| 1 | // SPDX-License-Identifier: MIT | 
|---|
| 2 | /* | 
|---|
| 3 | * Copyright © 2020 Intel Corporation | 
|---|
| 4 | * | 
|---|
| 5 | */ | 
|---|
| 6 |  | 
|---|
| 7 | #include <drm/drm_print.h> | 
|---|
| 8 |  | 
|---|
| 9 | #include "intel_de.h" | 
|---|
| 10 | #include "intel_display_regs.h" | 
|---|
| 11 | #include "intel_display_types.h" | 
|---|
| 12 | #include "intel_dp.h" | 
|---|
| 13 | #include "intel_vrr.h" | 
|---|
| 14 | #include "intel_vrr_regs.h" | 
|---|
| 15 |  | 
|---|
| 16 | #define FIXED_POINT_PRECISION		100 | 
|---|
| 17 | #define CMRR_PRECISION_TOLERANCE	10 | 
|---|
| 18 |  | 
|---|
| 19 | bool intel_vrr_is_capable(struct intel_connector *connector) | 
|---|
| 20 | { | 
|---|
| 21 | struct intel_display *display = to_intel_display(connector); | 
|---|
| 22 | const struct drm_display_info *info = &connector->base.display_info; | 
|---|
| 23 | struct intel_dp *intel_dp; | 
|---|
| 24 |  | 
|---|
| 25 | /* | 
|---|
| 26 | * DP Sink is capable of VRR video timings if | 
|---|
| 27 | * Ignore MSA bit is set in DPCD. | 
|---|
| 28 | * EDID monitor range also should be atleast 10 for reasonable | 
|---|
| 29 | * Adaptive Sync or Variable Refresh Rate end user experience. | 
|---|
| 30 | */ | 
|---|
| 31 | switch (connector->base.connector_type) { | 
|---|
| 32 | case DRM_MODE_CONNECTOR_eDP: | 
|---|
| 33 | if (!connector->panel.vbt.vrr) | 
|---|
| 34 | return false; | 
|---|
| 35 | fallthrough; | 
|---|
| 36 | case DRM_MODE_CONNECTOR_DisplayPort: | 
|---|
| 37 | if (connector->mst.dp) | 
|---|
| 38 | return false; | 
|---|
| 39 | intel_dp = intel_attached_dp(connector); | 
|---|
| 40 |  | 
|---|
| 41 | if (!drm_dp_sink_can_do_video_without_timing_msa(dpcd: intel_dp->dpcd)) | 
|---|
| 42 | return false; | 
|---|
| 43 |  | 
|---|
| 44 | break; | 
|---|
| 45 | default: | 
|---|
| 46 | return false; | 
|---|
| 47 | } | 
|---|
| 48 |  | 
|---|
| 49 | return HAS_VRR(display) && | 
|---|
| 50 | info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10; | 
|---|
| 51 | } | 
|---|
| 52 |  | 
|---|
| 53 | bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh) | 
|---|
| 54 | { | 
|---|
| 55 | const struct drm_display_info *info = &connector->base.display_info; | 
|---|
| 56 |  | 
|---|
| 57 | return intel_vrr_is_capable(connector) && | 
|---|
| 58 | vrefresh >= info->monitor_range.min_vfreq && | 
|---|
| 59 | vrefresh <= info->monitor_range.max_vfreq; | 
|---|
| 60 | } | 
|---|
| 61 |  | 
|---|
| 62 | bool intel_vrr_possible(const struct intel_crtc_state *crtc_state) | 
|---|
| 63 | { | 
|---|
| 64 | return crtc_state->vrr.flipline; | 
|---|
| 65 | } | 
|---|
| 66 |  | 
|---|
| 67 | void | 
|---|
| 68 | intel_vrr_check_modeset(struct intel_atomic_state *state) | 
|---|
| 69 | { | 
|---|
| 70 | int i; | 
|---|
| 71 | struct intel_crtc_state *old_crtc_state, *new_crtc_state; | 
|---|
| 72 | struct intel_crtc *crtc; | 
|---|
| 73 |  | 
|---|
| 74 | for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, | 
|---|
| 75 | new_crtc_state, i) { | 
|---|
| 76 | if (new_crtc_state->uapi.vrr_enabled != | 
|---|
| 77 | old_crtc_state->uapi.vrr_enabled) | 
|---|
| 78 | new_crtc_state->uapi.mode_changed = true; | 
|---|
| 79 | } | 
|---|
| 80 | } | 
|---|
| 81 |  | 
|---|
| 82 | static int intel_vrr_real_vblank_delay(const struct intel_crtc_state *crtc_state) | 
|---|
| 83 | { | 
|---|
| 84 | return crtc_state->hw.adjusted_mode.crtc_vblank_start - | 
|---|
| 85 | crtc_state->hw.adjusted_mode.crtc_vdisplay; | 
|---|
| 86 | } | 
|---|
| 87 |  | 
|---|
| 88 | static int (struct intel_display *display) | 
|---|
| 89 | { | 
|---|
| 90 | /* | 
|---|
| 91 | * On ICL/TGL VRR hardware inserts one extra scanline | 
|---|
| 92 | * just after vactive, which pushes the vmin decision | 
|---|
| 93 | * boundary ahead accordingly. We'll include the extra | 
|---|
| 94 | * scanline in our vblank delay estimates to make sure | 
|---|
| 95 | * that we never underestimate how long we have until | 
|---|
| 96 | * the delayed vblank has passed. | 
|---|
| 97 | */ | 
|---|
| 98 | return DISPLAY_VER(display) < 13 ? 1 : 0; | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | int intel_vrr_vblank_delay(const struct intel_crtc_state *crtc_state) | 
|---|
| 102 | { | 
|---|
| 103 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 104 |  | 
|---|
| 105 | return intel_vrr_real_vblank_delay(crtc_state) + | 
|---|
| 106 | intel_vrr_extra_vblank_delay(display); | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 | static int intel_vrr_flipline_offset(struct intel_display *display) | 
|---|
| 110 | { | 
|---|
| 111 | /* ICL/TGL hardware imposes flipline>=vmin+1 */ | 
|---|
| 112 | return DISPLAY_VER(display) < 13 ? 1 : 0; | 
|---|
| 113 | } | 
|---|
| 114 |  | 
|---|
| 115 | static int intel_vrr_vmin_flipline(const struct intel_crtc_state *crtc_state) | 
|---|
| 116 | { | 
|---|
| 117 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 118 |  | 
|---|
| 119 | return crtc_state->vrr.vmin + intel_vrr_flipline_offset(display); | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | /* | 
|---|
| 123 | * Without VRR registers get latched at: | 
|---|
| 124 | *  vblank_start | 
|---|
| 125 | * | 
|---|
| 126 | * With VRR the earliest registers can get latched is: | 
|---|
| 127 | *  intel_vrr_vmin_vblank_start(), which if we want to maintain | 
|---|
| 128 | *  the correct min vtotal is >=vblank_start+1 | 
|---|
| 129 | * | 
|---|
| 130 | * The latest point registers can get latched is the vmax decision boundary: | 
|---|
| 131 | *  intel_vrr_vmax_vblank_start() | 
|---|
| 132 | * | 
|---|
| 133 | * Between those two points the vblank exit starts (and hence registers get | 
|---|
| 134 | * latched) ASAP after a push is sent. | 
|---|
| 135 | * | 
|---|
| 136 | * framestart_delay is programmable 1-4. | 
|---|
| 137 | */ | 
|---|
| 138 | static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state) | 
|---|
| 139 | { | 
|---|
| 140 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 141 |  | 
|---|
| 142 | if (DISPLAY_VER(display) >= 13) | 
|---|
| 143 | return crtc_state->vrr.guardband; | 
|---|
| 144 | else | 
|---|
| 145 | /* hardware imposes one extra scanline somewhere */ | 
|---|
| 146 | return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1; | 
|---|
| 147 | } | 
|---|
| 148 |  | 
|---|
| 149 | int intel_vrr_vmin_vtotal(const struct intel_crtc_state *crtc_state) | 
|---|
| 150 | { | 
|---|
| 151 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 152 |  | 
|---|
| 153 | /* Min vblank actually determined by flipline */ | 
|---|
| 154 | if (DISPLAY_VER(display) >= 13) | 
|---|
| 155 | return intel_vrr_vmin_flipline(crtc_state); | 
|---|
| 156 | else | 
|---|
| 157 | return intel_vrr_vmin_flipline(crtc_state) + | 
|---|
| 158 | intel_vrr_real_vblank_delay(crtc_state); | 
|---|
| 159 | } | 
|---|
| 160 |  | 
|---|
| 161 | int intel_vrr_vmax_vtotal(const struct intel_crtc_state *crtc_state) | 
|---|
| 162 | { | 
|---|
| 163 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 164 |  | 
|---|
| 165 | if (DISPLAY_VER(display) >= 13) | 
|---|
| 166 | return crtc_state->vrr.vmax; | 
|---|
| 167 | else | 
|---|
| 168 | return crtc_state->vrr.vmax + | 
|---|
| 169 | intel_vrr_real_vblank_delay(crtc_state); | 
|---|
| 170 | } | 
|---|
| 171 |  | 
|---|
| 172 | int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state) | 
|---|
| 173 | { | 
|---|
| 174 | return intel_vrr_vmin_vtotal(crtc_state) - intel_vrr_vblank_exit_length(crtc_state); | 
|---|
| 175 | } | 
|---|
| 176 |  | 
|---|
| 177 | int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state) | 
|---|
| 178 | { | 
|---|
| 179 | return intel_vrr_vmax_vtotal(crtc_state) - intel_vrr_vblank_exit_length(crtc_state); | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | static bool | 
|---|
| 183 | is_cmrr_frac_required(struct intel_crtc_state *crtc_state) | 
|---|
| 184 | { | 
|---|
| 185 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 186 | int calculated_refresh_k, actual_refresh_k, pixel_clock_per_line; | 
|---|
| 187 | struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; | 
|---|
| 188 |  | 
|---|
| 189 | /* Avoid CMRR for now till we have VRR with fixed timings working */ | 
|---|
| 190 | if (!HAS_CMRR(display) || true) | 
|---|
| 191 | return false; | 
|---|
| 192 |  | 
|---|
| 193 | actual_refresh_k = | 
|---|
| 194 | drm_mode_vrefresh(mode: adjusted_mode) * FIXED_POINT_PRECISION; | 
|---|
| 195 | pixel_clock_per_line = | 
|---|
| 196 | adjusted_mode->crtc_clock * 1000 / adjusted_mode->crtc_htotal; | 
|---|
| 197 | calculated_refresh_k = | 
|---|
| 198 | pixel_clock_per_line * FIXED_POINT_PRECISION / adjusted_mode->crtc_vtotal; | 
|---|
| 199 |  | 
|---|
| 200 | if ((actual_refresh_k - calculated_refresh_k) < CMRR_PRECISION_TOLERANCE) | 
|---|
| 201 | return false; | 
|---|
| 202 |  | 
|---|
| 203 | return true; | 
|---|
| 204 | } | 
|---|
| 205 |  | 
|---|
| 206 | static unsigned int | 
|---|
| 207 | cmrr_get_vtotal(struct intel_crtc_state *crtc_state, bool video_mode_required) | 
|---|
| 208 | { | 
|---|
| 209 | int multiplier_m = 1, multiplier_n = 1, vtotal, desired_refresh_rate; | 
|---|
| 210 | u64 adjusted_pixel_rate; | 
|---|
| 211 | struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; | 
|---|
| 212 |  | 
|---|
| 213 | desired_refresh_rate = drm_mode_vrefresh(mode: adjusted_mode); | 
|---|
| 214 |  | 
|---|
| 215 | if (video_mode_required) { | 
|---|
| 216 | multiplier_m = 1001; | 
|---|
| 217 | multiplier_n = 1000; | 
|---|
| 218 | } | 
|---|
| 219 |  | 
|---|
| 220 | crtc_state->cmrr.cmrr_n = mul_u32_u32(a: desired_refresh_rate * adjusted_mode->crtc_htotal, | 
|---|
| 221 | b: multiplier_n); | 
|---|
| 222 | vtotal = DIV_ROUND_UP_ULL(mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_n), | 
|---|
| 223 | crtc_state->cmrr.cmrr_n); | 
|---|
| 224 | adjusted_pixel_rate = mul_u32_u32(a: adjusted_mode->crtc_clock * 1000, b: multiplier_m); | 
|---|
| 225 | crtc_state->cmrr.cmrr_m = do_div(adjusted_pixel_rate, crtc_state->cmrr.cmrr_n); | 
|---|
| 226 |  | 
|---|
| 227 | return vtotal; | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | static | 
|---|
| 231 | void intel_vrr_compute_cmrr_timings(struct intel_crtc_state *crtc_state) | 
|---|
| 232 | { | 
|---|
| 233 | crtc_state->cmrr.enable = true; | 
|---|
| 234 | /* | 
|---|
| 235 | * TODO: Compute precise target refresh rate to determine | 
|---|
| 236 | * if video_mode_required should be true. Currently set to | 
|---|
| 237 | * false due to uncertainty about the precise target | 
|---|
| 238 | * refresh Rate. | 
|---|
| 239 | */ | 
|---|
| 240 | crtc_state->vrr.vmax = cmrr_get_vtotal(crtc_state, video_mode_required: false); | 
|---|
| 241 | crtc_state->vrr.vmin = crtc_state->vrr.vmax; | 
|---|
| 242 | crtc_state->vrr.flipline = crtc_state->vrr.vmin; | 
|---|
| 243 | crtc_state->mode_flags |= I915_MODE_FLAG_VRR; | 
|---|
| 244 | } | 
|---|
| 245 |  | 
|---|
| 246 | static | 
|---|
| 247 | void intel_vrr_compute_vrr_timings(struct intel_crtc_state *crtc_state) | 
|---|
| 248 | { | 
|---|
| 249 | crtc_state->vrr.enable = true; | 
|---|
| 250 | crtc_state->mode_flags |= I915_MODE_FLAG_VRR; | 
|---|
| 251 | } | 
|---|
| 252 |  | 
|---|
| 253 | /* | 
|---|
| 254 | * For fixed refresh rate mode Vmin, Vmax and Flipline all are set to | 
|---|
| 255 | * Vtotal value. | 
|---|
| 256 | */ | 
|---|
| 257 | static | 
|---|
| 258 | int intel_vrr_fixed_rr_vtotal(const struct intel_crtc_state *crtc_state) | 
|---|
| 259 | { | 
|---|
| 260 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 261 | int crtc_vtotal = crtc_state->hw.adjusted_mode.crtc_vtotal; | 
|---|
| 262 |  | 
|---|
| 263 | if (DISPLAY_VER(display) >= 13) | 
|---|
| 264 | return crtc_vtotal; | 
|---|
| 265 | else | 
|---|
| 266 | return crtc_vtotal - | 
|---|
| 267 | intel_vrr_real_vblank_delay(crtc_state); | 
|---|
| 268 | } | 
|---|
| 269 |  | 
|---|
| 270 | static | 
|---|
| 271 | int intel_vrr_fixed_rr_vmax(const struct intel_crtc_state *crtc_state) | 
|---|
| 272 | { | 
|---|
| 273 | return intel_vrr_fixed_rr_vtotal(crtc_state); | 
|---|
| 274 | } | 
|---|
| 275 |  | 
|---|
| 276 | static | 
|---|
| 277 | int intel_vrr_fixed_rr_vmin(const struct intel_crtc_state *crtc_state) | 
|---|
| 278 | { | 
|---|
| 279 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 280 |  | 
|---|
| 281 | return intel_vrr_fixed_rr_vtotal(crtc_state) - | 
|---|
| 282 | intel_vrr_flipline_offset(display); | 
|---|
| 283 | } | 
|---|
| 284 |  | 
|---|
| 285 | static | 
|---|
| 286 | int intel_vrr_fixed_rr_flipline(const struct intel_crtc_state *crtc_state) | 
|---|
| 287 | { | 
|---|
| 288 | return intel_vrr_fixed_rr_vtotal(crtc_state); | 
|---|
| 289 | } | 
|---|
| 290 |  | 
|---|
| 291 | void intel_vrr_set_fixed_rr_timings(const struct intel_crtc_state *crtc_state) | 
|---|
| 292 | { | 
|---|
| 293 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 294 | enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; | 
|---|
| 295 |  | 
|---|
| 296 | if (!intel_vrr_possible(crtc_state)) | 
|---|
| 297 | return; | 
|---|
| 298 |  | 
|---|
| 299 | intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder), | 
|---|
| 300 | val: intel_vrr_fixed_rr_vmin(crtc_state) - 1); | 
|---|
| 301 | intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder), | 
|---|
| 302 | val: intel_vrr_fixed_rr_vmax(crtc_state) - 1); | 
|---|
| 303 | intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder), | 
|---|
| 304 | val: intel_vrr_fixed_rr_flipline(crtc_state) - 1); | 
|---|
| 305 | } | 
|---|
| 306 |  | 
|---|
| 307 | static | 
|---|
| 308 | void intel_vrr_compute_fixed_rr_timings(struct intel_crtc_state *crtc_state) | 
|---|
| 309 | { | 
|---|
| 310 | /* | 
|---|
| 311 | * For fixed rr,  vmin = vmax = flipline. | 
|---|
| 312 | * vmin is already set to crtc_vtotal set vmax and flipline the same. | 
|---|
| 313 | */ | 
|---|
| 314 | crtc_state->vrr.vmax = crtc_state->hw.adjusted_mode.crtc_vtotal; | 
|---|
| 315 | crtc_state->vrr.flipline = crtc_state->hw.adjusted_mode.crtc_vtotal; | 
|---|
| 316 | } | 
|---|
| 317 |  | 
|---|
| 318 | static | 
|---|
| 319 | int intel_vrr_compute_vmin(struct intel_crtc_state *crtc_state) | 
|---|
| 320 | { | 
|---|
| 321 | /* | 
|---|
| 322 | * To make fixed rr and vrr work seamless the guardband/pipeline full | 
|---|
| 323 | * should be set such that it satisfies both the fixed and variable | 
|---|
| 324 | * timings. | 
|---|
| 325 | * For this set the vmin as crtc_vtotal. With this we never need to | 
|---|
| 326 | * change anything to do with the guardband. | 
|---|
| 327 | */ | 
|---|
| 328 | return crtc_state->hw.adjusted_mode.crtc_vtotal; | 
|---|
| 329 | } | 
|---|
| 330 |  | 
|---|
| 331 | static | 
|---|
| 332 | int intel_vrr_compute_vmax(struct intel_connector *connector, | 
|---|
| 333 | const struct drm_display_mode *adjusted_mode) | 
|---|
| 334 | { | 
|---|
| 335 | const struct drm_display_info *info = &connector->base.display_info; | 
|---|
| 336 | int vmax; | 
|---|
| 337 |  | 
|---|
| 338 | vmax = adjusted_mode->crtc_clock * 1000 / | 
|---|
| 339 | (adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq); | 
|---|
| 340 | vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal); | 
|---|
| 341 |  | 
|---|
| 342 | return vmax; | 
|---|
| 343 | } | 
|---|
| 344 |  | 
|---|
| 345 | void | 
|---|
| 346 | intel_vrr_compute_config(struct intel_crtc_state *crtc_state, | 
|---|
| 347 | struct drm_connector_state *conn_state) | 
|---|
| 348 | { | 
|---|
| 349 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 350 | struct intel_connector *connector = | 
|---|
| 351 | to_intel_connector(conn_state->connector); | 
|---|
| 352 | struct intel_dp *intel_dp = intel_attached_dp(connector); | 
|---|
| 353 | bool is_edp = intel_dp_is_edp(intel_dp); | 
|---|
| 354 | struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; | 
|---|
| 355 | int vmin, vmax; | 
|---|
| 356 |  | 
|---|
| 357 | if (!HAS_VRR(display)) | 
|---|
| 358 | return; | 
|---|
| 359 |  | 
|---|
| 360 | if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) | 
|---|
| 361 | return; | 
|---|
| 362 |  | 
|---|
| 363 | crtc_state->vrr.in_range = | 
|---|
| 364 | intel_vrr_is_in_range(connector, vrefresh: drm_mode_vrefresh(mode: adjusted_mode)); | 
|---|
| 365 |  | 
|---|
| 366 | /* | 
|---|
| 367 | * Allow fixed refresh rate with VRR Timing Generator. | 
|---|
| 368 | * For now set the vrr.in_range to 0, to allow fixed_rr but skip actual | 
|---|
| 369 | * VRR and LRR. | 
|---|
| 370 | * #TODO For actual VRR with joiner, we need to figure out how to | 
|---|
| 371 | * correctly sequence transcoder level stuff vs. pipe level stuff | 
|---|
| 372 | * in the commit. | 
|---|
| 373 | */ | 
|---|
| 374 | if (crtc_state->joiner_pipes) | 
|---|
| 375 | crtc_state->vrr.in_range = false; | 
|---|
| 376 |  | 
|---|
| 377 | vmin = intel_vrr_compute_vmin(crtc_state); | 
|---|
| 378 |  | 
|---|
| 379 | if (crtc_state->vrr.in_range) { | 
|---|
| 380 | if (HAS_LRR(display)) | 
|---|
| 381 | crtc_state->update_lrr = true; | 
|---|
| 382 | vmax = intel_vrr_compute_vmax(connector, adjusted_mode); | 
|---|
| 383 | } else { | 
|---|
| 384 | vmax = vmin; | 
|---|
| 385 | } | 
|---|
| 386 |  | 
|---|
| 387 | crtc_state->vrr.vmin = vmin; | 
|---|
| 388 | crtc_state->vrr.vmax = vmax; | 
|---|
| 389 |  | 
|---|
| 390 | crtc_state->vrr.flipline = crtc_state->vrr.vmin; | 
|---|
| 391 |  | 
|---|
| 392 | if (crtc_state->uapi.vrr_enabled && vmin < vmax) | 
|---|
| 393 | intel_vrr_compute_vrr_timings(crtc_state); | 
|---|
| 394 | else if (is_cmrr_frac_required(crtc_state) && is_edp) | 
|---|
| 395 | intel_vrr_compute_cmrr_timings(crtc_state); | 
|---|
| 396 | else | 
|---|
| 397 | intel_vrr_compute_fixed_rr_timings(crtc_state); | 
|---|
| 398 |  | 
|---|
| 399 | /* | 
|---|
| 400 | * flipline determines the min vblank length the hardware will | 
|---|
| 401 | * generate, and on ICL/TGL flipline>=vmin+1, hence we reduce | 
|---|
| 402 | * vmin by one to make sure we can get the actual min vblank length. | 
|---|
| 403 | */ | 
|---|
| 404 | crtc_state->vrr.vmin -= intel_vrr_flipline_offset(display); | 
|---|
| 405 |  | 
|---|
| 406 | if (HAS_AS_SDP(display)) { | 
|---|
| 407 | crtc_state->vrr.vsync_start = | 
|---|
| 408 | (crtc_state->hw.adjusted_mode.crtc_vtotal - | 
|---|
| 409 | crtc_state->hw.adjusted_mode.vsync_start); | 
|---|
| 410 | crtc_state->vrr.vsync_end = | 
|---|
| 411 | (crtc_state->hw.adjusted_mode.crtc_vtotal - | 
|---|
| 412 | crtc_state->hw.adjusted_mode.vsync_end); | 
|---|
| 413 | } | 
|---|
| 414 | } | 
|---|
| 415 |  | 
|---|
| 416 | void intel_vrr_compute_config_late(struct intel_crtc_state *crtc_state) | 
|---|
| 417 | { | 
|---|
| 418 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 419 | const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; | 
|---|
| 420 |  | 
|---|
| 421 | if (!intel_vrr_possible(crtc_state)) | 
|---|
| 422 | return; | 
|---|
| 423 |  | 
|---|
| 424 | if (DISPLAY_VER(display) >= 13) { | 
|---|
| 425 | crtc_state->vrr.guardband = | 
|---|
| 426 | crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start; | 
|---|
| 427 | } else { | 
|---|
| 428 | /* hardware imposes one extra scanline somewhere */ | 
|---|
| 429 | crtc_state->vrr.pipeline_full = | 
|---|
| 430 | min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start - | 
|---|
| 431 | crtc_state->framestart_delay - 1); | 
|---|
| 432 |  | 
|---|
| 433 | /* | 
|---|
| 434 | * vmin/vmax/flipline also need to be adjusted by | 
|---|
| 435 | * the vblank delay to maintain correct vtotals. | 
|---|
| 436 | */ | 
|---|
| 437 | crtc_state->vrr.vmin -= intel_vrr_real_vblank_delay(crtc_state); | 
|---|
| 438 | crtc_state->vrr.vmax -= intel_vrr_real_vblank_delay(crtc_state); | 
|---|
| 439 | crtc_state->vrr.flipline -= intel_vrr_real_vblank_delay(crtc_state); | 
|---|
| 440 | } | 
|---|
| 441 | } | 
|---|
| 442 |  | 
|---|
| 443 | static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state) | 
|---|
| 444 | { | 
|---|
| 445 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 446 |  | 
|---|
| 447 | if (DISPLAY_VER(display) >= 14) | 
|---|
| 448 | return VRR_CTL_FLIP_LINE_EN | | 
|---|
| 449 | XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband); | 
|---|
| 450 | else if (DISPLAY_VER(display) >= 13) | 
|---|
| 451 | return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | | 
|---|
| 452 | XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband); | 
|---|
| 453 | else | 
|---|
| 454 | return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | | 
|---|
| 455 | VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) | | 
|---|
| 456 | VRR_CTL_PIPELINE_FULL_OVERRIDE; | 
|---|
| 457 | } | 
|---|
| 458 |  | 
|---|
| 459 | void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state) | 
|---|
| 460 | { | 
|---|
| 461 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 462 | enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; | 
|---|
| 463 |  | 
|---|
| 464 | /* | 
|---|
| 465 | * This bit seems to have two meanings depending on the platform: | 
|---|
| 466 | * TGL: generate VRR "safe window" for DSB vblank waits | 
|---|
| 467 | * ADL/DG2: make TRANS_SET_CONTEXT_LATENCY effective with VRR | 
|---|
| 468 | */ | 
|---|
| 469 | if (IS_DISPLAY_VER(display, 12, 13)) | 
|---|
| 470 | intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder), | 
|---|
| 471 | clear: 0, PIPE_VBLANK_WITH_DELAY); | 
|---|
| 472 |  | 
|---|
| 473 | if (!intel_vrr_possible(crtc_state)) { | 
|---|
| 474 | intel_de_write(display, | 
|---|
| 475 | TRANS_VRR_CTL(display, cpu_transcoder), val: 0); | 
|---|
| 476 | return; | 
|---|
| 477 | } | 
|---|
| 478 |  | 
|---|
| 479 | if (crtc_state->cmrr.enable) { | 
|---|
| 480 | intel_de_write(display, TRANS_CMRR_M_HI(display, cpu_transcoder), | 
|---|
| 481 | upper_32_bits(crtc_state->cmrr.cmrr_m)); | 
|---|
| 482 | intel_de_write(display, TRANS_CMRR_M_LO(display, cpu_transcoder), | 
|---|
| 483 | lower_32_bits(crtc_state->cmrr.cmrr_m)); | 
|---|
| 484 | intel_de_write(display, TRANS_CMRR_N_HI(display, cpu_transcoder), | 
|---|
| 485 | upper_32_bits(crtc_state->cmrr.cmrr_n)); | 
|---|
| 486 | intel_de_write(display, TRANS_CMRR_N_LO(display, cpu_transcoder), | 
|---|
| 487 | lower_32_bits(crtc_state->cmrr.cmrr_n)); | 
|---|
| 488 | } | 
|---|
| 489 |  | 
|---|
| 490 | intel_vrr_set_fixed_rr_timings(crtc_state); | 
|---|
| 491 |  | 
|---|
| 492 | if (!intel_vrr_always_use_vrr_tg(display) && !crtc_state->vrr.enable) | 
|---|
| 493 | intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), | 
|---|
| 494 | val: trans_vrr_ctl(crtc_state)); | 
|---|
| 495 |  | 
|---|
| 496 | if (HAS_AS_SDP(display)) | 
|---|
| 497 | intel_de_write(display, | 
|---|
| 498 | TRANS_VRR_VSYNC(display, cpu_transcoder), | 
|---|
| 499 | VRR_VSYNC_END(crtc_state->vrr.vsync_end) | | 
|---|
| 500 | VRR_VSYNC_START(crtc_state->vrr.vsync_start)); | 
|---|
| 501 | } | 
|---|
| 502 |  | 
|---|
| 503 | void intel_vrr_send_push(struct intel_dsb *dsb, | 
|---|
| 504 | const struct intel_crtc_state *crtc_state) | 
|---|
| 505 | { | 
|---|
| 506 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 507 | enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; | 
|---|
| 508 |  | 
|---|
| 509 | if (!crtc_state->vrr.enable) | 
|---|
| 510 | return; | 
|---|
| 511 |  | 
|---|
| 512 | if (dsb) | 
|---|
| 513 | intel_dsb_nonpost_start(dsb); | 
|---|
| 514 |  | 
|---|
| 515 | intel_de_write_dsb(display, dsb, | 
|---|
| 516 | TRANS_PUSH(display, cpu_transcoder), | 
|---|
| 517 | TRANS_PUSH_EN | TRANS_PUSH_SEND); | 
|---|
| 518 |  | 
|---|
| 519 | if (dsb) | 
|---|
| 520 | intel_dsb_nonpost_end(dsb); | 
|---|
| 521 | } | 
|---|
| 522 |  | 
|---|
| 523 | void intel_vrr_check_push_sent(struct intel_dsb *dsb, | 
|---|
| 524 | const struct intel_crtc_state *crtc_state) | 
|---|
| 525 | { | 
|---|
| 526 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 527 | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|---|
| 528 | enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; | 
|---|
| 529 |  | 
|---|
| 530 | if (!crtc_state->vrr.enable) | 
|---|
| 531 | return; | 
|---|
| 532 |  | 
|---|
| 533 | /* | 
|---|
| 534 | * Make sure the push send bit has cleared. This should | 
|---|
| 535 | * already be the case as long as the caller makes sure | 
|---|
| 536 | * this is called after the delayed vblank has occurred. | 
|---|
| 537 | */ | 
|---|
| 538 | if (dsb) { | 
|---|
| 539 | int wait_us, count; | 
|---|
| 540 |  | 
|---|
| 541 | wait_us = 2; | 
|---|
| 542 | count = 1; | 
|---|
| 543 |  | 
|---|
| 544 | /* | 
|---|
| 545 | * If the bit hasn't cleared the DSB will | 
|---|
| 546 | * raise the poll error interrupt. | 
|---|
| 547 | */ | 
|---|
| 548 | intel_dsb_poll(dsb, TRANS_PUSH(display, cpu_transcoder), | 
|---|
| 549 | TRANS_PUSH_SEND, val: 0, wait_us, count); | 
|---|
| 550 | } else { | 
|---|
| 551 | if (intel_vrr_is_push_sent(crtc_state)) | 
|---|
| 552 | drm_err(display->drm, "[CRTC:%d:%s] VRR push send still pending\n", | 
|---|
| 553 | crtc->base.base.id, crtc->base.name); | 
|---|
| 554 | } | 
|---|
| 555 | } | 
|---|
| 556 |  | 
|---|
| 557 | bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state) | 
|---|
| 558 | { | 
|---|
| 559 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 560 | enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; | 
|---|
| 561 |  | 
|---|
| 562 | if (!crtc_state->vrr.enable) | 
|---|
| 563 | return false; | 
|---|
| 564 |  | 
|---|
| 565 | return intel_de_read(display, TRANS_PUSH(display, cpu_transcoder)) & TRANS_PUSH_SEND; | 
|---|
| 566 | } | 
|---|
| 567 |  | 
|---|
| 568 | bool intel_vrr_always_use_vrr_tg(struct intel_display *display) | 
|---|
| 569 | { | 
|---|
| 570 | if (!HAS_VRR(display)) | 
|---|
| 571 | return false; | 
|---|
| 572 |  | 
|---|
| 573 | if (DISPLAY_VER(display) >= 30) | 
|---|
| 574 | return true; | 
|---|
| 575 |  | 
|---|
| 576 | return false; | 
|---|
| 577 | } | 
|---|
| 578 |  | 
|---|
| 579 | static | 
|---|
| 580 | void intel_vrr_set_db_point_and_transmission_line(const struct intel_crtc_state *crtc_state) | 
|---|
| 581 | { | 
|---|
| 582 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 583 | enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; | 
|---|
| 584 |  | 
|---|
| 585 | /* | 
|---|
| 586 | * For BMG and LNL+ onwards the EMP_AS_SDP_TL is used for programming | 
|---|
| 587 | * double buffering point and transmission line for VRR packets for | 
|---|
| 588 | * HDMI2.1/DP/eDP/DP->HDMI2.1 PCON. | 
|---|
| 589 | * Since currently we support VRR only for DP/eDP, so this is programmed | 
|---|
| 590 | * to for Adaptive Sync SDP to Vsync start. | 
|---|
| 591 | */ | 
|---|
| 592 | if (DISPLAY_VERx100(display) == 1401 || DISPLAY_VER(display) >= 20) | 
|---|
| 593 | intel_de_write(display, | 
|---|
| 594 | EMP_AS_SDP_TL(display, cpu_transcoder), | 
|---|
| 595 | EMP_AS_SDP_DB_TL(crtc_state->vrr.vsync_start)); | 
|---|
| 596 | } | 
|---|
| 597 |  | 
|---|
| 598 | void intel_vrr_enable(const struct intel_crtc_state *crtc_state) | 
|---|
| 599 | { | 
|---|
| 600 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 601 | enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; | 
|---|
| 602 |  | 
|---|
| 603 | if (!crtc_state->vrr.enable) | 
|---|
| 604 | return; | 
|---|
| 605 |  | 
|---|
| 606 | intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder), | 
|---|
| 607 | val: crtc_state->vrr.vmin - 1); | 
|---|
| 608 | intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder), | 
|---|
| 609 | val: crtc_state->vrr.vmax - 1); | 
|---|
| 610 | intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder), | 
|---|
| 611 | val: crtc_state->vrr.flipline - 1); | 
|---|
| 612 |  | 
|---|
| 613 | intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), | 
|---|
| 614 | TRANS_PUSH_EN); | 
|---|
| 615 |  | 
|---|
| 616 | if (!intel_vrr_always_use_vrr_tg(display)) { | 
|---|
| 617 | intel_vrr_set_db_point_and_transmission_line(crtc_state); | 
|---|
| 618 |  | 
|---|
| 619 | if (crtc_state->cmrr.enable) { | 
|---|
| 620 | intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), | 
|---|
| 621 | VRR_CTL_VRR_ENABLE | VRR_CTL_CMRR_ENABLE | | 
|---|
| 622 | trans_vrr_ctl(crtc_state)); | 
|---|
| 623 | } else { | 
|---|
| 624 | intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), | 
|---|
| 625 | VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state)); | 
|---|
| 626 | } | 
|---|
| 627 | } | 
|---|
| 628 | } | 
|---|
| 629 |  | 
|---|
| 630 | void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state) | 
|---|
| 631 | { | 
|---|
| 632 | struct intel_display *display = to_intel_display(old_crtc_state); | 
|---|
| 633 | enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; | 
|---|
| 634 |  | 
|---|
| 635 | if (!old_crtc_state->vrr.enable) | 
|---|
| 636 | return; | 
|---|
| 637 |  | 
|---|
| 638 | if (!intel_vrr_always_use_vrr_tg(display)) { | 
|---|
| 639 | intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), | 
|---|
| 640 | val: trans_vrr_ctl(crtc_state: old_crtc_state)); | 
|---|
| 641 | intel_de_wait_for_clear(display, | 
|---|
| 642 | TRANS_VRR_STATUS(display, cpu_transcoder), | 
|---|
| 643 | VRR_STATUS_VRR_EN_LIVE, timeout_ms: 1000); | 
|---|
| 644 | intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), val: 0); | 
|---|
| 645 | } | 
|---|
| 646 |  | 
|---|
| 647 | intel_vrr_set_fixed_rr_timings(crtc_state: old_crtc_state); | 
|---|
| 648 | } | 
|---|
| 649 |  | 
|---|
| 650 | void intel_vrr_transcoder_enable(const struct intel_crtc_state *crtc_state) | 
|---|
| 651 | { | 
|---|
| 652 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 653 | enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; | 
|---|
| 654 |  | 
|---|
| 655 | if (!HAS_VRR(display)) | 
|---|
| 656 | return; | 
|---|
| 657 |  | 
|---|
| 658 | if (!intel_vrr_possible(crtc_state)) | 
|---|
| 659 | return; | 
|---|
| 660 |  | 
|---|
| 661 | if (!intel_vrr_always_use_vrr_tg(display)) { | 
|---|
| 662 | intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), | 
|---|
| 663 | val: trans_vrr_ctl(crtc_state)); | 
|---|
| 664 | return; | 
|---|
| 665 | } | 
|---|
| 666 |  | 
|---|
| 667 | intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), | 
|---|
| 668 | TRANS_PUSH_EN); | 
|---|
| 669 |  | 
|---|
| 670 | intel_vrr_set_db_point_and_transmission_line(crtc_state); | 
|---|
| 671 |  | 
|---|
| 672 | intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), | 
|---|
| 673 | VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state)); | 
|---|
| 674 | } | 
|---|
| 675 |  | 
|---|
| 676 | void intel_vrr_transcoder_disable(const struct intel_crtc_state *crtc_state) | 
|---|
| 677 | { | 
|---|
| 678 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 679 | enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; | 
|---|
| 680 |  | 
|---|
| 681 | if (!HAS_VRR(display)) | 
|---|
| 682 | return; | 
|---|
| 683 |  | 
|---|
| 684 | if (!intel_vrr_possible(crtc_state)) | 
|---|
| 685 | return; | 
|---|
| 686 |  | 
|---|
| 687 | intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), val: 0); | 
|---|
| 688 |  | 
|---|
| 689 | intel_de_wait_for_clear(display, TRANS_VRR_STATUS(display, cpu_transcoder), | 
|---|
| 690 | VRR_STATUS_VRR_EN_LIVE, timeout_ms: 1000); | 
|---|
| 691 | intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), val: 0); | 
|---|
| 692 | } | 
|---|
| 693 |  | 
|---|
| 694 | bool intel_vrr_is_fixed_rr(const struct intel_crtc_state *crtc_state) | 
|---|
| 695 | { | 
|---|
| 696 | return crtc_state->vrr.flipline && | 
|---|
| 697 | crtc_state->vrr.flipline == crtc_state->vrr.vmax && | 
|---|
| 698 | crtc_state->vrr.flipline == intel_vrr_vmin_flipline(crtc_state); | 
|---|
| 699 | } | 
|---|
| 700 |  | 
|---|
| 701 | void intel_vrr_get_config(struct intel_crtc_state *crtc_state) | 
|---|
| 702 | { | 
|---|
| 703 | struct intel_display *display = to_intel_display(crtc_state); | 
|---|
| 704 | enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; | 
|---|
| 705 | u32 trans_vrr_ctl, trans_vrr_vsync; | 
|---|
| 706 | bool vrr_enable; | 
|---|
| 707 |  | 
|---|
| 708 | trans_vrr_ctl = intel_de_read(display, | 
|---|
| 709 | TRANS_VRR_CTL(display, cpu_transcoder)); | 
|---|
| 710 |  | 
|---|
| 711 | if (HAS_CMRR(display)) | 
|---|
| 712 | crtc_state->cmrr.enable = (trans_vrr_ctl & VRR_CTL_CMRR_ENABLE); | 
|---|
| 713 |  | 
|---|
| 714 | if (crtc_state->cmrr.enable) { | 
|---|
| 715 | crtc_state->cmrr.cmrr_n = | 
|---|
| 716 | intel_de_read64_2x32(display, TRANS_CMRR_N_LO(display, cpu_transcoder), | 
|---|
| 717 | TRANS_CMRR_N_HI(display, cpu_transcoder)); | 
|---|
| 718 | crtc_state->cmrr.cmrr_m = | 
|---|
| 719 | intel_de_read64_2x32(display, TRANS_CMRR_M_LO(display, cpu_transcoder), | 
|---|
| 720 | TRANS_CMRR_M_HI(display, cpu_transcoder)); | 
|---|
| 721 | } | 
|---|
| 722 |  | 
|---|
| 723 | if (DISPLAY_VER(display) >= 13) | 
|---|
| 724 | crtc_state->vrr.guardband = | 
|---|
| 725 | REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl); | 
|---|
| 726 | else | 
|---|
| 727 | if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE) | 
|---|
| 728 | crtc_state->vrr.pipeline_full = | 
|---|
| 729 | REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl); | 
|---|
| 730 |  | 
|---|
| 731 | if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) { | 
|---|
| 732 | crtc_state->vrr.flipline = intel_de_read(display, | 
|---|
| 733 | TRANS_VRR_FLIPLINE(display, cpu_transcoder)) + 1; | 
|---|
| 734 | crtc_state->vrr.vmax = intel_de_read(display, | 
|---|
| 735 | TRANS_VRR_VMAX(display, cpu_transcoder)) + 1; | 
|---|
| 736 | crtc_state->vrr.vmin = intel_de_read(display, | 
|---|
| 737 | TRANS_VRR_VMIN(display, cpu_transcoder)) + 1; | 
|---|
| 738 |  | 
|---|
| 739 | /* | 
|---|
| 740 | * For platforms that always use VRR Timing Generator, the VTOTAL.Vtotal | 
|---|
| 741 | * bits are not filled. Since for these platforms TRAN_VMIN is always | 
|---|
| 742 | * filled with crtc_vtotal, use TRAN_VRR_VMIN to get the vtotal for | 
|---|
| 743 | * adjusted_mode. | 
|---|
| 744 | */ | 
|---|
| 745 | if (intel_vrr_always_use_vrr_tg(display)) | 
|---|
| 746 | crtc_state->hw.adjusted_mode.crtc_vtotal = | 
|---|
| 747 | intel_vrr_vmin_vtotal(crtc_state); | 
|---|
| 748 |  | 
|---|
| 749 | if (HAS_AS_SDP(display)) { | 
|---|
| 750 | trans_vrr_vsync = | 
|---|
| 751 | intel_de_read(display, | 
|---|
| 752 | TRANS_VRR_VSYNC(display, cpu_transcoder)); | 
|---|
| 753 | crtc_state->vrr.vsync_start = | 
|---|
| 754 | REG_FIELD_GET(VRR_VSYNC_START_MASK, trans_vrr_vsync); | 
|---|
| 755 | crtc_state->vrr.vsync_end = | 
|---|
| 756 | REG_FIELD_GET(VRR_VSYNC_END_MASK, trans_vrr_vsync); | 
|---|
| 757 | } | 
|---|
| 758 | } | 
|---|
| 759 |  | 
|---|
| 760 | vrr_enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE; | 
|---|
| 761 |  | 
|---|
| 762 | if (intel_vrr_always_use_vrr_tg(display)) | 
|---|
| 763 | crtc_state->vrr.enable = vrr_enable && !intel_vrr_is_fixed_rr(crtc_state); | 
|---|
| 764 | else | 
|---|
| 765 | crtc_state->vrr.enable = vrr_enable; | 
|---|
| 766 |  | 
|---|
| 767 | /* | 
|---|
| 768 | * #TODO: For Both VRR and CMRR the flag I915_MODE_FLAG_VRR is set for mode_flags. | 
|---|
| 769 | * Since CMRR is currently disabled, set this flag for VRR for now. | 
|---|
| 770 | * Need to keep this in mind while re-enabling CMRR. | 
|---|
| 771 | */ | 
|---|
| 772 | if (crtc_state->vrr.enable) | 
|---|
| 773 | crtc_state->mode_flags |= I915_MODE_FLAG_VRR; | 
|---|
| 774 | } | 
|---|
| 775 |  | 
|---|