1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PACKET - implements raw packet sockets.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox, <gw4pts@gw4pts.ampr.org>
12 *
13 * Fixes:
14 * Alan Cox : verify_area() now used correctly
15 * Alan Cox : new skbuff lists, look ma no backlogs!
16 * Alan Cox : tidied skbuff lists.
17 * Alan Cox : Now uses generic datagram routines I
18 * added. Also fixed the peek/read crash
19 * from all old Linux datagram code.
20 * Alan Cox : Uses the improved datagram code.
21 * Alan Cox : Added NULL's for socket options.
22 * Alan Cox : Re-commented the code.
23 * Alan Cox : Use new kernel side addressing
24 * Rob Janssen : Correct MTU usage.
25 * Dave Platt : Counter leaks caused by incorrect
26 * interrupt locking and some slightly
27 * dubious gcc output. Can you read
28 * compiler: it said _VOLATILE_
29 * Richard Kooijman : Timestamp fixes.
30 * Alan Cox : New buffers. Use sk->mac.raw.
31 * Alan Cox : sendmsg/recvmsg support.
32 * Alan Cox : Protocol setting support
33 * Alexey Kuznetsov : Untied from IPv4 stack.
34 * Cyrus Durgin : Fixed kerneld for kmod.
35 * Michal Ostrowski : Module initialization cleanup.
36 * Ulises Alonso : Frame number limit removal and
37 * packet_set_ring memory leak.
38 * Eric Biederman : Allow for > 8 byte hardware addresses.
39 * The convention is that longer addresses
40 * will simply extend the hardware address
41 * byte arrays at the end of sockaddr_ll
42 * and packet_mreq.
43 * Johann Baudy : Added TX RING.
44 * Chetan Loke : Implemented TPACKET_V3 block abstraction
45 * layer.
46 * Copyright (C) 2011, <lokec@ccs.neu.edu>
47 */
48
49#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51#include <linux/ethtool.h>
52#include <linux/filter.h>
53#include <linux/types.h>
54#include <linux/mm.h>
55#include <linux/capability.h>
56#include <linux/fcntl.h>
57#include <linux/socket.h>
58#include <linux/in.h>
59#include <linux/inet.h>
60#include <linux/netdevice.h>
61#include <linux/if_packet.h>
62#include <linux/wireless.h>
63#include <linux/kernel.h>
64#include <linux/kmod.h>
65#include <linux/slab.h>
66#include <linux/vmalloc.h>
67#include <net/net_namespace.h>
68#include <net/ip.h>
69#include <net/protocol.h>
70#include <linux/skbuff.h>
71#include <net/sock.h>
72#include <linux/errno.h>
73#include <linux/timer.h>
74#include <linux/uaccess.h>
75#include <asm/ioctls.h>
76#include <asm/page.h>
77#include <asm/cacheflush.h>
78#include <asm/io.h>
79#include <linux/proc_fs.h>
80#include <linux/seq_file.h>
81#include <linux/poll.h>
82#include <linux/module.h>
83#include <linux/init.h>
84#include <linux/mutex.h>
85#include <linux/if_vlan.h>
86#include <linux/virtio_net.h>
87#include <linux/errqueue.h>
88#include <linux/net_tstamp.h>
89#include <linux/percpu.h>
90#ifdef CONFIG_INET
91#include <net/inet_common.h>
92#endif
93#include <linux/bpf.h>
94#include <net/compat.h>
95#include <linux/netfilter_netdev.h>
96
97#include "internal.h"
98
99/*
100 Assumptions:
101 - If the device has no dev->header_ops->create, there is no LL header
102 visible above the device. In this case, its hard_header_len should be 0.
103 The device may prepend its own header internally. In this case, its
104 needed_headroom should be set to the space needed for it to add its
105 internal header.
106 For example, a WiFi driver pretending to be an Ethernet driver should
107 set its hard_header_len to be the Ethernet header length, and set its
108 needed_headroom to be (the real WiFi header length - the fake Ethernet
109 header length).
110 - packet socket receives packets with pulled ll header,
111 so that SOCK_RAW should push it back.
112
113On receive:
114-----------
115
116Incoming, dev_has_header(dev) == true
117 mac_header -> ll header
118 data -> data
119
120Outgoing, dev_has_header(dev) == true
121 mac_header -> ll header
122 data -> ll header
123
124Incoming, dev_has_header(dev) == false
125 mac_header -> data
126 However drivers often make it point to the ll header.
127 This is incorrect because the ll header should be invisible to us.
128 data -> data
129
130Outgoing, dev_has_header(dev) == false
131 mac_header -> data. ll header is invisible to us.
132 data -> data
133
134Resume
135 If dev_has_header(dev) == false we are unable to restore the ll header,
136 because it is invisible to us.
137
138
139On transmit:
140------------
141
142dev_has_header(dev) == true
143 mac_header -> ll header
144 data -> ll header
145
146dev_has_header(dev) == false (ll header is invisible to us)
147 mac_header -> data
148 data -> data
149
150 We should set network_header on output to the correct position,
151 packet classifier depends on it.
152 */
153
154/* Private packet socket structures. */
155
156/* identical to struct packet_mreq except it has
157 * a longer address field.
158 */
159struct packet_mreq_max {
160 int mr_ifindex;
161 unsigned short mr_type;
162 unsigned short mr_alen;
163 unsigned char mr_address[MAX_ADDR_LEN];
164};
165
166union tpacket_uhdr {
167 struct tpacket_hdr *h1;
168 struct tpacket2_hdr *h2;
169 struct tpacket3_hdr *h3;
170 void *raw;
171};
172
173static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
174 int closing, int tx_ring);
175
176#define V3_ALIGNMENT (8)
177
178#define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
179
180#define BLK_PLUS_PRIV(sz_of_priv) \
181 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
182
183#define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
184#define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
185#define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
186#define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
187#define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
188#define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
189
190struct packet_sock;
191static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
192 struct packet_type *pt, struct net_device *orig_dev);
193
194static void *packet_previous_frame(struct packet_sock *po,
195 struct packet_ring_buffer *rb,
196 int status);
197static void packet_increment_head(struct packet_ring_buffer *buff);
198static int prb_curr_blk_in_use(struct tpacket_block_desc *);
199static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203static int prb_queue_frozen(struct tpacket_kbdq_core *);
204static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206static enum hrtimer_restart prb_retire_rx_blk_timer_expired(struct hrtimer *);
207static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
208static void prb_clear_rxhash(struct tpacket_kbdq_core *,
209 struct tpacket3_hdr *);
210static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
211 struct tpacket3_hdr *);
212static void packet_flush_mclist(struct sock *sk);
213static u16 packet_pick_tx_queue(struct sk_buff *skb);
214
215struct packet_skb_cb {
216 union {
217 struct sockaddr_pkt pkt;
218 union {
219 /* Trick: alias skb original length with
220 * ll.sll_family and ll.protocol in order
221 * to save room.
222 */
223 unsigned int origlen;
224 struct sockaddr_ll ll;
225 };
226 } sa;
227};
228
229#define vio_le() virtio_legacy_is_little_endian()
230
231#define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
232
233#define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
234#define GET_PBLOCK_DESC(x, bid) \
235 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
236#define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
237 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
238#define GET_NEXT_PRB_BLK_NUM(x) \
239 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
240 ((x)->kactive_blk_num+1) : 0)
241
242static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
243static void __fanout_link(struct sock *sk, struct packet_sock *po);
244
245#ifdef CONFIG_NETFILTER_EGRESS
246static noinline struct sk_buff *nf_hook_direct_egress(struct sk_buff *skb)
247{
248 struct sk_buff *next, *head = NULL, *tail;
249 int rc;
250
251 rcu_read_lock();
252 for (; skb != NULL; skb = next) {
253 next = skb->next;
254 skb_mark_not_on_list(skb);
255
256 if (!nf_hook_egress(skb, rc: &rc, dev: skb->dev))
257 continue;
258
259 if (!head)
260 head = skb;
261 else
262 tail->next = skb;
263
264 tail = skb;
265 }
266 rcu_read_unlock();
267
268 return head;
269}
270#endif
271
272static int packet_xmit(const struct packet_sock *po, struct sk_buff *skb)
273{
274 if (!packet_sock_flag(po, flag: PACKET_SOCK_QDISC_BYPASS))
275 return dev_queue_xmit(skb);
276
277#ifdef CONFIG_NETFILTER_EGRESS
278 if (nf_hook_egress_active()) {
279 skb = nf_hook_direct_egress(skb);
280 if (!skb)
281 return NET_XMIT_DROP;
282 }
283#endif
284 return dev_direct_xmit(skb, queue_id: packet_pick_tx_queue(skb));
285}
286
287static struct net_device *packet_cached_dev_get(struct packet_sock *po)
288{
289 struct net_device *dev;
290
291 rcu_read_lock();
292 dev = rcu_dereference(po->cached_dev);
293 dev_hold(dev);
294 rcu_read_unlock();
295
296 return dev;
297}
298
299static void packet_cached_dev_assign(struct packet_sock *po,
300 struct net_device *dev)
301{
302 rcu_assign_pointer(po->cached_dev, dev);
303}
304
305static void packet_cached_dev_reset(struct packet_sock *po)
306{
307 RCU_INIT_POINTER(po->cached_dev, NULL);
308}
309
310static u16 packet_pick_tx_queue(struct sk_buff *skb)
311{
312 struct net_device *dev = skb->dev;
313 const struct net_device_ops *ops = dev->netdev_ops;
314 int cpu = raw_smp_processor_id();
315 u16 queue_index;
316
317#ifdef CONFIG_XPS
318 skb->sender_cpu = cpu + 1;
319#endif
320 skb_record_rx_queue(skb, rx_queue: cpu % dev->real_num_tx_queues);
321 if (ops->ndo_select_queue) {
322 queue_index = ops->ndo_select_queue(dev, skb, NULL);
323 queue_index = netdev_cap_txqueue(dev, queue_index);
324 } else {
325 queue_index = netdev_pick_tx(dev, skb, NULL);
326 }
327
328 return queue_index;
329}
330
331/* __register_prot_hook must be invoked through register_prot_hook
332 * or from a context in which asynchronous accesses to the packet
333 * socket is not possible (packet_create()).
334 */
335static void __register_prot_hook(struct sock *sk)
336{
337 struct packet_sock *po = pkt_sk(sk);
338
339 if (!packet_sock_flag(po, flag: PACKET_SOCK_RUNNING)) {
340 if (po->fanout)
341 __fanout_link(sk, po);
342 else
343 dev_add_pack(pt: &po->prot_hook);
344
345 sock_hold(sk);
346 packet_sock_flag_set(po, flag: PACKET_SOCK_RUNNING, val: 1);
347 }
348}
349
350static void register_prot_hook(struct sock *sk)
351{
352 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
353 __register_prot_hook(sk);
354}
355
356/* If the sync parameter is true, we will temporarily drop
357 * the po->bind_lock and do a synchronize_net to make sure no
358 * asynchronous packet processing paths still refer to the elements
359 * of po->prot_hook. If the sync parameter is false, it is the
360 * callers responsibility to take care of this.
361 */
362static void __unregister_prot_hook(struct sock *sk, bool sync)
363{
364 struct packet_sock *po = pkt_sk(sk);
365
366 lockdep_assert_held_once(&po->bind_lock);
367
368 packet_sock_flag_set(po, flag: PACKET_SOCK_RUNNING, val: 0);
369
370 if (po->fanout)
371 __fanout_unlink(sk, po);
372 else
373 __dev_remove_pack(pt: &po->prot_hook);
374
375 __sock_put(sk);
376
377 if (sync) {
378 spin_unlock(lock: &po->bind_lock);
379 synchronize_net();
380 spin_lock(lock: &po->bind_lock);
381 }
382}
383
384static void unregister_prot_hook(struct sock *sk, bool sync)
385{
386 struct packet_sock *po = pkt_sk(sk);
387
388 if (packet_sock_flag(po, flag: PACKET_SOCK_RUNNING))
389 __unregister_prot_hook(sk, sync);
390}
391
392static inline struct page * __pure pgv_to_page(void *addr)
393{
394 if (is_vmalloc_addr(x: addr))
395 return vmalloc_to_page(addr);
396 return virt_to_page(addr);
397}
398
399static void __packet_set_status(struct packet_sock *po, void *frame, int status)
400{
401 union tpacket_uhdr h;
402
403 /* WRITE_ONCE() are paired with READ_ONCE() in __packet_get_status */
404
405 h.raw = frame;
406 switch (po->tp_version) {
407 case TPACKET_V1:
408 WRITE_ONCE(h.h1->tp_status, status);
409 flush_dcache_page(page: pgv_to_page(addr: &h.h1->tp_status));
410 break;
411 case TPACKET_V2:
412 WRITE_ONCE(h.h2->tp_status, status);
413 flush_dcache_page(page: pgv_to_page(addr: &h.h2->tp_status));
414 break;
415 case TPACKET_V3:
416 WRITE_ONCE(h.h3->tp_status, status);
417 flush_dcache_page(page: pgv_to_page(addr: &h.h3->tp_status));
418 break;
419 default:
420 WARN(1, "TPACKET version not supported.\n");
421 BUG();
422 }
423
424 smp_wmb();
425}
426
427static int __packet_get_status(const struct packet_sock *po, void *frame)
428{
429 union tpacket_uhdr h;
430
431 smp_rmb();
432
433 /* READ_ONCE() are paired with WRITE_ONCE() in __packet_set_status */
434
435 h.raw = frame;
436 switch (po->tp_version) {
437 case TPACKET_V1:
438 flush_dcache_page(page: pgv_to_page(addr: &h.h1->tp_status));
439 return READ_ONCE(h.h1->tp_status);
440 case TPACKET_V2:
441 flush_dcache_page(page: pgv_to_page(addr: &h.h2->tp_status));
442 return READ_ONCE(h.h2->tp_status);
443 case TPACKET_V3:
444 flush_dcache_page(page: pgv_to_page(addr: &h.h3->tp_status));
445 return READ_ONCE(h.h3->tp_status);
446 default:
447 WARN(1, "TPACKET version not supported.\n");
448 BUG();
449 return 0;
450 }
451}
452
453static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
454 unsigned int flags)
455{
456 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
457
458 if (shhwtstamps &&
459 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
460 ktime_to_timespec64_cond(kt: shhwtstamps->hwtstamp, ts))
461 return TP_STATUS_TS_RAW_HARDWARE;
462
463 if ((flags & SOF_TIMESTAMPING_SOFTWARE) &&
464 ktime_to_timespec64_cond(kt: skb_tstamp(skb), ts))
465 return TP_STATUS_TS_SOFTWARE;
466
467 return 0;
468}
469
470static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
471 struct sk_buff *skb)
472{
473 union tpacket_uhdr h;
474 struct timespec64 ts;
475 __u32 ts_status;
476
477 if (!(ts_status = tpacket_get_timestamp(skb, ts: &ts, READ_ONCE(po->tp_tstamp))))
478 return 0;
479
480 h.raw = frame;
481 /*
482 * versions 1 through 3 overflow the timestamps in y2106, since they
483 * all store the seconds in a 32-bit unsigned integer.
484 * If we create a version 4, that should have a 64-bit timestamp,
485 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
486 * nanoseconds.
487 */
488 switch (po->tp_version) {
489 case TPACKET_V1:
490 h.h1->tp_sec = ts.tv_sec;
491 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
492 break;
493 case TPACKET_V2:
494 h.h2->tp_sec = ts.tv_sec;
495 h.h2->tp_nsec = ts.tv_nsec;
496 break;
497 case TPACKET_V3:
498 h.h3->tp_sec = ts.tv_sec;
499 h.h3->tp_nsec = ts.tv_nsec;
500 break;
501 default:
502 WARN(1, "TPACKET version not supported.\n");
503 BUG();
504 }
505
506 /* one flush is safe, as both fields always lie on the same cacheline */
507 flush_dcache_page(page: pgv_to_page(addr: &h.h1->tp_sec));
508 smp_wmb();
509
510 return ts_status;
511}
512
513static void *packet_lookup_frame(const struct packet_sock *po,
514 const struct packet_ring_buffer *rb,
515 unsigned int position,
516 int status)
517{
518 unsigned int pg_vec_pos, frame_offset;
519 union tpacket_uhdr h;
520
521 pg_vec_pos = position / rb->frames_per_block;
522 frame_offset = position % rb->frames_per_block;
523
524 h.raw = rb->pg_vec[pg_vec_pos].buffer +
525 (frame_offset * rb->frame_size);
526
527 if (status != __packet_get_status(po, frame: h.raw))
528 return NULL;
529
530 return h.raw;
531}
532
533static void *packet_current_frame(struct packet_sock *po,
534 struct packet_ring_buffer *rb,
535 int status)
536{
537 return packet_lookup_frame(po, rb, position: rb->head, status);
538}
539
540static u16 vlan_get_tci(const struct sk_buff *skb, struct net_device *dev)
541{
542 struct vlan_hdr vhdr, *vh;
543 unsigned int header_len;
544
545 if (!dev)
546 return 0;
547
548 /* In the SOCK_DGRAM scenario, skb data starts at the network
549 * protocol, which is after the VLAN headers. The outer VLAN
550 * header is at the hard_header_len offset in non-variable
551 * length link layer headers. If it's a VLAN device, the
552 * min_header_len should be used to exclude the VLAN header
553 * size.
554 */
555 if (dev->min_header_len == dev->hard_header_len)
556 header_len = dev->hard_header_len;
557 else if (is_vlan_dev(dev))
558 header_len = dev->min_header_len;
559 else
560 return 0;
561
562 vh = skb_header_pointer(skb, offset: skb_mac_offset(skb) + header_len,
563 len: sizeof(vhdr), buffer: &vhdr);
564 if (unlikely(!vh))
565 return 0;
566
567 return ntohs(vh->h_vlan_TCI);
568}
569
570static __be16 vlan_get_protocol_dgram(const struct sk_buff *skb)
571{
572 __be16 proto = skb->protocol;
573
574 if (unlikely(eth_type_vlan(proto)))
575 proto = __vlan_get_protocol_offset(skb, type: proto,
576 mac_offset: skb_mac_offset(skb), NULL);
577
578 return proto;
579}
580
581static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
582 struct sk_buff_head *rb_queue)
583{
584 struct tpacket_kbdq_core *pkc;
585
586 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
587 hrtimer_cancel(timer: &pkc->retire_blk_timer);
588}
589
590static int prb_calc_retire_blk_tmo(struct packet_sock *po,
591 int blk_size_in_bytes)
592{
593 struct net_device *dev;
594 unsigned int mbits, div;
595 struct ethtool_link_ksettings ecmd;
596 int err;
597
598 rtnl_lock();
599 dev = __dev_get_by_index(net: sock_net(sk: &po->sk), ifindex: po->ifindex);
600 if (unlikely(!dev)) {
601 rtnl_unlock();
602 return DEFAULT_PRB_RETIRE_TOV;
603 }
604 err = __ethtool_get_link_ksettings(dev, link_ksettings: &ecmd);
605 rtnl_unlock();
606 if (err)
607 return DEFAULT_PRB_RETIRE_TOV;
608
609 /* If the link speed is so slow you don't really
610 * need to worry about perf anyways
611 */
612 if (ecmd.base.speed < SPEED_1000 ||
613 ecmd.base.speed == SPEED_UNKNOWN)
614 return DEFAULT_PRB_RETIRE_TOV;
615
616 div = ecmd.base.speed / 1000;
617 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
618
619 if (div)
620 mbits /= div;
621
622 if (div)
623 return mbits + 1;
624 return mbits;
625}
626
627static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
628 union tpacket_req_u *req_u)
629{
630 p1->feature_req_word = req_u->req3.tp_feature_req_word;
631}
632
633static void init_prb_bdqc(struct packet_sock *po,
634 struct packet_ring_buffer *rb,
635 struct pgv *pg_vec,
636 union tpacket_req_u *req_u)
637{
638 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
639 struct tpacket_block_desc *pbd;
640
641 memset(s: p1, c: 0x0, n: sizeof(*p1));
642
643 p1->knxt_seq_num = 1;
644 p1->pkbdq = pg_vec;
645 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
646 p1->pkblk_start = pg_vec[0].buffer;
647 p1->kblk_size = req_u->req3.tp_block_size;
648 p1->knum_blocks = req_u->req3.tp_block_nr;
649 p1->hdrlen = po->tp_hdrlen;
650 p1->version = po->tp_version;
651 po->stats.stats3.tp_freeze_q_cnt = 0;
652 if (req_u->req3.tp_retire_blk_tov)
653 p1->interval_ktime = ms_to_ktime(ms: req_u->req3.tp_retire_blk_tov);
654 else
655 p1->interval_ktime = ms_to_ktime(ms: prb_calc_retire_blk_tmo(po,
656 blk_size_in_bytes: req_u->req3.tp_block_size));
657 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
658 rwlock_init(&p1->blk_fill_in_prog_lock);
659
660 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
661 prb_init_ft_ops(p1, req_u);
662 hrtimer_setup(timer: &p1->retire_blk_timer, function: prb_retire_rx_blk_timer_expired,
663 CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_SOFT);
664 hrtimer_start(timer: &p1->retire_blk_timer, tim: p1->interval_ktime,
665 mode: HRTIMER_MODE_REL_SOFT);
666 prb_open_block(p1, pbd);
667}
668
669/*
670 * With a 1MB block-size, on a 1Gbps line, it will take
671 * i) ~8 ms to fill a block + ii) memcpy etc.
672 * In this cut we are not accounting for the memcpy time.
673 *
674 * Since the tmo granularity is in msecs, it is not too expensive
675 * to refresh the timer, lets say every '8' msecs.
676 * Either the user can set the 'tmo' or we can derive it based on
677 * a) line-speed and b) block-size.
678 * prb_calc_retire_blk_tmo() calculates the tmo.
679 */
680static enum hrtimer_restart prb_retire_rx_blk_timer_expired(struct hrtimer *t)
681{
682 struct packet_sock *po =
683 timer_container_of(po, t, rx_ring.prb_bdqc.retire_blk_timer);
684 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
685 unsigned int frozen;
686 struct tpacket_block_desc *pbd;
687
688 spin_lock(lock: &po->sk.sk_receive_queue.lock);
689
690 frozen = prb_queue_frozen(pkc);
691 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
692
693 /* We only need to plug the race when the block is partially filled.
694 * tpacket_rcv:
695 * lock(); increment BLOCK_NUM_PKTS; unlock()
696 * copy_bits() is in progress ...
697 * timer fires on other cpu:
698 * we can't retire the current block because copy_bits
699 * is in progress.
700 *
701 */
702 if (BLOCK_NUM_PKTS(pbd)) {
703 /* Waiting for skb_copy_bits to finish... */
704 write_lock(&pkc->blk_fill_in_prog_lock);
705 write_unlock(&pkc->blk_fill_in_prog_lock);
706 }
707
708 if (!frozen) {
709 if (BLOCK_NUM_PKTS(pbd)) {
710 /* Not an empty block. Need retire the block. */
711 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
712 prb_dispatch_next_block(pkc, po);
713 }
714 } else {
715 /* Case 1. Queue was frozen because user-space was
716 * lagging behind.
717 */
718 if (!prb_curr_blk_in_use(pbd)) {
719 /* Case 2. queue was frozen,user-space caught up,
720 * now the link went idle && the timer fired.
721 * We don't have a block to close.So we open this
722 * block and restart the timer.
723 * opening a block thaws the queue,restarts timer
724 * Thawing/timer-refresh is a side effect.
725 */
726 prb_open_block(pkc, pbd);
727 }
728 }
729
730 hrtimer_forward_now(timer: &pkc->retire_blk_timer, interval: pkc->interval_ktime);
731 spin_unlock(lock: &po->sk.sk_receive_queue.lock);
732 return HRTIMER_RESTART;
733}
734
735static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
736 struct tpacket_block_desc *pbd1, __u32 status)
737{
738 /* Flush everything minus the block header */
739
740#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
741 u8 *start, *end;
742
743 start = (u8 *)pbd1;
744
745 /* Skip the block header(we know header WILL fit in 4K) */
746 start += PAGE_SIZE;
747
748 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
749 for (; start < end; start += PAGE_SIZE)
750 flush_dcache_page(pgv_to_page(start));
751
752 smp_wmb();
753#endif
754
755 /* Now update the block status. */
756
757 BLOCK_STATUS(pbd1) = status;
758
759 /* Flush the block header */
760
761#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
762 start = (u8 *)pbd1;
763 flush_dcache_page(pgv_to_page(start));
764
765 smp_wmb();
766#endif
767}
768
769/*
770 * Side effect:
771 *
772 * 1) flush the block
773 * 2) Increment active_blk_num
774 *
775 * Note:We DONT refresh the timer on purpose.
776 * Because almost always the next block will be opened.
777 */
778static void prb_close_block(struct tpacket_kbdq_core *pkc1,
779 struct tpacket_block_desc *pbd1,
780 struct packet_sock *po, unsigned int stat)
781{
782 __u32 status = TP_STATUS_USER | stat;
783
784 struct tpacket3_hdr *last_pkt;
785 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
786 struct sock *sk = &po->sk;
787
788 if (atomic_read(v: &po->tp_drops))
789 status |= TP_STATUS_LOSING;
790
791 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
792 last_pkt->tp_next_offset = 0;
793
794 /* Get the ts of the last pkt */
795 if (BLOCK_NUM_PKTS(pbd1)) {
796 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
797 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
798 } else {
799 /* Ok, we tmo'd - so get the current time.
800 *
801 * It shouldn't really happen as we don't close empty
802 * blocks. See prb_retire_rx_blk_timer_expired().
803 */
804 struct timespec64 ts;
805 ktime_get_real_ts64(tv: &ts);
806 h1->ts_last_pkt.ts_sec = ts.tv_sec;
807 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
808 }
809
810 smp_wmb();
811
812 /* Flush the block */
813 prb_flush_block(pkc1, pbd1, status);
814
815 sk->sk_data_ready(sk);
816
817 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
818}
819
820static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
821{
822 pkc->reset_pending_on_curr_blk = 0;
823}
824
825/*
826 * prb_open_block is called by tpacket_rcv or timer callback.
827 *
828 * Reasons why NOT update hrtimer in prb_open_block:
829 * 1) It will increase complexity to distinguish the two caller scenario.
830 * 2) hrtimer_cancel and hrtimer_start need to be called if you want to update
831 * TMO of an already enqueued hrtimer, leading to complex shutdown logic.
832 *
833 * One side effect of NOT update hrtimer when called by tpacket_rcv is that
834 * a newly opened block triggered by tpacket_rcv may be retired earlier than
835 * expected. On the other hand, if timeout is updated in prb_open_block, the
836 * frequent reception of network packets that leads to prb_open_block being
837 * called may cause hrtimer to be removed and enqueued repeatedly.
838 */
839static void prb_open_block(struct tpacket_kbdq_core *pkc1,
840 struct tpacket_block_desc *pbd1)
841{
842 struct timespec64 ts;
843 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
844
845 smp_rmb();
846
847 /* We could have just memset this but we will lose the
848 * flexibility of making the priv area sticky
849 */
850
851 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
852 BLOCK_NUM_PKTS(pbd1) = 0;
853 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
854
855 ktime_get_real_ts64(tv: &ts);
856
857 h1->ts_first_pkt.ts_sec = ts.tv_sec;
858 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
859
860 pkc1->pkblk_start = (char *)pbd1;
861 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
862
863 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
864 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
865
866 pbd1->version = pkc1->version;
867 pkc1->prev = pkc1->nxt_offset;
868 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
869
870 prb_thaw_queue(pkc: pkc1);
871
872 smp_wmb();
873}
874
875/*
876 * Queue freeze logic:
877 * 1) Assume tp_block_nr = 8 blocks.
878 * 2) At time 't0', user opens Rx ring.
879 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
880 * 4) user-space is either sleeping or processing block '0'.
881 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
882 * it will close block-7,loop around and try to fill block '0'.
883 * call-flow:
884 * __packet_lookup_frame_in_block
885 * prb_retire_current_block()
886 * prb_dispatch_next_block()
887 * |->(BLOCK_STATUS == USER) evaluates to true
888 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
889 * 6) Now there are two cases:
890 * 6.1) Link goes idle right after the queue is frozen.
891 * But remember, the last open_block() refreshed the timer.
892 * When this timer expires,it will refresh itself so that we can
893 * re-open block-0 in near future.
894 * 6.2) Link is busy and keeps on receiving packets. This is a simple
895 * case and __packet_lookup_frame_in_block will check if block-0
896 * is free and can now be re-used.
897 */
898static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
899 struct packet_sock *po)
900{
901 pkc->reset_pending_on_curr_blk = 1;
902 po->stats.stats3.tp_freeze_q_cnt++;
903}
904
905#define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
906
907/*
908 * If the next block is free then we will dispatch it
909 * and return a good offset.
910 * Else, we will freeze the queue.
911 * So, caller must check the return value.
912 */
913static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
914 struct packet_sock *po)
915{
916 struct tpacket_block_desc *pbd;
917
918 smp_rmb();
919
920 /* 1. Get current block num */
921 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
922
923 /* 2. If this block is currently in_use then freeze the queue */
924 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
925 prb_freeze_queue(pkc, po);
926 return NULL;
927 }
928
929 /*
930 * 3.
931 * open this block and return the offset where the first packet
932 * needs to get stored.
933 */
934 prb_open_block(pkc1: pkc, pbd1: pbd);
935 return (void *)pkc->nxt_offset;
936}
937
938static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
939 struct packet_sock *po, unsigned int status)
940{
941 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
942
943 /* retire/close the current block */
944 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
945 /*
946 * Plug the case where copy_bits() is in progress on
947 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
948 * have space to copy the pkt in the current block and
949 * called prb_retire_current_block()
950 *
951 * We don't need to worry about the TMO case because
952 * the timer-handler already handled this case.
953 */
954 if (!(status & TP_STATUS_BLK_TMO)) {
955 /* Waiting for skb_copy_bits to finish... */
956 write_lock(&pkc->blk_fill_in_prog_lock);
957 write_unlock(&pkc->blk_fill_in_prog_lock);
958 }
959 prb_close_block(pkc1: pkc, pbd1: pbd, po, stat: status);
960 return;
961 }
962}
963
964static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
965{
966 return TP_STATUS_USER & BLOCK_STATUS(pbd);
967}
968
969static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
970{
971 return pkc->reset_pending_on_curr_blk;
972}
973
974static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
975 __releases(&pkc->blk_fill_in_prog_lock)
976{
977 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
978
979 read_unlock(&pkc->blk_fill_in_prog_lock);
980}
981
982static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
983 struct tpacket3_hdr *ppd)
984{
985 ppd->hv1.tp_rxhash = skb_get_hash(skb: pkc->skb);
986}
987
988static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
989 struct tpacket3_hdr *ppd)
990{
991 ppd->hv1.tp_rxhash = 0;
992}
993
994static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
995 struct tpacket3_hdr *ppd)
996{
997 struct packet_sock *po = container_of(pkc, struct packet_sock, rx_ring.prb_bdqc);
998
999 if (skb_vlan_tag_present(pkc->skb)) {
1000 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1001 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1002 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1003 } else if (unlikely(po->sk.sk_type == SOCK_DGRAM && eth_type_vlan(pkc->skb->protocol))) {
1004 ppd->hv1.tp_vlan_tci = vlan_get_tci(skb: pkc->skb, dev: pkc->skb->dev);
1005 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->protocol);
1006 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1007 } else {
1008 ppd->hv1.tp_vlan_tci = 0;
1009 ppd->hv1.tp_vlan_tpid = 0;
1010 ppd->tp_status = TP_STATUS_AVAILABLE;
1011 }
1012}
1013
1014static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1015 struct tpacket3_hdr *ppd)
1016{
1017 ppd->hv1.tp_padding = 0;
1018 prb_fill_vlan_info(pkc, ppd);
1019
1020 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1021 prb_fill_rxhash(pkc, ppd);
1022 else
1023 prb_clear_rxhash(pkc, ppd);
1024}
1025
1026static void prb_fill_curr_block(char *curr,
1027 struct tpacket_kbdq_core *pkc,
1028 struct tpacket_block_desc *pbd,
1029 unsigned int len)
1030 __acquires(&pkc->blk_fill_in_prog_lock)
1031{
1032 struct tpacket3_hdr *ppd;
1033
1034 ppd = (struct tpacket3_hdr *)curr;
1035 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1036 pkc->prev = curr;
1037 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1038 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1039 BLOCK_NUM_PKTS(pbd) += 1;
1040 read_lock(&pkc->blk_fill_in_prog_lock);
1041 prb_run_all_ft_ops(pkc, ppd);
1042}
1043
1044/* Assumes caller has the sk->rx_queue.lock */
1045static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1046 struct sk_buff *skb,
1047 unsigned int len
1048 )
1049{
1050 struct tpacket_kbdq_core *pkc;
1051 struct tpacket_block_desc *pbd;
1052 char *curr, *end;
1053
1054 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1055 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1056
1057 /* Queue is frozen when user space is lagging behind */
1058 if (prb_queue_frozen(pkc)) {
1059 /*
1060 * Check if that last block which caused the queue to freeze,
1061 * is still in_use by user-space.
1062 */
1063 if (prb_curr_blk_in_use(pbd)) {
1064 /* Can't record this packet */
1065 return NULL;
1066 } else {
1067 /*
1068 * Ok, the block was released by user-space.
1069 * Now let's open that block.
1070 * opening a block also thaws the queue.
1071 * Thawing is a side effect.
1072 */
1073 prb_open_block(pkc1: pkc, pbd1: pbd);
1074 }
1075 }
1076
1077 smp_mb();
1078 curr = pkc->nxt_offset;
1079 pkc->skb = skb;
1080 end = (char *)pbd + pkc->kblk_size;
1081
1082 /* first try the current block */
1083 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1084 prb_fill_curr_block(curr, pkc, pbd, len);
1085 return (void *)curr;
1086 }
1087
1088 /* Ok, close the current block */
1089 prb_retire_current_block(pkc, po, status: 0);
1090
1091 /* Now, try to dispatch the next block */
1092 curr = (char *)prb_dispatch_next_block(pkc, po);
1093 if (curr) {
1094 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1095 prb_fill_curr_block(curr, pkc, pbd, len);
1096 return (void *)curr;
1097 }
1098
1099 /*
1100 * No free blocks are available.user_space hasn't caught up yet.
1101 * Queue was just frozen and now this packet will get dropped.
1102 */
1103 return NULL;
1104}
1105
1106static void *packet_current_rx_frame(struct packet_sock *po,
1107 struct sk_buff *skb,
1108 int status, unsigned int len)
1109{
1110 char *curr = NULL;
1111 switch (po->tp_version) {
1112 case TPACKET_V1:
1113 case TPACKET_V2:
1114 curr = packet_lookup_frame(po, rb: &po->rx_ring,
1115 position: po->rx_ring.head, status);
1116 return curr;
1117 case TPACKET_V3:
1118 return __packet_lookup_frame_in_block(po, skb, len);
1119 default:
1120 WARN(1, "TPACKET version not supported\n");
1121 BUG();
1122 return NULL;
1123 }
1124}
1125
1126static void *prb_lookup_block(const struct packet_sock *po,
1127 const struct packet_ring_buffer *rb,
1128 unsigned int idx,
1129 int status)
1130{
1131 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1132 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1133
1134 if (status != BLOCK_STATUS(pbd))
1135 return NULL;
1136 return pbd;
1137}
1138
1139static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1140{
1141 unsigned int prev;
1142 if (rb->prb_bdqc.kactive_blk_num)
1143 prev = rb->prb_bdqc.kactive_blk_num-1;
1144 else
1145 prev = rb->prb_bdqc.knum_blocks-1;
1146 return prev;
1147}
1148
1149/* Assumes caller has held the rx_queue.lock */
1150static void *__prb_previous_block(struct packet_sock *po,
1151 struct packet_ring_buffer *rb,
1152 int status)
1153{
1154 unsigned int previous = prb_previous_blk_num(rb);
1155 return prb_lookup_block(po, rb, idx: previous, status);
1156}
1157
1158static void *packet_previous_rx_frame(struct packet_sock *po,
1159 struct packet_ring_buffer *rb,
1160 int status)
1161{
1162 if (po->tp_version <= TPACKET_V2)
1163 return packet_previous_frame(po, rb, status);
1164
1165 return __prb_previous_block(po, rb, status);
1166}
1167
1168static void packet_increment_rx_head(struct packet_sock *po,
1169 struct packet_ring_buffer *rb)
1170{
1171 switch (po->tp_version) {
1172 case TPACKET_V1:
1173 case TPACKET_V2:
1174 return packet_increment_head(buff: rb);
1175 case TPACKET_V3:
1176 default:
1177 WARN(1, "TPACKET version not supported.\n");
1178 BUG();
1179 return;
1180 }
1181}
1182
1183static void *packet_previous_frame(struct packet_sock *po,
1184 struct packet_ring_buffer *rb,
1185 int status)
1186{
1187 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1188 return packet_lookup_frame(po, rb, position: previous, status);
1189}
1190
1191static void packet_increment_head(struct packet_ring_buffer *buff)
1192{
1193 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1194}
1195
1196static void packet_inc_pending(struct packet_ring_buffer *rb)
1197{
1198 this_cpu_inc(*rb->pending_refcnt);
1199}
1200
1201static void packet_dec_pending(struct packet_ring_buffer *rb)
1202{
1203 this_cpu_dec(*rb->pending_refcnt);
1204}
1205
1206static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1207{
1208 unsigned int refcnt = 0;
1209 int cpu;
1210
1211 /* We don't use pending refcount in rx_ring. */
1212 if (rb->pending_refcnt == NULL)
1213 return 0;
1214
1215 for_each_possible_cpu(cpu)
1216 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1217
1218 return refcnt;
1219}
1220
1221static int packet_alloc_pending(struct packet_sock *po)
1222{
1223 po->rx_ring.pending_refcnt = NULL;
1224
1225 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1226 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1227 return -ENOBUFS;
1228
1229 return 0;
1230}
1231
1232static void packet_free_pending(struct packet_sock *po)
1233{
1234 free_percpu(pdata: po->tx_ring.pending_refcnt);
1235}
1236
1237#define ROOM_POW_OFF 2
1238#define ROOM_NONE 0x0
1239#define ROOM_LOW 0x1
1240#define ROOM_NORMAL 0x2
1241
1242static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1243{
1244 int idx, len;
1245
1246 len = READ_ONCE(po->rx_ring.frame_max) + 1;
1247 idx = READ_ONCE(po->rx_ring.head);
1248 if (pow_off)
1249 idx += len >> pow_off;
1250 if (idx >= len)
1251 idx -= len;
1252 return packet_lookup_frame(po, rb: &po->rx_ring, position: idx, TP_STATUS_KERNEL);
1253}
1254
1255static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1256{
1257 int idx, len;
1258
1259 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1260 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1261 if (pow_off)
1262 idx += len >> pow_off;
1263 if (idx >= len)
1264 idx -= len;
1265 return prb_lookup_block(po, rb: &po->rx_ring, idx, TP_STATUS_KERNEL);
1266}
1267
1268static int __packet_rcv_has_room(const struct packet_sock *po,
1269 const struct sk_buff *skb)
1270{
1271 const struct sock *sk = &po->sk;
1272 int ret = ROOM_NONE;
1273
1274 if (po->prot_hook.func != tpacket_rcv) {
1275 int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1276 int avail = rcvbuf - atomic_read(v: &sk->sk_rmem_alloc)
1277 - (skb ? skb->truesize : 0);
1278
1279 if (avail > (rcvbuf >> ROOM_POW_OFF))
1280 return ROOM_NORMAL;
1281 else if (avail > 0)
1282 return ROOM_LOW;
1283 else
1284 return ROOM_NONE;
1285 }
1286
1287 if (po->tp_version == TPACKET_V3) {
1288 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1289 ret = ROOM_NORMAL;
1290 else if (__tpacket_v3_has_room(po, pow_off: 0))
1291 ret = ROOM_LOW;
1292 } else {
1293 if (__tpacket_has_room(po, ROOM_POW_OFF))
1294 ret = ROOM_NORMAL;
1295 else if (__tpacket_has_room(po, pow_off: 0))
1296 ret = ROOM_LOW;
1297 }
1298
1299 return ret;
1300}
1301
1302static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1303{
1304 bool pressure;
1305 int ret;
1306
1307 ret = __packet_rcv_has_room(po, skb);
1308 pressure = ret != ROOM_NORMAL;
1309
1310 if (packet_sock_flag(po, flag: PACKET_SOCK_PRESSURE) != pressure)
1311 packet_sock_flag_set(po, flag: PACKET_SOCK_PRESSURE, val: pressure);
1312
1313 return ret;
1314}
1315
1316static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1317{
1318 if (packet_sock_flag(po, flag: PACKET_SOCK_PRESSURE) &&
1319 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1320 packet_sock_flag_set(po, flag: PACKET_SOCK_PRESSURE, val: false);
1321}
1322
1323static void packet_sock_destruct(struct sock *sk)
1324{
1325 skb_queue_purge(list: &sk->sk_error_queue);
1326
1327 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1328 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1329
1330 if (!sock_flag(sk, flag: SOCK_DEAD)) {
1331 pr_err("Attempt to release alive packet socket: %p\n", sk);
1332 return;
1333 }
1334}
1335
1336static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1337{
1338 u32 *history = po->rollover->history;
1339 u32 victim, rxhash;
1340 int i, count = 0;
1341
1342 rxhash = skb_get_hash(skb);
1343 for (i = 0; i < ROLLOVER_HLEN; i++)
1344 if (READ_ONCE(history[i]) == rxhash)
1345 count++;
1346
1347 victim = get_random_u32_below(ROLLOVER_HLEN);
1348
1349 /* Avoid dirtying the cache line if possible */
1350 if (READ_ONCE(history[victim]) != rxhash)
1351 WRITE_ONCE(history[victim], rxhash);
1352
1353 return count > (ROLLOVER_HLEN >> 1);
1354}
1355
1356static unsigned int fanout_demux_hash(struct packet_fanout *f,
1357 struct sk_buff *skb,
1358 unsigned int num)
1359{
1360 return reciprocal_scale(val: __skb_get_hash_symmetric(skb), ep_ro: num);
1361}
1362
1363static unsigned int fanout_demux_lb(struct packet_fanout *f,
1364 struct sk_buff *skb,
1365 unsigned int num)
1366{
1367 unsigned int val = atomic_inc_return(v: &f->rr_cur);
1368
1369 return val % num;
1370}
1371
1372static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1373 struct sk_buff *skb,
1374 unsigned int num)
1375{
1376 return smp_processor_id() % num;
1377}
1378
1379static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1380 struct sk_buff *skb,
1381 unsigned int num)
1382{
1383 return get_random_u32_below(ceil: num);
1384}
1385
1386static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1387 struct sk_buff *skb,
1388 unsigned int idx, bool try_self,
1389 unsigned int num)
1390{
1391 struct packet_sock *po, *po_next, *po_skip = NULL;
1392 unsigned int i, j, room = ROOM_NONE;
1393
1394 po = pkt_sk(rcu_dereference(f->arr[idx]));
1395
1396 if (try_self) {
1397 room = packet_rcv_has_room(po, skb);
1398 if (room == ROOM_NORMAL ||
1399 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1400 return idx;
1401 po_skip = po;
1402 }
1403
1404 i = j = min_t(int, po->rollover->sock, num - 1);
1405 do {
1406 po_next = pkt_sk(rcu_dereference(f->arr[i]));
1407 if (po_next != po_skip &&
1408 !packet_sock_flag(po: po_next, flag: PACKET_SOCK_PRESSURE) &&
1409 packet_rcv_has_room(po: po_next, skb) == ROOM_NORMAL) {
1410 if (i != j)
1411 po->rollover->sock = i;
1412 atomic_long_inc(v: &po->rollover->num);
1413 if (room == ROOM_LOW)
1414 atomic_long_inc(v: &po->rollover->num_huge);
1415 return i;
1416 }
1417
1418 if (++i == num)
1419 i = 0;
1420 } while (i != j);
1421
1422 atomic_long_inc(v: &po->rollover->num_failed);
1423 return idx;
1424}
1425
1426static unsigned int fanout_demux_qm(struct packet_fanout *f,
1427 struct sk_buff *skb,
1428 unsigned int num)
1429{
1430 return skb_get_queue_mapping(skb) % num;
1431}
1432
1433static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1434 struct sk_buff *skb,
1435 unsigned int num)
1436{
1437 struct bpf_prog *prog;
1438 unsigned int ret = 0;
1439
1440 rcu_read_lock();
1441 prog = rcu_dereference(f->bpf_prog);
1442 if (prog)
1443 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1444 rcu_read_unlock();
1445
1446 return ret;
1447}
1448
1449static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1450{
1451 return f->flags & (flag >> 8);
1452}
1453
1454static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1455 struct packet_type *pt, struct net_device *orig_dev)
1456{
1457 struct packet_fanout *f = pt->af_packet_priv;
1458 unsigned int num = READ_ONCE(f->num_members);
1459 struct net *net = read_pnet(pnet: &f->net);
1460 struct packet_sock *po;
1461 unsigned int idx;
1462
1463 if (!net_eq(net1: dev_net(dev), net2: net) || !num) {
1464 kfree_skb(skb);
1465 return 0;
1466 }
1467
1468 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1469 skb = ip_check_defrag(net, skb, user: IP_DEFRAG_AF_PACKET);
1470 if (!skb)
1471 return 0;
1472 }
1473 switch (f->type) {
1474 case PACKET_FANOUT_HASH:
1475 default:
1476 idx = fanout_demux_hash(f, skb, num);
1477 break;
1478 case PACKET_FANOUT_LB:
1479 idx = fanout_demux_lb(f, skb, num);
1480 break;
1481 case PACKET_FANOUT_CPU:
1482 idx = fanout_demux_cpu(f, skb, num);
1483 break;
1484 case PACKET_FANOUT_RND:
1485 idx = fanout_demux_rnd(f, skb, num);
1486 break;
1487 case PACKET_FANOUT_QM:
1488 idx = fanout_demux_qm(f, skb, num);
1489 break;
1490 case PACKET_FANOUT_ROLLOVER:
1491 idx = fanout_demux_rollover(f, skb, idx: 0, try_self: false, num);
1492 break;
1493 case PACKET_FANOUT_CBPF:
1494 case PACKET_FANOUT_EBPF:
1495 idx = fanout_demux_bpf(f, skb, num);
1496 break;
1497 }
1498
1499 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1500 idx = fanout_demux_rollover(f, skb, idx, try_self: true, num);
1501
1502 po = pkt_sk(rcu_dereference(f->arr[idx]));
1503 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1504}
1505
1506DEFINE_MUTEX(fanout_mutex);
1507EXPORT_SYMBOL_GPL(fanout_mutex);
1508static LIST_HEAD(fanout_list);
1509static u16 fanout_next_id;
1510
1511static void __fanout_link(struct sock *sk, struct packet_sock *po)
1512{
1513 struct packet_fanout *f = po->fanout;
1514
1515 spin_lock(lock: &f->lock);
1516 rcu_assign_pointer(f->arr[f->num_members], sk);
1517 smp_wmb();
1518 f->num_members++;
1519 if (f->num_members == 1)
1520 dev_add_pack(pt: &f->prot_hook);
1521 spin_unlock(lock: &f->lock);
1522}
1523
1524static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1525{
1526 struct packet_fanout *f = po->fanout;
1527 int i;
1528
1529 spin_lock(lock: &f->lock);
1530 for (i = 0; i < f->num_members; i++) {
1531 if (rcu_dereference_protected(f->arr[i],
1532 lockdep_is_held(&f->lock)) == sk)
1533 break;
1534 }
1535 BUG_ON(i >= f->num_members);
1536 rcu_assign_pointer(f->arr[i],
1537 rcu_dereference_protected(f->arr[f->num_members - 1],
1538 lockdep_is_held(&f->lock)));
1539 f->num_members--;
1540 if (f->num_members == 0)
1541 __dev_remove_pack(pt: &f->prot_hook);
1542 spin_unlock(lock: &f->lock);
1543}
1544
1545static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1546{
1547 if (sk->sk_family != PF_PACKET)
1548 return false;
1549
1550 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1551}
1552
1553static void fanout_init_data(struct packet_fanout *f)
1554{
1555 switch (f->type) {
1556 case PACKET_FANOUT_LB:
1557 atomic_set(v: &f->rr_cur, i: 0);
1558 break;
1559 case PACKET_FANOUT_CBPF:
1560 case PACKET_FANOUT_EBPF:
1561 RCU_INIT_POINTER(f->bpf_prog, NULL);
1562 break;
1563 }
1564}
1565
1566static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1567{
1568 struct bpf_prog *old;
1569
1570 spin_lock(lock: &f->lock);
1571 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1572 rcu_assign_pointer(f->bpf_prog, new);
1573 spin_unlock(lock: &f->lock);
1574
1575 if (old) {
1576 synchronize_net();
1577 bpf_prog_destroy(fp: old);
1578 }
1579}
1580
1581static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1582 unsigned int len)
1583{
1584 struct bpf_prog *new;
1585 struct sock_fprog fprog;
1586 int ret;
1587
1588 if (sock_flag(sk: &po->sk, flag: SOCK_FILTER_LOCKED))
1589 return -EPERM;
1590
1591 ret = copy_bpf_fprog_from_user(dst: &fprog, src: data, len);
1592 if (ret)
1593 return ret;
1594
1595 ret = bpf_prog_create_from_user(pfp: &new, fprog: &fprog, NULL, save_orig: false);
1596 if (ret)
1597 return ret;
1598
1599 __fanout_set_data_bpf(f: po->fanout, new);
1600 return 0;
1601}
1602
1603static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1604 unsigned int len)
1605{
1606 struct bpf_prog *new;
1607 u32 fd;
1608
1609 if (sock_flag(sk: &po->sk, flag: SOCK_FILTER_LOCKED))
1610 return -EPERM;
1611 if (len != sizeof(fd))
1612 return -EINVAL;
1613 if (copy_from_sockptr(dst: &fd, src: data, size: len))
1614 return -EFAULT;
1615
1616 new = bpf_prog_get_type(ufd: fd, type: BPF_PROG_TYPE_SOCKET_FILTER);
1617 if (IS_ERR(ptr: new))
1618 return PTR_ERR(ptr: new);
1619
1620 __fanout_set_data_bpf(f: po->fanout, new);
1621 return 0;
1622}
1623
1624static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1625 unsigned int len)
1626{
1627 switch (po->fanout->type) {
1628 case PACKET_FANOUT_CBPF:
1629 return fanout_set_data_cbpf(po, data, len);
1630 case PACKET_FANOUT_EBPF:
1631 return fanout_set_data_ebpf(po, data, len);
1632 default:
1633 return -EINVAL;
1634 }
1635}
1636
1637static void fanout_release_data(struct packet_fanout *f)
1638{
1639 switch (f->type) {
1640 case PACKET_FANOUT_CBPF:
1641 case PACKET_FANOUT_EBPF:
1642 __fanout_set_data_bpf(f, NULL);
1643 }
1644}
1645
1646static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1647{
1648 struct packet_fanout *f;
1649
1650 list_for_each_entry(f, &fanout_list, list) {
1651 if (f->id == candidate_id &&
1652 read_pnet(pnet: &f->net) == sock_net(sk)) {
1653 return false;
1654 }
1655 }
1656 return true;
1657}
1658
1659static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1660{
1661 u16 id = fanout_next_id;
1662
1663 do {
1664 if (__fanout_id_is_free(sk, candidate_id: id)) {
1665 *new_id = id;
1666 fanout_next_id = id + 1;
1667 return true;
1668 }
1669
1670 id++;
1671 } while (id != fanout_next_id);
1672
1673 return false;
1674}
1675
1676static int fanout_add(struct sock *sk, struct fanout_args *args)
1677{
1678 struct packet_rollover *rollover = NULL;
1679 struct packet_sock *po = pkt_sk(sk);
1680 u16 type_flags = args->type_flags;
1681 struct packet_fanout *f, *match;
1682 u8 type = type_flags & 0xff;
1683 u8 flags = type_flags >> 8;
1684 u16 id = args->id;
1685 int err;
1686
1687 switch (type) {
1688 case PACKET_FANOUT_ROLLOVER:
1689 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1690 return -EINVAL;
1691 break;
1692 case PACKET_FANOUT_HASH:
1693 case PACKET_FANOUT_LB:
1694 case PACKET_FANOUT_CPU:
1695 case PACKET_FANOUT_RND:
1696 case PACKET_FANOUT_QM:
1697 case PACKET_FANOUT_CBPF:
1698 case PACKET_FANOUT_EBPF:
1699 break;
1700 default:
1701 return -EINVAL;
1702 }
1703
1704 mutex_lock(lock: &fanout_mutex);
1705
1706 err = -EALREADY;
1707 if (po->fanout)
1708 goto out;
1709
1710 if (type == PACKET_FANOUT_ROLLOVER ||
1711 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1712 err = -ENOMEM;
1713 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1714 if (!rollover)
1715 goto out;
1716 atomic_long_set(v: &rollover->num, i: 0);
1717 atomic_long_set(v: &rollover->num_huge, i: 0);
1718 atomic_long_set(v: &rollover->num_failed, i: 0);
1719 }
1720
1721 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1722 if (id != 0) {
1723 err = -EINVAL;
1724 goto out;
1725 }
1726 if (!fanout_find_new_id(sk, new_id: &id)) {
1727 err = -ENOMEM;
1728 goto out;
1729 }
1730 /* ephemeral flag for the first socket in the group: drop it */
1731 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1732 }
1733
1734 match = NULL;
1735 list_for_each_entry(f, &fanout_list, list) {
1736 if (f->id == id &&
1737 read_pnet(pnet: &f->net) == sock_net(sk)) {
1738 match = f;
1739 break;
1740 }
1741 }
1742 err = -EINVAL;
1743 if (match) {
1744 if (match->flags != flags)
1745 goto out;
1746 if (args->max_num_members &&
1747 args->max_num_members != match->max_num_members)
1748 goto out;
1749 } else {
1750 if (args->max_num_members > PACKET_FANOUT_MAX)
1751 goto out;
1752 if (!args->max_num_members)
1753 /* legacy PACKET_FANOUT_MAX */
1754 args->max_num_members = 256;
1755 err = -ENOMEM;
1756 match = kvzalloc(struct_size(match, arr, args->max_num_members),
1757 GFP_KERNEL);
1758 if (!match)
1759 goto out;
1760 write_pnet(pnet: &match->net, net: sock_net(sk));
1761 match->id = id;
1762 match->type = type;
1763 match->flags = flags;
1764 INIT_LIST_HEAD(list: &match->list);
1765 spin_lock_init(&match->lock);
1766 refcount_set(r: &match->sk_ref, n: 0);
1767 fanout_init_data(f: match);
1768 match->prot_hook.type = po->prot_hook.type;
1769 match->prot_hook.dev = po->prot_hook.dev;
1770 match->prot_hook.func = packet_rcv_fanout;
1771 match->prot_hook.af_packet_priv = match;
1772 match->prot_hook.af_packet_net = read_pnet(pnet: &match->net);
1773 match->prot_hook.id_match = match_fanout_group;
1774 match->max_num_members = args->max_num_members;
1775 match->prot_hook.ignore_outgoing = type_flags & PACKET_FANOUT_FLAG_IGNORE_OUTGOING;
1776 list_add(new: &match->list, head: &fanout_list);
1777 }
1778 err = -EINVAL;
1779
1780 spin_lock(lock: &po->bind_lock);
1781 if (po->num &&
1782 match->type == type &&
1783 match->prot_hook.type == po->prot_hook.type &&
1784 match->prot_hook.dev == po->prot_hook.dev) {
1785 err = -ENOSPC;
1786 if (refcount_read(r: &match->sk_ref) < match->max_num_members) {
1787 /* Paired with packet_setsockopt(PACKET_FANOUT_DATA) */
1788 WRITE_ONCE(po->fanout, match);
1789
1790 po->rollover = rollover;
1791 rollover = NULL;
1792 refcount_set(r: &match->sk_ref, n: refcount_read(r: &match->sk_ref) + 1);
1793 if (packet_sock_flag(po, flag: PACKET_SOCK_RUNNING)) {
1794 __dev_remove_pack(pt: &po->prot_hook);
1795 __fanout_link(sk, po);
1796 }
1797 err = 0;
1798 }
1799 }
1800 spin_unlock(lock: &po->bind_lock);
1801
1802 if (err && !refcount_read(r: &match->sk_ref)) {
1803 list_del(entry: &match->list);
1804 kvfree(addr: match);
1805 }
1806
1807out:
1808 kfree(objp: rollover);
1809 mutex_unlock(lock: &fanout_mutex);
1810 return err;
1811}
1812
1813/* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1814 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1815 * It is the responsibility of the caller to call fanout_release_data() and
1816 * free the returned packet_fanout (after synchronize_net())
1817 */
1818static struct packet_fanout *fanout_release(struct sock *sk)
1819{
1820 struct packet_sock *po = pkt_sk(sk);
1821 struct packet_fanout *f;
1822
1823 mutex_lock(lock: &fanout_mutex);
1824 f = po->fanout;
1825 if (f) {
1826 po->fanout = NULL;
1827
1828 if (refcount_dec_and_test(r: &f->sk_ref))
1829 list_del(entry: &f->list);
1830 else
1831 f = NULL;
1832 }
1833 mutex_unlock(lock: &fanout_mutex);
1834
1835 return f;
1836}
1837
1838static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1839 struct sk_buff *skb)
1840{
1841 /* Earlier code assumed this would be a VLAN pkt, double-check
1842 * this now that we have the actual packet in hand. We can only
1843 * do this check on Ethernet devices.
1844 */
1845 if (unlikely(dev->type != ARPHRD_ETHER))
1846 return false;
1847
1848 skb_reset_mac_header(skb);
1849 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1850}
1851
1852static const struct proto_ops packet_ops;
1853
1854static const struct proto_ops packet_ops_spkt;
1855
1856static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1857 struct packet_type *pt, struct net_device *orig_dev)
1858{
1859 struct sock *sk;
1860 struct sockaddr_pkt *spkt;
1861
1862 /*
1863 * When we registered the protocol we saved the socket in the data
1864 * field for just this event.
1865 */
1866
1867 sk = pt->af_packet_priv;
1868
1869 /*
1870 * Yank back the headers [hope the device set this
1871 * right or kerboom...]
1872 *
1873 * Incoming packets have ll header pulled,
1874 * push it back.
1875 *
1876 * For outgoing ones skb->data == skb_mac_header(skb)
1877 * so that this procedure is noop.
1878 */
1879
1880 if (skb->pkt_type == PACKET_LOOPBACK)
1881 goto out;
1882
1883 if (!net_eq(net1: dev_net(dev), net2: sock_net(sk)))
1884 goto out;
1885
1886 skb = skb_share_check(skb, GFP_ATOMIC);
1887 if (skb == NULL)
1888 goto oom;
1889
1890 /* drop any routing info */
1891 skb_dst_drop(skb);
1892
1893 /* drop conntrack reference */
1894 nf_reset_ct(skb);
1895
1896 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1897
1898 skb_push(skb, len: skb->data - skb_mac_header(skb));
1899
1900 /*
1901 * The SOCK_PACKET socket receives _all_ frames.
1902 */
1903
1904 spkt->spkt_family = dev->type;
1905 strscpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1906 spkt->spkt_protocol = skb->protocol;
1907
1908 /*
1909 * Charge the memory to the socket. This is done specifically
1910 * to prevent sockets using all the memory up.
1911 */
1912
1913 if (sock_queue_rcv_skb(sk, skb) == 0)
1914 return 0;
1915
1916out:
1917 kfree_skb(skb);
1918oom:
1919 return 0;
1920}
1921
1922static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1923{
1924 int depth;
1925
1926 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1927 sock->type == SOCK_RAW) {
1928 skb_reset_mac_header(skb);
1929 skb->protocol = dev_parse_header_protocol(skb);
1930 }
1931
1932 /* Move network header to the right position for VLAN tagged packets */
1933 if (likely(skb->dev->type == ARPHRD_ETHER) &&
1934 eth_type_vlan(ethertype: skb->protocol) &&
1935 vlan_get_protocol_and_depth(skb, type: skb->protocol, depth: &depth) != 0)
1936 skb_set_network_header(skb, offset: depth);
1937
1938 skb_probe_transport_header(skb);
1939}
1940
1941/*
1942 * Output a raw packet to a device layer. This bypasses all the other
1943 * protocol layers and you must therefore supply it with a complete frame
1944 */
1945
1946static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1947 size_t len)
1948{
1949 struct sock *sk = sock->sk;
1950 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1951 struct sk_buff *skb = NULL;
1952 struct net_device *dev;
1953 struct sockcm_cookie sockc;
1954 __be16 proto = 0;
1955 int err;
1956 int extra_len = 0;
1957
1958 /*
1959 * Get and verify the address.
1960 */
1961
1962 if (saddr) {
1963 if (msg->msg_namelen < sizeof(struct sockaddr))
1964 return -EINVAL;
1965 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1966 proto = saddr->spkt_protocol;
1967 } else
1968 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1969
1970 /*
1971 * Find the device first to size check it
1972 */
1973
1974 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1975retry:
1976 rcu_read_lock();
1977 dev = dev_get_by_name_rcu(net: sock_net(sk), name: saddr->spkt_device);
1978 err = -ENODEV;
1979 if (dev == NULL)
1980 goto out_unlock;
1981
1982 err = -ENETDOWN;
1983 if (!(dev->flags & IFF_UP))
1984 goto out_unlock;
1985
1986 /*
1987 * You may not queue a frame bigger than the mtu. This is the lowest level
1988 * raw protocol and you must do your own fragmentation at this level.
1989 */
1990
1991 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1992 if (!netif_supports_nofcs(dev)) {
1993 err = -EPROTONOSUPPORT;
1994 goto out_unlock;
1995 }
1996 extra_len = 4; /* We're doing our own CRC */
1997 }
1998
1999 err = -EMSGSIZE;
2000 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
2001 goto out_unlock;
2002
2003 if (!skb) {
2004 size_t reserved = LL_RESERVED_SPACE(dev);
2005 int tlen = dev->needed_tailroom;
2006 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
2007
2008 rcu_read_unlock();
2009 skb = sock_wmalloc(sk, size: len + reserved + tlen, force: 0, GFP_KERNEL);
2010 if (skb == NULL)
2011 return -ENOBUFS;
2012 /* FIXME: Save some space for broken drivers that write a hard
2013 * header at transmission time by themselves. PPP is the notable
2014 * one here. This should really be fixed at the driver level.
2015 */
2016 skb_reserve(skb, len: reserved);
2017 skb_reset_network_header(skb);
2018
2019 /* Try to align data part correctly */
2020 if (hhlen) {
2021 skb->data -= hhlen;
2022 skb->tail -= hhlen;
2023 if (len < hhlen)
2024 skb_reset_network_header(skb);
2025 }
2026 err = memcpy_from_msg(data: skb_put(skb, len), msg, len);
2027 if (err)
2028 goto out_free;
2029 goto retry;
2030 }
2031
2032 if (!dev_validate_header(dev, ll_header: skb->data, len) || !skb->len) {
2033 err = -EINVAL;
2034 goto out_unlock;
2035 }
2036 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
2037 !packet_extra_vlan_len_allowed(dev, skb)) {
2038 err = -EMSGSIZE;
2039 goto out_unlock;
2040 }
2041
2042 sockcm_init(sockc: &sockc, sk);
2043 if (msg->msg_controllen) {
2044 err = sock_cmsg_send(sk, msg, sockc: &sockc);
2045 if (unlikely(err))
2046 goto out_unlock;
2047 }
2048
2049 skb->protocol = proto;
2050 skb->dev = dev;
2051 skb->priority = sockc.priority;
2052 skb->mark = sockc.mark;
2053 skb_set_delivery_type_by_clockid(skb, kt: sockc.transmit_time, clockid: sk->sk_clockid);
2054 skb_setup_tx_timestamp(skb, sockc: &sockc);
2055
2056 if (unlikely(extra_len == 4))
2057 skb->no_fcs = 1;
2058
2059 packet_parse_headers(skb, sock);
2060
2061 dev_queue_xmit(skb);
2062 rcu_read_unlock();
2063 return len;
2064
2065out_unlock:
2066 rcu_read_unlock();
2067out_free:
2068 kfree_skb(skb);
2069 return err;
2070}
2071
2072static unsigned int run_filter(struct sk_buff *skb,
2073 const struct sock *sk,
2074 unsigned int res)
2075{
2076 struct sk_filter *filter;
2077
2078 rcu_read_lock();
2079 filter = rcu_dereference(sk->sk_filter);
2080 if (filter != NULL)
2081 res = bpf_prog_run_clear_cb(prog: filter->prog, skb);
2082 rcu_read_unlock();
2083
2084 return res;
2085}
2086
2087static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2088 size_t *len, int vnet_hdr_sz)
2089{
2090 struct virtio_net_hdr_mrg_rxbuf vnet_hdr = { .num_buffers = 0 };
2091
2092 if (*len < vnet_hdr_sz)
2093 return -EINVAL;
2094 *len -= vnet_hdr_sz;
2095
2096 if (virtio_net_hdr_from_skb(skb, hdr: (struct virtio_net_hdr *)&vnet_hdr, vio_le(), has_data_valid: true, vlan_hlen: 0))
2097 return -EINVAL;
2098
2099 return memcpy_to_msg(msg, data: (void *)&vnet_hdr, len: vnet_hdr_sz);
2100}
2101
2102/*
2103 * This function makes lazy skb cloning in hope that most of packets
2104 * are discarded by BPF.
2105 *
2106 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2107 * and skb->cb are mangled. It works because (and until) packets
2108 * falling here are owned by current CPU. Output packets are cloned
2109 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2110 * sequentially, so that if we return skb to original state on exit,
2111 * we will not harm anyone.
2112 */
2113
2114static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2115 struct packet_type *pt, struct net_device *orig_dev)
2116{
2117 enum skb_drop_reason drop_reason = SKB_CONSUMED;
2118 struct sock *sk = NULL;
2119 struct sockaddr_ll *sll;
2120 struct packet_sock *po;
2121 u8 *skb_head = skb->data;
2122 int skb_len = skb->len;
2123 unsigned int snaplen, res;
2124
2125 if (skb->pkt_type == PACKET_LOOPBACK)
2126 goto drop;
2127
2128 sk = pt->af_packet_priv;
2129 po = pkt_sk(sk);
2130
2131 if (!net_eq(net1: dev_net(dev), net2: sock_net(sk)))
2132 goto drop;
2133
2134 skb->dev = dev;
2135
2136 if (dev_has_header(dev)) {
2137 /* The device has an explicit notion of ll header,
2138 * exported to higher levels.
2139 *
2140 * Otherwise, the device hides details of its frame
2141 * structure, so that corresponding packet head is
2142 * never delivered to user.
2143 */
2144 if (sk->sk_type != SOCK_DGRAM)
2145 skb_push(skb, len: skb->data - skb_mac_header(skb));
2146 else if (skb->pkt_type == PACKET_OUTGOING) {
2147 /* Special case: outgoing packets have ll header at head */
2148 skb_pull(skb, len: skb_network_offset(skb));
2149 }
2150 }
2151
2152 snaplen = skb_frags_readable(skb) ? skb->len : skb_headlen(skb);
2153
2154 res = run_filter(skb, sk, res: snaplen);
2155 if (!res)
2156 goto drop_n_restore;
2157 if (snaplen > res)
2158 snaplen = res;
2159
2160 if (atomic_read(v: &sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2161 goto drop_n_acct;
2162
2163 if (skb_shared(skb)) {
2164 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2165 if (nskb == NULL)
2166 goto drop_n_acct;
2167
2168 if (skb_head != skb->data) {
2169 skb->data = skb_head;
2170 skb->len = skb_len;
2171 }
2172 consume_skb(skb);
2173 skb = nskb;
2174 }
2175
2176 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2177
2178 sll = &PACKET_SKB_CB(skb)->sa.ll;
2179 sll->sll_hatype = dev->type;
2180 sll->sll_pkttype = skb->pkt_type;
2181 if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV)))
2182 sll->sll_ifindex = orig_dev->ifindex;
2183 else
2184 sll->sll_ifindex = dev->ifindex;
2185
2186 sll->sll_halen = dev_parse_header(skb, haddr: sll->sll_addr);
2187
2188 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2189 * Use their space for storing the original skb length.
2190 */
2191 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2192
2193 if (pskb_trim(skb, len: snaplen))
2194 goto drop_n_acct;
2195
2196 skb_set_owner_r(skb, sk);
2197 skb->dev = NULL;
2198 skb_dst_drop(skb);
2199
2200 /* drop conntrack reference */
2201 nf_reset_ct(skb);
2202
2203 spin_lock(lock: &sk->sk_receive_queue.lock);
2204 po->stats.stats1.tp_packets++;
2205 sock_skb_set_dropcount(sk, skb);
2206 skb_clear_delivery_time(skb);
2207 __skb_queue_tail(list: &sk->sk_receive_queue, newsk: skb);
2208 spin_unlock(lock: &sk->sk_receive_queue.lock);
2209 sk->sk_data_ready(sk);
2210 return 0;
2211
2212drop_n_acct:
2213 atomic_inc(v: &po->tp_drops);
2214 sk_drops_inc(sk);
2215 drop_reason = SKB_DROP_REASON_PACKET_SOCK_ERROR;
2216
2217drop_n_restore:
2218 if (skb_head != skb->data && skb_shared(skb)) {
2219 skb->data = skb_head;
2220 skb->len = skb_len;
2221 }
2222drop:
2223 sk_skb_reason_drop(sk, skb, reason: drop_reason);
2224 return 0;
2225}
2226
2227static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2228 struct packet_type *pt, struct net_device *orig_dev)
2229{
2230 enum skb_drop_reason drop_reason = SKB_CONSUMED;
2231 struct sock *sk = NULL;
2232 struct packet_sock *po;
2233 struct sockaddr_ll *sll;
2234 union tpacket_uhdr h;
2235 u8 *skb_head = skb->data;
2236 int skb_len = skb->len;
2237 unsigned int snaplen, res;
2238 unsigned long status = TP_STATUS_USER;
2239 unsigned short macoff, hdrlen;
2240 unsigned int netoff;
2241 struct sk_buff *copy_skb = NULL;
2242 struct timespec64 ts;
2243 __u32 ts_status;
2244 unsigned int slot_id = 0;
2245 int vnet_hdr_sz = 0;
2246
2247 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2248 * We may add members to them until current aligned size without forcing
2249 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2250 */
2251 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2252 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2253
2254 if (skb->pkt_type == PACKET_LOOPBACK)
2255 goto drop;
2256
2257 sk = pt->af_packet_priv;
2258 po = pkt_sk(sk);
2259
2260 if (!net_eq(net1: dev_net(dev), net2: sock_net(sk)))
2261 goto drop;
2262
2263 if (dev_has_header(dev)) {
2264 if (sk->sk_type != SOCK_DGRAM)
2265 skb_push(skb, len: skb->data - skb_mac_header(skb));
2266 else if (skb->pkt_type == PACKET_OUTGOING) {
2267 /* Special case: outgoing packets have ll header at head */
2268 skb_pull(skb, len: skb_network_offset(skb));
2269 }
2270 }
2271
2272 snaplen = skb_frags_readable(skb) ? skb->len : skb_headlen(skb);
2273
2274 res = run_filter(skb, sk, res: snaplen);
2275 if (!res)
2276 goto drop_n_restore;
2277
2278 /* If we are flooded, just give up */
2279 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2280 atomic_inc(v: &po->tp_drops);
2281 goto drop_n_restore;
2282 }
2283
2284 if (skb->ip_summed == CHECKSUM_PARTIAL)
2285 status |= TP_STATUS_CSUMNOTREADY;
2286 else if (skb->pkt_type != PACKET_OUTGOING &&
2287 skb_csum_unnecessary(skb))
2288 status |= TP_STATUS_CSUM_VALID;
2289 if (skb_is_gso(skb) && skb_is_gso_tcp(skb))
2290 status |= TP_STATUS_GSO_TCP;
2291
2292 if (snaplen > res)
2293 snaplen = res;
2294
2295 if (sk->sk_type == SOCK_DGRAM) {
2296 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2297 po->tp_reserve;
2298 } else {
2299 unsigned int maclen = skb_network_offset(skb);
2300 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2301 (maclen < 16 ? 16 : maclen)) +
2302 po->tp_reserve;
2303 vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2304 if (vnet_hdr_sz)
2305 netoff += vnet_hdr_sz;
2306 macoff = netoff - maclen;
2307 }
2308 if (netoff > USHRT_MAX) {
2309 atomic_inc(v: &po->tp_drops);
2310 goto drop_n_restore;
2311 }
2312 if (po->tp_version <= TPACKET_V2) {
2313 if (macoff + snaplen > po->rx_ring.frame_size) {
2314 if (READ_ONCE(po->copy_thresh) &&
2315 atomic_read(v: &sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2316 if (skb_shared(skb)) {
2317 copy_skb = skb_clone(skb, GFP_ATOMIC);
2318 } else {
2319 copy_skb = skb_get(skb);
2320 skb_head = skb->data;
2321 }
2322 if (copy_skb) {
2323 memset(s: &PACKET_SKB_CB(copy_skb)->sa.ll, c: 0,
2324 n: sizeof(PACKET_SKB_CB(copy_skb)->sa.ll));
2325 skb_set_owner_r(skb: copy_skb, sk);
2326 }
2327 }
2328 snaplen = po->rx_ring.frame_size - macoff;
2329 if ((int)snaplen < 0) {
2330 snaplen = 0;
2331 vnet_hdr_sz = 0;
2332 }
2333 }
2334 } else if (unlikely(macoff + snaplen >
2335 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2336 u32 nval;
2337
2338 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2339 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2340 snaplen, nval, macoff);
2341 snaplen = nval;
2342 if (unlikely((int)snaplen < 0)) {
2343 snaplen = 0;
2344 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2345 vnet_hdr_sz = 0;
2346 }
2347 }
2348 spin_lock(lock: &sk->sk_receive_queue.lock);
2349 h.raw = packet_current_rx_frame(po, skb,
2350 TP_STATUS_KERNEL, len: (macoff+snaplen));
2351 if (!h.raw)
2352 goto drop_n_account;
2353
2354 if (po->tp_version <= TPACKET_V2) {
2355 slot_id = po->rx_ring.head;
2356 if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2357 goto drop_n_account;
2358 __set_bit(slot_id, po->rx_ring.rx_owner_map);
2359 }
2360
2361 if (vnet_hdr_sz &&
2362 virtio_net_hdr_from_skb(skb, hdr: h.raw + macoff -
2363 sizeof(struct virtio_net_hdr),
2364 vio_le(), has_data_valid: true, vlan_hlen: 0)) {
2365 if (po->tp_version == TPACKET_V3)
2366 prb_clear_blk_fill_status(rb: &po->rx_ring);
2367 goto drop_n_account;
2368 }
2369
2370 if (po->tp_version <= TPACKET_V2) {
2371 packet_increment_rx_head(po, rb: &po->rx_ring);
2372 /*
2373 * LOSING will be reported till you read the stats,
2374 * because it's COR - Clear On Read.
2375 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2376 * at packet level.
2377 */
2378 if (atomic_read(v: &po->tp_drops))
2379 status |= TP_STATUS_LOSING;
2380 }
2381
2382 po->stats.stats1.tp_packets++;
2383 if (copy_skb) {
2384 status |= TP_STATUS_COPY;
2385 skb_clear_delivery_time(skb: copy_skb);
2386 __skb_queue_tail(list: &sk->sk_receive_queue, newsk: copy_skb);
2387 }
2388 spin_unlock(lock: &sk->sk_receive_queue.lock);
2389
2390 skb_copy_bits(skb, offset: 0, to: h.raw + macoff, len: snaplen);
2391
2392 /* Always timestamp; prefer an existing software timestamp taken
2393 * closer to the time of capture.
2394 */
2395 ts_status = tpacket_get_timestamp(skb, ts: &ts,
2396 READ_ONCE(po->tp_tstamp) |
2397 SOF_TIMESTAMPING_SOFTWARE);
2398 if (!ts_status)
2399 ktime_get_real_ts64(tv: &ts);
2400
2401 status |= ts_status;
2402
2403 switch (po->tp_version) {
2404 case TPACKET_V1:
2405 h.h1->tp_len = skb->len;
2406 h.h1->tp_snaplen = snaplen;
2407 h.h1->tp_mac = macoff;
2408 h.h1->tp_net = netoff;
2409 h.h1->tp_sec = ts.tv_sec;
2410 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2411 hdrlen = sizeof(*h.h1);
2412 break;
2413 case TPACKET_V2:
2414 h.h2->tp_len = skb->len;
2415 h.h2->tp_snaplen = snaplen;
2416 h.h2->tp_mac = macoff;
2417 h.h2->tp_net = netoff;
2418 h.h2->tp_sec = ts.tv_sec;
2419 h.h2->tp_nsec = ts.tv_nsec;
2420 if (skb_vlan_tag_present(skb)) {
2421 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2422 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2423 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2424 } else if (unlikely(sk->sk_type == SOCK_DGRAM && eth_type_vlan(skb->protocol))) {
2425 h.h2->tp_vlan_tci = vlan_get_tci(skb, dev: skb->dev);
2426 h.h2->tp_vlan_tpid = ntohs(skb->protocol);
2427 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2428 } else {
2429 h.h2->tp_vlan_tci = 0;
2430 h.h2->tp_vlan_tpid = 0;
2431 }
2432 memset(s: h.h2->tp_padding, c: 0, n: sizeof(h.h2->tp_padding));
2433 hdrlen = sizeof(*h.h2);
2434 break;
2435 case TPACKET_V3:
2436 /* tp_nxt_offset,vlan are already populated above.
2437 * So DONT clear those fields here
2438 */
2439 h.h3->tp_status |= status;
2440 h.h3->tp_len = skb->len;
2441 h.h3->tp_snaplen = snaplen;
2442 h.h3->tp_mac = macoff;
2443 h.h3->tp_net = netoff;
2444 h.h3->tp_sec = ts.tv_sec;
2445 h.h3->tp_nsec = ts.tv_nsec;
2446 memset(s: h.h3->tp_padding, c: 0, n: sizeof(h.h3->tp_padding));
2447 hdrlen = sizeof(*h.h3);
2448 break;
2449 default:
2450 BUG();
2451 }
2452
2453 sll = h.raw + TPACKET_ALIGN(hdrlen);
2454 sll->sll_halen = dev_parse_header(skb, haddr: sll->sll_addr);
2455 sll->sll_family = AF_PACKET;
2456 sll->sll_hatype = dev->type;
2457 sll->sll_protocol = (sk->sk_type == SOCK_DGRAM) ?
2458 vlan_get_protocol_dgram(skb) : skb->protocol;
2459 sll->sll_pkttype = skb->pkt_type;
2460 if (unlikely(packet_sock_flag(po, PACKET_SOCK_ORIGDEV)))
2461 sll->sll_ifindex = orig_dev->ifindex;
2462 else
2463 sll->sll_ifindex = dev->ifindex;
2464
2465 smp_mb();
2466
2467#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2468 if (po->tp_version <= TPACKET_V2) {
2469 u8 *start, *end;
2470
2471 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2472 macoff + snaplen);
2473
2474 for (start = h.raw; start < end; start += PAGE_SIZE)
2475 flush_dcache_page(pgv_to_page(start));
2476 }
2477 smp_wmb();
2478#endif
2479
2480 if (po->tp_version <= TPACKET_V2) {
2481 spin_lock(lock: &sk->sk_receive_queue.lock);
2482 __packet_set_status(po, frame: h.raw, status);
2483 __clear_bit(slot_id, po->rx_ring.rx_owner_map);
2484 spin_unlock(lock: &sk->sk_receive_queue.lock);
2485 sk->sk_data_ready(sk);
2486 } else if (po->tp_version == TPACKET_V3) {
2487 prb_clear_blk_fill_status(rb: &po->rx_ring);
2488 }
2489
2490drop_n_restore:
2491 if (skb_head != skb->data && skb_shared(skb)) {
2492 skb->data = skb_head;
2493 skb->len = skb_len;
2494 }
2495drop:
2496 sk_skb_reason_drop(sk, skb, reason: drop_reason);
2497 return 0;
2498
2499drop_n_account:
2500 spin_unlock(lock: &sk->sk_receive_queue.lock);
2501 atomic_inc(v: &po->tp_drops);
2502 drop_reason = SKB_DROP_REASON_PACKET_SOCK_ERROR;
2503
2504 sk->sk_data_ready(sk);
2505 sk_skb_reason_drop(sk, skb: copy_skb, reason: drop_reason);
2506 goto drop_n_restore;
2507}
2508
2509static void tpacket_destruct_skb(struct sk_buff *skb)
2510{
2511 struct packet_sock *po = pkt_sk(skb->sk);
2512
2513 if (likely(po->tx_ring.pg_vec)) {
2514 void *ph;
2515 __u32 ts;
2516
2517 ph = skb_zcopy_get_nouarg(skb);
2518 packet_dec_pending(rb: &po->tx_ring);
2519
2520 ts = __packet_set_timestamp(po, frame: ph, skb);
2521 __packet_set_status(po, frame: ph, TP_STATUS_AVAILABLE | ts);
2522
2523 complete(&po->skb_completion);
2524 }
2525
2526 sock_wfree(skb);
2527}
2528
2529static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2530{
2531 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2532 (__virtio16_to_cpu(vio_le(), val: vnet_hdr->csum_start) +
2533 __virtio16_to_cpu(vio_le(), val: vnet_hdr->csum_offset) + 2 >
2534 __virtio16_to_cpu(vio_le(), val: vnet_hdr->hdr_len)))
2535 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2536 val: __virtio16_to_cpu(vio_le(), val: vnet_hdr->csum_start) +
2537 __virtio16_to_cpu(vio_le(), val: vnet_hdr->csum_offset) + 2);
2538
2539 if (__virtio16_to_cpu(vio_le(), val: vnet_hdr->hdr_len) > len)
2540 return -EINVAL;
2541
2542 return 0;
2543}
2544
2545static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2546 struct virtio_net_hdr *vnet_hdr, int vnet_hdr_sz)
2547{
2548 int ret;
2549
2550 if (*len < vnet_hdr_sz)
2551 return -EINVAL;
2552 *len -= vnet_hdr_sz;
2553
2554 if (!copy_from_iter_full(addr: vnet_hdr, bytes: sizeof(*vnet_hdr), i: &msg->msg_iter))
2555 return -EFAULT;
2556
2557 ret = __packet_snd_vnet_parse(vnet_hdr, len: *len);
2558 if (ret)
2559 return ret;
2560
2561 /* move iter to point to the start of mac header */
2562 if (vnet_hdr_sz != sizeof(struct virtio_net_hdr))
2563 iov_iter_advance(i: &msg->msg_iter, bytes: vnet_hdr_sz - sizeof(struct virtio_net_hdr));
2564
2565 return 0;
2566}
2567
2568static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2569 void *frame, struct net_device *dev, void *data, int tp_len,
2570 __be16 proto, unsigned char *addr, int hlen, int copylen,
2571 const struct sockcm_cookie *sockc)
2572{
2573 union tpacket_uhdr ph;
2574 int to_write, offset, len, nr_frags, len_max;
2575 struct socket *sock = po->sk.sk_socket;
2576 struct page *page;
2577 int err;
2578
2579 ph.raw = frame;
2580
2581 skb->protocol = proto;
2582 skb->dev = dev;
2583 skb->priority = sockc->priority;
2584 skb->mark = sockc->mark;
2585 skb_set_delivery_type_by_clockid(skb, kt: sockc->transmit_time, clockid: po->sk.sk_clockid);
2586 skb_setup_tx_timestamp(skb, sockc);
2587 skb_zcopy_set_nouarg(skb, val: ph.raw);
2588
2589 skb_reserve(skb, len: hlen);
2590 skb_reset_network_header(skb);
2591
2592 to_write = tp_len;
2593
2594 if (sock->type == SOCK_DGRAM) {
2595 err = dev_hard_header(skb, dev, ntohs(proto), daddr: addr,
2596 NULL, len: tp_len);
2597 if (unlikely(err < 0))
2598 return -EINVAL;
2599 } else if (copylen) {
2600 int hdrlen = min_t(int, copylen, tp_len);
2601
2602 skb_push(skb, len: dev->hard_header_len);
2603 skb_put(skb, len: copylen - dev->hard_header_len);
2604 err = skb_store_bits(skb, offset: 0, from: data, len: hdrlen);
2605 if (unlikely(err))
2606 return err;
2607 if (!dev_validate_header(dev, ll_header: skb->data, len: hdrlen))
2608 return -EINVAL;
2609
2610 data += hdrlen;
2611 to_write -= hdrlen;
2612 }
2613
2614 offset = offset_in_page(data);
2615 len_max = PAGE_SIZE - offset;
2616 len = ((to_write > len_max) ? len_max : to_write);
2617
2618 skb->data_len = to_write;
2619 skb->len += to_write;
2620 skb->truesize += to_write;
2621 refcount_add(i: to_write, r: &po->sk.sk_wmem_alloc);
2622
2623 while (likely(to_write)) {
2624 nr_frags = skb_shinfo(skb)->nr_frags;
2625
2626 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2627 pr_err("Packet exceed the number of skb frags(%u)\n",
2628 (unsigned int)MAX_SKB_FRAGS);
2629 return -EFAULT;
2630 }
2631
2632 page = pgv_to_page(addr: data);
2633 data += len;
2634 flush_dcache_page(page);
2635 get_page(page);
2636 skb_fill_page_desc(skb, i: nr_frags, page, off: offset, size: len);
2637 to_write -= len;
2638 offset = 0;
2639 len_max = PAGE_SIZE;
2640 len = ((to_write > len_max) ? len_max : to_write);
2641 }
2642
2643 packet_parse_headers(skb, sock);
2644
2645 return tp_len;
2646}
2647
2648static int tpacket_parse_header(struct packet_sock *po, void *frame,
2649 int size_max, void **data)
2650{
2651 union tpacket_uhdr ph;
2652 int tp_len, off;
2653
2654 ph.raw = frame;
2655
2656 switch (po->tp_version) {
2657 case TPACKET_V3:
2658 if (ph.h3->tp_next_offset != 0) {
2659 pr_warn_once("variable sized slot not supported");
2660 return -EINVAL;
2661 }
2662 tp_len = ph.h3->tp_len;
2663 break;
2664 case TPACKET_V2:
2665 tp_len = ph.h2->tp_len;
2666 break;
2667 default:
2668 tp_len = ph.h1->tp_len;
2669 break;
2670 }
2671 if (unlikely(tp_len > size_max)) {
2672 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2673 return -EMSGSIZE;
2674 }
2675
2676 if (unlikely(packet_sock_flag(po, PACKET_SOCK_TX_HAS_OFF))) {
2677 int off_min, off_max;
2678
2679 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2680 off_max = po->tx_ring.frame_size - tp_len;
2681 if (po->sk.sk_type == SOCK_DGRAM) {
2682 switch (po->tp_version) {
2683 case TPACKET_V3:
2684 off = ph.h3->tp_net;
2685 break;
2686 case TPACKET_V2:
2687 off = ph.h2->tp_net;
2688 break;
2689 default:
2690 off = ph.h1->tp_net;
2691 break;
2692 }
2693 } else {
2694 switch (po->tp_version) {
2695 case TPACKET_V3:
2696 off = ph.h3->tp_mac;
2697 break;
2698 case TPACKET_V2:
2699 off = ph.h2->tp_mac;
2700 break;
2701 default:
2702 off = ph.h1->tp_mac;
2703 break;
2704 }
2705 }
2706 if (unlikely((off < off_min) || (off_max < off)))
2707 return -EINVAL;
2708 } else {
2709 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2710 }
2711
2712 *data = frame + off;
2713 return tp_len;
2714}
2715
2716static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2717{
2718 struct sk_buff *skb = NULL;
2719 struct net_device *dev;
2720 struct virtio_net_hdr *vnet_hdr = NULL;
2721 struct sockcm_cookie sockc;
2722 __be16 proto;
2723 int err, reserve = 0;
2724 void *ph;
2725 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2726 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2727 int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2728 unsigned char *addr = NULL;
2729 int tp_len, size_max;
2730 void *data;
2731 int len_sum = 0;
2732 int status = TP_STATUS_AVAILABLE;
2733 int hlen, tlen, copylen = 0;
2734 long timeo;
2735
2736 mutex_lock(lock: &po->pg_vec_lock);
2737
2738 /* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2739 * we need to confirm it under protection of pg_vec_lock.
2740 */
2741 if (unlikely(!po->tx_ring.pg_vec)) {
2742 err = -EBUSY;
2743 goto out;
2744 }
2745 if (likely(saddr == NULL)) {
2746 dev = packet_cached_dev_get(po);
2747 proto = READ_ONCE(po->num);
2748 } else {
2749 err = -EINVAL;
2750 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2751 goto out;
2752 if (msg->msg_namelen < (saddr->sll_halen
2753 + offsetof(struct sockaddr_ll,
2754 sll_addr)))
2755 goto out;
2756 proto = saddr->sll_protocol;
2757 dev = dev_get_by_index(net: sock_net(sk: &po->sk), ifindex: saddr->sll_ifindex);
2758 if (po->sk.sk_socket->type == SOCK_DGRAM) {
2759 if (dev && msg->msg_namelen < dev->addr_len +
2760 offsetof(struct sockaddr_ll, sll_addr))
2761 goto out_put;
2762 addr = saddr->sll_addr;
2763 }
2764 }
2765
2766 err = -ENXIO;
2767 if (unlikely(dev == NULL))
2768 goto out;
2769 err = -ENETDOWN;
2770 if (unlikely(!(dev->flags & IFF_UP)))
2771 goto out_put;
2772
2773 sockcm_init(sockc: &sockc, sk: &po->sk);
2774 if (msg->msg_controllen) {
2775 err = sock_cmsg_send(sk: &po->sk, msg, sockc: &sockc);
2776 if (unlikely(err))
2777 goto out_put;
2778 }
2779
2780 if (po->sk.sk_socket->type == SOCK_RAW)
2781 reserve = dev->hard_header_len;
2782 size_max = po->tx_ring.frame_size
2783 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2784
2785 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !vnet_hdr_sz)
2786 size_max = dev->mtu + reserve + VLAN_HLEN;
2787
2788 timeo = sock_sndtimeo(sk: &po->sk, noblock: msg->msg_flags & MSG_DONTWAIT);
2789 reinit_completion(x: &po->skb_completion);
2790
2791 do {
2792 ph = packet_current_frame(po, rb: &po->tx_ring,
2793 TP_STATUS_SEND_REQUEST);
2794 if (unlikely(ph == NULL)) {
2795 /* Note: packet_read_pending() might be slow if we
2796 * have to call it as it's per_cpu variable, but in
2797 * fast-path we don't have to call it, only when ph
2798 * is NULL, we need to check the pending_refcnt.
2799 */
2800 if (need_wait && packet_read_pending(rb: &po->tx_ring)) {
2801 timeo = wait_for_completion_interruptible_timeout(x: &po->skb_completion, timeout: timeo);
2802 if (timeo <= 0) {
2803 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2804 goto out_put;
2805 }
2806 /* check for additional frames */
2807 continue;
2808 } else
2809 break;
2810 }
2811
2812 skb = NULL;
2813 tp_len = tpacket_parse_header(po, frame: ph, size_max, data: &data);
2814 if (tp_len < 0)
2815 goto tpacket_error;
2816
2817 status = TP_STATUS_SEND_REQUEST;
2818 hlen = LL_RESERVED_SPACE(dev);
2819 tlen = dev->needed_tailroom;
2820 if (vnet_hdr_sz) {
2821 vnet_hdr = data;
2822 data += vnet_hdr_sz;
2823 tp_len -= vnet_hdr_sz;
2824 if (tp_len < 0 ||
2825 __packet_snd_vnet_parse(vnet_hdr, len: tp_len)) {
2826 tp_len = -EINVAL;
2827 goto tpacket_error;
2828 }
2829 copylen = __virtio16_to_cpu(vio_le(),
2830 val: vnet_hdr->hdr_len);
2831 }
2832 copylen = max_t(int, copylen, dev->hard_header_len);
2833 skb = sock_alloc_send_skb(sk: &po->sk,
2834 size: hlen + tlen + sizeof(struct sockaddr_ll) +
2835 (copylen - dev->hard_header_len),
2836 noblock: !need_wait, errcode: &err);
2837
2838 if (unlikely(skb == NULL)) {
2839 /* we assume the socket was initially writeable ... */
2840 if (likely(len_sum > 0))
2841 err = len_sum;
2842 goto out_status;
2843 }
2844 tp_len = tpacket_fill_skb(po, skb, frame: ph, dev, data, tp_len, proto,
2845 addr, hlen, copylen, sockc: &sockc);
2846 if (likely(tp_len >= 0) &&
2847 tp_len > dev->mtu + reserve &&
2848 !vnet_hdr_sz &&
2849 !packet_extra_vlan_len_allowed(dev, skb))
2850 tp_len = -EMSGSIZE;
2851
2852 if (unlikely(tp_len < 0)) {
2853tpacket_error:
2854 if (packet_sock_flag(po, flag: PACKET_SOCK_TP_LOSS)) {
2855 __packet_set_status(po, frame: ph,
2856 TP_STATUS_AVAILABLE);
2857 packet_increment_head(buff: &po->tx_ring);
2858 kfree_skb(skb);
2859 continue;
2860 } else {
2861 status = TP_STATUS_WRONG_FORMAT;
2862 err = tp_len;
2863 goto out_status;
2864 }
2865 }
2866
2867 if (vnet_hdr_sz) {
2868 if (virtio_net_hdr_to_skb(skb, hdr: vnet_hdr, vio_le())) {
2869 tp_len = -EINVAL;
2870 goto tpacket_error;
2871 }
2872 virtio_net_hdr_set_proto(skb, hdr: vnet_hdr);
2873 }
2874
2875 skb->destructor = tpacket_destruct_skb;
2876 __packet_set_status(po, frame: ph, TP_STATUS_SENDING);
2877 packet_inc_pending(rb: &po->tx_ring);
2878
2879 status = TP_STATUS_SEND_REQUEST;
2880 err = packet_xmit(po, skb);
2881 if (unlikely(err != 0)) {
2882 if (err > 0)
2883 err = net_xmit_errno(err);
2884 if (err && __packet_get_status(po, frame: ph) ==
2885 TP_STATUS_AVAILABLE) {
2886 /* skb was destructed already */
2887 skb = NULL;
2888 goto out_status;
2889 }
2890 /*
2891 * skb was dropped but not destructed yet;
2892 * let's treat it like congestion or err < 0
2893 */
2894 err = 0;
2895 }
2896 packet_increment_head(buff: &po->tx_ring);
2897 len_sum += tp_len;
2898 } while (1);
2899
2900 err = len_sum;
2901 goto out_put;
2902
2903out_status:
2904 __packet_set_status(po, frame: ph, status);
2905 kfree_skb(skb);
2906out_put:
2907 dev_put(dev);
2908out:
2909 mutex_unlock(lock: &po->pg_vec_lock);
2910 return err;
2911}
2912
2913static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2914 size_t reserve, size_t len,
2915 size_t linear, int noblock,
2916 int *err)
2917{
2918 struct sk_buff *skb;
2919
2920 /* Under a page? Don't bother with paged skb. */
2921 if (prepad + len < PAGE_SIZE || !linear)
2922 linear = len;
2923
2924 if (len - linear > MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
2925 linear = len - MAX_SKB_FRAGS * (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER);
2926 skb = sock_alloc_send_pskb(sk, header_len: prepad + linear, data_len: len - linear, noblock,
2927 errcode: err, PAGE_ALLOC_COSTLY_ORDER);
2928 if (!skb)
2929 return NULL;
2930
2931 skb_reserve(skb, len: reserve);
2932 skb_put(skb, len: linear);
2933 skb->data_len = len - linear;
2934 skb->len += len - linear;
2935
2936 return skb;
2937}
2938
2939static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2940{
2941 struct sock *sk = sock->sk;
2942 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2943 struct sk_buff *skb;
2944 struct net_device *dev;
2945 __be16 proto;
2946 unsigned char *addr = NULL;
2947 int err, reserve = 0;
2948 struct sockcm_cookie sockc;
2949 struct virtio_net_hdr vnet_hdr = { 0 };
2950 int offset = 0;
2951 struct packet_sock *po = pkt_sk(sk);
2952 int vnet_hdr_sz = READ_ONCE(po->vnet_hdr_sz);
2953 int hlen, tlen, linear;
2954 int extra_len = 0;
2955
2956 /*
2957 * Get and verify the address.
2958 */
2959
2960 if (likely(saddr == NULL)) {
2961 dev = packet_cached_dev_get(po);
2962 proto = READ_ONCE(po->num);
2963 } else {
2964 err = -EINVAL;
2965 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2966 goto out;
2967 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2968 goto out;
2969 proto = saddr->sll_protocol;
2970 dev = dev_get_by_index(net: sock_net(sk), ifindex: saddr->sll_ifindex);
2971 if (sock->type == SOCK_DGRAM) {
2972 if (dev && msg->msg_namelen < dev->addr_len +
2973 offsetof(struct sockaddr_ll, sll_addr))
2974 goto out_unlock;
2975 addr = saddr->sll_addr;
2976 }
2977 }
2978
2979 err = -ENXIO;
2980 if (unlikely(dev == NULL))
2981 goto out_unlock;
2982 err = -ENETDOWN;
2983 if (unlikely(!(dev->flags & IFF_UP)))
2984 goto out_unlock;
2985
2986 sockcm_init(sockc: &sockc, sk);
2987 if (msg->msg_controllen) {
2988 err = sock_cmsg_send(sk, msg, sockc: &sockc);
2989 if (unlikely(err))
2990 goto out_unlock;
2991 }
2992
2993 if (sock->type == SOCK_RAW)
2994 reserve = dev->hard_header_len;
2995 if (vnet_hdr_sz) {
2996 err = packet_snd_vnet_parse(msg, len: &len, vnet_hdr: &vnet_hdr, vnet_hdr_sz);
2997 if (err)
2998 goto out_unlock;
2999 }
3000
3001 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
3002 if (!netif_supports_nofcs(dev)) {
3003 err = -EPROTONOSUPPORT;
3004 goto out_unlock;
3005 }
3006 extra_len = 4; /* We're doing our own CRC */
3007 }
3008
3009 err = -EMSGSIZE;
3010 if (!vnet_hdr.gso_type &&
3011 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
3012 goto out_unlock;
3013
3014 err = -ENOBUFS;
3015 hlen = LL_RESERVED_SPACE(dev);
3016 tlen = dev->needed_tailroom;
3017 linear = __virtio16_to_cpu(vio_le(), val: vnet_hdr.hdr_len);
3018 linear = max(linear, min_t(int, len, dev->hard_header_len));
3019 skb = packet_alloc_skb(sk, prepad: hlen + tlen, reserve: hlen, len, linear,
3020 noblock: msg->msg_flags & MSG_DONTWAIT, err: &err);
3021 if (skb == NULL)
3022 goto out_unlock;
3023
3024 skb_reset_network_header(skb);
3025
3026 err = -EINVAL;
3027 if (sock->type == SOCK_DGRAM) {
3028 offset = dev_hard_header(skb, dev, ntohs(proto), daddr: addr, NULL, len);
3029 if (unlikely(offset < 0))
3030 goto out_free;
3031 } else if (reserve) {
3032 skb_reserve(skb, len: -reserve);
3033 if (len < reserve + sizeof(struct ipv6hdr) &&
3034 dev->min_header_len != dev->hard_header_len)
3035 skb_reset_network_header(skb);
3036 }
3037
3038 /* Returns -EFAULT on error */
3039 err = skb_copy_datagram_from_iter(skb, offset, from: &msg->msg_iter, len);
3040 if (err)
3041 goto out_free;
3042
3043 if ((sock->type == SOCK_RAW &&
3044 !dev_validate_header(dev, ll_header: skb->data, len)) || !skb->len) {
3045 err = -EINVAL;
3046 goto out_free;
3047 }
3048
3049 skb_setup_tx_timestamp(skb, sockc: &sockc);
3050
3051 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
3052 !packet_extra_vlan_len_allowed(dev, skb)) {
3053 err = -EMSGSIZE;
3054 goto out_free;
3055 }
3056
3057 skb->protocol = proto;
3058 skb->dev = dev;
3059 skb->priority = sockc.priority;
3060 skb->mark = sockc.mark;
3061 skb_set_delivery_type_by_clockid(skb, kt: sockc.transmit_time, clockid: sk->sk_clockid);
3062
3063 if (unlikely(extra_len == 4))
3064 skb->no_fcs = 1;
3065
3066 packet_parse_headers(skb, sock);
3067
3068 if (vnet_hdr_sz) {
3069 err = virtio_net_hdr_to_skb(skb, hdr: &vnet_hdr, vio_le());
3070 if (err)
3071 goto out_free;
3072 len += vnet_hdr_sz;
3073 virtio_net_hdr_set_proto(skb, hdr: &vnet_hdr);
3074 }
3075
3076 err = packet_xmit(po, skb);
3077
3078 if (unlikely(err != 0)) {
3079 if (err > 0)
3080 err = net_xmit_errno(err);
3081 if (err)
3082 goto out_unlock;
3083 }
3084
3085 dev_put(dev);
3086
3087 return len;
3088
3089out_free:
3090 kfree_skb(skb);
3091out_unlock:
3092 dev_put(dev);
3093out:
3094 return err;
3095}
3096
3097static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3098{
3099 struct sock *sk = sock->sk;
3100 struct packet_sock *po = pkt_sk(sk);
3101
3102 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy.
3103 * tpacket_snd() will redo the check safely.
3104 */
3105 if (data_race(po->tx_ring.pg_vec))
3106 return tpacket_snd(po, msg);
3107
3108 return packet_snd(sock, msg, len);
3109}
3110
3111/*
3112 * Close a PACKET socket. This is fairly simple. We immediately go
3113 * to 'closed' state and remove our protocol entry in the device list.
3114 */
3115
3116static int packet_release(struct socket *sock)
3117{
3118 struct sock *sk = sock->sk;
3119 struct packet_sock *po;
3120 struct packet_fanout *f;
3121 struct net *net;
3122 union tpacket_req_u req_u;
3123
3124 if (!sk)
3125 return 0;
3126
3127 net = sock_net(sk);
3128 po = pkt_sk(sk);
3129
3130 mutex_lock(lock: &net->packet.sklist_lock);
3131 sk_del_node_init_rcu(sk);
3132 mutex_unlock(lock: &net->packet.sklist_lock);
3133
3134 sock_prot_inuse_add(net, prot: sk->sk_prot, val: -1);
3135
3136 spin_lock(lock: &po->bind_lock);
3137 unregister_prot_hook(sk, sync: false);
3138 packet_cached_dev_reset(po);
3139
3140 if (po->prot_hook.dev) {
3141 netdev_put(dev: po->prot_hook.dev, tracker: &po->prot_hook.dev_tracker);
3142 po->prot_hook.dev = NULL;
3143 }
3144 spin_unlock(lock: &po->bind_lock);
3145
3146 packet_flush_mclist(sk);
3147
3148 lock_sock(sk);
3149 if (po->rx_ring.pg_vec) {
3150 memset(s: &req_u, c: 0, n: sizeof(req_u));
3151 packet_set_ring(sk, req_u: &req_u, closing: 1, tx_ring: 0);
3152 }
3153
3154 if (po->tx_ring.pg_vec) {
3155 memset(s: &req_u, c: 0, n: sizeof(req_u));
3156 packet_set_ring(sk, req_u: &req_u, closing: 1, tx_ring: 1);
3157 }
3158 release_sock(sk);
3159
3160 f = fanout_release(sk);
3161
3162 synchronize_net();
3163
3164 kfree(objp: po->rollover);
3165 if (f) {
3166 fanout_release_data(f);
3167 kvfree(addr: f);
3168 }
3169 /*
3170 * Now the socket is dead. No more input will appear.
3171 */
3172 sock_orphan(sk);
3173 sock->sk = NULL;
3174
3175 /* Purge queues */
3176
3177 skb_queue_purge(list: &sk->sk_receive_queue);
3178 packet_free_pending(po);
3179
3180 sock_put(sk);
3181 return 0;
3182}
3183
3184/*
3185 * Attach a packet hook.
3186 */
3187
3188static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3189 __be16 proto)
3190{
3191 struct packet_sock *po = pkt_sk(sk);
3192 struct net_device *dev = NULL;
3193 bool unlisted = false;
3194 bool need_rehook;
3195 int ret = 0;
3196
3197 lock_sock(sk);
3198 spin_lock(lock: &po->bind_lock);
3199 if (!proto)
3200 proto = po->num;
3201
3202 rcu_read_lock();
3203
3204 if (po->fanout) {
3205 ret = -EINVAL;
3206 goto out_unlock;
3207 }
3208
3209 if (name) {
3210 dev = dev_get_by_name_rcu(net: sock_net(sk), name);
3211 if (!dev) {
3212 ret = -ENODEV;
3213 goto out_unlock;
3214 }
3215 } else if (ifindex) {
3216 dev = dev_get_by_index_rcu(net: sock_net(sk), ifindex);
3217 if (!dev) {
3218 ret = -ENODEV;
3219 goto out_unlock;
3220 }
3221 }
3222
3223 need_rehook = po->prot_hook.type != proto || po->prot_hook.dev != dev;
3224
3225 if (need_rehook) {
3226 dev_hold(dev);
3227 if (packet_sock_flag(po, flag: PACKET_SOCK_RUNNING)) {
3228 rcu_read_unlock();
3229 /* prevents packet_notifier() from calling
3230 * register_prot_hook()
3231 */
3232 WRITE_ONCE(po->num, 0);
3233 __unregister_prot_hook(sk, sync: true);
3234 rcu_read_lock();
3235 if (dev)
3236 unlisted = !dev_get_by_index_rcu(net: sock_net(sk),
3237 ifindex: dev->ifindex);
3238 }
3239
3240 BUG_ON(packet_sock_flag(po, PACKET_SOCK_RUNNING));
3241 WRITE_ONCE(po->num, proto);
3242 po->prot_hook.type = proto;
3243
3244 netdev_put(dev: po->prot_hook.dev, tracker: &po->prot_hook.dev_tracker);
3245
3246 if (unlikely(unlisted)) {
3247 po->prot_hook.dev = NULL;
3248 WRITE_ONCE(po->ifindex, -1);
3249 packet_cached_dev_reset(po);
3250 } else {
3251 netdev_hold(dev, tracker: &po->prot_hook.dev_tracker,
3252 GFP_ATOMIC);
3253 po->prot_hook.dev = dev;
3254 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0);
3255 packet_cached_dev_assign(po, dev);
3256 }
3257 dev_put(dev);
3258 }
3259
3260 if (proto == 0 || !need_rehook)
3261 goto out_unlock;
3262
3263 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3264 register_prot_hook(sk);
3265 } else {
3266 sk->sk_err = ENETDOWN;
3267 if (!sock_flag(sk, flag: SOCK_DEAD))
3268 sk_error_report(sk);
3269 }
3270
3271out_unlock:
3272 rcu_read_unlock();
3273 spin_unlock(lock: &po->bind_lock);
3274 release_sock(sk);
3275 return ret;
3276}
3277
3278/*
3279 * Bind a packet socket to a device
3280 */
3281
3282static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3283 int addr_len)
3284{
3285 struct sock *sk = sock->sk;
3286 char name[sizeof(uaddr->sa_data_min) + 1];
3287
3288 /*
3289 * Check legality
3290 */
3291
3292 if (addr_len != sizeof(struct sockaddr))
3293 return -EINVAL;
3294 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3295 * zero-terminated.
3296 */
3297 memcpy(to: name, from: uaddr->sa_data, len: sizeof(uaddr->sa_data_min));
3298 name[sizeof(uaddr->sa_data_min)] = 0;
3299
3300 return packet_do_bind(sk, name, ifindex: 0, proto: 0);
3301}
3302
3303static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3304{
3305 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3306 struct sock *sk = sock->sk;
3307
3308 /*
3309 * Check legality
3310 */
3311
3312 if (addr_len < sizeof(struct sockaddr_ll))
3313 return -EINVAL;
3314 if (sll->sll_family != AF_PACKET)
3315 return -EINVAL;
3316
3317 return packet_do_bind(sk, NULL, ifindex: sll->sll_ifindex, proto: sll->sll_protocol);
3318}
3319
3320static struct proto packet_proto = {
3321 .name = "PACKET",
3322 .owner = THIS_MODULE,
3323 .obj_size = sizeof(struct packet_sock),
3324};
3325
3326/*
3327 * Create a packet of type SOCK_PACKET.
3328 */
3329
3330static int packet_create(struct net *net, struct socket *sock, int protocol,
3331 int kern)
3332{
3333 struct sock *sk;
3334 struct packet_sock *po;
3335 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3336 int err;
3337
3338 if (!ns_capable(ns: net->user_ns, CAP_NET_RAW))
3339 return -EPERM;
3340 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3341 sock->type != SOCK_PACKET)
3342 return -ESOCKTNOSUPPORT;
3343
3344 sock->state = SS_UNCONNECTED;
3345
3346 err = -ENOBUFS;
3347 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, prot: &packet_proto, kern);
3348 if (sk == NULL)
3349 goto out;
3350
3351 sock->ops = &packet_ops;
3352 if (sock->type == SOCK_PACKET)
3353 sock->ops = &packet_ops_spkt;
3354
3355 po = pkt_sk(sk);
3356 err = packet_alloc_pending(po);
3357 if (err)
3358 goto out_sk_free;
3359
3360 sock_init_data(sock, sk);
3361
3362 init_completion(x: &po->skb_completion);
3363 sk->sk_family = PF_PACKET;
3364 po->num = proto;
3365
3366 packet_cached_dev_reset(po);
3367
3368 sk->sk_destruct = packet_sock_destruct;
3369
3370 /*
3371 * Attach a protocol block
3372 */
3373
3374 spin_lock_init(&po->bind_lock);
3375 mutex_init(&po->pg_vec_lock);
3376 po->rollover = NULL;
3377 po->prot_hook.func = packet_rcv;
3378
3379 if (sock->type == SOCK_PACKET)
3380 po->prot_hook.func = packet_rcv_spkt;
3381
3382 po->prot_hook.af_packet_priv = sk;
3383 po->prot_hook.af_packet_net = sock_net(sk);
3384
3385 if (proto) {
3386 po->prot_hook.type = proto;
3387 __register_prot_hook(sk);
3388 }
3389
3390 mutex_lock(lock: &net->packet.sklist_lock);
3391 sk_add_node_tail_rcu(sk, list: &net->packet.sklist);
3392 mutex_unlock(lock: &net->packet.sklist_lock);
3393
3394 sock_prot_inuse_add(net, prot: &packet_proto, val: 1);
3395
3396 return 0;
3397out_sk_free:
3398 sk_free(sk);
3399out:
3400 return err;
3401}
3402
3403/*
3404 * Pull a packet from our receive queue and hand it to the user.
3405 * If necessary we block.
3406 */
3407
3408static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3409 int flags)
3410{
3411 struct sock *sk = sock->sk;
3412 struct sk_buff *skb;
3413 int copied, err;
3414 int vnet_hdr_len = READ_ONCE(pkt_sk(sk)->vnet_hdr_sz);
3415 unsigned int origlen = 0;
3416
3417 err = -EINVAL;
3418 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3419 goto out;
3420
3421#if 0
3422 /* What error should we return now? EUNATTACH? */
3423 if (pkt_sk(sk)->ifindex < 0)
3424 return -ENODEV;
3425#endif
3426
3427 if (flags & MSG_ERRQUEUE) {
3428 err = sock_recv_errqueue(sk, msg, len,
3429 SOL_PACKET, PACKET_TX_TIMESTAMP);
3430 goto out;
3431 }
3432
3433 /*
3434 * Call the generic datagram receiver. This handles all sorts
3435 * of horrible races and re-entrancy so we can forget about it
3436 * in the protocol layers.
3437 *
3438 * Now it will return ENETDOWN, if device have just gone down,
3439 * but then it will block.
3440 */
3441
3442 skb = skb_recv_datagram(sk, flags, err: &err);
3443
3444 /*
3445 * An error occurred so return it. Because skb_recv_datagram()
3446 * handles the blocking we don't see and worry about blocking
3447 * retries.
3448 */
3449
3450 if (skb == NULL)
3451 goto out;
3452
3453 packet_rcv_try_clear_pressure(pkt_sk(sk));
3454
3455 if (vnet_hdr_len) {
3456 err = packet_rcv_vnet(msg, skb, len: &len, vnet_hdr_sz: vnet_hdr_len);
3457 if (err)
3458 goto out_free;
3459 }
3460
3461 /* You lose any data beyond the buffer you gave. If it worries
3462 * a user program they can ask the device for its MTU
3463 * anyway.
3464 */
3465 copied = skb->len;
3466 if (copied > len) {
3467 copied = len;
3468 msg->msg_flags |= MSG_TRUNC;
3469 }
3470
3471 err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: copied);
3472 if (err)
3473 goto out_free;
3474
3475 if (sock->type != SOCK_PACKET) {
3476 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3477
3478 /* Original length was stored in sockaddr_ll fields */
3479 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3480 sll->sll_family = AF_PACKET;
3481 sll->sll_protocol = (sock->type == SOCK_DGRAM) ?
3482 vlan_get_protocol_dgram(skb) : skb->protocol;
3483 }
3484
3485 sock_recv_cmsgs(msg, sk, skb);
3486
3487 if (msg->msg_name) {
3488 const size_t max_len = min(sizeof(skb->cb),
3489 sizeof(struct sockaddr_storage));
3490 int copy_len;
3491
3492 /* If the address length field is there to be filled
3493 * in, we fill it in now.
3494 */
3495 if (sock->type == SOCK_PACKET) {
3496 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3497 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3498 copy_len = msg->msg_namelen;
3499 } else {
3500 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3501
3502 msg->msg_namelen = sll->sll_halen +
3503 offsetof(struct sockaddr_ll, sll_addr);
3504 copy_len = msg->msg_namelen;
3505 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3506 memset(s: msg->msg_name +
3507 offsetof(struct sockaddr_ll, sll_addr),
3508 c: 0, n: sizeof(sll->sll_addr));
3509 msg->msg_namelen = sizeof(struct sockaddr_ll);
3510 }
3511 }
3512 if (WARN_ON_ONCE(copy_len > max_len)) {
3513 copy_len = max_len;
3514 msg->msg_namelen = copy_len;
3515 }
3516 memcpy(to: msg->msg_name, from: &PACKET_SKB_CB(skb)->sa, len: copy_len);
3517 }
3518
3519 if (packet_sock_flag(pkt_sk(sk), flag: PACKET_SOCK_AUXDATA)) {
3520 struct tpacket_auxdata aux;
3521
3522 aux.tp_status = TP_STATUS_USER;
3523 if (skb->ip_summed == CHECKSUM_PARTIAL)
3524 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3525 else if (skb->pkt_type != PACKET_OUTGOING &&
3526 skb_csum_unnecessary(skb))
3527 aux.tp_status |= TP_STATUS_CSUM_VALID;
3528 if (skb_is_gso(skb) && skb_is_gso_tcp(skb))
3529 aux.tp_status |= TP_STATUS_GSO_TCP;
3530
3531 aux.tp_len = origlen;
3532 aux.tp_snaplen = skb->len;
3533 aux.tp_mac = 0;
3534 aux.tp_net = skb_network_offset(skb);
3535 if (skb_vlan_tag_present(skb)) {
3536 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3537 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3538 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3539 } else if (unlikely(sock->type == SOCK_DGRAM && eth_type_vlan(skb->protocol))) {
3540 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3541 struct net_device *dev;
3542
3543 rcu_read_lock();
3544 dev = dev_get_by_index_rcu(net: sock_net(sk), ifindex: sll->sll_ifindex);
3545 if (dev) {
3546 aux.tp_vlan_tci = vlan_get_tci(skb, dev);
3547 aux.tp_vlan_tpid = ntohs(skb->protocol);
3548 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3549 } else {
3550 aux.tp_vlan_tci = 0;
3551 aux.tp_vlan_tpid = 0;
3552 }
3553 rcu_read_unlock();
3554 } else {
3555 aux.tp_vlan_tci = 0;
3556 aux.tp_vlan_tpid = 0;
3557 }
3558 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, len: sizeof(aux), data: &aux);
3559 }
3560
3561 /*
3562 * Free or return the buffer as appropriate. Again this
3563 * hides all the races and re-entrancy issues from us.
3564 */
3565 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3566
3567out_free:
3568 skb_free_datagram(sk, skb);
3569out:
3570 return err;
3571}
3572
3573static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3574 int peer)
3575{
3576 struct net_device *dev;
3577 struct sock *sk = sock->sk;
3578
3579 if (peer)
3580 return -EOPNOTSUPP;
3581
3582 uaddr->sa_family = AF_PACKET;
3583 memset(s: uaddr->sa_data, c: 0, n: sizeof(uaddr->sa_data_min));
3584 rcu_read_lock();
3585 dev = dev_get_by_index_rcu(net: sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex));
3586 if (dev)
3587 strscpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data_min));
3588 rcu_read_unlock();
3589
3590 return sizeof(*uaddr);
3591}
3592
3593static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3594 int peer)
3595{
3596 struct net_device *dev;
3597 struct sock *sk = sock->sk;
3598 struct packet_sock *po = pkt_sk(sk);
3599 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3600 int ifindex;
3601
3602 if (peer)
3603 return -EOPNOTSUPP;
3604
3605 ifindex = READ_ONCE(po->ifindex);
3606 sll->sll_family = AF_PACKET;
3607 sll->sll_ifindex = ifindex;
3608 sll->sll_protocol = READ_ONCE(po->num);
3609 sll->sll_pkttype = 0;
3610 rcu_read_lock();
3611 dev = dev_get_by_index_rcu(net: sock_net(sk), ifindex);
3612 if (dev) {
3613 sll->sll_hatype = dev->type;
3614 sll->sll_halen = dev->addr_len;
3615
3616 /* Let __fortify_memcpy_chk() know the actual buffer size. */
3617 memcpy(to: ((struct sockaddr_storage *)sll)->__data +
3618 offsetof(struct sockaddr_ll, sll_addr) -
3619 offsetofend(struct sockaddr_ll, sll_family),
3620 from: dev->dev_addr, len: dev->addr_len);
3621 } else {
3622 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3623 sll->sll_halen = 0;
3624 }
3625 rcu_read_unlock();
3626
3627 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3628}
3629
3630static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3631 int what)
3632{
3633 switch (i->type) {
3634 case PACKET_MR_MULTICAST:
3635 if (i->alen != dev->addr_len)
3636 return -EINVAL;
3637 if (what > 0)
3638 return dev_mc_add(dev, addr: i->addr);
3639 else
3640 return dev_mc_del(dev, addr: i->addr);
3641 break;
3642 case PACKET_MR_PROMISC:
3643 return dev_set_promiscuity(dev, inc: what);
3644 case PACKET_MR_ALLMULTI:
3645 return dev_set_allmulti(dev, inc: what);
3646 case PACKET_MR_UNICAST:
3647 if (i->alen != dev->addr_len)
3648 return -EINVAL;
3649 if (what > 0)
3650 return dev_uc_add(dev, addr: i->addr);
3651 else
3652 return dev_uc_del(dev, addr: i->addr);
3653 break;
3654 default:
3655 break;
3656 }
3657 return 0;
3658}
3659
3660static void packet_dev_mclist_delete(struct net_device *dev,
3661 struct packet_mclist **mlp,
3662 struct list_head *list)
3663{
3664 struct packet_mclist *ml;
3665
3666 while ((ml = *mlp) != NULL) {
3667 if (ml->ifindex == dev->ifindex) {
3668 list_add(new: &ml->remove_list, head: list);
3669 *mlp = ml->next;
3670 } else
3671 mlp = &ml->next;
3672 }
3673}
3674
3675static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3676{
3677 struct packet_sock *po = pkt_sk(sk);
3678 struct packet_mclist *ml, *i;
3679 struct net_device *dev;
3680 int err;
3681
3682 rtnl_lock();
3683
3684 err = -ENODEV;
3685 dev = __dev_get_by_index(net: sock_net(sk), ifindex: mreq->mr_ifindex);
3686 if (!dev)
3687 goto done;
3688
3689 err = -EINVAL;
3690 if (mreq->mr_alen > dev->addr_len)
3691 goto done;
3692
3693 err = -ENOBUFS;
3694 i = kmalloc(sizeof(*i), GFP_KERNEL);
3695 if (i == NULL)
3696 goto done;
3697
3698 err = 0;
3699 for (ml = po->mclist; ml; ml = ml->next) {
3700 if (ml->ifindex == mreq->mr_ifindex &&
3701 ml->type == mreq->mr_type &&
3702 ml->alen == mreq->mr_alen &&
3703 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3704 ml->count++;
3705 /* Free the new element ... */
3706 kfree(objp: i);
3707 goto done;
3708 }
3709 }
3710
3711 i->type = mreq->mr_type;
3712 i->ifindex = mreq->mr_ifindex;
3713 i->alen = mreq->mr_alen;
3714 memcpy(to: i->addr, from: mreq->mr_address, len: i->alen);
3715 memset(s: i->addr + i->alen, c: 0, n: sizeof(i->addr) - i->alen);
3716 i->count = 1;
3717 INIT_LIST_HEAD(list: &i->remove_list);
3718 i->next = po->mclist;
3719 po->mclist = i;
3720 err = packet_dev_mc(dev, i, what: 1);
3721 if (err) {
3722 po->mclist = i->next;
3723 kfree(objp: i);
3724 }
3725
3726done:
3727 rtnl_unlock();
3728 return err;
3729}
3730
3731static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3732{
3733 struct packet_mclist *ml, **mlp;
3734
3735 rtnl_lock();
3736
3737 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3738 if (ml->ifindex == mreq->mr_ifindex &&
3739 ml->type == mreq->mr_type &&
3740 ml->alen == mreq->mr_alen &&
3741 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3742 if (--ml->count == 0) {
3743 struct net_device *dev;
3744 *mlp = ml->next;
3745 dev = __dev_get_by_index(net: sock_net(sk), ifindex: ml->ifindex);
3746 if (dev)
3747 packet_dev_mc(dev, i: ml, what: -1);
3748 kfree(objp: ml);
3749 }
3750 break;
3751 }
3752 }
3753 rtnl_unlock();
3754 return 0;
3755}
3756
3757static void packet_flush_mclist(struct sock *sk)
3758{
3759 struct packet_sock *po = pkt_sk(sk);
3760 struct packet_mclist *ml;
3761
3762 if (!po->mclist)
3763 return;
3764
3765 rtnl_lock();
3766 while ((ml = po->mclist) != NULL) {
3767 struct net_device *dev;
3768
3769 po->mclist = ml->next;
3770 dev = __dev_get_by_index(net: sock_net(sk), ifindex: ml->ifindex);
3771 if (dev != NULL)
3772 packet_dev_mc(dev, i: ml, what: -1);
3773 kfree(objp: ml);
3774 }
3775 rtnl_unlock();
3776}
3777
3778static int
3779packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3780 unsigned int optlen)
3781{
3782 struct sock *sk = sock->sk;
3783 struct packet_sock *po = pkt_sk(sk);
3784 int ret;
3785
3786 if (level != SOL_PACKET)
3787 return -ENOPROTOOPT;
3788
3789 switch (optname) {
3790 case PACKET_ADD_MEMBERSHIP:
3791 case PACKET_DROP_MEMBERSHIP:
3792 {
3793 struct packet_mreq_max mreq;
3794 int len = optlen;
3795 memset(s: &mreq, c: 0, n: sizeof(mreq));
3796 if (len < sizeof(struct packet_mreq))
3797 return -EINVAL;
3798 if (len > sizeof(mreq))
3799 len = sizeof(mreq);
3800 if (copy_from_sockptr(dst: &mreq, src: optval, size: len))
3801 return -EFAULT;
3802 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3803 return -EINVAL;
3804 if (optname == PACKET_ADD_MEMBERSHIP)
3805 ret = packet_mc_add(sk, mreq: &mreq);
3806 else
3807 ret = packet_mc_drop(sk, mreq: &mreq);
3808 return ret;
3809 }
3810
3811 case PACKET_RX_RING:
3812 case PACKET_TX_RING:
3813 {
3814 union tpacket_req_u req_u;
3815
3816 ret = -EINVAL;
3817 lock_sock(sk);
3818 switch (po->tp_version) {
3819 case TPACKET_V1:
3820 case TPACKET_V2:
3821 if (optlen < sizeof(req_u.req))
3822 break;
3823 ret = copy_from_sockptr(dst: &req_u.req, src: optval,
3824 size: sizeof(req_u.req)) ?
3825 -EINVAL : 0;
3826 break;
3827 case TPACKET_V3:
3828 default:
3829 if (optlen < sizeof(req_u.req3))
3830 break;
3831 ret = copy_from_sockptr(dst: &req_u.req3, src: optval,
3832 size: sizeof(req_u.req3)) ?
3833 -EINVAL : 0;
3834 break;
3835 }
3836 if (!ret)
3837 ret = packet_set_ring(sk, req_u: &req_u, closing: 0,
3838 tx_ring: optname == PACKET_TX_RING);
3839 release_sock(sk);
3840 return ret;
3841 }
3842 case PACKET_COPY_THRESH:
3843 {
3844 int val;
3845
3846 if (optlen != sizeof(val))
3847 return -EINVAL;
3848 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
3849 return -EFAULT;
3850
3851 WRITE_ONCE(pkt_sk(sk)->copy_thresh, val);
3852 return 0;
3853 }
3854 case PACKET_VERSION:
3855 {
3856 int val;
3857
3858 if (optlen != sizeof(val))
3859 return -EINVAL;
3860 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
3861 return -EFAULT;
3862 switch (val) {
3863 case TPACKET_V1:
3864 case TPACKET_V2:
3865 case TPACKET_V3:
3866 break;
3867 default:
3868 return -EINVAL;
3869 }
3870 lock_sock(sk);
3871 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3872 ret = -EBUSY;
3873 } else {
3874 po->tp_version = val;
3875 ret = 0;
3876 }
3877 release_sock(sk);
3878 return ret;
3879 }
3880 case PACKET_RESERVE:
3881 {
3882 unsigned int val;
3883
3884 if (optlen != sizeof(val))
3885 return -EINVAL;
3886 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
3887 return -EFAULT;
3888 if (val > INT_MAX)
3889 return -EINVAL;
3890 lock_sock(sk);
3891 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3892 ret = -EBUSY;
3893 } else {
3894 po->tp_reserve = val;
3895 ret = 0;
3896 }
3897 release_sock(sk);
3898 return ret;
3899 }
3900 case PACKET_LOSS:
3901 {
3902 unsigned int val;
3903
3904 if (optlen != sizeof(val))
3905 return -EINVAL;
3906 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
3907 return -EFAULT;
3908
3909 lock_sock(sk);
3910 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3911 ret = -EBUSY;
3912 } else {
3913 packet_sock_flag_set(po, flag: PACKET_SOCK_TP_LOSS, val);
3914 ret = 0;
3915 }
3916 release_sock(sk);
3917 return ret;
3918 }
3919 case PACKET_AUXDATA:
3920 {
3921 int val;
3922
3923 if (optlen < sizeof(val))
3924 return -EINVAL;
3925 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
3926 return -EFAULT;
3927
3928 packet_sock_flag_set(po, flag: PACKET_SOCK_AUXDATA, val);
3929 return 0;
3930 }
3931 case PACKET_ORIGDEV:
3932 {
3933 int val;
3934
3935 if (optlen < sizeof(val))
3936 return -EINVAL;
3937 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
3938 return -EFAULT;
3939
3940 packet_sock_flag_set(po, flag: PACKET_SOCK_ORIGDEV, val);
3941 return 0;
3942 }
3943 case PACKET_VNET_HDR:
3944 case PACKET_VNET_HDR_SZ:
3945 {
3946 int val, hdr_len;
3947
3948 if (sock->type != SOCK_RAW)
3949 return -EINVAL;
3950 if (optlen < sizeof(val))
3951 return -EINVAL;
3952 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
3953 return -EFAULT;
3954
3955 if (optname == PACKET_VNET_HDR_SZ) {
3956 if (val && val != sizeof(struct virtio_net_hdr) &&
3957 val != sizeof(struct virtio_net_hdr_mrg_rxbuf))
3958 return -EINVAL;
3959 hdr_len = val;
3960 } else {
3961 hdr_len = val ? sizeof(struct virtio_net_hdr) : 0;
3962 }
3963 lock_sock(sk);
3964 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3965 ret = -EBUSY;
3966 } else {
3967 WRITE_ONCE(po->vnet_hdr_sz, hdr_len);
3968 ret = 0;
3969 }
3970 release_sock(sk);
3971 return ret;
3972 }
3973 case PACKET_TIMESTAMP:
3974 {
3975 int val;
3976
3977 if (optlen != sizeof(val))
3978 return -EINVAL;
3979 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
3980 return -EFAULT;
3981
3982 WRITE_ONCE(po->tp_tstamp, val);
3983 return 0;
3984 }
3985 case PACKET_FANOUT:
3986 {
3987 struct fanout_args args = { 0 };
3988
3989 if (optlen != sizeof(int) && optlen != sizeof(args))
3990 return -EINVAL;
3991 if (copy_from_sockptr(dst: &args, src: optval, size: optlen))
3992 return -EFAULT;
3993
3994 return fanout_add(sk, args: &args);
3995 }
3996 case PACKET_FANOUT_DATA:
3997 {
3998 /* Paired with the WRITE_ONCE() in fanout_add() */
3999 if (!READ_ONCE(po->fanout))
4000 return -EINVAL;
4001
4002 return fanout_set_data(po, data: optval, len: optlen);
4003 }
4004 case PACKET_IGNORE_OUTGOING:
4005 {
4006 int val;
4007
4008 if (optlen != sizeof(val))
4009 return -EINVAL;
4010 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
4011 return -EFAULT;
4012 if (val < 0 || val > 1)
4013 return -EINVAL;
4014
4015 WRITE_ONCE(po->prot_hook.ignore_outgoing, !!val);
4016 return 0;
4017 }
4018 case PACKET_TX_HAS_OFF:
4019 {
4020 unsigned int val;
4021
4022 if (optlen != sizeof(val))
4023 return -EINVAL;
4024 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
4025 return -EFAULT;
4026
4027 lock_sock(sk);
4028 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec)
4029 packet_sock_flag_set(po, flag: PACKET_SOCK_TX_HAS_OFF, val);
4030
4031 release_sock(sk);
4032 return 0;
4033 }
4034 case PACKET_QDISC_BYPASS:
4035 {
4036 int val;
4037
4038 if (optlen != sizeof(val))
4039 return -EINVAL;
4040 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
4041 return -EFAULT;
4042
4043 packet_sock_flag_set(po, flag: PACKET_SOCK_QDISC_BYPASS, val);
4044 return 0;
4045 }
4046 default:
4047 return -ENOPROTOOPT;
4048 }
4049}
4050
4051static int packet_getsockopt(struct socket *sock, int level, int optname,
4052 char __user *optval, int __user *optlen)
4053{
4054 int len;
4055 int val, lv = sizeof(val);
4056 struct sock *sk = sock->sk;
4057 struct packet_sock *po = pkt_sk(sk);
4058 void *data = &val;
4059 union tpacket_stats_u st;
4060 struct tpacket_rollover_stats rstats;
4061 int drops;
4062
4063 if (level != SOL_PACKET)
4064 return -ENOPROTOOPT;
4065
4066 if (get_user(len, optlen))
4067 return -EFAULT;
4068
4069 if (len < 0)
4070 return -EINVAL;
4071
4072 switch (optname) {
4073 case PACKET_STATISTICS:
4074 spin_lock_bh(lock: &sk->sk_receive_queue.lock);
4075 memcpy(to: &st, from: &po->stats, len: sizeof(st));
4076 memset(s: &po->stats, c: 0, n: sizeof(po->stats));
4077 spin_unlock_bh(lock: &sk->sk_receive_queue.lock);
4078 drops = atomic_xchg(v: &po->tp_drops, new: 0);
4079
4080 if (po->tp_version == TPACKET_V3) {
4081 lv = sizeof(struct tpacket_stats_v3);
4082 st.stats3.tp_drops = drops;
4083 st.stats3.tp_packets += drops;
4084 data = &st.stats3;
4085 } else {
4086 lv = sizeof(struct tpacket_stats);
4087 st.stats1.tp_drops = drops;
4088 st.stats1.tp_packets += drops;
4089 data = &st.stats1;
4090 }
4091
4092 break;
4093 case PACKET_AUXDATA:
4094 val = packet_sock_flag(po, flag: PACKET_SOCK_AUXDATA);
4095 break;
4096 case PACKET_ORIGDEV:
4097 val = packet_sock_flag(po, flag: PACKET_SOCK_ORIGDEV);
4098 break;
4099 case PACKET_VNET_HDR:
4100 val = !!READ_ONCE(po->vnet_hdr_sz);
4101 break;
4102 case PACKET_VNET_HDR_SZ:
4103 val = READ_ONCE(po->vnet_hdr_sz);
4104 break;
4105 case PACKET_COPY_THRESH:
4106 val = READ_ONCE(pkt_sk(sk)->copy_thresh);
4107 break;
4108 case PACKET_VERSION:
4109 val = po->tp_version;
4110 break;
4111 case PACKET_HDRLEN:
4112 if (len > sizeof(int))
4113 len = sizeof(int);
4114 if (len < sizeof(int))
4115 return -EINVAL;
4116 if (copy_from_user(to: &val, from: optval, n: len))
4117 return -EFAULT;
4118 switch (val) {
4119 case TPACKET_V1:
4120 val = sizeof(struct tpacket_hdr);
4121 break;
4122 case TPACKET_V2:
4123 val = sizeof(struct tpacket2_hdr);
4124 break;
4125 case TPACKET_V3:
4126 val = sizeof(struct tpacket3_hdr);
4127 break;
4128 default:
4129 return -EINVAL;
4130 }
4131 break;
4132 case PACKET_RESERVE:
4133 val = po->tp_reserve;
4134 break;
4135 case PACKET_LOSS:
4136 val = packet_sock_flag(po, flag: PACKET_SOCK_TP_LOSS);
4137 break;
4138 case PACKET_TIMESTAMP:
4139 val = READ_ONCE(po->tp_tstamp);
4140 break;
4141 case PACKET_FANOUT:
4142 val = (po->fanout ?
4143 ((u32)po->fanout->id |
4144 ((u32)po->fanout->type << 16) |
4145 ((u32)po->fanout->flags << 24)) :
4146 0);
4147 break;
4148 case PACKET_IGNORE_OUTGOING:
4149 val = READ_ONCE(po->prot_hook.ignore_outgoing);
4150 break;
4151 case PACKET_ROLLOVER_STATS:
4152 if (!po->rollover)
4153 return -EINVAL;
4154 rstats.tp_all = atomic_long_read(v: &po->rollover->num);
4155 rstats.tp_huge = atomic_long_read(v: &po->rollover->num_huge);
4156 rstats.tp_failed = atomic_long_read(v: &po->rollover->num_failed);
4157 data = &rstats;
4158 lv = sizeof(rstats);
4159 break;
4160 case PACKET_TX_HAS_OFF:
4161 val = packet_sock_flag(po, flag: PACKET_SOCK_TX_HAS_OFF);
4162 break;
4163 case PACKET_QDISC_BYPASS:
4164 val = packet_sock_flag(po, flag: PACKET_SOCK_QDISC_BYPASS);
4165 break;
4166 default:
4167 return -ENOPROTOOPT;
4168 }
4169
4170 if (len > lv)
4171 len = lv;
4172 if (put_user(len, optlen))
4173 return -EFAULT;
4174 if (copy_to_user(to: optval, from: data, n: len))
4175 return -EFAULT;
4176 return 0;
4177}
4178
4179static int packet_notifier(struct notifier_block *this,
4180 unsigned long msg, void *ptr)
4181{
4182 struct net_device *dev = netdev_notifier_info_to_dev(info: ptr);
4183 struct net *net = dev_net(dev);
4184 struct packet_mclist *ml, *tmp;
4185 LIST_HEAD(mclist);
4186 struct sock *sk;
4187
4188 rcu_read_lock();
4189 sk_for_each_rcu(sk, &net->packet.sklist) {
4190 struct packet_sock *po = pkt_sk(sk);
4191
4192 switch (msg) {
4193 case NETDEV_UNREGISTER:
4194 if (po->mclist)
4195 packet_dev_mclist_delete(dev, mlp: &po->mclist,
4196 list: &mclist);
4197 fallthrough;
4198
4199 case NETDEV_DOWN:
4200 if (dev->ifindex == po->ifindex) {
4201 spin_lock(lock: &po->bind_lock);
4202 if (packet_sock_flag(po, flag: PACKET_SOCK_RUNNING)) {
4203 __unregister_prot_hook(sk, sync: false);
4204 sk->sk_err = ENETDOWN;
4205 if (!sock_flag(sk, flag: SOCK_DEAD))
4206 sk_error_report(sk);
4207 }
4208 if (msg == NETDEV_UNREGISTER) {
4209 packet_cached_dev_reset(po);
4210 WRITE_ONCE(po->ifindex, -1);
4211 netdev_put(dev: po->prot_hook.dev,
4212 tracker: &po->prot_hook.dev_tracker);
4213 po->prot_hook.dev = NULL;
4214 }
4215 spin_unlock(lock: &po->bind_lock);
4216 }
4217 break;
4218 case NETDEV_UP:
4219 if (dev->ifindex == po->ifindex) {
4220 spin_lock(lock: &po->bind_lock);
4221 if (po->num)
4222 register_prot_hook(sk);
4223 spin_unlock(lock: &po->bind_lock);
4224 }
4225 break;
4226 }
4227 }
4228 rcu_read_unlock();
4229
4230 /* packet_dev_mc might grab instance locks so can't run under rcu */
4231 list_for_each_entry_safe(ml, tmp, &mclist, remove_list) {
4232 packet_dev_mc(dev, i: ml, what: -1);
4233 kfree(objp: ml);
4234 }
4235
4236 return NOTIFY_DONE;
4237}
4238
4239
4240static int packet_ioctl(struct socket *sock, unsigned int cmd,
4241 unsigned long arg)
4242{
4243 struct sock *sk = sock->sk;
4244
4245 switch (cmd) {
4246 case SIOCOUTQ:
4247 {
4248 int amount = sk_wmem_alloc_get(sk);
4249
4250 return put_user(amount, (int __user *)arg);
4251 }
4252 case SIOCINQ:
4253 {
4254 struct sk_buff *skb;
4255 int amount = 0;
4256
4257 spin_lock_bh(lock: &sk->sk_receive_queue.lock);
4258 skb = skb_peek(list_: &sk->sk_receive_queue);
4259 if (skb)
4260 amount = skb->len;
4261 spin_unlock_bh(lock: &sk->sk_receive_queue.lock);
4262 return put_user(amount, (int __user *)arg);
4263 }
4264#ifdef CONFIG_INET
4265 case SIOCADDRT:
4266 case SIOCDELRT:
4267 case SIOCDARP:
4268 case SIOCGARP:
4269 case SIOCSARP:
4270 case SIOCGIFADDR:
4271 case SIOCSIFADDR:
4272 case SIOCGIFBRDADDR:
4273 case SIOCSIFBRDADDR:
4274 case SIOCGIFNETMASK:
4275 case SIOCSIFNETMASK:
4276 case SIOCGIFDSTADDR:
4277 case SIOCSIFDSTADDR:
4278 case SIOCSIFFLAGS:
4279 return inet_dgram_ops.ioctl(sock, cmd, arg);
4280#endif
4281
4282 default:
4283 return -ENOIOCTLCMD;
4284 }
4285 return 0;
4286}
4287
4288static __poll_t packet_poll(struct file *file, struct socket *sock,
4289 poll_table *wait)
4290{
4291 struct sock *sk = sock->sk;
4292 struct packet_sock *po = pkt_sk(sk);
4293 __poll_t mask = datagram_poll(file, sock, wait);
4294
4295 spin_lock_bh(lock: &sk->sk_receive_queue.lock);
4296 if (po->rx_ring.pg_vec) {
4297 if (!packet_previous_rx_frame(po, rb: &po->rx_ring,
4298 TP_STATUS_KERNEL))
4299 mask |= EPOLLIN | EPOLLRDNORM;
4300 }
4301 packet_rcv_try_clear_pressure(po);
4302 spin_unlock_bh(lock: &sk->sk_receive_queue.lock);
4303 spin_lock_bh(lock: &sk->sk_write_queue.lock);
4304 if (po->tx_ring.pg_vec) {
4305 if (packet_current_frame(po, rb: &po->tx_ring, TP_STATUS_AVAILABLE))
4306 mask |= EPOLLOUT | EPOLLWRNORM;
4307 }
4308 spin_unlock_bh(lock: &sk->sk_write_queue.lock);
4309 return mask;
4310}
4311
4312
4313/* Dirty? Well, I still did not learn better way to account
4314 * for user mmaps.
4315 */
4316
4317static void packet_mm_open(struct vm_area_struct *vma)
4318{
4319 struct file *file = vma->vm_file;
4320 struct socket *sock = file->private_data;
4321 struct sock *sk = sock->sk;
4322
4323 if (sk)
4324 atomic_long_inc(v: &pkt_sk(sk)->mapped);
4325}
4326
4327static void packet_mm_close(struct vm_area_struct *vma)
4328{
4329 struct file *file = vma->vm_file;
4330 struct socket *sock = file->private_data;
4331 struct sock *sk = sock->sk;
4332
4333 if (sk)
4334 atomic_long_dec(v: &pkt_sk(sk)->mapped);
4335}
4336
4337static const struct vm_operations_struct packet_mmap_ops = {
4338 .open = packet_mm_open,
4339 .close = packet_mm_close,
4340};
4341
4342static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4343 unsigned int len)
4344{
4345 int i;
4346
4347 for (i = 0; i < len; i++) {
4348 if (likely(pg_vec[i].buffer)) {
4349 if (is_vmalloc_addr(x: pg_vec[i].buffer))
4350 vfree(addr: pg_vec[i].buffer);
4351 else
4352 free_pages(addr: (unsigned long)pg_vec[i].buffer,
4353 order);
4354 pg_vec[i].buffer = NULL;
4355 }
4356 }
4357 kfree(objp: pg_vec);
4358}
4359
4360static char *alloc_one_pg_vec_page(unsigned long order)
4361{
4362 char *buffer;
4363 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4364 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4365
4366 buffer = (char *) __get_free_pages(gfp_flags, order);
4367 if (buffer)
4368 return buffer;
4369
4370 /* __get_free_pages failed, fall back to vmalloc */
4371 buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4372 if (buffer)
4373 return buffer;
4374
4375 /* vmalloc failed, lets dig into swap here */
4376 gfp_flags &= ~__GFP_NORETRY;
4377 buffer = (char *) __get_free_pages(gfp_flags, order);
4378 if (buffer)
4379 return buffer;
4380
4381 /* complete and utter failure */
4382 return NULL;
4383}
4384
4385static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4386{
4387 unsigned int block_nr = req->tp_block_nr;
4388 struct pgv *pg_vec;
4389 int i;
4390
4391 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4392 if (unlikely(!pg_vec))
4393 goto out;
4394
4395 for (i = 0; i < block_nr; i++) {
4396 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4397 if (unlikely(!pg_vec[i].buffer))
4398 goto out_free_pgvec;
4399 }
4400
4401out:
4402 return pg_vec;
4403
4404out_free_pgvec:
4405 free_pg_vec(pg_vec, order, len: block_nr);
4406 pg_vec = NULL;
4407 goto out;
4408}
4409
4410static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4411 int closing, int tx_ring)
4412{
4413 struct pgv *pg_vec = NULL;
4414 struct packet_sock *po = pkt_sk(sk);
4415 unsigned long *rx_owner_map = NULL;
4416 int was_running, order = 0;
4417 struct packet_ring_buffer *rb;
4418 struct sk_buff_head *rb_queue;
4419 __be16 num;
4420 int err;
4421 /* Added to avoid minimal code churn */
4422 struct tpacket_req *req = &req_u->req;
4423
4424 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4425 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4426
4427 err = -EBUSY;
4428 if (!closing) {
4429 if (atomic_long_read(v: &po->mapped))
4430 goto out;
4431 if (packet_read_pending(rb))
4432 goto out;
4433 }
4434
4435 if (req->tp_block_nr) {
4436 unsigned int min_frame_size;
4437
4438 /* Sanity tests and some calculations */
4439 err = -EBUSY;
4440 if (unlikely(rb->pg_vec))
4441 goto out;
4442
4443 switch (po->tp_version) {
4444 case TPACKET_V1:
4445 po->tp_hdrlen = TPACKET_HDRLEN;
4446 break;
4447 case TPACKET_V2:
4448 po->tp_hdrlen = TPACKET2_HDRLEN;
4449 break;
4450 case TPACKET_V3:
4451 po->tp_hdrlen = TPACKET3_HDRLEN;
4452 break;
4453 }
4454
4455 err = -EINVAL;
4456 if (unlikely((int)req->tp_block_size <= 0))
4457 goto out;
4458 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4459 goto out;
4460 min_frame_size = po->tp_hdrlen + po->tp_reserve;
4461 if (po->tp_version >= TPACKET_V3 &&
4462 req->tp_block_size <
4463 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4464 goto out;
4465 if (unlikely(req->tp_frame_size < min_frame_size))
4466 goto out;
4467 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4468 goto out;
4469
4470 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4471 if (unlikely(rb->frames_per_block == 0))
4472 goto out;
4473 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4474 goto out;
4475 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4476 req->tp_frame_nr))
4477 goto out;
4478
4479 err = -ENOMEM;
4480 order = get_order(size: req->tp_block_size);
4481 pg_vec = alloc_pg_vec(req, order);
4482 if (unlikely(!pg_vec))
4483 goto out;
4484 switch (po->tp_version) {
4485 case TPACKET_V3:
4486 /* Block transmit is not supported yet */
4487 if (!tx_ring) {
4488 init_prb_bdqc(po, rb, pg_vec, req_u);
4489 } else {
4490 struct tpacket_req3 *req3 = &req_u->req3;
4491
4492 if (req3->tp_retire_blk_tov ||
4493 req3->tp_sizeof_priv ||
4494 req3->tp_feature_req_word) {
4495 err = -EINVAL;
4496 goto out_free_pg_vec;
4497 }
4498 }
4499 break;
4500 default:
4501 if (!tx_ring) {
4502 rx_owner_map = bitmap_alloc(nbits: req->tp_frame_nr,
4503 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4504 if (!rx_owner_map)
4505 goto out_free_pg_vec;
4506 }
4507 break;
4508 }
4509 }
4510 /* Done */
4511 else {
4512 err = -EINVAL;
4513 if (unlikely(req->tp_frame_nr))
4514 goto out;
4515 }
4516
4517
4518 /* Detach socket from network */
4519 spin_lock(lock: &po->bind_lock);
4520 was_running = packet_sock_flag(po, flag: PACKET_SOCK_RUNNING);
4521 num = po->num;
4522 WRITE_ONCE(po->num, 0);
4523 if (was_running)
4524 __unregister_prot_hook(sk, sync: false);
4525
4526 spin_unlock(lock: &po->bind_lock);
4527
4528 synchronize_net();
4529
4530 err = -EBUSY;
4531 mutex_lock(lock: &po->pg_vec_lock);
4532 if (closing || atomic_long_read(v: &po->mapped) == 0) {
4533 err = 0;
4534 spin_lock_bh(lock: &rb_queue->lock);
4535 swap(rb->pg_vec, pg_vec);
4536 if (po->tp_version <= TPACKET_V2)
4537 swap(rb->rx_owner_map, rx_owner_map);
4538 rb->frame_max = (req->tp_frame_nr - 1);
4539 rb->head = 0;
4540 rb->frame_size = req->tp_frame_size;
4541 spin_unlock_bh(lock: &rb_queue->lock);
4542
4543 swap(rb->pg_vec_order, order);
4544 swap(rb->pg_vec_len, req->tp_block_nr);
4545
4546 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4547 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4548 tpacket_rcv : packet_rcv;
4549 skb_queue_purge(list: rb_queue);
4550 if (atomic_long_read(v: &po->mapped))
4551 pr_err("packet_mmap: vma is busy: %ld\n",
4552 atomic_long_read(&po->mapped));
4553 }
4554 mutex_unlock(lock: &po->pg_vec_lock);
4555
4556 spin_lock(lock: &po->bind_lock);
4557 WRITE_ONCE(po->num, num);
4558 if (was_running)
4559 register_prot_hook(sk);
4560
4561 spin_unlock(lock: &po->bind_lock);
4562 if (pg_vec && (po->tp_version > TPACKET_V2)) {
4563 /* Because we don't support block-based V3 on tx-ring */
4564 if (!tx_ring)
4565 prb_shutdown_retire_blk_timer(po, rb_queue);
4566 }
4567
4568out_free_pg_vec:
4569 if (pg_vec) {
4570 bitmap_free(bitmap: rx_owner_map);
4571 free_pg_vec(pg_vec, order, len: req->tp_block_nr);
4572 }
4573out:
4574 return err;
4575}
4576
4577static int packet_mmap(struct file *file, struct socket *sock,
4578 struct vm_area_struct *vma)
4579{
4580 struct sock *sk = sock->sk;
4581 struct packet_sock *po = pkt_sk(sk);
4582 unsigned long size, expected_size;
4583 struct packet_ring_buffer *rb;
4584 unsigned long start;
4585 int err = -EINVAL;
4586 int i;
4587
4588 if (vma->vm_pgoff)
4589 return -EINVAL;
4590
4591 mutex_lock(lock: &po->pg_vec_lock);
4592
4593 expected_size = 0;
4594 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4595 if (rb->pg_vec) {
4596 expected_size += rb->pg_vec_len
4597 * rb->pg_vec_pages
4598 * PAGE_SIZE;
4599 }
4600 }
4601
4602 if (expected_size == 0)
4603 goto out;
4604
4605 size = vma->vm_end - vma->vm_start;
4606 if (size != expected_size)
4607 goto out;
4608
4609 start = vma->vm_start;
4610 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4611 if (rb->pg_vec == NULL)
4612 continue;
4613
4614 for (i = 0; i < rb->pg_vec_len; i++) {
4615 struct page *page;
4616 void *kaddr = rb->pg_vec[i].buffer;
4617 int pg_num;
4618
4619 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4620 page = pgv_to_page(addr: kaddr);
4621 err = vm_insert_page(vma, addr: start, page);
4622 if (unlikely(err))
4623 goto out;
4624 start += PAGE_SIZE;
4625 kaddr += PAGE_SIZE;
4626 }
4627 }
4628 }
4629
4630 atomic_long_inc(v: &po->mapped);
4631 vma->vm_ops = &packet_mmap_ops;
4632 err = 0;
4633
4634out:
4635 mutex_unlock(lock: &po->pg_vec_lock);
4636 return err;
4637}
4638
4639static const struct proto_ops packet_ops_spkt = {
4640 .family = PF_PACKET,
4641 .owner = THIS_MODULE,
4642 .release = packet_release,
4643 .bind = packet_bind_spkt,
4644 .connect = sock_no_connect,
4645 .socketpair = sock_no_socketpair,
4646 .accept = sock_no_accept,
4647 .getname = packet_getname_spkt,
4648 .poll = datagram_poll,
4649 .ioctl = packet_ioctl,
4650 .gettstamp = sock_gettstamp,
4651 .listen = sock_no_listen,
4652 .shutdown = sock_no_shutdown,
4653 .sendmsg = packet_sendmsg_spkt,
4654 .recvmsg = packet_recvmsg,
4655 .mmap = sock_no_mmap,
4656};
4657
4658static const struct proto_ops packet_ops = {
4659 .family = PF_PACKET,
4660 .owner = THIS_MODULE,
4661 .release = packet_release,
4662 .bind = packet_bind,
4663 .connect = sock_no_connect,
4664 .socketpair = sock_no_socketpair,
4665 .accept = sock_no_accept,
4666 .getname = packet_getname,
4667 .poll = packet_poll,
4668 .ioctl = packet_ioctl,
4669 .gettstamp = sock_gettstamp,
4670 .listen = sock_no_listen,
4671 .shutdown = sock_no_shutdown,
4672 .setsockopt = packet_setsockopt,
4673 .getsockopt = packet_getsockopt,
4674 .sendmsg = packet_sendmsg,
4675 .recvmsg = packet_recvmsg,
4676 .mmap = packet_mmap,
4677};
4678
4679static const struct net_proto_family packet_family_ops = {
4680 .family = PF_PACKET,
4681 .create = packet_create,
4682 .owner = THIS_MODULE,
4683};
4684
4685static struct notifier_block packet_netdev_notifier = {
4686 .notifier_call = packet_notifier,
4687};
4688
4689#ifdef CONFIG_PROC_FS
4690
4691static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4692 __acquires(RCU)
4693{
4694 struct net *net = seq_file_net(seq);
4695
4696 rcu_read_lock();
4697 return seq_hlist_start_head_rcu(head: &net->packet.sklist, pos: *pos);
4698}
4699
4700static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4701{
4702 struct net *net = seq_file_net(seq);
4703 return seq_hlist_next_rcu(v, head: &net->packet.sklist, ppos: pos);
4704}
4705
4706static void packet_seq_stop(struct seq_file *seq, void *v)
4707 __releases(RCU)
4708{
4709 rcu_read_unlock();
4710}
4711
4712static int packet_seq_show(struct seq_file *seq, void *v)
4713{
4714 if (v == SEQ_START_TOKEN)
4715 seq_printf(m: seq,
4716 fmt: "%*sRefCnt Type Proto Iface R Rmem User Inode\n",
4717 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk");
4718 else {
4719 struct sock *s = sk_entry(node: v);
4720 const struct packet_sock *po = pkt_sk(s);
4721
4722 seq_printf(m: seq,
4723 fmt: "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4724 s,
4725 refcount_read(r: &s->sk_refcnt),
4726 s->sk_type,
4727 ntohs(READ_ONCE(po->num)),
4728 READ_ONCE(po->ifindex),
4729 packet_sock_flag(po, flag: PACKET_SOCK_RUNNING),
4730 atomic_read(v: &s->sk_rmem_alloc),
4731 from_kuid_munged(to: seq_user_ns(seq), kuid: sk_uid(sk: s)),
4732 sock_i_ino(sk: s));
4733 }
4734
4735 return 0;
4736}
4737
4738static const struct seq_operations packet_seq_ops = {
4739 .start = packet_seq_start,
4740 .next = packet_seq_next,
4741 .stop = packet_seq_stop,
4742 .show = packet_seq_show,
4743};
4744#endif
4745
4746static int __net_init packet_net_init(struct net *net)
4747{
4748 mutex_init(&net->packet.sklist_lock);
4749 INIT_HLIST_HEAD(&net->packet.sklist);
4750
4751#ifdef CONFIG_PROC_FS
4752 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4753 sizeof(struct seq_net_private)))
4754 return -ENOMEM;
4755#endif /* CONFIG_PROC_FS */
4756
4757 return 0;
4758}
4759
4760static void __net_exit packet_net_exit(struct net *net)
4761{
4762 remove_proc_entry("packet", net->proc_net);
4763 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4764}
4765
4766static struct pernet_operations packet_net_ops = {
4767 .init = packet_net_init,
4768 .exit = packet_net_exit,
4769};
4770
4771
4772static void __exit packet_exit(void)
4773{
4774 sock_unregister(PF_PACKET);
4775 proto_unregister(prot: &packet_proto);
4776 unregister_netdevice_notifier(nb: &packet_netdev_notifier);
4777 unregister_pernet_subsys(&packet_net_ops);
4778}
4779
4780static int __init packet_init(void)
4781{
4782 int rc;
4783
4784 rc = register_pernet_subsys(&packet_net_ops);
4785 if (rc)
4786 goto out;
4787 rc = register_netdevice_notifier(nb: &packet_netdev_notifier);
4788 if (rc)
4789 goto out_pernet;
4790 rc = proto_register(prot: &packet_proto, alloc_slab: 0);
4791 if (rc)
4792 goto out_notifier;
4793 rc = sock_register(fam: &packet_family_ops);
4794 if (rc)
4795 goto out_proto;
4796
4797 return 0;
4798
4799out_proto:
4800 proto_unregister(prot: &packet_proto);
4801out_notifier:
4802 unregister_netdevice_notifier(nb: &packet_netdev_notifier);
4803out_pernet:
4804 unregister_pernet_subsys(&packet_net_ops);
4805out:
4806 return rc;
4807}
4808
4809module_init(packet_init);
4810module_exit(packet_exit);
4811MODULE_DESCRIPTION("Packet socket support (AF_PACKET)");
4812MODULE_LICENSE("GPL");
4813MODULE_ALIAS_NETPROTO(PF_PACKET);
4814