowed(p, this)) | 
|---|
| 6297 | goto next; | 
|---|
| 6298 |  | 
|---|
| 6299 | if (p->core_occupation > dst->idle->core_occupation) | 
|---|
| 6300 | goto next; | 
|---|
| 6301 | /* | 
|---|
| 6302 | * sched_core_find() and sched_core_next() will ensure | 
|---|
| 6303 | * that task @p is not throttled now, we also need to | 
|---|
| 6304 | * check whether the runqueue of the destination CPU is | 
|---|
| 6305 | * being throttled. | 
|---|
| 6306 | */ | 
|---|
| 6307 | if (sched_task_is_throttled(p, this)) | 
|---|
| 6308 | goto next; | 
|---|
| 6309 |  | 
|---|
| 6310 | move_queued_task_locked(src, dst, p); | 
|---|
| 6311 | resched_curr(dst); | 
|---|
| 6312 |  | 
|---|
| 6313 | success = true; | 
|---|
| 6314 | break; | 
|---|
| 6315 |  | 
|---|
| 6316 | next: | 
|---|
| 6317 | p = sched_core_next(p, cookie); | 
|---|
| 6318 | } while (p); | 
|---|
| 6319 |  | 
|---|
| 6320 | return success; | 
|---|
| 6321 | } | 
|---|
| 6322 |  | 
|---|
| 6323 | static bool steal_cookie_task(int cpu, struct sched_domain *sd) | 
|---|
| 6324 | { | 
|---|
| 6325 | int i; | 
|---|
| 6326 |  | 
|---|
| 6327 | for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { | 
|---|
| 6328 | if (i == cpu) | 
|---|
| 6329 | continue; | 
|---|
| 6330 |  | 
|---|
| 6331 | if (need_resched()) | 
|---|
| 6332 | break; | 
|---|
| 6333 |  | 
|---|
| 6334 | if (try_steal_cookie(cpu, i)) | 
|---|
| 6335 | return true; | 
|---|
| 6336 | } | 
|---|
| 6337 |  | 
|---|
| 6338 | return false; | 
|---|
| 6339 | } | 
|---|
| 6340 |  | 
|---|
| 6341 | static void sched_core_balance(struct rq *rq) | 
|---|
| 6342 | { | 
|---|
| 6343 | struct sched_domain *sd; | 
|---|
| 6344 | int cpu = cpu_of(rq); | 
|---|
| 6345 |  | 
|---|
| 6346 | guard(preempt)(); | 
|---|
| 6347 | guard(rcu)(); | 
|---|
| 6348 |  | 
|---|
| 6349 | raw_spin_rq_unlock_irq(rq); | 
|---|
| 6350 | for_each_domain(cpu, sd) { | 
|---|
| 6351 | if (need_resched()) | 
|---|
| 6352 | break; | 
|---|
| 6353 |  | 
|---|
| 6354 | if (steal_cookie_task(cpu, sd)) | 
|---|
| 6355 | break; | 
|---|
| 6356 | } | 
|---|
| 6357 | raw_spin_rq_lock_irq(rq); | 
|---|
| 6358 | } | 
|---|
| 6359 |  | 
|---|
| 6360 | static DEFINE_PER_CPU(struct balance_callback, core_balance_head); | 
|---|
| 6361 |  | 
|---|
| 6362 | static void queue_core_balance(struct rq *rq) | 
|---|
| 6363 | { | 
|---|
| 6364 | if (!sched_core_enabled(rq)) | 
|---|
| 6365 | return; | 
|---|
| 6366 |  | 
|---|
| 6367 | if (!rq->core->core_cookie) | 
|---|
| 6368 | return; | 
|---|
| 6369 |  | 
|---|
| 6370 | if (!rq->nr_running) /* not forced idle */ | 
|---|
| 6371 | return; | 
|---|
| 6372 |  | 
|---|
| 6373 | queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); | 
|---|
| 6374 | } | 
|---|
| 6375 |  | 
|---|
| 6376 | DEFINE_LOCK_GUARD_1(core_lock, int, | 
|---|
| 6377 | sched_core_lock(*_T->lock, &_T->flags), | 
|---|
| 6378 | sched_core_unlock(*_T->lock, &_T->flags), | 
|---|
| 6379 | unsigned long flags) | 
|---|
| 6380 |  | 
|---|
| 6381 | static void sched_core_cpu_starting(unsigned int cpu) | 
|---|
| 6382 | { | 
|---|
| 6383 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); | 
|---|
| 6384 | struct rq *rq = cpu_rq(cpu), *core_rq = NULL; | 
|---|
| 6385 | int t; | 
|---|
| 6386 |  | 
|---|
| 6387 | guard(core_lock)(&cpu); | 
|---|
| 6388 |  | 
|---|
| 6389 | WARN_ON_ONCE(rq->core != rq); | 
|---|
| 6390 |  | 
|---|
| 6391 | /* if we're the first, we'll be our own leader */ | 
|---|
| 6392 | if (cpumask_weight(smt_mask) == 1) | 
|---|
| 6393 | return; | 
|---|
| 6394 |  | 
|---|
| 6395 | /* find the leader */ | 
|---|
| 6396 | for_each_cpu(t, smt_mask) { | 
|---|
| 6397 | if (t == cpu) | 
|---|
| 6398 | continue; | 
|---|
| 6399 | rq = cpu_rq(t); | 
|---|
| 6400 | if (rq->core == rq) { | 
|---|
| 6401 | core_rq = rq; | 
|---|
| 6402 | break; | 
|---|
| 6403 | } | 
|---|
| 6404 | } | 
|---|
| 6405 |  | 
|---|
| 6406 | if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ | 
|---|
| 6407 | return; | 
|---|
| 6408 |  | 
|---|
| 6409 | /* install and validate core_rq */ | 
|---|
| 6410 | for_each_cpu(t, smt_mask) { | 
|---|
| 6411 | rq = cpu_rq(t); | 
|---|
| 6412 |  | 
|---|
| 6413 | if (t == cpu) | 
|---|
| 6414 | rq->core = core_rq; | 
|---|
| 6415 |  | 
|---|
| 6416 | WARN_ON_ONCE(rq->core != core_rq); | 
|---|
| 6417 | } | 
|---|
| 6418 | } | 
|---|
| 6419 |  | 
|---|
| 6420 | static void sched_core_cpu_deactivate(unsigned int cpu) | 
|---|
| 6421 | { | 
|---|
| 6422 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); | 
|---|
| 6423 | struct rq *rq = cpu_rq(cpu), *core_rq = NULL; | 
|---|
| 6424 | int t; | 
|---|
| 6425 |  | 
|---|
| 6426 | guard(core_lock)(&cpu); | 
|---|
| 6427 |  | 
|---|
| 6428 | /* if we're the last man standing, nothing to do */ | 
|---|
| 6429 | if (cpumask_weight(smt_mask) == 1) { | 
|---|
| 6430 | WARN_ON_ONCE(rq->core != rq); | 
|---|
| 6431 | return; | 
|---|
| 6432 | } | 
|---|
| 6433 |  | 
|---|
| 6434 | /* if we're not the leader, nothing to do */ | 
|---|
| 6435 | if (rq->core != rq) | 
|---|
| 6436 | return; | 
|---|
| 6437 |  | 
|---|
| 6438 | /* find a new leader */ | 
|---|
| 6439 | for_each_cpu(t, smt_mask) { | 
|---|
| 6440 | if (t == cpu) | 
|---|
| 6441 | continue; | 
|---|
| 6442 | core_rq = cpu_rq(t); | 
|---|
| 6443 | break; | 
|---|
| 6444 | } | 
|---|
| 6445 |  | 
|---|
| 6446 | if (WARN_ON_ONCE(!core_rq)) /* impossible */ | 
|---|
| 6447 | return; | 
|---|
| 6448 |  | 
|---|
| 6449 | /* copy the shared state to the new leader */ | 
|---|
| 6450 | core_rq->core_task_seq             = rq->core_task_seq; | 
|---|
| 6451 | core_rq->core_pick_seq             = rq->core_pick_seq; | 
|---|
| 6452 | core_rq->core_cookie               = rq->core_cookie; | 
|---|
| 6453 | core_rq->core_forceidle_count      = rq->core_forceidle_count; | 
|---|
| 6454 | core_rq->core_forceidle_seq        = rq->core_forceidle_seq; | 
|---|
| 6455 | core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; | 
|---|
| 6456 |  | 
|---|
| 6457 | /* | 
|---|
| 6458 | * Accounting edge for forced idle is handled in pick_next_task(). | 
|---|
| 6459 | * Don't need another one here, since the hotplug thread shouldn't | 
|---|
| 6460 | * have a cookie. | 
|---|
| 6461 | */ | 
|---|
| 6462 | core_rq->core_forceidle_start = 0; | 
|---|
| 6463 |  | 
|---|
| 6464 | /* install new leader */ | 
|---|
| 6465 | for_each_cpu(t, smt_mask) { | 
|---|
| 6466 | rq = cpu_rq(t); | 
|---|
| 6467 | rq->core = core_rq; | 
|---|
| 6468 | } | 
|---|
| 6469 | } | 
|---|
| 6470 |  | 
|---|
| 6471 | static inline void sched_core_cpu_dying(unsigned int cpu) | 
|---|
| 6472 | { | 
|---|
| 6473 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 6474 |  | 
|---|
| 6475 | if (rq->core != rq) | 
|---|
| 6476 | rq->core = rq; | 
|---|
| 6477 | } | 
|---|
| 6478 |  | 
|---|
| 6479 | #else /* !CONFIG_SCHED_CORE: */ | 
|---|
| 6480 |  | 
|---|
| 6481 | static inline void sched_core_cpu_starting(unsigned int cpu) {} | 
|---|
| 6482 | static inline void sched_core_cpu_deactivate(unsigned int cpu) {} | 
|---|
| 6483 | static inline void sched_core_cpu_dying(unsigned int cpu) {} | 
|---|
| 6484 |  | 
|---|
| 6485 | static struct task_struct * | 
|---|
| 6486 | pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | 
|---|
| 6487 | { | 
|---|
| 6488 | return __pick_next_task(rq, prev, rf); | 
|---|
| 6489 | } | 
|---|
| 6490 |  | 
|---|
| 6491 | #endif /* !CONFIG_SCHED_CORE */ | 
|---|
| 6492 |  | 
|---|
| 6493 | /* | 
|---|
| 6494 | * Constants for the sched_mode argument of __schedule(). | 
|---|
| 6495 | * | 
|---|
| 6496 | * The mode argument allows RT enabled kernels to differentiate a | 
|---|
| 6497 | * preemption from blocking on an 'sleeping' spin/rwlock. | 
|---|
| 6498 | */ | 
|---|
| 6499 | #define SM_IDLE			(-1) | 
|---|
| 6500 | #define SM_NONE			0 | 
|---|
| 6501 | #define SM_PREEMPT		1 | 
|---|
| 6502 | #define SM_RTLOCK_WAIT		2 | 
|---|
| 6503 |  | 
|---|
| 6504 | /* | 
|---|
| 6505 | * Helper function for __schedule() | 
|---|
| 6506 | * | 
|---|
| 6507 | * Tries to deactivate the task, unless the should_block arg | 
|---|
| 6508 | * is false or if a signal is pending. In the case a signal | 
|---|
| 6509 | * is pending, marks the task's __state as RUNNING (and clear | 
|---|
| 6510 | * blocked_on). | 
|---|
| 6511 | */ | 
|---|
| 6512 | static bool try_to_block_task(struct rq *rq, struct task_struct *p, | 
|---|
| 6513 | unsigned long *task_state_p, bool should_block) | 
|---|
| 6514 | { | 
|---|
| 6515 | unsigned long task_state = *task_state_p; | 
|---|
| 6516 | int flags = DEQUEUE_NOCLOCK; | 
|---|
| 6517 |  | 
|---|
| 6518 | if (signal_pending_state(state: task_state, p)) { | 
|---|
| 6519 | WRITE_ONCE(p->__state, TASK_RUNNING); | 
|---|
| 6520 | *task_state_p = TASK_RUNNING; | 
|---|
| 6521 | return false; | 
|---|
| 6522 | } | 
|---|
| 6523 |  | 
|---|
| 6524 | /* | 
|---|
| 6525 | * We check should_block after signal_pending because we | 
|---|
| 6526 | * will want to wake the task in that case. But if | 
|---|
| 6527 | * should_block is false, its likely due to the task being | 
|---|
| 6528 | * blocked on a mutex, and we want to keep it on the runqueue | 
|---|
| 6529 | * to be selectable for proxy-execution. | 
|---|
| 6530 | */ | 
|---|
| 6531 | if (!should_block) | 
|---|
| 6532 | return false; | 
|---|
| 6533 |  | 
|---|
| 6534 | p->sched_contributes_to_load = | 
|---|
| 6535 | (task_state & TASK_UNINTERRUPTIBLE) && | 
|---|
| 6536 | !(task_state & TASK_NOLOAD) && | 
|---|
| 6537 | !(task_state & TASK_FROZEN); | 
|---|
| 6538 |  | 
|---|
| 6539 | if (unlikely(is_special_task_state(task_state))) | 
|---|
| 6540 | flags |= DEQUEUE_SPECIAL; | 
|---|
| 6541 |  | 
|---|
| 6542 | /* | 
|---|
| 6543 | * __schedule()			ttwu() | 
|---|
| 6544 | *   prev_state = prev->state;    if (p->on_rq && ...) | 
|---|
| 6545 | *   if (prev_state)		    goto out; | 
|---|
| 6546 | *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep(); | 
|---|
| 6547 | *				  p->state = TASK_WAKING | 
|---|
| 6548 | * | 
|---|
| 6549 | * Where __schedule() and ttwu() have matching control dependencies. | 
|---|
| 6550 | * | 
|---|
| 6551 | * After this, schedule() must not care about p->state any more. | 
|---|
| 6552 | */ | 
|---|
| 6553 | block_task(rq, p, flags); | 
|---|
| 6554 | return true; | 
|---|
| 6555 | } | 
|---|
| 6556 |  | 
|---|
| 6557 | #ifdef CONFIG_SCHED_PROXY_EXEC | 
|---|
| 6558 | static inline struct task_struct *proxy_resched_idle(struct rq *rq) | 
|---|
| 6559 | { | 
|---|
| 6560 | put_prev_set_next_task(rq, rq->donor, rq->idle); | 
|---|
| 6561 | rq_set_donor(rq, rq->idle); | 
|---|
| 6562 | set_tsk_need_resched(rq->idle); | 
|---|
| 6563 | return rq->idle; | 
|---|
| 6564 | } | 
|---|
| 6565 |  | 
|---|
| 6566 | static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor) | 
|---|
| 6567 | { | 
|---|
| 6568 | unsigned long state = READ_ONCE(donor->__state); | 
|---|
| 6569 |  | 
|---|
| 6570 | /* Don't deactivate if the state has been changed to TASK_RUNNING */ | 
|---|
| 6571 | if (state == TASK_RUNNING) | 
|---|
| 6572 | return false; | 
|---|
| 6573 | /* | 
|---|
| 6574 | * Because we got donor from pick_next_task(), it is *crucial* | 
|---|
| 6575 | * that we call proxy_resched_idle() before we deactivate it. | 
|---|
| 6576 | * As once we deactivate donor, donor->on_rq is set to zero, | 
|---|
| 6577 | * which allows ttwu() to immediately try to wake the task on | 
|---|
| 6578 | * another rq. So we cannot use *any* references to donor | 
|---|
| 6579 | * after that point. So things like cfs_rq->curr or rq->donor | 
|---|
| 6580 | * need to be changed from next *before* we deactivate. | 
|---|
| 6581 | */ | 
|---|
| 6582 | proxy_resched_idle(rq); | 
|---|
| 6583 | return try_to_block_task(rq, donor, &state, true); | 
|---|
| 6584 | } | 
|---|
| 6585 |  | 
|---|
| 6586 | static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor) | 
|---|
| 6587 | { | 
|---|
| 6588 | if (!__proxy_deactivate(rq, donor)) { | 
|---|
| 6589 | /* | 
|---|
| 6590 | * XXX: For now, if deactivation failed, set donor | 
|---|
| 6591 | * as unblocked, as we aren't doing proxy-migrations | 
|---|
| 6592 | * yet (more logic will be needed then). | 
|---|
| 6593 | */ | 
|---|
| 6594 | donor->blocked_on = NULL; | 
|---|
| 6595 | } | 
|---|
| 6596 | return NULL; | 
|---|
| 6597 | } | 
|---|
| 6598 |  | 
|---|
| 6599 | /* | 
|---|
| 6600 | * Find runnable lock owner to proxy for mutex blocked donor | 
|---|
| 6601 | * | 
|---|
| 6602 | * Follow the blocked-on relation: | 
|---|
| 6603 | *   task->blocked_on -> mutex->owner -> task... | 
|---|
| 6604 | * | 
|---|
| 6605 | * Lock order: | 
|---|
| 6606 | * | 
|---|
| 6607 | *   p->pi_lock | 
|---|
| 6608 | *     rq->lock | 
|---|
| 6609 | *       mutex->wait_lock | 
|---|
| 6610 | * | 
|---|
| 6611 | * Returns the task that is going to be used as execution context (the one | 
|---|
| 6612 | * that is actually going to be run on cpu_of(rq)). | 
|---|
| 6613 | */ | 
|---|
| 6614 | static struct task_struct * | 
|---|
| 6615 | find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) | 
|---|
| 6616 | { | 
|---|
| 6617 | struct task_struct *owner = NULL; | 
|---|
| 6618 | int this_cpu = cpu_of(rq); | 
|---|
| 6619 | struct task_struct *p; | 
|---|
| 6620 | struct mutex *mutex; | 
|---|
| 6621 |  | 
|---|
| 6622 | /* Follow blocked_on chain. */ | 
|---|
| 6623 | for (p = donor; task_is_blocked(p); p = owner) { | 
|---|
| 6624 | mutex = p->blocked_on; | 
|---|
| 6625 | /* Something changed in the chain, so pick again */ | 
|---|
| 6626 | if (!mutex) | 
|---|
| 6627 | return NULL; | 
|---|
| 6628 | /* | 
|---|
| 6629 | * By taking mutex->wait_lock we hold off concurrent mutex_unlock() | 
|---|
| 6630 | * and ensure @owner sticks around. | 
|---|
| 6631 | */ | 
|---|
| 6632 | guard(raw_spinlock)(&mutex->wait_lock); | 
|---|
| 6633 |  | 
|---|
| 6634 | /* Check again that p is blocked with wait_lock held */ | 
|---|
| 6635 | if (mutex != __get_task_blocked_on(p)) { | 
|---|
| 6636 | /* | 
|---|
| 6637 | * Something changed in the blocked_on chain and | 
|---|
| 6638 | * we don't know if only at this level. So, let's | 
|---|
| 6639 | * just bail out completely and let __schedule() | 
|---|
| 6640 | * figure things out (pick_again loop). | 
|---|
| 6641 | */ | 
|---|
| 6642 | return NULL; | 
|---|
| 6643 | } | 
|---|
| 6644 |  | 
|---|
| 6645 | owner = __mutex_owner(mutex); | 
|---|
| 6646 | if (!owner) { | 
|---|
| 6647 | __clear_task_blocked_on(p, mutex); | 
|---|
| 6648 | return p; | 
|---|
| 6649 | } | 
|---|
| 6650 |  | 
|---|
| 6651 | if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) { | 
|---|
| 6652 | /* XXX Don't handle blocked owners/delayed dequeue yet */ | 
|---|
| 6653 | return proxy_deactivate(rq, donor); | 
|---|
| 6654 | } | 
|---|
| 6655 |  | 
|---|
| 6656 | if (task_cpu(owner) != this_cpu) { | 
|---|
| 6657 | /* XXX Don't handle migrations yet */ | 
|---|
| 6658 | return proxy_deactivate(rq, donor); | 
|---|
| 6659 | } | 
|---|
| 6660 |  | 
|---|
| 6661 | if (task_on_rq_migrating(owner)) { | 
|---|
| 6662 | /* | 
|---|
| 6663 | * One of the chain of mutex owners is currently migrating to this | 
|---|
| 6664 | * CPU, but has not yet been enqueued because we are holding the | 
|---|
| 6665 | * rq lock. As a simple solution, just schedule rq->idle to give | 
|---|
| 6666 | * the migration a chance to complete. Much like the migrate_task | 
|---|
| 6667 | * case we should end up back in find_proxy_task(), this time | 
|---|
| 6668 | * hopefully with all relevant tasks already enqueued. | 
|---|
| 6669 | */ | 
|---|
| 6670 | return proxy_resched_idle(rq); | 
|---|
| 6671 | } | 
|---|
| 6672 |  | 
|---|
| 6673 | /* | 
|---|
| 6674 | * Its possible to race where after we check owner->on_rq | 
|---|
| 6675 | * but before we check (owner_cpu != this_cpu) that the | 
|---|
| 6676 | * task on another cpu was migrated back to this cpu. In | 
|---|
| 6677 | * that case it could slip by our  checks. So double check | 
|---|
| 6678 | * we are still on this cpu and not migrating. If we get | 
|---|
| 6679 | * inconsistent results, try again. | 
|---|
| 6680 | */ | 
|---|
| 6681 | if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu) | 
|---|
| 6682 | return NULL; | 
|---|
| 6683 |  | 
|---|
| 6684 | if (owner == p) { | 
|---|
| 6685 | /* | 
|---|
| 6686 | * It's possible we interleave with mutex_unlock like: | 
|---|
| 6687 | * | 
|---|
| 6688 | *				lock(&rq->lock); | 
|---|
| 6689 | *				  find_proxy_task() | 
|---|
| 6690 | * mutex_unlock() | 
|---|
| 6691 | *   lock(&wait_lock); | 
|---|
| 6692 | *   donor(owner) = current->blocked_donor; | 
|---|
| 6693 | *   unlock(&wait_lock); | 
|---|
| 6694 | * | 
|---|
| 6695 | *   wake_up_q(); | 
|---|
| 6696 | *     ... | 
|---|
| 6697 | *       ttwu_runnable() | 
|---|
| 6698 | *         __task_rq_lock() | 
|---|
| 6699 | *				  lock(&wait_lock); | 
|---|
| 6700 | *				  owner == p | 
|---|
| 6701 | * | 
|---|
| 6702 | * Which leaves us to finish the ttwu_runnable() and make it go. | 
|---|
| 6703 | * | 
|---|
| 6704 | * So schedule rq->idle so that ttwu_runnable() can get the rq | 
|---|
| 6705 | * lock and mark owner as running. | 
|---|
| 6706 | */ | 
|---|
| 6707 | return proxy_resched_idle(rq); | 
|---|
| 6708 | } | 
|---|
| 6709 | /* | 
|---|
| 6710 | * OK, now we're absolutely sure @owner is on this | 
|---|
| 6711 | * rq, therefore holding @rq->lock is sufficient to | 
|---|
| 6712 | * guarantee its existence, as per ttwu_remote(). | 
|---|
| 6713 | */ | 
|---|
| 6714 | } | 
|---|
| 6715 |  | 
|---|
| 6716 | WARN_ON_ONCE(owner && !owner->on_rq); | 
|---|
| 6717 | return owner; | 
|---|
| 6718 | } | 
|---|
| 6719 | #else /* SCHED_PROXY_EXEC */ | 
|---|
| 6720 | static struct task_struct * | 
|---|
| 6721 | find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) | 
|---|
| 6722 | { | 
|---|
| 6723 | WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n"); | 
|---|
| 6724 | return donor; | 
|---|
| 6725 | } | 
|---|
| 6726 | #endif /* SCHED_PROXY_EXEC */ | 
|---|
| 6727 |  | 
|---|
| 6728 | static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner) | 
|---|
| 6729 | { | 
|---|
| 6730 | if (!sched_proxy_exec()) | 
|---|
| 6731 | return; | 
|---|
| 6732 | /* | 
|---|
| 6733 | * pick_next_task() calls set_next_task() on the chosen task | 
|---|
| 6734 | * at some point, which ensures it is not push/pullable. | 
|---|
| 6735 | * However, the chosen/donor task *and* the mutex owner form an | 
|---|
| 6736 | * atomic pair wrt push/pull. | 
|---|
| 6737 | * | 
|---|
| 6738 | * Make sure owner we run is not pushable. Unfortunately we can | 
|---|
| 6739 | * only deal with that by means of a dequeue/enqueue cycle. :-/ | 
|---|
| 6740 | */ | 
|---|
| 6741 | dequeue_task(rq, p: owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE); | 
|---|
| 6742 | enqueue_task(rq, p: owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE); | 
|---|
| 6743 | } | 
|---|
| 6744 |  | 
|---|
| 6745 | /* | 
|---|
| 6746 | * __schedule() is the main scheduler function. | 
|---|
| 6747 | * | 
|---|
| 6748 | * The main means of driving the scheduler and thus entering this function are: | 
|---|
| 6749 | * | 
|---|
| 6750 | *   1. Explicit blocking: mutex, semaphore, waitqueue, etc. | 
|---|
| 6751 | * | 
|---|
| 6752 | *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return | 
|---|
| 6753 | *      paths. For example, see arch/x86/entry_64.S. | 
|---|
| 6754 | * | 
|---|
| 6755 | *      To drive preemption between tasks, the scheduler sets the flag in timer | 
|---|
| 6756 | *      interrupt handler sched_tick(). | 
|---|
| 6757 | * | 
|---|
| 6758 | *   3. Wakeups don't really cause entry into schedule(). They add a | 
|---|
| 6759 | *      task to the run-queue and that's it. | 
|---|
| 6760 | * | 
|---|
| 6761 | *      Now, if the new task added to the run-queue preempts the current | 
|---|
| 6762 | *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets | 
|---|
| 6763 | *      called on the nearest possible occasion: | 
|---|
| 6764 | * | 
|---|
| 6765 | *       - If the kernel is preemptible (CONFIG_PREEMPTION=y): | 
|---|
| 6766 | * | 
|---|
| 6767 | *         - in syscall or exception context, at the next outmost | 
|---|
| 6768 | *           preempt_enable(). (this might be as soon as the wake_up()'s | 
|---|
| 6769 | *           spin_unlock()!) | 
|---|
| 6770 | * | 
|---|
| 6771 | *         - in IRQ context, return from interrupt-handler to | 
|---|
| 6772 | *           preemptible context | 
|---|
| 6773 | * | 
|---|
| 6774 | *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) | 
|---|
| 6775 | *         then at the next: | 
|---|
| 6776 | * | 
|---|
| 6777 | *          - cond_resched() call | 
|---|
| 6778 | *          - explicit schedule() call | 
|---|
| 6779 | *          - return from syscall or exception to user-space | 
|---|
| 6780 | *          - return from interrupt-handler to user-space | 
|---|
| 6781 | * | 
|---|
| 6782 | * WARNING: must be called with preemption disabled! | 
|---|
| 6783 | */ | 
|---|
| 6784 | static void __sched notrace __schedule(int sched_mode) | 
|---|
| 6785 | { | 
|---|
| 6786 | struct task_struct *prev, *next; | 
|---|
| 6787 | /* | 
|---|
| 6788 | * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted | 
|---|
| 6789 | * as a preemption by schedule_debug() and RCU. | 
|---|
| 6790 | */ | 
|---|
| 6791 | bool preempt = sched_mode > SM_NONE; | 
|---|
| 6792 | bool is_switch = false; | 
|---|
| 6793 | unsigned long *switch_count; | 
|---|
| 6794 | unsigned long prev_state; | 
|---|
| 6795 | struct rq_flags rf; | 
|---|
| 6796 | struct rq *rq; | 
|---|
| 6797 | int cpu; | 
|---|
| 6798 |  | 
|---|
| 6799 | /* Trace preemptions consistently with task switches */ | 
|---|
| 6800 | trace_sched_entry_tp(preempt: sched_mode == SM_PREEMPT); | 
|---|
| 6801 |  | 
|---|
| 6802 | cpu = smp_processor_id(); | 
|---|
| 6803 | rq = cpu_rq(cpu); | 
|---|
| 6804 | prev = rq->curr; | 
|---|
| 6805 |  | 
|---|
| 6806 | schedule_debug(prev, preempt); | 
|---|
| 6807 |  | 
|---|
| 6808 | if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) | 
|---|
| 6809 | hrtick_clear(rq); | 
|---|
| 6810 |  | 
|---|
| 6811 | klp_sched_try_switch(curr: prev); | 
|---|
| 6812 |  | 
|---|
| 6813 | local_irq_disable(); | 
|---|
| 6814 | rcu_note_context_switch(preempt); | 
|---|
| 6815 |  | 
|---|
| 6816 | /* | 
|---|
| 6817 | * Make sure that signal_pending_state()->signal_pending() below | 
|---|
| 6818 | * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) | 
|---|
| 6819 | * done by the caller to avoid the race with signal_wake_up(): | 
|---|
| 6820 | * | 
|---|
| 6821 | * __set_current_state(@state)		signal_wake_up() | 
|---|
| 6822 | * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING) | 
|---|
| 6823 | *					  wake_up_state(p, state) | 
|---|
| 6824 | *   LOCK rq->lock			    LOCK p->pi_state | 
|---|
| 6825 | *   smp_mb__after_spinlock()		    smp_mb__after_spinlock() | 
|---|
| 6826 | *     if (signal_pending_state())	    if (p->state & @state) | 
|---|
| 6827 | * | 
|---|
| 6828 | * Also, the membarrier system call requires a full memory barrier | 
|---|
| 6829 | * after coming from user-space, before storing to rq->curr; this | 
|---|
| 6830 | * barrier matches a full barrier in the proximity of the membarrier | 
|---|
| 6831 | * system call exit. | 
|---|
| 6832 | */ | 
|---|
| 6833 | rq_lock(rq, rf: &rf); | 
|---|
| 6834 | smp_mb__after_spinlock(); | 
|---|
| 6835 |  | 
|---|
| 6836 | /* Promote REQ to ACT */ | 
|---|
| 6837 | rq->clock_update_flags <<= 1; | 
|---|
| 6838 | update_rq_clock(rq); | 
|---|
| 6839 | rq->clock_update_flags = RQCF_UPDATED; | 
|---|
| 6840 |  | 
|---|
| 6841 | switch_count = &prev->nivcsw; | 
|---|
| 6842 |  | 
|---|
| 6843 | /* Task state changes only considers SM_PREEMPT as preemption */ | 
|---|
| 6844 | preempt = sched_mode == SM_PREEMPT; | 
|---|
| 6845 |  | 
|---|
| 6846 | /* | 
|---|
| 6847 | * We must load prev->state once (task_struct::state is volatile), such | 
|---|
| 6848 | * that we form a control dependency vs deactivate_task() below. | 
|---|
| 6849 | */ | 
|---|
| 6850 | prev_state = READ_ONCE(prev->__state); | 
|---|
| 6851 | if (sched_mode == SM_IDLE) { | 
|---|
| 6852 | /* SCX must consult the BPF scheduler to tell if rq is empty */ | 
|---|
| 6853 | if (!rq->nr_running && !scx_enabled()) { | 
|---|
| 6854 | next = prev; | 
|---|
| 6855 | goto picked; | 
|---|
| 6856 | } | 
|---|
| 6857 | } else if (!preempt && prev_state) { | 
|---|
| 6858 | /* | 
|---|
| 6859 | * We pass task_is_blocked() as the should_block arg | 
|---|
| 6860 | * in order to keep mutex-blocked tasks on the runqueue | 
|---|
| 6861 | * for slection with proxy-exec (without proxy-exec | 
|---|
| 6862 | * task_is_blocked() will always be false). | 
|---|
| 6863 | */ | 
|---|
| 6864 | try_to_block_task(rq, p: prev, task_state_p: &prev_state, | 
|---|
| 6865 | should_block: !task_is_blocked(p: prev)); | 
|---|
| 6866 | switch_count = &prev->nvcsw; | 
|---|
| 6867 | } | 
|---|
| 6868 |  | 
|---|
| 6869 | pick_again: | 
|---|
| 6870 | next = pick_next_task(rq, prev: rq->donor, rf: &rf); | 
|---|
| 6871 | rq_set_donor(rq, t: next); | 
|---|
| 6872 | if (unlikely(task_is_blocked(next))) { | 
|---|
| 6873 | next = find_proxy_task(rq, donor: next, rf: &rf); | 
|---|
| 6874 | if (!next) | 
|---|
| 6875 | goto pick_again; | 
|---|
| 6876 | if (next == rq->idle) | 
|---|
| 6877 | goto keep_resched; | 
|---|
| 6878 | } | 
|---|
| 6879 | picked: | 
|---|
| 6880 | clear_tsk_need_resched(tsk: prev); | 
|---|
| 6881 | clear_preempt_need_resched(); | 
|---|
| 6882 | keep_resched: | 
|---|
| 6883 | rq->last_seen_need_resched_ns = 0; | 
|---|
| 6884 |  | 
|---|
| 6885 | is_switch = prev != next; | 
|---|
| 6886 | if (likely(is_switch)) { | 
|---|
| 6887 | rq->nr_switches++; | 
|---|
| 6888 | /* | 
|---|
| 6889 | * RCU users of rcu_dereference(rq->curr) may not see | 
|---|
| 6890 | * changes to task_struct made by pick_next_task(). | 
|---|
| 6891 | */ | 
|---|
| 6892 | RCU_INIT_POINTER(rq->curr, next); | 
|---|
| 6893 |  | 
|---|
| 6894 | if (!task_current_donor(rq, p: next)) | 
|---|
| 6895 | proxy_tag_curr(rq, owner: next); | 
|---|
| 6896 |  | 
|---|
| 6897 | /* | 
|---|
| 6898 | * The membarrier system call requires each architecture | 
|---|
| 6899 | * to have a full memory barrier after updating | 
|---|
| 6900 | * rq->curr, before returning to user-space. | 
|---|
| 6901 | * | 
|---|
| 6902 | * Here are the schemes providing that barrier on the | 
|---|
| 6903 | * various architectures: | 
|---|
| 6904 | * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, | 
|---|
| 6905 | *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm() | 
|---|
| 6906 | *   on PowerPC and on RISC-V. | 
|---|
| 6907 | * - finish_lock_switch() for weakly-ordered | 
|---|
| 6908 | *   architectures where spin_unlock is a full barrier, | 
|---|
| 6909 | * - switch_to() for arm64 (weakly-ordered, spin_unlock | 
|---|
| 6910 | *   is a RELEASE barrier), | 
|---|
| 6911 | * | 
|---|
| 6912 | * The barrier matches a full barrier in the proximity of | 
|---|
| 6913 | * the membarrier system call entry. | 
|---|
| 6914 | * | 
|---|
| 6915 | * On RISC-V, this barrier pairing is also needed for the | 
|---|
| 6916 | * SYNC_CORE command when switching between processes, cf. | 
|---|
| 6917 | * the inline comments in membarrier_arch_switch_mm(). | 
|---|
| 6918 | */ | 
|---|
| 6919 | ++*switch_count; | 
|---|
| 6920 |  | 
|---|
| 6921 | migrate_disable_switch(rq, p: prev); | 
|---|
| 6922 | psi_account_irqtime(rq, curr: prev, prev: next); | 
|---|
| 6923 | psi_sched_switch(prev, next, sleep: !task_on_rq_queued(p: prev) || | 
|---|
| 6924 | prev->se.sched_delayed); | 
|---|
| 6925 |  | 
|---|
| 6926 | trace_sched_switch(preempt, prev, next, prev_state); | 
|---|
| 6927 |  | 
|---|
| 6928 | /* Also unlocks the rq: */ | 
|---|
| 6929 | rq = context_switch(rq, prev, next, rf: &rf); | 
|---|
| 6930 | } else { | 
|---|
| 6931 | /* In case next was already curr but just got blocked_donor */ | 
|---|
| 6932 | if (!task_current_donor(rq, p: next)) | 
|---|
| 6933 | proxy_tag_curr(rq, owner: next); | 
|---|
| 6934 |  | 
|---|
| 6935 | rq_unpin_lock(rq, rf: &rf); | 
|---|
| 6936 | __balance_callbacks(rq); | 
|---|
| 6937 | raw_spin_rq_unlock_irq(rq); | 
|---|
| 6938 | } | 
|---|
| 6939 | trace_sched_exit_tp(is_switch); | 
|---|
| 6940 | } | 
|---|
| 6941 |  | 
|---|
| 6942 | void __noreturn do_task_dead(void) | 
|---|
| 6943 | { | 
|---|
| 6944 | /* Causes final put_task_struct in finish_task_switch(): */ | 
|---|
| 6945 | set_special_state(TASK_DEAD); | 
|---|
| 6946 |  | 
|---|
| 6947 | /* Tell freezer to ignore us: */ | 
|---|
| 6948 | current->flags |= PF_NOFREEZE; | 
|---|
| 6949 |  | 
|---|
| 6950 | __schedule(SM_NONE); | 
|---|
| 6951 | BUG(); | 
|---|
| 6952 |  | 
|---|
| 6953 | /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ | 
|---|
| 6954 | for (;;) | 
|---|
| 6955 | cpu_relax(); | 
|---|
| 6956 | } | 
|---|
| 6957 |  | 
|---|
| 6958 | static inline void sched_submit_work(struct task_struct *tsk) | 
|---|
| 6959 | { | 
|---|
| 6960 | static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); | 
|---|
| 6961 | unsigned int task_flags; | 
|---|
| 6962 |  | 
|---|
| 6963 | /* | 
|---|
| 6964 | * Establish LD_WAIT_CONFIG context to ensure none of the code called | 
|---|
| 6965 | * will use a blocking primitive -- which would lead to recursion. | 
|---|
| 6966 | */ | 
|---|
| 6967 | lock_map_acquire_try(&sched_map); | 
|---|
| 6968 |  | 
|---|
| 6969 | task_flags = tsk->flags; | 
|---|
| 6970 | /* | 
|---|
| 6971 | * If a worker goes to sleep, notify and ask workqueue whether it | 
|---|
| 6972 | * wants to wake up a task to maintain concurrency. | 
|---|
| 6973 | */ | 
|---|
| 6974 | if (task_flags & PF_WQ_WORKER) | 
|---|
| 6975 | wq_worker_sleeping(task: tsk); | 
|---|
| 6976 | else if (task_flags & PF_IO_WORKER) | 
|---|
| 6977 | io_wq_worker_sleeping(tsk); | 
|---|
| 6978 |  | 
|---|
| 6979 | /* | 
|---|
| 6980 | * spinlock and rwlock must not flush block requests.  This will | 
|---|
| 6981 | * deadlock if the callback attempts to acquire a lock which is | 
|---|
| 6982 | * already acquired. | 
|---|
| 6983 | */ | 
|---|
| 6984 | WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); | 
|---|
| 6985 |  | 
|---|
| 6986 | /* | 
|---|
| 6987 | * If we are going to sleep and we have plugged IO queued, | 
|---|
| 6988 | * make sure to submit it to avoid deadlocks. | 
|---|
| 6989 | */ | 
|---|
| 6990 | blk_flush_plug(plug: tsk->plug, async: true); | 
|---|
| 6991 |  | 
|---|
| 6992 | lock_map_release(&sched_map); | 
|---|
| 6993 | } | 
|---|
| 6994 |  | 
|---|
| 6995 | static void sched_update_worker(struct task_struct *tsk) | 
|---|
| 6996 | { | 
|---|
| 6997 | if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { | 
|---|
| 6998 | if (tsk->flags & PF_BLOCK_TS) | 
|---|
| 6999 | blk_plug_invalidate_ts(tsk); | 
|---|
| 7000 | if (tsk->flags & PF_WQ_WORKER) | 
|---|
| 7001 | wq_worker_running(task: tsk); | 
|---|
| 7002 | else if (tsk->flags & PF_IO_WORKER) | 
|---|
| 7003 | io_wq_worker_running(tsk); | 
|---|
| 7004 | } | 
|---|
| 7005 | } | 
|---|
| 7006 |  | 
|---|
| 7007 | static __always_inline void __schedule_loop(int sched_mode) | 
|---|
| 7008 | { | 
|---|
| 7009 | do { | 
|---|
| 7010 | preempt_disable(); | 
|---|
| 7011 | __schedule(sched_mode); | 
|---|
| 7012 | sched_preempt_enable_no_resched(); | 
|---|
| 7013 | } while (need_resched()); | 
|---|
| 7014 | } | 
|---|
| 7015 |  | 
|---|
| 7016 | asmlinkage __visible void __sched schedule(void) | 
|---|
| 7017 | { | 
|---|
| 7018 | struct task_struct *tsk = current; | 
|---|
| 7019 |  | 
|---|
| 7020 | #ifdef CONFIG_RT_MUTEXES | 
|---|
| 7021 | lockdep_assert(!tsk->sched_rt_mutex); | 
|---|
| 7022 | #endif | 
|---|
| 7023 |  | 
|---|
| 7024 | if (!task_is_running(tsk)) | 
|---|
| 7025 | sched_submit_work(tsk); | 
|---|
| 7026 | __schedule_loop(SM_NONE); | 
|---|
| 7027 | sched_update_worker(tsk); | 
|---|
| 7028 | } | 
|---|
| 7029 | EXPORT_SYMBOL(schedule); | 
|---|
| 7030 |  | 
|---|
| 7031 | /* | 
|---|
| 7032 | * synchronize_rcu_tasks() makes sure that no task is stuck in preempted | 
|---|
| 7033 | * state (have scheduled out non-voluntarily) by making sure that all | 
|---|
| 7034 | * tasks have either left the run queue or have gone into user space. | 
|---|
| 7035 | * As idle tasks do not do either, they must not ever be preempted | 
|---|
| 7036 | * (schedule out non-voluntarily). | 
|---|
| 7037 | * | 
|---|
| 7038 | * schedule_idle() is similar to schedule_preempt_disable() except that it | 
|---|
| 7039 | * never enables preemption because it does not call sched_submit_work(). | 
|---|
| 7040 | */ | 
|---|
| 7041 | void __sched schedule_idle(void) | 
|---|
| 7042 | { | 
|---|
| 7043 | /* | 
|---|
| 7044 | * As this skips calling sched_submit_work(), which the idle task does | 
|---|
| 7045 | * regardless because that function is a NOP when the task is in a | 
|---|
| 7046 | * TASK_RUNNING state, make sure this isn't used someplace that the | 
|---|
| 7047 | * current task can be in any other state. Note, idle is always in the | 
|---|
| 7048 | * TASK_RUNNING state. | 
|---|
| 7049 | */ | 
|---|
| 7050 | WARN_ON_ONCE(current->__state); | 
|---|
| 7051 | do { | 
|---|
| 7052 | __schedule(SM_IDLE); | 
|---|
| 7053 | } while (need_resched()); | 
|---|
| 7054 | } | 
|---|
| 7055 |  | 
|---|
| 7056 | #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) | 
|---|
| 7057 | asmlinkage __visible void __sched schedule_user(void) | 
|---|
| 7058 | { | 
|---|
| 7059 | /* | 
|---|
| 7060 | * If we come here after a random call to set_need_resched(), | 
|---|
| 7061 | * or we have been woken up remotely but the IPI has not yet arrived, | 
|---|
| 7062 | * we haven't yet exited the RCU idle mode. Do it here manually until | 
|---|
| 7063 | * we find a better solution. | 
|---|
| 7064 | * | 
|---|
| 7065 | * NB: There are buggy callers of this function.  Ideally we | 
|---|
| 7066 | * should warn if prev_state != CT_STATE_USER, but that will trigger | 
|---|
| 7067 | * too frequently to make sense yet. | 
|---|
| 7068 | */ | 
|---|
| 7069 | enum ctx_state prev_state = exception_enter(); | 
|---|
| 7070 | schedule(); | 
|---|
| 7071 | exception_exit(prev_state); | 
|---|
| 7072 | } | 
|---|
| 7073 | #endif | 
|---|
| 7074 |  | 
|---|
| 7075 | /** | 
|---|
| 7076 | * schedule_preempt_disabled - called with preemption disabled | 
|---|
| 7077 | * | 
|---|
| 7078 | * Returns with preemption disabled. Note: preempt_count must be 1 | 
|---|
| 7079 | */ | 
|---|
| 7080 | void __sched schedule_preempt_disabled(void) | 
|---|
| 7081 | { | 
|---|
| 7082 | sched_preempt_enable_no_resched(); | 
|---|
| 7083 | schedule(); | 
|---|
| 7084 | preempt_disable(); | 
|---|
| 7085 | } | 
|---|
| 7086 |  | 
|---|
| 7087 | #ifdef CONFIG_PREEMPT_RT | 
|---|
| 7088 | void __sched notrace schedule_rtlock(void) | 
|---|
| 7089 | { | 
|---|
| 7090 | __schedule_loop(SM_RTLOCK_WAIT); | 
|---|
| 7091 | } | 
|---|
| 7092 | NOKPROBE_SYMBOL(schedule_rtlock); | 
|---|
| 7093 | #endif | 
|---|
| 7094 |  | 
|---|
| 7095 | static void __sched notrace preempt_schedule_common(void) | 
|---|
| 7096 | { | 
|---|
| 7097 | do { | 
|---|
| 7098 | /* | 
|---|
| 7099 | * Because the function tracer can trace preempt_count_sub() | 
|---|
| 7100 | * and it also uses preempt_enable/disable_notrace(), if | 
|---|
| 7101 | * NEED_RESCHED is set, the preempt_enable_notrace() called | 
|---|
| 7102 | * by the function tracer will call this function again and | 
|---|
| 7103 | * cause infinite recursion. | 
|---|
| 7104 | * | 
|---|
| 7105 | * Preemption must be disabled here before the function | 
|---|
| 7106 | * tracer can trace. Break up preempt_disable() into two | 
|---|
| 7107 | * calls. One to disable preemption without fear of being | 
|---|
| 7108 | * traced. The other to still record the preemption latency, | 
|---|
| 7109 | * which can also be traced by the function tracer. | 
|---|
| 7110 | */ | 
|---|
| 7111 | preempt_disable_notrace(); | 
|---|
| 7112 | preempt_latency_start(val: 1); | 
|---|
| 7113 | __schedule(SM_PREEMPT); | 
|---|
| 7114 | preempt_latency_stop(val: 1); | 
|---|
| 7115 | preempt_enable_no_resched_notrace(); | 
|---|
| 7116 |  | 
|---|
| 7117 | /* | 
|---|
| 7118 | * Check again in case we missed a preemption opportunity | 
|---|
| 7119 | * between schedule and now. | 
|---|
| 7120 | */ | 
|---|
| 7121 | } while (need_resched()); | 
|---|
| 7122 | } | 
|---|
| 7123 |  | 
|---|
| 7124 | #ifdef CONFIG_PREEMPTION | 
|---|
| 7125 | /* | 
|---|
| 7126 | * This is the entry point to schedule() from in-kernel preemption | 
|---|
| 7127 | * off of preempt_enable. | 
|---|
| 7128 | */ | 
|---|
| 7129 | asmlinkage __visible void __sched notrace preempt_schedule(void) | 
|---|
| 7130 | { | 
|---|
| 7131 | /* | 
|---|
| 7132 | * If there is a non-zero preempt_count or interrupts are disabled, | 
|---|
| 7133 | * we do not want to preempt the current task. Just return.. | 
|---|
| 7134 | */ | 
|---|
| 7135 | if (likely(!preemptible())) | 
|---|
| 7136 | return; | 
|---|
| 7137 | preempt_schedule_common(); | 
|---|
| 7138 | } | 
|---|
| 7139 | NOKPROBE_SYMBOL(preempt_schedule); | 
|---|
| 7140 | EXPORT_SYMBOL(preempt_schedule); | 
|---|
| 7141 |  | 
|---|
| 7142 | #ifdef CONFIG_PREEMPT_DYNAMIC | 
|---|
| 7143 | # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL | 
|---|
| 7144 | #  ifndef preempt_schedule_dynamic_enabled | 
|---|
| 7145 | #   define preempt_schedule_dynamic_enabled	preempt_schedule | 
|---|
| 7146 | #   define preempt_schedule_dynamic_disabled	NULL | 
|---|
| 7147 | #  endif | 
|---|
| 7148 | DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); | 
|---|
| 7149 | EXPORT_STATIC_CALL_TRAMP(preempt_schedule); | 
|---|
| 7150 | # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) | 
|---|
| 7151 | static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); | 
|---|
| 7152 | void __sched notrace dynamic_preempt_schedule(void) | 
|---|
| 7153 | { | 
|---|
| 7154 | if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) | 
|---|
| 7155 | return; | 
|---|
| 7156 | preempt_schedule(); | 
|---|
| 7157 | } | 
|---|
| 7158 | NOKPROBE_SYMBOL(dynamic_preempt_schedule); | 
|---|
| 7159 | EXPORT_SYMBOL(dynamic_preempt_schedule); | 
|---|
| 7160 | # endif | 
|---|
| 7161 | #endif /* CONFIG_PREEMPT_DYNAMIC */ | 
|---|
| 7162 |  | 
|---|
| 7163 | /** | 
|---|
| 7164 | * preempt_schedule_notrace - preempt_schedule called by tracing | 
|---|
| 7165 | * | 
|---|
| 7166 | * The tracing infrastructure uses preempt_enable_notrace to prevent | 
|---|
| 7167 | * recursion and tracing preempt enabling caused by the tracing | 
|---|
| 7168 | * infrastructure itself. But as tracing can happen in areas coming | 
|---|
| 7169 | * from userspace or just about to enter userspace, a preempt enable | 
|---|
| 7170 | * can occur before user_exit() is called. This will cause the scheduler | 
|---|
| 7171 | * to be called when the system is still in usermode. | 
|---|
| 7172 | * | 
|---|
| 7173 | * To prevent this, the preempt_enable_notrace will use this function | 
|---|
| 7174 | * instead of preempt_schedule() to exit user context if needed before | 
|---|
| 7175 | * calling the scheduler. | 
|---|
| 7176 | */ | 
|---|
| 7177 | asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) | 
|---|
| 7178 | { | 
|---|
| 7179 | enum ctx_state prev_ctx; | 
|---|
| 7180 |  | 
|---|
| 7181 | if (likely(!preemptible())) | 
|---|
| 7182 | return; | 
|---|
| 7183 |  | 
|---|
| 7184 | do { | 
|---|
| 7185 | /* | 
|---|
| 7186 | * Because the function tracer can trace preempt_count_sub() | 
|---|
| 7187 | * and it also uses preempt_enable/disable_notrace(), if | 
|---|
| 7188 | * NEED_RESCHED is set, the preempt_enable_notrace() called | 
|---|
| 7189 | * by the function tracer will call this function again and | 
|---|
| 7190 | * cause infinite recursion. | 
|---|
| 7191 | * | 
|---|
| 7192 | * Preemption must be disabled here before the function | 
|---|
| 7193 | * tracer can trace. Break up preempt_disable() into two | 
|---|
| 7194 | * calls. One to disable preemption without fear of being | 
|---|
| 7195 | * traced. The other to still record the preemption latency, | 
|---|
| 7196 | * which can also be traced by the function tracer. | 
|---|
| 7197 | */ | 
|---|
| 7198 | preempt_disable_notrace(); | 
|---|
| 7199 | preempt_latency_start(val: 1); | 
|---|
| 7200 | /* | 
|---|
| 7201 | * Needs preempt disabled in case user_exit() is traced | 
|---|
| 7202 | * and the tracer calls preempt_enable_notrace() causing | 
|---|
| 7203 | * an infinite recursion. | 
|---|
| 7204 | */ | 
|---|
| 7205 | prev_ctx = exception_enter(); | 
|---|
| 7206 | __schedule(SM_PREEMPT); | 
|---|
| 7207 | exception_exit(prev_ctx); | 
|---|
| 7208 |  | 
|---|
| 7209 | preempt_latency_stop(val: 1); | 
|---|
| 7210 | preempt_enable_no_resched_notrace(); | 
|---|
| 7211 | } while (need_resched()); | 
|---|
| 7212 | } | 
|---|
| 7213 | EXPORT_SYMBOL_GPL(preempt_schedule_notrace); | 
|---|
| 7214 |  | 
|---|
| 7215 | #ifdef CONFIG_PREEMPT_DYNAMIC | 
|---|
| 7216 | # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) | 
|---|
| 7217 | #  ifndef preempt_schedule_notrace_dynamic_enabled | 
|---|
| 7218 | #   define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace | 
|---|
| 7219 | #   define preempt_schedule_notrace_dynamic_disabled	NULL | 
|---|
| 7220 | #  endif | 
|---|
| 7221 | DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); | 
|---|
| 7222 | EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); | 
|---|
| 7223 | # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) | 
|---|
| 7224 | static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); | 
|---|
| 7225 | void __sched notrace dynamic_preempt_schedule_notrace(void) | 
|---|
| 7226 | { | 
|---|
| 7227 | if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) | 
|---|
| 7228 | return; | 
|---|
| 7229 | preempt_schedule_notrace(); | 
|---|
| 7230 | } | 
|---|
| 7231 | NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); | 
|---|
| 7232 | EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); | 
|---|
| 7233 | # endif | 
|---|
| 7234 | #endif | 
|---|
| 7235 |  | 
|---|
| 7236 | #endif /* CONFIG_PREEMPTION */ | 
|---|
| 7237 |  | 
|---|
| 7238 | /* | 
|---|
| 7239 | * This is the entry point to schedule() from kernel preemption | 
|---|
| 7240 | * off of IRQ context. | 
|---|
| 7241 | * Note, that this is called and return with IRQs disabled. This will | 
|---|
| 7242 | * protect us against recursive calling from IRQ contexts. | 
|---|
| 7243 | */ | 
|---|
| 7244 | asmlinkage __visible void __sched preempt_schedule_irq(void) | 
|---|
| 7245 | { | 
|---|
| 7246 | enum ctx_state prev_state; | 
|---|
| 7247 |  | 
|---|
| 7248 | /* Catch callers which need to be fixed */ | 
|---|
| 7249 | BUG_ON(preempt_count() || !irqs_disabled()); | 
|---|
| 7250 |  | 
|---|
| 7251 | prev_state = exception_enter(); | 
|---|
| 7252 |  | 
|---|
| 7253 | do { | 
|---|
| 7254 | preempt_disable(); | 
|---|
| 7255 | local_irq_enable(); | 
|---|
| 7256 | __schedule(SM_PREEMPT); | 
|---|
| 7257 | local_irq_disable(); | 
|---|
| 7258 | sched_preempt_enable_no_resched(); | 
|---|
| 7259 | } while (need_resched()); | 
|---|
| 7260 |  | 
|---|
| 7261 | exception_exit(prev_ctx: prev_state); | 
|---|
| 7262 | } | 
|---|
| 7263 |  | 
|---|
| 7264 | int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, | 
|---|
| 7265 | void *key) | 
|---|
| 7266 | { | 
|---|
| 7267 | WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); | 
|---|
| 7268 | return try_to_wake_up(p: curr->private, state: mode, wake_flags); | 
|---|
| 7269 | } | 
|---|
| 7270 | EXPORT_SYMBOL(default_wake_function); | 
|---|
| 7271 |  | 
|---|
| 7272 | const struct sched_class *__setscheduler_class(int policy, int prio) | 
|---|
| 7273 | { | 
|---|
| 7274 | if (dl_prio(prio)) | 
|---|
| 7275 | return &dl_sched_class; | 
|---|
| 7276 |  | 
|---|
| 7277 | if (rt_prio(prio)) | 
|---|
| 7278 | return &rt_sched_class; | 
|---|
| 7279 |  | 
|---|
| 7280 | #ifdef CONFIG_SCHED_CLASS_EXT | 
|---|
| 7281 | if (task_should_scx(policy)) | 
|---|
| 7282 | return &ext_sched_class; | 
|---|
| 7283 | #endif | 
|---|
| 7284 |  | 
|---|
| 7285 | return &fair_sched_class; | 
|---|
| 7286 | } | 
|---|
| 7287 |  | 
|---|
| 7288 | #ifdef CONFIG_RT_MUTEXES | 
|---|
| 7289 |  | 
|---|
| 7290 | /* | 
|---|
| 7291 | * Would be more useful with typeof()/auto_type but they don't mix with | 
|---|
| 7292 | * bit-fields. Since it's a local thing, use int. Keep the generic sounding | 
|---|
| 7293 | * name such that if someone were to implement this function we get to compare | 
|---|
| 7294 | * notes. | 
|---|
| 7295 | */ | 
|---|
| 7296 | #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) | 
|---|
| 7297 |  | 
|---|
| 7298 | void rt_mutex_pre_schedule(void) | 
|---|
| 7299 | { | 
|---|
| 7300 | lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); | 
|---|
| 7301 | sched_submit_work(current); | 
|---|
| 7302 | } | 
|---|
| 7303 |  | 
|---|
| 7304 | void rt_mutex_schedule(void) | 
|---|
| 7305 | { | 
|---|
| 7306 | lockdep_assert(current->sched_rt_mutex); | 
|---|
| 7307 | __schedule_loop(SM_NONE); | 
|---|
| 7308 | } | 
|---|
| 7309 |  | 
|---|
| 7310 | void rt_mutex_post_schedule(void) | 
|---|
| 7311 | { | 
|---|
| 7312 | sched_update_worker(current); | 
|---|
| 7313 | lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); | 
|---|
| 7314 | } | 
|---|
| 7315 |  | 
|---|
| 7316 | /* | 
|---|
| 7317 | * rt_mutex_setprio - set the current priority of a task | 
|---|
| 7318 | * @p: task to boost | 
|---|
| 7319 | * @pi_task: donor task | 
|---|
| 7320 | * | 
|---|
| 7321 | * This function changes the 'effective' priority of a task. It does | 
|---|
| 7322 | * not touch ->normal_prio like __setscheduler(). | 
|---|
| 7323 | * | 
|---|
| 7324 | * Used by the rt_mutex code to implement priority inheritance | 
|---|
| 7325 | * logic. Call site only calls if the priority of the task changed. | 
|---|
| 7326 | */ | 
|---|
| 7327 | void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) | 
|---|
| 7328 | { | 
|---|
| 7329 | int prio, oldprio, queued, running, queue_flag = | 
|---|
| 7330 | DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; | 
|---|
| 7331 | const struct sched_class *prev_class, *next_class; | 
|---|
| 7332 | struct rq_flags rf; | 
|---|
| 7333 | struct rq *rq; | 
|---|
| 7334 |  | 
|---|
| 7335 | /* XXX used to be waiter->prio, not waiter->task->prio */ | 
|---|
| 7336 | prio = __rt_effective_prio(pi_task, prio: p->normal_prio); | 
|---|
| 7337 |  | 
|---|
| 7338 | /* | 
|---|
| 7339 | * If nothing changed; bail early. | 
|---|
| 7340 | */ | 
|---|
| 7341 | if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) | 
|---|
| 7342 | return; | 
|---|
| 7343 |  | 
|---|
| 7344 | rq = __task_rq_lock(p, rf: &rf); | 
|---|
| 7345 | update_rq_clock(rq); | 
|---|
| 7346 | /* | 
|---|
| 7347 | * Set under pi_lock && rq->lock, such that the value can be used under | 
|---|
| 7348 | * either lock. | 
|---|
| 7349 | * | 
|---|
| 7350 | * Note that there is loads of tricky to make this pointer cache work | 
|---|
| 7351 | * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to | 
|---|
| 7352 | * ensure a task is de-boosted (pi_task is set to NULL) before the | 
|---|
| 7353 | * task is allowed to run again (and can exit). This ensures the pointer | 
|---|
| 7354 | * points to a blocked task -- which guarantees the task is present. | 
|---|
| 7355 | */ | 
|---|
| 7356 | p->pi_top_task = pi_task; | 
|---|
| 7357 |  | 
|---|
| 7358 | /* | 
|---|
| 7359 | * For FIFO/RR we only need to set prio, if that matches we're done. | 
|---|
| 7360 | */ | 
|---|
| 7361 | if (prio == p->prio && !dl_prio(prio)) | 
|---|
| 7362 | goto out_unlock; | 
|---|
| 7363 |  | 
|---|
| 7364 | /* | 
|---|
| 7365 | * Idle task boosting is a no-no in general. There is one | 
|---|
| 7366 | * exception, when PREEMPT_RT and NOHZ is active: | 
|---|
| 7367 | * | 
|---|
| 7368 | * The idle task calls get_next_timer_interrupt() and holds | 
|---|
| 7369 | * the timer wheel base->lock on the CPU and another CPU wants | 
|---|
| 7370 | * to access the timer (probably to cancel it). We can safely | 
|---|
| 7371 | * ignore the boosting request, as the idle CPU runs this code | 
|---|
| 7372 | * with interrupts disabled and will complete the lock | 
|---|
| 7373 | * protected section without being interrupted. So there is no | 
|---|
| 7374 | * real need to boost. | 
|---|
| 7375 | */ | 
|---|
| 7376 | if (unlikely(p == rq->idle)) { | 
|---|
| 7377 | WARN_ON(p != rq->curr); | 
|---|
| 7378 | WARN_ON(p->pi_blocked_on); | 
|---|
| 7379 | goto out_unlock; | 
|---|
| 7380 | } | 
|---|
| 7381 |  | 
|---|
| 7382 | trace_sched_pi_setprio(tsk: p, pi_task); | 
|---|
| 7383 | oldprio = p->prio; | 
|---|
| 7384 |  | 
|---|
| 7385 | if (oldprio == prio) | 
|---|
| 7386 | queue_flag &= ~DEQUEUE_MOVE; | 
|---|
| 7387 |  | 
|---|
| 7388 | prev_class = p->sched_class; | 
|---|
| 7389 | next_class = __setscheduler_class(policy: p->policy, prio); | 
|---|
| 7390 |  | 
|---|
| 7391 | if (prev_class != next_class && p->se.sched_delayed) | 
|---|
| 7392 | dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); | 
|---|
| 7393 |  | 
|---|
| 7394 | queued = task_on_rq_queued(p); | 
|---|
| 7395 | running = task_current_donor(rq, p); | 
|---|
| 7396 | if (queued) | 
|---|
| 7397 | dequeue_task(rq, p, flags: queue_flag); | 
|---|
| 7398 | if (running) | 
|---|
| 7399 | put_prev_task(rq, prev: p); | 
|---|
| 7400 |  | 
|---|
| 7401 | /* | 
|---|
| 7402 | * Boosting condition are: | 
|---|
| 7403 | * 1. -rt task is running and holds mutex A | 
|---|
| 7404 | *      --> -dl task blocks on mutex A | 
|---|
| 7405 | * | 
|---|
| 7406 | * 2. -dl task is running and holds mutex A | 
|---|
| 7407 | *      --> -dl task blocks on mutex A and could preempt the | 
|---|
| 7408 | *          running task | 
|---|
| 7409 | */ | 
|---|
| 7410 | if (dl_prio(prio)) { | 
|---|
| 7411 | if (!dl_prio(prio: p->normal_prio) || | 
|---|
| 7412 | (pi_task && dl_prio(prio: pi_task->prio) && | 
|---|
| 7413 | dl_entity_preempt(a: &pi_task->dl, b: &p->dl))) { | 
|---|
| 7414 | p->dl.pi_se = pi_task->dl.pi_se; | 
|---|
| 7415 | queue_flag |= ENQUEUE_REPLENISH; | 
|---|
| 7416 | } else { | 
|---|
| 7417 | p->dl.pi_se = &p->dl; | 
|---|
| 7418 | } | 
|---|
| 7419 | } else if (rt_prio(prio)) { | 
|---|
| 7420 | if (dl_prio(prio: oldprio)) | 
|---|
| 7421 | p->dl.pi_se = &p->dl; | 
|---|
| 7422 | if (oldprio < prio) | 
|---|
| 7423 | queue_flag |= ENQUEUE_HEAD; | 
|---|
| 7424 | } else { | 
|---|
| 7425 | if (dl_prio(prio: oldprio)) | 
|---|
| 7426 | p->dl.pi_se = &p->dl; | 
|---|
| 7427 | if (rt_prio(prio: oldprio)) | 
|---|
| 7428 | p->rt.timeout = 0; | 
|---|
| 7429 | } | 
|---|
| 7430 |  | 
|---|
| 7431 | p->sched_class = next_class; | 
|---|
| 7432 | p->prio = prio; | 
|---|
| 7433 |  | 
|---|
| 7434 | check_class_changing(rq, p, prev_class); | 
|---|
| 7435 |  | 
|---|
| 7436 | if (queued) | 
|---|
| 7437 | enqueue_task(rq, p, flags: queue_flag); | 
|---|
| 7438 | if (running) | 
|---|
| 7439 | set_next_task(rq, next: p); | 
|---|
| 7440 |  | 
|---|
| 7441 | check_class_changed(rq, p, prev_class, oldprio); | 
|---|
| 7442 | out_unlock: | 
|---|
| 7443 | /* Avoid rq from going away on us: */ | 
|---|
| 7444 | preempt_disable(); | 
|---|
| 7445 |  | 
|---|
| 7446 | rq_unpin_lock(rq, rf: &rf); | 
|---|
| 7447 | __balance_callbacks(rq); | 
|---|
| 7448 | raw_spin_rq_unlock(rq); | 
|---|
| 7449 |  | 
|---|
| 7450 | preempt_enable(); | 
|---|
| 7451 | } | 
|---|
| 7452 | #endif /* CONFIG_RT_MUTEXES */ | 
|---|
| 7453 |  | 
|---|
| 7454 | #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) | 
|---|
| 7455 | int __sched __cond_resched(void) | 
|---|
| 7456 | { | 
|---|
| 7457 | if (should_resched(preempt_offset: 0) && !irqs_disabled()) { | 
|---|
| 7458 | preempt_schedule_common(); | 
|---|
| 7459 | return 1; | 
|---|
| 7460 | } | 
|---|
| 7461 | /* | 
|---|
| 7462 | * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick | 
|---|
| 7463 | * whether the current CPU is in an RCU read-side critical section, | 
|---|
| 7464 | * so the tick can report quiescent states even for CPUs looping | 
|---|
| 7465 | * in kernel context.  In contrast, in non-preemptible kernels, | 
|---|
| 7466 | * RCU readers leave no in-memory hints, which means that CPU-bound | 
|---|
| 7467 | * processes executing in kernel context might never report an | 
|---|
| 7468 | * RCU quiescent state.  Therefore, the following code causes | 
|---|
| 7469 | * cond_resched() to report a quiescent state, but only when RCU | 
|---|
| 7470 | * is in urgent need of one. | 
|---|
| 7471 | * A third case, preemptible, but non-PREEMPT_RCU provides for | 
|---|
| 7472 | * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). | 
|---|
| 7473 | */ | 
|---|
| 7474 | #ifndef CONFIG_PREEMPT_RCU | 
|---|
| 7475 | rcu_all_qs(); | 
|---|
| 7476 | #endif | 
|---|
| 7477 | return 0; | 
|---|
| 7478 | } | 
|---|
| 7479 | EXPORT_SYMBOL(__cond_resched); | 
|---|
| 7480 | #endif | 
|---|
| 7481 |  | 
|---|
| 7482 | #ifdef CONFIG_PREEMPT_DYNAMIC | 
|---|
| 7483 | # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL | 
|---|
| 7484 | #  define cond_resched_dynamic_enabled	__cond_resched | 
|---|
| 7485 | #  define cond_resched_dynamic_disabled	((void *)&__static_call_return0) | 
|---|
| 7486 | DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); | 
|---|
| 7487 | EXPORT_STATIC_CALL_TRAMP(cond_resched); | 
|---|
| 7488 |  | 
|---|
| 7489 | #  define might_resched_dynamic_enabled	__cond_resched | 
|---|
| 7490 | #  define might_resched_dynamic_disabled ((void *)&__static_call_return0) | 
|---|
| 7491 | DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); | 
|---|
| 7492 | EXPORT_STATIC_CALL_TRAMP(might_resched); | 
|---|
| 7493 | # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) | 
|---|
| 7494 | static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); | 
|---|
| 7495 | int __sched dynamic_cond_resched(void) | 
|---|
| 7496 | { | 
|---|
| 7497 | if (!static_branch_unlikely(&sk_dynamic_cond_resched)) | 
|---|
| 7498 | return 0; | 
|---|
| 7499 | return __cond_resched(); | 
|---|
| 7500 | } | 
|---|
| 7501 | EXPORT_SYMBOL(dynamic_cond_resched); | 
|---|
| 7502 |  | 
|---|
| 7503 | static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); | 
|---|
| 7504 | int __sched dynamic_might_resched(void) | 
|---|
| 7505 | { | 
|---|
| 7506 | if (!static_branch_unlikely(&sk_dynamic_might_resched)) | 
|---|
| 7507 | return 0; | 
|---|
| 7508 | return __cond_resched(); | 
|---|
| 7509 | } | 
|---|
| 7510 | EXPORT_SYMBOL(dynamic_might_resched); | 
|---|
| 7511 | # endif | 
|---|
| 7512 | #endif /* CONFIG_PREEMPT_DYNAMIC */ | 
|---|
| 7513 |  | 
|---|
| 7514 | /* | 
|---|
| 7515 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
|---|
| 7516 | * call schedule, and on return reacquire the lock. | 
|---|
| 7517 | * | 
|---|
| 7518 | * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level | 
|---|
| 7519 | * operations here to prevent schedule() from being called twice (once via | 
|---|
| 7520 | * spin_unlock(), once by hand). | 
|---|
| 7521 | */ | 
|---|
| 7522 | int __cond_resched_lock(spinlock_t *lock) | 
|---|
| 7523 | { | 
|---|
| 7524 | int resched = should_resched(PREEMPT_LOCK_OFFSET); | 
|---|
| 7525 | int ret = 0; | 
|---|
| 7526 |  | 
|---|
| 7527 | lockdep_assert_held(lock); | 
|---|
| 7528 |  | 
|---|
| 7529 | if (spin_needbreak(lock) || resched) { | 
|---|
| 7530 | spin_unlock(lock); | 
|---|
| 7531 | if (!_cond_resched()) | 
|---|
| 7532 | cpu_relax(); | 
|---|
| 7533 | ret = 1; | 
|---|
| 7534 | spin_lock(lock); | 
|---|
| 7535 | } | 
|---|
| 7536 | return ret; | 
|---|
| 7537 | } | 
|---|
| 7538 | EXPORT_SYMBOL(__cond_resched_lock); | 
|---|
| 7539 |  | 
|---|
| 7540 | int __cond_resched_rwlock_read(rwlock_t *lock) | 
|---|
| 7541 | { | 
|---|
| 7542 | int resched = should_resched(PREEMPT_LOCK_OFFSET); | 
|---|
| 7543 | int ret = 0; | 
|---|
| 7544 |  | 
|---|
| 7545 | lockdep_assert_held_read(lock); | 
|---|
| 7546 |  | 
|---|
| 7547 | if (rwlock_needbreak(lock) || resched) { | 
|---|
| 7548 | read_unlock(lock); | 
|---|
| 7549 | if (!_cond_resched()) | 
|---|
| 7550 | cpu_relax(); | 
|---|
| 7551 | ret = 1; | 
|---|
| 7552 | read_lock(lock); | 
|---|
| 7553 | } | 
|---|
| 7554 | return ret; | 
|---|
| 7555 | } | 
|---|
| 7556 | EXPORT_SYMBOL(__cond_resched_rwlock_read); | 
|---|
| 7557 |  | 
|---|
| 7558 | int __cond_resched_rwlock_write(rwlock_t *lock) | 
|---|
| 7559 | { | 
|---|
| 7560 | int resched = should_resched(PREEMPT_LOCK_OFFSET); | 
|---|
| 7561 | int ret = 0; | 
|---|
| 7562 |  | 
|---|
| 7563 | lockdep_assert_held_write(lock); | 
|---|
| 7564 |  | 
|---|
| 7565 | if (rwlock_needbreak(lock) || resched) { | 
|---|
| 7566 | write_unlock(lock); | 
|---|
| 7567 | if (!_cond_resched()) | 
|---|
| 7568 | cpu_relax(); | 
|---|
| 7569 | ret = 1; | 
|---|
| 7570 | write_lock(lock); | 
|---|
| 7571 | } | 
|---|
| 7572 | return ret; | 
|---|
| 7573 | } | 
|---|
| 7574 | EXPORT_SYMBOL(__cond_resched_rwlock_write); | 
|---|
| 7575 |  | 
|---|
| 7576 | #ifdef CONFIG_PREEMPT_DYNAMIC | 
|---|
| 7577 |  | 
|---|
| 7578 | # ifdef CONFIG_GENERIC_IRQ_ENTRY | 
|---|
| 7579 | #  include <linux/irq-entry-common.h> | 
|---|
| 7580 | # endif | 
|---|
| 7581 |  | 
|---|
| 7582 | /* | 
|---|
| 7583 | * SC:cond_resched | 
|---|
| 7584 | * SC:might_resched | 
|---|
| 7585 | * SC:preempt_schedule | 
|---|
| 7586 | * SC:preempt_schedule_notrace | 
|---|
| 7587 | * SC:irqentry_exit_cond_resched | 
|---|
| 7588 | * | 
|---|
| 7589 | * | 
|---|
| 7590 | * NONE: | 
|---|
| 7591 | *   cond_resched               <- __cond_resched | 
|---|
| 7592 | *   might_resched              <- RET0 | 
|---|
| 7593 | *   preempt_schedule           <- NOP | 
|---|
| 7594 | *   preempt_schedule_notrace   <- NOP | 
|---|
| 7595 | *   irqentry_exit_cond_resched <- NOP | 
|---|
| 7596 | *   dynamic_preempt_lazy       <- false | 
|---|
| 7597 | * | 
|---|
| 7598 | * VOLUNTARY: | 
|---|
| 7599 | *   cond_resched               <- __cond_resched | 
|---|
| 7600 | *   might_resched              <- __cond_resched | 
|---|
| 7601 | *   preempt_schedule           <- NOP | 
|---|
| 7602 | *   preempt_schedule_notrace   <- NOP | 
|---|
| 7603 | *   irqentry_exit_cond_resched <- NOP | 
|---|
| 7604 | *   dynamic_preempt_lazy       <- false | 
|---|
| 7605 | * | 
|---|
| 7606 | * FULL: | 
|---|
| 7607 | *   cond_resched               <- RET0 | 
|---|
| 7608 | *   might_resched              <- RET0 | 
|---|
| 7609 | *   preempt_schedule           <- preempt_schedule | 
|---|
| 7610 | *   preempt_schedule_notrace   <- preempt_schedule_notrace | 
|---|
| 7611 | *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched | 
|---|
| 7612 | *   dynamic_preempt_lazy       <- false | 
|---|
| 7613 | * | 
|---|
| 7614 | * LAZY: | 
|---|
| 7615 | *   cond_resched               <- RET0 | 
|---|
| 7616 | *   might_resched              <- RET0 | 
|---|
| 7617 | *   preempt_schedule           <- preempt_schedule | 
|---|
| 7618 | *   preempt_schedule_notrace   <- preempt_schedule_notrace | 
|---|
| 7619 | *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched | 
|---|
| 7620 | *   dynamic_preempt_lazy       <- true | 
|---|
| 7621 | */ | 
|---|
| 7622 |  | 
|---|
| 7623 | enum { | 
|---|
| 7624 | preempt_dynamic_undefined = -1, | 
|---|
| 7625 | preempt_dynamic_none, | 
|---|
| 7626 | preempt_dynamic_voluntary, | 
|---|
| 7627 | preempt_dynamic_full, | 
|---|
| 7628 | preempt_dynamic_lazy, | 
|---|
| 7629 | }; | 
|---|
| 7630 |  | 
|---|
| 7631 | int preempt_dynamic_mode = preempt_dynamic_undefined; | 
|---|
| 7632 |  | 
|---|
| 7633 | int sched_dynamic_mode(const char *str) | 
|---|
| 7634 | { | 
|---|
| 7635 | # ifndef CONFIG_PREEMPT_RT | 
|---|
| 7636 | if (!strcmp(str, "none")) | 
|---|
| 7637 | return preempt_dynamic_none; | 
|---|
| 7638 |  | 
|---|
| 7639 | if (!strcmp(str, "voluntary")) | 
|---|
| 7640 | return preempt_dynamic_voluntary; | 
|---|
| 7641 | # endif | 
|---|
| 7642 |  | 
|---|
| 7643 | if (!strcmp(str, "full")) | 
|---|
| 7644 | return preempt_dynamic_full; | 
|---|
| 7645 |  | 
|---|
| 7646 | # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY | 
|---|
| 7647 | if (!strcmp(str, "lazy")) | 
|---|
| 7648 | return preempt_dynamic_lazy; | 
|---|
| 7649 | # endif | 
|---|
| 7650 |  | 
|---|
| 7651 | return -EINVAL; | 
|---|
| 7652 | } | 
|---|
| 7653 |  | 
|---|
| 7654 | # define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key) | 
|---|
| 7655 | # define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key) | 
|---|
| 7656 |  | 
|---|
| 7657 | # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) | 
|---|
| 7658 | #  define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled) | 
|---|
| 7659 | #  define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled) | 
|---|
| 7660 | # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) | 
|---|
| 7661 | #  define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f) | 
|---|
| 7662 | #  define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f) | 
|---|
| 7663 | # else | 
|---|
| 7664 | #  error "Unsupported PREEMPT_DYNAMIC mechanism" | 
|---|
| 7665 | # endif | 
|---|
| 7666 |  | 
|---|
| 7667 | static DEFINE_MUTEX(sched_dynamic_mutex); | 
|---|
| 7668 |  | 
|---|
| 7669 | static void __sched_dynamic_update(int mode) | 
|---|
| 7670 | { | 
|---|
| 7671 | /* | 
|---|
| 7672 | * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in | 
|---|
| 7673 | * the ZERO state, which is invalid. | 
|---|
| 7674 | */ | 
|---|
| 7675 | preempt_dynamic_enable(cond_resched); | 
|---|
| 7676 | preempt_dynamic_enable(might_resched); | 
|---|
| 7677 | preempt_dynamic_enable(preempt_schedule); | 
|---|
| 7678 | preempt_dynamic_enable(preempt_schedule_notrace); | 
|---|
| 7679 | preempt_dynamic_enable(irqentry_exit_cond_resched); | 
|---|
| 7680 | preempt_dynamic_key_disable(preempt_lazy); | 
|---|
| 7681 |  | 
|---|
| 7682 | switch (mode) { | 
|---|
| 7683 | case preempt_dynamic_none: | 
|---|
| 7684 | preempt_dynamic_enable(cond_resched); | 
|---|
| 7685 | preempt_dynamic_disable(might_resched); | 
|---|
| 7686 | preempt_dynamic_disable(preempt_schedule); | 
|---|
| 7687 | preempt_dynamic_disable(preempt_schedule_notrace); | 
|---|
| 7688 | preempt_dynamic_disable(irqentry_exit_cond_resched); | 
|---|
| 7689 | preempt_dynamic_key_disable(preempt_lazy); | 
|---|
| 7690 | if (mode != preempt_dynamic_mode) | 
|---|
| 7691 | pr_info( "Dynamic Preempt: none\n"); | 
|---|
| 7692 | break; | 
|---|
| 7693 |  | 
|---|
| 7694 | case preempt_dynamic_voluntary: | 
|---|
| 7695 | preempt_dynamic_enable(cond_resched); | 
|---|
| 7696 | preempt_dynamic_enable(might_resched); | 
|---|
| 7697 | preempt_dynamic_disable(preempt_schedule); | 
|---|
| 7698 | preempt_dynamic_disable(preempt_schedule_notrace); | 
|---|
| 7699 | preempt_dynamic_disable(irqentry_exit_cond_resched); | 
|---|
| 7700 | preempt_dynamic_key_disable(preempt_lazy); | 
|---|
| 7701 | if (mode != preempt_dynamic_mode) | 
|---|
| 7702 | pr_info( "Dynamic Preempt: voluntary\n"); | 
|---|
| 7703 | break; | 
|---|
| 7704 |  | 
|---|
| 7705 | case preempt_dynamic_full: | 
|---|
| 7706 | preempt_dynamic_disable(cond_resched); | 
|---|
| 7707 | preempt_dynamic_disable(might_resched); | 
|---|
| 7708 | preempt_dynamic_enable(preempt_schedule); | 
|---|
| 7709 | preempt_dynamic_enable(preempt_schedule_notrace); | 
|---|
| 7710 | preempt_dynamic_enable(irqentry_exit_cond_resched); | 
|---|
| 7711 | preempt_dynamic_key_disable(preempt_lazy); | 
|---|
| 7712 | if (mode != preempt_dynamic_mode) | 
|---|
| 7713 | pr_info( "Dynamic Preempt: full\n"); | 
|---|
| 7714 | break; | 
|---|
| 7715 |  | 
|---|
| 7716 | case preempt_dynamic_lazy: | 
|---|
| 7717 | preempt_dynamic_disable(cond_resched); | 
|---|
| 7718 | preempt_dynamic_disable(might_resched); | 
|---|
| 7719 | preempt_dynamic_enable(preempt_schedule); | 
|---|
| 7720 | preempt_dynamic_enable(preempt_schedule_notrace); | 
|---|
| 7721 | preempt_dynamic_enable(irqentry_exit_cond_resched); | 
|---|
| 7722 | preempt_dynamic_key_enable(preempt_lazy); | 
|---|
| 7723 | if (mode != preempt_dynamic_mode) | 
|---|
| 7724 | pr_info( "Dynamic Preempt: lazy\n"); | 
|---|
| 7725 | break; | 
|---|
| 7726 | } | 
|---|
| 7727 |  | 
|---|
| 7728 | preempt_dynamic_mode = mode; | 
|---|
| 7729 | } | 
|---|
| 7730 |  | 
|---|
| 7731 | void sched_dynamic_update(int mode) | 
|---|
| 7732 | { | 
|---|
| 7733 | mutex_lock(lock: &sched_dynamic_mutex); | 
|---|
| 7734 | __sched_dynamic_update(mode); | 
|---|
| 7735 | mutex_unlock(lock: &sched_dynamic_mutex); | 
|---|
| 7736 | } | 
|---|
| 7737 |  | 
|---|
| 7738 | static int __init setup_preempt_mode(char *str) | 
|---|
| 7739 | { | 
|---|
| 7740 | int mode = sched_dynamic_mode(str); | 
|---|
| 7741 | if (mode < 0) { | 
|---|
| 7742 | pr_warn( "Dynamic Preempt: unsupported mode: %s\n", str); | 
|---|
| 7743 | return 0; | 
|---|
| 7744 | } | 
|---|
| 7745 |  | 
|---|
| 7746 | sched_dynamic_update(mode); | 
|---|
| 7747 | return 1; | 
|---|
| 7748 | } | 
|---|
| 7749 | __setup( "preempt=", setup_preempt_mode); | 
|---|
| 7750 |  | 
|---|
| 7751 | static void __init preempt_dynamic_init(void) | 
|---|
| 7752 | { | 
|---|
| 7753 | if (preempt_dynamic_mode == preempt_dynamic_undefined) { | 
|---|
| 7754 | if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { | 
|---|
| 7755 | sched_dynamic_update(mode: preempt_dynamic_none); | 
|---|
| 7756 | } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { | 
|---|
| 7757 | sched_dynamic_update(mode: preempt_dynamic_voluntary); | 
|---|
| 7758 | } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { | 
|---|
| 7759 | sched_dynamic_update(mode: preempt_dynamic_lazy); | 
|---|
| 7760 | } else { | 
|---|
| 7761 | /* Default static call setting, nothing to do */ | 
|---|
| 7762 | WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); | 
|---|
| 7763 | preempt_dynamic_mode = preempt_dynamic_full; | 
|---|
| 7764 | pr_info( "Dynamic Preempt: full\n"); | 
|---|
| 7765 | } | 
|---|
| 7766 | } | 
|---|
| 7767 | } | 
|---|
| 7768 |  | 
|---|
| 7769 | # define PREEMPT_MODEL_ACCESSOR(mode) \ | 
|---|
| 7770 | bool preempt_model_##mode(void)						 \ | 
|---|
| 7771 | {									 \ | 
|---|
| 7772 | WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ | 
|---|
| 7773 | return preempt_dynamic_mode == preempt_dynamic_##mode;		 \ | 
|---|
| 7774 | }									 \ | 
|---|
| 7775 | EXPORT_SYMBOL_GPL(preempt_model_##mode) | 
|---|
| 7776 |  | 
|---|
| 7777 | PREEMPT_MODEL_ACCESSOR(none); | 
|---|
| 7778 | PREEMPT_MODEL_ACCESSOR(voluntary); | 
|---|
| 7779 | PREEMPT_MODEL_ACCESSOR(full); | 
|---|
| 7780 | PREEMPT_MODEL_ACCESSOR(lazy); | 
|---|
| 7781 |  | 
|---|
| 7782 | #else /* !CONFIG_PREEMPT_DYNAMIC: */ | 
|---|
| 7783 |  | 
|---|
| 7784 | #define preempt_dynamic_mode -1 | 
|---|
| 7785 |  | 
|---|
| 7786 | static inline void preempt_dynamic_init(void) { } | 
|---|
| 7787 |  | 
|---|
| 7788 | #endif /* CONFIG_PREEMPT_DYNAMIC */ | 
|---|
| 7789 |  | 
|---|
| 7790 | const char *preempt_modes[] = { | 
|---|
| 7791 | "none", "voluntary", "full", "lazy", NULL, | 
|---|
| 7792 | }; | 
|---|
| 7793 |  | 
|---|
| 7794 | const char *preempt_model_str(void) | 
|---|
| 7795 | { | 
|---|
| 7796 | bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && | 
|---|
| 7797 | (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || | 
|---|
| 7798 | IS_ENABLED(CONFIG_PREEMPT_LAZY)); | 
|---|
| 7799 | static char buf[128]; | 
|---|
| 7800 |  | 
|---|
| 7801 | if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { | 
|---|
| 7802 | struct seq_buf s; | 
|---|
| 7803 |  | 
|---|
| 7804 | seq_buf_init(s: &s, buf, size: sizeof(buf)); | 
|---|
| 7805 | seq_buf_puts(s: &s, str: "PREEMPT"); | 
|---|
| 7806 |  | 
|---|
| 7807 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) | 
|---|
| 7808 | seq_buf_printf(s: &s, fmt: "%sRT%s", | 
|---|
| 7809 | brace ? "_{": "_", | 
|---|
| 7810 | brace ? ",": ""); | 
|---|
| 7811 |  | 
|---|
| 7812 | if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { | 
|---|
| 7813 | seq_buf_printf(s: &s, fmt: "(%s)%s", | 
|---|
| 7814 | preempt_dynamic_mode >= 0 ? | 
|---|
| 7815 | preempt_modes[preempt_dynamic_mode] : "undef", | 
|---|
| 7816 | brace ? "}": ""); | 
|---|
| 7817 | return seq_buf_str(s: &s); | 
|---|
| 7818 | } | 
|---|
| 7819 |  | 
|---|
| 7820 | if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { | 
|---|
| 7821 | seq_buf_printf(s: &s, fmt: "LAZY%s", | 
|---|
| 7822 | brace ? "}": ""); | 
|---|
| 7823 | return seq_buf_str(s: &s); | 
|---|
| 7824 | } | 
|---|
| 7825 |  | 
|---|
| 7826 | return seq_buf_str(s: &s); | 
|---|
| 7827 | } | 
|---|
| 7828 |  | 
|---|
| 7829 | if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) | 
|---|
| 7830 | return "VOLUNTARY"; | 
|---|
| 7831 |  | 
|---|
| 7832 | return "NONE"; | 
|---|
| 7833 | } | 
|---|
| 7834 |  | 
|---|
| 7835 | int io_schedule_prepare(void) | 
|---|
| 7836 | { | 
|---|
| 7837 | int old_iowait = current->in_iowait; | 
|---|
| 7838 |  | 
|---|
| 7839 | current->in_iowait = 1; | 
|---|
| 7840 | blk_flush_plug(current->plug, async: true); | 
|---|
| 7841 | return old_iowait; | 
|---|
| 7842 | } | 
|---|
| 7843 |  | 
|---|
| 7844 | void io_schedule_finish(int token) | 
|---|
| 7845 | { | 
|---|
| 7846 | current->in_iowait = token; | 
|---|
| 7847 | } | 
|---|
| 7848 |  | 
|---|
| 7849 | /* | 
|---|
| 7850 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | 
|---|
| 7851 | * that process accounting knows that this is a task in IO wait state. | 
|---|
| 7852 | */ | 
|---|
| 7853 | long __sched io_schedule_timeout(long timeout) | 
|---|
| 7854 | { | 
|---|
| 7855 | int token; | 
|---|
| 7856 | long ret; | 
|---|
| 7857 |  | 
|---|
| 7858 | token = io_schedule_prepare(); | 
|---|
| 7859 | ret = schedule_timeout(timeout); | 
|---|
| 7860 | io_schedule_finish(token); | 
|---|
| 7861 |  | 
|---|
| 7862 | return ret; | 
|---|
| 7863 | } | 
|---|
| 7864 | EXPORT_SYMBOL(io_schedule_timeout); | 
|---|
| 7865 |  | 
|---|
| 7866 | void __sched io_schedule(void) | 
|---|
| 7867 | { | 
|---|
| 7868 | int token; | 
|---|
| 7869 |  | 
|---|
| 7870 | token = io_schedule_prepare(); | 
|---|
| 7871 | schedule(); | 
|---|
| 7872 | io_schedule_finish(token); | 
|---|
| 7873 | } | 
|---|
| 7874 | EXPORT_SYMBOL(io_schedule); | 
|---|
| 7875 |  | 
|---|
| 7876 | void sched_show_task(struct task_struct *p) | 
|---|
| 7877 | { | 
|---|
| 7878 | unsigned long free; | 
|---|
| 7879 | int ppid; | 
|---|
| 7880 |  | 
|---|
| 7881 | if (!try_get_task_stack(tsk: p)) | 
|---|
| 7882 | return; | 
|---|
| 7883 |  | 
|---|
| 7884 | pr_info( "task:%-15.15s state:%c", p->comm, task_state_to_char(p)); | 
|---|
| 7885 |  | 
|---|
| 7886 | if (task_is_running(p)) | 
|---|
| 7887 | pr_cont( "  running task    "); | 
|---|
| 7888 | free = stack_not_used(p); | 
|---|
| 7889 | ppid = 0; | 
|---|
| 7890 | rcu_read_lock(); | 
|---|
| 7891 | if (pid_alive(p)) | 
|---|
| 7892 | ppid = task_pid_nr(rcu_dereference(p->real_parent)); | 
|---|
| 7893 | rcu_read_unlock(); | 
|---|
| 7894 | pr_cont( " stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", | 
|---|
| 7895 | free, task_pid_nr(p), task_tgid_nr(p), | 
|---|
| 7896 | ppid, p->flags, read_task_thread_flags(p)); | 
|---|
| 7897 |  | 
|---|
| 7898 | print_worker_info(KERN_INFO, task: p); | 
|---|
| 7899 | print_stop_info(KERN_INFO, task: p); | 
|---|
| 7900 | print_scx_info(KERN_INFO, p); | 
|---|
| 7901 | show_stack(task: p, NULL, KERN_INFO); | 
|---|
| 7902 | put_task_stack(tsk: p); | 
|---|
| 7903 | } | 
|---|
| 7904 | EXPORT_SYMBOL_GPL(sched_show_task); | 
|---|
| 7905 |  | 
|---|
| 7906 | static inline bool | 
|---|
| 7907 | state_filter_match(unsigned long state_filter, struct task_struct *p) | 
|---|
| 7908 | { | 
|---|
| 7909 | unsigned int state = READ_ONCE(p->__state); | 
|---|
| 7910 |  | 
|---|
| 7911 | /* no filter, everything matches */ | 
|---|
| 7912 | if (!state_filter) | 
|---|
| 7913 | return true; | 
|---|
| 7914 |  | 
|---|
| 7915 | /* filter, but doesn't match */ | 
|---|
| 7916 | if (!(state & state_filter)) | 
|---|
| 7917 | return false; | 
|---|
| 7918 |  | 
|---|
| 7919 | /* | 
|---|
| 7920 | * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows | 
|---|
| 7921 | * TASK_KILLABLE). | 
|---|
| 7922 | */ | 
|---|
| 7923 | if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) | 
|---|
| 7924 | return false; | 
|---|
| 7925 |  | 
|---|
| 7926 | return true; | 
|---|
| 7927 | } | 
|---|
| 7928 |  | 
|---|
| 7929 |  | 
|---|
| 7930 | void show_state_filter(unsigned int state_filter) | 
|---|
| 7931 | { | 
|---|
| 7932 | struct task_struct *g, *p; | 
|---|
| 7933 |  | 
|---|
| 7934 | rcu_read_lock(); | 
|---|
| 7935 | for_each_process_thread(g, p) { | 
|---|
| 7936 | /* | 
|---|
| 7937 | * reset the NMI-timeout, listing all files on a slow | 
|---|
| 7938 | * console might take a lot of time: | 
|---|
| 7939 | * Also, reset softlockup watchdogs on all CPUs, because | 
|---|
| 7940 | * another CPU might be blocked waiting for us to process | 
|---|
| 7941 | * an IPI. | 
|---|
| 7942 | */ | 
|---|
| 7943 | touch_nmi_watchdog(); | 
|---|
| 7944 | touch_all_softlockup_watchdogs(); | 
|---|
| 7945 | if (state_filter_match(state_filter, p)) | 
|---|
| 7946 | sched_show_task(p); | 
|---|
| 7947 | } | 
|---|
| 7948 |  | 
|---|
| 7949 | if (!state_filter) | 
|---|
| 7950 | sysrq_sched_debug_show(); | 
|---|
| 7951 |  | 
|---|
| 7952 | rcu_read_unlock(); | 
|---|
| 7953 | /* | 
|---|
| 7954 | * Only show locks if all tasks are dumped: | 
|---|
| 7955 | */ | 
|---|
| 7956 | if (!state_filter) | 
|---|
| 7957 | debug_show_all_locks(); | 
|---|
| 7958 | } | 
|---|
| 7959 |  | 
|---|
| 7960 | /** | 
|---|
| 7961 | * init_idle - set up an idle thread for a given CPU | 
|---|
| 7962 | * @idle: task in question | 
|---|
| 7963 | * @cpu: CPU the idle task belongs to | 
|---|
| 7964 | * | 
|---|
| 7965 | * NOTE: this function does not set the idle thread's NEED_RESCHED | 
|---|
| 7966 | * flag, to make booting more robust. | 
|---|
| 7967 | */ | 
|---|
| 7968 | void __init init_idle(struct task_struct *idle, int cpu) | 
|---|
| 7969 | { | 
|---|
| 7970 | struct affinity_context ac = (struct affinity_context) { | 
|---|
| 7971 | .new_mask  = cpumask_of(cpu), | 
|---|
| 7972 | .flags     = 0, | 
|---|
| 7973 | }; | 
|---|
| 7974 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 7975 | unsigned long flags; | 
|---|
| 7976 |  | 
|---|
| 7977 | raw_spin_lock_irqsave(&idle->pi_lock, flags); | 
|---|
| 7978 | raw_spin_rq_lock(rq); | 
|---|
| 7979 |  | 
|---|
| 7980 | idle->__state = TASK_RUNNING; | 
|---|
| 7981 | idle->se.exec_start = sched_clock(); | 
|---|
| 7982 | /* | 
|---|
| 7983 | * PF_KTHREAD should already be set at this point; regardless, make it | 
|---|
| 7984 | * look like a proper per-CPU kthread. | 
|---|
| 7985 | */ | 
|---|
| 7986 | idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; | 
|---|
| 7987 | kthread_set_per_cpu(k: idle, cpu); | 
|---|
| 7988 |  | 
|---|
| 7989 | /* | 
|---|
| 7990 | * No validation and serialization required at boot time and for | 
|---|
| 7991 | * setting up the idle tasks of not yet online CPUs. | 
|---|
| 7992 | */ | 
|---|
| 7993 | set_cpus_allowed_common(p: idle, ctx: &ac); | 
|---|
| 7994 | /* | 
|---|
| 7995 | * We're having a chicken and egg problem, even though we are | 
|---|
| 7996 | * holding rq->lock, the CPU isn't yet set to this CPU so the | 
|---|
| 7997 | * lockdep check in task_group() will fail. | 
|---|
| 7998 | * | 
|---|
| 7999 | * Similar case to sched_fork(). / Alternatively we could | 
|---|
| 8000 | * use task_rq_lock() here and obtain the other rq->lock. | 
|---|
| 8001 | * | 
|---|
| 8002 | * Silence PROVE_RCU | 
|---|
| 8003 | */ | 
|---|
| 8004 | rcu_read_lock(); | 
|---|
| 8005 | __set_task_cpu(p: idle, cpu); | 
|---|
| 8006 | rcu_read_unlock(); | 
|---|
| 8007 |  | 
|---|
| 8008 | rq->idle = idle; | 
|---|
| 8009 | rq_set_donor(rq, t: idle); | 
|---|
| 8010 | rcu_assign_pointer(rq->curr, idle); | 
|---|
| 8011 | idle->on_rq = TASK_ON_RQ_QUEUED; | 
|---|
| 8012 | idle->on_cpu = 1; | 
|---|
| 8013 | raw_spin_rq_unlock(rq); | 
|---|
| 8014 | raw_spin_unlock_irqrestore(&idle->pi_lock, flags); | 
|---|
| 8015 |  | 
|---|
| 8016 | /* Set the preempt count _outside_ the spinlocks! */ | 
|---|
| 8017 | init_idle_preempt_count(idle, cpu); | 
|---|
| 8018 |  | 
|---|
| 8019 | /* | 
|---|
| 8020 | * The idle tasks have their own, simple scheduling class: | 
|---|
| 8021 | */ | 
|---|
| 8022 | idle->sched_class = &idle_sched_class; | 
|---|
| 8023 | ftrace_graph_init_idle_task(t: idle, cpu); | 
|---|
| 8024 | vtime_init_idle(tsk: idle, cpu); | 
|---|
| 8025 | sprintf(buf: idle->comm, fmt: "%s/%d", INIT_TASK_COMM, cpu); | 
|---|
| 8026 | } | 
|---|
| 8027 |  | 
|---|
| 8028 | int cpuset_cpumask_can_shrink(const struct cpumask *cur, | 
|---|
| 8029 | const struct cpumask *trial) | 
|---|
| 8030 | { | 
|---|
| 8031 | int ret = 1; | 
|---|
| 8032 |  | 
|---|
| 8033 | if (cpumask_empty(srcp: cur)) | 
|---|
| 8034 | return ret; | 
|---|
| 8035 |  | 
|---|
| 8036 | ret = dl_cpuset_cpumask_can_shrink(cur, trial); | 
|---|
| 8037 |  | 
|---|
| 8038 | return ret; | 
|---|
| 8039 | } | 
|---|
| 8040 |  | 
|---|
| 8041 | int task_can_attach(struct task_struct *p) | 
|---|
| 8042 | { | 
|---|
| 8043 | int ret = 0; | 
|---|
| 8044 |  | 
|---|
| 8045 | /* | 
|---|
| 8046 | * Kthreads which disallow setaffinity shouldn't be moved | 
|---|
| 8047 | * to a new cpuset; we don't want to change their CPU | 
|---|
| 8048 | * affinity and isolating such threads by their set of | 
|---|
| 8049 | * allowed nodes is unnecessary.  Thus, cpusets are not | 
|---|
| 8050 | * applicable for such threads.  This prevents checking for | 
|---|
| 8051 | * success of set_cpus_allowed_ptr() on all attached tasks | 
|---|
| 8052 | * before cpus_mask may be changed. | 
|---|
| 8053 | */ | 
|---|
| 8054 | if (p->flags & PF_NO_SETAFFINITY) | 
|---|
| 8055 | ret = -EINVAL; | 
|---|
| 8056 |  | 
|---|
| 8057 | return ret; | 
|---|
| 8058 | } | 
|---|
| 8059 |  | 
|---|
| 8060 | bool sched_smp_initialized __read_mostly; | 
|---|
| 8061 |  | 
|---|
| 8062 | #ifdef CONFIG_NUMA_BALANCING | 
|---|
| 8063 | /* Migrate current task p to target_cpu */ | 
|---|
| 8064 | int migrate_task_to(struct task_struct *p, int target_cpu) | 
|---|
| 8065 | { | 
|---|
| 8066 | struct migration_arg arg = { p, target_cpu }; | 
|---|
| 8067 | int curr_cpu = task_cpu(p); | 
|---|
| 8068 |  | 
|---|
| 8069 | if (curr_cpu == target_cpu) | 
|---|
| 8070 | return 0; | 
|---|
| 8071 |  | 
|---|
| 8072 | if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) | 
|---|
| 8073 | return -EINVAL; | 
|---|
| 8074 |  | 
|---|
| 8075 | /* TODO: This is not properly updating schedstats */ | 
|---|
| 8076 |  | 
|---|
| 8077 | trace_sched_move_numa(p, curr_cpu, target_cpu); | 
|---|
| 8078 | return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); | 
|---|
| 8079 | } | 
|---|
| 8080 |  | 
|---|
| 8081 | /* | 
|---|
| 8082 | * Requeue a task on a given node and accurately track the number of NUMA | 
|---|
| 8083 | * tasks on the runqueues | 
|---|
| 8084 | */ | 
|---|
| 8085 | void sched_setnuma(struct task_struct *p, int nid) | 
|---|
| 8086 | { | 
|---|
| 8087 | bool queued, running; | 
|---|
| 8088 | struct rq_flags rf; | 
|---|
| 8089 | struct rq *rq; | 
|---|
| 8090 |  | 
|---|
| 8091 | rq = task_rq_lock(p, &rf); | 
|---|
| 8092 | queued = task_on_rq_queued(p); | 
|---|
| 8093 | running = task_current_donor(rq, p); | 
|---|
| 8094 |  | 
|---|
| 8095 | if (queued) | 
|---|
| 8096 | dequeue_task(rq, p, DEQUEUE_SAVE); | 
|---|
| 8097 | if (running) | 
|---|
| 8098 | put_prev_task(rq, p); | 
|---|
| 8099 |  | 
|---|
| 8100 | p->numa_preferred_nid = nid; | 
|---|
| 8101 |  | 
|---|
| 8102 | if (queued) | 
|---|
| 8103 | enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); | 
|---|
| 8104 | if (running) | 
|---|
| 8105 | set_next_task(rq, p); | 
|---|
| 8106 | task_rq_unlock(rq, p, &rf); | 
|---|
| 8107 | } | 
|---|
| 8108 | #endif /* CONFIG_NUMA_BALANCING */ | 
|---|
| 8109 |  | 
|---|
| 8110 | #ifdef CONFIG_HOTPLUG_CPU | 
|---|
| 8111 | /* | 
|---|
| 8112 | * Invoked on the outgoing CPU in context of the CPU hotplug thread | 
|---|
| 8113 | * after ensuring that there are no user space tasks left on the CPU. | 
|---|
| 8114 | * | 
|---|
| 8115 | * If there is a lazy mm in use on the hotplug thread, drop it and | 
|---|
| 8116 | * switch to init_mm. | 
|---|
| 8117 | * | 
|---|
| 8118 | * The reference count on init_mm is dropped in finish_cpu(). | 
|---|
| 8119 | */ | 
|---|
| 8120 | static void sched_force_init_mm(void) | 
|---|
| 8121 | { | 
|---|
| 8122 | struct mm_struct *mm = current->active_mm; | 
|---|
| 8123 |  | 
|---|
| 8124 | if (mm != &init_mm) { | 
|---|
| 8125 | mmgrab_lazy_tlb(mm: &init_mm); | 
|---|
| 8126 | local_irq_disable(); | 
|---|
| 8127 | current->active_mm = &init_mm; | 
|---|
| 8128 | switch_mm_irqs_off(prev: mm, next: &init_mm, current); | 
|---|
| 8129 | local_irq_enable(); | 
|---|
| 8130 | finish_arch_post_lock_switch(); | 
|---|
| 8131 | mmdrop_lazy_tlb(mm); | 
|---|
| 8132 | } | 
|---|
| 8133 |  | 
|---|
| 8134 | /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ | 
|---|
| 8135 | } | 
|---|
| 8136 |  | 
|---|
| 8137 | static int __balance_push_cpu_stop(void *arg) | 
|---|
| 8138 | { | 
|---|
| 8139 | struct task_struct *p = arg; | 
|---|
| 8140 | struct rq *rq = this_rq(); | 
|---|
| 8141 | struct rq_flags rf; | 
|---|
| 8142 | int cpu; | 
|---|
| 8143 |  | 
|---|
| 8144 | raw_spin_lock_irq(&p->pi_lock); | 
|---|
| 8145 | rq_lock(rq, rf: &rf); | 
|---|
| 8146 |  | 
|---|
| 8147 | update_rq_clock(rq); | 
|---|
| 8148 |  | 
|---|
| 8149 | if (task_rq(p) == rq && task_on_rq_queued(p)) { | 
|---|
| 8150 | cpu = select_fallback_rq(cpu: rq->cpu, p); | 
|---|
| 8151 | rq = __migrate_task(rq, rf: &rf, p, dest_cpu: cpu); | 
|---|
| 8152 | } | 
|---|
| 8153 |  | 
|---|
| 8154 | rq_unlock(rq, rf: &rf); | 
|---|
| 8155 | raw_spin_unlock_irq(&p->pi_lock); | 
|---|
| 8156 |  | 
|---|
| 8157 | put_task_struct(t: p); | 
|---|
| 8158 |  | 
|---|
| 8159 | return 0; | 
|---|
| 8160 | } | 
|---|
| 8161 |  | 
|---|
| 8162 | static DEFINE_PER_CPU(struct cpu_stop_work, push_work); | 
|---|
| 8163 |  | 
|---|
| 8164 | /* | 
|---|
| 8165 | * Ensure we only run per-cpu kthreads once the CPU goes !active. | 
|---|
| 8166 | * | 
|---|
| 8167 | * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only | 
|---|
| 8168 | * effective when the hotplug motion is down. | 
|---|
| 8169 | */ | 
|---|
| 8170 | static void balance_push(struct rq *rq) | 
|---|
| 8171 | { | 
|---|
| 8172 | struct task_struct *push_task = rq->curr; | 
|---|
| 8173 |  | 
|---|
| 8174 | lockdep_assert_rq_held(rq); | 
|---|
| 8175 |  | 
|---|
| 8176 | /* | 
|---|
| 8177 | * Ensure the thing is persistent until balance_push_set(.on = false); | 
|---|
| 8178 | */ | 
|---|
| 8179 | rq->balance_callback = &balance_push_callback; | 
|---|
| 8180 |  | 
|---|
| 8181 | /* | 
|---|
| 8182 | * Only active while going offline and when invoked on the outgoing | 
|---|
| 8183 | * CPU. | 
|---|
| 8184 | */ | 
|---|
| 8185 | if (!cpu_dying(cpu: rq->cpu) || rq != this_rq()) | 
|---|
| 8186 | return; | 
|---|
| 8187 |  | 
|---|
| 8188 | /* | 
|---|
| 8189 | * Both the cpu-hotplug and stop task are in this case and are | 
|---|
| 8190 | * required to complete the hotplug process. | 
|---|
| 8191 | */ | 
|---|
| 8192 | if (kthread_is_per_cpu(k: push_task) || | 
|---|
| 8193 | is_migration_disabled(p: push_task)) { | 
|---|
| 8194 |  | 
|---|
| 8195 | /* | 
|---|
| 8196 | * If this is the idle task on the outgoing CPU try to wake | 
|---|
| 8197 | * up the hotplug control thread which might wait for the | 
|---|
| 8198 | * last task to vanish. The rcuwait_active() check is | 
|---|
| 8199 | * accurate here because the waiter is pinned on this CPU | 
|---|
| 8200 | * and can't obviously be running in parallel. | 
|---|
| 8201 | * | 
|---|
| 8202 | * On RT kernels this also has to check whether there are | 
|---|
| 8203 | * pinned and scheduled out tasks on the runqueue. They | 
|---|
| 8204 | * need to leave the migrate disabled section first. | 
|---|
| 8205 | */ | 
|---|
| 8206 | if (!rq->nr_running && !rq_has_pinned_tasks(rq) && | 
|---|
| 8207 | rcuwait_active(w: &rq->hotplug_wait)) { | 
|---|
| 8208 | raw_spin_rq_unlock(rq); | 
|---|
| 8209 | rcuwait_wake_up(w: &rq->hotplug_wait); | 
|---|
| 8210 | raw_spin_rq_lock(rq); | 
|---|
| 8211 | } | 
|---|
| 8212 | return; | 
|---|
| 8213 | } | 
|---|
| 8214 |  | 
|---|
| 8215 | get_task_struct(t: push_task); | 
|---|
| 8216 | /* | 
|---|
| 8217 | * Temporarily drop rq->lock such that we can wake-up the stop task. | 
|---|
| 8218 | * Both preemption and IRQs are still disabled. | 
|---|
| 8219 | */ | 
|---|
| 8220 | preempt_disable(); | 
|---|
| 8221 | raw_spin_rq_unlock(rq); | 
|---|
| 8222 | stop_one_cpu_nowait(cpu: rq->cpu, fn: __balance_push_cpu_stop, arg: push_task, | 
|---|
| 8223 | this_cpu_ptr(&push_work)); | 
|---|
| 8224 | preempt_enable(); | 
|---|
| 8225 | /* | 
|---|
| 8226 | * At this point need_resched() is true and we'll take the loop in | 
|---|
| 8227 | * schedule(). The next pick is obviously going to be the stop task | 
|---|
| 8228 | * which kthread_is_per_cpu() and will push this task away. | 
|---|
| 8229 | */ | 
|---|
| 8230 | raw_spin_rq_lock(rq); | 
|---|
| 8231 | } | 
|---|
| 8232 |  | 
|---|
| 8233 | static void balance_push_set(int cpu, bool on) | 
|---|
| 8234 | { | 
|---|
| 8235 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 8236 | struct rq_flags rf; | 
|---|
| 8237 |  | 
|---|
| 8238 | rq_lock_irqsave(rq, rf: &rf); | 
|---|
| 8239 | if (on) { | 
|---|
| 8240 | WARN_ON_ONCE(rq->balance_callback); | 
|---|
| 8241 | rq->balance_callback = &balance_push_callback; | 
|---|
| 8242 | } else if (rq->balance_callback == &balance_push_callback) { | 
|---|
| 8243 | rq->balance_callback = NULL; | 
|---|
| 8244 | } | 
|---|
| 8245 | rq_unlock_irqrestore(rq, rf: &rf); | 
|---|
| 8246 | } | 
|---|
| 8247 |  | 
|---|
| 8248 | /* | 
|---|
| 8249 | * Invoked from a CPUs hotplug control thread after the CPU has been marked | 
|---|
| 8250 | * inactive. All tasks which are not per CPU kernel threads are either | 
|---|
| 8251 | * pushed off this CPU now via balance_push() or placed on a different CPU | 
|---|
| 8252 | * during wakeup. Wait until the CPU is quiescent. | 
|---|
| 8253 | */ | 
|---|
| 8254 | static void balance_hotplug_wait(void) | 
|---|
| 8255 | { | 
|---|
| 8256 | struct rq *rq = this_rq(); | 
|---|
| 8257 |  | 
|---|
| 8258 | rcuwait_wait_event(&rq->hotplug_wait, | 
|---|
| 8259 | rq->nr_running == 1 && !rq_has_pinned_tasks(rq), | 
|---|
| 8260 | TASK_UNINTERRUPTIBLE); | 
|---|
| 8261 | } | 
|---|
| 8262 |  | 
|---|
| 8263 | #else /* !CONFIG_HOTPLUG_CPU: */ | 
|---|
| 8264 |  | 
|---|
| 8265 | static inline void balance_push(struct rq *rq) | 
|---|
| 8266 | { | 
|---|
| 8267 | } | 
|---|
| 8268 |  | 
|---|
| 8269 | static inline void balance_push_set(int cpu, bool on) | 
|---|
| 8270 | { | 
|---|
| 8271 | } | 
|---|
| 8272 |  | 
|---|
| 8273 | static inline void balance_hotplug_wait(void) | 
|---|
| 8274 | { | 
|---|
| 8275 | } | 
|---|
| 8276 |  | 
|---|
| 8277 | #endif /* !CONFIG_HOTPLUG_CPU */ | 
|---|
| 8278 |  | 
|---|
| 8279 | void set_rq_online(struct rq *rq) | 
|---|
| 8280 | { | 
|---|
| 8281 | if (!rq->online) { | 
|---|
| 8282 | const struct sched_class *class; | 
|---|
| 8283 |  | 
|---|
| 8284 | cpumask_set_cpu(cpu: rq->cpu, dstp: rq->rd->online); | 
|---|
| 8285 | rq->online = 1; | 
|---|
| 8286 |  | 
|---|
| 8287 | for_each_class(class) { | 
|---|
| 8288 | if (class->rq_online) | 
|---|
| 8289 | class->rq_online(rq); | 
|---|
| 8290 | } | 
|---|
| 8291 | } | 
|---|
| 8292 | } | 
|---|
| 8293 |  | 
|---|
| 8294 | void set_rq_offline(struct rq *rq) | 
|---|
| 8295 | { | 
|---|
| 8296 | if (rq->online) { | 
|---|
| 8297 | const struct sched_class *class; | 
|---|
| 8298 |  | 
|---|
| 8299 | update_rq_clock(rq); | 
|---|
| 8300 | for_each_class(class) { | 
|---|
| 8301 | if (class->rq_offline) | 
|---|
| 8302 | class->rq_offline(rq); | 
|---|
| 8303 | } | 
|---|
| 8304 |  | 
|---|
| 8305 | cpumask_clear_cpu(cpu: rq->cpu, dstp: rq->rd->online); | 
|---|
| 8306 | rq->online = 0; | 
|---|
| 8307 | } | 
|---|
| 8308 | } | 
|---|
| 8309 |  | 
|---|
| 8310 | static inline void sched_set_rq_online(struct rq *rq, int cpu) | 
|---|
| 8311 | { | 
|---|
| 8312 | struct rq_flags rf; | 
|---|
| 8313 |  | 
|---|
| 8314 | rq_lock_irqsave(rq, rf: &rf); | 
|---|
| 8315 | if (rq->rd) { | 
|---|
| 8316 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 
|---|
| 8317 | set_rq_online(rq); | 
|---|
| 8318 | } | 
|---|
| 8319 | rq_unlock_irqrestore(rq, rf: &rf); | 
|---|
| 8320 | } | 
|---|
| 8321 |  | 
|---|
| 8322 | static inline void sched_set_rq_offline(struct rq *rq, int cpu) | 
|---|
| 8323 | { | 
|---|
| 8324 | struct rq_flags rf; | 
|---|
| 8325 |  | 
|---|
| 8326 | rq_lock_irqsave(rq, rf: &rf); | 
|---|
| 8327 | if (rq->rd) { | 
|---|
| 8328 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 
|---|
| 8329 | set_rq_offline(rq); | 
|---|
| 8330 | } | 
|---|
| 8331 | rq_unlock_irqrestore(rq, rf: &rf); | 
|---|
| 8332 | } | 
|---|
| 8333 |  | 
|---|
| 8334 | /* | 
|---|
| 8335 | * used to mark begin/end of suspend/resume: | 
|---|
| 8336 | */ | 
|---|
| 8337 | static int num_cpus_frozen; | 
|---|
| 8338 |  | 
|---|
| 8339 | /* | 
|---|
| 8340 | * Update cpusets according to cpu_active mask.  If cpusets are | 
|---|
| 8341 | * disabled, cpuset_update_active_cpus() becomes a simple wrapper | 
|---|
| 8342 | * around partition_sched_domains(). | 
|---|
| 8343 | * | 
|---|
| 8344 | * If we come here as part of a suspend/resume, don't touch cpusets because we | 
|---|
| 8345 | * want to restore it back to its original state upon resume anyway. | 
|---|
| 8346 | */ | 
|---|
| 8347 | static void cpuset_cpu_active(void) | 
|---|
| 8348 | { | 
|---|
| 8349 | if (cpuhp_tasks_frozen) { | 
|---|
| 8350 | /* | 
|---|
| 8351 | * num_cpus_frozen tracks how many CPUs are involved in suspend | 
|---|
| 8352 | * resume sequence. As long as this is not the last online | 
|---|
| 8353 | * operation in the resume sequence, just build a single sched | 
|---|
| 8354 | * domain, ignoring cpusets. | 
|---|
| 8355 | */ | 
|---|
| 8356 | cpuset_reset_sched_domains(); | 
|---|
| 8357 | if (--num_cpus_frozen) | 
|---|
| 8358 | return; | 
|---|
| 8359 | /* | 
|---|
| 8360 | * This is the last CPU online operation. So fall through and | 
|---|
| 8361 | * restore the original sched domains by considering the | 
|---|
| 8362 | * cpuset configurations. | 
|---|
| 8363 | */ | 
|---|
| 8364 | cpuset_force_rebuild(); | 
|---|
| 8365 | } | 
|---|
| 8366 | cpuset_update_active_cpus(); | 
|---|
| 8367 | } | 
|---|
| 8368 |  | 
|---|
| 8369 | static void cpuset_cpu_inactive(unsigned int cpu) | 
|---|
| 8370 | { | 
|---|
| 8371 | if (!cpuhp_tasks_frozen) { | 
|---|
| 8372 | cpuset_update_active_cpus(); | 
|---|
| 8373 | } else { | 
|---|
| 8374 | num_cpus_frozen++; | 
|---|
| 8375 | cpuset_reset_sched_domains(); | 
|---|
| 8376 | } | 
|---|
| 8377 | } | 
|---|
| 8378 |  | 
|---|
| 8379 | static inline void sched_smt_present_inc(int cpu) | 
|---|
| 8380 | { | 
|---|
| 8381 | #ifdef CONFIG_SCHED_SMT | 
|---|
| 8382 | if (cpumask_weight(srcp: cpu_smt_mask(cpu)) == 2) | 
|---|
| 8383 | static_branch_inc_cpuslocked(&sched_smt_present); | 
|---|
| 8384 | #endif | 
|---|
| 8385 | } | 
|---|
| 8386 |  | 
|---|
| 8387 | static inline void sched_smt_present_dec(int cpu) | 
|---|
| 8388 | { | 
|---|
| 8389 | #ifdef CONFIG_SCHED_SMT | 
|---|
| 8390 | if (cpumask_weight(srcp: cpu_smt_mask(cpu)) == 2) | 
|---|
| 8391 | static_branch_dec_cpuslocked(&sched_smt_present); | 
|---|
| 8392 | #endif | 
|---|
| 8393 | } | 
|---|
| 8394 |  | 
|---|
| 8395 | int sched_cpu_activate(unsigned int cpu) | 
|---|
| 8396 | { | 
|---|
| 8397 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 8398 |  | 
|---|
| 8399 | /* | 
|---|
| 8400 | * Clear the balance_push callback and prepare to schedule | 
|---|
| 8401 | * regular tasks. | 
|---|
| 8402 | */ | 
|---|
| 8403 | balance_push_set(cpu, on: false); | 
|---|
| 8404 |  | 
|---|
| 8405 | /* | 
|---|
| 8406 | * When going up, increment the number of cores with SMT present. | 
|---|
| 8407 | */ | 
|---|
| 8408 | sched_smt_present_inc(cpu); | 
|---|
| 8409 | set_cpu_active(cpu, true); | 
|---|
| 8410 |  | 
|---|
| 8411 | if (sched_smp_initialized) { | 
|---|
| 8412 | sched_update_numa(cpu, online: true); | 
|---|
| 8413 | sched_domains_numa_masks_set(cpu); | 
|---|
| 8414 | cpuset_cpu_active(); | 
|---|
| 8415 | } | 
|---|
| 8416 |  | 
|---|
| 8417 | scx_rq_activate(rq); | 
|---|
| 8418 |  | 
|---|
| 8419 | /* | 
|---|
| 8420 | * Put the rq online, if not already. This happens: | 
|---|
| 8421 | * | 
|---|
| 8422 | * 1) In the early boot process, because we build the real domains | 
|---|
| 8423 | *    after all CPUs have been brought up. | 
|---|
| 8424 | * | 
|---|
| 8425 | * 2) At runtime, if cpuset_cpu_active() fails to rebuild the | 
|---|
| 8426 | *    domains. | 
|---|
| 8427 | */ | 
|---|
| 8428 | sched_set_rq_online(rq, cpu); | 
|---|
| 8429 |  | 
|---|
| 8430 | return 0; | 
|---|
| 8431 | } | 
|---|
| 8432 |  | 
|---|
| 8433 | int sched_cpu_deactivate(unsigned int cpu) | 
|---|
| 8434 | { | 
|---|
| 8435 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 8436 | int ret; | 
|---|
| 8437 |  | 
|---|
| 8438 | ret = dl_bw_deactivate(cpu); | 
|---|
| 8439 |  | 
|---|
| 8440 | if (ret) | 
|---|
| 8441 | return ret; | 
|---|
| 8442 |  | 
|---|
| 8443 | /* | 
|---|
| 8444 | * Remove CPU from nohz.idle_cpus_mask to prevent participating in | 
|---|
| 8445 | * load balancing when not active | 
|---|
| 8446 | */ | 
|---|
| 8447 | nohz_balance_exit_idle(rq); | 
|---|
| 8448 |  | 
|---|
| 8449 | set_cpu_active(cpu, false); | 
|---|
| 8450 |  | 
|---|
| 8451 | /* | 
|---|
| 8452 | * From this point forward, this CPU will refuse to run any task that | 
|---|
| 8453 | * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively | 
|---|
| 8454 | * push those tasks away until this gets cleared, see | 
|---|
| 8455 | * sched_cpu_dying(). | 
|---|
| 8456 | */ | 
|---|
| 8457 | balance_push_set(cpu, on: true); | 
|---|
| 8458 |  | 
|---|
| 8459 | /* | 
|---|
| 8460 | * We've cleared cpu_active_mask / set balance_push, wait for all | 
|---|
| 8461 | * preempt-disabled and RCU users of this state to go away such that | 
|---|
| 8462 | * all new such users will observe it. | 
|---|
| 8463 | * | 
|---|
| 8464 | * Specifically, we rely on ttwu to no longer target this CPU, see | 
|---|
| 8465 | * ttwu_queue_cond() and is_cpu_allowed(). | 
|---|
| 8466 | * | 
|---|
| 8467 | * Do sync before park smpboot threads to take care the RCU boost case. | 
|---|
| 8468 | */ | 
|---|
| 8469 | synchronize_rcu(); | 
|---|
| 8470 |  | 
|---|
| 8471 | sched_set_rq_offline(rq, cpu); | 
|---|
| 8472 |  | 
|---|
| 8473 | scx_rq_deactivate(rq); | 
|---|
| 8474 |  | 
|---|
| 8475 | /* | 
|---|
| 8476 | * When going down, decrement the number of cores with SMT present. | 
|---|
| 8477 | */ | 
|---|
| 8478 | sched_smt_present_dec(cpu); | 
|---|
| 8479 |  | 
|---|
| 8480 | #ifdef CONFIG_SCHED_SMT | 
|---|
| 8481 | sched_core_cpu_deactivate(cpu); | 
|---|
| 8482 | #endif | 
|---|
| 8483 |  | 
|---|
| 8484 | if (!sched_smp_initialized) | 
|---|
| 8485 | return 0; | 
|---|
| 8486 |  | 
|---|
| 8487 | sched_update_numa(cpu, online: false); | 
|---|
| 8488 | cpuset_cpu_inactive(cpu); | 
|---|
| 8489 | sched_domains_numa_masks_clear(cpu); | 
|---|
| 8490 | return 0; | 
|---|
| 8491 | } | 
|---|
| 8492 |  | 
|---|
| 8493 | static void sched_rq_cpu_starting(unsigned int cpu) | 
|---|
| 8494 | { | 
|---|
| 8495 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 8496 |  | 
|---|
| 8497 | rq->calc_load_update = calc_load_update; | 
|---|
| 8498 | update_max_interval(); | 
|---|
| 8499 | } | 
|---|
| 8500 |  | 
|---|
| 8501 | int sched_cpu_starting(unsigned int cpu) | 
|---|
| 8502 | { | 
|---|
| 8503 | sched_core_cpu_starting(cpu); | 
|---|
| 8504 | sched_rq_cpu_starting(cpu); | 
|---|
| 8505 | sched_tick_start(cpu); | 
|---|
| 8506 | return 0; | 
|---|
| 8507 | } | 
|---|
| 8508 |  | 
|---|
| 8509 | #ifdef CONFIG_HOTPLUG_CPU | 
|---|
| 8510 |  | 
|---|
| 8511 | /* | 
|---|
| 8512 | * Invoked immediately before the stopper thread is invoked to bring the | 
|---|
| 8513 | * CPU down completely. At this point all per CPU kthreads except the | 
|---|
| 8514 | * hotplug thread (current) and the stopper thread (inactive) have been | 
|---|
| 8515 | * either parked or have been unbound from the outgoing CPU. Ensure that | 
|---|
| 8516 | * any of those which might be on the way out are gone. | 
|---|
| 8517 | * | 
|---|
| 8518 | * If after this point a bound task is being woken on this CPU then the | 
|---|
| 8519 | * responsible hotplug callback has failed to do it's job. | 
|---|
| 8520 | * sched_cpu_dying() will catch it with the appropriate fireworks. | 
|---|
| 8521 | */ | 
|---|
| 8522 | int sched_cpu_wait_empty(unsigned int cpu) | 
|---|
| 8523 | { | 
|---|
| 8524 | balance_hotplug_wait(); | 
|---|
| 8525 | sched_force_init_mm(); | 
|---|
| 8526 | return 0; | 
|---|
| 8527 | } | 
|---|
| 8528 |  | 
|---|
| 8529 | /* | 
|---|
| 8530 | * Since this CPU is going 'away' for a while, fold any nr_active delta we | 
|---|
| 8531 | * might have. Called from the CPU stopper task after ensuring that the | 
|---|
| 8532 | * stopper is the last running task on the CPU, so nr_active count is | 
|---|
| 8533 | * stable. We need to take the tear-down thread which is calling this into | 
|---|
| 8534 | * account, so we hand in adjust = 1 to the load calculation. | 
|---|
| 8535 | * | 
|---|
| 8536 | * Also see the comment "Global load-average calculations". | 
|---|
| 8537 | */ | 
|---|
| 8538 | static void calc_load_migrate(struct rq *rq) | 
|---|
| 8539 | { | 
|---|
| 8540 | long delta = calc_load_fold_active(this_rq: rq, adjust: 1); | 
|---|
| 8541 |  | 
|---|
| 8542 | if (delta) | 
|---|
| 8543 | atomic_long_add(i: delta, v: &calc_load_tasks); | 
|---|
| 8544 | } | 
|---|
| 8545 |  | 
|---|
| 8546 | static void dump_rq_tasks(struct rq *rq, const char *loglvl) | 
|---|
| 8547 | { | 
|---|
| 8548 | struct task_struct *g, *p; | 
|---|
| 8549 | int cpu = cpu_of(rq); | 
|---|
| 8550 |  | 
|---|
| 8551 | lockdep_assert_rq_held(rq); | 
|---|
| 8552 |  | 
|---|
| 8553 | printk( "%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); | 
|---|
| 8554 | for_each_process_thread(g, p) { | 
|---|
| 8555 | if (task_cpu(p) != cpu) | 
|---|
| 8556 | continue; | 
|---|
| 8557 |  | 
|---|
| 8558 | if (!task_on_rq_queued(p)) | 
|---|
| 8559 | continue; | 
|---|
| 8560 |  | 
|---|
| 8561 | printk( "%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); | 
|---|
| 8562 | } | 
|---|
| 8563 | } | 
|---|
| 8564 |  | 
|---|
| 8565 | int sched_cpu_dying(unsigned int cpu) | 
|---|
| 8566 | { | 
|---|
| 8567 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 8568 | struct rq_flags rf; | 
|---|
| 8569 |  | 
|---|
| 8570 | /* Handle pending wakeups and then migrate everything off */ | 
|---|
| 8571 | sched_tick_stop(cpu); | 
|---|
| 8572 |  | 
|---|
| 8573 | rq_lock_irqsave(rq, rf: &rf); | 
|---|
| 8574 | if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { | 
|---|
| 8575 | WARN(true, "Dying CPU not properly vacated!"); | 
|---|
| 8576 | dump_rq_tasks(rq, KERN_WARNING); | 
|---|
| 8577 | } | 
|---|
| 8578 | rq_unlock_irqrestore(rq, rf: &rf); | 
|---|
| 8579 |  | 
|---|
| 8580 | calc_load_migrate(rq); | 
|---|
| 8581 | update_max_interval(); | 
|---|
| 8582 | hrtick_clear(rq); | 
|---|
| 8583 | sched_core_cpu_dying(cpu); | 
|---|
| 8584 | return 0; | 
|---|
| 8585 | } | 
|---|
| 8586 | #endif /* CONFIG_HOTPLUG_CPU */ | 
|---|
| 8587 |  | 
|---|
| 8588 | void __init sched_init_smp(void) | 
|---|
| 8589 | { | 
|---|
| 8590 | sched_init_numa(NUMA_NO_NODE); | 
|---|
| 8591 |  | 
|---|
| 8592 | /* | 
|---|
| 8593 | * There's no userspace yet to cause hotplug operations; hence all the | 
|---|
| 8594 | * CPU masks are stable and all blatant races in the below code cannot | 
|---|
| 8595 | * happen. | 
|---|
| 8596 | */ | 
|---|
| 8597 | sched_domains_mutex_lock(); | 
|---|
| 8598 | sched_init_domains(cpu_active_mask); | 
|---|
| 8599 | sched_domains_mutex_unlock(); | 
|---|
| 8600 |  | 
|---|
| 8601 | /* Move init over to a non-isolated CPU */ | 
|---|
| 8602 | if (set_cpus_allowed_ptr(current, housekeeping_cpumask(type: HK_TYPE_DOMAIN)) < 0) | 
|---|
| 8603 | BUG(); | 
|---|
| 8604 | current->flags &= ~PF_NO_SETAFFINITY; | 
|---|
| 8605 | sched_init_granularity(); | 
|---|
| 8606 |  | 
|---|
| 8607 | init_sched_rt_class(); | 
|---|
| 8608 | init_sched_dl_class(); | 
|---|
| 8609 |  | 
|---|
| 8610 | sched_init_dl_servers(); | 
|---|
| 8611 |  | 
|---|
| 8612 | sched_smp_initialized = true; | 
|---|
| 8613 | } | 
|---|
| 8614 |  | 
|---|
| 8615 | static int __init migration_init(void) | 
|---|
| 8616 | { | 
|---|
| 8617 | sched_cpu_starting(smp_processor_id()); | 
|---|
| 8618 | return 0; | 
|---|
| 8619 | } | 
|---|
| 8620 | early_initcall(migration_init); | 
|---|
| 8621 |  | 
|---|
| 8622 | int in_sched_functions(unsigned long addr) | 
|---|
| 8623 | { | 
|---|
| 8624 | return in_lock_functions(addr) || | 
|---|
| 8625 | (addr >= (unsigned long)__sched_text_start | 
|---|
| 8626 | && addr < (unsigned long)__sched_text_end); | 
|---|
| 8627 | } | 
|---|
| 8628 |  | 
|---|
| 8629 | #ifdef CONFIG_CGROUP_SCHED | 
|---|
| 8630 | /* | 
|---|
| 8631 | * Default task group. | 
|---|
| 8632 | * Every task in system belongs to this group at bootup. | 
|---|
| 8633 | */ | 
|---|
| 8634 | struct task_group root_task_group; | 
|---|
| 8635 | LIST_HEAD(task_groups); | 
|---|
| 8636 |  | 
|---|
| 8637 | /* Cacheline aligned slab cache for task_group */ | 
|---|
| 8638 | static struct kmem_cache *task_group_cache __ro_after_init; | 
|---|
| 8639 | #endif | 
|---|
| 8640 |  | 
|---|
| 8641 | void __init sched_init(void) | 
|---|
| 8642 | { | 
|---|
| 8643 | unsigned long ptr = 0; | 
|---|
| 8644 | int i; | 
|---|
| 8645 |  | 
|---|
| 8646 | /* Make sure the linker didn't screw up */ | 
|---|
| 8647 | BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); | 
|---|
| 8648 | BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); | 
|---|
| 8649 | BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); | 
|---|
| 8650 | BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); | 
|---|
| 8651 | #ifdef CONFIG_SCHED_CLASS_EXT | 
|---|
| 8652 | BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); | 
|---|
| 8653 | BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); | 
|---|
| 8654 | #endif | 
|---|
| 8655 |  | 
|---|
| 8656 | wait_bit_init(); | 
|---|
| 8657 |  | 
|---|
| 8658 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 8659 | ptr += 2 * nr_cpu_ids * sizeof(void **); | 
|---|
| 8660 | #endif | 
|---|
| 8661 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 8662 | ptr += 2 * nr_cpu_ids * sizeof(void **); | 
|---|
| 8663 | #endif | 
|---|
| 8664 | if (ptr) { | 
|---|
| 8665 | ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); | 
|---|
| 8666 |  | 
|---|
| 8667 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 8668 | root_task_group.se = (struct sched_entity **)ptr; | 
|---|
| 8669 | ptr += nr_cpu_ids * sizeof(void **); | 
|---|
| 8670 |  | 
|---|
| 8671 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | 
|---|
| 8672 | ptr += nr_cpu_ids * sizeof(void **); | 
|---|
| 8673 |  | 
|---|
| 8674 | root_task_group.shares = ROOT_TASK_GROUP_LOAD; | 
|---|
| 8675 | init_cfs_bandwidth(cfs_b: &root_task_group.cfs_bandwidth, NULL); | 
|---|
| 8676 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|---|
| 8677 | #ifdef CONFIG_EXT_GROUP_SCHED | 
|---|
| 8678 | scx_tg_init(&root_task_group); | 
|---|
| 8679 | #endif /* CONFIG_EXT_GROUP_SCHED */ | 
|---|
| 8680 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 8681 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | 
|---|
| 8682 | ptr += nr_cpu_ids * sizeof(void **); | 
|---|
| 8683 |  | 
|---|
| 8684 | root_task_group.rt_rq = (struct rt_rq **)ptr; | 
|---|
| 8685 | ptr += nr_cpu_ids * sizeof(void **); | 
|---|
| 8686 |  | 
|---|
| 8687 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|---|
| 8688 | } | 
|---|
| 8689 |  | 
|---|
| 8690 | init_defrootdomain(); | 
|---|
| 8691 |  | 
|---|
| 8692 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 8693 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | 
|---|
| 8694 | global_rt_period(), global_rt_runtime()); | 
|---|
| 8695 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|---|
| 8696 |  | 
|---|
| 8697 | #ifdef CONFIG_CGROUP_SCHED | 
|---|
| 8698 | task_group_cache = KMEM_CACHE(task_group, 0); | 
|---|
| 8699 |  | 
|---|
| 8700 | list_add(new: &root_task_group.list, head: &task_groups); | 
|---|
| 8701 | INIT_LIST_HEAD(list: &root_task_group.children); | 
|---|
| 8702 | INIT_LIST_HEAD(list: &root_task_group.siblings); | 
|---|
| 8703 | autogroup_init(init_task: &init_task); | 
|---|
| 8704 | #endif /* CONFIG_CGROUP_SCHED */ | 
|---|
| 8705 |  | 
|---|
| 8706 | for_each_possible_cpu(i) { | 
|---|
| 8707 | struct rq *rq; | 
|---|
| 8708 |  | 
|---|
| 8709 | rq = cpu_rq(i); | 
|---|
| 8710 | raw_spin_lock_init(&rq->__lock); | 
|---|
| 8711 | rq->nr_running = 0; | 
|---|
| 8712 | rq->calc_load_active = 0; | 
|---|
| 8713 | rq->calc_load_update = jiffies + LOAD_FREQ; | 
|---|
| 8714 | init_cfs_rq(cfs_rq: &rq->cfs); | 
|---|
| 8715 | init_rt_rq(rt_rq: &rq->rt); | 
|---|
| 8716 | init_dl_rq(dl_rq: &rq->dl); | 
|---|
| 8717 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 8718 | INIT_LIST_HEAD(list: &rq->leaf_cfs_rq_list); | 
|---|
| 8719 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | 
|---|
| 8720 | /* | 
|---|
| 8721 | * How much CPU bandwidth does root_task_group get? | 
|---|
| 8722 | * | 
|---|
| 8723 | * In case of task-groups formed through the cgroup filesystem, it | 
|---|
| 8724 | * gets 100% of the CPU resources in the system. This overall | 
|---|
| 8725 | * system CPU resource is divided among the tasks of | 
|---|
| 8726 | * root_task_group and its child task-groups in a fair manner, | 
|---|
| 8727 | * based on each entity's (task or task-group's) weight | 
|---|
| 8728 | * (se->load.weight). | 
|---|
| 8729 | * | 
|---|
| 8730 | * In other words, if root_task_group has 10 tasks of weight | 
|---|
| 8731 | * 1024) and two child groups A0 and A1 (of weight 1024 each), | 
|---|
| 8732 | * then A0's share of the CPU resource is: | 
|---|
| 8733 | * | 
|---|
| 8734 | *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | 
|---|
| 8735 | * | 
|---|
| 8736 | * We achieve this by letting root_task_group's tasks sit | 
|---|
| 8737 | * directly in rq->cfs (i.e root_task_group->se[] = NULL). | 
|---|
| 8738 | */ | 
|---|
| 8739 | init_tg_cfs_entry(tg: &root_task_group, cfs_rq: &rq->cfs, NULL, cpu: i, NULL); | 
|---|
| 8740 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|---|
| 8741 |  | 
|---|
| 8742 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 8743 | /* | 
|---|
| 8744 | * This is required for init cpu because rt.c:__enable_runtime() | 
|---|
| 8745 | * starts working after scheduler_running, which is not the case | 
|---|
| 8746 | * yet. | 
|---|
| 8747 | */ | 
|---|
| 8748 | rq->rt.rt_runtime = global_rt_runtime(); | 
|---|
| 8749 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); | 
|---|
| 8750 | #endif | 
|---|
| 8751 | rq->sd = NULL; | 
|---|
| 8752 | rq->rd = NULL; | 
|---|
| 8753 | rq->cpu_capacity = SCHED_CAPACITY_SCALE; | 
|---|
| 8754 | rq->balance_callback = &balance_push_callback; | 
|---|
| 8755 | rq->active_balance = 0; | 
|---|
| 8756 | rq->next_balance = jiffies; | 
|---|
| 8757 | rq->push_cpu = 0; | 
|---|
| 8758 | rq->cpu = i; | 
|---|
| 8759 | rq->online = 0; | 
|---|
| 8760 | rq->idle_stamp = 0; | 
|---|
| 8761 | rq->avg_idle = 2*sysctl_sched_migration_cost; | 
|---|
| 8762 | rq->max_idle_balance_cost = sysctl_sched_migration_cost; | 
|---|
| 8763 |  | 
|---|
| 8764 | INIT_LIST_HEAD(list: &rq->cfs_tasks); | 
|---|
| 8765 |  | 
|---|
| 8766 | rq_attach_root(rq, rd: &def_root_domain); | 
|---|
| 8767 | #ifdef CONFIG_NO_HZ_COMMON | 
|---|
| 8768 | rq->last_blocked_load_update_tick = jiffies; | 
|---|
| 8769 | atomic_set(v: &rq->nohz_flags, i: 0); | 
|---|
| 8770 |  | 
|---|
| 8771 | INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); | 
|---|
| 8772 | #endif | 
|---|
| 8773 | #ifdef CONFIG_HOTPLUG_CPU | 
|---|
| 8774 | rcuwait_init(w: &rq->hotplug_wait); | 
|---|
| 8775 | #endif | 
|---|
| 8776 | hrtick_rq_init(rq); | 
|---|
| 8777 | atomic_set(v: &rq->nr_iowait, i: 0); | 
|---|
| 8778 | fair_server_init(rq); | 
|---|
| 8779 |  | 
|---|
| 8780 | #ifdef CONFIG_SCHED_CORE | 
|---|
| 8781 | rq->core = rq; | 
|---|
| 8782 | rq->core_pick = NULL; | 
|---|
| 8783 | rq->core_dl_server = NULL; | 
|---|
| 8784 | rq->core_enabled = 0; | 
|---|
| 8785 | rq->core_tree = RB_ROOT; | 
|---|
| 8786 | rq->core_forceidle_count = 0; | 
|---|
| 8787 | rq->core_forceidle_occupation = 0; | 
|---|
| 8788 | rq->core_forceidle_start = 0; | 
|---|
| 8789 |  | 
|---|
| 8790 | rq->core_cookie = 0UL; | 
|---|
| 8791 | #endif | 
|---|
| 8792 | zalloc_cpumask_var_node(mask: &rq->scratch_mask, GFP_KERNEL, node: cpu_to_node(cpu: i)); | 
|---|
| 8793 | } | 
|---|
| 8794 |  | 
|---|
| 8795 | set_load_weight(p: &init_task, update_load: false); | 
|---|
| 8796 | init_task.se.slice = sysctl_sched_base_slice, | 
|---|
| 8797 |  | 
|---|
| 8798 | /* | 
|---|
| 8799 | * The boot idle thread does lazy MMU switching as well: | 
|---|
| 8800 | */ | 
|---|
| 8801 | mmgrab_lazy_tlb(mm: &init_mm); | 
|---|
| 8802 | enter_lazy_tlb(mm: &init_mm, current); | 
|---|
| 8803 |  | 
|---|
| 8804 | /* | 
|---|
| 8805 | * The idle task doesn't need the kthread struct to function, but it | 
|---|
| 8806 | * is dressed up as a per-CPU kthread and thus needs to play the part | 
|---|
| 8807 | * if we want to avoid special-casing it in code that deals with per-CPU | 
|---|
| 8808 | * kthreads. | 
|---|
| 8809 | */ | 
|---|
| 8810 | WARN_ON(!set_kthread_struct(current)); | 
|---|
| 8811 |  | 
|---|
| 8812 | /* | 
|---|
| 8813 | * Make us the idle thread. Technically, schedule() should not be | 
|---|
| 8814 | * called from this thread, however somewhere below it might be, | 
|---|
| 8815 | * but because we are the idle thread, we just pick up running again | 
|---|
| 8816 | * when this runqueue becomes "idle". | 
|---|
| 8817 | */ | 
|---|
| 8818 | __sched_fork(clone_flags: 0, current); | 
|---|
| 8819 | init_idle(current, smp_processor_id()); | 
|---|
| 8820 |  | 
|---|
| 8821 | calc_load_update = jiffies + LOAD_FREQ; | 
|---|
| 8822 |  | 
|---|
| 8823 | idle_thread_set_boot_cpu(); | 
|---|
| 8824 |  | 
|---|
| 8825 | balance_push_set(smp_processor_id(), on: false); | 
|---|
| 8826 | init_sched_fair_class(); | 
|---|
| 8827 | init_sched_ext_class(); | 
|---|
| 8828 |  | 
|---|
| 8829 | psi_init(); | 
|---|
| 8830 |  | 
|---|
| 8831 | init_uclamp(); | 
|---|
| 8832 |  | 
|---|
| 8833 | preempt_dynamic_init(); | 
|---|
| 8834 |  | 
|---|
| 8835 | scheduler_running = 1; | 
|---|
| 8836 | } | 
|---|
| 8837 |  | 
|---|
| 8838 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 
|---|
| 8839 |  | 
|---|
| 8840 | void __might_sleep(const char *file, int line) | 
|---|
| 8841 | { | 
|---|
| 8842 | unsigned int state = get_current_state(); | 
|---|
| 8843 | /* | 
|---|
| 8844 | * Blocking primitives will set (and therefore destroy) current->state, | 
|---|
| 8845 | * since we will exit with TASK_RUNNING make sure we enter with it, | 
|---|
| 8846 | * otherwise we will destroy state. | 
|---|
| 8847 | */ | 
|---|
| 8848 | WARN_ONCE(state != TASK_RUNNING && current->task_state_change, | 
|---|
| 8849 | "do not call blocking ops when !TASK_RUNNING; " | 
|---|
| 8850 | "state=%x set at [<%p>] %pS\n", state, | 
|---|
| 8851 | (void *)current->task_state_change, | 
|---|
| 8852 | (void *)current->task_state_change); | 
|---|
| 8853 |  | 
|---|
| 8854 | __might_resched(file, line, 0); | 
|---|
| 8855 | } | 
|---|
| 8856 | EXPORT_SYMBOL(__might_sleep); | 
|---|
| 8857 |  | 
|---|
| 8858 | static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) | 
|---|
| 8859 | { | 
|---|
| 8860 | if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) | 
|---|
| 8861 | return; | 
|---|
| 8862 |  | 
|---|
| 8863 | if (preempt_count() == preempt_offset) | 
|---|
| 8864 | return; | 
|---|
| 8865 |  | 
|---|
| 8866 | pr_err( "Preemption disabled at:"); | 
|---|
| 8867 | print_ip_sym(KERN_ERR, ip); | 
|---|
| 8868 | } | 
|---|
| 8869 |  | 
|---|
| 8870 | static inline bool resched_offsets_ok(unsigned int offsets) | 
|---|
| 8871 | { | 
|---|
| 8872 | unsigned int nested = preempt_count(); | 
|---|
| 8873 |  | 
|---|
| 8874 | nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; | 
|---|
| 8875 |  | 
|---|
| 8876 | return nested == offsets; | 
|---|
| 8877 | } | 
|---|
| 8878 |  | 
|---|
| 8879 | void __might_resched(const char *file, int line, unsigned int offsets) | 
|---|
| 8880 | { | 
|---|
| 8881 | /* Ratelimiting timestamp: */ | 
|---|
| 8882 | static unsigned long prev_jiffy; | 
|---|
| 8883 |  | 
|---|
| 8884 | unsigned long preempt_disable_ip; | 
|---|
| 8885 |  | 
|---|
| 8886 | /* WARN_ON_ONCE() by default, no rate limit required: */ | 
|---|
| 8887 | rcu_sleep_check(); | 
|---|
| 8888 |  | 
|---|
| 8889 | if ((resched_offsets_ok(offsets) && !irqs_disabled() && | 
|---|
| 8890 | !is_idle_task(current) && !current->non_block_count) || | 
|---|
| 8891 | system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || | 
|---|
| 8892 | oops_in_progress) | 
|---|
| 8893 | return; | 
|---|
| 8894 |  | 
|---|
| 8895 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
|---|
| 8896 | return; | 
|---|
| 8897 | prev_jiffy = jiffies; | 
|---|
| 8898 |  | 
|---|
| 8899 | /* Save this before calling printk(), since that will clobber it: */ | 
|---|
| 8900 | preempt_disable_ip = get_preempt_disable_ip(current); | 
|---|
| 8901 |  | 
|---|
| 8902 | pr_err( "BUG: sleeping function called from invalid context at %s:%d\n", | 
|---|
| 8903 | file, line); | 
|---|
| 8904 | pr_err( "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", | 
|---|
| 8905 | in_atomic(), irqs_disabled(), current->non_block_count, | 
|---|
| 8906 | current->pid, current->comm); | 
|---|
| 8907 | pr_err( "preempt_count: %x, expected: %x\n", preempt_count(), | 
|---|
| 8908 | offsets & MIGHT_RESCHED_PREEMPT_MASK); | 
|---|
| 8909 |  | 
|---|
| 8910 | if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { | 
|---|
| 8911 | pr_err( "RCU nest depth: %d, expected: %u\n", | 
|---|
| 8912 | rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); | 
|---|
| 8913 | } | 
|---|
| 8914 |  | 
|---|
| 8915 | if (task_stack_end_corrupted(current)) | 
|---|
| 8916 | pr_emerg( "Thread overran stack, or stack corrupted\n"); | 
|---|
| 8917 |  | 
|---|
| 8918 | debug_show_held_locks(current); | 
|---|
| 8919 | if (irqs_disabled()) | 
|---|
| 8920 | print_irqtrace_events(current); | 
|---|
| 8921 |  | 
|---|
| 8922 | print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, | 
|---|
| 8923 | preempt_disable_ip); | 
|---|
| 8924 |  | 
|---|
| 8925 | dump_stack(); | 
|---|
| 8926 | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); | 
|---|
| 8927 | } | 
|---|
| 8928 | EXPORT_SYMBOL(__might_resched); | 
|---|
| 8929 |  | 
|---|
| 8930 | void __cant_sleep(const char *file, int line, int preempt_offset) | 
|---|
| 8931 | { | 
|---|
| 8932 | static unsigned long prev_jiffy; | 
|---|
| 8933 |  | 
|---|
| 8934 | if (irqs_disabled()) | 
|---|
| 8935 | return; | 
|---|
| 8936 |  | 
|---|
| 8937 | if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) | 
|---|
| 8938 | return; | 
|---|
| 8939 |  | 
|---|
| 8940 | if (preempt_count() > preempt_offset) | 
|---|
| 8941 | return; | 
|---|
| 8942 |  | 
|---|
| 8943 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
|---|
| 8944 | return; | 
|---|
| 8945 | prev_jiffy = jiffies; | 
|---|
| 8946 |  | 
|---|
| 8947 | printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); | 
|---|
| 8948 | printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | 
|---|
| 8949 | in_atomic(), irqs_disabled(), | 
|---|
| 8950 | current->pid, current->comm); | 
|---|
| 8951 |  | 
|---|
| 8952 | debug_show_held_locks(current); | 
|---|
| 8953 | dump_stack(); | 
|---|
| 8954 | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); | 
|---|
| 8955 | } | 
|---|
| 8956 | EXPORT_SYMBOL_GPL(__cant_sleep); | 
|---|
| 8957 |  | 
|---|
| 8958 | # ifdef CONFIG_SMP | 
|---|
| 8959 | void __cant_migrate(const char *file, int line) | 
|---|
| 8960 | { | 
|---|
| 8961 | static unsigned long prev_jiffy; | 
|---|
| 8962 |  | 
|---|
| 8963 | if (irqs_disabled()) | 
|---|
| 8964 | return; | 
|---|
| 8965 |  | 
|---|
| 8966 | if (is_migration_disabled(current)) | 
|---|
| 8967 | return; | 
|---|
| 8968 |  | 
|---|
| 8969 | if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) | 
|---|
| 8970 | return; | 
|---|
| 8971 |  | 
|---|
| 8972 | if (preempt_count() > 0) | 
|---|
| 8973 | return; | 
|---|
| 8974 |  | 
|---|
| 8975 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
|---|
| 8976 | return; | 
|---|
| 8977 | prev_jiffy = jiffies; | 
|---|
| 8978 |  | 
|---|
| 8979 | pr_err( "BUG: assuming non migratable context at %s:%d\n", file, line); | 
|---|
| 8980 | pr_err( "in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", | 
|---|
| 8981 | in_atomic(), irqs_disabled(), is_migration_disabled(current), | 
|---|
| 8982 | current->pid, current->comm); | 
|---|
| 8983 |  | 
|---|
| 8984 | debug_show_held_locks(current); | 
|---|
| 8985 | dump_stack(); | 
|---|
| 8986 | add_taint(TAINT_WARN, LOCKDEP_STILL_OK); | 
|---|
| 8987 | } | 
|---|
| 8988 | EXPORT_SYMBOL_GPL(__cant_migrate); | 
|---|
| 8989 | # endif /* CONFIG_SMP */ | 
|---|
| 8990 | #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */ | 
|---|
| 8991 |  | 
|---|
| 8992 | #ifdef CONFIG_MAGIC_SYSRQ | 
|---|
| 8993 | void normalize_rt_tasks(void) | 
|---|
| 8994 | { | 
|---|
| 8995 | struct task_struct *g, *p; | 
|---|
| 8996 | struct sched_attr attr = { | 
|---|
| 8997 | .sched_policy = SCHED_NORMAL, | 
|---|
| 8998 | }; | 
|---|
| 8999 |  | 
|---|
| 9000 | read_lock(&tasklist_lock); | 
|---|
| 9001 | for_each_process_thread(g, p) { | 
|---|
| 9002 | /* | 
|---|
| 9003 | * Only normalize user tasks: | 
|---|
| 9004 | */ | 
|---|
| 9005 | if (p->flags & PF_KTHREAD) | 
|---|
| 9006 | continue; | 
|---|
| 9007 |  | 
|---|
| 9008 | p->se.exec_start = 0; | 
|---|
| 9009 | schedstat_set(p->stats.wait_start,  0); | 
|---|
| 9010 | schedstat_set(p->stats.sleep_start, 0); | 
|---|
| 9011 | schedstat_set(p->stats.block_start, 0); | 
|---|
| 9012 |  | 
|---|
| 9013 | if (!rt_or_dl_task(p)) { | 
|---|
| 9014 | /* | 
|---|
| 9015 | * Renice negative nice level userspace | 
|---|
| 9016 | * tasks back to 0: | 
|---|
| 9017 | */ | 
|---|
| 9018 | if (task_nice(p) < 0) | 
|---|
| 9019 | set_user_nice(p, nice: 0); | 
|---|
| 9020 | continue; | 
|---|
| 9021 | } | 
|---|
| 9022 |  | 
|---|
| 9023 | __sched_setscheduler(p, attr: &attr, user: false, pi: false); | 
|---|
| 9024 | } | 
|---|
| 9025 | read_unlock(&tasklist_lock); | 
|---|
| 9026 | } | 
|---|
| 9027 |  | 
|---|
| 9028 | #endif /* CONFIG_MAGIC_SYSRQ */ | 
|---|
| 9029 |  | 
|---|
| 9030 | #ifdef CONFIG_KGDB_KDB | 
|---|
| 9031 | /* | 
|---|
| 9032 | * These functions are only useful for KDB. | 
|---|
| 9033 | * | 
|---|
| 9034 | * They can only be called when the whole system has been | 
|---|
| 9035 | * stopped - every CPU needs to be quiescent, and no scheduling | 
|---|
| 9036 | * activity can take place. Using them for anything else would | 
|---|
| 9037 | * be a serious bug, and as a result, they aren't even visible | 
|---|
| 9038 | * under any other configuration. | 
|---|
| 9039 | */ | 
|---|
| 9040 |  | 
|---|
| 9041 | /** | 
|---|
| 9042 | * curr_task - return the current task for a given CPU. | 
|---|
| 9043 | * @cpu: the processor in question. | 
|---|
| 9044 | * | 
|---|
| 9045 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
|---|
| 9046 | * | 
|---|
| 9047 | * Return: The current task for @cpu. | 
|---|
| 9048 | */ | 
|---|
| 9049 | struct task_struct *curr_task(int cpu) | 
|---|
| 9050 | { | 
|---|
| 9051 | return cpu_curr(cpu); | 
|---|
| 9052 | } | 
|---|
| 9053 |  | 
|---|
| 9054 | #endif /* CONFIG_KGDB_KDB */ | 
|---|
| 9055 |  | 
|---|
| 9056 | #ifdef CONFIG_CGROUP_SCHED | 
|---|
| 9057 | /* task_group_lock serializes the addition/removal of task groups */ | 
|---|
| 9058 | static DEFINE_SPINLOCK(task_group_lock); | 
|---|
| 9059 |  | 
|---|
| 9060 | static inline void alloc_uclamp_sched_group(struct task_group *tg, | 
|---|
| 9061 | struct task_group *parent) | 
|---|
| 9062 | { | 
|---|
| 9063 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|---|
| 9064 | enum uclamp_id clamp_id; | 
|---|
| 9065 |  | 
|---|
| 9066 | for_each_clamp_id(clamp_id) { | 
|---|
| 9067 | uclamp_se_set(&tg->uclamp_req[clamp_id], | 
|---|
| 9068 | uclamp_none(clamp_id), false); | 
|---|
| 9069 | tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; | 
|---|
| 9070 | } | 
|---|
| 9071 | #endif | 
|---|
| 9072 | } | 
|---|
| 9073 |  | 
|---|
| 9074 | static void sched_free_group(struct task_group *tg) | 
|---|
| 9075 | { | 
|---|
| 9076 | free_fair_sched_group(tg); | 
|---|
| 9077 | free_rt_sched_group(tg); | 
|---|
| 9078 | autogroup_free(tg); | 
|---|
| 9079 | kmem_cache_free(s: task_group_cache, objp: tg); | 
|---|
| 9080 | } | 
|---|
| 9081 |  | 
|---|
| 9082 | static void sched_free_group_rcu(struct rcu_head *rcu) | 
|---|
| 9083 | { | 
|---|
| 9084 | sched_free_group(container_of(rcu, struct task_group, rcu)); | 
|---|
| 9085 | } | 
|---|
| 9086 |  | 
|---|
| 9087 | static void sched_unregister_group(struct task_group *tg) | 
|---|
| 9088 | { | 
|---|
| 9089 | unregister_fair_sched_group(tg); | 
|---|
| 9090 | unregister_rt_sched_group(tg); | 
|---|
| 9091 | /* | 
|---|
| 9092 | * We have to wait for yet another RCU grace period to expire, as | 
|---|
| 9093 | * print_cfs_stats() might run concurrently. | 
|---|
| 9094 | */ | 
|---|
| 9095 | call_rcu(head: &tg->rcu, func: sched_free_group_rcu); | 
|---|
| 9096 | } | 
|---|
| 9097 |  | 
|---|
| 9098 | /* allocate runqueue etc for a new task group */ | 
|---|
| 9099 | struct task_group *sched_create_group(struct task_group *parent) | 
|---|
| 9100 | { | 
|---|
| 9101 | struct task_group *tg; | 
|---|
| 9102 |  | 
|---|
| 9103 | tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); | 
|---|
| 9104 | if (!tg) | 
|---|
| 9105 | return ERR_PTR(error: -ENOMEM); | 
|---|
| 9106 |  | 
|---|
| 9107 | if (!alloc_fair_sched_group(tg, parent)) | 
|---|
| 9108 | goto err; | 
|---|
| 9109 |  | 
|---|
| 9110 | if (!alloc_rt_sched_group(tg, parent)) | 
|---|
| 9111 | goto err; | 
|---|
| 9112 |  | 
|---|
| 9113 | scx_tg_init(tg); | 
|---|
| 9114 | alloc_uclamp_sched_group(tg, parent); | 
|---|
| 9115 |  | 
|---|
| 9116 | return tg; | 
|---|
| 9117 |  | 
|---|
| 9118 | err: | 
|---|
| 9119 | sched_free_group(tg); | 
|---|
| 9120 | return ERR_PTR(error: -ENOMEM); | 
|---|
| 9121 | } | 
|---|
| 9122 |  | 
|---|
| 9123 | void sched_online_group(struct task_group *tg, struct task_group *parent) | 
|---|
| 9124 | { | 
|---|
| 9125 | unsigned long flags; | 
|---|
| 9126 |  | 
|---|
| 9127 | spin_lock_irqsave(&task_group_lock, flags); | 
|---|
| 9128 | list_add_tail_rcu(new: &tg->list, head: &task_groups); | 
|---|
| 9129 |  | 
|---|
| 9130 | /* Root should already exist: */ | 
|---|
| 9131 | WARN_ON(!parent); | 
|---|
| 9132 |  | 
|---|
| 9133 | tg->parent = parent; | 
|---|
| 9134 | INIT_LIST_HEAD(list: &tg->children); | 
|---|
| 9135 | list_add_rcu(new: &tg->siblings, head: &parent->children); | 
|---|
| 9136 | spin_unlock_irqrestore(lock: &task_group_lock, flags); | 
|---|
| 9137 |  | 
|---|
| 9138 | online_fair_sched_group(tg); | 
|---|
| 9139 | } | 
|---|
| 9140 |  | 
|---|
| 9141 | /* RCU callback to free various structures associated with a task group */ | 
|---|
| 9142 | static void sched_unregister_group_rcu(struct rcu_head *rhp) | 
|---|
| 9143 | { | 
|---|
| 9144 | /* Now it should be safe to free those cfs_rqs: */ | 
|---|
| 9145 | sched_unregister_group(container_of(rhp, struct task_group, rcu)); | 
|---|
| 9146 | } | 
|---|
| 9147 |  | 
|---|
| 9148 | void sched_destroy_group(struct task_group *tg) | 
|---|
| 9149 | { | 
|---|
| 9150 | /* Wait for possible concurrent references to cfs_rqs complete: */ | 
|---|
| 9151 | call_rcu(head: &tg->rcu, func: sched_unregister_group_rcu); | 
|---|
| 9152 | } | 
|---|
| 9153 |  | 
|---|
| 9154 | void sched_release_group(struct task_group *tg) | 
|---|
| 9155 | { | 
|---|
| 9156 | unsigned long flags; | 
|---|
| 9157 |  | 
|---|
| 9158 | /* | 
|---|
| 9159 | * Unlink first, to avoid walk_tg_tree_from() from finding us (via | 
|---|
| 9160 | * sched_cfs_period_timer()). | 
|---|
| 9161 | * | 
|---|
| 9162 | * For this to be effective, we have to wait for all pending users of | 
|---|
| 9163 | * this task group to leave their RCU critical section to ensure no new | 
|---|
| 9164 | * user will see our dying task group any more. Specifically ensure | 
|---|
| 9165 | * that tg_unthrottle_up() won't add decayed cfs_rq's to it. | 
|---|
| 9166 | * | 
|---|
| 9167 | * We therefore defer calling unregister_fair_sched_group() to | 
|---|
| 9168 | * sched_unregister_group() which is guarantied to get called only after the | 
|---|
| 9169 | * current RCU grace period has expired. | 
|---|
| 9170 | */ | 
|---|
| 9171 | spin_lock_irqsave(&task_group_lock, flags); | 
|---|
| 9172 | list_del_rcu(entry: &tg->list); | 
|---|
| 9173 | list_del_rcu(entry: &tg->siblings); | 
|---|
| 9174 | spin_unlock_irqrestore(lock: &task_group_lock, flags); | 
|---|
| 9175 | } | 
|---|
| 9176 |  | 
|---|
| 9177 | static void sched_change_group(struct task_struct *tsk) | 
|---|
| 9178 | { | 
|---|
| 9179 | struct task_group *tg; | 
|---|
| 9180 |  | 
|---|
| 9181 | /* | 
|---|
| 9182 | * All callers are synchronized by task_rq_lock(); we do not use RCU | 
|---|
| 9183 | * which is pointless here. Thus, we pass "true" to task_css_check() | 
|---|
| 9184 | * to prevent lockdep warnings. | 
|---|
| 9185 | */ | 
|---|
| 9186 | tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), | 
|---|
| 9187 | struct task_group, css); | 
|---|
| 9188 | tg = autogroup_task_group(p: tsk, tg); | 
|---|
| 9189 | tsk->sched_task_group = tg; | 
|---|
| 9190 |  | 
|---|
| 9191 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 9192 | if (tsk->sched_class->task_change_group) | 
|---|
| 9193 | tsk->sched_class->task_change_group(tsk); | 
|---|
| 9194 | else | 
|---|
| 9195 | #endif | 
|---|
| 9196 | set_task_rq(p: tsk, cpu: task_cpu(p: tsk)); | 
|---|
| 9197 | } | 
|---|
| 9198 |  | 
|---|
| 9199 | /* | 
|---|
| 9200 | * Change task's runqueue when it moves between groups. | 
|---|
| 9201 | * | 
|---|
| 9202 | * The caller of this function should have put the task in its new group by | 
|---|
| 9203 | * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect | 
|---|
| 9204 | * its new group. | 
|---|
| 9205 | */ | 
|---|
| 9206 | void sched_move_task(struct task_struct *tsk, bool for_autogroup) | 
|---|
| 9207 | { | 
|---|
| 9208 | int queued, running, queue_flags = | 
|---|
| 9209 | DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; | 
|---|
| 9210 | struct rq *rq; | 
|---|
| 9211 |  | 
|---|
| 9212 | CLASS(task_rq_lock, rq_guard)(l: tsk); | 
|---|
| 9213 | rq = rq_guard.rq; | 
|---|
| 9214 |  | 
|---|
| 9215 | update_rq_clock(rq); | 
|---|
| 9216 |  | 
|---|
| 9217 | running = task_current_donor(rq, p: tsk); | 
|---|
| 9218 | queued = task_on_rq_queued(p: tsk); | 
|---|
| 9219 |  | 
|---|
| 9220 | if (queued) | 
|---|
| 9221 | dequeue_task(rq, p: tsk, flags: queue_flags); | 
|---|
| 9222 | if (running) | 
|---|
| 9223 | put_prev_task(rq, prev: tsk); | 
|---|
| 9224 |  | 
|---|
| 9225 | sched_change_group(tsk); | 
|---|
| 9226 | if (!for_autogroup) | 
|---|
| 9227 | scx_cgroup_move_task(p: tsk); | 
|---|
| 9228 |  | 
|---|
| 9229 | if (queued) | 
|---|
| 9230 | enqueue_task(rq, p: tsk, flags: queue_flags); | 
|---|
| 9231 | if (running) { | 
|---|
| 9232 | set_next_task(rq, next: tsk); | 
|---|
| 9233 | /* | 
|---|
| 9234 | * After changing group, the running task may have joined a | 
|---|
| 9235 | * throttled one but it's still the running task. Trigger a | 
|---|
| 9236 | * resched to make sure that task can still run. | 
|---|
| 9237 | */ | 
|---|
| 9238 | resched_curr(rq); | 
|---|
| 9239 | } | 
|---|
| 9240 | } | 
|---|
| 9241 |  | 
|---|
| 9242 | static struct cgroup_subsys_state * | 
|---|
| 9243 | cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | 
|---|
| 9244 | { | 
|---|
| 9245 | struct task_group *parent = css_tg(css: parent_css); | 
|---|
| 9246 | struct task_group *tg; | 
|---|
| 9247 |  | 
|---|
| 9248 | if (!parent) { | 
|---|
| 9249 | /* This is early initialization for the top cgroup */ | 
|---|
| 9250 | return &root_task_group.css; | 
|---|
| 9251 | } | 
|---|
| 9252 |  | 
|---|
| 9253 | tg = sched_create_group(parent); | 
|---|
| 9254 | if (IS_ERR(ptr: tg)) | 
|---|
| 9255 | return ERR_PTR(error: -ENOMEM); | 
|---|
| 9256 |  | 
|---|
| 9257 | return &tg->css; | 
|---|
| 9258 | } | 
|---|
| 9259 |  | 
|---|
| 9260 | /* Expose task group only after completing cgroup initialization */ | 
|---|
| 9261 | static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) | 
|---|
| 9262 | { | 
|---|
| 9263 | struct task_group *tg = css_tg(css); | 
|---|
| 9264 | struct task_group *parent = css_tg(css: css->parent); | 
|---|
| 9265 | int ret; | 
|---|
| 9266 |  | 
|---|
| 9267 | ret = scx_tg_online(tg); | 
|---|
| 9268 | if (ret) | 
|---|
| 9269 | return ret; | 
|---|
| 9270 |  | 
|---|
| 9271 | if (parent) | 
|---|
| 9272 | sched_online_group(tg, parent); | 
|---|
| 9273 |  | 
|---|
| 9274 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|---|
| 9275 | /* Propagate the effective uclamp value for the new group */ | 
|---|
| 9276 | guard(mutex)(&uclamp_mutex); | 
|---|
| 9277 | guard(rcu)(); | 
|---|
| 9278 | cpu_util_update_eff(css); | 
|---|
| 9279 | #endif | 
|---|
| 9280 |  | 
|---|
| 9281 | return 0; | 
|---|
| 9282 | } | 
|---|
| 9283 |  | 
|---|
| 9284 | static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) | 
|---|
| 9285 | { | 
|---|
| 9286 | struct task_group *tg = css_tg(css); | 
|---|
| 9287 |  | 
|---|
| 9288 | scx_tg_offline(tg); | 
|---|
| 9289 | } | 
|---|
| 9290 |  | 
|---|
| 9291 | static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) | 
|---|
| 9292 | { | 
|---|
| 9293 | struct task_group *tg = css_tg(css); | 
|---|
| 9294 |  | 
|---|
| 9295 | sched_release_group(tg); | 
|---|
| 9296 | } | 
|---|
| 9297 |  | 
|---|
| 9298 | static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) | 
|---|
| 9299 | { | 
|---|
| 9300 | struct task_group *tg = css_tg(css); | 
|---|
| 9301 |  | 
|---|
| 9302 | /* | 
|---|
| 9303 | * Relies on the RCU grace period between css_released() and this. | 
|---|
| 9304 | */ | 
|---|
| 9305 | sched_unregister_group(tg); | 
|---|
| 9306 | } | 
|---|
| 9307 |  | 
|---|
| 9308 | static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) | 
|---|
| 9309 | { | 
|---|
| 9310 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 9311 | struct task_struct *task; | 
|---|
| 9312 | struct cgroup_subsys_state *css; | 
|---|
| 9313 |  | 
|---|
| 9314 | if (!rt_group_sched_enabled()) | 
|---|
| 9315 | goto scx_check; | 
|---|
| 9316 |  | 
|---|
| 9317 | cgroup_taskset_for_each(task, css, tset) { | 
|---|
| 9318 | if (!sched_rt_can_attach(css_tg(css), task)) | 
|---|
| 9319 | return -EINVAL; | 
|---|
| 9320 | } | 
|---|
| 9321 | scx_check: | 
|---|
| 9322 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|---|
| 9323 | return scx_cgroup_can_attach(tset); | 
|---|
| 9324 | } | 
|---|
| 9325 |  | 
|---|
| 9326 | static void cpu_cgroup_attach(struct cgroup_taskset *tset) | 
|---|
| 9327 | { | 
|---|
| 9328 | struct task_struct *task; | 
|---|
| 9329 | struct cgroup_subsys_state *css; | 
|---|
| 9330 |  | 
|---|
| 9331 | cgroup_taskset_for_each(task, css, tset) | 
|---|
| 9332 | sched_move_task(tsk: task, for_autogroup: false); | 
|---|
| 9333 | } | 
|---|
| 9334 |  | 
|---|
| 9335 | static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) | 
|---|
| 9336 | { | 
|---|
| 9337 | scx_cgroup_cancel_attach(tset); | 
|---|
| 9338 | } | 
|---|
| 9339 |  | 
|---|
| 9340 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|---|
| 9341 | static void cpu_util_update_eff(struct cgroup_subsys_state *css) | 
|---|
| 9342 | { | 
|---|
| 9343 | struct cgroup_subsys_state *top_css = css; | 
|---|
| 9344 | struct uclamp_se *uc_parent = NULL; | 
|---|
| 9345 | struct uclamp_se *uc_se = NULL; | 
|---|
| 9346 | unsigned int eff[UCLAMP_CNT]; | 
|---|
| 9347 | enum uclamp_id clamp_id; | 
|---|
| 9348 | unsigned int clamps; | 
|---|
| 9349 |  | 
|---|
| 9350 | lockdep_assert_held(&uclamp_mutex); | 
|---|
| 9351 | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|---|
| 9352 |  | 
|---|
| 9353 | css_for_each_descendant_pre(css, top_css) { | 
|---|
| 9354 | uc_parent = css_tg(css)->parent | 
|---|
| 9355 | ? css_tg(css)->parent->uclamp : NULL; | 
|---|
| 9356 |  | 
|---|
| 9357 | for_each_clamp_id(clamp_id) { | 
|---|
| 9358 | /* Assume effective clamps matches requested clamps */ | 
|---|
| 9359 | eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; | 
|---|
| 9360 | /* Cap effective clamps with parent's effective clamps */ | 
|---|
| 9361 | if (uc_parent && | 
|---|
| 9362 | eff[clamp_id] > uc_parent[clamp_id].value) { | 
|---|
| 9363 | eff[clamp_id] = uc_parent[clamp_id].value; | 
|---|
| 9364 | } | 
|---|
| 9365 | } | 
|---|
| 9366 | /* Ensure protection is always capped by limit */ | 
|---|
| 9367 | eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); | 
|---|
| 9368 |  | 
|---|
| 9369 | /* Propagate most restrictive effective clamps */ | 
|---|
| 9370 | clamps = 0x0; | 
|---|
| 9371 | uc_se = css_tg(css)->uclamp; | 
|---|
| 9372 | for_each_clamp_id(clamp_id) { | 
|---|
| 9373 | if (eff[clamp_id] == uc_se[clamp_id].value) | 
|---|
| 9374 | continue; | 
|---|
| 9375 | uc_se[clamp_id].value = eff[clamp_id]; | 
|---|
| 9376 | uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); | 
|---|
| 9377 | clamps |= (0x1 << clamp_id); | 
|---|
| 9378 | } | 
|---|
| 9379 | if (!clamps) { | 
|---|
| 9380 | css = css_rightmost_descendant(css); | 
|---|
| 9381 | continue; | 
|---|
| 9382 | } | 
|---|
| 9383 |  | 
|---|
| 9384 | /* Immediately update descendants RUNNABLE tasks */ | 
|---|
| 9385 | uclamp_update_active_tasks(css); | 
|---|
| 9386 | } | 
|---|
| 9387 | } | 
|---|
| 9388 |  | 
|---|
| 9389 | /* | 
|---|
| 9390 | * Integer 10^N with a given N exponent by casting to integer the literal "1eN" | 
|---|
| 9391 | * C expression. Since there is no way to convert a macro argument (N) into a | 
|---|
| 9392 | * character constant, use two levels of macros. | 
|---|
| 9393 | */ | 
|---|
| 9394 | #define _POW10(exp) ((unsigned int)1e##exp) | 
|---|
| 9395 | #define POW10(exp) _POW10(exp) | 
|---|
| 9396 |  | 
|---|
| 9397 | struct uclamp_request { | 
|---|
| 9398 | #define UCLAMP_PERCENT_SHIFT	2 | 
|---|
| 9399 | #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT)) | 
|---|
| 9400 | s64 percent; | 
|---|
| 9401 | u64 util; | 
|---|
| 9402 | int ret; | 
|---|
| 9403 | }; | 
|---|
| 9404 |  | 
|---|
| 9405 | static inline struct uclamp_request | 
|---|
| 9406 | capacity_from_percent(char *buf) | 
|---|
| 9407 | { | 
|---|
| 9408 | struct uclamp_request req = { | 
|---|
| 9409 | .percent = UCLAMP_PERCENT_SCALE, | 
|---|
| 9410 | .util = SCHED_CAPACITY_SCALE, | 
|---|
| 9411 | .ret = 0, | 
|---|
| 9412 | }; | 
|---|
| 9413 |  | 
|---|
| 9414 | buf = strim(buf); | 
|---|
| 9415 | if (strcmp(buf, "max")) { | 
|---|
| 9416 | req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, | 
|---|
| 9417 | &req.percent); | 
|---|
| 9418 | if (req.ret) | 
|---|
| 9419 | return req; | 
|---|
| 9420 | if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { | 
|---|
| 9421 | req.ret = -ERANGE; | 
|---|
| 9422 | return req; | 
|---|
| 9423 | } | 
|---|
| 9424 |  | 
|---|
| 9425 | req.util = req.percent << SCHED_CAPACITY_SHIFT; | 
|---|
| 9426 | req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); | 
|---|
| 9427 | } | 
|---|
| 9428 |  | 
|---|
| 9429 | return req; | 
|---|
| 9430 | } | 
|---|
| 9431 |  | 
|---|
| 9432 | static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, | 
|---|
| 9433 | size_t nbytes, loff_t off, | 
|---|
| 9434 | enum uclamp_id clamp_id) | 
|---|
| 9435 | { | 
|---|
| 9436 | struct uclamp_request req; | 
|---|
| 9437 | struct task_group *tg; | 
|---|
| 9438 |  | 
|---|
| 9439 | req = capacity_from_percent(buf); | 
|---|
| 9440 | if (req.ret) | 
|---|
| 9441 | return req.ret; | 
|---|
| 9442 |  | 
|---|
| 9443 | sched_uclamp_enable(); | 
|---|
| 9444 |  | 
|---|
| 9445 | guard(mutex)(&uclamp_mutex); | 
|---|
| 9446 | guard(rcu)(); | 
|---|
| 9447 |  | 
|---|
| 9448 | tg = css_tg(of_css(of)); | 
|---|
| 9449 | if (tg->uclamp_req[clamp_id].value != req.util) | 
|---|
| 9450 | uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); | 
|---|
| 9451 |  | 
|---|
| 9452 | /* | 
|---|
| 9453 | * Because of not recoverable conversion rounding we keep track of the | 
|---|
| 9454 | * exact requested value | 
|---|
| 9455 | */ | 
|---|
| 9456 | tg->uclamp_pct[clamp_id] = req.percent; | 
|---|
| 9457 |  | 
|---|
| 9458 | /* Update effective clamps to track the most restrictive value */ | 
|---|
| 9459 | cpu_util_update_eff(of_css(of)); | 
|---|
| 9460 |  | 
|---|
| 9461 | return nbytes; | 
|---|
| 9462 | } | 
|---|
| 9463 |  | 
|---|
| 9464 | static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, | 
|---|
| 9465 | char *buf, size_t nbytes, | 
|---|
| 9466 | loff_t off) | 
|---|
| 9467 | { | 
|---|
| 9468 | return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); | 
|---|
| 9469 | } | 
|---|
| 9470 |  | 
|---|
| 9471 | static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, | 
|---|
| 9472 | char *buf, size_t nbytes, | 
|---|
| 9473 | loff_t off) | 
|---|
| 9474 | { | 
|---|
| 9475 | return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); | 
|---|
| 9476 | } | 
|---|
| 9477 |  | 
|---|
| 9478 | static inline void cpu_uclamp_print(struct seq_file *sf, | 
|---|
| 9479 | enum uclamp_id clamp_id) | 
|---|
| 9480 | { | 
|---|
| 9481 | struct task_group *tg; | 
|---|
| 9482 | u64 util_clamp; | 
|---|
| 9483 | u64 percent; | 
|---|
| 9484 | u32 rem; | 
|---|
| 9485 |  | 
|---|
| 9486 | scoped_guard (rcu) { | 
|---|
| 9487 | tg = css_tg(seq_css(sf)); | 
|---|
| 9488 | util_clamp = tg->uclamp_req[clamp_id].value; | 
|---|
| 9489 | } | 
|---|
| 9490 |  | 
|---|
| 9491 | if (util_clamp == SCHED_CAPACITY_SCALE) { | 
|---|
| 9492 | seq_puts(sf, "max\n"); | 
|---|
| 9493 | return; | 
|---|
| 9494 | } | 
|---|
| 9495 |  | 
|---|
| 9496 | percent = tg->uclamp_pct[clamp_id]; | 
|---|
| 9497 | percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); | 
|---|
| 9498 | seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); | 
|---|
| 9499 | } | 
|---|
| 9500 |  | 
|---|
| 9501 | static int cpu_uclamp_min_show(struct seq_file *sf, void *v) | 
|---|
| 9502 | { | 
|---|
| 9503 | cpu_uclamp_print(sf, UCLAMP_MIN); | 
|---|
| 9504 | return 0; | 
|---|
| 9505 | } | 
|---|
| 9506 |  | 
|---|
| 9507 | static int cpu_uclamp_max_show(struct seq_file *sf, void *v) | 
|---|
| 9508 | { | 
|---|
| 9509 | cpu_uclamp_print(sf, UCLAMP_MAX); | 
|---|
| 9510 | return 0; | 
|---|
| 9511 | } | 
|---|
| 9512 | #endif /* CONFIG_UCLAMP_TASK_GROUP */ | 
|---|
| 9513 |  | 
|---|
| 9514 | #ifdef CONFIG_GROUP_SCHED_WEIGHT | 
|---|
| 9515 | static unsigned long tg_weight(struct task_group *tg) | 
|---|
| 9516 | { | 
|---|
| 9517 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|---|
| 9518 | return scale_load_down(tg->shares); | 
|---|
| 9519 | #else | 
|---|
| 9520 | return sched_weight_from_cgroup(tg->scx.weight); | 
|---|
| 9521 | #endif | 
|---|
| 9522 | } | 
|---|
| 9523 |  | 
|---|
| 9524 | static int cpu_shares_write_u64(struct cgroup_subsys_state *css, | 
|---|
| 9525 | struct cftype *cftype, u64 shareval) | 
|---|
| 9526 | { | 
|---|
| 9527 | int ret; | 
|---|
| 9528 |  | 
|---|
| 9529 | if (shareval > scale_load_down(ULONG_MAX)) | 
|---|
| 9530 | shareval = MAX_SHARES; | 
|---|
| 9531 | ret = sched_group_set_shares(tg: css_tg(css), scale_load(shareval)); | 
|---|
| 9532 | if (!ret) | 
|---|
| 9533 | scx_group_set_weight(tg: css_tg(css), | 
|---|
| 9534 | cgrp_weight: sched_weight_to_cgroup(weight: shareval)); | 
|---|
| 9535 | return ret; | 
|---|
| 9536 | } | 
|---|
| 9537 |  | 
|---|
| 9538 | static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, | 
|---|
| 9539 | struct cftype *cft) | 
|---|
| 9540 | { | 
|---|
| 9541 | return tg_weight(tg: css_tg(css)); | 
|---|
| 9542 | } | 
|---|
| 9543 | #endif /* CONFIG_GROUP_SCHED_WEIGHT */ | 
|---|
| 9544 |  | 
|---|
| 9545 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 9546 | static DEFINE_MUTEX(cfs_constraints_mutex); | 
|---|
| 9547 |  | 
|---|
| 9548 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); | 
|---|
| 9549 |  | 
|---|
| 9550 | static int tg_set_cfs_bandwidth(struct task_group *tg, | 
|---|
| 9551 | u64 period_us, u64 quota_us, u64 burst_us) | 
|---|
| 9552 | { | 
|---|
| 9553 | int i, ret = 0, runtime_enabled, runtime_was_enabled; | 
|---|
| 9554 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
|---|
| 9555 | u64 period, quota, burst; | 
|---|
| 9556 |  | 
|---|
| 9557 | period = (u64)period_us * NSEC_PER_USEC; | 
|---|
| 9558 |  | 
|---|
| 9559 | if (quota_us == RUNTIME_INF) | 
|---|
| 9560 | quota = RUNTIME_INF; | 
|---|
| 9561 | else | 
|---|
| 9562 | quota = (u64)quota_us * NSEC_PER_USEC; | 
|---|
| 9563 |  | 
|---|
| 9564 | burst = (u64)burst_us * NSEC_PER_USEC; | 
|---|
| 9565 |  | 
|---|
| 9566 | /* | 
|---|
| 9567 | * Prevent race between setting of cfs_rq->runtime_enabled and | 
|---|
| 9568 | * unthrottle_offline_cfs_rqs(). | 
|---|
| 9569 | */ | 
|---|
| 9570 | guard(cpus_read_lock)(); | 
|---|
| 9571 | guard(mutex)(&cfs_constraints_mutex); | 
|---|
| 9572 |  | 
|---|
| 9573 | ret = __cfs_schedulable(tg, period, quota); | 
|---|
| 9574 | if (ret) | 
|---|
| 9575 | return ret; | 
|---|
| 9576 |  | 
|---|
| 9577 | runtime_enabled = quota != RUNTIME_INF; | 
|---|
| 9578 | runtime_was_enabled = cfs_b->quota != RUNTIME_INF; | 
|---|
| 9579 | /* | 
|---|
| 9580 | * If we need to toggle cfs_bandwidth_used, off->on must occur | 
|---|
| 9581 | * before making related changes, and on->off must occur afterwards | 
|---|
| 9582 | */ | 
|---|
| 9583 | if (runtime_enabled && !runtime_was_enabled) | 
|---|
| 9584 | cfs_bandwidth_usage_inc(); | 
|---|
| 9585 |  | 
|---|
| 9586 | scoped_guard (raw_spinlock_irq, &cfs_b->lock) { | 
|---|
| 9587 | cfs_b->period = ns_to_ktime(period); | 
|---|
| 9588 | cfs_b->quota = quota; | 
|---|
| 9589 | cfs_b->burst = burst; | 
|---|
| 9590 |  | 
|---|
| 9591 | __refill_cfs_bandwidth_runtime(cfs_b); | 
|---|
| 9592 |  | 
|---|
| 9593 | /* | 
|---|
| 9594 | * Restart the period timer (if active) to handle new | 
|---|
| 9595 | * period expiry: | 
|---|
| 9596 | */ | 
|---|
| 9597 | if (runtime_enabled) | 
|---|
| 9598 | start_cfs_bandwidth(cfs_b); | 
|---|
| 9599 | } | 
|---|
| 9600 |  | 
|---|
| 9601 | for_each_online_cpu(i) { | 
|---|
| 9602 | struct cfs_rq *cfs_rq = tg->cfs_rq[i]; | 
|---|
| 9603 | struct rq *rq = cfs_rq->rq; | 
|---|
| 9604 |  | 
|---|
| 9605 | guard(rq_lock_irq)(rq); | 
|---|
| 9606 | cfs_rq->runtime_enabled = runtime_enabled; | 
|---|
| 9607 | cfs_rq->runtime_remaining = 0; | 
|---|
| 9608 |  | 
|---|
| 9609 | if (cfs_rq->throttled) | 
|---|
| 9610 | unthrottle_cfs_rq(cfs_rq); | 
|---|
| 9611 | } | 
|---|
| 9612 |  | 
|---|
| 9613 | if (runtime_was_enabled && !runtime_enabled) | 
|---|
| 9614 | cfs_bandwidth_usage_dec(); | 
|---|
| 9615 |  | 
|---|
| 9616 | return 0; | 
|---|
| 9617 | } | 
|---|
| 9618 |  | 
|---|
| 9619 | static u64 tg_get_cfs_period(struct task_group *tg) | 
|---|
| 9620 | { | 
|---|
| 9621 | u64 cfs_period_us; | 
|---|
| 9622 |  | 
|---|
| 9623 | cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); | 
|---|
| 9624 | do_div(cfs_period_us, NSEC_PER_USEC); | 
|---|
| 9625 |  | 
|---|
| 9626 | return cfs_period_us; | 
|---|
| 9627 | } | 
|---|
| 9628 |  | 
|---|
| 9629 | static u64 tg_get_cfs_quota(struct task_group *tg) | 
|---|
| 9630 | { | 
|---|
| 9631 | u64 quota_us; | 
|---|
| 9632 |  | 
|---|
| 9633 | if (tg->cfs_bandwidth.quota == RUNTIME_INF) | 
|---|
| 9634 | return RUNTIME_INF; | 
|---|
| 9635 |  | 
|---|
| 9636 | quota_us = tg->cfs_bandwidth.quota; | 
|---|
| 9637 | do_div(quota_us, NSEC_PER_USEC); | 
|---|
| 9638 |  | 
|---|
| 9639 | return quota_us; | 
|---|
| 9640 | } | 
|---|
| 9641 |  | 
|---|
| 9642 | static u64 tg_get_cfs_burst(struct task_group *tg) | 
|---|
| 9643 | { | 
|---|
| 9644 | u64 burst_us; | 
|---|
| 9645 |  | 
|---|
| 9646 | burst_us = tg->cfs_bandwidth.burst; | 
|---|
| 9647 | do_div(burst_us, NSEC_PER_USEC); | 
|---|
| 9648 |  | 
|---|
| 9649 | return burst_us; | 
|---|
| 9650 | } | 
|---|
| 9651 |  | 
|---|
| 9652 | struct cfs_schedulable_data { | 
|---|
| 9653 | struct task_group *tg; | 
|---|
| 9654 | u64 period, quota; | 
|---|
| 9655 | }; | 
|---|
| 9656 |  | 
|---|
| 9657 | /* | 
|---|
| 9658 | * normalize group quota/period to be quota/max_period | 
|---|
| 9659 | * note: units are usecs | 
|---|
| 9660 | */ | 
|---|
| 9661 | static u64 normalize_cfs_quota(struct task_group *tg, | 
|---|
| 9662 | struct cfs_schedulable_data *d) | 
|---|
| 9663 | { | 
|---|
| 9664 | u64 quota, period; | 
|---|
| 9665 |  | 
|---|
| 9666 | if (tg == d->tg) { | 
|---|
| 9667 | period = d->period; | 
|---|
| 9668 | quota = d->quota; | 
|---|
| 9669 | } else { | 
|---|
| 9670 | period = tg_get_cfs_period(tg); | 
|---|
| 9671 | quota = tg_get_cfs_quota(tg); | 
|---|
| 9672 | } | 
|---|
| 9673 |  | 
|---|
| 9674 | /* note: these should typically be equivalent */ | 
|---|
| 9675 | if (quota == RUNTIME_INF || quota == -1) | 
|---|
| 9676 | return RUNTIME_INF; | 
|---|
| 9677 |  | 
|---|
| 9678 | return to_ratio(period, quota); | 
|---|
| 9679 | } | 
|---|
| 9680 |  | 
|---|
| 9681 | static int tg_cfs_schedulable_down(struct task_group *tg, void *data) | 
|---|
| 9682 | { | 
|---|
| 9683 | struct cfs_schedulable_data *d = data; | 
|---|
| 9684 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
|---|
| 9685 | s64 quota = 0, parent_quota = -1; | 
|---|
| 9686 |  | 
|---|
| 9687 | if (!tg->parent) { | 
|---|
| 9688 | quota = RUNTIME_INF; | 
|---|
| 9689 | } else { | 
|---|
| 9690 | struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; | 
|---|
| 9691 |  | 
|---|
| 9692 | quota = normalize_cfs_quota(tg, d); | 
|---|
| 9693 | parent_quota = parent_b->hierarchical_quota; | 
|---|
| 9694 |  | 
|---|
| 9695 | /* | 
|---|
| 9696 | * Ensure max(child_quota) <= parent_quota.  On cgroup2, | 
|---|
| 9697 | * always take the non-RUNTIME_INF min.  On cgroup1, only | 
|---|
| 9698 | * inherit when no limit is set. In both cases this is used | 
|---|
| 9699 | * by the scheduler to determine if a given CFS task has a | 
|---|
| 9700 | * bandwidth constraint at some higher level. | 
|---|
| 9701 | */ | 
|---|
| 9702 | if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { | 
|---|
| 9703 | if (quota == RUNTIME_INF) | 
|---|
| 9704 | quota = parent_quota; | 
|---|
| 9705 | else if (parent_quota != RUNTIME_INF) | 
|---|
| 9706 | quota = min(quota, parent_quota); | 
|---|
| 9707 | } else { | 
|---|
| 9708 | if (quota == RUNTIME_INF) | 
|---|
| 9709 | quota = parent_quota; | 
|---|
| 9710 | else if (parent_quota != RUNTIME_INF && quota > parent_quota) | 
|---|
| 9711 | return -EINVAL; | 
|---|
| 9712 | } | 
|---|
| 9713 | } | 
|---|
| 9714 | cfs_b->hierarchical_quota = quota; | 
|---|
| 9715 |  | 
|---|
| 9716 | return 0; | 
|---|
| 9717 | } | 
|---|
| 9718 |  | 
|---|
| 9719 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) | 
|---|
| 9720 | { | 
|---|
| 9721 | struct cfs_schedulable_data data = { | 
|---|
| 9722 | .tg = tg, | 
|---|
| 9723 | .period = period, | 
|---|
| 9724 | .quota = quota, | 
|---|
| 9725 | }; | 
|---|
| 9726 |  | 
|---|
| 9727 | if (quota != RUNTIME_INF) { | 
|---|
| 9728 | do_div(data.period, NSEC_PER_USEC); | 
|---|
| 9729 | do_div(data.quota, NSEC_PER_USEC); | 
|---|
| 9730 | } | 
|---|
| 9731 |  | 
|---|
| 9732 | guard(rcu)(); | 
|---|
| 9733 | return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); | 
|---|
| 9734 | } | 
|---|
| 9735 |  | 
|---|
| 9736 | static int cpu_cfs_stat_show(struct seq_file *sf, void *v) | 
|---|
| 9737 | { | 
|---|
| 9738 | struct task_group *tg = css_tg(seq_css(sf)); | 
|---|
| 9739 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
|---|
| 9740 |  | 
|---|
| 9741 | seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); | 
|---|
| 9742 | seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); | 
|---|
| 9743 | seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); | 
|---|
| 9744 |  | 
|---|
| 9745 | if (schedstat_enabled() && tg != &root_task_group) { | 
|---|
| 9746 | struct sched_statistics *stats; | 
|---|
| 9747 | u64 ws = 0; | 
|---|
| 9748 | int i; | 
|---|
| 9749 |  | 
|---|
| 9750 | for_each_possible_cpu(i) { | 
|---|
| 9751 | stats = __schedstats_from_se(tg->se[i]); | 
|---|
| 9752 | ws += schedstat_val(stats->wait_sum); | 
|---|
| 9753 | } | 
|---|
| 9754 |  | 
|---|
| 9755 | seq_printf(sf, "wait_sum %llu\n", ws); | 
|---|
| 9756 | } | 
|---|
| 9757 |  | 
|---|
| 9758 | seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); | 
|---|
| 9759 | seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); | 
|---|
| 9760 |  | 
|---|
| 9761 | return 0; | 
|---|
| 9762 | } | 
|---|
| 9763 |  | 
|---|
| 9764 | static u64 throttled_time_self(struct task_group *tg) | 
|---|
| 9765 | { | 
|---|
| 9766 | int i; | 
|---|
| 9767 | u64 total = 0; | 
|---|
| 9768 |  | 
|---|
| 9769 | for_each_possible_cpu(i) { | 
|---|
| 9770 | total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); | 
|---|
| 9771 | } | 
|---|
| 9772 |  | 
|---|
| 9773 | return total; | 
|---|
| 9774 | } | 
|---|
| 9775 |  | 
|---|
| 9776 | static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) | 
|---|
| 9777 | { | 
|---|
| 9778 | struct task_group *tg = css_tg(seq_css(sf)); | 
|---|
| 9779 |  | 
|---|
| 9780 | seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); | 
|---|
| 9781 |  | 
|---|
| 9782 | return 0; | 
|---|
| 9783 | } | 
|---|
| 9784 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
|---|
| 9785 |  | 
|---|
| 9786 | #ifdef CONFIG_GROUP_SCHED_BANDWIDTH | 
|---|
| 9787 | const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */ | 
|---|
| 9788 | static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */ | 
|---|
| 9789 | /* More than 203 days if BW_SHIFT equals 20. */ | 
|---|
| 9790 | static const u64 max_bw_runtime_us = MAX_BW; | 
|---|
| 9791 |  | 
|---|
| 9792 | static void tg_bandwidth(struct task_group *tg, | 
|---|
| 9793 | u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p) | 
|---|
| 9794 | { | 
|---|
| 9795 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 9796 | if (period_us_p) | 
|---|
| 9797 | *period_us_p = tg_get_cfs_period(tg); | 
|---|
| 9798 | if (quota_us_p) | 
|---|
| 9799 | *quota_us_p = tg_get_cfs_quota(tg); | 
|---|
| 9800 | if (burst_us_p) | 
|---|
| 9801 | *burst_us_p = tg_get_cfs_burst(tg); | 
|---|
| 9802 | #else /* !CONFIG_CFS_BANDWIDTH */ | 
|---|
| 9803 | if (period_us_p) | 
|---|
| 9804 | *period_us_p = tg->scx.bw_period_us; | 
|---|
| 9805 | if (quota_us_p) | 
|---|
| 9806 | *quota_us_p = tg->scx.bw_quota_us; | 
|---|
| 9807 | if (burst_us_p) | 
|---|
| 9808 | *burst_us_p = tg->scx.bw_burst_us; | 
|---|
| 9809 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
|---|
| 9810 | } | 
|---|
| 9811 |  | 
|---|
| 9812 | static u64 cpu_period_read_u64(struct cgroup_subsys_state *css, | 
|---|
| 9813 | struct cftype *cft) | 
|---|
| 9814 | { | 
|---|
| 9815 | u64 period_us; | 
|---|
| 9816 |  | 
|---|
| 9817 | tg_bandwidth(css_tg(css), &period_us, NULL, NULL); | 
|---|
| 9818 | return period_us; | 
|---|
| 9819 | } | 
|---|
| 9820 |  | 
|---|
| 9821 | static int tg_set_bandwidth(struct task_group *tg, | 
|---|
| 9822 | u64 period_us, u64 quota_us, u64 burst_us) | 
|---|
| 9823 | { | 
|---|
| 9824 | const u64 max_usec = U64_MAX / NSEC_PER_USEC; | 
|---|
| 9825 | int ret = 0; | 
|---|
| 9826 |  | 
|---|
| 9827 | if (tg == &root_task_group) | 
|---|
| 9828 | return -EINVAL; | 
|---|
| 9829 |  | 
|---|
| 9830 | /* Values should survive translation to nsec */ | 
|---|
| 9831 | if (period_us > max_usec || | 
|---|
| 9832 | (quota_us != RUNTIME_INF && quota_us > max_usec) || | 
|---|
| 9833 | burst_us > max_usec) | 
|---|
| 9834 | return -EINVAL; | 
|---|
| 9835 |  | 
|---|
| 9836 | /* | 
|---|
| 9837 | * Ensure we have some amount of bandwidth every period. This is to | 
|---|
| 9838 | * prevent reaching a state of large arrears when throttled via | 
|---|
| 9839 | * entity_tick() resulting in prolonged exit starvation. | 
|---|
| 9840 | */ | 
|---|
| 9841 | if (quota_us < min_bw_quota_period_us || | 
|---|
| 9842 | period_us < min_bw_quota_period_us) | 
|---|
| 9843 | return -EINVAL; | 
|---|
| 9844 |  | 
|---|
| 9845 | /* | 
|---|
| 9846 | * Likewise, bound things on the other side by preventing insane quota | 
|---|
| 9847 | * periods.  This also allows us to normalize in computing quota | 
|---|
| 9848 | * feasibility. | 
|---|
| 9849 | */ | 
|---|
| 9850 | if (period_us > max_bw_quota_period_us) | 
|---|
| 9851 | return -EINVAL; | 
|---|
| 9852 |  | 
|---|
| 9853 | /* | 
|---|
| 9854 | * Bound quota to defend quota against overflow during bandwidth shift. | 
|---|
| 9855 | */ | 
|---|
| 9856 | if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us) | 
|---|
| 9857 | return -EINVAL; | 
|---|
| 9858 |  | 
|---|
| 9859 | if (quota_us != RUNTIME_INF && (burst_us > quota_us || | 
|---|
| 9860 | burst_us + quota_us > max_bw_runtime_us)) | 
|---|
| 9861 | return -EINVAL; | 
|---|
| 9862 |  | 
|---|
| 9863 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 9864 | ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us); | 
|---|
| 9865 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
|---|
| 9866 | if (!ret) | 
|---|
| 9867 | scx_group_set_bandwidth(tg, period_us, quota_us, burst_us); | 
|---|
| 9868 | return ret; | 
|---|
| 9869 | } | 
|---|
| 9870 |  | 
|---|
| 9871 | static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css, | 
|---|
| 9872 | struct cftype *cft) | 
|---|
| 9873 | { | 
|---|
| 9874 | u64 quota_us; | 
|---|
| 9875 |  | 
|---|
| 9876 | tg_bandwidth(css_tg(css), NULL, "a_us, NULL); | 
|---|
| 9877 | return quota_us;	/* (s64)RUNTIME_INF becomes -1 */ | 
|---|
| 9878 | } | 
|---|
| 9879 |  | 
|---|
| 9880 | static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css, | 
|---|
| 9881 | struct cftype *cft) | 
|---|
| 9882 | { | 
|---|
| 9883 | u64 burst_us; | 
|---|
| 9884 |  | 
|---|
| 9885 | tg_bandwidth(css_tg(css), NULL, NULL, &burst_us); | 
|---|
| 9886 | return burst_us; | 
|---|
| 9887 | } | 
|---|
| 9888 |  | 
|---|
| 9889 | static int cpu_period_write_u64(struct cgroup_subsys_state *css, | 
|---|
| 9890 | struct cftype *cftype, u64 period_us) | 
|---|
| 9891 | { | 
|---|
| 9892 | struct task_group *tg = css_tg(css); | 
|---|
| 9893 | u64 quota_us, burst_us; | 
|---|
| 9894 |  | 
|---|
| 9895 | tg_bandwidth(tg, NULL, "a_us, &burst_us); | 
|---|
| 9896 | return tg_set_bandwidth(tg, period_us, quota_us, burst_us); | 
|---|
| 9897 | } | 
|---|
| 9898 |  | 
|---|
| 9899 | static int cpu_quota_write_s64(struct cgroup_subsys_state *css, | 
|---|
| 9900 | struct cftype *cftype, s64 quota_us) | 
|---|
| 9901 | { | 
|---|
| 9902 | struct task_group *tg = css_tg(css); | 
|---|
| 9903 | u64 period_us, burst_us; | 
|---|
| 9904 |  | 
|---|
| 9905 | if (quota_us < 0) | 
|---|
| 9906 | quota_us = RUNTIME_INF; | 
|---|
| 9907 |  | 
|---|
| 9908 | tg_bandwidth(tg, &period_us, NULL, &burst_us); | 
|---|
| 9909 | return tg_set_bandwidth(tg, period_us, quota_us, burst_us); | 
|---|
| 9910 | } | 
|---|
| 9911 |  | 
|---|
| 9912 | static int cpu_burst_write_u64(struct cgroup_subsys_state *css, | 
|---|
| 9913 | struct cftype *cftype, u64 burst_us) | 
|---|
| 9914 | { | 
|---|
| 9915 | struct task_group *tg = css_tg(css); | 
|---|
| 9916 | u64 period_us, quota_us; | 
|---|
| 9917 |  | 
|---|
| 9918 | tg_bandwidth(tg, &period_us, "a_us, NULL); | 
|---|
| 9919 | return tg_set_bandwidth(tg, period_us, quota_us, burst_us); | 
|---|
| 9920 | } | 
|---|
| 9921 | #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ | 
|---|
| 9922 |  | 
|---|
| 9923 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 9924 | static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, | 
|---|
| 9925 | struct cftype *cft, s64 val) | 
|---|
| 9926 | { | 
|---|
| 9927 | return sched_group_set_rt_runtime(css_tg(css), val); | 
|---|
| 9928 | } | 
|---|
| 9929 |  | 
|---|
| 9930 | static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, | 
|---|
| 9931 | struct cftype *cft) | 
|---|
| 9932 | { | 
|---|
| 9933 | return sched_group_rt_runtime(css_tg(css)); | 
|---|
| 9934 | } | 
|---|
| 9935 |  | 
|---|
| 9936 | static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, | 
|---|
| 9937 | struct cftype *cftype, u64 rt_period_us) | 
|---|
| 9938 | { | 
|---|
| 9939 | return sched_group_set_rt_period(css_tg(css), rt_period_us); | 
|---|
| 9940 | } | 
|---|
| 9941 |  | 
|---|
| 9942 | static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, | 
|---|
| 9943 | struct cftype *cft) | 
|---|
| 9944 | { | 
|---|
| 9945 | return sched_group_rt_period(css_tg(css)); | 
|---|
| 9946 | } | 
|---|
| 9947 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|---|
| 9948 |  | 
|---|
| 9949 | #ifdef CONFIG_GROUP_SCHED_WEIGHT | 
|---|
| 9950 | static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, | 
|---|
| 9951 | struct cftype *cft) | 
|---|
| 9952 | { | 
|---|
| 9953 | return css_tg(css)->idle; | 
|---|
| 9954 | } | 
|---|
| 9955 |  | 
|---|
| 9956 | static int cpu_idle_write_s64(struct cgroup_subsys_state *css, | 
|---|
| 9957 | struct cftype *cft, s64 idle) | 
|---|
| 9958 | { | 
|---|
| 9959 | int ret; | 
|---|
| 9960 |  | 
|---|
| 9961 | ret = sched_group_set_idle(tg: css_tg(css), idle); | 
|---|
| 9962 | if (!ret) | 
|---|
| 9963 | scx_group_set_idle(tg: css_tg(css), idle); | 
|---|
| 9964 | return ret; | 
|---|
| 9965 | } | 
|---|
| 9966 | #endif /* CONFIG_GROUP_SCHED_WEIGHT */ | 
|---|
| 9967 |  | 
|---|
| 9968 | static struct cftype cpu_legacy_files[] = { | 
|---|
| 9969 | #ifdef CONFIG_GROUP_SCHED_WEIGHT | 
|---|
| 9970 | { | 
|---|
| 9971 | .name = "shares", | 
|---|
| 9972 | .read_u64 = cpu_shares_read_u64, | 
|---|
| 9973 | .write_u64 = cpu_shares_write_u64, | 
|---|
| 9974 | }, | 
|---|
| 9975 | { | 
|---|
| 9976 | .name = "idle", | 
|---|
| 9977 | .read_s64 = cpu_idle_read_s64, | 
|---|
| 9978 | .write_s64 = cpu_idle_write_s64, | 
|---|
| 9979 | }, | 
|---|
| 9980 | #endif | 
|---|
| 9981 | #ifdef CONFIG_GROUP_SCHED_BANDWIDTH | 
|---|
| 9982 | { | 
|---|
| 9983 | .name = "cfs_period_us", | 
|---|
| 9984 | .read_u64 = cpu_period_read_u64, | 
|---|
| 9985 | .write_u64 = cpu_period_write_u64, | 
|---|
| 9986 | }, | 
|---|
| 9987 | { | 
|---|
| 9988 | .name = "cfs_quota_us", | 
|---|
| 9989 | .read_s64 = cpu_quota_read_s64, | 
|---|
| 9990 | .write_s64 = cpu_quota_write_s64, | 
|---|
| 9991 | }, | 
|---|
| 9992 | { | 
|---|
| 9993 | .name = "cfs_burst_us", | 
|---|
| 9994 | .read_u64 = cpu_burst_read_u64, | 
|---|
| 9995 | .write_u64 = cpu_burst_write_u64, | 
|---|
| 9996 | }, | 
|---|
| 9997 | #endif | 
|---|
| 9998 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 9999 | { | 
|---|
| 10000 | .name = "stat", | 
|---|
| 10001 | .seq_show = cpu_cfs_stat_show, | 
|---|
| 10002 | }, | 
|---|
| 10003 | { | 
|---|
| 10004 | .name = "stat.local", | 
|---|
| 10005 | .seq_show = cpu_cfs_local_stat_show, | 
|---|
| 10006 | }, | 
|---|
| 10007 | #endif | 
|---|
| 10008 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|---|
| 10009 | { | 
|---|
| 10010 | .name = "uclamp.min", | 
|---|
| 10011 | .flags = CFTYPE_NOT_ON_ROOT, | 
|---|
| 10012 | .seq_show = cpu_uclamp_min_show, | 
|---|
| 10013 | .write = cpu_uclamp_min_write, | 
|---|
| 10014 | }, | 
|---|
| 10015 | { | 
|---|
| 10016 | .name = "uclamp.max", | 
|---|
| 10017 | .flags = CFTYPE_NOT_ON_ROOT, | 
|---|
| 10018 | .seq_show = cpu_uclamp_max_show, | 
|---|
| 10019 | .write = cpu_uclamp_max_write, | 
|---|
| 10020 | }, | 
|---|
| 10021 | #endif | 
|---|
| 10022 | { }	/* Terminate */ | 
|---|
| 10023 | }; | 
|---|
| 10024 |  | 
|---|
| 10025 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 10026 | static struct cftype rt_group_files[] = { | 
|---|
| 10027 | { | 
|---|
| 10028 | .name = "rt_runtime_us", | 
|---|
| 10029 | .read_s64 = cpu_rt_runtime_read, | 
|---|
| 10030 | .write_s64 = cpu_rt_runtime_write, | 
|---|
| 10031 | }, | 
|---|
| 10032 | { | 
|---|
| 10033 | .name = "rt_period_us", | 
|---|
| 10034 | .read_u64 = cpu_rt_period_read_uint, | 
|---|
| 10035 | .write_u64 = cpu_rt_period_write_uint, | 
|---|
| 10036 | }, | 
|---|
| 10037 | { }	/* Terminate */ | 
|---|
| 10038 | }; | 
|---|
| 10039 |  | 
|---|
| 10040 | # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED | 
|---|
| 10041 | DEFINE_STATIC_KEY_FALSE(rt_group_sched); | 
|---|
| 10042 | # else | 
|---|
| 10043 | DEFINE_STATIC_KEY_TRUE(rt_group_sched); | 
|---|
| 10044 | # endif | 
|---|
| 10045 |  | 
|---|
| 10046 | static int __init setup_rt_group_sched(char *str) | 
|---|
| 10047 | { | 
|---|
| 10048 | long val; | 
|---|
| 10049 |  | 
|---|
| 10050 | if (kstrtol(str, 0, &val) || val < 0 || val > 1) { | 
|---|
| 10051 | pr_warn( "Unable to set rt_group_sched\n"); | 
|---|
| 10052 | return 1; | 
|---|
| 10053 | } | 
|---|
| 10054 | if (val) | 
|---|
| 10055 | static_branch_enable(&rt_group_sched); | 
|---|
| 10056 | else | 
|---|
| 10057 | static_branch_disable(&rt_group_sched); | 
|---|
| 10058 |  | 
|---|
| 10059 | return 1; | 
|---|
| 10060 | } | 
|---|
| 10061 | __setup( "rt_group_sched=", setup_rt_group_sched); | 
|---|
| 10062 |  | 
|---|
| 10063 | static int __init cpu_rt_group_init(void) | 
|---|
| 10064 | { | 
|---|
| 10065 | if (!rt_group_sched_enabled()) | 
|---|
| 10066 | return 0; | 
|---|
| 10067 |  | 
|---|
| 10068 | WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); | 
|---|
| 10069 | return 0; | 
|---|
| 10070 | } | 
|---|
| 10071 | subsys_initcall(cpu_rt_group_init); | 
|---|
| 10072 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|---|
| 10073 |  | 
|---|
| 10074 | static int (struct seq_file *sf, | 
|---|
| 10075 | struct cgroup_subsys_state *css) | 
|---|
| 10076 | { | 
|---|
| 10077 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 10078 | { | 
|---|
| 10079 | struct task_group *tg = css_tg(css); | 
|---|
| 10080 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
|---|
| 10081 | u64 throttled_usec, burst_usec; | 
|---|
| 10082 |  | 
|---|
| 10083 | throttled_usec = cfs_b->throttled_time; | 
|---|
| 10084 | do_div(throttled_usec, NSEC_PER_USEC); | 
|---|
| 10085 | burst_usec = cfs_b->burst_time; | 
|---|
| 10086 | do_div(burst_usec, NSEC_PER_USEC); | 
|---|
| 10087 |  | 
|---|
| 10088 | seq_printf(sf, "nr_periods %d\n" | 
|---|
| 10089 | "nr_throttled %d\n" | 
|---|
| 10090 | "throttled_usec %llu\n" | 
|---|
| 10091 | "nr_bursts %d\n" | 
|---|
| 10092 | "burst_usec %llu\n", | 
|---|
| 10093 | cfs_b->nr_periods, cfs_b->nr_throttled, | 
|---|
| 10094 | throttled_usec, cfs_b->nr_burst, burst_usec); | 
|---|
| 10095 | } | 
|---|
| 10096 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
|---|
| 10097 | return 0; | 
|---|
| 10098 | } | 
|---|
| 10099 |  | 
|---|
| 10100 | static int cpu_local_stat_show(struct seq_file *sf, | 
|---|
| 10101 | struct cgroup_subsys_state *css) | 
|---|
| 10102 | { | 
|---|
| 10103 | #ifdef CONFIG_CFS_BANDWIDTH | 
|---|
| 10104 | { | 
|---|
| 10105 | struct task_group *tg = css_tg(css); | 
|---|
| 10106 | u64 throttled_self_usec; | 
|---|
| 10107 |  | 
|---|
| 10108 | throttled_self_usec = throttled_time_self(tg); | 
|---|
| 10109 | do_div(throttled_self_usec, NSEC_PER_USEC); | 
|---|
| 10110 |  | 
|---|
| 10111 | seq_printf(sf, "throttled_usec %llu\n", | 
|---|
| 10112 | throttled_self_usec); | 
|---|
| 10113 | } | 
|---|
| 10114 | #endif | 
|---|
| 10115 | return 0; | 
|---|
| 10116 | } | 
|---|
| 10117 |  | 
|---|
| 10118 | #ifdef CONFIG_GROUP_SCHED_WEIGHT | 
|---|
| 10119 |  | 
|---|
| 10120 | static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, | 
|---|
| 10121 | struct cftype *cft) | 
|---|
| 10122 | { | 
|---|
| 10123 | return sched_weight_to_cgroup(weight: tg_weight(tg: css_tg(css))); | 
|---|
| 10124 | } | 
|---|
| 10125 |  | 
|---|
| 10126 | static int cpu_weight_write_u64(struct cgroup_subsys_state *css, | 
|---|
| 10127 | struct cftype *cft, u64 cgrp_weight) | 
|---|
| 10128 | { | 
|---|
| 10129 | unsigned long weight; | 
|---|
| 10130 | int ret; | 
|---|
| 10131 |  | 
|---|
| 10132 | if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) | 
|---|
| 10133 | return -ERANGE; | 
|---|
| 10134 |  | 
|---|
| 10135 | weight = sched_weight_from_cgroup(cgrp_weight); | 
|---|
| 10136 |  | 
|---|
| 10137 | ret = sched_group_set_shares(tg: css_tg(css), scale_load(weight)); | 
|---|
| 10138 | if (!ret) | 
|---|
| 10139 | scx_group_set_weight(tg: css_tg(css), cgrp_weight); | 
|---|
| 10140 | return ret; | 
|---|
| 10141 | } | 
|---|
| 10142 |  | 
|---|
| 10143 | static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, | 
|---|
| 10144 | struct cftype *cft) | 
|---|
| 10145 | { | 
|---|
| 10146 | unsigned long weight = tg_weight(tg: css_tg(css)); | 
|---|
| 10147 | int last_delta = INT_MAX; | 
|---|
| 10148 | int prio, delta; | 
|---|
| 10149 |  | 
|---|
| 10150 | /* find the closest nice value to the current weight */ | 
|---|
| 10151 | for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { | 
|---|
| 10152 | delta = abs(sched_prio_to_weight[prio] - weight); | 
|---|
| 10153 | if (delta >= last_delta) | 
|---|
| 10154 | break; | 
|---|
| 10155 | last_delta = delta; | 
|---|
| 10156 | } | 
|---|
| 10157 |  | 
|---|
| 10158 | return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); | 
|---|
| 10159 | } | 
|---|
| 10160 |  | 
|---|
| 10161 | static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, | 
|---|
| 10162 | struct cftype *cft, s64 nice) | 
|---|
| 10163 | { | 
|---|
| 10164 | unsigned long weight; | 
|---|
| 10165 | int idx, ret; | 
|---|
| 10166 |  | 
|---|
| 10167 | if (nice < MIN_NICE || nice > MAX_NICE) | 
|---|
| 10168 | return -ERANGE; | 
|---|
| 10169 |  | 
|---|
| 10170 | idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; | 
|---|
| 10171 | idx = array_index_nospec(idx, 40); | 
|---|
| 10172 | weight = sched_prio_to_weight[idx]; | 
|---|
| 10173 |  | 
|---|
| 10174 | ret = sched_group_set_shares(tg: css_tg(css), scale_load(weight)); | 
|---|
| 10175 | if (!ret) | 
|---|
| 10176 | scx_group_set_weight(tg: css_tg(css), | 
|---|
| 10177 | cgrp_weight: sched_weight_to_cgroup(weight)); | 
|---|
| 10178 | return ret; | 
|---|
| 10179 | } | 
|---|
| 10180 | #endif /* CONFIG_GROUP_SCHED_WEIGHT */ | 
|---|
| 10181 |  | 
|---|
| 10182 | static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, | 
|---|
| 10183 | long period, long quota) | 
|---|
| 10184 | { | 
|---|
| 10185 | if (quota < 0) | 
|---|
| 10186 | seq_puts(m: sf, s: "max"); | 
|---|
| 10187 | else | 
|---|
| 10188 | seq_printf(m: sf, fmt: "%ld", quota); | 
|---|
| 10189 |  | 
|---|
| 10190 | seq_printf(m: sf, fmt: " %ld\n", period); | 
|---|
| 10191 | } | 
|---|
| 10192 |  | 
|---|
| 10193 | /* caller should put the current value in *@periodp before calling */ | 
|---|
| 10194 | static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p, | 
|---|
| 10195 | u64 *quota_us_p) | 
|---|
| 10196 | { | 
|---|
| 10197 | char tok[21];	/* U64_MAX */ | 
|---|
| 10198 |  | 
|---|
| 10199 | if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1) | 
|---|
| 10200 | return -EINVAL; | 
|---|
| 10201 |  | 
|---|
| 10202 | if (sscanf(tok, "%llu", quota_us_p) < 1) { | 
|---|
| 10203 | if (!strcmp(tok, "max")) | 
|---|
| 10204 | *quota_us_p = RUNTIME_INF; | 
|---|
| 10205 | else | 
|---|
| 10206 | return -EINVAL; | 
|---|
| 10207 | } | 
|---|
| 10208 |  | 
|---|
| 10209 | return 0; | 
|---|
| 10210 | } | 
|---|
| 10211 |  | 
|---|
| 10212 | #ifdef CONFIG_GROUP_SCHED_BANDWIDTH | 
|---|
| 10213 | static int cpu_max_show(struct seq_file *sf, void *v) | 
|---|
| 10214 | { | 
|---|
| 10215 | struct task_group *tg = css_tg(seq_css(sf)); | 
|---|
| 10216 | u64 period_us, quota_us; | 
|---|
| 10217 |  | 
|---|
| 10218 | tg_bandwidth(tg, &period_us, "a_us, NULL); | 
|---|
| 10219 | cpu_period_quota_print(sf, period_us, quota_us); | 
|---|
| 10220 | return 0; | 
|---|
| 10221 | } | 
|---|
| 10222 |  | 
|---|
| 10223 | static ssize_t cpu_max_write(struct kernfs_open_file *of, | 
|---|
| 10224 | char *buf, size_t nbytes, loff_t off) | 
|---|
| 10225 | { | 
|---|
| 10226 | struct task_group *tg = css_tg(of_css(of)); | 
|---|
| 10227 | u64 period_us, quota_us, burst_us; | 
|---|
| 10228 | int ret; | 
|---|
| 10229 |  | 
|---|
| 10230 | tg_bandwidth(tg, &period_us, NULL, &burst_us); | 
|---|
| 10231 | ret = cpu_period_quota_parse(buf, &period_us, "a_us); | 
|---|
| 10232 | if (!ret) | 
|---|
| 10233 | ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us); | 
|---|
| 10234 | return ret ?: nbytes; | 
|---|
| 10235 | } | 
|---|
| 10236 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
|---|
| 10237 |  | 
|---|
| 10238 | static struct cftype cpu_files[] = { | 
|---|
| 10239 | #ifdef CONFIG_GROUP_SCHED_WEIGHT | 
|---|
| 10240 | { | 
|---|
| 10241 | .name = "weight", | 
|---|
| 10242 | .flags = CFTYPE_NOT_ON_ROOT, | 
|---|
| 10243 | .read_u64 = cpu_weight_read_u64, | 
|---|
| 10244 | .write_u64 = cpu_weight_write_u64, | 
|---|
| 10245 | }, | 
|---|
| 10246 | { | 
|---|
| 10247 | .name = "weight.nice", | 
|---|
| 10248 | .flags = CFTYPE_NOT_ON_ROOT, | 
|---|
| 10249 | .read_s64 = cpu_weight_nice_read_s64, | 
|---|
| 10250 | .write_s64 = cpu_weight_nice_write_s64, | 
|---|
| 10251 | }, | 
|---|
| 10252 | { | 
|---|
| 10253 | .name = "idle", | 
|---|
| 10254 | .flags = CFTYPE_NOT_ON_ROOT, | 
|---|
| 10255 | .read_s64 = cpu_idle_read_s64, | 
|---|
| 10256 | .write_s64 = cpu_idle_write_s64, | 
|---|
| 10257 | }, | 
|---|
| 10258 | #endif | 
|---|
| 10259 | #ifdef CONFIG_GROUP_SCHED_BANDWIDTH | 
|---|
| 10260 | { | 
|---|
| 10261 | .name = "max", | 
|---|
| 10262 | .flags = CFTYPE_NOT_ON_ROOT, | 
|---|
| 10263 | .seq_show = cpu_max_show, | 
|---|
| 10264 | .write = cpu_max_write, | 
|---|
| 10265 | }, | 
|---|
| 10266 | { | 
|---|
| 10267 | .name = "max.burst", | 
|---|
| 10268 | .flags = CFTYPE_NOT_ON_ROOT, | 
|---|
| 10269 | .read_u64 = cpu_burst_read_u64, | 
|---|
| 10270 | .write_u64 = cpu_burst_write_u64, | 
|---|
| 10271 | }, | 
|---|
| 10272 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
|---|
| 10273 | #ifdef CONFIG_UCLAMP_TASK_GROUP | 
|---|
| 10274 | { | 
|---|
| 10275 | .name = "uclamp.min", | 
|---|
| 10276 | .flags = CFTYPE_NOT_ON_ROOT, | 
|---|
| 10277 | .seq_show = cpu_uclamp_min_show, | 
|---|
| 10278 | .write = cpu_uclamp_min_write, | 
|---|
| 10279 | }, | 
|---|
| 10280 | { | 
|---|
| 10281 | .name = "uclamp.max", | 
|---|
| 10282 | .flags = CFTYPE_NOT_ON_ROOT, | 
|---|
| 10283 | .seq_show = cpu_uclamp_max_show, | 
|---|
| 10284 | .write = cpu_uclamp_max_write, | 
|---|
| 10285 | }, | 
|---|
| 10286 | #endif /* CONFIG_UCLAMP_TASK_GROUP */ | 
|---|
| 10287 | { }	/* terminate */ | 
|---|
| 10288 | }; | 
|---|
| 10289 |  | 
|---|
| 10290 | struct cgroup_subsys cpu_cgrp_subsys = { | 
|---|
| 10291 | .css_alloc	= cpu_cgroup_css_alloc, | 
|---|
| 10292 | .css_online	= cpu_cgroup_css_online, | 
|---|
| 10293 | .css_offline	= cpu_cgroup_css_offline, | 
|---|
| 10294 | .css_released	= cpu_cgroup_css_released, | 
|---|
| 10295 | .css_free	= cpu_cgroup_css_free, | 
|---|
| 10296 | .css_extra_stat_show = cpu_extra_stat_show, | 
|---|
| 10297 | .css_local_stat_show = cpu_local_stat_show, | 
|---|
| 10298 | .can_attach	= cpu_cgroup_can_attach, | 
|---|
| 10299 | .attach		= cpu_cgroup_attach, | 
|---|
| 10300 | .cancel_attach	= cpu_cgroup_cancel_attach, | 
|---|
| 10301 | .legacy_cftypes	= cpu_legacy_files, | 
|---|
| 10302 | .dfl_cftypes	= cpu_files, | 
|---|
| 10303 | .early_init	= true, | 
|---|
| 10304 | .threaded	= true, | 
|---|
| 10305 | }; | 
|---|
| 10306 |  | 
|---|
| 10307 | #endif /* CONFIG_CGROUP_SCHED */ | 
|---|
| 10308 |  | 
|---|
| 10309 | void dump_cpu_task(int cpu) | 
|---|
| 10310 | { | 
|---|
| 10311 | if (in_hardirq() && cpu == smp_processor_id()) { | 
|---|
| 10312 | struct pt_regs *regs; | 
|---|
| 10313 |  | 
|---|
| 10314 | regs = get_irq_regs(); | 
|---|
| 10315 | if (regs) { | 
|---|
| 10316 | show_regs(regs); | 
|---|
| 10317 | return; | 
|---|
| 10318 | } | 
|---|
| 10319 | } | 
|---|
| 10320 |  | 
|---|
| 10321 | if (trigger_single_cpu_backtrace(cpu)) | 
|---|
| 10322 | return; | 
|---|
| 10323 |  | 
|---|
| 10324 | pr_info( "Task dump for CPU %d:\n", cpu); | 
|---|
| 10325 | sched_show_task(cpu_curr(cpu)); | 
|---|
| 10326 | } | 
|---|
| 10327 |  | 
|---|
| 10328 | /* | 
|---|
| 10329 | * Nice levels are multiplicative, with a gentle 10% change for every | 
|---|
| 10330 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | 
|---|
| 10331 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | 
|---|
| 10332 | * that remained on nice 0. | 
|---|
| 10333 | * | 
|---|
| 10334 | * The "10% effect" is relative and cumulative: from _any_ nice level, | 
|---|
| 10335 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | 
|---|
| 10336 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | 
|---|
| 10337 | * If a task goes up by ~10% and another task goes down by ~10% then | 
|---|
| 10338 | * the relative distance between them is ~25%.) | 
|---|
| 10339 | */ | 
|---|
| 10340 | const int sched_prio_to_weight[40] = { | 
|---|
| 10341 | /* -20 */     88761,     71755,     56483,     46273,     36291, | 
|---|
| 10342 | /* -15 */     29154,     23254,     18705,     14949,     11916, | 
|---|
| 10343 | /* -10 */      9548,      7620,      6100,      4904,      3906, | 
|---|
| 10344 | /*  -5 */      3121,      2501,      1991,      1586,      1277, | 
|---|
| 10345 | /*   0 */      1024,       820,       655,       526,       423, | 
|---|
| 10346 | /*   5 */       335,       272,       215,       172,       137, | 
|---|
| 10347 | /*  10 */       110,        87,        70,        56,        45, | 
|---|
| 10348 | /*  15 */        36,        29,        23,        18,        15, | 
|---|
| 10349 | }; | 
|---|
| 10350 |  | 
|---|
| 10351 | /* | 
|---|
| 10352 | * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. | 
|---|
| 10353 | * | 
|---|
| 10354 | * In cases where the weight does not change often, we can use the | 
|---|
| 10355 | * pre-calculated inverse to speed up arithmetics by turning divisions | 
|---|
| 10356 | * into multiplications: | 
|---|
| 10357 | */ | 
|---|
| 10358 | const u32 sched_prio_to_wmult[40] = { | 
|---|
| 10359 | /* -20 */     48388,     59856,     76040,     92818,    118348, | 
|---|
| 10360 | /* -15 */    147320,    184698,    229616,    287308,    360437, | 
|---|
| 10361 | /* -10 */    449829,    563644,    704093,    875809,   1099582, | 
|---|
| 10362 | /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326, | 
|---|
| 10363 | /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587, | 
|---|
| 10364 | /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126, | 
|---|
| 10365 | /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717, | 
|---|
| 10366 | /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 
|---|
| 10367 | }; | 
|---|
| 10368 |  | 
|---|
| 10369 | void call_trace_sched_update_nr_running(struct rq *rq, int count) | 
|---|
| 10370 | { | 
|---|
| 10371 | trace_sched_update_nr_running_tp(rq, change: count); | 
|---|
| 10372 | } | 
|---|
| 10373 |  | 
|---|
| 10374 | #ifdef CONFIG_SCHED_MM_CID | 
|---|
| 10375 |  | 
|---|
| 10376 | /* | 
|---|
| 10377 | * @cid_lock: Guarantee forward-progress of cid allocation. | 
|---|
| 10378 | * | 
|---|
| 10379 | * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock | 
|---|
| 10380 | * is only used when contention is detected by the lock-free allocation so | 
|---|
| 10381 | * forward progress can be guaranteed. | 
|---|
| 10382 | */ | 
|---|
| 10383 | DEFINE_RAW_SPINLOCK(cid_lock); | 
|---|
| 10384 |  | 
|---|
| 10385 | /* | 
|---|
| 10386 | * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. | 
|---|
| 10387 | * | 
|---|
| 10388 | * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is | 
|---|
| 10389 | * detected, it is set to 1 to ensure that all newly coming allocations are | 
|---|
| 10390 | * serialized by @cid_lock until the allocation which detected contention | 
|---|
| 10391 | * completes and sets @use_cid_lock back to 0. This guarantees forward progress | 
|---|
| 10392 | * of a cid allocation. | 
|---|
| 10393 | */ | 
|---|
| 10394 | int use_cid_lock; | 
|---|
| 10395 |  | 
|---|
| 10396 | /* | 
|---|
| 10397 | * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid | 
|---|
| 10398 | * concurrently with respect to the execution of the source runqueue context | 
|---|
| 10399 | * switch. | 
|---|
| 10400 | * | 
|---|
| 10401 | * There is one basic properties we want to guarantee here: | 
|---|
| 10402 | * | 
|---|
| 10403 | * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively | 
|---|
| 10404 | * used by a task. That would lead to concurrent allocation of the cid and | 
|---|
| 10405 | * userspace corruption. | 
|---|
| 10406 | * | 
|---|
| 10407 | * Provide this guarantee by introducing a Dekker memory ordering to guarantee | 
|---|
| 10408 | * that a pair of loads observe at least one of a pair of stores, which can be | 
|---|
| 10409 | * shown as: | 
|---|
| 10410 | * | 
|---|
| 10411 | *      X = Y = 0 | 
|---|
| 10412 | * | 
|---|
| 10413 | *      w[X]=1          w[Y]=1 | 
|---|
| 10414 | *      MB              MB | 
|---|
| 10415 | *      r[Y]=y          r[X]=x | 
|---|
| 10416 | * | 
|---|
| 10417 | * Which guarantees that x==0 && y==0 is impossible. But rather than using | 
|---|
| 10418 | * values 0 and 1, this algorithm cares about specific state transitions of the | 
|---|
| 10419 | * runqueue current task (as updated by the scheduler context switch), and the | 
|---|
| 10420 | * per-mm/cpu cid value. | 
|---|
| 10421 | * | 
|---|
| 10422 | * Let's introduce task (Y) which has task->mm == mm and task (N) which has | 
|---|
| 10423 | * task->mm != mm for the rest of the discussion. There are two scheduler state | 
|---|
| 10424 | * transitions on context switch we care about: | 
|---|
| 10425 | * | 
|---|
| 10426 | * (TSA) Store to rq->curr with transition from (N) to (Y) | 
|---|
| 10427 | * | 
|---|
| 10428 | * (TSB) Store to rq->curr with transition from (Y) to (N) | 
|---|
| 10429 | * | 
|---|
| 10430 | * On the remote-clear side, there is one transition we care about: | 
|---|
| 10431 | * | 
|---|
| 10432 | * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag | 
|---|
| 10433 | * | 
|---|
| 10434 | * There is also a transition to UNSET state which can be performed from all | 
|---|
| 10435 | * sides (scheduler, remote-clear). It is always performed with a cmpxchg which | 
|---|
| 10436 | * guarantees that only a single thread will succeed: | 
|---|
| 10437 | * | 
|---|
| 10438 | * (TMB) cmpxchg to *pcpu_cid to mark UNSET | 
|---|
| 10439 | * | 
|---|
| 10440 | * Just to be clear, what we do _not_ want to happen is a transition to UNSET | 
|---|
| 10441 | * when a thread is actively using the cid (property (1)). | 
|---|
| 10442 | * | 
|---|
| 10443 | * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. | 
|---|
| 10444 | * | 
|---|
| 10445 | * Scenario A) (TSA)+(TMA) (from next task perspective) | 
|---|
| 10446 | * | 
|---|
| 10447 | * CPU0                                      CPU1 | 
|---|
| 10448 | * | 
|---|
| 10449 | * Context switch CS-1                       Remote-clear | 
|---|
| 10450 | *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA) | 
|---|
| 10451 | *                                             (implied barrier after cmpxchg) | 
|---|
| 10452 | *   - switch_mm_cid() | 
|---|
| 10453 | *     - memory barrier (see switch_mm_cid() | 
|---|
| 10454 | *       comment explaining how this barrier | 
|---|
| 10455 | *       is combined with other scheduler | 
|---|
| 10456 | *       barriers) | 
|---|
| 10457 | *     - mm_cid_get (next) | 
|---|
| 10458 | *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr) | 
|---|
| 10459 | * | 
|---|
| 10460 | * This Dekker ensures that either task (Y) is observed by the | 
|---|
| 10461 | * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are | 
|---|
| 10462 | * observed. | 
|---|
| 10463 | * | 
|---|
| 10464 | * If task (Y) store is observed by rcu_dereference(), it means that there is | 
|---|
| 10465 | * still an active task on the cpu. Remote-clear will therefore not transition | 
|---|
| 10466 | * to UNSET, which fulfills property (1). | 
|---|
| 10467 | * | 
|---|
| 10468 | * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), | 
|---|
| 10469 | * it will move its state to UNSET, which clears the percpu cid perhaps | 
|---|
| 10470 | * uselessly (which is not an issue for correctness). Because task (Y) is not | 
|---|
| 10471 | * observed, CPU1 can move ahead to set the state to UNSET. Because moving | 
|---|
| 10472 | * state to UNSET is done with a cmpxchg expecting that the old state has the | 
|---|
| 10473 | * LAZY flag set, only one thread will successfully UNSET. | 
|---|
| 10474 | * | 
|---|
| 10475 | * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 | 
|---|
| 10476 | * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and | 
|---|
| 10477 | * CPU1 will observe task (Y) and do nothing more, which is fine. | 
|---|
| 10478 | * | 
|---|
| 10479 | * What we are effectively preventing with this Dekker is a scenario where | 
|---|
| 10480 | * neither LAZY flag nor store (Y) are observed, which would fail property (1) | 
|---|
| 10481 | * because this would UNSET a cid which is actively used. | 
|---|
| 10482 | */ | 
|---|
| 10483 |  | 
|---|
| 10484 | void sched_mm_cid_migrate_from(struct task_struct *t) | 
|---|
| 10485 | { | 
|---|
| 10486 | t->migrate_from_cpu = task_cpu(p: t); | 
|---|
| 10487 | } | 
|---|
| 10488 |  | 
|---|
| 10489 | static | 
|---|
| 10490 | int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, | 
|---|
| 10491 | struct task_struct *t, | 
|---|
| 10492 | struct mm_cid *src_pcpu_cid) | 
|---|
| 10493 | { | 
|---|
| 10494 | struct mm_struct *mm = t->mm; | 
|---|
| 10495 | struct task_struct *src_task; | 
|---|
| 10496 | int src_cid, last_mm_cid; | 
|---|
| 10497 |  | 
|---|
| 10498 | if (!mm) | 
|---|
| 10499 | return -1; | 
|---|
| 10500 |  | 
|---|
| 10501 | last_mm_cid = t->last_mm_cid; | 
|---|
| 10502 | /* | 
|---|
| 10503 | * If the migrated task has no last cid, or if the current | 
|---|
| 10504 | * task on src rq uses the cid, it means the source cid does not need | 
|---|
| 10505 | * to be moved to the destination cpu. | 
|---|
| 10506 | */ | 
|---|
| 10507 | if (last_mm_cid == -1) | 
|---|
| 10508 | return -1; | 
|---|
| 10509 | src_cid = READ_ONCE(src_pcpu_cid->cid); | 
|---|
| 10510 | if (!mm_cid_is_valid(cid: src_cid) || last_mm_cid != src_cid) | 
|---|
| 10511 | return -1; | 
|---|
| 10512 |  | 
|---|
| 10513 | /* | 
|---|
| 10514 | * If we observe an active task using the mm on this rq, it means we | 
|---|
| 10515 | * are not the last task to be migrated from this cpu for this mm, so | 
|---|
| 10516 | * there is no need to move src_cid to the destination cpu. | 
|---|
| 10517 | */ | 
|---|
| 10518 | guard(rcu)(); | 
|---|
| 10519 | src_task = rcu_dereference(src_rq->curr); | 
|---|
| 10520 | if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { | 
|---|
| 10521 | t->last_mm_cid = -1; | 
|---|
| 10522 | return -1; | 
|---|
| 10523 | } | 
|---|
| 10524 |  | 
|---|
| 10525 | return src_cid; | 
|---|
| 10526 | } | 
|---|
| 10527 |  | 
|---|
| 10528 | static | 
|---|
| 10529 | int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, | 
|---|
| 10530 | struct task_struct *t, | 
|---|
| 10531 | struct mm_cid *src_pcpu_cid, | 
|---|
| 10532 | int src_cid) | 
|---|
| 10533 | { | 
|---|
| 10534 | struct task_struct *src_task; | 
|---|
| 10535 | struct mm_struct *mm = t->mm; | 
|---|
| 10536 | int lazy_cid; | 
|---|
| 10537 |  | 
|---|
| 10538 | if (src_cid == -1) | 
|---|
| 10539 | return -1; | 
|---|
| 10540 |  | 
|---|
| 10541 | /* | 
|---|
| 10542 | * Attempt to clear the source cpu cid to move it to the destination | 
|---|
| 10543 | * cpu. | 
|---|
| 10544 | */ | 
|---|
| 10545 | lazy_cid = mm_cid_set_lazy_put(cid: src_cid); | 
|---|
| 10546 | if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) | 
|---|
| 10547 | return -1; | 
|---|
| 10548 |  | 
|---|
| 10549 | /* | 
|---|
| 10550 | * The implicit barrier after cmpxchg per-mm/cpu cid before loading | 
|---|
| 10551 | * rq->curr->mm matches the scheduler barrier in context_switch() | 
|---|
| 10552 | * between store to rq->curr and load of prev and next task's | 
|---|
| 10553 | * per-mm/cpu cid. | 
|---|
| 10554 | * | 
|---|
| 10555 | * The implicit barrier after cmpxchg per-mm/cpu cid before loading | 
|---|
| 10556 | * rq->curr->mm_cid_active matches the barrier in | 
|---|
| 10557 | * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and | 
|---|
| 10558 | * sched_mm_cid_after_execve() between store to t->mm_cid_active and | 
|---|
| 10559 | * load of per-mm/cpu cid. | 
|---|
| 10560 | */ | 
|---|
| 10561 |  | 
|---|
| 10562 | /* | 
|---|
| 10563 | * If we observe an active task using the mm on this rq after setting | 
|---|
| 10564 | * the lazy-put flag, this task will be responsible for transitioning | 
|---|
| 10565 | * from lazy-put flag set to MM_CID_UNSET. | 
|---|
| 10566 | */ | 
|---|
| 10567 | scoped_guard (rcu) { | 
|---|
| 10568 | src_task = rcu_dereference(src_rq->curr); | 
|---|
| 10569 | if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { | 
|---|
| 10570 | /* | 
|---|
| 10571 | * We observed an active task for this mm, there is therefore | 
|---|
| 10572 | * no point in moving this cid to the destination cpu. | 
|---|
| 10573 | */ | 
|---|
| 10574 | t->last_mm_cid = -1; | 
|---|
| 10575 | return -1; | 
|---|
| 10576 | } | 
|---|
| 10577 | } | 
|---|
| 10578 |  | 
|---|
| 10579 | /* | 
|---|
| 10580 | * The src_cid is unused, so it can be unset. | 
|---|
| 10581 | */ | 
|---|
| 10582 | if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) | 
|---|
| 10583 | return -1; | 
|---|
| 10584 | WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); | 
|---|
| 10585 | return src_cid; | 
|---|
| 10586 | } | 
|---|
| 10587 |  | 
|---|
| 10588 | /* | 
|---|
| 10589 | * Migration to dst cpu. Called with dst_rq lock held. | 
|---|
| 10590 | * Interrupts are disabled, which keeps the window of cid ownership without the | 
|---|
| 10591 | * source rq lock held small. | 
|---|
| 10592 | */ | 
|---|
| 10593 | void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) | 
|---|
| 10594 | { | 
|---|
| 10595 | struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; | 
|---|
| 10596 | struct mm_struct *mm = t->mm; | 
|---|
| 10597 | int src_cid, src_cpu; | 
|---|
| 10598 | bool dst_cid_is_set; | 
|---|
| 10599 | struct rq *src_rq; | 
|---|
| 10600 |  | 
|---|
| 10601 | lockdep_assert_rq_held(rq: dst_rq); | 
|---|
| 10602 |  | 
|---|
| 10603 | if (!mm) | 
|---|
| 10604 | return; | 
|---|
| 10605 | src_cpu = t->migrate_from_cpu; | 
|---|
| 10606 | if (src_cpu == -1) { | 
|---|
| 10607 | t->last_mm_cid = -1; | 
|---|
| 10608 | return; | 
|---|
| 10609 | } | 
|---|
| 10610 | /* | 
|---|
| 10611 | * Move the src cid if the dst cid is unset. This keeps id | 
|---|
| 10612 | * allocation closest to 0 in cases where few threads migrate around | 
|---|
| 10613 | * many CPUs. | 
|---|
| 10614 | * | 
|---|
| 10615 | * If destination cid or recent cid is already set, we may have | 
|---|
| 10616 | * to just clear the src cid to ensure compactness in frequent | 
|---|
| 10617 | * migrations scenarios. | 
|---|
| 10618 | * | 
|---|
| 10619 | * It is not useful to clear the src cid when the number of threads is | 
|---|
| 10620 | * greater or equal to the number of allowed CPUs, because user-space | 
|---|
| 10621 | * can expect that the number of allowed cids can reach the number of | 
|---|
| 10622 | * allowed CPUs. | 
|---|
| 10623 | */ | 
|---|
| 10624 | dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); | 
|---|
| 10625 | dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || | 
|---|
| 10626 | !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); | 
|---|
| 10627 | if (dst_cid_is_set && atomic_read(v: &mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) | 
|---|
| 10628 | return; | 
|---|
| 10629 | src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); | 
|---|
| 10630 | src_rq = cpu_rq(src_cpu); | 
|---|
| 10631 | src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); | 
|---|
| 10632 | if (src_cid == -1) | 
|---|
| 10633 | return; | 
|---|
| 10634 | src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, | 
|---|
| 10635 | src_cid); | 
|---|
| 10636 | if (src_cid == -1) | 
|---|
| 10637 | return; | 
|---|
| 10638 | if (dst_cid_is_set) { | 
|---|
| 10639 | __mm_cid_put(mm, cid: src_cid); | 
|---|
| 10640 | return; | 
|---|
| 10641 | } | 
|---|
| 10642 | /* Move src_cid to dst cpu. */ | 
|---|
| 10643 | mm_cid_snapshot_time(rq: dst_rq, mm); | 
|---|
| 10644 | WRITE_ONCE(dst_pcpu_cid->cid, src_cid); | 
|---|
| 10645 | WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); | 
|---|
| 10646 | } | 
|---|
| 10647 |  | 
|---|
| 10648 | static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, | 
|---|
| 10649 | int cpu) | 
|---|
| 10650 | { | 
|---|
| 10651 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 10652 | struct task_struct *t; | 
|---|
| 10653 | int cid, lazy_cid; | 
|---|
| 10654 |  | 
|---|
| 10655 | cid = READ_ONCE(pcpu_cid->cid); | 
|---|
| 10656 | if (!mm_cid_is_valid(cid)) | 
|---|
| 10657 | return; | 
|---|
| 10658 |  | 
|---|
| 10659 | /* | 
|---|
| 10660 | * Clear the cpu cid if it is set to keep cid allocation compact.  If | 
|---|
| 10661 | * there happens to be other tasks left on the source cpu using this | 
|---|
| 10662 | * mm, the next task using this mm will reallocate its cid on context | 
|---|
| 10663 | * switch. | 
|---|
| 10664 | */ | 
|---|
| 10665 | lazy_cid = mm_cid_set_lazy_put(cid); | 
|---|
| 10666 | if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) | 
|---|
| 10667 | return; | 
|---|
| 10668 |  | 
|---|
| 10669 | /* | 
|---|
| 10670 | * The implicit barrier after cmpxchg per-mm/cpu cid before loading | 
|---|
| 10671 | * rq->curr->mm matches the scheduler barrier in context_switch() | 
|---|
| 10672 | * between store to rq->curr and load of prev and next task's | 
|---|
| 10673 | * per-mm/cpu cid. | 
|---|
| 10674 | * | 
|---|
| 10675 | * The implicit barrier after cmpxchg per-mm/cpu cid before loading | 
|---|
| 10676 | * rq->curr->mm_cid_active matches the barrier in | 
|---|
| 10677 | * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and | 
|---|
| 10678 | * sched_mm_cid_after_execve() between store to t->mm_cid_active and | 
|---|
| 10679 | * load of per-mm/cpu cid. | 
|---|
| 10680 | */ | 
|---|
| 10681 |  | 
|---|
| 10682 | /* | 
|---|
| 10683 | * If we observe an active task using the mm on this rq after setting | 
|---|
| 10684 | * the lazy-put flag, that task will be responsible for transitioning | 
|---|
| 10685 | * from lazy-put flag set to MM_CID_UNSET. | 
|---|
| 10686 | */ | 
|---|
| 10687 | scoped_guard (rcu) { | 
|---|
| 10688 | t = rcu_dereference(rq->curr); | 
|---|
| 10689 | if (READ_ONCE(t->mm_cid_active) && t->mm == mm) | 
|---|
| 10690 | return; | 
|---|
| 10691 | } | 
|---|
| 10692 |  | 
|---|
| 10693 | /* | 
|---|
| 10694 | * The cid is unused, so it can be unset. | 
|---|
| 10695 | * Disable interrupts to keep the window of cid ownership without rq | 
|---|
| 10696 | * lock small. | 
|---|
| 10697 | */ | 
|---|
| 10698 | scoped_guard (irqsave) { | 
|---|
| 10699 | if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) | 
|---|
| 10700 | __mm_cid_put(mm, cid); | 
|---|
| 10701 | } | 
|---|
| 10702 | } | 
|---|
| 10703 |  | 
|---|
| 10704 | static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) | 
|---|
| 10705 | { | 
|---|
| 10706 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 10707 | struct mm_cid *pcpu_cid; | 
|---|
| 10708 | struct task_struct *curr; | 
|---|
| 10709 | u64 rq_clock; | 
|---|
| 10710 |  | 
|---|
| 10711 | /* | 
|---|
| 10712 | * rq->clock load is racy on 32-bit but one spurious clear once in a | 
|---|
| 10713 | * while is irrelevant. | 
|---|
| 10714 | */ | 
|---|
| 10715 | rq_clock = READ_ONCE(rq->clock); | 
|---|
| 10716 | pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); | 
|---|
| 10717 |  | 
|---|
| 10718 | /* | 
|---|
| 10719 | * In order to take care of infrequently scheduled tasks, bump the time | 
|---|
| 10720 | * snapshot associated with this cid if an active task using the mm is | 
|---|
| 10721 | * observed on this rq. | 
|---|
| 10722 | */ | 
|---|
| 10723 | scoped_guard (rcu) { | 
|---|
| 10724 | curr = rcu_dereference(rq->curr); | 
|---|
| 10725 | if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { | 
|---|
| 10726 | WRITE_ONCE(pcpu_cid->time, rq_clock); | 
|---|
| 10727 | return; | 
|---|
| 10728 | } | 
|---|
| 10729 | } | 
|---|
| 10730 |  | 
|---|
| 10731 | if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) | 
|---|
| 10732 | return; | 
|---|
| 10733 | sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); | 
|---|
| 10734 | } | 
|---|
| 10735 |  | 
|---|
| 10736 | static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, | 
|---|
| 10737 | int weight) | 
|---|
| 10738 | { | 
|---|
| 10739 | struct mm_cid *pcpu_cid; | 
|---|
| 10740 | int cid; | 
|---|
| 10741 |  | 
|---|
| 10742 | pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); | 
|---|
| 10743 | cid = READ_ONCE(pcpu_cid->cid); | 
|---|
| 10744 | if (!mm_cid_is_valid(cid) || cid < weight) | 
|---|
| 10745 | return; | 
|---|
| 10746 | sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); | 
|---|
| 10747 | } | 
|---|
| 10748 |  | 
|---|
| 10749 | static void task_mm_cid_work(struct callback_head *work) | 
|---|
| 10750 | { | 
|---|
| 10751 | unsigned long now = jiffies, old_scan, next_scan; | 
|---|
| 10752 | struct task_struct *t = current; | 
|---|
| 10753 | struct cpumask *cidmask; | 
|---|
| 10754 | struct mm_struct *mm; | 
|---|
| 10755 | int weight, cpu; | 
|---|
| 10756 |  | 
|---|
| 10757 | WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); | 
|---|
| 10758 |  | 
|---|
| 10759 | work->next = work;	/* Prevent double-add */ | 
|---|
| 10760 | if (t->flags & PF_EXITING) | 
|---|
| 10761 | return; | 
|---|
| 10762 | mm = t->mm; | 
|---|
| 10763 | if (!mm) | 
|---|
| 10764 | return; | 
|---|
| 10765 | old_scan = READ_ONCE(mm->mm_cid_next_scan); | 
|---|
| 10766 | next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); | 
|---|
| 10767 | if (!old_scan) { | 
|---|
| 10768 | unsigned long res; | 
|---|
| 10769 |  | 
|---|
| 10770 | res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); | 
|---|
| 10771 | if (res != old_scan) | 
|---|
| 10772 | old_scan = res; | 
|---|
| 10773 | else | 
|---|
| 10774 | old_scan = next_scan; | 
|---|
| 10775 | } | 
|---|
| 10776 | if (time_before(now, old_scan)) | 
|---|
| 10777 | return; | 
|---|
| 10778 | if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) | 
|---|
| 10779 | return; | 
|---|
| 10780 | cidmask = mm_cidmask(mm); | 
|---|
| 10781 | /* Clear cids that were not recently used. */ | 
|---|
| 10782 | for_each_possible_cpu(cpu) | 
|---|
| 10783 | sched_mm_cid_remote_clear_old(mm, cpu); | 
|---|
| 10784 | weight = cpumask_weight(srcp: cidmask); | 
|---|
| 10785 | /* | 
|---|
| 10786 | * Clear cids that are greater or equal to the cidmask weight to | 
|---|
| 10787 | * recompact it. | 
|---|
| 10788 | */ | 
|---|
| 10789 | for_each_possible_cpu(cpu) | 
|---|
| 10790 | sched_mm_cid_remote_clear_weight(mm, cpu, weight); | 
|---|
| 10791 | } | 
|---|
| 10792 |  | 
|---|
| 10793 | void init_sched_mm_cid(struct task_struct *t) | 
|---|
| 10794 | { | 
|---|
| 10795 | struct mm_struct *mm = t->mm; | 
|---|
| 10796 | int mm_users = 0; | 
|---|
| 10797 |  | 
|---|
| 10798 | if (mm) { | 
|---|
| 10799 | mm_users = atomic_read(v: &mm->mm_users); | 
|---|
| 10800 | if (mm_users == 1) | 
|---|
| 10801 | mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); | 
|---|
| 10802 | } | 
|---|
| 10803 | t->cid_work.next = &t->cid_work;	/* Protect against double add */ | 
|---|
| 10804 | init_task_work(twork: &t->cid_work, func: task_mm_cid_work); | 
|---|
| 10805 | } | 
|---|
| 10806 |  | 
|---|
| 10807 | void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) | 
|---|
| 10808 | { | 
|---|
| 10809 | struct callback_head *work = &curr->cid_work; | 
|---|
| 10810 | unsigned long now = jiffies; | 
|---|
| 10811 |  | 
|---|
| 10812 | if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || | 
|---|
| 10813 | work->next != work) | 
|---|
| 10814 | return; | 
|---|
| 10815 | if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) | 
|---|
| 10816 | return; | 
|---|
| 10817 |  | 
|---|
| 10818 | /* No page allocation under rq lock */ | 
|---|
| 10819 | task_work_add(task: curr, twork: work, mode: TWA_RESUME); | 
|---|
| 10820 | } | 
|---|
| 10821 |  | 
|---|
| 10822 | void sched_mm_cid_exit_signals(struct task_struct *t) | 
|---|
| 10823 | { | 
|---|
| 10824 | struct mm_struct *mm = t->mm; | 
|---|
| 10825 | struct rq *rq; | 
|---|
| 10826 |  | 
|---|
| 10827 | if (!mm) | 
|---|
| 10828 | return; | 
|---|
| 10829 |  | 
|---|
| 10830 | preempt_disable(); | 
|---|
| 10831 | rq = this_rq(); | 
|---|
| 10832 | guard(rq_lock_irqsave)(l: rq); | 
|---|
| 10833 | preempt_enable_no_resched();	/* holding spinlock */ | 
|---|
| 10834 | WRITE_ONCE(t->mm_cid_active, 0); | 
|---|
| 10835 | /* | 
|---|
| 10836 | * Store t->mm_cid_active before loading per-mm/cpu cid. | 
|---|
| 10837 | * Matches barrier in sched_mm_cid_remote_clear_old(). | 
|---|
| 10838 | */ | 
|---|
| 10839 | smp_mb(); | 
|---|
| 10840 | mm_cid_put(mm); | 
|---|
| 10841 | t->last_mm_cid = t->mm_cid = -1; | 
|---|
| 10842 | } | 
|---|
| 10843 |  | 
|---|
| 10844 | void sched_mm_cid_before_execve(struct task_struct *t) | 
|---|
| 10845 | { | 
|---|
| 10846 | struct mm_struct *mm = t->mm; | 
|---|
| 10847 | struct rq *rq; | 
|---|
| 10848 |  | 
|---|
| 10849 | if (!mm) | 
|---|
| 10850 | return; | 
|---|
| 10851 |  | 
|---|
| 10852 | preempt_disable(); | 
|---|
| 10853 | rq = this_rq(); | 
|---|
| 10854 | guard(rq_lock_irqsave)(l: rq); | 
|---|
| 10855 | preempt_enable_no_resched();	/* holding spinlock */ | 
|---|
| 10856 | WRITE_ONCE(t->mm_cid_active, 0); | 
|---|
| 10857 | /* | 
|---|
| 10858 | * Store t->mm_cid_active before loading per-mm/cpu cid. | 
|---|
| 10859 | * Matches barrier in sched_mm_cid_remote_clear_old(). | 
|---|
| 10860 | */ | 
|---|
| 10861 | smp_mb(); | 
|---|
| 10862 | mm_cid_put(mm); | 
|---|
| 10863 | t->last_mm_cid = t->mm_cid = -1; | 
|---|
| 10864 | } | 
|---|
| 10865 |  | 
|---|
| 10866 | void sched_mm_cid_after_execve(struct task_struct *t) | 
|---|
| 10867 | { | 
|---|
| 10868 | struct mm_struct *mm = t->mm; | 
|---|
| 10869 | struct rq *rq; | 
|---|
| 10870 |  | 
|---|
| 10871 | if (!mm) | 
|---|
| 10872 | return; | 
|---|
| 10873 |  | 
|---|
| 10874 | preempt_disable(); | 
|---|
| 10875 | rq = this_rq(); | 
|---|
| 10876 | scoped_guard (rq_lock_irqsave, rq) { | 
|---|
| 10877 | preempt_enable_no_resched();	/* holding spinlock */ | 
|---|
| 10878 | WRITE_ONCE(t->mm_cid_active, 1); | 
|---|
| 10879 | /* | 
|---|
| 10880 | * Store t->mm_cid_active before loading per-mm/cpu cid. | 
|---|
| 10881 | * Matches barrier in sched_mm_cid_remote_clear_old(). | 
|---|
| 10882 | */ | 
|---|
| 10883 | smp_mb(); | 
|---|
| 10884 | t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); | 
|---|
| 10885 | } | 
|---|
| 10886 | } | 
|---|
| 10887 |  | 
|---|
| 10888 | void sched_mm_cid_fork(struct task_struct *t) | 
|---|
| 10889 | { | 
|---|
| 10890 | WARN_ON_ONCE(!t->mm || t->mm_cid != -1); | 
|---|
| 10891 | t->mm_cid_active = 1; | 
|---|
| 10892 | } | 
|---|
| 10893 | #endif /* CONFIG_SCHED_MM_CID */ | 
|---|
| 10894 |  | 
|---|
| 10895 | #ifdef CONFIG_SCHED_CLASS_EXT | 
|---|
| 10896 | void sched_deq_and_put_task(struct task_struct *p, int queue_flags, | 
|---|
| 10897 | struct sched_enq_and_set_ctx *ctx) | 
|---|
| 10898 | { | 
|---|
| 10899 | struct rq *rq = task_rq(p); | 
|---|
| 10900 |  | 
|---|
| 10901 | lockdep_assert_rq_held(rq); | 
|---|
| 10902 |  | 
|---|
| 10903 | *ctx = (struct sched_enq_and_set_ctx){ | 
|---|
| 10904 | .p = p, | 
|---|
| 10905 | .queue_flags = queue_flags, | 
|---|
| 10906 | .queued = task_on_rq_queued(p), | 
|---|
| 10907 | .running = task_current(rq, p), | 
|---|
| 10908 | }; | 
|---|
| 10909 |  | 
|---|
| 10910 | update_rq_clock(rq); | 
|---|
| 10911 | if (ctx->queued) | 
|---|
| 10912 | dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); | 
|---|
| 10913 | if (ctx->running) | 
|---|
| 10914 | put_prev_task(rq, p); | 
|---|
| 10915 | } | 
|---|
| 10916 |  | 
|---|
| 10917 | void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) | 
|---|
| 10918 | { | 
|---|
| 10919 | struct rq *rq = task_rq(ctx->p); | 
|---|
| 10920 |  | 
|---|
| 10921 | lockdep_assert_rq_held(rq); | 
|---|
| 10922 |  | 
|---|
| 10923 | if (ctx->queued) | 
|---|
| 10924 | enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); | 
|---|
| 10925 | if (ctx->running) | 
|---|
| 10926 | set_next_task(rq, ctx->p); | 
|---|
| 10927 | } | 
|---|
| 10928 | #endif /* CONFIG_SCHED_CLASS_EXT */ | 
|---|
| 10929 |  | 
|---|