| 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | /* | 
|---|
| 3 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | 
|---|
| 4 | * policies) | 
|---|
| 5 | */ | 
|---|
| 6 |  | 
|---|
| 7 | #include "sched.h" | 
|---|
| 8 | #include "pelt.h" | 
|---|
| 9 |  | 
|---|
| 10 | int sched_rr_timeslice = RR_TIMESLICE; | 
|---|
| 11 | /* More than 4 hours if BW_SHIFT equals 20. */ | 
|---|
| 12 | static const u64 max_rt_runtime = MAX_BW; | 
|---|
| 13 |  | 
|---|
| 14 | /* | 
|---|
| 15 | * period over which we measure -rt task CPU usage in us. | 
|---|
| 16 | * default: 1s | 
|---|
| 17 | */ | 
|---|
| 18 | int sysctl_sched_rt_period = 1000000; | 
|---|
| 19 |  | 
|---|
| 20 | /* | 
|---|
| 21 | * part of the period that we allow rt tasks to run in us. | 
|---|
| 22 | * default: 0.95s | 
|---|
| 23 | */ | 
|---|
| 24 | int sysctl_sched_rt_runtime = 950000; | 
|---|
| 25 |  | 
|---|
| 26 | #ifdef CONFIG_SYSCTL | 
|---|
| 27 | static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ; | 
|---|
| 28 | static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, | 
|---|
| 29 | size_t *lenp, loff_t *ppos); | 
|---|
| 30 | static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, | 
|---|
| 31 | size_t *lenp, loff_t *ppos); | 
|---|
| 32 | static const struct ctl_table sched_rt_sysctls[] = { | 
|---|
| 33 | { | 
|---|
| 34 | .procname       = "sched_rt_period_us", | 
|---|
| 35 | .data           = &sysctl_sched_rt_period, | 
|---|
| 36 | .maxlen         = sizeof(int), | 
|---|
| 37 | .mode           = 0644, | 
|---|
| 38 | .proc_handler   = sched_rt_handler, | 
|---|
| 39 | .extra1         = SYSCTL_ONE, | 
|---|
| 40 | .extra2         = SYSCTL_INT_MAX, | 
|---|
| 41 | }, | 
|---|
| 42 | { | 
|---|
| 43 | .procname       = "sched_rt_runtime_us", | 
|---|
| 44 | .data           = &sysctl_sched_rt_runtime, | 
|---|
| 45 | .maxlen         = sizeof(int), | 
|---|
| 46 | .mode           = 0644, | 
|---|
| 47 | .proc_handler   = sched_rt_handler, | 
|---|
| 48 | .extra1         = SYSCTL_NEG_ONE, | 
|---|
| 49 | .extra2         = (void *)&sysctl_sched_rt_period, | 
|---|
| 50 | }, | 
|---|
| 51 | { | 
|---|
| 52 | .procname       = "sched_rr_timeslice_ms", | 
|---|
| 53 | .data           = &sysctl_sched_rr_timeslice, | 
|---|
| 54 | .maxlen         = sizeof(int), | 
|---|
| 55 | .mode           = 0644, | 
|---|
| 56 | .proc_handler   = sched_rr_handler, | 
|---|
| 57 | }, | 
|---|
| 58 | }; | 
|---|
| 59 |  | 
|---|
| 60 | static int __init sched_rt_sysctl_init(void) | 
|---|
| 61 | { | 
|---|
| 62 | register_sysctl_init( "kernel", sched_rt_sysctls); | 
|---|
| 63 | return 0; | 
|---|
| 64 | } | 
|---|
| 65 | late_initcall(sched_rt_sysctl_init); | 
|---|
| 66 | #endif /* CONFIG_SYSCTL */ | 
|---|
| 67 |  | 
|---|
| 68 | void init_rt_rq(struct rt_rq *rt_rq) | 
|---|
| 69 | { | 
|---|
| 70 | struct rt_prio_array *array; | 
|---|
| 71 | int i; | 
|---|
| 72 |  | 
|---|
| 73 | array = &rt_rq->active; | 
|---|
| 74 | for (i = 0; i < MAX_RT_PRIO; i++) { | 
|---|
| 75 | INIT_LIST_HEAD(list: array->queue + i); | 
|---|
| 76 | __clear_bit(i, array->bitmap); | 
|---|
| 77 | } | 
|---|
| 78 | /* delimiter for bitsearch: */ | 
|---|
| 79 | __set_bit(MAX_RT_PRIO, array->bitmap); | 
|---|
| 80 |  | 
|---|
| 81 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; | 
|---|
| 82 | rt_rq->highest_prio.next = MAX_RT_PRIO-1; | 
|---|
| 83 | rt_rq->overloaded = 0; | 
|---|
| 84 | plist_head_init(head: &rt_rq->pushable_tasks); | 
|---|
| 85 | /* We start is dequeued state, because no RT tasks are queued */ | 
|---|
| 86 | rt_rq->rt_queued = 0; | 
|---|
| 87 |  | 
|---|
| 88 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 89 | rt_rq->rt_time = 0; | 
|---|
| 90 | rt_rq->rt_throttled = 0; | 
|---|
| 91 | rt_rq->rt_runtime = 0; | 
|---|
| 92 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); | 
|---|
| 93 | rt_rq->tg = &root_task_group; | 
|---|
| 94 | #endif | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 98 |  | 
|---|
| 99 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | 
|---|
| 100 |  | 
|---|
| 101 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | 
|---|
| 102 | { | 
|---|
| 103 | struct rt_bandwidth *rt_b = | 
|---|
| 104 | container_of(timer, struct rt_bandwidth, rt_period_timer); | 
|---|
| 105 | int idle = 0; | 
|---|
| 106 | int overrun; | 
|---|
| 107 |  | 
|---|
| 108 | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|---|
| 109 | for (;;) { | 
|---|
| 110 | overrun = hrtimer_forward_now(timer, rt_b->rt_period); | 
|---|
| 111 | if (!overrun) | 
|---|
| 112 | break; | 
|---|
| 113 |  | 
|---|
| 114 | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|---|
| 115 | idle = do_sched_rt_period_timer(rt_b, overrun); | 
|---|
| 116 | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|---|
| 117 | } | 
|---|
| 118 | if (idle) | 
|---|
| 119 | rt_b->rt_period_active = 0; | 
|---|
| 120 | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|---|
| 121 |  | 
|---|
| 122 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | 
|---|
| 126 | { | 
|---|
| 127 | rt_b->rt_period = ns_to_ktime(period); | 
|---|
| 128 | rt_b->rt_runtime = runtime; | 
|---|
| 129 |  | 
|---|
| 130 | raw_spin_lock_init(&rt_b->rt_runtime_lock); | 
|---|
| 131 |  | 
|---|
| 132 | hrtimer_setup(&rt_b->rt_period_timer, sched_rt_period_timer, CLOCK_MONOTONIC, | 
|---|
| 133 | HRTIMER_MODE_REL_HARD); | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) | 
|---|
| 137 | { | 
|---|
| 138 | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|---|
| 139 | if (!rt_b->rt_period_active) { | 
|---|
| 140 | rt_b->rt_period_active = 1; | 
|---|
| 141 | /* | 
|---|
| 142 | * SCHED_DEADLINE updates the bandwidth, as a run away | 
|---|
| 143 | * RT task with a DL task could hog a CPU. But DL does | 
|---|
| 144 | * not reset the period. If a deadline task was running | 
|---|
| 145 | * without an RT task running, it can cause RT tasks to | 
|---|
| 146 | * throttle when they start up. Kick the timer right away | 
|---|
| 147 | * to update the period. | 
|---|
| 148 | */ | 
|---|
| 149 | hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); | 
|---|
| 150 | hrtimer_start_expires(&rt_b->rt_period_timer, | 
|---|
| 151 | HRTIMER_MODE_ABS_PINNED_HARD); | 
|---|
| 152 | } | 
|---|
| 153 | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|---|
| 154 | } | 
|---|
| 155 |  | 
|---|
| 156 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | 
|---|
| 157 | { | 
|---|
| 158 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | 
|---|
| 159 | return; | 
|---|
| 160 |  | 
|---|
| 161 | do_start_rt_bandwidth(rt_b); | 
|---|
| 162 | } | 
|---|
| 163 |  | 
|---|
| 164 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | 
|---|
| 165 | { | 
|---|
| 166 | hrtimer_cancel(&rt_b->rt_period_timer); | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | 
|---|
| 170 |  | 
|---|
| 171 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 
|---|
| 172 | { | 
|---|
| 173 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | 
|---|
| 174 |  | 
|---|
| 175 | return container_of(rt_se, struct task_struct, rt); | 
|---|
| 176 | } | 
|---|
| 177 |  | 
|---|
| 178 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 
|---|
| 179 | { | 
|---|
| 180 | /* Cannot fold with non-CONFIG_RT_GROUP_SCHED version, layout */ | 
|---|
| 181 | WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); | 
|---|
| 182 | return rt_rq->rq; | 
|---|
| 183 | } | 
|---|
| 184 |  | 
|---|
| 185 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 
|---|
| 186 | { | 
|---|
| 187 | WARN_ON(!rt_group_sched_enabled() && rt_se->rt_rq->tg != &root_task_group); | 
|---|
| 188 | return rt_se->rt_rq; | 
|---|
| 189 | } | 
|---|
| 190 |  | 
|---|
| 191 | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) | 
|---|
| 192 | { | 
|---|
| 193 | struct rt_rq *rt_rq = rt_se->rt_rq; | 
|---|
| 194 |  | 
|---|
| 195 | WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); | 
|---|
| 196 | return rt_rq->rq; | 
|---|
| 197 | } | 
|---|
| 198 |  | 
|---|
| 199 | void unregister_rt_sched_group(struct task_group *tg) | 
|---|
| 200 | { | 
|---|
| 201 | if (!rt_group_sched_enabled()) | 
|---|
| 202 | return; | 
|---|
| 203 |  | 
|---|
| 204 | if (tg->rt_se) | 
|---|
| 205 | destroy_rt_bandwidth(&tg->rt_bandwidth); | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|
| 208 | void free_rt_sched_group(struct task_group *tg) | 
|---|
| 209 | { | 
|---|
| 210 | int i; | 
|---|
| 211 |  | 
|---|
| 212 | if (!rt_group_sched_enabled()) | 
|---|
| 213 | return; | 
|---|
| 214 |  | 
|---|
| 215 | for_each_possible_cpu(i) { | 
|---|
| 216 | if (tg->rt_rq) | 
|---|
| 217 | kfree(tg->rt_rq[i]); | 
|---|
| 218 | if (tg->rt_se) | 
|---|
| 219 | kfree(tg->rt_se[i]); | 
|---|
| 220 | } | 
|---|
| 221 |  | 
|---|
| 222 | kfree(tg->rt_rq); | 
|---|
| 223 | kfree(tg->rt_se); | 
|---|
| 224 | } | 
|---|
| 225 |  | 
|---|
| 226 | void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | 
|---|
| 227 | struct sched_rt_entity *rt_se, int cpu, | 
|---|
| 228 | struct sched_rt_entity *parent) | 
|---|
| 229 | { | 
|---|
| 230 | struct rq *rq = cpu_rq(cpu); | 
|---|
| 231 |  | 
|---|
| 232 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; | 
|---|
| 233 | rt_rq->rt_nr_boosted = 0; | 
|---|
| 234 | rt_rq->rq = rq; | 
|---|
| 235 | rt_rq->tg = tg; | 
|---|
| 236 |  | 
|---|
| 237 | tg->rt_rq[cpu] = rt_rq; | 
|---|
| 238 | tg->rt_se[cpu] = rt_se; | 
|---|
| 239 |  | 
|---|
| 240 | if (!rt_se) | 
|---|
| 241 | return; | 
|---|
| 242 |  | 
|---|
| 243 | if (!parent) | 
|---|
| 244 | rt_se->rt_rq = &rq->rt; | 
|---|
| 245 | else | 
|---|
| 246 | rt_se->rt_rq = parent->my_q; | 
|---|
| 247 |  | 
|---|
| 248 | rt_se->my_q = rt_rq; | 
|---|
| 249 | rt_se->parent = parent; | 
|---|
| 250 | INIT_LIST_HEAD(&rt_se->run_list); | 
|---|
| 251 | } | 
|---|
| 252 |  | 
|---|
| 253 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 
|---|
| 254 | { | 
|---|
| 255 | struct rt_rq *rt_rq; | 
|---|
| 256 | struct sched_rt_entity *rt_se; | 
|---|
| 257 | int i; | 
|---|
| 258 |  | 
|---|
| 259 | if (!rt_group_sched_enabled()) | 
|---|
| 260 | return 1; | 
|---|
| 261 |  | 
|---|
| 262 | tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); | 
|---|
| 263 | if (!tg->rt_rq) | 
|---|
| 264 | goto err; | 
|---|
| 265 | tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); | 
|---|
| 266 | if (!tg->rt_se) | 
|---|
| 267 | goto err; | 
|---|
| 268 |  | 
|---|
| 269 | init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0); | 
|---|
| 270 |  | 
|---|
| 271 | for_each_possible_cpu(i) { | 
|---|
| 272 | rt_rq = kzalloc_node(sizeof(struct rt_rq), | 
|---|
| 273 | GFP_KERNEL, cpu_to_node(i)); | 
|---|
| 274 | if (!rt_rq) | 
|---|
| 275 | goto err; | 
|---|
| 276 |  | 
|---|
| 277 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | 
|---|
| 278 | GFP_KERNEL, cpu_to_node(i)); | 
|---|
| 279 | if (!rt_se) | 
|---|
| 280 | goto err_free_rq; | 
|---|
| 281 |  | 
|---|
| 282 | init_rt_rq(rt_rq); | 
|---|
| 283 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 
|---|
| 284 | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); | 
|---|
| 285 | } | 
|---|
| 286 |  | 
|---|
| 287 | return 1; | 
|---|
| 288 |  | 
|---|
| 289 | err_free_rq: | 
|---|
| 290 | kfree(rt_rq); | 
|---|
| 291 | err: | 
|---|
| 292 | return 0; | 
|---|
| 293 | } | 
|---|
| 294 |  | 
|---|
| 295 | #else /* !CONFIG_RT_GROUP_SCHED: */ | 
|---|
| 296 |  | 
|---|
| 297 | #define rt_entity_is_task(rt_se) (1) | 
|---|
| 298 |  | 
|---|
| 299 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 
|---|
| 300 | { | 
|---|
| 301 | return container_of(rt_se, struct task_struct, rt); | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 
|---|
| 305 | { | 
|---|
| 306 | return container_of(rt_rq, struct rq, rt); | 
|---|
| 307 | } | 
|---|
| 308 |  | 
|---|
| 309 | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) | 
|---|
| 310 | { | 
|---|
| 311 | struct task_struct *p = rt_task_of(rt_se); | 
|---|
| 312 |  | 
|---|
| 313 | return task_rq(p); | 
|---|
| 314 | } | 
|---|
| 315 |  | 
|---|
| 316 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 
|---|
| 317 | { | 
|---|
| 318 | struct rq *rq = rq_of_rt_se(rt_se); | 
|---|
| 319 |  | 
|---|
| 320 | return &rq->rt; | 
|---|
| 321 | } | 
|---|
| 322 |  | 
|---|
| 323 | void unregister_rt_sched_group(struct task_group *tg) { } | 
|---|
| 324 |  | 
|---|
| 325 | void free_rt_sched_group(struct task_group *tg) { } | 
|---|
| 326 |  | 
|---|
| 327 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 
|---|
| 328 | { | 
|---|
| 329 | return 1; | 
|---|
| 330 | } | 
|---|
| 331 | #endif /* !CONFIG_RT_GROUP_SCHED */ | 
|---|
| 332 |  | 
|---|
| 333 | static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) | 
|---|
| 334 | { | 
|---|
| 335 | /* Try to pull RT tasks here if we lower this rq's prio */ | 
|---|
| 336 | return rq->online && rq->rt.highest_prio.curr > prev->prio; | 
|---|
| 337 | } | 
|---|
| 338 |  | 
|---|
| 339 | static inline int rt_overloaded(struct rq *rq) | 
|---|
| 340 | { | 
|---|
| 341 | return atomic_read(v: &rq->rd->rto_count); | 
|---|
| 342 | } | 
|---|
| 343 |  | 
|---|
| 344 | static inline void rt_set_overload(struct rq *rq) | 
|---|
| 345 | { | 
|---|
| 346 | if (!rq->online) | 
|---|
| 347 | return; | 
|---|
| 348 |  | 
|---|
| 349 | cpumask_set_cpu(cpu: rq->cpu, dstp: rq->rd->rto_mask); | 
|---|
| 350 | /* | 
|---|
| 351 | * Make sure the mask is visible before we set | 
|---|
| 352 | * the overload count. That is checked to determine | 
|---|
| 353 | * if we should look at the mask. It would be a shame | 
|---|
| 354 | * if we looked at the mask, but the mask was not | 
|---|
| 355 | * updated yet. | 
|---|
| 356 | * | 
|---|
| 357 | * Matched by the barrier in pull_rt_task(). | 
|---|
| 358 | */ | 
|---|
| 359 | smp_wmb(); | 
|---|
| 360 | atomic_inc(v: &rq->rd->rto_count); | 
|---|
| 361 | } | 
|---|
| 362 |  | 
|---|
| 363 | static inline void rt_clear_overload(struct rq *rq) | 
|---|
| 364 | { | 
|---|
| 365 | if (!rq->online) | 
|---|
| 366 | return; | 
|---|
| 367 |  | 
|---|
| 368 | /* the order here really doesn't matter */ | 
|---|
| 369 | atomic_dec(v: &rq->rd->rto_count); | 
|---|
| 370 | cpumask_clear_cpu(cpu: rq->cpu, dstp: rq->rd->rto_mask); | 
|---|
| 371 | } | 
|---|
| 372 |  | 
|---|
| 373 | static inline int has_pushable_tasks(struct rq *rq) | 
|---|
| 374 | { | 
|---|
| 375 | return !plist_head_empty(head: &rq->rt.pushable_tasks); | 
|---|
| 376 | } | 
|---|
| 377 |  | 
|---|
| 378 | static DEFINE_PER_CPU(struct balance_callback, rt_push_head); | 
|---|
| 379 | static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); | 
|---|
| 380 |  | 
|---|
| 381 | static void push_rt_tasks(struct rq *); | 
|---|
| 382 | static void pull_rt_task(struct rq *); | 
|---|
| 383 |  | 
|---|
| 384 | static inline void rt_queue_push_tasks(struct rq *rq) | 
|---|
| 385 | { | 
|---|
| 386 | if (!has_pushable_tasks(rq)) | 
|---|
| 387 | return; | 
|---|
| 388 |  | 
|---|
| 389 | queue_balance_callback(rq, head: &per_cpu(rt_push_head, rq->cpu), func: push_rt_tasks); | 
|---|
| 390 | } | 
|---|
| 391 |  | 
|---|
| 392 | static inline void rt_queue_pull_task(struct rq *rq) | 
|---|
| 393 | { | 
|---|
| 394 | queue_balance_callback(rq, head: &per_cpu(rt_pull_head, rq->cpu), func: pull_rt_task); | 
|---|
| 395 | } | 
|---|
| 396 |  | 
|---|
| 397 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 
|---|
| 398 | { | 
|---|
| 399 | plist_del(node: &p->pushable_tasks, head: &rq->rt.pushable_tasks); | 
|---|
| 400 | plist_node_init(node: &p->pushable_tasks, prio: p->prio); | 
|---|
| 401 | plist_add(node: &p->pushable_tasks, head: &rq->rt.pushable_tasks); | 
|---|
| 402 |  | 
|---|
| 403 | /* Update the highest prio pushable task */ | 
|---|
| 404 | if (p->prio < rq->rt.highest_prio.next) | 
|---|
| 405 | rq->rt.highest_prio.next = p->prio; | 
|---|
| 406 |  | 
|---|
| 407 | if (!rq->rt.overloaded) { | 
|---|
| 408 | rt_set_overload(rq); | 
|---|
| 409 | rq->rt.overloaded = 1; | 
|---|
| 410 | } | 
|---|
| 411 | } | 
|---|
| 412 |  | 
|---|
| 413 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | 
|---|
| 414 | { | 
|---|
| 415 | plist_del(node: &p->pushable_tasks, head: &rq->rt.pushable_tasks); | 
|---|
| 416 |  | 
|---|
| 417 | /* Update the new highest prio pushable task */ | 
|---|
| 418 | if (has_pushable_tasks(rq)) { | 
|---|
| 419 | p = plist_first_entry(&rq->rt.pushable_tasks, | 
|---|
| 420 | struct task_struct, pushable_tasks); | 
|---|
| 421 | rq->rt.highest_prio.next = p->prio; | 
|---|
| 422 | } else { | 
|---|
| 423 | rq->rt.highest_prio.next = MAX_RT_PRIO-1; | 
|---|
| 424 |  | 
|---|
| 425 | if (rq->rt.overloaded) { | 
|---|
| 426 | rt_clear_overload(rq); | 
|---|
| 427 | rq->rt.overloaded = 0; | 
|---|
| 428 | } | 
|---|
| 429 | } | 
|---|
| 430 | } | 
|---|
| 431 |  | 
|---|
| 432 | static void enqueue_top_rt_rq(struct rt_rq *rt_rq); | 
|---|
| 433 | static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); | 
|---|
| 434 |  | 
|---|
| 435 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 
|---|
| 436 | { | 
|---|
| 437 | return rt_se->on_rq; | 
|---|
| 438 | } | 
|---|
| 439 |  | 
|---|
| 440 | #ifdef CONFIG_UCLAMP_TASK | 
|---|
| 441 | /* | 
|---|
| 442 | * Verify the fitness of task @p to run on @cpu taking into account the uclamp | 
|---|
| 443 | * settings. | 
|---|
| 444 | * | 
|---|
| 445 | * This check is only important for heterogeneous systems where uclamp_min value | 
|---|
| 446 | * is higher than the capacity of a @cpu. For non-heterogeneous system this | 
|---|
| 447 | * function will always return true. | 
|---|
| 448 | * | 
|---|
| 449 | * The function will return true if the capacity of the @cpu is >= the | 
|---|
| 450 | * uclamp_min and false otherwise. | 
|---|
| 451 | * | 
|---|
| 452 | * Note that uclamp_min will be clamped to uclamp_max if uclamp_min | 
|---|
| 453 | * > uclamp_max. | 
|---|
| 454 | */ | 
|---|
| 455 | static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) | 
|---|
| 456 | { | 
|---|
| 457 | unsigned int min_cap; | 
|---|
| 458 | unsigned int max_cap; | 
|---|
| 459 | unsigned int cpu_cap; | 
|---|
| 460 |  | 
|---|
| 461 | /* Only heterogeneous systems can benefit from this check */ | 
|---|
| 462 | if (!sched_asym_cpucap_active()) | 
|---|
| 463 | return true; | 
|---|
| 464 |  | 
|---|
| 465 | min_cap = uclamp_eff_value(p, UCLAMP_MIN); | 
|---|
| 466 | max_cap = uclamp_eff_value(p, UCLAMP_MAX); | 
|---|
| 467 |  | 
|---|
| 468 | cpu_cap = arch_scale_cpu_capacity(cpu); | 
|---|
| 469 |  | 
|---|
| 470 | return cpu_cap >= min(min_cap, max_cap); | 
|---|
| 471 | } | 
|---|
| 472 | #else /* !CONFIG_UCLAMP_TASK: */ | 
|---|
| 473 | static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) | 
|---|
| 474 | { | 
|---|
| 475 | return true; | 
|---|
| 476 | } | 
|---|
| 477 | #endif /* !CONFIG_UCLAMP_TASK */ | 
|---|
| 478 |  | 
|---|
| 479 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 480 |  | 
|---|
| 481 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 
|---|
| 482 | { | 
|---|
| 483 | return rt_rq->rt_runtime; | 
|---|
| 484 | } | 
|---|
| 485 |  | 
|---|
| 486 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 
|---|
| 487 | { | 
|---|
| 488 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | 
|---|
| 489 | } | 
|---|
| 490 |  | 
|---|
| 491 | typedef struct task_group *rt_rq_iter_t; | 
|---|
| 492 |  | 
|---|
| 493 | static inline struct task_group *next_task_group(struct task_group *tg) | 
|---|
| 494 | { | 
|---|
| 495 | if (!rt_group_sched_enabled()) { | 
|---|
| 496 | WARN_ON(tg != &root_task_group); | 
|---|
| 497 | return NULL; | 
|---|
| 498 | } | 
|---|
| 499 |  | 
|---|
| 500 | do { | 
|---|
| 501 | tg = list_entry_rcu(tg->list.next, | 
|---|
| 502 | typeof(struct task_group), list); | 
|---|
| 503 | } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); | 
|---|
| 504 |  | 
|---|
| 505 | if (&tg->list == &task_groups) | 
|---|
| 506 | tg = NULL; | 
|---|
| 507 |  | 
|---|
| 508 | return tg; | 
|---|
| 509 | } | 
|---|
| 510 |  | 
|---|
| 511 | #define for_each_rt_rq(rt_rq, iter, rq)					\ | 
|---|
| 512 | for (iter = &root_task_group;					\ | 
|---|
| 513 | iter && (rt_rq = iter->rt_rq[cpu_of(rq)]);		\ | 
|---|
| 514 | iter = next_task_group(iter)) | 
|---|
| 515 |  | 
|---|
| 516 | #define for_each_sched_rt_entity(rt_se) \ | 
|---|
| 517 | for (; rt_se; rt_se = rt_se->parent) | 
|---|
| 518 |  | 
|---|
| 519 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 
|---|
| 520 | { | 
|---|
| 521 | return rt_se->my_q; | 
|---|
| 522 | } | 
|---|
| 523 |  | 
|---|
| 524 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); | 
|---|
| 525 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); | 
|---|
| 526 |  | 
|---|
| 527 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 
|---|
| 528 | { | 
|---|
| 529 | struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor; | 
|---|
| 530 | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|---|
| 531 | struct sched_rt_entity *rt_se; | 
|---|
| 532 |  | 
|---|
| 533 | int cpu = cpu_of(rq); | 
|---|
| 534 |  | 
|---|
| 535 | rt_se = rt_rq->tg->rt_se[cpu]; | 
|---|
| 536 |  | 
|---|
| 537 | if (rt_rq->rt_nr_running) { | 
|---|
| 538 | if (!rt_se) | 
|---|
| 539 | enqueue_top_rt_rq(rt_rq); | 
|---|
| 540 | else if (!on_rt_rq(rt_se)) | 
|---|
| 541 | enqueue_rt_entity(rt_se, 0); | 
|---|
| 542 |  | 
|---|
| 543 | if (rt_rq->highest_prio.curr < donor->prio) | 
|---|
| 544 | resched_curr(rq); | 
|---|
| 545 | } | 
|---|
| 546 | } | 
|---|
| 547 |  | 
|---|
| 548 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 
|---|
| 549 | { | 
|---|
| 550 | struct sched_rt_entity *rt_se; | 
|---|
| 551 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | 
|---|
| 552 |  | 
|---|
| 553 | rt_se = rt_rq->tg->rt_se[cpu]; | 
|---|
| 554 |  | 
|---|
| 555 | if (!rt_se) { | 
|---|
| 556 | dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); | 
|---|
| 557 | /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ | 
|---|
| 558 | cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); | 
|---|
| 559 | } | 
|---|
| 560 | else if (on_rt_rq(rt_se)) | 
|---|
| 561 | dequeue_rt_entity(rt_se, 0); | 
|---|
| 562 | } | 
|---|
| 563 |  | 
|---|
| 564 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 
|---|
| 565 | { | 
|---|
| 566 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | 
|---|
| 567 | } | 
|---|
| 568 |  | 
|---|
| 569 | static int rt_se_boosted(struct sched_rt_entity *rt_se) | 
|---|
| 570 | { | 
|---|
| 571 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|---|
| 572 | struct task_struct *p; | 
|---|
| 573 |  | 
|---|
| 574 | if (rt_rq) | 
|---|
| 575 | return !!rt_rq->rt_nr_boosted; | 
|---|
| 576 |  | 
|---|
| 577 | p = rt_task_of(rt_se); | 
|---|
| 578 | return p->prio != p->normal_prio; | 
|---|
| 579 | } | 
|---|
| 580 |  | 
|---|
| 581 | static inline const struct cpumask *sched_rt_period_mask(void) | 
|---|
| 582 | { | 
|---|
| 583 | return this_rq()->rd->span; | 
|---|
| 584 | } | 
|---|
| 585 |  | 
|---|
| 586 | static inline | 
|---|
| 587 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 
|---|
| 588 | { | 
|---|
| 589 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; | 
|---|
| 590 | } | 
|---|
| 591 |  | 
|---|
| 592 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 
|---|
| 593 | { | 
|---|
| 594 | return &rt_rq->tg->rt_bandwidth; | 
|---|
| 595 | } | 
|---|
| 596 |  | 
|---|
| 597 | bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) | 
|---|
| 598 | { | 
|---|
| 599 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|---|
| 600 |  | 
|---|
| 601 | return (hrtimer_active(&rt_b->rt_period_timer) || | 
|---|
| 602 | rt_rq->rt_time < rt_b->rt_runtime); | 
|---|
| 603 | } | 
|---|
| 604 |  | 
|---|
| 605 | /* | 
|---|
| 606 | * We ran out of runtime, see if we can borrow some from our neighbours. | 
|---|
| 607 | */ | 
|---|
| 608 | static void do_balance_runtime(struct rt_rq *rt_rq) | 
|---|
| 609 | { | 
|---|
| 610 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|---|
| 611 | struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; | 
|---|
| 612 | int i, weight; | 
|---|
| 613 | u64 rt_period; | 
|---|
| 614 |  | 
|---|
| 615 | weight = cpumask_weight(rd->span); | 
|---|
| 616 |  | 
|---|
| 617 | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|---|
| 618 | rt_period = ktime_to_ns(rt_b->rt_period); | 
|---|
| 619 | for_each_cpu(i, rd->span) { | 
|---|
| 620 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 
|---|
| 621 | s64 diff; | 
|---|
| 622 |  | 
|---|
| 623 | if (iter == rt_rq) | 
|---|
| 624 | continue; | 
|---|
| 625 |  | 
|---|
| 626 | raw_spin_lock(&iter->rt_runtime_lock); | 
|---|
| 627 | /* | 
|---|
| 628 | * Either all rqs have inf runtime and there's nothing to steal | 
|---|
| 629 | * or __disable_runtime() below sets a specific rq to inf to | 
|---|
| 630 | * indicate its been disabled and disallow stealing. | 
|---|
| 631 | */ | 
|---|
| 632 | if (iter->rt_runtime == RUNTIME_INF) | 
|---|
| 633 | goto next; | 
|---|
| 634 |  | 
|---|
| 635 | /* | 
|---|
| 636 | * From runqueues with spare time, take 1/n part of their | 
|---|
| 637 | * spare time, but no more than our period. | 
|---|
| 638 | */ | 
|---|
| 639 | diff = iter->rt_runtime - iter->rt_time; | 
|---|
| 640 | if (diff > 0) { | 
|---|
| 641 | diff = div_u64((u64)diff, weight); | 
|---|
| 642 | if (rt_rq->rt_runtime + diff > rt_period) | 
|---|
| 643 | diff = rt_period - rt_rq->rt_runtime; | 
|---|
| 644 | iter->rt_runtime -= diff; | 
|---|
| 645 | rt_rq->rt_runtime += diff; | 
|---|
| 646 | if (rt_rq->rt_runtime == rt_period) { | 
|---|
| 647 | raw_spin_unlock(&iter->rt_runtime_lock); | 
|---|
| 648 | break; | 
|---|
| 649 | } | 
|---|
| 650 | } | 
|---|
| 651 | next: | 
|---|
| 652 | raw_spin_unlock(&iter->rt_runtime_lock); | 
|---|
| 653 | } | 
|---|
| 654 | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|---|
| 655 | } | 
|---|
| 656 |  | 
|---|
| 657 | /* | 
|---|
| 658 | * Ensure this RQ takes back all the runtime it lend to its neighbours. | 
|---|
| 659 | */ | 
|---|
| 660 | static void __disable_runtime(struct rq *rq) | 
|---|
| 661 | { | 
|---|
| 662 | struct root_domain *rd = rq->rd; | 
|---|
| 663 | rt_rq_iter_t iter; | 
|---|
| 664 | struct rt_rq *rt_rq; | 
|---|
| 665 |  | 
|---|
| 666 | if (unlikely(!scheduler_running)) | 
|---|
| 667 | return; | 
|---|
| 668 |  | 
|---|
| 669 | for_each_rt_rq(rt_rq, iter, rq) { | 
|---|
| 670 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|---|
| 671 | s64 want; | 
|---|
| 672 | int i; | 
|---|
| 673 |  | 
|---|
| 674 | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|---|
| 675 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|---|
| 676 | /* | 
|---|
| 677 | * Either we're all inf and nobody needs to borrow, or we're | 
|---|
| 678 | * already disabled and thus have nothing to do, or we have | 
|---|
| 679 | * exactly the right amount of runtime to take out. | 
|---|
| 680 | */ | 
|---|
| 681 | if (rt_rq->rt_runtime == RUNTIME_INF || | 
|---|
| 682 | rt_rq->rt_runtime == rt_b->rt_runtime) | 
|---|
| 683 | goto balanced; | 
|---|
| 684 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|---|
| 685 |  | 
|---|
| 686 | /* | 
|---|
| 687 | * Calculate the difference between what we started out with | 
|---|
| 688 | * and what we current have, that's the amount of runtime | 
|---|
| 689 | * we lend and now have to reclaim. | 
|---|
| 690 | */ | 
|---|
| 691 | want = rt_b->rt_runtime - rt_rq->rt_runtime; | 
|---|
| 692 |  | 
|---|
| 693 | /* | 
|---|
| 694 | * Greedy reclaim, take back as much as we can. | 
|---|
| 695 | */ | 
|---|
| 696 | for_each_cpu(i, rd->span) { | 
|---|
| 697 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 
|---|
| 698 | s64 diff; | 
|---|
| 699 |  | 
|---|
| 700 | /* | 
|---|
| 701 | * Can't reclaim from ourselves or disabled runqueues. | 
|---|
| 702 | */ | 
|---|
| 703 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) | 
|---|
| 704 | continue; | 
|---|
| 705 |  | 
|---|
| 706 | raw_spin_lock(&iter->rt_runtime_lock); | 
|---|
| 707 | if (want > 0) { | 
|---|
| 708 | diff = min_t(s64, iter->rt_runtime, want); | 
|---|
| 709 | iter->rt_runtime -= diff; | 
|---|
| 710 | want -= diff; | 
|---|
| 711 | } else { | 
|---|
| 712 | iter->rt_runtime -= want; | 
|---|
| 713 | want -= want; | 
|---|
| 714 | } | 
|---|
| 715 | raw_spin_unlock(&iter->rt_runtime_lock); | 
|---|
| 716 |  | 
|---|
| 717 | if (!want) | 
|---|
| 718 | break; | 
|---|
| 719 | } | 
|---|
| 720 |  | 
|---|
| 721 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|---|
| 722 | /* | 
|---|
| 723 | * We cannot be left wanting - that would mean some runtime | 
|---|
| 724 | * leaked out of the system. | 
|---|
| 725 | */ | 
|---|
| 726 | WARN_ON_ONCE(want); | 
|---|
| 727 | balanced: | 
|---|
| 728 | /* | 
|---|
| 729 | * Disable all the borrow logic by pretending we have inf | 
|---|
| 730 | * runtime - in which case borrowing doesn't make sense. | 
|---|
| 731 | */ | 
|---|
| 732 | rt_rq->rt_runtime = RUNTIME_INF; | 
|---|
| 733 | rt_rq->rt_throttled = 0; | 
|---|
| 734 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|---|
| 735 | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|---|
| 736 |  | 
|---|
| 737 | /* Make rt_rq available for pick_next_task() */ | 
|---|
| 738 | sched_rt_rq_enqueue(rt_rq); | 
|---|
| 739 | } | 
|---|
| 740 | } | 
|---|
| 741 |  | 
|---|
| 742 | static void __enable_runtime(struct rq *rq) | 
|---|
| 743 | { | 
|---|
| 744 | rt_rq_iter_t iter; | 
|---|
| 745 | struct rt_rq *rt_rq; | 
|---|
| 746 |  | 
|---|
| 747 | if (unlikely(!scheduler_running)) | 
|---|
| 748 | return; | 
|---|
| 749 |  | 
|---|
| 750 | /* | 
|---|
| 751 | * Reset each runqueue's bandwidth settings | 
|---|
| 752 | */ | 
|---|
| 753 | for_each_rt_rq(rt_rq, iter, rq) { | 
|---|
| 754 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|---|
| 755 |  | 
|---|
| 756 | raw_spin_lock(&rt_b->rt_runtime_lock); | 
|---|
| 757 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|---|
| 758 | rt_rq->rt_runtime = rt_b->rt_runtime; | 
|---|
| 759 | rt_rq->rt_time = 0; | 
|---|
| 760 | rt_rq->rt_throttled = 0; | 
|---|
| 761 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|---|
| 762 | raw_spin_unlock(&rt_b->rt_runtime_lock); | 
|---|
| 763 | } | 
|---|
| 764 | } | 
|---|
| 765 |  | 
|---|
| 766 | static void balance_runtime(struct rt_rq *rt_rq) | 
|---|
| 767 | { | 
|---|
| 768 | if (!sched_feat(RT_RUNTIME_SHARE)) | 
|---|
| 769 | return; | 
|---|
| 770 |  | 
|---|
| 771 | if (rt_rq->rt_time > rt_rq->rt_runtime) { | 
|---|
| 772 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|---|
| 773 | do_balance_runtime(rt_rq); | 
|---|
| 774 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|---|
| 775 | } | 
|---|
| 776 | } | 
|---|
| 777 |  | 
|---|
| 778 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) | 
|---|
| 779 | { | 
|---|
| 780 | int i, idle = 1, throttled = 0; | 
|---|
| 781 | const struct cpumask *span; | 
|---|
| 782 |  | 
|---|
| 783 | span = sched_rt_period_mask(); | 
|---|
| 784 |  | 
|---|
| 785 | /* | 
|---|
| 786 | * FIXME: isolated CPUs should really leave the root task group, | 
|---|
| 787 | * whether they are isolcpus or were isolated via cpusets, lest | 
|---|
| 788 | * the timer run on a CPU which does not service all runqueues, | 
|---|
| 789 | * potentially leaving other CPUs indefinitely throttled.  If | 
|---|
| 790 | * isolation is really required, the user will turn the throttle | 
|---|
| 791 | * off to kill the perturbations it causes anyway.  Meanwhile, | 
|---|
| 792 | * this maintains functionality for boot and/or troubleshooting. | 
|---|
| 793 | */ | 
|---|
| 794 | if (rt_b == &root_task_group.rt_bandwidth) | 
|---|
| 795 | span = cpu_online_mask; | 
|---|
| 796 |  | 
|---|
| 797 | for_each_cpu(i, span) { | 
|---|
| 798 | int enqueue = 0; | 
|---|
| 799 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | 
|---|
| 800 | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|---|
| 801 | struct rq_flags rf; | 
|---|
| 802 | int skip; | 
|---|
| 803 |  | 
|---|
| 804 | /* | 
|---|
| 805 | * When span == cpu_online_mask, taking each rq->lock | 
|---|
| 806 | * can be time-consuming. Try to avoid it when possible. | 
|---|
| 807 | */ | 
|---|
| 808 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|---|
| 809 | if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) | 
|---|
| 810 | rt_rq->rt_runtime = rt_b->rt_runtime; | 
|---|
| 811 | skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; | 
|---|
| 812 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|---|
| 813 | if (skip) | 
|---|
| 814 | continue; | 
|---|
| 815 |  | 
|---|
| 816 | rq_lock(rq, &rf); | 
|---|
| 817 | update_rq_clock(rq); | 
|---|
| 818 |  | 
|---|
| 819 | if (rt_rq->rt_time) { | 
|---|
| 820 | u64 runtime; | 
|---|
| 821 |  | 
|---|
| 822 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|---|
| 823 | if (rt_rq->rt_throttled) | 
|---|
| 824 | balance_runtime(rt_rq); | 
|---|
| 825 | runtime = rt_rq->rt_runtime; | 
|---|
| 826 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | 
|---|
| 827 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | 
|---|
| 828 | rt_rq->rt_throttled = 0; | 
|---|
| 829 | enqueue = 1; | 
|---|
| 830 |  | 
|---|
| 831 | /* | 
|---|
| 832 | * When we're idle and a woken (rt) task is | 
|---|
| 833 | * throttled wakeup_preempt() will set | 
|---|
| 834 | * skip_update and the time between the wakeup | 
|---|
| 835 | * and this unthrottle will get accounted as | 
|---|
| 836 | * 'runtime'. | 
|---|
| 837 | */ | 
|---|
| 838 | if (rt_rq->rt_nr_running && rq->curr == rq->idle) | 
|---|
| 839 | rq_clock_cancel_skipupdate(rq); | 
|---|
| 840 | } | 
|---|
| 841 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | 
|---|
| 842 | idle = 0; | 
|---|
| 843 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|---|
| 844 | } else if (rt_rq->rt_nr_running) { | 
|---|
| 845 | idle = 0; | 
|---|
| 846 | if (!rt_rq_throttled(rt_rq)) | 
|---|
| 847 | enqueue = 1; | 
|---|
| 848 | } | 
|---|
| 849 | if (rt_rq->rt_throttled) | 
|---|
| 850 | throttled = 1; | 
|---|
| 851 |  | 
|---|
| 852 | if (enqueue) | 
|---|
| 853 | sched_rt_rq_enqueue(rt_rq); | 
|---|
| 854 | rq_unlock(rq, &rf); | 
|---|
| 855 | } | 
|---|
| 856 |  | 
|---|
| 857 | if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) | 
|---|
| 858 | return 1; | 
|---|
| 859 |  | 
|---|
| 860 | return idle; | 
|---|
| 861 | } | 
|---|
| 862 |  | 
|---|
| 863 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) | 
|---|
| 864 | { | 
|---|
| 865 | u64 runtime = sched_rt_runtime(rt_rq); | 
|---|
| 866 |  | 
|---|
| 867 | if (rt_rq->rt_throttled) | 
|---|
| 868 | return rt_rq_throttled(rt_rq); | 
|---|
| 869 |  | 
|---|
| 870 | if (runtime >= sched_rt_period(rt_rq)) | 
|---|
| 871 | return 0; | 
|---|
| 872 |  | 
|---|
| 873 | balance_runtime(rt_rq); | 
|---|
| 874 | runtime = sched_rt_runtime(rt_rq); | 
|---|
| 875 | if (runtime == RUNTIME_INF) | 
|---|
| 876 | return 0; | 
|---|
| 877 |  | 
|---|
| 878 | if (rt_rq->rt_time > runtime) { | 
|---|
| 879 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|---|
| 880 |  | 
|---|
| 881 | /* | 
|---|
| 882 | * Don't actually throttle groups that have no runtime assigned | 
|---|
| 883 | * but accrue some time due to boosting. | 
|---|
| 884 | */ | 
|---|
| 885 | if (likely(rt_b->rt_runtime)) { | 
|---|
| 886 | rt_rq->rt_throttled = 1; | 
|---|
| 887 | printk_deferred_once( "sched: RT throttling activated\n"); | 
|---|
| 888 | } else { | 
|---|
| 889 | /* | 
|---|
| 890 | * In case we did anyway, make it go away, | 
|---|
| 891 | * replenishment is a joke, since it will replenish us | 
|---|
| 892 | * with exactly 0 ns. | 
|---|
| 893 | */ | 
|---|
| 894 | rt_rq->rt_time = 0; | 
|---|
| 895 | } | 
|---|
| 896 |  | 
|---|
| 897 | if (rt_rq_throttled(rt_rq)) { | 
|---|
| 898 | sched_rt_rq_dequeue(rt_rq); | 
|---|
| 899 | return 1; | 
|---|
| 900 | } | 
|---|
| 901 | } | 
|---|
| 902 |  | 
|---|
| 903 | return 0; | 
|---|
| 904 | } | 
|---|
| 905 |  | 
|---|
| 906 | #else /* !CONFIG_RT_GROUP_SCHED: */ | 
|---|
| 907 |  | 
|---|
| 908 | typedef struct rt_rq *rt_rq_iter_t; | 
|---|
| 909 |  | 
|---|
| 910 | #define for_each_rt_rq(rt_rq, iter, rq) \ | 
|---|
| 911 | for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 
|---|
| 912 |  | 
|---|
| 913 | #define for_each_sched_rt_entity(rt_se) \ | 
|---|
| 914 | for (; rt_se; rt_se = NULL) | 
|---|
| 915 |  | 
|---|
| 916 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 
|---|
| 917 | { | 
|---|
| 918 | return NULL; | 
|---|
| 919 | } | 
|---|
| 920 |  | 
|---|
| 921 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 
|---|
| 922 | { | 
|---|
| 923 | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|---|
| 924 |  | 
|---|
| 925 | if (!rt_rq->rt_nr_running) | 
|---|
| 926 | return; | 
|---|
| 927 |  | 
|---|
| 928 | enqueue_top_rt_rq(rt_rq); | 
|---|
| 929 | resched_curr(rq); | 
|---|
| 930 | } | 
|---|
| 931 |  | 
|---|
| 932 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 
|---|
| 933 | { | 
|---|
| 934 | dequeue_top_rt_rq(rt_rq, count: rt_rq->rt_nr_running); | 
|---|
| 935 | } | 
|---|
| 936 |  | 
|---|
| 937 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 
|---|
| 938 | { | 
|---|
| 939 | return false; | 
|---|
| 940 | } | 
|---|
| 941 |  | 
|---|
| 942 | static inline const struct cpumask *sched_rt_period_mask(void) | 
|---|
| 943 | { | 
|---|
| 944 | return cpu_online_mask; | 
|---|
| 945 | } | 
|---|
| 946 |  | 
|---|
| 947 | static inline | 
|---|
| 948 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 
|---|
| 949 | { | 
|---|
| 950 | return &cpu_rq(cpu)->rt; | 
|---|
| 951 | } | 
|---|
| 952 |  | 
|---|
| 953 | static void __enable_runtime(struct rq *rq) { } | 
|---|
| 954 | static void __disable_runtime(struct rq *rq) { } | 
|---|
| 955 |  | 
|---|
| 956 | #endif /* !CONFIG_RT_GROUP_SCHED */ | 
|---|
| 957 |  | 
|---|
| 958 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | 
|---|
| 959 | { | 
|---|
| 960 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 961 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|---|
| 962 |  | 
|---|
| 963 | if (rt_rq) | 
|---|
| 964 | return rt_rq->highest_prio.curr; | 
|---|
| 965 | #endif | 
|---|
| 966 |  | 
|---|
| 967 | return rt_task_of(rt_se)->prio; | 
|---|
| 968 | } | 
|---|
| 969 |  | 
|---|
| 970 | /* | 
|---|
| 971 | * Update the current task's runtime statistics. Skip current tasks that | 
|---|
| 972 | * are not in our scheduling class. | 
|---|
| 973 | */ | 
|---|
| 974 | static void update_curr_rt(struct rq *rq) | 
|---|
| 975 | { | 
|---|
| 976 | struct task_struct *donor = rq->donor; | 
|---|
| 977 | s64 delta_exec; | 
|---|
| 978 |  | 
|---|
| 979 | if (donor->sched_class != &rt_sched_class) | 
|---|
| 980 | return; | 
|---|
| 981 |  | 
|---|
| 982 | delta_exec = update_curr_common(rq); | 
|---|
| 983 | if (unlikely(delta_exec <= 0)) | 
|---|
| 984 | return; | 
|---|
| 985 |  | 
|---|
| 986 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 987 | struct sched_rt_entity *rt_se = &donor->rt; | 
|---|
| 988 |  | 
|---|
| 989 | if (!rt_bandwidth_enabled()) | 
|---|
| 990 | return; | 
|---|
| 991 |  | 
|---|
| 992 | for_each_sched_rt_entity(rt_se) { | 
|---|
| 993 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|---|
| 994 | int exceeded; | 
|---|
| 995 |  | 
|---|
| 996 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { | 
|---|
| 997 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|---|
| 998 | rt_rq->rt_time += delta_exec; | 
|---|
| 999 | exceeded = sched_rt_runtime_exceeded(rt_rq); | 
|---|
| 1000 | if (exceeded) | 
|---|
| 1001 | resched_curr(rq); | 
|---|
| 1002 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|---|
| 1003 | if (exceeded) | 
|---|
| 1004 | do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); | 
|---|
| 1005 | } | 
|---|
| 1006 | } | 
|---|
| 1007 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|---|
| 1008 | } | 
|---|
| 1009 |  | 
|---|
| 1010 | static void | 
|---|
| 1011 | dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) | 
|---|
| 1012 | { | 
|---|
| 1013 | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|---|
| 1014 |  | 
|---|
| 1015 | BUG_ON(&rq->rt != rt_rq); | 
|---|
| 1016 |  | 
|---|
| 1017 | if (!rt_rq->rt_queued) | 
|---|
| 1018 | return; | 
|---|
| 1019 |  | 
|---|
| 1020 | BUG_ON(!rq->nr_running); | 
|---|
| 1021 |  | 
|---|
| 1022 | sub_nr_running(rq, count); | 
|---|
| 1023 | rt_rq->rt_queued = 0; | 
|---|
| 1024 |  | 
|---|
| 1025 | } | 
|---|
| 1026 |  | 
|---|
| 1027 | static void | 
|---|
| 1028 | enqueue_top_rt_rq(struct rt_rq *rt_rq) | 
|---|
| 1029 | { | 
|---|
| 1030 | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|---|
| 1031 |  | 
|---|
| 1032 | BUG_ON(&rq->rt != rt_rq); | 
|---|
| 1033 |  | 
|---|
| 1034 | if (rt_rq->rt_queued) | 
|---|
| 1035 | return; | 
|---|
| 1036 |  | 
|---|
| 1037 | if (rt_rq_throttled(rt_rq)) | 
|---|
| 1038 | return; | 
|---|
| 1039 |  | 
|---|
| 1040 | if (rt_rq->rt_nr_running) { | 
|---|
| 1041 | add_nr_running(rq, count: rt_rq->rt_nr_running); | 
|---|
| 1042 | rt_rq->rt_queued = 1; | 
|---|
| 1043 | } | 
|---|
| 1044 |  | 
|---|
| 1045 | /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ | 
|---|
| 1046 | cpufreq_update_util(rq, flags: 0); | 
|---|
| 1047 | } | 
|---|
| 1048 |  | 
|---|
| 1049 | static void | 
|---|
| 1050 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | 
|---|
| 1051 | { | 
|---|
| 1052 | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|---|
| 1053 |  | 
|---|
| 1054 | /* | 
|---|
| 1055 | * Change rq's cpupri only if rt_rq is the top queue. | 
|---|
| 1056 | */ | 
|---|
| 1057 | if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq) | 
|---|
| 1058 | return; | 
|---|
| 1059 |  | 
|---|
| 1060 | if (rq->online && prio < prev_prio) | 
|---|
| 1061 | cpupri_set(cp: &rq->rd->cpupri, cpu: rq->cpu, pri: prio); | 
|---|
| 1062 | } | 
|---|
| 1063 |  | 
|---|
| 1064 | static void | 
|---|
| 1065 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | 
|---|
| 1066 | { | 
|---|
| 1067 | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|---|
| 1068 |  | 
|---|
| 1069 | /* | 
|---|
| 1070 | * Change rq's cpupri only if rt_rq is the top queue. | 
|---|
| 1071 | */ | 
|---|
| 1072 | if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq) | 
|---|
| 1073 | return; | 
|---|
| 1074 |  | 
|---|
| 1075 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) | 
|---|
| 1076 | cpupri_set(cp: &rq->rd->cpupri, cpu: rq->cpu, pri: rt_rq->highest_prio.curr); | 
|---|
| 1077 | } | 
|---|
| 1078 |  | 
|---|
| 1079 | static void | 
|---|
| 1080 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | 
|---|
| 1081 | { | 
|---|
| 1082 | int prev_prio = rt_rq->highest_prio.curr; | 
|---|
| 1083 |  | 
|---|
| 1084 | if (prio < prev_prio) | 
|---|
| 1085 | rt_rq->highest_prio.curr = prio; | 
|---|
| 1086 |  | 
|---|
| 1087 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | 
|---|
| 1088 | } | 
|---|
| 1089 |  | 
|---|
| 1090 | static void | 
|---|
| 1091 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | 
|---|
| 1092 | { | 
|---|
| 1093 | int prev_prio = rt_rq->highest_prio.curr; | 
|---|
| 1094 |  | 
|---|
| 1095 | if (rt_rq->rt_nr_running) { | 
|---|
| 1096 |  | 
|---|
| 1097 | WARN_ON(prio < prev_prio); | 
|---|
| 1098 |  | 
|---|
| 1099 | /* | 
|---|
| 1100 | * This may have been our highest task, and therefore | 
|---|
| 1101 | * we may have some re-computation to do | 
|---|
| 1102 | */ | 
|---|
| 1103 | if (prio == prev_prio) { | 
|---|
| 1104 | struct rt_prio_array *array = &rt_rq->active; | 
|---|
| 1105 |  | 
|---|
| 1106 | rt_rq->highest_prio.curr = | 
|---|
| 1107 | sched_find_first_bit(b: array->bitmap); | 
|---|
| 1108 | } | 
|---|
| 1109 |  | 
|---|
| 1110 | } else { | 
|---|
| 1111 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; | 
|---|
| 1112 | } | 
|---|
| 1113 |  | 
|---|
| 1114 | dec_rt_prio_smp(rt_rq, prio, prev_prio); | 
|---|
| 1115 | } | 
|---|
| 1116 |  | 
|---|
| 1117 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 1118 |  | 
|---|
| 1119 | static void | 
|---|
| 1120 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|---|
| 1121 | { | 
|---|
| 1122 | if (rt_se_boosted(rt_se)) | 
|---|
| 1123 | rt_rq->rt_nr_boosted++; | 
|---|
| 1124 |  | 
|---|
| 1125 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 
|---|
| 1126 | } | 
|---|
| 1127 |  | 
|---|
| 1128 | static void | 
|---|
| 1129 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|---|
| 1130 | { | 
|---|
| 1131 | if (rt_se_boosted(rt_se)) | 
|---|
| 1132 | rt_rq->rt_nr_boosted--; | 
|---|
| 1133 |  | 
|---|
| 1134 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 
|---|
| 1135 | } | 
|---|
| 1136 |  | 
|---|
| 1137 | #else /* !CONFIG_RT_GROUP_SCHED: */ | 
|---|
| 1138 |  | 
|---|
| 1139 | static void | 
|---|
| 1140 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|---|
| 1141 | { | 
|---|
| 1142 | } | 
|---|
| 1143 |  | 
|---|
| 1144 | static inline | 
|---|
| 1145 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | 
|---|
| 1146 |  | 
|---|
| 1147 | #endif /* !CONFIG_RT_GROUP_SCHED */ | 
|---|
| 1148 |  | 
|---|
| 1149 | static inline | 
|---|
| 1150 | unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) | 
|---|
| 1151 | { | 
|---|
| 1152 | struct rt_rq *group_rq = group_rt_rq(rt_se); | 
|---|
| 1153 |  | 
|---|
| 1154 | if (group_rq) | 
|---|
| 1155 | return group_rq->rt_nr_running; | 
|---|
| 1156 | else | 
|---|
| 1157 | return 1; | 
|---|
| 1158 | } | 
|---|
| 1159 |  | 
|---|
| 1160 | static inline | 
|---|
| 1161 | unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) | 
|---|
| 1162 | { | 
|---|
| 1163 | struct rt_rq *group_rq = group_rt_rq(rt_se); | 
|---|
| 1164 | struct task_struct *tsk; | 
|---|
| 1165 |  | 
|---|
| 1166 | if (group_rq) | 
|---|
| 1167 | return group_rq->rr_nr_running; | 
|---|
| 1168 |  | 
|---|
| 1169 | tsk = rt_task_of(rt_se); | 
|---|
| 1170 |  | 
|---|
| 1171 | return (tsk->policy == SCHED_RR) ? 1 : 0; | 
|---|
| 1172 | } | 
|---|
| 1173 |  | 
|---|
| 1174 | static inline | 
|---|
| 1175 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|---|
| 1176 | { | 
|---|
| 1177 | int prio = rt_se_prio(rt_se); | 
|---|
| 1178 |  | 
|---|
| 1179 | WARN_ON(!rt_prio(prio)); | 
|---|
| 1180 | rt_rq->rt_nr_running += rt_se_nr_running(rt_se); | 
|---|
| 1181 | rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); | 
|---|
| 1182 |  | 
|---|
| 1183 | inc_rt_prio(rt_rq, prio); | 
|---|
| 1184 | inc_rt_group(rt_se, rt_rq); | 
|---|
| 1185 | } | 
|---|
| 1186 |  | 
|---|
| 1187 | static inline | 
|---|
| 1188 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|---|
| 1189 | { | 
|---|
| 1190 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 
|---|
| 1191 | WARN_ON(!rt_rq->rt_nr_running); | 
|---|
| 1192 | rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); | 
|---|
| 1193 | rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); | 
|---|
| 1194 |  | 
|---|
| 1195 | dec_rt_prio(rt_rq, prio: rt_se_prio(rt_se)); | 
|---|
| 1196 | dec_rt_group(rt_se, rt_rq); | 
|---|
| 1197 | } | 
|---|
| 1198 |  | 
|---|
| 1199 | /* | 
|---|
| 1200 | * Change rt_se->run_list location unless SAVE && !MOVE | 
|---|
| 1201 | * | 
|---|
| 1202 | * assumes ENQUEUE/DEQUEUE flags match | 
|---|
| 1203 | */ | 
|---|
| 1204 | static inline bool move_entity(unsigned int flags) | 
|---|
| 1205 | { | 
|---|
| 1206 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) | 
|---|
| 1207 | return false; | 
|---|
| 1208 |  | 
|---|
| 1209 | return true; | 
|---|
| 1210 | } | 
|---|
| 1211 |  | 
|---|
| 1212 | static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) | 
|---|
| 1213 | { | 
|---|
| 1214 | list_del_init(entry: &rt_se->run_list); | 
|---|
| 1215 |  | 
|---|
| 1216 | if (list_empty(head: array->queue + rt_se_prio(rt_se))) | 
|---|
| 1217 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | 
|---|
| 1218 |  | 
|---|
| 1219 | rt_se->on_list = 0; | 
|---|
| 1220 | } | 
|---|
| 1221 |  | 
|---|
| 1222 | static inline struct sched_statistics * | 
|---|
| 1223 | __schedstats_from_rt_se(struct sched_rt_entity *rt_se) | 
|---|
| 1224 | { | 
|---|
| 1225 | /* schedstats is not supported for rt group. */ | 
|---|
| 1226 | if (!rt_entity_is_task(rt_se)) | 
|---|
| 1227 | return NULL; | 
|---|
| 1228 |  | 
|---|
| 1229 | return &rt_task_of(rt_se)->stats; | 
|---|
| 1230 | } | 
|---|
| 1231 |  | 
|---|
| 1232 | static inline void | 
|---|
| 1233 | update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) | 
|---|
| 1234 | { | 
|---|
| 1235 | struct sched_statistics *stats; | 
|---|
| 1236 | struct task_struct *p = NULL; | 
|---|
| 1237 |  | 
|---|
| 1238 | if (!schedstat_enabled()) | 
|---|
| 1239 | return; | 
|---|
| 1240 |  | 
|---|
| 1241 | if (rt_entity_is_task(rt_se)) | 
|---|
| 1242 | p = rt_task_of(rt_se); | 
|---|
| 1243 |  | 
|---|
| 1244 | stats = __schedstats_from_rt_se(rt_se); | 
|---|
| 1245 | if (!stats) | 
|---|
| 1246 | return; | 
|---|
| 1247 |  | 
|---|
| 1248 | __update_stats_wait_start(rq: rq_of_rt_rq(rt_rq), p, stats); | 
|---|
| 1249 | } | 
|---|
| 1250 |  | 
|---|
| 1251 | static inline void | 
|---|
| 1252 | update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) | 
|---|
| 1253 | { | 
|---|
| 1254 | struct sched_statistics *stats; | 
|---|
| 1255 | struct task_struct *p = NULL; | 
|---|
| 1256 |  | 
|---|
| 1257 | if (!schedstat_enabled()) | 
|---|
| 1258 | return; | 
|---|
| 1259 |  | 
|---|
| 1260 | if (rt_entity_is_task(rt_se)) | 
|---|
| 1261 | p = rt_task_of(rt_se); | 
|---|
| 1262 |  | 
|---|
| 1263 | stats = __schedstats_from_rt_se(rt_se); | 
|---|
| 1264 | if (!stats) | 
|---|
| 1265 | return; | 
|---|
| 1266 |  | 
|---|
| 1267 | __update_stats_enqueue_sleeper(rq: rq_of_rt_rq(rt_rq), p, stats); | 
|---|
| 1268 | } | 
|---|
| 1269 |  | 
|---|
| 1270 | static inline void | 
|---|
| 1271 | update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, | 
|---|
| 1272 | int flags) | 
|---|
| 1273 | { | 
|---|
| 1274 | if (!schedstat_enabled()) | 
|---|
| 1275 | return; | 
|---|
| 1276 |  | 
|---|
| 1277 | if (flags & ENQUEUE_WAKEUP) | 
|---|
| 1278 | update_stats_enqueue_sleeper_rt(rt_rq, rt_se); | 
|---|
| 1279 | } | 
|---|
| 1280 |  | 
|---|
| 1281 | static inline void | 
|---|
| 1282 | update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) | 
|---|
| 1283 | { | 
|---|
| 1284 | struct sched_statistics *stats; | 
|---|
| 1285 | struct task_struct *p = NULL; | 
|---|
| 1286 |  | 
|---|
| 1287 | if (!schedstat_enabled()) | 
|---|
| 1288 | return; | 
|---|
| 1289 |  | 
|---|
| 1290 | if (rt_entity_is_task(rt_se)) | 
|---|
| 1291 | p = rt_task_of(rt_se); | 
|---|
| 1292 |  | 
|---|
| 1293 | stats = __schedstats_from_rt_se(rt_se); | 
|---|
| 1294 | if (!stats) | 
|---|
| 1295 | return; | 
|---|
| 1296 |  | 
|---|
| 1297 | __update_stats_wait_end(rq: rq_of_rt_rq(rt_rq), p, stats); | 
|---|
| 1298 | } | 
|---|
| 1299 |  | 
|---|
| 1300 | static inline void | 
|---|
| 1301 | update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, | 
|---|
| 1302 | int flags) | 
|---|
| 1303 | { | 
|---|
| 1304 | struct task_struct *p = NULL; | 
|---|
| 1305 |  | 
|---|
| 1306 | if (!schedstat_enabled()) | 
|---|
| 1307 | return; | 
|---|
| 1308 |  | 
|---|
| 1309 | if (rt_entity_is_task(rt_se)) | 
|---|
| 1310 | p = rt_task_of(rt_se); | 
|---|
| 1311 |  | 
|---|
| 1312 | if ((flags & DEQUEUE_SLEEP) && p) { | 
|---|
| 1313 | unsigned int state; | 
|---|
| 1314 |  | 
|---|
| 1315 | state = READ_ONCE(p->__state); | 
|---|
| 1316 | if (state & TASK_INTERRUPTIBLE) | 
|---|
| 1317 | __schedstat_set(p->stats.sleep_start, | 
|---|
| 1318 | rq_clock(rq_of_rt_rq(rt_rq))); | 
|---|
| 1319 |  | 
|---|
| 1320 | if (state & TASK_UNINTERRUPTIBLE) | 
|---|
| 1321 | __schedstat_set(p->stats.block_start, | 
|---|
| 1322 | rq_clock(rq_of_rt_rq(rt_rq))); | 
|---|
| 1323 | } | 
|---|
| 1324 | } | 
|---|
| 1325 |  | 
|---|
| 1326 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) | 
|---|
| 1327 | { | 
|---|
| 1328 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|---|
| 1329 | struct rt_prio_array *array = &rt_rq->active; | 
|---|
| 1330 | struct rt_rq *group_rq = group_rt_rq(rt_se); | 
|---|
| 1331 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | 
|---|
| 1332 |  | 
|---|
| 1333 | /* | 
|---|
| 1334 | * Don't enqueue the group if its throttled, or when empty. | 
|---|
| 1335 | * The latter is a consequence of the former when a child group | 
|---|
| 1336 | * get throttled and the current group doesn't have any other | 
|---|
| 1337 | * active members. | 
|---|
| 1338 | */ | 
|---|
| 1339 | if (group_rq && (rt_rq_throttled(rt_rq: group_rq) || !group_rq->rt_nr_running)) { | 
|---|
| 1340 | if (rt_se->on_list) | 
|---|
| 1341 | __delist_rt_entity(rt_se, array); | 
|---|
| 1342 | return; | 
|---|
| 1343 | } | 
|---|
| 1344 |  | 
|---|
| 1345 | if (move_entity(flags)) { | 
|---|
| 1346 | WARN_ON_ONCE(rt_se->on_list); | 
|---|
| 1347 | if (flags & ENQUEUE_HEAD) | 
|---|
| 1348 | list_add(new: &rt_se->run_list, head: queue); | 
|---|
| 1349 | else | 
|---|
| 1350 | list_add_tail(new: &rt_se->run_list, head: queue); | 
|---|
| 1351 |  | 
|---|
| 1352 | __set_bit(rt_se_prio(rt_se), array->bitmap); | 
|---|
| 1353 | rt_se->on_list = 1; | 
|---|
| 1354 | } | 
|---|
| 1355 | rt_se->on_rq = 1; | 
|---|
| 1356 |  | 
|---|
| 1357 | inc_rt_tasks(rt_se, rt_rq); | 
|---|
| 1358 | } | 
|---|
| 1359 |  | 
|---|
| 1360 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) | 
|---|
| 1361 | { | 
|---|
| 1362 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|---|
| 1363 | struct rt_prio_array *array = &rt_rq->active; | 
|---|
| 1364 |  | 
|---|
| 1365 | if (move_entity(flags)) { | 
|---|
| 1366 | WARN_ON_ONCE(!rt_se->on_list); | 
|---|
| 1367 | __delist_rt_entity(rt_se, array); | 
|---|
| 1368 | } | 
|---|
| 1369 | rt_se->on_rq = 0; | 
|---|
| 1370 |  | 
|---|
| 1371 | dec_rt_tasks(rt_se, rt_rq); | 
|---|
| 1372 | } | 
|---|
| 1373 |  | 
|---|
| 1374 | /* | 
|---|
| 1375 | * Because the prio of an upper entry depends on the lower | 
|---|
| 1376 | * entries, we must remove entries top - down. | 
|---|
| 1377 | */ | 
|---|
| 1378 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) | 
|---|
| 1379 | { | 
|---|
| 1380 | struct sched_rt_entity *back = NULL; | 
|---|
| 1381 | unsigned int rt_nr_running; | 
|---|
| 1382 |  | 
|---|
| 1383 | for_each_sched_rt_entity(rt_se) { | 
|---|
| 1384 | rt_se->back = back; | 
|---|
| 1385 | back = rt_se; | 
|---|
| 1386 | } | 
|---|
| 1387 |  | 
|---|
| 1388 | rt_nr_running = rt_rq_of_se(rt_se: back)->rt_nr_running; | 
|---|
| 1389 |  | 
|---|
| 1390 | for (rt_se = back; rt_se; rt_se = rt_se->back) { | 
|---|
| 1391 | if (on_rt_rq(rt_se)) | 
|---|
| 1392 | __dequeue_rt_entity(rt_se, flags); | 
|---|
| 1393 | } | 
|---|
| 1394 |  | 
|---|
| 1395 | dequeue_top_rt_rq(rt_rq: rt_rq_of_se(rt_se: back), count: rt_nr_running); | 
|---|
| 1396 | } | 
|---|
| 1397 |  | 
|---|
| 1398 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) | 
|---|
| 1399 | { | 
|---|
| 1400 | struct rq *rq = rq_of_rt_se(rt_se); | 
|---|
| 1401 |  | 
|---|
| 1402 | update_stats_enqueue_rt(rt_rq: rt_rq_of_se(rt_se), rt_se, flags); | 
|---|
| 1403 |  | 
|---|
| 1404 | dequeue_rt_stack(rt_se, flags); | 
|---|
| 1405 | for_each_sched_rt_entity(rt_se) | 
|---|
| 1406 | __enqueue_rt_entity(rt_se, flags); | 
|---|
| 1407 | enqueue_top_rt_rq(rt_rq: &rq->rt); | 
|---|
| 1408 | } | 
|---|
| 1409 |  | 
|---|
| 1410 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) | 
|---|
| 1411 | { | 
|---|
| 1412 | struct rq *rq = rq_of_rt_se(rt_se); | 
|---|
| 1413 |  | 
|---|
| 1414 | update_stats_dequeue_rt(rt_rq: rt_rq_of_se(rt_se), rt_se, flags); | 
|---|
| 1415 |  | 
|---|
| 1416 | dequeue_rt_stack(rt_se, flags); | 
|---|
| 1417 |  | 
|---|
| 1418 | for_each_sched_rt_entity(rt_se) { | 
|---|
| 1419 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|---|
| 1420 |  | 
|---|
| 1421 | if (rt_rq && rt_rq->rt_nr_running) | 
|---|
| 1422 | __enqueue_rt_entity(rt_se, flags); | 
|---|
| 1423 | } | 
|---|
| 1424 | enqueue_top_rt_rq(rt_rq: &rq->rt); | 
|---|
| 1425 | } | 
|---|
| 1426 |  | 
|---|
| 1427 | /* | 
|---|
| 1428 | * Adding/removing a task to/from a priority array: | 
|---|
| 1429 | */ | 
|---|
| 1430 | static void | 
|---|
| 1431 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 1432 | { | 
|---|
| 1433 | struct sched_rt_entity *rt_se = &p->rt; | 
|---|
| 1434 |  | 
|---|
| 1435 | if (flags & ENQUEUE_WAKEUP) | 
|---|
| 1436 | rt_se->timeout = 0; | 
|---|
| 1437 |  | 
|---|
| 1438 | check_schedstat_required(); | 
|---|
| 1439 | update_stats_wait_start_rt(rt_rq: rt_rq_of_se(rt_se), rt_se); | 
|---|
| 1440 |  | 
|---|
| 1441 | enqueue_rt_entity(rt_se, flags); | 
|---|
| 1442 |  | 
|---|
| 1443 | if (task_is_blocked(p)) | 
|---|
| 1444 | return; | 
|---|
| 1445 |  | 
|---|
| 1446 | if (!task_current(rq, p) && p->nr_cpus_allowed > 1) | 
|---|
| 1447 | enqueue_pushable_task(rq, p); | 
|---|
| 1448 | } | 
|---|
| 1449 |  | 
|---|
| 1450 | static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 1451 | { | 
|---|
| 1452 | struct sched_rt_entity *rt_se = &p->rt; | 
|---|
| 1453 |  | 
|---|
| 1454 | update_curr_rt(rq); | 
|---|
| 1455 | dequeue_rt_entity(rt_se, flags); | 
|---|
| 1456 |  | 
|---|
| 1457 | dequeue_pushable_task(rq, p); | 
|---|
| 1458 |  | 
|---|
| 1459 | return true; | 
|---|
| 1460 | } | 
|---|
| 1461 |  | 
|---|
| 1462 | /* | 
|---|
| 1463 | * Put task to the head or the end of the run list without the overhead of | 
|---|
| 1464 | * dequeue followed by enqueue. | 
|---|
| 1465 | */ | 
|---|
| 1466 | static void | 
|---|
| 1467 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | 
|---|
| 1468 | { | 
|---|
| 1469 | if (on_rt_rq(rt_se)) { | 
|---|
| 1470 | struct rt_prio_array *array = &rt_rq->active; | 
|---|
| 1471 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | 
|---|
| 1472 |  | 
|---|
| 1473 | if (head) | 
|---|
| 1474 | list_move(list: &rt_se->run_list, head: queue); | 
|---|
| 1475 | else | 
|---|
| 1476 | list_move_tail(list: &rt_se->run_list, head: queue); | 
|---|
| 1477 | } | 
|---|
| 1478 | } | 
|---|
| 1479 |  | 
|---|
| 1480 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) | 
|---|
| 1481 | { | 
|---|
| 1482 | struct sched_rt_entity *rt_se = &p->rt; | 
|---|
| 1483 | struct rt_rq *rt_rq; | 
|---|
| 1484 |  | 
|---|
| 1485 | for_each_sched_rt_entity(rt_se) { | 
|---|
| 1486 | rt_rq = rt_rq_of_se(rt_se); | 
|---|
| 1487 | requeue_rt_entity(rt_rq, rt_se, head); | 
|---|
| 1488 | } | 
|---|
| 1489 | } | 
|---|
| 1490 |  | 
|---|
| 1491 | static void yield_task_rt(struct rq *rq) | 
|---|
| 1492 | { | 
|---|
| 1493 | requeue_task_rt(rq, p: rq->curr, head: 0); | 
|---|
| 1494 | } | 
|---|
| 1495 |  | 
|---|
| 1496 | static int find_lowest_rq(struct task_struct *task); | 
|---|
| 1497 |  | 
|---|
| 1498 | static int | 
|---|
| 1499 | select_task_rq_rt(struct task_struct *p, int cpu, int flags) | 
|---|
| 1500 | { | 
|---|
| 1501 | struct task_struct *curr, *donor; | 
|---|
| 1502 | struct rq *rq; | 
|---|
| 1503 | bool test; | 
|---|
| 1504 |  | 
|---|
| 1505 | /* For anything but wake ups, just return the task_cpu */ | 
|---|
| 1506 | if (!(flags & (WF_TTWU | WF_FORK))) | 
|---|
| 1507 | goto out; | 
|---|
| 1508 |  | 
|---|
| 1509 | rq = cpu_rq(cpu); | 
|---|
| 1510 |  | 
|---|
| 1511 | rcu_read_lock(); | 
|---|
| 1512 | curr = READ_ONCE(rq->curr); /* unlocked access */ | 
|---|
| 1513 | donor = READ_ONCE(rq->donor); | 
|---|
| 1514 |  | 
|---|
| 1515 | /* | 
|---|
| 1516 | * If the current task on @p's runqueue is an RT task, then | 
|---|
| 1517 | * try to see if we can wake this RT task up on another | 
|---|
| 1518 | * runqueue. Otherwise simply start this RT task | 
|---|
| 1519 | * on its current runqueue. | 
|---|
| 1520 | * | 
|---|
| 1521 | * We want to avoid overloading runqueues. If the woken | 
|---|
| 1522 | * task is a higher priority, then it will stay on this CPU | 
|---|
| 1523 | * and the lower prio task should be moved to another CPU. | 
|---|
| 1524 | * Even though this will probably make the lower prio task | 
|---|
| 1525 | * lose its cache, we do not want to bounce a higher task | 
|---|
| 1526 | * around just because it gave up its CPU, perhaps for a | 
|---|
| 1527 | * lock? | 
|---|
| 1528 | * | 
|---|
| 1529 | * For equal prio tasks, we just let the scheduler sort it out. | 
|---|
| 1530 | * | 
|---|
| 1531 | * Otherwise, just let it ride on the affine RQ and the | 
|---|
| 1532 | * post-schedule router will push the preempted task away | 
|---|
| 1533 | * | 
|---|
| 1534 | * This test is optimistic, if we get it wrong the load-balancer | 
|---|
| 1535 | * will have to sort it out. | 
|---|
| 1536 | * | 
|---|
| 1537 | * We take into account the capacity of the CPU to ensure it fits the | 
|---|
| 1538 | * requirement of the task - which is only important on heterogeneous | 
|---|
| 1539 | * systems like big.LITTLE. | 
|---|
| 1540 | */ | 
|---|
| 1541 | test = curr && | 
|---|
| 1542 | unlikely(rt_task(donor)) && | 
|---|
| 1543 | (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio); | 
|---|
| 1544 |  | 
|---|
| 1545 | if (test || !rt_task_fits_capacity(p, cpu)) { | 
|---|
| 1546 | int target = find_lowest_rq(task: p); | 
|---|
| 1547 |  | 
|---|
| 1548 | /* | 
|---|
| 1549 | * Bail out if we were forcing a migration to find a better | 
|---|
| 1550 | * fitting CPU but our search failed. | 
|---|
| 1551 | */ | 
|---|
| 1552 | if (!test && target != -1 && !rt_task_fits_capacity(p, cpu: target)) | 
|---|
| 1553 | goto out_unlock; | 
|---|
| 1554 |  | 
|---|
| 1555 | /* | 
|---|
| 1556 | * Don't bother moving it if the destination CPU is | 
|---|
| 1557 | * not running a lower priority task. | 
|---|
| 1558 | */ | 
|---|
| 1559 | if (target != -1 && | 
|---|
| 1560 | p->prio < cpu_rq(target)->rt.highest_prio.curr) | 
|---|
| 1561 | cpu = target; | 
|---|
| 1562 | } | 
|---|
| 1563 |  | 
|---|
| 1564 | out_unlock: | 
|---|
| 1565 | rcu_read_unlock(); | 
|---|
| 1566 |  | 
|---|
| 1567 | out: | 
|---|
| 1568 | return cpu; | 
|---|
| 1569 | } | 
|---|
| 1570 |  | 
|---|
| 1571 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | 
|---|
| 1572 | { | 
|---|
| 1573 | if (rq->curr->nr_cpus_allowed == 1 || | 
|---|
| 1574 | !cpupri_find(cp: &rq->rd->cpupri, p: rq->donor, NULL)) | 
|---|
| 1575 | return; | 
|---|
| 1576 |  | 
|---|
| 1577 | /* | 
|---|
| 1578 | * p is migratable, so let's not schedule it and | 
|---|
| 1579 | * see if it is pushed or pulled somewhere else. | 
|---|
| 1580 | */ | 
|---|
| 1581 | if (p->nr_cpus_allowed != 1 && | 
|---|
| 1582 | cpupri_find(cp: &rq->rd->cpupri, p, NULL)) | 
|---|
| 1583 | return; | 
|---|
| 1584 |  | 
|---|
| 1585 | /* | 
|---|
| 1586 | * There appear to be other CPUs that can accept | 
|---|
| 1587 | * the current task but none can run 'p', so lets reschedule | 
|---|
| 1588 | * to try and push the current task away: | 
|---|
| 1589 | */ | 
|---|
| 1590 | requeue_task_rt(rq, p, head: 1); | 
|---|
| 1591 | resched_curr(rq); | 
|---|
| 1592 | } | 
|---|
| 1593 |  | 
|---|
| 1594 | static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) | 
|---|
| 1595 | { | 
|---|
| 1596 | if (!on_rt_rq(rt_se: &p->rt) && need_pull_rt_task(rq, prev: p)) { | 
|---|
| 1597 | /* | 
|---|
| 1598 | * This is OK, because current is on_cpu, which avoids it being | 
|---|
| 1599 | * picked for load-balance and preemption/IRQs are still | 
|---|
| 1600 | * disabled avoiding further scheduler activity on it and we've | 
|---|
| 1601 | * not yet started the picking loop. | 
|---|
| 1602 | */ | 
|---|
| 1603 | rq_unpin_lock(rq, rf); | 
|---|
| 1604 | pull_rt_task(rq); | 
|---|
| 1605 | rq_repin_lock(rq, rf); | 
|---|
| 1606 | } | 
|---|
| 1607 |  | 
|---|
| 1608 | return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); | 
|---|
| 1609 | } | 
|---|
| 1610 |  | 
|---|
| 1611 | /* | 
|---|
| 1612 | * Preempt the current task with a newly woken task if needed: | 
|---|
| 1613 | */ | 
|---|
| 1614 | static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags) | 
|---|
| 1615 | { | 
|---|
| 1616 | struct task_struct *donor = rq->donor; | 
|---|
| 1617 |  | 
|---|
| 1618 | if (p->prio < donor->prio) { | 
|---|
| 1619 | resched_curr(rq); | 
|---|
| 1620 | return; | 
|---|
| 1621 | } | 
|---|
| 1622 |  | 
|---|
| 1623 | /* | 
|---|
| 1624 | * If: | 
|---|
| 1625 | * | 
|---|
| 1626 | * - the newly woken task is of equal priority to the current task | 
|---|
| 1627 | * - the newly woken task is non-migratable while current is migratable | 
|---|
| 1628 | * - current will be preempted on the next reschedule | 
|---|
| 1629 | * | 
|---|
| 1630 | * we should check to see if current can readily move to a different | 
|---|
| 1631 | * cpu.  If so, we will reschedule to allow the push logic to try | 
|---|
| 1632 | * to move current somewhere else, making room for our non-migratable | 
|---|
| 1633 | * task. | 
|---|
| 1634 | */ | 
|---|
| 1635 | if (p->prio == donor->prio && !test_tsk_need_resched(tsk: rq->curr)) | 
|---|
| 1636 | check_preempt_equal_prio(rq, p); | 
|---|
| 1637 | } | 
|---|
| 1638 |  | 
|---|
| 1639 | static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) | 
|---|
| 1640 | { | 
|---|
| 1641 | struct sched_rt_entity *rt_se = &p->rt; | 
|---|
| 1642 | struct rt_rq *rt_rq = &rq->rt; | 
|---|
| 1643 |  | 
|---|
| 1644 | p->se.exec_start = rq_clock_task(rq); | 
|---|
| 1645 | if (on_rt_rq(rt_se: &p->rt)) | 
|---|
| 1646 | update_stats_wait_end_rt(rt_rq, rt_se); | 
|---|
| 1647 |  | 
|---|
| 1648 | /* The running task is never eligible for pushing */ | 
|---|
| 1649 | dequeue_pushable_task(rq, p); | 
|---|
| 1650 |  | 
|---|
| 1651 | if (!first) | 
|---|
| 1652 | return; | 
|---|
| 1653 |  | 
|---|
| 1654 | /* | 
|---|
| 1655 | * If prev task was rt, put_prev_task() has already updated the | 
|---|
| 1656 | * utilization. We only care of the case where we start to schedule a | 
|---|
| 1657 | * rt task | 
|---|
| 1658 | */ | 
|---|
| 1659 | if (rq->donor->sched_class != &rt_sched_class) | 
|---|
| 1660 | update_rt_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 0); | 
|---|
| 1661 |  | 
|---|
| 1662 | rt_queue_push_tasks(rq); | 
|---|
| 1663 | } | 
|---|
| 1664 |  | 
|---|
| 1665 | static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) | 
|---|
| 1666 | { | 
|---|
| 1667 | struct rt_prio_array *array = &rt_rq->active; | 
|---|
| 1668 | struct sched_rt_entity *next = NULL; | 
|---|
| 1669 | struct list_head *queue; | 
|---|
| 1670 | int idx; | 
|---|
| 1671 |  | 
|---|
| 1672 | idx = sched_find_first_bit(b: array->bitmap); | 
|---|
| 1673 | BUG_ON(idx >= MAX_RT_PRIO); | 
|---|
| 1674 |  | 
|---|
| 1675 | queue = array->queue + idx; | 
|---|
| 1676 | if (WARN_ON_ONCE(list_empty(queue))) | 
|---|
| 1677 | return NULL; | 
|---|
| 1678 | next = list_entry(queue->next, struct sched_rt_entity, run_list); | 
|---|
| 1679 |  | 
|---|
| 1680 | return next; | 
|---|
| 1681 | } | 
|---|
| 1682 |  | 
|---|
| 1683 | static struct task_struct *_pick_next_task_rt(struct rq *rq) | 
|---|
| 1684 | { | 
|---|
| 1685 | struct sched_rt_entity *rt_se; | 
|---|
| 1686 | struct rt_rq *rt_rq  = &rq->rt; | 
|---|
| 1687 |  | 
|---|
| 1688 | do { | 
|---|
| 1689 | rt_se = pick_next_rt_entity(rt_rq); | 
|---|
| 1690 | if (unlikely(!rt_se)) | 
|---|
| 1691 | return NULL; | 
|---|
| 1692 | rt_rq = group_rt_rq(rt_se); | 
|---|
| 1693 | } while (rt_rq); | 
|---|
| 1694 |  | 
|---|
| 1695 | return rt_task_of(rt_se); | 
|---|
| 1696 | } | 
|---|
| 1697 |  | 
|---|
| 1698 | static struct task_struct *pick_task_rt(struct rq *rq) | 
|---|
| 1699 | { | 
|---|
| 1700 | struct task_struct *p; | 
|---|
| 1701 |  | 
|---|
| 1702 | if (!sched_rt_runnable(rq)) | 
|---|
| 1703 | return NULL; | 
|---|
| 1704 |  | 
|---|
| 1705 | p = _pick_next_task_rt(rq); | 
|---|
| 1706 |  | 
|---|
| 1707 | return p; | 
|---|
| 1708 | } | 
|---|
| 1709 |  | 
|---|
| 1710 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next) | 
|---|
| 1711 | { | 
|---|
| 1712 | struct sched_rt_entity *rt_se = &p->rt; | 
|---|
| 1713 | struct rt_rq *rt_rq = &rq->rt; | 
|---|
| 1714 |  | 
|---|
| 1715 | if (on_rt_rq(rt_se: &p->rt)) | 
|---|
| 1716 | update_stats_wait_start_rt(rt_rq, rt_se); | 
|---|
| 1717 |  | 
|---|
| 1718 | update_curr_rt(rq); | 
|---|
| 1719 |  | 
|---|
| 1720 | update_rt_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 1); | 
|---|
| 1721 |  | 
|---|
| 1722 | if (task_is_blocked(p)) | 
|---|
| 1723 | return; | 
|---|
| 1724 | /* | 
|---|
| 1725 | * The previous task needs to be made eligible for pushing | 
|---|
| 1726 | * if it is still active | 
|---|
| 1727 | */ | 
|---|
| 1728 | if (on_rt_rq(rt_se: &p->rt) && p->nr_cpus_allowed > 1) | 
|---|
| 1729 | enqueue_pushable_task(rq, p); | 
|---|
| 1730 | } | 
|---|
| 1731 |  | 
|---|
| 1732 | /* Only try algorithms three times */ | 
|---|
| 1733 | #define RT_MAX_TRIES 3 | 
|---|
| 1734 |  | 
|---|
| 1735 | /* | 
|---|
| 1736 | * Return the highest pushable rq's task, which is suitable to be executed | 
|---|
| 1737 | * on the CPU, NULL otherwise | 
|---|
| 1738 | */ | 
|---|
| 1739 | static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) | 
|---|
| 1740 | { | 
|---|
| 1741 | struct plist_head *head = &rq->rt.pushable_tasks; | 
|---|
| 1742 | struct task_struct *p; | 
|---|
| 1743 |  | 
|---|
| 1744 | if (!has_pushable_tasks(rq)) | 
|---|
| 1745 | return NULL; | 
|---|
| 1746 |  | 
|---|
| 1747 | plist_for_each_entry(p, head, pushable_tasks) { | 
|---|
| 1748 | if (task_is_pushable(rq, p, cpu)) | 
|---|
| 1749 | return p; | 
|---|
| 1750 | } | 
|---|
| 1751 |  | 
|---|
| 1752 | return NULL; | 
|---|
| 1753 | } | 
|---|
| 1754 |  | 
|---|
| 1755 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | 
|---|
| 1756 |  | 
|---|
| 1757 | static int find_lowest_rq(struct task_struct *task) | 
|---|
| 1758 | { | 
|---|
| 1759 | struct sched_domain *sd; | 
|---|
| 1760 | struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); | 
|---|
| 1761 | int this_cpu = smp_processor_id(); | 
|---|
| 1762 | int cpu      = task_cpu(p: task); | 
|---|
| 1763 | int ret; | 
|---|
| 1764 |  | 
|---|
| 1765 | /* Make sure the mask is initialized first */ | 
|---|
| 1766 | if (unlikely(!lowest_mask)) | 
|---|
| 1767 | return -1; | 
|---|
| 1768 |  | 
|---|
| 1769 | if (task->nr_cpus_allowed == 1) | 
|---|
| 1770 | return -1; /* No other targets possible */ | 
|---|
| 1771 |  | 
|---|
| 1772 | /* | 
|---|
| 1773 | * If we're on asym system ensure we consider the different capacities | 
|---|
| 1774 | * of the CPUs when searching for the lowest_mask. | 
|---|
| 1775 | */ | 
|---|
| 1776 | if (sched_asym_cpucap_active()) { | 
|---|
| 1777 |  | 
|---|
| 1778 | ret = cpupri_find_fitness(cp: &task_rq(task)->rd->cpupri, | 
|---|
| 1779 | p: task, lowest_mask, | 
|---|
| 1780 | fitness_fn: rt_task_fits_capacity); | 
|---|
| 1781 | } else { | 
|---|
| 1782 |  | 
|---|
| 1783 | ret = cpupri_find(cp: &task_rq(task)->rd->cpupri, | 
|---|
| 1784 | p: task, lowest_mask); | 
|---|
| 1785 | } | 
|---|
| 1786 |  | 
|---|
| 1787 | if (!ret) | 
|---|
| 1788 | return -1; /* No targets found */ | 
|---|
| 1789 |  | 
|---|
| 1790 | /* | 
|---|
| 1791 | * At this point we have built a mask of CPUs representing the | 
|---|
| 1792 | * lowest priority tasks in the system.  Now we want to elect | 
|---|
| 1793 | * the best one based on our affinity and topology. | 
|---|
| 1794 | * | 
|---|
| 1795 | * We prioritize the last CPU that the task executed on since | 
|---|
| 1796 | * it is most likely cache-hot in that location. | 
|---|
| 1797 | */ | 
|---|
| 1798 | if (cpumask_test_cpu(cpu, cpumask: lowest_mask)) | 
|---|
| 1799 | return cpu; | 
|---|
| 1800 |  | 
|---|
| 1801 | /* | 
|---|
| 1802 | * Otherwise, we consult the sched_domains span maps to figure | 
|---|
| 1803 | * out which CPU is logically closest to our hot cache data. | 
|---|
| 1804 | */ | 
|---|
| 1805 | if (!cpumask_test_cpu(cpu: this_cpu, cpumask: lowest_mask)) | 
|---|
| 1806 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | 
|---|
| 1807 |  | 
|---|
| 1808 | rcu_read_lock(); | 
|---|
| 1809 | for_each_domain(cpu, sd) { | 
|---|
| 1810 | if (sd->flags & SD_WAKE_AFFINE) { | 
|---|
| 1811 | int best_cpu; | 
|---|
| 1812 |  | 
|---|
| 1813 | /* | 
|---|
| 1814 | * "this_cpu" is cheaper to preempt than a | 
|---|
| 1815 | * remote processor. | 
|---|
| 1816 | */ | 
|---|
| 1817 | if (this_cpu != -1 && | 
|---|
| 1818 | cpumask_test_cpu(cpu: this_cpu, cpumask: sched_domain_span(sd))) { | 
|---|
| 1819 | rcu_read_unlock(); | 
|---|
| 1820 | return this_cpu; | 
|---|
| 1821 | } | 
|---|
| 1822 |  | 
|---|
| 1823 | best_cpu = cpumask_any_and_distribute(src1p: lowest_mask, | 
|---|
| 1824 | src2p: sched_domain_span(sd)); | 
|---|
| 1825 | if (best_cpu < nr_cpu_ids) { | 
|---|
| 1826 | rcu_read_unlock(); | 
|---|
| 1827 | return best_cpu; | 
|---|
| 1828 | } | 
|---|
| 1829 | } | 
|---|
| 1830 | } | 
|---|
| 1831 | rcu_read_unlock(); | 
|---|
| 1832 |  | 
|---|
| 1833 | /* | 
|---|
| 1834 | * And finally, if there were no matches within the domains | 
|---|
| 1835 | * just give the caller *something* to work with from the compatible | 
|---|
| 1836 | * locations. | 
|---|
| 1837 | */ | 
|---|
| 1838 | if (this_cpu != -1) | 
|---|
| 1839 | return this_cpu; | 
|---|
| 1840 |  | 
|---|
| 1841 | cpu = cpumask_any_distribute(srcp: lowest_mask); | 
|---|
| 1842 | if (cpu < nr_cpu_ids) | 
|---|
| 1843 | return cpu; | 
|---|
| 1844 |  | 
|---|
| 1845 | return -1; | 
|---|
| 1846 | } | 
|---|
| 1847 |  | 
|---|
| 1848 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | 
|---|
| 1849 | { | 
|---|
| 1850 | struct task_struct *p; | 
|---|
| 1851 |  | 
|---|
| 1852 | if (!has_pushable_tasks(rq)) | 
|---|
| 1853 | return NULL; | 
|---|
| 1854 |  | 
|---|
| 1855 | p = plist_first_entry(&rq->rt.pushable_tasks, | 
|---|
| 1856 | struct task_struct, pushable_tasks); | 
|---|
| 1857 |  | 
|---|
| 1858 | BUG_ON(rq->cpu != task_cpu(p)); | 
|---|
| 1859 | BUG_ON(task_current(rq, p)); | 
|---|
| 1860 | BUG_ON(task_current_donor(rq, p)); | 
|---|
| 1861 | BUG_ON(p->nr_cpus_allowed <= 1); | 
|---|
| 1862 |  | 
|---|
| 1863 | BUG_ON(!task_on_rq_queued(p)); | 
|---|
| 1864 | BUG_ON(!rt_task(p)); | 
|---|
| 1865 |  | 
|---|
| 1866 | return p; | 
|---|
| 1867 | } | 
|---|
| 1868 |  | 
|---|
| 1869 | /* Will lock the rq it finds */ | 
|---|
| 1870 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | 
|---|
| 1871 | { | 
|---|
| 1872 | struct rq *lowest_rq = NULL; | 
|---|
| 1873 | int tries; | 
|---|
| 1874 | int cpu; | 
|---|
| 1875 |  | 
|---|
| 1876 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { | 
|---|
| 1877 | cpu = find_lowest_rq(task); | 
|---|
| 1878 |  | 
|---|
| 1879 | if ((cpu == -1) || (cpu == rq->cpu)) | 
|---|
| 1880 | break; | 
|---|
| 1881 |  | 
|---|
| 1882 | lowest_rq = cpu_rq(cpu); | 
|---|
| 1883 |  | 
|---|
| 1884 | if (lowest_rq->rt.highest_prio.curr <= task->prio) { | 
|---|
| 1885 | /* | 
|---|
| 1886 | * Target rq has tasks of equal or higher priority, | 
|---|
| 1887 | * retrying does not release any lock and is unlikely | 
|---|
| 1888 | * to yield a different result. | 
|---|
| 1889 | */ | 
|---|
| 1890 | lowest_rq = NULL; | 
|---|
| 1891 | break; | 
|---|
| 1892 | } | 
|---|
| 1893 |  | 
|---|
| 1894 | /* if the prio of this runqueue changed, try again */ | 
|---|
| 1895 | if (double_lock_balance(this_rq: rq, busiest: lowest_rq)) { | 
|---|
| 1896 | /* | 
|---|
| 1897 | * We had to unlock the run queue. In | 
|---|
| 1898 | * the mean time, task could have | 
|---|
| 1899 | * migrated already or had its affinity changed, | 
|---|
| 1900 | * therefore check if the task is still at the | 
|---|
| 1901 | * head of the pushable tasks list. | 
|---|
| 1902 | * It is possible the task was scheduled, set | 
|---|
| 1903 | * "migrate_disabled" and then got preempted, so we must | 
|---|
| 1904 | * check the task migration disable flag here too. | 
|---|
| 1905 | */ | 
|---|
| 1906 | if (unlikely(is_migration_disabled(task) || | 
|---|
| 1907 | !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || | 
|---|
| 1908 | task != pick_next_pushable_task(rq))) { | 
|---|
| 1909 |  | 
|---|
| 1910 | double_unlock_balance(this_rq: rq, busiest: lowest_rq); | 
|---|
| 1911 | lowest_rq = NULL; | 
|---|
| 1912 | break; | 
|---|
| 1913 | } | 
|---|
| 1914 | } | 
|---|
| 1915 |  | 
|---|
| 1916 | /* If this rq is still suitable use it. */ | 
|---|
| 1917 | if (lowest_rq->rt.highest_prio.curr > task->prio) | 
|---|
| 1918 | break; | 
|---|
| 1919 |  | 
|---|
| 1920 | /* try again */ | 
|---|
| 1921 | double_unlock_balance(this_rq: rq, busiest: lowest_rq); | 
|---|
| 1922 | lowest_rq = NULL; | 
|---|
| 1923 | } | 
|---|
| 1924 |  | 
|---|
| 1925 | return lowest_rq; | 
|---|
| 1926 | } | 
|---|
| 1927 |  | 
|---|
| 1928 | /* | 
|---|
| 1929 | * If the current CPU has more than one RT task, see if the non | 
|---|
| 1930 | * running task can migrate over to a CPU that is running a task | 
|---|
| 1931 | * of lesser priority. | 
|---|
| 1932 | */ | 
|---|
| 1933 | static int push_rt_task(struct rq *rq, bool pull) | 
|---|
| 1934 | { | 
|---|
| 1935 | struct task_struct *next_task; | 
|---|
| 1936 | struct rq *lowest_rq; | 
|---|
| 1937 | int ret = 0; | 
|---|
| 1938 |  | 
|---|
| 1939 | if (!rq->rt.overloaded) | 
|---|
| 1940 | return 0; | 
|---|
| 1941 |  | 
|---|
| 1942 | next_task = pick_next_pushable_task(rq); | 
|---|
| 1943 | if (!next_task) | 
|---|
| 1944 | return 0; | 
|---|
| 1945 |  | 
|---|
| 1946 | retry: | 
|---|
| 1947 | /* | 
|---|
| 1948 | * It's possible that the next_task slipped in of | 
|---|
| 1949 | * higher priority than current. If that's the case | 
|---|
| 1950 | * just reschedule current. | 
|---|
| 1951 | */ | 
|---|
| 1952 | if (unlikely(next_task->prio < rq->donor->prio)) { | 
|---|
| 1953 | resched_curr(rq); | 
|---|
| 1954 | return 0; | 
|---|
| 1955 | } | 
|---|
| 1956 |  | 
|---|
| 1957 | if (is_migration_disabled(p: next_task)) { | 
|---|
| 1958 | struct task_struct *push_task = NULL; | 
|---|
| 1959 | int cpu; | 
|---|
| 1960 |  | 
|---|
| 1961 | if (!pull || rq->push_busy) | 
|---|
| 1962 | return 0; | 
|---|
| 1963 |  | 
|---|
| 1964 | /* | 
|---|
| 1965 | * Invoking find_lowest_rq() on anything but an RT task doesn't | 
|---|
| 1966 | * make sense. Per the above priority check, curr has to | 
|---|
| 1967 | * be of higher priority than next_task, so no need to | 
|---|
| 1968 | * reschedule when bailing out. | 
|---|
| 1969 | * | 
|---|
| 1970 | * Note that the stoppers are masqueraded as SCHED_FIFO | 
|---|
| 1971 | * (cf. sched_set_stop_task()), so we can't rely on rt_task(). | 
|---|
| 1972 | */ | 
|---|
| 1973 | if (rq->donor->sched_class != &rt_sched_class) | 
|---|
| 1974 | return 0; | 
|---|
| 1975 |  | 
|---|
| 1976 | cpu = find_lowest_rq(task: rq->curr); | 
|---|
| 1977 | if (cpu == -1 || cpu == rq->cpu) | 
|---|
| 1978 | return 0; | 
|---|
| 1979 |  | 
|---|
| 1980 | /* | 
|---|
| 1981 | * Given we found a CPU with lower priority than @next_task, | 
|---|
| 1982 | * therefore it should be running. However we cannot migrate it | 
|---|
| 1983 | * to this other CPU, instead attempt to push the current | 
|---|
| 1984 | * running task on this CPU away. | 
|---|
| 1985 | */ | 
|---|
| 1986 | push_task = get_push_task(rq); | 
|---|
| 1987 | if (push_task) { | 
|---|
| 1988 | preempt_disable(); | 
|---|
| 1989 | raw_spin_rq_unlock(rq); | 
|---|
| 1990 | stop_one_cpu_nowait(cpu: rq->cpu, fn: push_cpu_stop, | 
|---|
| 1991 | arg: push_task, work_buf: &rq->push_work); | 
|---|
| 1992 | preempt_enable(); | 
|---|
| 1993 | raw_spin_rq_lock(rq); | 
|---|
| 1994 | } | 
|---|
| 1995 |  | 
|---|
| 1996 | return 0; | 
|---|
| 1997 | } | 
|---|
| 1998 |  | 
|---|
| 1999 | if (WARN_ON(next_task == rq->curr)) | 
|---|
| 2000 | return 0; | 
|---|
| 2001 |  | 
|---|
| 2002 | /* We might release rq lock */ | 
|---|
| 2003 | get_task_struct(t: next_task); | 
|---|
| 2004 |  | 
|---|
| 2005 | /* find_lock_lowest_rq locks the rq if found */ | 
|---|
| 2006 | lowest_rq = find_lock_lowest_rq(task: next_task, rq); | 
|---|
| 2007 | if (!lowest_rq) { | 
|---|
| 2008 | struct task_struct *task; | 
|---|
| 2009 | /* | 
|---|
| 2010 | * find_lock_lowest_rq releases rq->lock | 
|---|
| 2011 | * so it is possible that next_task has migrated. | 
|---|
| 2012 | * | 
|---|
| 2013 | * We need to make sure that the task is still on the same | 
|---|
| 2014 | * run-queue and is also still the next task eligible for | 
|---|
| 2015 | * pushing. | 
|---|
| 2016 | */ | 
|---|
| 2017 | task = pick_next_pushable_task(rq); | 
|---|
| 2018 | if (task == next_task) { | 
|---|
| 2019 | /* | 
|---|
| 2020 | * The task hasn't migrated, and is still the next | 
|---|
| 2021 | * eligible task, but we failed to find a run-queue | 
|---|
| 2022 | * to push it to.  Do not retry in this case, since | 
|---|
| 2023 | * other CPUs will pull from us when ready. | 
|---|
| 2024 | */ | 
|---|
| 2025 | goto out; | 
|---|
| 2026 | } | 
|---|
| 2027 |  | 
|---|
| 2028 | if (!task) | 
|---|
| 2029 | /* No more tasks, just exit */ | 
|---|
| 2030 | goto out; | 
|---|
| 2031 |  | 
|---|
| 2032 | /* | 
|---|
| 2033 | * Something has shifted, try again. | 
|---|
| 2034 | */ | 
|---|
| 2035 | put_task_struct(t: next_task); | 
|---|
| 2036 | next_task = task; | 
|---|
| 2037 | goto retry; | 
|---|
| 2038 | } | 
|---|
| 2039 |  | 
|---|
| 2040 | move_queued_task_locked(src_rq: rq, dst_rq: lowest_rq, task: next_task); | 
|---|
| 2041 | resched_curr(rq: lowest_rq); | 
|---|
| 2042 | ret = 1; | 
|---|
| 2043 |  | 
|---|
| 2044 | double_unlock_balance(this_rq: rq, busiest: lowest_rq); | 
|---|
| 2045 | out: | 
|---|
| 2046 | put_task_struct(t: next_task); | 
|---|
| 2047 |  | 
|---|
| 2048 | return ret; | 
|---|
| 2049 | } | 
|---|
| 2050 |  | 
|---|
| 2051 | static void push_rt_tasks(struct rq *rq) | 
|---|
| 2052 | { | 
|---|
| 2053 | /* push_rt_task will return true if it moved an RT */ | 
|---|
| 2054 | while (push_rt_task(rq, pull: false)) | 
|---|
| 2055 | ; | 
|---|
| 2056 | } | 
|---|
| 2057 |  | 
|---|
| 2058 | #ifdef HAVE_RT_PUSH_IPI | 
|---|
| 2059 |  | 
|---|
| 2060 | /* | 
|---|
| 2061 | * When a high priority task schedules out from a CPU and a lower priority | 
|---|
| 2062 | * task is scheduled in, a check is made to see if there's any RT tasks | 
|---|
| 2063 | * on other CPUs that are waiting to run because a higher priority RT task | 
|---|
| 2064 | * is currently running on its CPU. In this case, the CPU with multiple RT | 
|---|
| 2065 | * tasks queued on it (overloaded) needs to be notified that a CPU has opened | 
|---|
| 2066 | * up that may be able to run one of its non-running queued RT tasks. | 
|---|
| 2067 | * | 
|---|
| 2068 | * All CPUs with overloaded RT tasks need to be notified as there is currently | 
|---|
| 2069 | * no way to know which of these CPUs have the highest priority task waiting | 
|---|
| 2070 | * to run. Instead of trying to take a spinlock on each of these CPUs, | 
|---|
| 2071 | * which has shown to cause large latency when done on machines with many | 
|---|
| 2072 | * CPUs, sending an IPI to the CPUs to have them push off the overloaded | 
|---|
| 2073 | * RT tasks waiting to run. | 
|---|
| 2074 | * | 
|---|
| 2075 | * Just sending an IPI to each of the CPUs is also an issue, as on large | 
|---|
| 2076 | * count CPU machines, this can cause an IPI storm on a CPU, especially | 
|---|
| 2077 | * if its the only CPU with multiple RT tasks queued, and a large number | 
|---|
| 2078 | * of CPUs scheduling a lower priority task at the same time. | 
|---|
| 2079 | * | 
|---|
| 2080 | * Each root domain has its own IRQ work function that can iterate over | 
|---|
| 2081 | * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT | 
|---|
| 2082 | * task must be checked if there's one or many CPUs that are lowering | 
|---|
| 2083 | * their priority, there's a single IRQ work iterator that will try to | 
|---|
| 2084 | * push off RT tasks that are waiting to run. | 
|---|
| 2085 | * | 
|---|
| 2086 | * When a CPU schedules a lower priority task, it will kick off the | 
|---|
| 2087 | * IRQ work iterator that will jump to each CPU with overloaded RT tasks. | 
|---|
| 2088 | * As it only takes the first CPU that schedules a lower priority task | 
|---|
| 2089 | * to start the process, the rto_start variable is incremented and if | 
|---|
| 2090 | * the atomic result is one, then that CPU will try to take the rto_lock. | 
|---|
| 2091 | * This prevents high contention on the lock as the process handles all | 
|---|
| 2092 | * CPUs scheduling lower priority tasks. | 
|---|
| 2093 | * | 
|---|
| 2094 | * All CPUs that are scheduling a lower priority task will increment the | 
|---|
| 2095 | * rt_loop_next variable. This will make sure that the IRQ work iterator | 
|---|
| 2096 | * checks all RT overloaded CPUs whenever a CPU schedules a new lower | 
|---|
| 2097 | * priority task, even if the iterator is in the middle of a scan. Incrementing | 
|---|
| 2098 | * the rt_loop_next will cause the iterator to perform another scan. | 
|---|
| 2099 | * | 
|---|
| 2100 | */ | 
|---|
| 2101 | static int rto_next_cpu(struct root_domain *rd) | 
|---|
| 2102 | { | 
|---|
| 2103 | int next; | 
|---|
| 2104 | int cpu; | 
|---|
| 2105 |  | 
|---|
| 2106 | /* | 
|---|
| 2107 | * When starting the IPI RT pushing, the rto_cpu is set to -1, | 
|---|
| 2108 | * rt_next_cpu() will simply return the first CPU found in | 
|---|
| 2109 | * the rto_mask. | 
|---|
| 2110 | * | 
|---|
| 2111 | * If rto_next_cpu() is called with rto_cpu is a valid CPU, it | 
|---|
| 2112 | * will return the next CPU found in the rto_mask. | 
|---|
| 2113 | * | 
|---|
| 2114 | * If there are no more CPUs left in the rto_mask, then a check is made | 
|---|
| 2115 | * against rto_loop and rto_loop_next. rto_loop is only updated with | 
|---|
| 2116 | * the rto_lock held, but any CPU may increment the rto_loop_next | 
|---|
| 2117 | * without any locking. | 
|---|
| 2118 | */ | 
|---|
| 2119 | for (;;) { | 
|---|
| 2120 |  | 
|---|
| 2121 | /* When rto_cpu is -1 this acts like cpumask_first() */ | 
|---|
| 2122 | cpu = cpumask_next(n: rd->rto_cpu, srcp: rd->rto_mask); | 
|---|
| 2123 |  | 
|---|
| 2124 | rd->rto_cpu = cpu; | 
|---|
| 2125 |  | 
|---|
| 2126 | if (cpu < nr_cpu_ids) | 
|---|
| 2127 | return cpu; | 
|---|
| 2128 |  | 
|---|
| 2129 | rd->rto_cpu = -1; | 
|---|
| 2130 |  | 
|---|
| 2131 | /* | 
|---|
| 2132 | * ACQUIRE ensures we see the @rto_mask changes | 
|---|
| 2133 | * made prior to the @next value observed. | 
|---|
| 2134 | * | 
|---|
| 2135 | * Matches WMB in rt_set_overload(). | 
|---|
| 2136 | */ | 
|---|
| 2137 | next = atomic_read_acquire(v: &rd->rto_loop_next); | 
|---|
| 2138 |  | 
|---|
| 2139 | if (rd->rto_loop == next) | 
|---|
| 2140 | break; | 
|---|
| 2141 |  | 
|---|
| 2142 | rd->rto_loop = next; | 
|---|
| 2143 | } | 
|---|
| 2144 |  | 
|---|
| 2145 | return -1; | 
|---|
| 2146 | } | 
|---|
| 2147 |  | 
|---|
| 2148 | static inline bool rto_start_trylock(atomic_t *v) | 
|---|
| 2149 | { | 
|---|
| 2150 | return !atomic_cmpxchg_acquire(v, old: 0, new: 1); | 
|---|
| 2151 | } | 
|---|
| 2152 |  | 
|---|
| 2153 | static inline void rto_start_unlock(atomic_t *v) | 
|---|
| 2154 | { | 
|---|
| 2155 | atomic_set_release(v, i: 0); | 
|---|
| 2156 | } | 
|---|
| 2157 |  | 
|---|
| 2158 | static void tell_cpu_to_push(struct rq *rq) | 
|---|
| 2159 | { | 
|---|
| 2160 | int cpu = -1; | 
|---|
| 2161 |  | 
|---|
| 2162 | /* Keep the loop going if the IPI is currently active */ | 
|---|
| 2163 | atomic_inc(v: &rq->rd->rto_loop_next); | 
|---|
| 2164 |  | 
|---|
| 2165 | /* Only one CPU can initiate a loop at a time */ | 
|---|
| 2166 | if (!rto_start_trylock(v: &rq->rd->rto_loop_start)) | 
|---|
| 2167 | return; | 
|---|
| 2168 |  | 
|---|
| 2169 | raw_spin_lock(&rq->rd->rto_lock); | 
|---|
| 2170 |  | 
|---|
| 2171 | /* | 
|---|
| 2172 | * The rto_cpu is updated under the lock, if it has a valid CPU | 
|---|
| 2173 | * then the IPI is still running and will continue due to the | 
|---|
| 2174 | * update to loop_next, and nothing needs to be done here. | 
|---|
| 2175 | * Otherwise it is finishing up and an IPI needs to be sent. | 
|---|
| 2176 | */ | 
|---|
| 2177 | if (rq->rd->rto_cpu < 0) | 
|---|
| 2178 | cpu = rto_next_cpu(rd: rq->rd); | 
|---|
| 2179 |  | 
|---|
| 2180 | raw_spin_unlock(&rq->rd->rto_lock); | 
|---|
| 2181 |  | 
|---|
| 2182 | rto_start_unlock(v: &rq->rd->rto_loop_start); | 
|---|
| 2183 |  | 
|---|
| 2184 | if (cpu >= 0) { | 
|---|
| 2185 | /* Make sure the rd does not get freed while pushing */ | 
|---|
| 2186 | sched_get_rd(rd: rq->rd); | 
|---|
| 2187 | irq_work_queue_on(work: &rq->rd->rto_push_work, cpu); | 
|---|
| 2188 | } | 
|---|
| 2189 | } | 
|---|
| 2190 |  | 
|---|
| 2191 | /* Called from hardirq context */ | 
|---|
| 2192 | void rto_push_irq_work_func(struct irq_work *work) | 
|---|
| 2193 | { | 
|---|
| 2194 | struct root_domain *rd = | 
|---|
| 2195 | container_of(work, struct root_domain, rto_push_work); | 
|---|
| 2196 | struct rq *rq; | 
|---|
| 2197 | int cpu; | 
|---|
| 2198 |  | 
|---|
| 2199 | rq = this_rq(); | 
|---|
| 2200 |  | 
|---|
| 2201 | /* | 
|---|
| 2202 | * We do not need to grab the lock to check for has_pushable_tasks. | 
|---|
| 2203 | * When it gets updated, a check is made if a push is possible. | 
|---|
| 2204 | */ | 
|---|
| 2205 | if (has_pushable_tasks(rq)) { | 
|---|
| 2206 | raw_spin_rq_lock(rq); | 
|---|
| 2207 | while (push_rt_task(rq, pull: true)) | 
|---|
| 2208 | ; | 
|---|
| 2209 | raw_spin_rq_unlock(rq); | 
|---|
| 2210 | } | 
|---|
| 2211 |  | 
|---|
| 2212 | raw_spin_lock(&rd->rto_lock); | 
|---|
| 2213 |  | 
|---|
| 2214 | /* Pass the IPI to the next rt overloaded queue */ | 
|---|
| 2215 | cpu = rto_next_cpu(rd); | 
|---|
| 2216 |  | 
|---|
| 2217 | raw_spin_unlock(&rd->rto_lock); | 
|---|
| 2218 |  | 
|---|
| 2219 | if (cpu < 0) { | 
|---|
| 2220 | sched_put_rd(rd); | 
|---|
| 2221 | return; | 
|---|
| 2222 | } | 
|---|
| 2223 |  | 
|---|
| 2224 | /* Try the next RT overloaded CPU */ | 
|---|
| 2225 | irq_work_queue_on(work: &rd->rto_push_work, cpu); | 
|---|
| 2226 | } | 
|---|
| 2227 | #endif /* HAVE_RT_PUSH_IPI */ | 
|---|
| 2228 |  | 
|---|
| 2229 | static void pull_rt_task(struct rq *this_rq) | 
|---|
| 2230 | { | 
|---|
| 2231 | int this_cpu = this_rq->cpu, cpu; | 
|---|
| 2232 | bool resched = false; | 
|---|
| 2233 | struct task_struct *p, *push_task; | 
|---|
| 2234 | struct rq *src_rq; | 
|---|
| 2235 | int rt_overload_count = rt_overloaded(rq: this_rq); | 
|---|
| 2236 |  | 
|---|
| 2237 | if (likely(!rt_overload_count)) | 
|---|
| 2238 | return; | 
|---|
| 2239 |  | 
|---|
| 2240 | /* | 
|---|
| 2241 | * Match the barrier from rt_set_overloaded; this guarantees that if we | 
|---|
| 2242 | * see overloaded we must also see the rto_mask bit. | 
|---|
| 2243 | */ | 
|---|
| 2244 | smp_rmb(); | 
|---|
| 2245 |  | 
|---|
| 2246 | /* If we are the only overloaded CPU do nothing */ | 
|---|
| 2247 | if (rt_overload_count == 1 && | 
|---|
| 2248 | cpumask_test_cpu(cpu: this_rq->cpu, cpumask: this_rq->rd->rto_mask)) | 
|---|
| 2249 | return; | 
|---|
| 2250 |  | 
|---|
| 2251 | #ifdef HAVE_RT_PUSH_IPI | 
|---|
| 2252 | if (sched_feat(RT_PUSH_IPI)) { | 
|---|
| 2253 | tell_cpu_to_push(rq: this_rq); | 
|---|
| 2254 | return; | 
|---|
| 2255 | } | 
|---|
| 2256 | #endif | 
|---|
| 2257 |  | 
|---|
| 2258 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | 
|---|
| 2259 | if (this_cpu == cpu) | 
|---|
| 2260 | continue; | 
|---|
| 2261 |  | 
|---|
| 2262 | src_rq = cpu_rq(cpu); | 
|---|
| 2263 |  | 
|---|
| 2264 | /* | 
|---|
| 2265 | * Don't bother taking the src_rq->lock if the next highest | 
|---|
| 2266 | * task is known to be lower-priority than our current task. | 
|---|
| 2267 | * This may look racy, but if this value is about to go | 
|---|
| 2268 | * logically higher, the src_rq will push this task away. | 
|---|
| 2269 | * And if its going logically lower, we do not care | 
|---|
| 2270 | */ | 
|---|
| 2271 | if (src_rq->rt.highest_prio.next >= | 
|---|
| 2272 | this_rq->rt.highest_prio.curr) | 
|---|
| 2273 | continue; | 
|---|
| 2274 |  | 
|---|
| 2275 | /* | 
|---|
| 2276 | * We can potentially drop this_rq's lock in | 
|---|
| 2277 | * double_lock_balance, and another CPU could | 
|---|
| 2278 | * alter this_rq | 
|---|
| 2279 | */ | 
|---|
| 2280 | push_task = NULL; | 
|---|
| 2281 | double_lock_balance(this_rq, busiest: src_rq); | 
|---|
| 2282 |  | 
|---|
| 2283 | /* | 
|---|
| 2284 | * We can pull only a task, which is pushable | 
|---|
| 2285 | * on its rq, and no others. | 
|---|
| 2286 | */ | 
|---|
| 2287 | p = pick_highest_pushable_task(rq: src_rq, cpu: this_cpu); | 
|---|
| 2288 |  | 
|---|
| 2289 | /* | 
|---|
| 2290 | * Do we have an RT task that preempts | 
|---|
| 2291 | * the to-be-scheduled task? | 
|---|
| 2292 | */ | 
|---|
| 2293 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { | 
|---|
| 2294 | WARN_ON(p == src_rq->curr); | 
|---|
| 2295 | WARN_ON(!task_on_rq_queued(p)); | 
|---|
| 2296 |  | 
|---|
| 2297 | /* | 
|---|
| 2298 | * There's a chance that p is higher in priority | 
|---|
| 2299 | * than what's currently running on its CPU. | 
|---|
| 2300 | * This is just that p is waking up and hasn't | 
|---|
| 2301 | * had a chance to schedule. We only pull | 
|---|
| 2302 | * p if it is lower in priority than the | 
|---|
| 2303 | * current task on the run queue | 
|---|
| 2304 | */ | 
|---|
| 2305 | if (p->prio < src_rq->donor->prio) | 
|---|
| 2306 | goto skip; | 
|---|
| 2307 |  | 
|---|
| 2308 | if (is_migration_disabled(p)) { | 
|---|
| 2309 | push_task = get_push_task(rq: src_rq); | 
|---|
| 2310 | } else { | 
|---|
| 2311 | move_queued_task_locked(src_rq, dst_rq: this_rq, task: p); | 
|---|
| 2312 | resched = true; | 
|---|
| 2313 | } | 
|---|
| 2314 | /* | 
|---|
| 2315 | * We continue with the search, just in | 
|---|
| 2316 | * case there's an even higher prio task | 
|---|
| 2317 | * in another runqueue. (low likelihood | 
|---|
| 2318 | * but possible) | 
|---|
| 2319 | */ | 
|---|
| 2320 | } | 
|---|
| 2321 | skip: | 
|---|
| 2322 | double_unlock_balance(this_rq, busiest: src_rq); | 
|---|
| 2323 |  | 
|---|
| 2324 | if (push_task) { | 
|---|
| 2325 | preempt_disable(); | 
|---|
| 2326 | raw_spin_rq_unlock(rq: this_rq); | 
|---|
| 2327 | stop_one_cpu_nowait(cpu: src_rq->cpu, fn: push_cpu_stop, | 
|---|
| 2328 | arg: push_task, work_buf: &src_rq->push_work); | 
|---|
| 2329 | preempt_enable(); | 
|---|
| 2330 | raw_spin_rq_lock(rq: this_rq); | 
|---|
| 2331 | } | 
|---|
| 2332 | } | 
|---|
| 2333 |  | 
|---|
| 2334 | if (resched) | 
|---|
| 2335 | resched_curr(rq: this_rq); | 
|---|
| 2336 | } | 
|---|
| 2337 |  | 
|---|
| 2338 | /* | 
|---|
| 2339 | * If we are not running and we are not going to reschedule soon, we should | 
|---|
| 2340 | * try to push tasks away now | 
|---|
| 2341 | */ | 
|---|
| 2342 | static void task_woken_rt(struct rq *rq, struct task_struct *p) | 
|---|
| 2343 | { | 
|---|
| 2344 | bool need_to_push = !task_on_cpu(rq, p) && | 
|---|
| 2345 | !test_tsk_need_resched(tsk: rq->curr) && | 
|---|
| 2346 | p->nr_cpus_allowed > 1 && | 
|---|
| 2347 | (dl_task(p: rq->donor) || rt_task(p: rq->donor)) && | 
|---|
| 2348 | (rq->curr->nr_cpus_allowed < 2 || | 
|---|
| 2349 | rq->donor->prio <= p->prio); | 
|---|
| 2350 |  | 
|---|
| 2351 | if (need_to_push) | 
|---|
| 2352 | push_rt_tasks(rq); | 
|---|
| 2353 | } | 
|---|
| 2354 |  | 
|---|
| 2355 | /* Assumes rq->lock is held */ | 
|---|
| 2356 | static void rq_online_rt(struct rq *rq) | 
|---|
| 2357 | { | 
|---|
| 2358 | if (rq->rt.overloaded) | 
|---|
| 2359 | rt_set_overload(rq); | 
|---|
| 2360 |  | 
|---|
| 2361 | __enable_runtime(rq); | 
|---|
| 2362 |  | 
|---|
| 2363 | cpupri_set(cp: &rq->rd->cpupri, cpu: rq->cpu, pri: rq->rt.highest_prio.curr); | 
|---|
| 2364 | } | 
|---|
| 2365 |  | 
|---|
| 2366 | /* Assumes rq->lock is held */ | 
|---|
| 2367 | static void rq_offline_rt(struct rq *rq) | 
|---|
| 2368 | { | 
|---|
| 2369 | if (rq->rt.overloaded) | 
|---|
| 2370 | rt_clear_overload(rq); | 
|---|
| 2371 |  | 
|---|
| 2372 | __disable_runtime(rq); | 
|---|
| 2373 |  | 
|---|
| 2374 | cpupri_set(cp: &rq->rd->cpupri, cpu: rq->cpu, CPUPRI_INVALID); | 
|---|
| 2375 | } | 
|---|
| 2376 |  | 
|---|
| 2377 | /* | 
|---|
| 2378 | * When switch from the rt queue, we bring ourselves to a position | 
|---|
| 2379 | * that we might want to pull RT tasks from other runqueues. | 
|---|
| 2380 | */ | 
|---|
| 2381 | static void switched_from_rt(struct rq *rq, struct task_struct *p) | 
|---|
| 2382 | { | 
|---|
| 2383 | /* | 
|---|
| 2384 | * If there are other RT tasks then we will reschedule | 
|---|
| 2385 | * and the scheduling of the other RT tasks will handle | 
|---|
| 2386 | * the balancing. But if we are the last RT task | 
|---|
| 2387 | * we may need to handle the pulling of RT tasks | 
|---|
| 2388 | * now. | 
|---|
| 2389 | */ | 
|---|
| 2390 | if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) | 
|---|
| 2391 | return; | 
|---|
| 2392 |  | 
|---|
| 2393 | rt_queue_pull_task(rq); | 
|---|
| 2394 | } | 
|---|
| 2395 |  | 
|---|
| 2396 | void __init init_sched_rt_class(void) | 
|---|
| 2397 | { | 
|---|
| 2398 | unsigned int i; | 
|---|
| 2399 |  | 
|---|
| 2400 | for_each_possible_cpu(i) { | 
|---|
| 2401 | zalloc_cpumask_var_node(mask: &per_cpu(local_cpu_mask, i), | 
|---|
| 2402 | GFP_KERNEL, node: cpu_to_node(cpu: i)); | 
|---|
| 2403 | } | 
|---|
| 2404 | } | 
|---|
| 2405 |  | 
|---|
| 2406 | /* | 
|---|
| 2407 | * When switching a task to RT, we may overload the runqueue | 
|---|
| 2408 | * with RT tasks. In this case we try to push them off to | 
|---|
| 2409 | * other runqueues. | 
|---|
| 2410 | */ | 
|---|
| 2411 | static void switched_to_rt(struct rq *rq, struct task_struct *p) | 
|---|
| 2412 | { | 
|---|
| 2413 | /* | 
|---|
| 2414 | * If we are running, update the avg_rt tracking, as the running time | 
|---|
| 2415 | * will now on be accounted into the latter. | 
|---|
| 2416 | */ | 
|---|
| 2417 | if (task_current(rq, p)) { | 
|---|
| 2418 | update_rt_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 0); | 
|---|
| 2419 | return; | 
|---|
| 2420 | } | 
|---|
| 2421 |  | 
|---|
| 2422 | /* | 
|---|
| 2423 | * If we are not running we may need to preempt the current | 
|---|
| 2424 | * running task. If that current running task is also an RT task | 
|---|
| 2425 | * then see if we can move to another run queue. | 
|---|
| 2426 | */ | 
|---|
| 2427 | if (task_on_rq_queued(p)) { | 
|---|
| 2428 | if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) | 
|---|
| 2429 | rt_queue_push_tasks(rq); | 
|---|
| 2430 | if (p->prio < rq->donor->prio && cpu_online(cpu: cpu_of(rq))) | 
|---|
| 2431 | resched_curr(rq); | 
|---|
| 2432 | } | 
|---|
| 2433 | } | 
|---|
| 2434 |  | 
|---|
| 2435 | /* | 
|---|
| 2436 | * Priority of the task has changed. This may cause | 
|---|
| 2437 | * us to initiate a push or pull. | 
|---|
| 2438 | */ | 
|---|
| 2439 | static void | 
|---|
| 2440 | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) | 
|---|
| 2441 | { | 
|---|
| 2442 | if (!task_on_rq_queued(p)) | 
|---|
| 2443 | return; | 
|---|
| 2444 |  | 
|---|
| 2445 | if (task_current_donor(rq, p)) { | 
|---|
| 2446 | /* | 
|---|
| 2447 | * If our priority decreases while running, we | 
|---|
| 2448 | * may need to pull tasks to this runqueue. | 
|---|
| 2449 | */ | 
|---|
| 2450 | if (oldprio < p->prio) | 
|---|
| 2451 | rt_queue_pull_task(rq); | 
|---|
| 2452 |  | 
|---|
| 2453 | /* | 
|---|
| 2454 | * If there's a higher priority task waiting to run | 
|---|
| 2455 | * then reschedule. | 
|---|
| 2456 | */ | 
|---|
| 2457 | if (p->prio > rq->rt.highest_prio.curr) | 
|---|
| 2458 | resched_curr(rq); | 
|---|
| 2459 | } else { | 
|---|
| 2460 | /* | 
|---|
| 2461 | * This task is not running, but if it is | 
|---|
| 2462 | * greater than the current running task | 
|---|
| 2463 | * then reschedule. | 
|---|
| 2464 | */ | 
|---|
| 2465 | if (p->prio < rq->donor->prio) | 
|---|
| 2466 | resched_curr(rq); | 
|---|
| 2467 | } | 
|---|
| 2468 | } | 
|---|
| 2469 |  | 
|---|
| 2470 | #ifdef CONFIG_POSIX_TIMERS | 
|---|
| 2471 | static void watchdog(struct rq *rq, struct task_struct *p) | 
|---|
| 2472 | { | 
|---|
| 2473 | unsigned long soft, hard; | 
|---|
| 2474 |  | 
|---|
| 2475 | /* max may change after cur was read, this will be fixed next tick */ | 
|---|
| 2476 | soft = task_rlimit(task: p, RLIMIT_RTTIME); | 
|---|
| 2477 | hard = task_rlimit_max(task: p, RLIMIT_RTTIME); | 
|---|
| 2478 |  | 
|---|
| 2479 | if (soft != RLIM_INFINITY) { | 
|---|
| 2480 | unsigned long next; | 
|---|
| 2481 |  | 
|---|
| 2482 | if (p->rt.watchdog_stamp != jiffies) { | 
|---|
| 2483 | p->rt.timeout++; | 
|---|
| 2484 | p->rt.watchdog_stamp = jiffies; | 
|---|
| 2485 | } | 
|---|
| 2486 |  | 
|---|
| 2487 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | 
|---|
| 2488 | if (p->rt.timeout > next) { | 
|---|
| 2489 | posix_cputimers_rt_watchdog(pct: &p->posix_cputimers, | 
|---|
| 2490 | runtime: p->se.sum_exec_runtime); | 
|---|
| 2491 | } | 
|---|
| 2492 | } | 
|---|
| 2493 | } | 
|---|
| 2494 | #else /* !CONFIG_POSIX_TIMERS: */ | 
|---|
| 2495 | static inline void watchdog(struct rq *rq, struct task_struct *p) { } | 
|---|
| 2496 | #endif /* !CONFIG_POSIX_TIMERS */ | 
|---|
| 2497 |  | 
|---|
| 2498 | /* | 
|---|
| 2499 | * scheduler tick hitting a task of our scheduling class. | 
|---|
| 2500 | * | 
|---|
| 2501 | * NOTE: This function can be called remotely by the tick offload that | 
|---|
| 2502 | * goes along full dynticks. Therefore no local assumption can be made | 
|---|
| 2503 | * and everything must be accessed through the @rq and @curr passed in | 
|---|
| 2504 | * parameters. | 
|---|
| 2505 | */ | 
|---|
| 2506 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) | 
|---|
| 2507 | { | 
|---|
| 2508 | struct sched_rt_entity *rt_se = &p->rt; | 
|---|
| 2509 |  | 
|---|
| 2510 | update_curr_rt(rq); | 
|---|
| 2511 | update_rt_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 1); | 
|---|
| 2512 |  | 
|---|
| 2513 | watchdog(rq, p); | 
|---|
| 2514 |  | 
|---|
| 2515 | /* | 
|---|
| 2516 | * RR tasks need a special form of time-slice management. | 
|---|
| 2517 | * FIFO tasks have no timeslices. | 
|---|
| 2518 | */ | 
|---|
| 2519 | if (p->policy != SCHED_RR) | 
|---|
| 2520 | return; | 
|---|
| 2521 |  | 
|---|
| 2522 | if (--p->rt.time_slice) | 
|---|
| 2523 | return; | 
|---|
| 2524 |  | 
|---|
| 2525 | p->rt.time_slice = sched_rr_timeslice; | 
|---|
| 2526 |  | 
|---|
| 2527 | /* | 
|---|
| 2528 | * Requeue to the end of queue if we (and all of our ancestors) are not | 
|---|
| 2529 | * the only element on the queue | 
|---|
| 2530 | */ | 
|---|
| 2531 | for_each_sched_rt_entity(rt_se) { | 
|---|
| 2532 | if (rt_se->run_list.prev != rt_se->run_list.next) { | 
|---|
| 2533 | requeue_task_rt(rq, p, head: 0); | 
|---|
| 2534 | resched_curr(rq); | 
|---|
| 2535 | return; | 
|---|
| 2536 | } | 
|---|
| 2537 | } | 
|---|
| 2538 | } | 
|---|
| 2539 |  | 
|---|
| 2540 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) | 
|---|
| 2541 | { | 
|---|
| 2542 | /* | 
|---|
| 2543 | * Time slice is 0 for SCHED_FIFO tasks | 
|---|
| 2544 | */ | 
|---|
| 2545 | if (task->policy == SCHED_RR) | 
|---|
| 2546 | return sched_rr_timeslice; | 
|---|
| 2547 | else | 
|---|
| 2548 | return 0; | 
|---|
| 2549 | } | 
|---|
| 2550 |  | 
|---|
| 2551 | #ifdef CONFIG_SCHED_CORE | 
|---|
| 2552 | static int task_is_throttled_rt(struct task_struct *p, int cpu) | 
|---|
| 2553 | { | 
|---|
| 2554 | struct rt_rq *rt_rq; | 
|---|
| 2555 |  | 
|---|
| 2556 | #ifdef CONFIG_RT_GROUP_SCHED // XXX maybe add task_rt_rq(), see also sched_rt_period_rt_rq | 
|---|
| 2557 | rt_rq = task_group(p)->rt_rq[cpu]; | 
|---|
| 2558 | WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); | 
|---|
| 2559 | #else | 
|---|
| 2560 | rt_rq = &cpu_rq(cpu)->rt; | 
|---|
| 2561 | #endif | 
|---|
| 2562 |  | 
|---|
| 2563 | return rt_rq_throttled(rt_rq); | 
|---|
| 2564 | } | 
|---|
| 2565 | #endif /* CONFIG_SCHED_CORE */ | 
|---|
| 2566 |  | 
|---|
| 2567 | DEFINE_SCHED_CLASS(rt) = { | 
|---|
| 2568 |  | 
|---|
| 2569 | .enqueue_task		= enqueue_task_rt, | 
|---|
| 2570 | .dequeue_task		= dequeue_task_rt, | 
|---|
| 2571 | .yield_task		= yield_task_rt, | 
|---|
| 2572 |  | 
|---|
| 2573 | .wakeup_preempt		= wakeup_preempt_rt, | 
|---|
| 2574 |  | 
|---|
| 2575 | .pick_task		= pick_task_rt, | 
|---|
| 2576 | .put_prev_task		= put_prev_task_rt, | 
|---|
| 2577 | .set_next_task          = set_next_task_rt, | 
|---|
| 2578 |  | 
|---|
| 2579 | .balance		= balance_rt, | 
|---|
| 2580 | .select_task_rq		= select_task_rq_rt, | 
|---|
| 2581 | .set_cpus_allowed       = set_cpus_allowed_common, | 
|---|
| 2582 | .rq_online              = rq_online_rt, | 
|---|
| 2583 | .rq_offline             = rq_offline_rt, | 
|---|
| 2584 | .task_woken		= task_woken_rt, | 
|---|
| 2585 | .switched_from		= switched_from_rt, | 
|---|
| 2586 | .find_lock_rq		= find_lock_lowest_rq, | 
|---|
| 2587 |  | 
|---|
| 2588 | .task_tick		= task_tick_rt, | 
|---|
| 2589 |  | 
|---|
| 2590 | .get_rr_interval	= get_rr_interval_rt, | 
|---|
| 2591 |  | 
|---|
| 2592 | .prio_changed		= prio_changed_rt, | 
|---|
| 2593 | .switched_to		= switched_to_rt, | 
|---|
| 2594 |  | 
|---|
| 2595 | .update_curr		= update_curr_rt, | 
|---|
| 2596 |  | 
|---|
| 2597 | #ifdef CONFIG_SCHED_CORE | 
|---|
| 2598 | .task_is_throttled	= task_is_throttled_rt, | 
|---|
| 2599 | #endif | 
|---|
| 2600 |  | 
|---|
| 2601 | #ifdef CONFIG_UCLAMP_TASK | 
|---|
| 2602 | .uclamp_enabled		= 1, | 
|---|
| 2603 | #endif | 
|---|
| 2604 | }; | 
|---|
| 2605 |  | 
|---|
| 2606 | #ifdef CONFIG_RT_GROUP_SCHED | 
|---|
| 2607 | /* | 
|---|
| 2608 | * Ensure that the real time constraints are schedulable. | 
|---|
| 2609 | */ | 
|---|
| 2610 | static DEFINE_MUTEX(rt_constraints_mutex); | 
|---|
| 2611 |  | 
|---|
| 2612 | static inline int tg_has_rt_tasks(struct task_group *tg) | 
|---|
| 2613 | { | 
|---|
| 2614 | struct task_struct *task; | 
|---|
| 2615 | struct css_task_iter it; | 
|---|
| 2616 | int ret = 0; | 
|---|
| 2617 |  | 
|---|
| 2618 | /* | 
|---|
| 2619 | * Autogroups do not have RT tasks; see autogroup_create(). | 
|---|
| 2620 | */ | 
|---|
| 2621 | if (task_group_is_autogroup(tg)) | 
|---|
| 2622 | return 0; | 
|---|
| 2623 |  | 
|---|
| 2624 | css_task_iter_start(&tg->css, 0, &it); | 
|---|
| 2625 | while (!ret && (task = css_task_iter_next(&it))) | 
|---|
| 2626 | ret |= rt_task(task); | 
|---|
| 2627 | css_task_iter_end(&it); | 
|---|
| 2628 |  | 
|---|
| 2629 | return ret; | 
|---|
| 2630 | } | 
|---|
| 2631 |  | 
|---|
| 2632 | struct rt_schedulable_data { | 
|---|
| 2633 | struct task_group *tg; | 
|---|
| 2634 | u64 rt_period; | 
|---|
| 2635 | u64 rt_runtime; | 
|---|
| 2636 | }; | 
|---|
| 2637 |  | 
|---|
| 2638 | static int tg_rt_schedulable(struct task_group *tg, void *data) | 
|---|
| 2639 | { | 
|---|
| 2640 | struct rt_schedulable_data *d = data; | 
|---|
| 2641 | struct task_group *child; | 
|---|
| 2642 | unsigned long total, sum = 0; | 
|---|
| 2643 | u64 period, runtime; | 
|---|
| 2644 |  | 
|---|
| 2645 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
|---|
| 2646 | runtime = tg->rt_bandwidth.rt_runtime; | 
|---|
| 2647 |  | 
|---|
| 2648 | if (tg == d->tg) { | 
|---|
| 2649 | period = d->rt_period; | 
|---|
| 2650 | runtime = d->rt_runtime; | 
|---|
| 2651 | } | 
|---|
| 2652 |  | 
|---|
| 2653 | /* | 
|---|
| 2654 | * Cannot have more runtime than the period. | 
|---|
| 2655 | */ | 
|---|
| 2656 | if (runtime > period && runtime != RUNTIME_INF) | 
|---|
| 2657 | return -EINVAL; | 
|---|
| 2658 |  | 
|---|
| 2659 | /* | 
|---|
| 2660 | * Ensure we don't starve existing RT tasks if runtime turns zero. | 
|---|
| 2661 | */ | 
|---|
| 2662 | if (rt_bandwidth_enabled() && !runtime && | 
|---|
| 2663 | tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) | 
|---|
| 2664 | return -EBUSY; | 
|---|
| 2665 |  | 
|---|
| 2666 | if (WARN_ON(!rt_group_sched_enabled() && tg != &root_task_group)) | 
|---|
| 2667 | return -EBUSY; | 
|---|
| 2668 |  | 
|---|
| 2669 | total = to_ratio(period, runtime); | 
|---|
| 2670 |  | 
|---|
| 2671 | /* | 
|---|
| 2672 | * Nobody can have more than the global setting allows. | 
|---|
| 2673 | */ | 
|---|
| 2674 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | 
|---|
| 2675 | return -EINVAL; | 
|---|
| 2676 |  | 
|---|
| 2677 | /* | 
|---|
| 2678 | * The sum of our children's runtime should not exceed our own. | 
|---|
| 2679 | */ | 
|---|
| 2680 | list_for_each_entry_rcu(child, &tg->children, siblings) { | 
|---|
| 2681 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | 
|---|
| 2682 | runtime = child->rt_bandwidth.rt_runtime; | 
|---|
| 2683 |  | 
|---|
| 2684 | if (child == d->tg) { | 
|---|
| 2685 | period = d->rt_period; | 
|---|
| 2686 | runtime = d->rt_runtime; | 
|---|
| 2687 | } | 
|---|
| 2688 |  | 
|---|
| 2689 | sum += to_ratio(period, runtime); | 
|---|
| 2690 | } | 
|---|
| 2691 |  | 
|---|
| 2692 | if (sum > total) | 
|---|
| 2693 | return -EINVAL; | 
|---|
| 2694 |  | 
|---|
| 2695 | return 0; | 
|---|
| 2696 | } | 
|---|
| 2697 |  | 
|---|
| 2698 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | 
|---|
| 2699 | { | 
|---|
| 2700 | int ret; | 
|---|
| 2701 |  | 
|---|
| 2702 | struct rt_schedulable_data data = { | 
|---|
| 2703 | .tg = tg, | 
|---|
| 2704 | .rt_period = period, | 
|---|
| 2705 | .rt_runtime = runtime, | 
|---|
| 2706 | }; | 
|---|
| 2707 |  | 
|---|
| 2708 | rcu_read_lock(); | 
|---|
| 2709 | ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); | 
|---|
| 2710 | rcu_read_unlock(); | 
|---|
| 2711 |  | 
|---|
| 2712 | return ret; | 
|---|
| 2713 | } | 
|---|
| 2714 |  | 
|---|
| 2715 | static int tg_set_rt_bandwidth(struct task_group *tg, | 
|---|
| 2716 | u64 rt_period, u64 rt_runtime) | 
|---|
| 2717 | { | 
|---|
| 2718 | int i, err = 0; | 
|---|
| 2719 |  | 
|---|
| 2720 | /* | 
|---|
| 2721 | * Disallowing the root group RT runtime is BAD, it would disallow the | 
|---|
| 2722 | * kernel creating (and or operating) RT threads. | 
|---|
| 2723 | */ | 
|---|
| 2724 | if (tg == &root_task_group && rt_runtime == 0) | 
|---|
| 2725 | return -EINVAL; | 
|---|
| 2726 |  | 
|---|
| 2727 | /* No period doesn't make any sense. */ | 
|---|
| 2728 | if (rt_period == 0) | 
|---|
| 2729 | return -EINVAL; | 
|---|
| 2730 |  | 
|---|
| 2731 | /* | 
|---|
| 2732 | * Bound quota to defend quota against overflow during bandwidth shift. | 
|---|
| 2733 | */ | 
|---|
| 2734 | if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) | 
|---|
| 2735 | return -EINVAL; | 
|---|
| 2736 |  | 
|---|
| 2737 | mutex_lock(&rt_constraints_mutex); | 
|---|
| 2738 | err = __rt_schedulable(tg, rt_period, rt_runtime); | 
|---|
| 2739 | if (err) | 
|---|
| 2740 | goto unlock; | 
|---|
| 2741 |  | 
|---|
| 2742 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 
|---|
| 2743 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | 
|---|
| 2744 | tg->rt_bandwidth.rt_runtime = rt_runtime; | 
|---|
| 2745 |  | 
|---|
| 2746 | for_each_possible_cpu(i) { | 
|---|
| 2747 | struct rt_rq *rt_rq = tg->rt_rq[i]; | 
|---|
| 2748 |  | 
|---|
| 2749 | raw_spin_lock(&rt_rq->rt_runtime_lock); | 
|---|
| 2750 | rt_rq->rt_runtime = rt_runtime; | 
|---|
| 2751 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
|---|
| 2752 | } | 
|---|
| 2753 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 
|---|
| 2754 | unlock: | 
|---|
| 2755 | mutex_unlock(&rt_constraints_mutex); | 
|---|
| 2756 |  | 
|---|
| 2757 | return err; | 
|---|
| 2758 | } | 
|---|
| 2759 |  | 
|---|
| 2760 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | 
|---|
| 2761 | { | 
|---|
| 2762 | u64 rt_runtime, rt_period; | 
|---|
| 2763 |  | 
|---|
| 2764 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
|---|
| 2765 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | 
|---|
| 2766 | if (rt_runtime_us < 0) | 
|---|
| 2767 | rt_runtime = RUNTIME_INF; | 
|---|
| 2768 | else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) | 
|---|
| 2769 | return -EINVAL; | 
|---|
| 2770 |  | 
|---|
| 2771 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | 
|---|
| 2772 | } | 
|---|
| 2773 |  | 
|---|
| 2774 | long sched_group_rt_runtime(struct task_group *tg) | 
|---|
| 2775 | { | 
|---|
| 2776 | u64 rt_runtime_us; | 
|---|
| 2777 |  | 
|---|
| 2778 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | 
|---|
| 2779 | return -1; | 
|---|
| 2780 |  | 
|---|
| 2781 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; | 
|---|
| 2782 | do_div(rt_runtime_us, NSEC_PER_USEC); | 
|---|
| 2783 | return rt_runtime_us; | 
|---|
| 2784 | } | 
|---|
| 2785 |  | 
|---|
| 2786 | int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) | 
|---|
| 2787 | { | 
|---|
| 2788 | u64 rt_runtime, rt_period; | 
|---|
| 2789 |  | 
|---|
| 2790 | if (rt_period_us > U64_MAX / NSEC_PER_USEC) | 
|---|
| 2791 | return -EINVAL; | 
|---|
| 2792 |  | 
|---|
| 2793 | rt_period = rt_period_us * NSEC_PER_USEC; | 
|---|
| 2794 | rt_runtime = tg->rt_bandwidth.rt_runtime; | 
|---|
| 2795 |  | 
|---|
| 2796 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | 
|---|
| 2797 | } | 
|---|
| 2798 |  | 
|---|
| 2799 | long sched_group_rt_period(struct task_group *tg) | 
|---|
| 2800 | { | 
|---|
| 2801 | u64 rt_period_us; | 
|---|
| 2802 |  | 
|---|
| 2803 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
|---|
| 2804 | do_div(rt_period_us, NSEC_PER_USEC); | 
|---|
| 2805 | return rt_period_us; | 
|---|
| 2806 | } | 
|---|
| 2807 |  | 
|---|
| 2808 | #ifdef CONFIG_SYSCTL | 
|---|
| 2809 | static int sched_rt_global_constraints(void) | 
|---|
| 2810 | { | 
|---|
| 2811 | int ret = 0; | 
|---|
| 2812 |  | 
|---|
| 2813 | mutex_lock(&rt_constraints_mutex); | 
|---|
| 2814 | ret = __rt_schedulable(NULL, 0, 0); | 
|---|
| 2815 | mutex_unlock(&rt_constraints_mutex); | 
|---|
| 2816 |  | 
|---|
| 2817 | return ret; | 
|---|
| 2818 | } | 
|---|
| 2819 | #endif /* CONFIG_SYSCTL */ | 
|---|
| 2820 |  | 
|---|
| 2821 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | 
|---|
| 2822 | { | 
|---|
| 2823 | /* Don't accept real-time tasks when there is no way for them to run */ | 
|---|
| 2824 | if (rt_group_sched_enabled() && rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | 
|---|
| 2825 | return 0; | 
|---|
| 2826 |  | 
|---|
| 2827 | return 1; | 
|---|
| 2828 | } | 
|---|
| 2829 |  | 
|---|
| 2830 | #else /* !CONFIG_RT_GROUP_SCHED: */ | 
|---|
| 2831 |  | 
|---|
| 2832 | #ifdef CONFIG_SYSCTL | 
|---|
| 2833 | static int sched_rt_global_constraints(void) | 
|---|
| 2834 | { | 
|---|
| 2835 | return 0; | 
|---|
| 2836 | } | 
|---|
| 2837 | #endif /* CONFIG_SYSCTL */ | 
|---|
| 2838 | #endif /* !CONFIG_RT_GROUP_SCHED */ | 
|---|
| 2839 |  | 
|---|
| 2840 | #ifdef CONFIG_SYSCTL | 
|---|
| 2841 | static int sched_rt_global_validate(void) | 
|---|
| 2842 | { | 
|---|
| 2843 | if ((sysctl_sched_rt_runtime != RUNTIME_INF) && | 
|---|
| 2844 | ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || | 
|---|
| 2845 | ((u64)sysctl_sched_rt_runtime * | 
|---|
| 2846 | NSEC_PER_USEC > max_rt_runtime))) | 
|---|
| 2847 | return -EINVAL; | 
|---|
| 2848 |  | 
|---|
| 2849 | return 0; | 
|---|
| 2850 | } | 
|---|
| 2851 |  | 
|---|
| 2852 | static void sched_rt_do_global(void) | 
|---|
| 2853 | { | 
|---|
| 2854 | } | 
|---|
| 2855 |  | 
|---|
| 2856 | static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, | 
|---|
| 2857 | size_t *lenp, loff_t *ppos) | 
|---|
| 2858 | { | 
|---|
| 2859 | int old_period, old_runtime; | 
|---|
| 2860 | static DEFINE_MUTEX(mutex); | 
|---|
| 2861 | int ret; | 
|---|
| 2862 |  | 
|---|
| 2863 | mutex_lock(lock: &mutex); | 
|---|
| 2864 | sched_domains_mutex_lock(); | 
|---|
| 2865 | old_period = sysctl_sched_rt_period; | 
|---|
| 2866 | old_runtime = sysctl_sched_rt_runtime; | 
|---|
| 2867 |  | 
|---|
| 2868 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
|---|
| 2869 |  | 
|---|
| 2870 | if (!ret && write) { | 
|---|
| 2871 | ret = sched_rt_global_validate(); | 
|---|
| 2872 | if (ret) | 
|---|
| 2873 | goto undo; | 
|---|
| 2874 |  | 
|---|
| 2875 | ret = sched_dl_global_validate(); | 
|---|
| 2876 | if (ret) | 
|---|
| 2877 | goto undo; | 
|---|
| 2878 |  | 
|---|
| 2879 | ret = sched_rt_global_constraints(); | 
|---|
| 2880 | if (ret) | 
|---|
| 2881 | goto undo; | 
|---|
| 2882 |  | 
|---|
| 2883 | sched_rt_do_global(); | 
|---|
| 2884 | sched_dl_do_global(); | 
|---|
| 2885 | } | 
|---|
| 2886 | if (0) { | 
|---|
| 2887 | undo: | 
|---|
| 2888 | sysctl_sched_rt_period = old_period; | 
|---|
| 2889 | sysctl_sched_rt_runtime = old_runtime; | 
|---|
| 2890 | } | 
|---|
| 2891 | sched_domains_mutex_unlock(); | 
|---|
| 2892 | mutex_unlock(lock: &mutex); | 
|---|
| 2893 |  | 
|---|
| 2894 | /* | 
|---|
| 2895 | * After changing maximum available bandwidth for DEADLINE, we need to | 
|---|
| 2896 | * recompute per root domain and per cpus variables accordingly. | 
|---|
| 2897 | */ | 
|---|
| 2898 | rebuild_sched_domains(); | 
|---|
| 2899 |  | 
|---|
| 2900 | return ret; | 
|---|
| 2901 | } | 
|---|
| 2902 |  | 
|---|
| 2903 | static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, | 
|---|
| 2904 | size_t *lenp, loff_t *ppos) | 
|---|
| 2905 | { | 
|---|
| 2906 | int ret; | 
|---|
| 2907 | static DEFINE_MUTEX(mutex); | 
|---|
| 2908 |  | 
|---|
| 2909 | mutex_lock(lock: &mutex); | 
|---|
| 2910 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
|---|
| 2911 | /* | 
|---|
| 2912 | * Make sure that internally we keep jiffies. | 
|---|
| 2913 | * Also, writing zero resets the time-slice to default: | 
|---|
| 2914 | */ | 
|---|
| 2915 | if (!ret && write) { | 
|---|
| 2916 | sched_rr_timeslice = | 
|---|
| 2917 | sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : | 
|---|
| 2918 | msecs_to_jiffies(m: sysctl_sched_rr_timeslice); | 
|---|
| 2919 |  | 
|---|
| 2920 | if (sysctl_sched_rr_timeslice <= 0) | 
|---|
| 2921 | sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE); | 
|---|
| 2922 | } | 
|---|
| 2923 | mutex_unlock(lock: &mutex); | 
|---|
| 2924 |  | 
|---|
| 2925 | return ret; | 
|---|
| 2926 | } | 
|---|
| 2927 | #endif /* CONFIG_SYSCTL */ | 
|---|
| 2928 |  | 
|---|
| 2929 | void print_rt_stats(struct seq_file *m, int cpu) | 
|---|
| 2930 | { | 
|---|
| 2931 | rt_rq_iter_t iter; | 
|---|
| 2932 | struct rt_rq *rt_rq; | 
|---|
| 2933 |  | 
|---|
| 2934 | rcu_read_lock(); | 
|---|
| 2935 | for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) | 
|---|
| 2936 | print_rt_rq(m, cpu, rt_rq); | 
|---|
| 2937 | rcu_read_unlock(); | 
|---|
| 2938 | } | 
|---|
| 2939 |  | 
|---|